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MOMENTS OF INERTIA

I n attempting to solve the equations of motion of a Rigid Body in a

manner similar to that employed for a single particle, it will be

found that certain new quantities appear, which depend on the extent and shape

of the body, on its density, and on the way in which it may be moving in

respect of some particular line or system of coordinate axes. These quantities

are called Moments of Inertia and Products of Inertia or second moments. A

moment of inertia of a body about any line is denned to be the sum of the

products of all the material elements of the body by the squares of their

perpendicular distances from this line. It may be denoted in general by the

letter I . When rectangular coordinate axes are used, the moments of inertia of

a point of mass m about the axes are defined by

I, =(2*+y*)m

I, = (2 + 2*)m

___‘A_>Y

1
1
I, =(z*+y*)m ..(1) H L
1
1
and about the planes are denoted by H / #
2 1 v
Ix_, =2"m o7
IY:() — y2m /,/ -\.\.\.\
V4 .
IZ:O = sz ...(2) / Y
and about a point O is given by X
I, = (2* +y* + 2*)m --(3)

4 It is clear that we can deduce from these equations that
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1- The moment of inertia of a body about three perpendicular axes equals

the moment of inertia about the point of their intersection , that is
Iy +1I, +1,=2I,
2- The moment of inertia of a body about two perpendicular planes equals

the moment of inertia about the axis of their intersection , that is
Ix_o+1y_g =1,
3- The moment of inertia of a body about three perpendicular planes

equals the moment of inertia about the point of their intersection, that

S Iy +1Iy_g + 1,9 =1,

€ General case
Now to obtain the moment of inertia of a rigid body we divide the rigid body to
an infinite number of differential elements each of them of mass dm
therefore, the previous relations of moment of inertia become About the axes
I, = f(zz + y*)dm
I, = f (z® + 22)dm ..
1, = [@ +y*)dm Ao T [

about the planes are denoted by |
IX:O = f:z:zdm z

Iy_y = f y*dm O“
I, ,= fzzdm wee(2))

)
and about a point O is given by {/

I, = f(:t:2 +y* + 2%)dm e (3')

B Theorem of Parallel Axes

There is a simple relationship between the moments of inertia about two
parallel axes, provided that one of the axes passes through the centroid of the
body. Referring to the shown figure, let be the centroid of the body, therefore

the moment of inertia of the body about an axis (Z say) is equal to its moment
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of inertia about a parallel axis through its

_—
P

H|

center of gravity (Z’), together with the Y|
product of the whole mass and the square .

of the distance between the axes. ST AT -’

Let the given axis be taken as axis of Z.

Let (x,y,2z) be the coordinates of a

differential element of mass dm, (z,y,z)

the coordinates of the center of gravity of 4

thebody G,andlet x =z + 2/, y=y+7vy’, z=z+2.
Where (z’,y’,2’)represents the coordinates of the differential element with

respect to GX'Y’Z’ passing through the center of gravity. The moment of

inertia about OZ

IZ:f(w2+y2)dm
= [ @+a)P+@+y)? dm
_ 2 2 =2 , =2 = .’ — .
=l (z*+y*dm+ z°+7y dm +2Z | £'dm + 2y | y'dm

But f x’dm = 0and f y'dm = 0, therefore the moment of inertia about OZ

I, = [@?+y*)dm+M 7 + 7
= I, + Md’ [dm=m

where the first sum is the moment of inertia about an axis through G parallel

toOZ (Z’), and the remaining terms are the product of the whole mass and the

square of the distance between the two axes z* + 3> = d*.

M Plane Lamina /

The moment of inertia of a plane lamina about an axis
perpendicular to its plane is equal to the sum of the

moments of inertia about any two perpendicular axes in the

plane that intersect on the first axis. Take the plane of the
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lamina as the plane of XY and the perpendicular axis asOZ. Then, since

Z = oat all points on the lamina, we have
I, = fyzdm, I, = fa:zdm, I, = frzdm
But r* = z* + y* hence we get
= I, = [(a® + y*)dm
= fwzdm+fy2dm:IX+IY
[ — [
IY IX

B Radius of Gyration of an Area

In some structural engineering applications it is common practice to introduce
the radius of gyration of area. The radii of gyration of an area about the axes

X, Y and point O respectively, are defined as

I I I
e

The radius of gyration of an area about an axis has units of length and is a
guantity that is often used for the design of columns in structural mechanics.
However, the radii of gyration are not a distance that has a clear-cut physical
meaning, nor can be determined by direct measurement; its value can be

determined only using the previous formulas. The radii of gyration are related

by the equation K2 = K? +K§Which can be obtained from the previous

relation.

B Moments of Inertia for an Area about Inclined Axes

In structural and mechanical design, it is sometimes necessary to calculate the

moments and product of inertia Iy, Iy, and I, foran area with respect to
a set of inclined X’ and Y’axes when the values for 6,1, I, ,and I, are
known. To do this we will use transformation equations which relate the X,Y

and X’,Y’ coordinates. From the shown figure, these equations are
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' = xcos@ + ysinO
y' = ycos@ — xsind
With these equations, the moments and product of inertia of dA about the X’
and Y’ axes become
dly, =y"?dA = (ycos® — zsin6)’dA
dI,, =z'*dA = (zcos + ysin0)*dA
dl vy = 2'y'dA =(zcos6 + ysin6)(y cos® — zsinH)dA

Expanding each expression and integrating, realizing that

Iy = [y?dA, I, = [a?dA and Iy, = [ayda, we obtain

I, =1y cos? 0 + I, sin? 6 — 214 sinfcos 6
I,, =14 sin? 6 + I, cos? 0 + 214 sin@cos@
Iryr = Ixy(cos® @ —sin®? 0) + (I — I, )sin6 cos 6
Using the  trigonometric identities sin26 = 2sin 6 cos 6 and
cos 20 = cos® @ — sin” @ we can simplify the above expressions, in which case
I, =14 cos? 6 + I, sin? 6 — Iy, sin26
I, = Xsin20 + IYc0s20 + I, sin260
Iy = Iy cos26 + %(IX — I,,)sin 26
If Iy;y» =0 then  tan20 = 2y
I, — Iy
It is evident that when the law of m is
known and the shape of the body is given, I\
the finding of a moment or of a product of
inertia involves integration; and the
following examples will serve to show how
the process of integration may be used for
this  purpose.  Further on, several

propositions will be given by which the

method may be usually much simplified.
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ImIllustrative Examplesll

0O EXAMPLE 1

Determine the moment of inertia of a uniform rod of length L about an axis
normal to it at one of its ends.

0 SOLUTION

Consider the differential element of the rod as shown in the figure It is located
on the rod at the arbitrary point = from the one end of the rod say O with

length dz then the mass of the element is dm = pdxz where p is the density
(mass per unit length) and therefore the moment of inertia of this element
about Y axis is dI, = z?dm therefore the moment of inertia of the whole rod
is obtained by integration, so
dI, = z?dm = zlpdx |

|
=1, = fm2dm :

l

L

L 1

1 0

= pf a:zdw: p[ga:s ] :_-_‘_@_'_f _____ I ____ >
0 0

1 1 1

=-Ip=- pL I! =-MI

3 P73 " 3
M

L
Remember M = f dm = f pdx = pL
0

0O EXAMPLE 2
Determine the moment of inertia of the area of a rectangular with lengths a,b

about an axis coincident with side a .

0 SOLUTION
Consider a strip (dashed line) having a thicknessdzx ; length a , and located in
an arbitrary position and has a distance y from X axis. The mass of the

element is dm = padz, p isthe mass per unit area.

cdly = 2dm = y* pbdy
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=1, = fyzdm Y
a a
1
= pb [ y*dy= p[—zf‘]
3 0
0 |
= 1pba3 = 1 pab a? = 1Ma2 |
3 3 3 dy t
M [
y |
y |
Notethat M = f dm = f pbdy = pba ¢ 2
0

0O EXAMPLE 3
Determine the moment of inertia of the area of triangle about an axis

coincident with side A as shown.

0 SOLUTION
Consider a thin rectangular element (dashed line) having a thickness dz ; length

x, and located in an arbitrary position so it has a distance  from Y axis. The

mass of the element is dm = pydxz where y = h — E:n
a

Thus the moment of inertia of the triangle about axis Y is given by

dIY = Ilfzdm Y
= I, = fa:zdm

=pf:c2ydm: pfw2[h—hw]dw T
0 0 a :
¢ h!
=p Ems—iafl =lpha,3 i
3 4a J, 12 i
1(1 2 2 ;
= —|=pha|a®* = —= Ma o

612

e

Where M = f dm = }pydw
0

a
—of
0

h — Ew]dm = p[ha: — i:1:2] = %pha

O EXAMPLE 4
Determine the moment of inertia of a circular arc of radius a which subtends

an angle 2« at its center O about an axis normal to the its plane at O .
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O SOLUTION

Take the axis of OX, with C is the middle point of the arc, and a
perpendicular axis OY . Let d¢ be the length of any differential element on
the arc as shown where the mass of this element is given by

dm = pdl, d€ = adf hence

= dI, = R*dm = R*(pRd0)

= I, = [ Rm = Rgpde

—Q

=1, = R°p6|"_
= 2R*pa = (2Rpa) R* = MR?
L
M
4 Now for special case, semicircle where 2ac =

= I, = R*p0|" ', = (Bpm)R* = MR* (M = prR)
M

4 Now for special case, a circle (cord) where 2a = 27

=1, = R3p0|” = (2Rpm)R* = MR* (M = 27Rp)
—T . J
M
That is the moment of a circle of radius R about an axis normal to it and

passing through the center is MR?

O EXAMPLE 5
Determine the moment of inertia of a circular arc of radius a which subtends

an angle 2« at its center O about a symmetric axis X as shown.

0 SOLUTION
Take the axis OX, with C is the middle point of the arc, and a perpendicular
axis QY . Let d¢ be the length of any differential element on the arc as shown

where the mass of this element is given by dm = pd¢, d€ = adf hence
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dIy = y*dm = R?sin? (pRd0)

= I, = pR® f sin?® 0d6

—Q

1 sin 20 "
I, ==-pR*|0—
X~ 3” [ 2 ]_a

1 . .
= -pR?® 2a —sin2a = pR3|a — sin2ov| _ (2apR) 1_sm2a R?
2 2 —]\4/1—’ 2

= I, = S| 2| R
2 2cx

4 Now for special case, semicircle where 2ac = =

sin 2«

= Iy :%M[l— ]R2 :%MR2 (M = pmR)

2cx

4 Now for special case, a circle (cord) where 2a = 27
1, =1M[1_%]R2 = SMR' (M =2rRp)

In the same manner the moment of inertia about Y axis is given by

I, = [a*dm = [ R?cos® 6(pRd0)

Now we can deduce the moment of inertia about a normal axis to the plane of
the circular arc passing through its center (as obtained before) by applying
perpendicular axes theorem

I, =1y +1,
= pR} f cos? 0d0 + f sin? 0d0

= pR3 f cos? 0 + sin? 6 d@

—Q

" I = pR* [ d0 = 2paR® = MR?

—Q
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O EXAMPLE 6

Find the moment of inertia of a solid spherical segment of height h of a sphere

of radius a about X -axis as shown

0 SOLUTION

Let O be the center of the sphere and
OX an axis at right angles to the base
of the segment meeting it in D and
the curved surface in C, so that
OD=a—h andDC=h. Taking
slices of the segment (thin disks)

parallel to its base of radius y, then

dm = pry’dxBut z,y are co-

ordinates of a point on a circle of

(, 4)

\
<
L]
N R

=]

N =

18

dx

B A

radius a, viz. the section of the sphere by the plane of the paper; so that

y? = a® — 2, the moment of inertia of the element is dI, = %yzdm

a
1 1
I, == | y¥dm == | wy'pdz
X 2fy 2af y'p

1
2

a
1
= Eﬂ'p f (a* — 2a’°z* + x')dx
a—h

—h
== pf (a® — z*)’dx
a—h

4 Now for special case, solid hemisphere where h = a then

1
I, = Eﬂ'p[a‘l:c -

4 . 2
= —Tpa = -
15

2
Za¥e + 191:5
3 5

a

0

z71'pa3 a’® = gMa2
3 5
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O EXAMPLE 7

Determine the moment of inertia for the area under the curve y = z*and

bounded by the X, Y axes and the line = a

0 SOLUTION

A differential element is chosen to be a thin rectangular (strip) parallel to Y
axis of thickness dz as shown in the figure. The element intersects the curve at

the arbitrary point (z,y), and so it has a height y .

The mass of the element is dm = pydz , then we obtain

daI,, = fa:zdm = }mz(pydw)
0

Y A
¥ 1 1
4 5% 5
= z'dr = -px = -pa
P{ 5P 0 5P >
8
:§ lpas a2 :§Ma2 ____Ll_’:_____‘\}__ y
5(3 5 o 1 - X
e d;c a

M

M = fdm = fpyd:r = ]p:czda:: %pa3
0

© Obtain the moment of inertia of this case about X axis

O EXAMPLE 8

Find the moment of inertia for the area bounded by the two parabola y = 322
and y = 4z — 2?about Y axis as shown.
0 SOLUTION

The differential element is chosen to be a thin rectangular parallel to Y axis of

thickness dz as shown in the figure. The element intersects the curves at the

arbitrary point (z,y), and so it has a height (y, — »,) . The mass of the element

is determined by



Moments of Inertia |12 h %

dm =p y, —y dz |

=p 4z —x? — 32 dx

=4p z— 2! dx

o dly, = z*dm

1
=1, = f:t:2dm = 4pf:t:2(w — z?)dz
0

1
= 4pf(a:3 — z')dz
0

© Obtain the moment of inertia about X axis

0O EXAMPLE 9
Obtain the moment of inertia of the volume of revolution that generated by

revolving a given curvey = f(z) round the Xaxisfrom z =0 and =z = a.

0 SOLUTION

Consider a differential element (thin
disk of radius y and thickness dz) is
selected to be parallel to Y axis with
thickness dz it intersects the generating

curve at the arbitrary point (z,y,0)and

so its radius isy. The mass of the

element isdm = pry’dx = prf?(z)dzx,

therefore

= I, :éfgfdm:%ﬂ'pfy‘ldm
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— 1 [ 4
= Iy = Eﬂp{ (z)dx
4 Again for a special case as y = = we get a solid right circular cone and then
_lpre, _1 1
=>IX—§fydm—27rpfydw
4

1 " ‘ 1

a a
= -7 —xz| de=~-mp—
2 p{[h ] 2"

5 \h
rl = — mpa’h
3 Jy

Since we have

h 2
_ _ a R S
M—fdm—ﬂ'pf[hm] d:n—37rpah
0

1 1
= I, = —7wpa*h = —|=7wpa’h|a®
T w0(3™ ]
[ ——)
M
:iMa2
10

where h is the height of the circular cone.

O EXAMPLE 10
Determine the moment of inertia for the surface of revolution that generated by

revolving a given curvey = f(x) round the X axis from z =0and z =a.

0 SOLUTION
Let us consider a differential element A
(thin ring of radius y and thickness d¢)
is selected to be parallel to Y axis with
thickness d¢ it intersects the generating

curve at the arbitrary point (z,y,0)and

so its radius is y. The mass of the

selected element is dm = 2pmyde

= 2prf(x)de, by differentiation the

equation y = f(x) with respectto = we
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get % = f/(z)then . d¢ = m dz. Since we have dI, — ydm
L

= Iy = fyzdm = 27rpff3(az)d£

= 27rpff3(a:)s/1 + f*(z) dz
0
< Obtain moment of inertia for a hollow right circular cone .

O EXAMPLE 11
Determine the moment of inertia for area of semicircle of radius @ when the

density is proportional to the distance fromO .

O SOLUTION
Let us consider a differential element of semicircle of radius » and thickness

dr and let the density of this elementis po<r Or p=pr
Then the mass of the element is dm = wrpdr = Tpridr
The moment of the element about O is dI,

dl, = r’dm = dl, = r? mwuridr

=1, = frzdm

a
= wufr“dr
0 dr
_TH s _ T g
5 0 5

Note M = fdm = ]nrpd’r
0

0 3

@ _TH 3

= wufr2dr = %7’3
0

5 5( 3
e !
M

= I, = Ma5 = §[Ma?’]az = §Ma2

O EXAMPLE 12
Find the moment of inertia of the area of Circular Sector of radius a and which

subtends an angle X at its center O when the density is proportional to the

distance fromO .
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O SOLUTION

Let the differential element be a circular arc of radius » which subtends an
angle X at its center and has thickness dr which its moment of inertia is

%[1—Slg2a]r2dm (Ex. 5) mass dm = 2aprdr-where p=kr, k is a
(8%
constant, then dm = 2akridr Y

Therefore the moment of inertia about X axis is dI .

dly = 1 1— sin 2« r’dm

2 2cx
1 in2

= dl, = -[1— = a]'r'2 2kor?dr -
2 2c

=1y = frzdm A
. a .

= Iy =k« l—w fr‘ldr:lka 1_sm2a a’

2cx 0 5 2cx

M = fdm = }Zkarzdr
0

= 2kafr2dr = ;kar3 |: = gka(f
0

1y = by )
a
:1 gkaas 1_sm2oz o :i 1_s1n20¢ Ma?
1013 2 10 2c
M

0O EXAMPLE 13

Find the moment of inertia of a solid sphere of radius a
about X axis, as shown.

0 SOLUTION

Consider a differential element (thin disk of radius y) is
selected to be parallel to Y axis with thickness dz it

intersects the generating curve at the arbitrary point
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(z,y,0)and so its radius isy. The mass of the element isdm = pmy’dz,

therefore dI, = %yzdm

1 1 1
= dI =§y2dm =§y2 pry’dx :Epﬂ"y“dm
a 1 a 1
= I, = | Zpry'de = | = pr(a® — z?)?dz
X fa2p Y 702/) ( )

a
= p71'f(a4 —2a’z? + z')dz = pr|atz — §a2m3 + gms

0

0

8
=1, = Epmf

But we have

M = fdm = p71'jv(a,2 — z?)dx

a
:2p7rf(a2—a:2)da:

0
1, 4
=2pm|ad’z — =2 | = Zpma
,,[ 3] !

8 2(4
= I, = —pmra® = =|=pra® |a? = = Mad?
ST 5[ P ]
Note according to symmetry we get I, =I,, = I,
4 This problem can be resolved by considering the differential element a

hollow sphere of radius r and thickness dr

O EXAMPLE 14
Find the moment of inertia of a hollow sphere of radius a about Xaxis, as

shown.
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O SOLUTION

Consider a differential element (thin ring or cord of radius y ) is selected to be
parallel to Y axis with thickness dzx it intersects the generating curve at the

arbitrary point (x,y,0)and so its radius isy. The mass of the element is

dm = 2pmyd¢t , therefore the moment of inertia of the element about X axis is
dIy = yldm

= dIy = y*dm = y* 2prydl = 2pmy’dl

= Iy = 2fp7ry3d£

—a

du?
dt = 1+{_y} dx, y? = a® — o?
dz
= 2ydy = —2zdx Or d—y:—E
dx ]

2
= dt = ,1+$—dm, =dt = 2dz,
Y’ Y

a a a
= Iy = 2fp7ry3d£ = 2fp7ry3§da: = 2ap7rfy2dm
—a —a —a

= 2ap7rf(a,2 — z?)dz = 4ap7rf (a® — z?)dx
0

—a
a

1 8
= dapr|a’zx — -2 | =—-a'pm
3 ), 3
but we have

M = fdm = 2p7r]yd£

—a

= 2p7rfy§dw = 2pma(2a) = 4pma’®
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B Product of Inertia for an Area

It will be shown here that the property of n area, called the product of inertia, is
required in order to determine the maximum and minimum moments of inertia
for the area. These maximum and minimum values are important properties
needed for designing structural and mechanical members such as beams,
columns, and shafts. The product of inertia of the area in the figure with

respect to the X and Y axes is defined as

Iy, = fmydm
If the chosen element of area has a differential

size in two directions, as shown in the figure, a

double integration must be performed to evaluate

I, . Most often, however, it is easier to choose

an element having a differential size or thickness

in only one direction in which case the evaluation
requires only a single integration.

Like the moment of inertia, the product of inertia has units of length raised to
the fourth power, e.g., m*, mm* or ft*, in*. However, since z or y may be
negative, the product of inertia may be either
positive, negative, or zero, depending on the

location and orientation of the coordinate axes. For

example, the product of inertia I, for an area

will be zero if either the X or Y axis is an axis of

symmetry for the area, as shown. Here every

element dA located at point (x,y) has a corresponding element dA located at
(z,—y). Since the products of inertia for these elements are, respectively,
zydA and —zydA , the algebraic sum or integration of all the elements that are

chosen in this way will cancel each other. Consequently, the product of inertia
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for the total area becomes zero. It also follows from the definition of I, that

the “sign” of this quantity depends on the quadrant where the area is located.

B Moments of Inertia for Composite Areas, Volumes

A composite area consists of a series of connected “simpler” parts or shapes,
such as rectangles, triangles, and circles. Provided the moment of inertia of
each of these parts is known or can be determined about a common axis, then
the moment of inertia for the composite area about this axis equals the
algebraic sum of the moments of inertia of all its parts. The following
examples will serve to show how this process can be used to determine the

moment of inertia of the composite body.
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ImIllustrative Examplesll

O EXAMPLE 1

Determine the product of inertia I, of the area of a rectangular with lengths

a,b about axes coincident with its sides.

0 SOLUTION
Consider an area dA = dzdy differential element, and located in an arbitrary

position and has a distance y from X axis and = from Y axis. The mass of

the element is dm = pdA = pdzdy , p is the mass per unit area.
v dl gy, = zydm = oy pdrdy

:>IXY:fa:ydm Y
b a
:pff:cyd.'l:dy
0.0

_1 2 @ -

—Epf yz© dy da
0b

_1 2

—Epafydy o

=

dy

e

0 b

= lpb2a2 = i pab ab = %Mab

4 —_—
M

0O EXAMPLE 2
Determine the product of inertia of the area of the triangle about axes

coincident with its sides as shown.

0 SOLUTION
Consider a thin rectangular area having a thicknessdxzand dy; and located in

an arbitrary position so it has a distance y from X axisand =z from Y axis.

Again, the mass of the element is dm = pdzdy where y = h — Em
a

Thus the product of inertia of the triangle is given by



O EXAMPLE 3

Determine the moment of inertia of the shaded area

about the X and Y axes.
0 SOLUTION X
The plate is divided into three segments as shown in the

figures below. Here triangle area @ and the area of the T

small rectangle @ is considered “negative” since it must
be subtracted from the larger one ® . The following table involves the

moments of inertia about the X and Y axes.

B ?._ 25 ft—
: o\ o |
1.5 it |1u —
| .
3R [TE| 2
No. A, ft I, ft* I, ft*
0 | (1/2(3)(3)=4.5 (1/6)(4.5)(3)° (1/6)(4.5)(3)°
e 3)(3)=9 (113)(9)(3)° (113)(9)(3)°
[5] (2)(1)=2 (1/12)(2)(2)*+2(2)* | (1/12)(2)(1)*+2(2.5)°

Therefore the moment of inertia of the shaded area is
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= (Ix), + (Ix), — (Ix); = 6.75 + 27 — 8.6667 ~~ 25.08 ft*
= (Iy), + (Iy), — (Iy); = 6.75 + 27 — 12.6667 ~ 21.08 ft*

Note that the theorem of parallel axes is applied for the shape ©

0O EXAMPLE 4 00wl 8
Determine the moments of inertia for the cross- 4.;;I;,n],n
sectional area of the member shown about the X and Y I 1
centroid axes. lm,,_, ﬁm'
O SOLUTION —| |—100 mm

_ _ B 100 mm_ —
Composite Parts, the cross section can be subdivided 2061
into the three rectangular areas A, B, and D as shown. 3(:-.]11 f )
For the calculation, the centroid of each of these | - mm
rectangles is located in the figure. = 0T
Parallel-axis theorem, the moment of inertia of a Eﬁiilmm| ﬂ{ W00 mm

200 mm | D] |

rectangle about its centroid axis is ébcﬁ. Hence, _-| |—1-::-.]mm

using the parallel-axis theorem for rectangles A and D, the calculations are as

follows:
I, = %(100)(300)3 + 100(300)(200)* = 1.425(10°) mm*
I, = %(300)(100)3 + 100(300)(250)* = 1.90(10°) mm*
Rectangle B
I, = 5(600)(100)3 = 0.05(10°) mm*

I, = %(100)(600)3 = 1.80(10°) mm*

Then the moments of inertia for the entire cross section are thus

= I, = 2(1.425(10?)) + 0.05(10°) = 2.90(10°) mm*
= I, = 2(1.9(10%)) + 1.80(10°) = 5.60(10°) mm*
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O EXAMPLE 5
Determine the moment of inertia of the shaded area about Zn

the X andY axes.
O SOLUTION

Composite Parts, the cross section can be subdivided into

i —-I— & in.———

the two areas, i.e. rectangular@ and a triangle @ as shown.

Parallel-axis theorem, the moment of inertia of a rectangle about X axis is

%M(g)z. using the parallel-axis theorem for triangle @, the calculations are as

follows: |
For the whole rectangular® #in 0
1
I, ==(108)(9)® = 2916 in* ;
x = 51089)(9) o
1
I, = =(108)(12) = 5148 in* .
Y 3( )( ) f.,.-._—‘i— B bfi—

for the triangle @

I, =—(27)(9)° = 364.5 in*

I, = =(27)(6)* — (27)(2)* + (27)(10)*> = 2754 in*

D= =

therefore the moment of inertia for shaded area is

= Iy = 2916 — 364.5 = 2550.5 in*
= I, = 5148 — 2754 = 2394 in* —

|

150 mm

[J EXAMPLE 6 l

=100 n'|.m-|~J 0o mm—|-— 150 mm —

Determine the moment of inertia Iy and I, of the 15-::'m[m S mm

shaded area. 0
O SOLUTION

The plate is divided into three segments as shown in the figures below. Here
the area of the rectangle @ and the triangle area © and a circle area ® which is
considered “negative” since it must be subtracted from the larger one @ .

For the whole rectangular@
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I, = %(200)(300)3 = 18(10°) mm* | e 100 e 150 —
I, = %(300)(200)3 = 8(10°) mm* o] ©
for the triangle © 15(3l
I, = %(22500)(300)2 ~ 3.375(10°) mm* l“
1

I, = 6(22500)(150)2 — (22500)(50)* + (22500)(250)*
~ 14.343(10°) mm*
for the circle area ®

Iy = i[z—:](%)“ +[%](75)2(150)2 >~ 4.226(10%) mm*
1(22) 0 [22) e a2 N—
I, = 2[7](75) +[7](75) (100)* ~ 2.016(10°%)

therefore the moment of inertia for shaded area is

I, =18(10%)+ 3.375(10°) — 4.226(10°) =17.149(10%) mm*
I, = 8(10°)+ 14.343(10%) — 2.016(10°) =20.327(10°) mm* |

O EXAMPLE 7

Evaluate the moment of inertia of the shaded area about Y axis. |5| in.

1

0 SOLUTION

The plate is divided into three segments as shown in the

figure. Here the areas of the quarter circle ® and triangle
® are considered “negative” since it must be subtracted

from the larger square @ . 1.5 in]

for segment @ the moment of inertia about Y axis is I.Fllin.N
1 4 o

I, = g(9)(3)2 = 27in*

for segment @ the moment of inertia about Y axis is

1(1 , 1 )
I, = 5[5(1.5)(1.5)](1.5) -[5(1.5)(1.5)](0.5) +

for segment ® the moment of inertia about Y axis is



A2

I, = i[in(1.5)2](1.5)2 = 0.994in*

therefore the moment of inertia for shaded area is

I, =27 —7.17 — 0.994 ~18.83 in* z

0O EXAMPLE 8 25 mm_|

[
\/

Determine the moment of inertia of the assembly given

about Z axis. The conical frustum has a density of

100 mm

p =8Mgm~3, and the hemisphere has a density of 50 mm§ i

p' =4Mgm=3. There is a 25-mm-radius cylindrical
hole in the center of the frustum.

0 SOLUTION

The assembly can be thought of as consisting of four segments as shown in
Figures below. For the calculations, ® and ® must be considered as
“negative” segments in order that the four segments, when added together,
yield the total composite shape. Using the following table, the computations for
the moment of inertia of each piece are shown. The mass of each piece can be

computed from m =pVand wused for the calculations. Also,

1 Mg m3 =10"% kgmm3

25
100 mm = i
[} | ‘
| Iinm =25mm \ ‘
200 mm (1]
\ 50 mm l | (4]
I I||
T 29 mm mimn i .
- |
2 R'.m =50 mn | ‘ 50 mm
| i 8 | |
=
\ - —— 250 = 1875
| ¥ - | F(0) = 1875 mm
30 mm a~

so that we get for segment @ the moment of inertia about Z axis is

50 mm
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3 1

I, = o M(50)* = 1575kg mm?® M = (8(10)_6)571-(50)2 (100) = 2.1kg
for segment @ the moment of inertia about Z axis is

I, = EM(so)2 = 1048 kg mm? M = (4(10)_6)§7r(50)3 ~ 1.048kg

for segment ©® the moment of inertia about Z axis is

I, = %M(25)2 ~ 98.25 kg mm? M = (8(10)_6)§1r(25)2(100) =0.524kg

for segment @ the moment of inertia about Z axis is

I, = %M(25)2 = 490.625 kg mm? M = (8(10)%)m(25)?(100) ~ 1.57 kg

hence the moment of inertia of the a the assembly

I, =1575 +1048 — 98.25 — 490.625 = 2034.125 kg mm?
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PROBLEMS
i A
O Determine the moment of inertia of a uniform rod of : I
I
length L about X and Y axes as shown. /
[ i -X

O Find the moment of inertia of an elliptic plate, of small thickness and

uniform density.

O Find the moment of inertia of shaded area about X and Y axes as shown

=

120 mm

240 mm
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O Determine the moment of inertia for the
beam’s cross-sectional area about the X axis
passing through the centroid C of the cross

section.

O Determine the product of inertia of the shaded area with respect to the X

and Y axes.

3in.

X 045m

O Determine the moment of inertia of truncated cone
R 03m
about the Z- axis.




HINEMATICS OF A RIGID BODY

KINEMATICS OF ARIGID BODY

When dealing with the kinematics of a rigid body, we are
concerned with the geometric relationships that exist among

displacements, velocities, and accelerations of various particles in a body in
motion without regard to the forces causing the motion or caused by it. A rigid
body is said to be in plane motion if all of its particles move in parallel planes.
Three types of plane motion are identified in this chapter. The first type is
known as translation which could be either rectilinear or curvilinear. The
second type deals with rotation about a fixed axis. The third type is referred to
as general plane motion which is a combination of a translation and a rotation.

Outer space provides one of many areas where kinematics plays a primary role.
While on Earth, a force is required to maintain a body at a constant velocity
because of friction; in outer space, no such force is required. However, basic
kinematics applies equally will here on Earth and in space. The implication is
that, irrespective of your engineering discipline, the knowledge of basic
kinematics of rigid bodies will provide you with the basic foundations upon
which dynamic principles are based. In a society where technology is
pervasive, there is a need for understanding basic concepts and training of the
individuals who design and organize the production of much of that
technology. This chapter should enhance your enthusiasm for and the pleasure
you derive from problem solving and reducing concepts to solid expression.
The case study accompanying this chapter provides a clear illustration of the

joys and frustrations of being an engineer.
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B Rectilinear and Curvilinear Translations

The kinematics of rigid bodies will be considered. We will investigate the
relations existing between the time, the positions, the velocities, and the
accelerations of the various particles forming a rigid body. The various types of

rigid-body motion can be conveniently grouped as follows:

1. Translation. A rigid body is said to be in translation if any straight line inside
the body keeps the same direction during the motion. It can also be observed
that in a translation all the particles forming the body move along parallel
paths. If these paths are straight lines Figure 1a, the motion is said to be a
rectilinear translation if the paths are curved lines, the motion is a curvilinear
translation Figure 1b. In both cases, note that a straight line, such as A;By,
remains parallel to itself throughout the entire motion.

Fig. 1 (b) / ©

2. Rotation about a Fixed Axis. In this motion, the particles forming the rigid
body move in parallel planes along circles centered on the same fixed axis
Figure 1c. If this axis, called the axis of rotation, intersects the rigid body, the
particles located on the axis have zero velocity and zero acceleration. Rotation
should not be confused with certain types of curvilinear translation. For
example, the plate shown in Figure 2a is in curvilinear translation, with all its
particles moving along parallel circles, while the plate shown in Figure 2b is in
rotation, with all its particles moving along concentric circles. In the first case,
any given straight line drawn on the plate will maintain the same direction,
whereas in the second case, point O remains fixed. Because each particle
moves in a given plane, the rotation of a body about a fixed axis is said to be a

plane motion.



A=)

@) (b)

3. General Plane Motion. There are many other types of plane motion, i.e.,
motions in which all the particles of the body move in parallel planes. Any
plane motion which is neither a rotation nor a translation is referred to as a
general plane motion. Two examples of general plane motion are given in
Figure 3.

Fig. 3

4. Motion about a Fixed Point. The three-dimensional motion of a rigid body
attached at a fixed point O, e.g., the motion of a top on a rough floor Figure 4a,

is known as motion about a fixed point.

5. General Motion. Any motion of a rigid body which does not fall in any of

the categories above is referred to as a general motion as shown in Figure 4b.

Fig. 4a Fig. 4b



Kinematics of Rigid Body BN

€ Translation Motion Consider a rigid body in plane motion, as shown in

Figure 5, which is assumed to be executing curvilinear translation parallel to

the X-Y plane. The position vectors to particles A and B on this rigid body are

r, and rp respectively, and the position vector of particle B relative to
particle A'is rp 4. Therefore, the positions of any two particles A and B on a

rigid body may be related by the following vector equation:

I'p =T4 +Ipua (1)
Path of A
7 Path of B
A ! i
a
A 4 B @y
Tpla
7
9/ A v
% rB ,,,,,,,,,,,,
Yp
p >V
s
e Fig. 5

Thus, if the position of any one particle on a rigid body, such as A, is known,
the position of any other particle, such as B, may be determined by previous
Eq. (1) if its position relative to particle A is known. If we differentiate Eq. (1)
with respect to time, we have

drp _dry drp4
dt  dt dt

w(2)
By definition, because a rigid body implies that the positions of the particles

drpa
must

relative to each other do not change, it follows that the term

. d d
vanish, and Eq. (2) reduces to 2B — 2XA  Because dﬂ:yB and
dt dt dt

dra _ v, it follows that
dt
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Vs =B e (3)
where v, and vy represent the velocities of points A and B, respectively. Thus,

according to Eq. (3), if the velocity of one particle, such as A, in a rigid body is
known, the velocity of any other particle, such as B, may be found. In other
words the velocities of all particles in a translating rigid body are the same at a
given instant of time. As known, these velocity vectors must be tangent to the
paths of motion, as shown in Figure 5. If we now differentiate once more Eq.
(3) with respect to time and replace the time derivatives of the velocities by

accelerations,
a, =ag e(4)
where a, and aj represent the acceleration vectors of particles A and B,

respectively. Again, thus, if the acceleration of one particle, such as A, is
known, the acceleration of any other particle, such as B, may be determined. In
other words, the accelerations of all particles in a translating rigid body are all
the same at a given instant of time. The accelerations of the two particles A and
B are sketched in Figure 5. Note that these accelerations could have any
direction depending upon the conditions specified in a given problem. It is
obvious from the above discussion that the translating motion of a rigid body is
completely defined if the motion of one of the particles is fully specified.
Therefore, the equations developed for the motion of a particle may be used
equally well to analyze the translating motion of a rigid body. The concepts

discussed above are illustrated in the following examples.

That is, when a rigid body is in translation, all the points of the body have the
same velocity and the same acceleration at any given instant (Figure 5). In the
case of curvilinear translation, the velocity and acceleration change in direction
as well as in magnitude at every instant. In the case of rectilinear translation,
all particles of the body move along parallel straight lines, and their velocity

and acceleration keep the same direction during the entire motion.
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4 Rotation about a Fixed Axis

Consider a rigid body which rotates about a fixed axis AA’ . Let P be a point of
the body and = its position vector with respect to a fixed frame of reference.
For convenience, let us assume that the frame is centered at point O on AA’
and that the Z axis coincides with A4’ (Fig. 6a). Let B be the projection of P
onAA’; since P must remain at a constant distance from B, it will describe a

circle of center B and of radius rsin¢ , where ¢ denotes the angle formed by

r and AA’. The position of P and of the entire body is completely defined by
the angle @ the line BP forms with the ZX plane. The angle 8 is known as the
angular coordinate of the body and is defined as positive when viewed as
counterclockwise from A’. The angular coordinate will be expressed in

radians (rad) or, occasionally, in degrees, or revolutions (rev). We recall that

1 rev = 2w rad = 360°

Fig. 6

We know that the velocity v = dr / dt of a particle P is a vector tangent to the
path of P and of magnitude v = dS / dt. Observing that the length AS of the

arc described by P when the body rotates through A8 is
AS = (BP)AO = (rsin¢)A0
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and dividing both members by At, we obtain at the limit, as At approaches

Z€ero,

v = lim a5 _ ﬁ:7’0'sinq§ weee(¥)
at—0 At dt

where 6 denotes the time derivative of 6. (Note that the angle 6 depends on
the position of P within the body, but the rate of change 6 is itself independent
of P.) We conclude that the velocity v of P is a vector perpendicular to the
plane containing AA’ and r, and of magnitude » defined by Eq. (*). But this
is precisely the result we would obtain if we drew along A A’ a vector w = 6k

and formed the vector product w A r (Figure 6b). We thus write
v=—==wATr e (5)

The vector w is directed along the axis of rotation, is called the angular
velocity of the body and is equal in magnitude to the rate of change 6 of the
angular coordinate; its sense may be obtained by the right hand rule from the
sense of rotation of the body. The acceleration a of the particle P will now be

determined. Differentiating Eq. (5) and recalling the rule for the differentiation

of a vector product, we write

dv d
a=—=—(wAr)

dt dt

dw dr
=—Ar+wAN\—

dat  — T dt
:d—g/\z+g/\y ..o(6)

dt

The vector dw / dt is denoted by « and is called the angular acceleration of

the body. Substituting also for » from Eg. (5), we have
a=—=aAr+wA(wAT) e (T)

Differentiating w = 6k and recalling that & is constant in magnitude and

direction, we have
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dw

ZE _ Ok = 0k veee(8
" (8)

g:

Thus, the angular acceleration of a body rotating about a fixed axis is a vector
directed along the axis of rotation, and is equal in magnitude to the rate of
change « of the angular velocity. Returning to Eq. (7), we note that the
acceleration of P is the sum of two vectors. The first vector is equal to the

vector producta A r; it is tangent to the circle described by P and therefore
represents the tangential component of the acceleration. The second vector is

equal to the vector triple product w A (w A r) obtained by forming the vector

product of w and(w A r); since (w A r) is tangent to the circle described by

P, the vector triple product is directed toward the center B of the circle and

therefore represents the normal component of the acceleration.

4 Rotation of a Representative Slab

The rotation of a rigid body about a fixed axis can be defined by the motion of
a representative slab in a reference plane perpendicular to the axis of rotation.
Let us choose the XY plane as the reference plane and assume that it

coincides with the plane of the figure, with the Z axis pointing out of the

paper (Fig. 6¢). Recalling from w = wk we note that a positive value of the

scalar w corresponds to a counterclockwise rotation of the representative slab,
and a negative value to a clockwise rotation. Substituting wk for w into Eq.

(5), we express the velocity of any given point P of the slab asv = wk A r

Fig. 6d
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Since the vectors k£ andrare mutually perpendicular, the magnitude of the

velocity v is v =rw and its direction can be obtained by rotating r
through 90° in the sense of rotation of the slab.

Substituting w = wk and a = ak into Eq. (7), and observing that cross-

multiplying r twice by & results in a 180° rotation of the vector r, we express

the acceleration of point P as

a=akAr—uwr

Resolving ¢ into tangential and normal components (Fig. 6d), we Write

The tangential component a, points in the counterclockwise direction if the

scalar « is positive, and in the clockwise direction if «is negative. The
normal component a, always points in the direction opposite to that of r, that

is, toward O.

4 Equations Defining the Rotation of a Rigid Body about a Fixed Axis

The motion of a rigid body rotating about a fixed axis A A’
is said to be known when its angular coordinate 6 can be
expressed as a known function of t. In practice, however, the
rotation of a rigid body is seldom defined by a relation
between 6 and t. More often, the conditions of motion will
be specified by the type of angular acceleration that the body

possesses. For example, a may be given as a function of ¢,

as a function of 6, or as a function of w. Recalling the

relation w = Ok and Equation (8), we write

_do

dw d*e
w = _ gw
dt

and o = = —
dt  dt?
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From the chain rule we get,

dw db dw
o= —=(wWw—
doe dt de

w

.(10)

These equations are similar to those obtained before for the rectilinear motion
of a particle, their integration can be performed by following the procedure
outlined before. Two particular cases of rotation are frequently encountered:

1. Uniform Rotation. This case is characterized by the fact that the angular
acceleration is zero. The angular velocity is thus constant, and the angular
coordinate is given by the formula

0 dl = wdt = }d@ = ]wdt
6, 0

=0—-6, =uwt
Or 0=260,+wt ..(11)
2. Uniformly Accelerated Rotation. In this case, the angular acceleration is
constant. The following formulas relating angular velocity, angular coordinate,
and time can then be derived in a manner similar to that described previous.
The similarity between the formulas derived here and those obtained for the

rectilinear uniformly accelerated motion of a particle is apparent.

w=uw, +at ...(12)
1 .,

0 =0, +wit+ Eat ...(13)

w? = W2+ 20(6 — 6,) ...(14)

It should be emphasized that formula (11) can be used only when o = 0, and
formulas (12-14) can be used only when « =constant. In any other case, the

general formulas (9) and (10) should be used.
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4 General Plane Motion

As indicated before, we understand by general plane motion a plane motion
which is neither a translation nor a rotation. As we will presently see, however,
a general plane motion can always be considered as the sum of a translation

and a rotation.

Fig. 7 Plane Motion = Translation with A + Rotation about A

Consider, for example, a wheel rolling on a straight track (Fig. 7). Over a
certain interval of time, two given points A and B will have moved,

respectively, from A; to A, and from B; to B,. The same result could be

obtained through a translation which would bring A and B into A, and B, (the

line AB remaining vertical), followed by a rotation about A bringing B into B..
Although the original rolling motion differs from the combination of
translation and rotation when these motions are taken in succession, the
original motion can be exactly duplicated by a combination of simultaneous
translation and rotation. Another example of plane motion is given in Fig. 8,
which represents a rod whose extremities slide along a horizontal and a vertical
track, respectively.

This motion can be replaced by a translation in a horizontal direction and a
rotation about A (Fig. 8a) or by a translation in a vertical direction and a
rotation about B (Fig. 8b). In the general case of plane motion, we will
consider a small displacement which brings two particles A and B of a
representative slab, respectively, from A; and B, into A, and B, (Fig. 9). This

displacement can be divided into two parts: in one, the particles move into A,

and B/ while the line AB maintains the same direction; in the other, B/ moves
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into B, while A remains fixed. The first part of the motion is clearly a

translation and the second is a rotation about A.

Plane Motion = Rotation about A

it

By

Plane Motion = Translation with B + Rotation about B

Fig. 8

Recalling, the definition of the relative
motion of a particle with respect to a moving

frame of reference—as opposed to its

absolute motion with respect to a fixed

frame of reference—we can restate as Fig. 9 Repeated
follows the result obtained above: Given two

particles A and B of a rigid slab in plane motion, the relative motion of B with
respect to a frame attached to A and of fixed orientation is a rotation. To an
observer moving with A but not rotating, particle B will appear to describe an

arc of circle centered at A.
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B Analysis of Plane Motion in Terms of a Parameter

In the case of certain mechanisms, it is possible to express
the coordinates x and y of all the significant points of the
mechanism by means of simple analytic expressions
containing a single parameter. It is sometimes advantageous

in such a case to determine the absolute velocity and the

absolute acceleration of the various points of the mechanism

directly, since the components of the velocity and of the
acceleration of a given point can be obtained by
differentiating the coordinates x and y of that point. Let us consider again the

rod AB whose extremities slide, respectively, in a horizontal and a vertical

track (see figure besides). The coordinates =, and y, of the extremities of the
rod can be expressed in terms of the angle 6 the rod forms with the vertical:

z, = lsin, Yy = lcosO
Differentiating this equation twice with respect to time, we write

vAzd:AzléCOSH, aAzde=léc050—lé2sin0

vg =Yg = —10 sin 6, ap=ijp = —10sin0 — 162 cos O
Recalling that 8 = w, 6 = a, we obtain

v, = lwcosH, vp = —lwsin§ (1)

a,=lacosd —lw?sinh, az=—lasing —lw’cosf ...(2)
We note that a positive sign for v, or a, indicates that the velocity v, or
the acceleration a, is directed to the right; a positive sign for v, or ag
indicates that v, or ap is directed upward. Equations (1) can be used, for
example to determine v, and w when v, and @ are known. Substituting for

w in (2), we can then determine ay and « if a, is known
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ImIllustrative Examplesll

O EXAMPLE 1
The motion of a disk rotating is defined by the relation

6 = 0.4(1 — e*/*), where @ is expressed in radians and ¢ in

seconds. Determine the angular coordinate, velocity, and

acceleration of the disk when (i) ¢t = 0, (ii)t = 3 s, (iil) t = co

0O SOLUTION
Angular displacement of the disk
6=04(1—e"") =6|_ =0rad
= 0|t:3 =0.4(1 — e ™) >~ 0.211rad
= 0| =0.4(1 —e*°) ~ 0.4 rad
t—o0

Angular velocity of rotating disk
6 =0.1e"* = é|t_0 = 0.1 rads™!

=0|,_, =0.1e7"™ ~0.00472 rads™'
= 0‘ =0.1e”*™ ~0 rads™!

t—o0

Angular acceleration of the disk

. 1 o 1
§=——ett =4 = —— rads™?
40 t=0 40
= 0‘ = _le—"'75 ~—0.012 rad s 2
t=3 40
o 1
= 0‘ =——¢e *® ~0rads™?
t—oco 40

0O EXAMPLE 2
The angular acceleration of an oscillating disk is defined by the relation

a = —u@. Determine (i) the value of p for which w = 8 rads?when 8 =0

and @ =4 rad whenw =0, (ii) the angular velocity of the disk when

0 = 3 rad.
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O SOLUTION
) . . d0 dOdo .do
Since the angular acceleration o = § = — = —— = 60— therefore,
dt do dt do
é
. do . .
00— = —ub = 0d0 = —u0do
10 iz H

Integrating we get

1, 1
502 = —5/.1402 +c [ (® /

But as given w = 8 rads when 6 = 0 thus, (6 = w)

L= —lu0t+e  —c=32
2 2

Once againas 6 = 4 rad whenw = 0 we get
1 2 1 2

That is the angular coordinate is given by 6? = 64 — 462 the angular velocity
can be obtained by differentiation 8% = 64 — 46% with respect to time, we get
200 = —800 = 6 =—40

Then the angular acceleration when @ = 3 rad is

a=0|  =—43)=—12rads?

0O EXAMPLE 3
The figure shows the position of a rectangular lamina at |

t =0, the displacement of a point a is given by

x=39+48t, y=22-—9.6t+5t2, where =zy is

expressed in meters and ¢ in seconds. In addition, the angular

]

position of the line ab is given by 6 = 1.9¢*> + 0.3 where

is expressed in radians. Determine the position after 2 s and

calculate the velocity of the pointawhen ¢ =1s.
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0 SOLUTION

T = 3.9+ 4.8t =x|,_, =3.9+482) =135 m
y=22-96t+5" =y|  =22-9602)+52)°=3m

0 =1.9t* + 0.3 = 49|t:2 =1.9(2)* + 0.3 =7.9 rad = 452.45° = 92.45°
The components of velocity are

i = 4.8 =>&|,_ =48 ms™'

§=-96+10t =y  =—9.6+10(1) =04 ms'

6 = 3.8t = 0|_, =3.8(1) =3.8 rads™’

Therefore the translation velocity is +/(4.8)* + (0.4)> ~ 4.82ms~! whereas the

angular velocity is 3.8 rads™!

e

O EXAMPLE 4

Rod AB moves over a small wheel at C while end

A moves to the right with a constant velocity v, .

Derive expressions for the angular velocity and

angular acceleration of the rod.
0 SOLUTION

From the geometry of the figure we have
T, = bcotd
Thus by differentiation we get

v, =, = —bOcsc? @ = —bwesc2O ...

where w = @ is the angular velocity of the

rigid rod. Therefore,



(=)

Uy

— rads™' ...
besc? 0

w =

Also  a, =&,
Because v, is constant, a, = 0 and it follows that

a, = 2602 csc? 0 cot @ — bl csc? 0

= 2bw? csc? O cot @ — baresc? 6 = 0
where a = 6 is the angular acceleration of the rigid plate. Therefore,
a=2w?cotd rads? ...

0O EXAMPLE 5
The rectangular plate ABCD, shown in the

Figure, is constrained to move so that corner
B slides in a vertical track and corner C in a

horizontal track. If corner C moves to the

right with a constant velocity v, = 0.75 ms™,

determine the angular velocity w and angular
acceleration o« of the plate. Express your
answers in terms of the angular position 6

measured clockwise from the vertical track.

0 SOLUTION

From the geometry of the figure we have
z, = asin@

Thus by differentiation we get v, =& = abcosh = awcosh ...

c c

where w = @ is the angular velocity of the rigid plate. Therefore,

v 0.5
w = € = rads™' ...

acos@ cosO

Also  a, =&

c

Because v, is constant, a, = 0 and it follows that
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=>a, = —af?sin6 + ab cosO = 0
Thus a, = —aw?sinf + acccos@ = 0

where a = 6 is the angular acceleration of the rigid plate. Therefore,

a = w?tan6

2
Or a= 0.5 tan@ = 0.25 tan® rads™! .....
cos @ cos? 0

O EXAMPLE 6

Refer to previous example, determine the velocity v, and the acceleration

a;, of corner D. Express your answers in terms of the angular position 0

measured clockwise from the vertical track.
O SOLUTION

Once more again and according to the geometry of Figure in previous example,

T, =z, + bcosO = asinb + bcosd

Yyp = bsind
Therefore

(vp), = &p = awcosO — bwsin

and (vp), =Yp = bwcos6

Using the results given in previous Example for v, and w, respectively,

a a

(vp), = awcosf — bwsinf = v, — UC[E]tanO _ vv[l _ gtane

and (vp), = bwcos6 = Sv

Since vD:,f(vD)i + (vp)? , it follows that

2 2
vD=vv\/[1—2tan0] +[2]
a a

2
= 0.75 1 + l—ltane ms?' ...
9 3

c
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The direction of v, is defined by the angle 3 (see Figure) where

v b/a
Vp), [1—btan0] a—btan6
a

1
= = tan_l — | eeeeee
p [3 — tane]
To obtain the components of acceleration of point D (&, ) differentiation
the components of velocity (&,,3,) so that

25in@ + accos@ — bw? cos@ — basin @

(ap), = &) = —aw

= —w?(asinf + bcosO) + a(acos — bsinf) ...

and (ap), =ip = —bw?sin@ + bacos® 0 ...

Or by substituting for w and o we get

bv? bv?
a =——2° and a =—2*¢f (—sinf +sinf) =0
( D)m a®cos® 0 ( D)y a? 00530( )

Since aj, =\[(ap)2 + (ap): , it follows that

bvl 0125

< ms>* ...

a =(a )z = — =
P b a? cos® 0 cos® 0
where the negative sign indicates a sense for an which is opposite to the

positive direction of the X axis. Thus, a,, is pointed to the left as shown in the

Figure, for the case when the velocity of corner C is constant and pointed to the

right (i.e., in the positive X direction).
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0O EXAMPLE 7

Member AB in the figure shown starts from
rest, when 6 =0, and rotates in
counterclockwise direction at a constant

angular acceleration «. In terms of 5,6 and

o, develop expressions for the velocity v

, : X
and acceleration a, of the collar-slider unit b

B which is constrained to move along a smooth vertical track. If b = 0.75m

and « = 5.0 rads™?, determine v, and ay for 6 = 30°

0 SOLUTION
From the geometry of the figure we have yp = btan6
Thus by differentiation we get vp = Uy = bOsec’ @ = bwsec’ O ...

where w = @ is the angular velocity of the rigid member.

Differentiation again to evaluate the acceleration of point B we get,

ag = ijg = bl sec? 0 + 2bwl sec? O tan O
= sec’ O(ba + 2bw® tan0) ...

where o = 6 is the angular acceleration of the rigid member

since = 5.0 rads? = w(jl—(; =5 or wdw=>5d0

by integrating we have, w? =100 + csince the member starts from rest

w =0, when 8 =0, s0 ¢ = 0 and then «? =100

— — -2 — 20° —
when b = 0.75m and « = 5.0 rads?and @ = 30° Note w|e:30 =107 /6
vy = bwsec? 6= (0.75) «flOﬂ' / 6 sec® 30 ~2.288 ms™!

ap = sec’ O(ba + 2bw? tan )

= sec? 30| (0.75)(5) + 2(0.75)[1%”]tan30] ~11.09ms™
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4 Instantaneous Center of Rotation in Plane Motion

Consider the general plane motion of a slab. We propose to show that at any
given instant the velocities of the various particles of the slab are the same as if
the slab were rotating about a certain axis perpendicular to the plane of the
slab, called the instantaneous axis of rotation. This axis intersects the plane of
the slab at a point C, called the instantaneous center of rotation of the slab.

We first recall that the plane motion of a slab can always be replaced by a
translation defined by the motion of an arbitrary reference point A and by a
rotation about A. As far as the velocities are concerned, the translation is

characterized by the velocity v, of the reference point A and the rotation is
characterized by the angular velocity w of the slab (which is independent of
the choice of A). Thus, the velocity v, of point A and the angular velocity w
of the slab define completely the velocities of all the other particles of the slab
(Figure 10a). Now let us assume that v, and w are known and that they are
both different from zero. (If v, = 0, point A is itself the instantaneous center
of rotation, and ifw = 0, all the particles have the same velocity v,.) These
velocities could be obtained by letting the slab rotate with the angular velocity
w about a point C located on the perpendicular to v, at a distance » = v, / w

from A as shown in Figure 10b. We check that the velocity of A would be

perpendicular to AC and that its magnitude would be rw = (v, / W)w = v, .
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Thus the velocities of all the other particles of the slab
would be the same as originally defined. Therefore, as vy
far as the velocities are concerned, the slab seems to
rotate about the instantaneous center C at the instant

considered. The position of the instantaneous center can
be defined in two other ways. If the directions of the
velocities of two particles A and B of the slab are

known and if they are different, the instantaneous center

C is obtained by drawing the perpendicular to v,
through A and the perpendicular to vz through B and determining the point in

which these two lines intersect (Figure 11a). If the velocities v, and vy of

two particles A and B are perpendicular to the line AB and if their magnitudes
are known, the instantaneous center can be found by intersecting the line AB

with the line joining the extremities of the vectors v, and vy (Figure 11b).

Note that if v, and v, were parallel in Figure 11a or if v, and vy had the

same magnitude in Figure 11b, the instantaneous center C would be at an
infinite distance and « would be zero; all points of the slab would have the
same velocity. To see how the concept of instantaneous center of rotation can

be put to use, let us consider again the rod as shown. Drawing the
perpendicular to v, through A and the perpendicular to vz through B (Figure

12), we obtain the instantaneous center C. At the instant considered, the

velocities of all the particles of the rod are thus the same as if the rod rotated
about C. Now, if the magnitude v,of the velocity of A is known, the

magnitude w of the angular velocity of the rod can be obtained by writing

AC lcos@

The magnitude of the velocity of B can then be obtained by writing
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v = (BC)w = Ilsinf Ya_ _ v, tanf
lcos

Note that only absolute velocities are involved in the computation.

The instantaneous center of a slab in plane motion can be

located either on the slab or outside the slab. If it is located ;
on the slab, the particle C coinciding with the instantaneous P
center at a given instant ¢ must have zero velocity at that
instant. However, it should be noted that the instantaneous Body Centrode
center of rotation is valid only at a given instant. Thus, the Fig. 13
particle C of the slab which coincides with the instantaneous center at time t
will generally not coincide with the instantaneous center at time ¢t +at ; while
its velocity is zero at time t, it will probably be different from zero at time
t +At. This means that, in general, the particle C does not have zero
acceleration and, therefore, that the accelerations of the various particles of the
slab cannot be determined as if the slab was rotating about C. As the motion of
the slab proceeds, the instantaneous center moves in space. But it was just
pointed out that the position of the instantaneous center on the slab keeps
changing. Thus, the instantaneous center describes one curve in space, called
the space centrode, and another curve on the slab, called the body centrode
(Figure 13). It can be shown that at any instant, these two curves are tangent at
C and that as the slab moves; the body centrode appears to roll on the space

centrode.

4 Rolling Motion without Slipping

A special type of motion of a rigid body is that which occurs in the case of
bodies capable of rolling, such as cylinders, spheres, hoops, and wheels in
general. Figure 14a shows a circular disk of radius R that is rolling on a
horizontal surface with angular velocity w and angular acceleration o, both
clockwise. Observe that the path of the center O is a straight line parallel to the

surface. Rolling without slipping occurs if the contact point C on the disk has



Kinematics of Rigid Body 1Y

no velocity; i.e., the disk does not slide along the surface. This case deserves

special attention because it occurs in many engineering applications.

o R f W o —
p o \\
,-‘/ / v, = Rw ",,'
Path of O | }/? R - |
Vi \ /  d /
) v =0
o X

(@) (b)
Fig. 14

Applying the relative velocity equation, to point C and O, where O is the center
of the disk, we have v, = v + W A To¢

Substituting v = 0, w = —wk and roc = Ry

vy = —wk /\(Rj') = Rwi

As expected, this result shows that the velocity of the center O is parallel to the
surface on which the disk rolls, its magnitude being v, = Rw As shown in

Figure 14b. It is convenient here to derive the acceleration of O. The

acceleration of O can be obtained by differentiation of the equation

vy = —wk A (Rj) = Rwi. Noting that R and 4 are constants, we get

ap = RZ—‘:: Roi

Thus the acceleration of O is also parallel to the surface of rolling, and its

magnitude is a, = Ra as shown in Figure 14c. It should be noted that

although the velocity of C is zero, its acceleration is not zero.
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ImIllustrative Examplesll

0O EXAMPLE 1
A rod AB of length 0.8 m executes general plane

motion such that end A is constrained to move along a
horizontal track while end B moves along a vertical

track, as shown in the figure. If the end A moves to the

right with a constant velocityv, = 4 ms™, determine

the angular velocity « and linear velocity of end B.

Express your answers in terms of the angular position 6 measured
counterclockwise from the vertical track. Determine the velocity of point a.

0 SOLUTION

By drawing the perpendicular to v, through A and the

perpendicular to vz through B and determining the point
in which these two lines intersect (Figure).

Vy Vy 4

w = = = = 5.774 rad S_1
AC lcosO 0.8cos30

Therefore the linear velocity of end B is

vy = w(BC) = 5.774(0.85in 30) = 2.3094 ms™

O EXAMPLE 2
Rod AB of length £ can slide freely along the

floor and the inclined plane. Denoting by v, the
velocity of point A, derive an expression for (i)
the angular velocity of the rod, (ii) the velocity
of end B.

0 SOLUTION
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By drawing the perpendicular to v, through A and the

perpendicular to wvgzthrough B and determining the

point in which these two lines intersect (see Figure).

w=a _ "B
AI,  BI, wi

From the sin law (triangle ABI.) we have

Al BI —
t _ R _ R :>AIc:COS(0 ﬁ)e
sin@8 sin(90 + 60 — B) sin(90 — 0) sin 3
hence
= Yy _ v, sin 3 and v, = wBI, = v, cosO
AI,  Lcos(6 — B) cos(6 — 3)

0O EXAMPLE 3
A uniform rectangular lamina ABCD is moving so that the

velocity of A is in the direction of the diagonal Ad, and the D 6cm c

magnitude of the velocity of point B is . Determine the angular &

velocity of the rectangular and the velocity of point D with &

8cm

respect to point B )

O SOLUTION g

Instantaneous center of rotation can be determined by drawing .
the perpendicular to v, through A and the perpendicular to vy IS
through B and determining the point in which these two lines

intersect in I, as shown. Let I, lies a distance = from A (since the direction

of velocity of B is unknown), since vy = 413

(I,B)? = 2* + (6)> — 2(z)(6)cosO = x* + 36 — 9.6z  ...... (1)
v, = 20 = wa, wee(2)
and vy = 413 = w(I_B) ee(3)

Dividing these two equations (2) and (3)



(=)

20 T .
—_— = by squaring

413 I.B
=22 —-20c+75=0 Or (z—5)(zx—15)=0ie z=5 =15
The problem has two solutions

20 20
w, =—=""=4rads? ..(4) and w, = — = = rads? ... 5
== (1) and w, == =2 )

Therefore the corner D has two solutions

(I.D)* = * + (8) + 2(x)(6) cos[e + g] = 2% + 64 + 9.6z

So the first solution is

vp = w, (I,D)| _ = 4{(5) + 64 + 9.6(5) = 46.8 cms™

=5

The second one is

vp =w, (I.D)| _ = g\,’(w)2 + 64 + 9.6(15) = 27.74 cms™
0O EXAMPLE 4
Determine the angular velocity of link BC and the

velocity of the piston C at the instant shown,

O SOLUTION

I.B I,.C

. v v,
Since wpo = —2 c .1

and vy = wr = 6(0.2) = 1.2 ms™

From sin law, we have

BI, CI, 08

sin60 sin90 sin30

= CI, =16m, BI,=138m

Therefore, from equation (1) v, (I,C) =1.2(1.38)

= v,=1.39 ms?! and wpe = 0.86 rad gt
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0O EXAMPLE5
Pulley B is being driven by the motorized pulley A that is

rotating at w = 20 rads™. At time ¢ = 0, the current in the

motor is cu off, and friction in the bearings causes the pulleys to
coast to a stop. The angular acceleration of a during the

deceleration is « = —2.5¢t rads?, where is in seconds.
Assuming that the derive belt does not slip on the pulleys,

determine (i) the angular velocity of B as a function of time ; (ii)
the angular displacement of B during the period of coasting; and

(iii) the acceleration of point C on the straight portion of the belt

as a function of time.
0 SOLUTION

Because the belt does not slip, every point on the belt that is in contact with a
pulley has the same velocity as the adjacent point on the pulley. Therefore, the

speed of any point on the belt is

v=R,w, = Rywy ..(1)
So that
R, 75
Wp =—2w, = —w, = 0.5w
B R, A~ 1504 A

Differentiating with respect to time, we obtain for the angular acceleration of

pulley B «ap = 0.5, = 0.5(—2.5t) = —1.25¢ rads™
Because o = dwy / dt, we have dwy, = agdtor
wy = [wpdt = —1.25 [ tdt = —0.625¢" + C,
The initial condition, w = 20 radswhen ¢ =0, yields C, = 20 rads™

hence the angular velocity of pulley B is w, = 20 — 0.625¢*
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We let the angular position of a line in B measured from a fixed reference line.

Recalling that w, = d@y / dt we integrate df, = wydt to obtain
0y = [wydt = [ (20— 0.625¢* )dt = —0.2083¢" + 20t + C,

Letting 6, = 0 when t = 0, we have C, = 0, which gives
0, = —0.2083t* + 20t

The pulley comes to rest when w, =20—0.625¢t* =0, which yields

t = 5.627s. The corresponding angular position of the line in B is

Op|,_; oy = —0-2083(5.627)° + 20(5.627) = 112 rad

Therefore, the angular displacement of pulley B as it coasts to a stop is

NG

=0y |t:5.627 -0, |t:0 =112—0=112rad .....

Because the direction of rotation does not change, the total angle turned
through by the pulley B during the deceleration is also 112 rad
Substituting Rz = 150 mm and w, = 20 — 0.625¢> into Eq. (1), the speed of
point C (which is the same for all points on the belt) is

vy = 150(20 — 0.625¢%) = —93.75¢> + 3000 mms™
Because the path of point C on the belt is a straight line, the acceleration of C

is a, = v, = —187.5¢ mms™? ...

We could obtain the same result by observing that a,, is equal to the tangential

component of acceleration of a point on the rim of pulley b (pulley A could

also be used). Thus

a., = Ryoy = 150(—1.25¢) = —187.5¢ mms™
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O EXAMPLE 6

60 mm

w

When the linkage in Figure is in the position shown, the

2 g ad el
wyp = 2{*;1(15

[N

angular velocity of bar AB is w,, = 2 rads™ clockwise.

50 mm

For this position, determine the angular velocities of bars

BC and CD and the velocity of C using the instant centers

for velocities

O SOLUTION

Because A and D are fixed points,

they are the instant centers for bars ~ w,, 5 2;§ads"
AB and CD respectively. The
instant center for the bar BC,

labeled O in the figure, is located
at the point of intersection of the o
lines that are perpendicular to the

velocity vectors of B and C.
Because vzand v are perpendicular to AB and CD, respectively, the instant

center is at the intersection of these two lines

The distnace to B and C from O, found from the triangle OBC, are

50
T = — = 86.6 mm
BO " tan30

50
Thy = —— = 100 mm
co sin 30

The instant centers, A, O and D, can now be used to compute the required

angular velocities directly from the figure. Considering the motion of AB ( the
instant center is at A), we find that vy = rg,w,; = 60(2) = 120 mms™,
directed as shown in figure. Analyzing the motion of BC (the instant center is
at O) yields

v 120
Wpo = —B — % —1.386 rads™ .....
Ts0 86.6



},:\‘59|

And Vo = Toowpe = 100(1.386) = 138.6mms™ ...

0O EXAMPLE 7

Figure beside shows a wheel of radius R that is rolling without slipping with
the clockwise angular velocityw. For the position shown, determine the
velocity vectors for (i) point A; and (ii) point B

0 SOLUTION

We choose the point O (the center of the wheel) as the reference point, because
its velocity is known (v, = Rwi)
The velocity v,, is computed by assuming that the
point O is fixed. Therefore the equation becomes

vy =Vp + V40 = V4 = Rwi+ Rwj
from which the velocity of A is found to be

v, = \ERw

Again for point B

Vg = Vg + Vg0 = vp = Rwi + Rwi

from which the velocity of A is found to be v, = 2Rw
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PR“BLEMS

O Member AB of length ¢ executes general plane motion
such that end A is constrained to move along a horizontal
track while end B moves along a vertical track, as shown in

the figure. If member AB has a constant counterclockwise

angular velocity w, determine in terms of £,w and @, the
velocity v, and the acceleration a, of end A. If w = 4 rads™, 6 = 45°, and

£ =15 in, determine v, and a, .

O If the wheel rotates clockwise at a constant angular velocity w, determine

the velocity v, and acceleration a, of point B in terms of 6,w, and r. If
r = 1.5 ft w = 500rpm (revm™'), and € =5 ft, determine v, and a, for

6 = 30°

O3 The angualr velocity of bar AB in figure is 3 rad s™ clockwise in the
position shown. Determine the angular velocity of bar BC and the velocity of

the slider C in this position.




(=)

O The motion of rod AB is guided by pins attached at A
and B which slide in the slots shown. At the instant shown,

6 = 45°and the pin at B moves upward to the left with a

constant velocity of6 ins™?. Determine (a) the angular

velocity of the rod, (b) the velocity of the pin at end A.

3 Collar A moves upward with a constant velocity

of1.2 ms™'. At the instant shown whené = 30°,

determine (a) the angular velocity of rod AB, (b) the

velocity of collar B.

,r'ﬁﬂl}lmﬂ

Eml
A

O Knowing that at the instant shown the angular velocity of A R
rod AB is 15 rad/s clockwise, determine (a) the angular ozm
velocity of rod BD, (b) the velocity of the midpoint of rod BD. X $B

iO.ZSm = :

D:o E
o 02m

O The flywheel rotates counterclockwise about O with the constant angular

velocity w,. When 6 = 0, the speed of the piston A is determine w,,.

o

\ Dimensions in mm
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O When the mechanism is in the position shown, the

velocity of slider D is v, =1.25 ms™. Determine the

angular velocities of bars AB and BD at this instant

O A pulley and two loads are connected by inextensible cords

as shown. Load A has a constant acceleration of 300 mm s™

and an initial velocity of 240 mms™, both directed upward.

Determine (i) the number of revolutions executed by the pulley
in3 s, (ii) the velocity and position of load B after 3 s, (iii) the

acceleration of point D on the rim of the pulley at £ = 0.

P sl |

O The end of the cord that is wrapped around the hub of the /&?([-\
)
R

wheel is pulled to the right with the velocity 700 mms™. |~ ¢

Find the angular velocity of the wheel, assuming no slipping.

O The wheel is rolling without slipping. Its center has a : e

constant velocity of 0.6 ms™ to the left. Compute the angular 5‘7‘." X

LT 1
velocity of bar BD and the velocity of point D when 8 = 0. \
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KINETICS OF A RIGID BODY

n this chapter we will study the kinetics of rigid bodies, i.e., the

I relations existing between the forces acting on a rigid body, the

shape and mass of the body, and the motion produced. We studied similar

relations, assuming then that the body could be considered as a particle, i.e.,

that its mass could be concentrated in one point and that all forces acted at that

point. The shape of the body, as well as the exact location of the points of
application of the forces, will now be taken into account.

We will also be concerned not only with the motion of the body as a whole but
also with the motion of the body about its mass center. Our approach will be to

consider rigid bodies as made of large numbers of particles.

4 Reduction a System of Forces

When a number of forces and couple moments are acting on a body, it is easier
to understand their overall effect on the body if they are combined into a single
force and couple moment having the same external effect. The two force and
couple systems are called equivalent systems since they have the same external

effect on the body Figure 1.
Suppose a system of forces E, E,,....., E,,...., E, is reduced at a chosen point O

to a single force F and a single couple M viz. the obtaining resultis M, F

where

M,=)r,AF, F=3}F
=1 =1
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4 Angular Momentum of a Rigid Body

Consider a rigid slab in plane motion. Assuming that the
slab is made of a large number n of particles P; of mass

Am,, we note that the angular momentum Hg of the slab

about its mass center G can be computed by taking the

moments about G of the momenta of the particles of the

slab in their motion with respect to either of the frames 0

Oxy or Gxy' (Figure 2). Fig. 2

Choosing the latter course, we write
Hg =) (r/ A vjam,)
i=1

where r/ and v/am,denote, respectively, the position vector and the linear
momentum of the particle P; relative to the centroidal frame of reference Gx'y".
But since the particle belongs to the slab, we have v/ = w A r/, where w is

the angular velocity of the slab at the instant considered. We write
Hg =Y (1) AN(w A r)am)
=1

Referring to Figure 6, we easily verify that the expression obtained represents a

vector of the same direction as w (that is, perpendicular to the slab) and of
magnitude equal to w)» r/?Am,. Recalling that the sum Y r/?am,

represents the moment of inertia | of the slab about a centroidal axis
perpendicular to the slab, we conclude that the angular momentum Hg of the
slab about its mass center is

H, =Ilw
Differentiating both members of previous equation we obtain

H, =1Iw= I«
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Thus the rate of change of the angular momentum of the slab is represented by
a vector of the same direction as « (that is, perpendicular to the slab) and of

magnitude Ic.

It should be kept in mind that the results obtained in this section have been
derived for a rigid slab in plane motion. They remain valid in the case of the
plane motion of rigid bodies which are symmetrical with respect to the
reference plane. However, they do not apply in the case of nonsymmetrical
bodies or in the case of three-dimensional motion.

4 Plane Motion of a Rigid Body D'Alembert's Principle

Consider a rigid slab of mass m moving under the action of several external

forces E,F,, F,,...... contained in the plane of the slab (Figure 1). Substituting

for He from equation I, = I« into equation H, = Iw = I« and writing
the fundamental equations of motion in scalar form, we have

ZFm = ma,, ZFy = ma,, ZFZ = ma,, ZMg =Ilx
These equations show that the acceleration of the mass center G of the slab
and its angular acceleration «care easily obtained once the resultant of the
external forces acting on the slab and their moment resultant about G have

been determined. Note that the equations
ZFw = ma,, EFy = ma,, EFZ = ma,
do not give any information about the rotation of the body, as shown in the

figure, although the same force acts on the body but the body has different
effect.
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B Constrained Plane

Most engineering applications deal with rigid bodies
which are moving under given constraints. For example,
cranks must rotate about a fixed axis, wheels must roll
without sliding, and connecting rods must describe
certain prescribed motions. In all such cases, definite

relations exist between the components of the

Fig. 3

acceleration @« of the mass center G of the body
considered and its angular acceleration « ; the corresponding motion is said to

be a constrained motion.

The solution of a problem involving a constrained plane motion calls first for a
kinematic analysis of the problem. Consider, for example, a slender rod AB of
length | and mass m whose extremities are connected to blocks of negligible
mass which slide along horizontal and vertical frictionless tracks. The rod is
pulled by a force P applied at A as shown in Figure 3. We know that the
acceleration a of the mass center G of the rod can be determined at any given
instant from the position of the rod, its angular velocity, and its angular

acceleration at that instant. Suppose, for example, that the values of 8,wand
« are known at a given instant and that we wish to determine the
corresponding value of the force P, as well as the reactions at A and B. We
should first determine the components a, and a, of the acceleration of the
mass center G. We next apply D’Alembert’s principle as plotted in Figure 4a,

using the expressions obtained fora, and a, . The unknown forces P, N4, and

Ng can then be determined by writing and solving the appropriate equations.
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Suppose now that the applied force P, the angle 6, and the angular velocity v
of the rod are known at a given instant and that we wish to find the angular

acceleration o of the rod and the components a, and a,, of the acceleration of

its mass center at that instant, as well as the reactions at A and B. The

preliminary kinematic study of the problem will have for its object to express

the components a, and a, of the acceleration of G in terms of the angular

acceleration « of the rod. This will be done by first expressing the acceleration
of a suitable reference point such as A in terms of the angular acceleration

«. The components a, and a, of the acceleration of G can then be

determined in terms of a, and the expressions obtained carried into Figure 4a.
Three equations can then be derived in terms of «, Na, and Ng and solved for
the three unknowns. Note that the method of dynamic equilibrium can also be
used to carry out the solution of the two types of problems we have considered
(Figure 4b). When a mechanism consists of several moving parts, the approach
just described can be used with each part of the mechanism. The procedure
required to determine the various unknowns is then similar to the procedure
followed in the case of the equilibrium of a system of connected rigid bodies.
Earlier, we analyzed two particular cases of constrained plane motion: the
translation of a rigid body, in which the angular acceleration of the body is
constrained to be zero, and the centroidal rotation, in which the acceleration a
of the mass center of the body is constrained to be zero. Two other particular
cases of constrained plane motion are of special interest: the noncentroidal
rotation of a rigid body and the rolling motion of a disk or wheel. These two
cases can be analyzed by one of the general methods described above.
However, in view of the range of their applications, they deserve a few special

comments.

< Non-Centroidal Rotation, The motion of a rigid body constrained to rotate

about a fixed axis which does not pass through its mass center is called non-
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centroidal rotation. The mass center G of the body moves
along a circle of radius r centered at the point O, where the
axis of rotation intersects the plane of reference as
illustrated in Figure 5. Denoting, respectively, by w and «
the angular velocity and the angular acceleration of the line

OG, we obtain the following expressions for the tangential

and normal components of the acceleration of G:

a, = rao, and a, = ru’ wee(1)

Since line OG belongs to the body, its angular velocity w and its angular
acceleration « also represent the angular velocity and the angular acceleration
of the body in its motion relative to G. Equations (1) define, therefore, the
kinematic relation existing between the motion of the mass center G and the
motion of the body about G. They should be used to eliminate a, and a,, from
the equations obtained by applying d’ Alembert’s principle (Figure 6) or the

method of dynamic equilibrium as shown in Figure 7.

An interesting relation is obtained by equating the moments about the fixed

point O of the forces and vectors shown, respectively, in parts a and b of

Figure 6. We write > M, = Ia+ (Mro)r = (I + Mr*)o

Fig. 6

But according to the parallel-axis theorem, we have, I + Mr? =I_ where I,

denotes the moment of inertia of the rigid body about the fixed axis. We

therefore write
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>M, =Ia .. ()
Although formula (2) expresses an important relation between the sum of the

moments of the external forces about the fixed point O and the product I «, it

should be clearly understood that this formula does not mean that the system of

the external forces is equivalent to a couple of moment I . The system of the

effective forces, and thus the system of the external forces, reduces to a couple
only when O coincides with G—that is, only when the rotation is centroidal. In
the more general case of noncentroidal rotation, the system of the external

forces does not reduce to a couple.

A particular case of noncentroidal rotation is of special interest the case of
uniform rotation, in which the angular velocity w is constant. Since « is zero,
the inertia couple in Figure (7) vanishes and the inertia vector reduces to its
normal component. This component (also called centrifugal force) represents

the tendency of the rigid body to break away from the axis of rotation.

B Remember That

Plane motion of a rigid body: The problems that you will be asked to solve

will fall into one of the following categories.

i. Rigid body in translation. For a body in translation, the angular acceleration
is zero. The effective forces reduce to the vector ma applied at the mass
center.

ii. Rigid body in centroidal rotation. For a body in centroidal rotation, the
acceleration of the mass center is zero. The effective forces reduce to the
couple Ix.

iii. Rigid body in general plane motion. You can consider the general plane
motion of a rigid body as the sum of a translation and a centroidal rotation. The

effective forces are equivalent to the vector ma and the couple Ia.
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ImIllustrative Examplesll

O EXAMPLE 1
A thin uniform rod of length L and mass m hangs freely from a hinge at A. If it
is allowed to fall with initial velocity equals zero from a horizontal position.

Determine the maximum value of angular acceleration of its center of gravity

and find the associated tangential acceleration a, of the end of the rod.

0 SOLUTION

Let the rod OA at any instant ¢ makes an angle @ with the initial horizontal

position OX. Let G be the center of gravity and GN perpendicular to QY.

The angular formula of Newton’s second law we get
M, =Ia

Taking the momentum about the point O

o

M = mg[éLcosB]
Since the moment of inertia of the rod about any of itsends is I, = %mLZ
therefore,

mg[%LcosB]:%mLZa ia:z—icose

That is the angular acceleration is a function of 8 hence the maximum value is

obtained when 6 = 0 and its value is o, = ;—i

Therefore the associated tangential acceleration a, of the end of the rod is

= Lo 3

a = —
max = 59

t
O EXAMPLE 2

A straight uniform rod of length a and mass m can turn freely about one end O,
hangs from O vertically. Find the least angular velocity with which it must
begin to move so that it may perform complete revolution in a vertical plane.

0 SOLUTION
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Let the rod OA at any instant ¢ makes an angle @ with the initial vertical

position OY. Let G be the center of gravity and GN perpendicular to OY. The
equation of angular motion of the rod is

1

“ma?b = —mg[g sin

Since the moment of effective forces about O = %mcﬁe

And moment of external forces about O = —mg[%]sin@ KA

Thus 200 = —3gsin6

Multiply the above Equation by 6 and integrating we get

ab® = 3gcos@ + ¢, cisintegration constant.

Let & = wwhen 8 = 0 we have, ¢ = aw® — 3g

Therefore, ad? = aw? — 3g(1 — cos6)

We require that & = 0 when @ = = to complete revolution, hence
0=aw? —3g(1—cosm) = w=[6g/a

0O EXAMPLE 3

The 360-1b uniform plate shown in the figure rotates in the

vertical plane about a smooth pin at A. The plate is released = -y
from rest when 6 = 0. (i) Show that the differential equation

360-Th 7

61t

of motion for the plate is 6 = 0.996(4 cos® — 3sin6) rads™

(ii) Integrate the differential equation of motion analytically .

to obtain the angular velocity of the plate as a function of 6

(iii) Find the maximum value of 6.

O SOLUTION
The mass of the plate is 7 = 360/32.2 = 11.18 slugs and the moment of
inertia about its mass center G is
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I= é(ll.ls)(82 + 6%) = 93.17 slug ft?
The figure behind shows the free body diagram (FBD) and mass acceleration
diagram for an arbitrary position of the plate. The FBD contains A and 4, , the
unknown components of the pin reaction at A. Since the path of G is a circle of

radius » = 5 ftcentered at A, the normal components of a is a, = r6* = 567,

and its tangential component is a, = 76 = 56 . Observe that the angular

acceleration 6 is assumed to be clockwise. Now, by taking the momentum
about A we have

(360 cos 0)4 — (360sin 6)(3) = 93.176 + 11.18(56)5
which reduces to

6 = 0.966(4 cos @ — 3sin 0) rads™

The identical result could be obtained by using the special -~

case of momentum equation
> M, =1,06

(360 cos 0)4 — (360sin 6)(3) = (93.17 + 11.18(5)2)é

360-Ib

To find the angular velocity as a function of @, we use the formula 6 = 0'%

hence
. .dO . 5
0= GE = 0.966(4 cos @ — 3sin ) rads
= 0d6 = 0.966(4 cos @ — 3sin 0) d
The result of integrating this equation analytically is
%92 = 0.966(4sin 6 + 3cosO)+ c
The constant of integration ¢ is evaluated by applying the initial condition

6 =0 when 6 =0, which gives ¢ = —3(0.966)rad?s>. Therefore, the last

equation becomes

6 ft
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%o” = 0.966(4sin 6 + 3cosH — 3)

From which the angular velocity is found to be

O EXAMPLE 4

One end of a light string is fixed to a point of the rim of a uniform circular disk
of radius @ and mass M and the string is wounded several times around the
rim. The free end is attached to a fixed point and the disk is held so that the
part of the string not in contact with it is vertical. If the disk be let go, find the
acceleration and tension of the string.

0 SOLUTION

Let the free end be attached to the fixed point P and let A be the initial position
of the center of gravity G. let T be the tension of the string, there being no
horizontal force the center of gravity will move vertically downwards. Let y
be the distance moved by G in time and during this period, 6 be the angle

turned through some radius.
y:(le iy:aé’ 'y:aé
The equation of motion of the center of gravity of circular disk is
Mijj=Mg—-T  ..(1)

The equation of angular motion about the center of the disk is

M, =16

The moment of inertia of the disk about an axis passing through its center is

\
My
1, = v 7

2
Taking the momentum about the center of the disk
M, =Ta
Therefore, from the last three equations we have
%MaZézTa éT:%Maé:%M:i]
i
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Substituting this value of tension in Equation (1) we get

.. 1. . . 2
My=Mg—5My =¥=39
In which gives the vertical acceleration of the center of the disk and to obtain

the tension, substituting this value in Eq. (1)

1 1
T =-My=-M
9 ) 3 g

0O EXAMPLE 5

Two equal masses m,and m, (m, > m,) are suspended by a light string
over a circular pulley of mass M and radius . There is no slipping and the
friction of the axis can be neglected. If a be the acceleration; show that this is

constant, and if k* be the radius of gyration of the pulley about the axle, show

b2
that k2 = E((g —a)ym, — (g + a)m,)

0 SOLUTION
Let in time ¢, m, moves a distance y downwards and m, moves distance
upwards. Let 0 be the angle through which the pulley has rotated in time ¢ .

Since y = b0 = §j = bO

Equations of motion of m, and m, are

mi =mg—1T, (1) and myj =T, —m,g ....(2)

Equation of motion of the pulley is
M, =106 :>%Mb2§ =T,b—Tyb

bﬁzle_Tz S -ME=T —T, ... (3)

iéMb2

Adding three Equations (1), (2) and (3) , we get

(ml —m, )g

[ml+m2+%M]5§:(ml—m2)g =>&=a= .
[m1+m2+2M]
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which is constant. From above we get [m1 +m, + %M]a =(m, —m,)g

Since the radius of gyration of a circular disk (pulley) about its center is

A 2 4

k2 _ Io _lAbz =1b2
2

k2
m, + m, +b—2M]a = (m; —m,)g

ikzzm (g —a)m; — (g + a)m,

Again by subtracting Equation (1) from Equation (2), we get

m, —m, &=T,+T —(m +m,)g
=S>T,+T, = my —m; &+ (m, +m,)g

= my,—m; a+(m +m,)g

0O EXAMPLE 6
A fine sting has two masses M and M’ tied to its ends and passes over a rough
pulley; of mass m and radius a whose center is fixed. If the string does not

slip over the pulley, show that M will descend with acceleration

M —M' g/ 2M +2M’ +m . If the pulley be not sufficiently rough to
prevent sliding, and be the descending mass, show that its acceleration is

M—M'e"™ | M+ M'e*™ and find the angular acceleration of the

pulley.

O SOLUTION

First part, when the pulley is rough enough to prevent sliding.
Proceeding like previous examples the equations of motion of
masses and pulley are

Mi=Mg—T  ..(1
and ME=T—M'g ..(2)

Mg
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And taking moment of effective forces about the center of pulley, we get
%mﬁé =(T—-T)a ..(3)
Again « = af, = i = ab therefore Equation (3) turns into
%mc’i =TT’ ...(4)
Adding Equations (1), (2) and (4), we have

éi[M+M'+%m] =(M - M')g
2(M — M')g
= &=
2M +2M' +m

Second part, when the pulley is not sufficiently rough to prevent sliding, then
we cannot take z = a@. In this case, from Statics, we have

T =T¢e'" ..(5)
Solving Equations (1), (2) and (5), we have

! U 4 _ ’ U
T:2MMge T = 2MM'g . and :.é:M M'ge
M + M'eF™ M + M'er™ M + M'e#™
Further putting above values of T'and T’ in Equation (3), we get

4ag '™ —1 MM’

6 = .
ma?® M+ M'et™

0O EXAMPLE 7

Two unequal masses, M and M’rest on two rough planes inclined at an
angles aand g to the horizon; they are connected by a fine string passing over
a small pulley, of mass m and radius a, which is placed at the common
vertex of the two planes; determine the acceleration of either mass. Where p

and p’are the coefficients of friction, M is the mass which moves

downwards.
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0 SOLUTION
Suppose that in time ¢, the mass M moves a distance = downwards. Also M’
moves a distance z upwards. Let the pulley turn through an angle @, in the

same time ¢ .
sx=a0 =>i=ab, i=ab
The equation of motion of the masses and are
M3i = Mgsina — Mgucosa — T ..(1)
M'é =T’ — M'gsin3 — M'gu’ cos 3 we(2)
Equation of motion of pulley is
1 e ’ 1 . ’
gmaO:(T—T)a :>§m:c:T—T ..(3)
By adding the three Equations (1), (2) and (3), we have

[§m+ M +M']&i =g M(sina — pcosa) — M'(sin 3 — p’ cos 3)
39 M(sina — pcosa) — M'(sin B — p’ cos 3)

= &=

m+3M + 3M’
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4 Reactions of the Axis Rotation

A body moves about a fixed axis under the
action of forces and both the body and the forces
are symmetrical with respect to the plane
through the center of gravity perpendicular to the
axis, find the reaction of the axis of rotation .

Let O be the point where the plane through G
perpendicular to the axis of rotation meets this
axis. By symmetry the actions on the axis reduce

to a single force at O, the center of suspension.

Let the components of this single force be X and Y along and perpendicular
to GO respectively. Now G describes a circle around O as center, its
acceleration along and perpendicular to GO are h6%*andhé . Equations of

motion of center of gravity are

Mh§* = X — Mgcos6  ....(1)
Mhé =Y — Mgsin@ ee(2)
By taking moments about O, I, = Mk?§ = —Mgh ....(3)where k is the

radius of gyration about the axis. Y is obtained by eliminating 6 from
Equations (2) and (3) by integrating Equation (3) and determining the constant
from the initial conditions, and then from equation (1) we can findX.
Resultant reaction R =+ X2 +Y? and tany = (Y/X)where ¢ is the angle
which the direction of R makes with GO. Note that on resolving X and Y
horizontally and vertically.

The horizontal reaction = X'sin® — Y cos 6

and vertical reaction = X cos@ + Y sin@
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4 Rolling Motion

Another important case of plane motion is the motion of |
a disk or wheel rolling on a plane surface. If the disk is

constrained to roll without sliding, the acceleration a of

its mass center G and its angular acceleration 6 are not

L.
independent. Assuming that the disk is balanced, so that ‘*“Z‘ : ‘ﬁ

its mass center and its geometric center coincide, we first

—_—

write that the distance = traveled by G during a rotation 6 of the disk is

x = r@, where r represents the radius of the disk. Differentiating this relation

twice, we write & = ré(ra)

Recalling that the system of the effective forces in plane motion reduces to a
vector ma and a couple I8, we find that in the particular case of the rolling
motion of a balanced disk, the effective forces reduce to a vector of magnitude

mré attached at G and to a couple of magnitude 6. We may thus express that

the external forces are equivalent to the vector and couple shown in Figure.

When a disk rolls without sliding, there is no relative motion between the point
of the disk in contact with the ground and the ground itself. Thus, as far as the
computation of the friction force F is concerned, a rolling disk can be
compared with a block at rest on surface. The magnitude F of the friction
force can have any value, as long as this value does not exceed the maximum

value F = uN, where p represents the W

coefficient of static friction and N is the

magnitude of the normal reaction force. In

the case of a rolling disk, the magnitude
F of the friction force should therefore be
determined independently of N by N

solving the equation obtained from Figure beside.

(a = ra)
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When sliding is impending, the friction force reaches its maximum value

F = uN and can be obtained from IN. These two different cases can be
summarized as follows:

Rolling, no sliding: F < uN, a = rf
Rolling, no sliding: F = uN, a =16

<> A uniform sphere rolls down an inclined plane whose inclination to horizon

be «, rough enough to prevent any sliding; discuss the motion.

Initially, the sphere was rest with its point P in contact
with O. During the motion, after any time t, let the
center C of the sphere describes a distance xon the
inclined plane and @is the angle through which the
sphere turns. Thus CP a line fixed in the body, makes an

angle @ with the normal to the plane, a line fixed in

space. Let F' be the frictional force and R the normal
reaction force at the point of contact, then the equations

of motion of the center of gravity of the sphere are
M% = Mgsina — F «.(1)

Since there is no motion perpendicular to the plane, we have
My = Mgcosao— R =0 Or R=Mgcosax ..(2)

Also Equation of motion about the center of gravity is
2 5
ga M6 = Fa «(3)
According to there is no sliding, so we have OB = PB
= x=ab, &= ab
From Equation (3) = gMi =F

Substituting this value of F in Equation (1), we readily get
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= %Mw = Mgsina or E= ggsina wee(4)

i.e. the sphere rolls down with a constant acceleration therefore by integrating

d

5 .
=|-gsina|t +c
dt [7 ]

The constant of integration ¢ vanishes as ¢ and z vanish together. Integrating

again, we get,
5
Tz =|—gsina|t?

Because the constant of integration again vanishes, as ¢ and =z vanish
simultaneously. For the case of hollow sphere, the acceleration is.

i = 3 sin o
Pure rolling: Eliminating # from Equations (1) and (4), we get
. 5 .
F = mgsina — ;Mgsma

2
= = Mgsi
7 gsmo
Also from Equation (2) R = Mgcos . In order there may be no sliding F/R

must be less than . i.e. for pure rolling F < pR

F 2
thus, pu > = = ==-tano
=R H=7
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ImIllustrative Examplesll

0O EXAMPLE 1
A uniform solid cylinder is placed with its axis horizontal on a plane, whose
inclination to the horizon is «, Prove that the least coefficient of friction

between it and the plane, so that it may roll and not slide, is tanca / 3. If the
cylinder be hollow, and of small thickness, the least value is tanc / 2

0 SOLUTION

At any time ¢, Let the axis of the cylinder describe a R

distance zand 6be the angle turned, since there is no

sliding so we have = = a@ . Also the equations of motion

of a center of gravity are given by

Mg = Mgsina—F  ....(1)
and 0 = Mgcosaa— R «(2)

Again taking moments about the axis through G, the

center of gravity of the solid cylinder, we have
]. 2" 1 e
EMaH:Fa :>§Ma::F ..... (3)

hence elimination of Mz in between Equations (1) and (3), we get

F = %Mg sina ....(4) but R = Mgcosax  ....(5)
. F 1
For pure rolling, > —="tano
p g ©n R 3

In the same manner for hollow cylinder and we can obtain the least value of
coefficient of friction to prevent sliding is p > R Etana

O EXAMPLE 2
A cylinder rolls down a smooth plane whose inclination to the horizontal is «,
unwrapping, as it goes, a fine string fixed to the highest point of the plane, find

its acceleration and the tension of the string.
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(O SOLUTION

When the cylinder has rolled down a distance z along the plane, Let T be the
tension in the string and in this time (say ¢ ), let 6 be the angle turned by the
cylinder, then as the string is tight, the motion of the

pure rolling i.e. BP = OB = z = afwhich gives
T = aé, % =ab

Now equations of motion of the center of gravity of
the cylinder are
Mi = Mgsina— T wee(1)

and My =0= Mgcosa— R ..(2)

Now taking moments about the center, we get
| 1. . o=
EMG,O:Ta :>5M:1:=T (£ = ab) ..... (3)
Equations (1) and (3) give

3 .. . . 2
EM:c:Mgsma :>a::§gs1na

and then T = %Mg sin o

O EXAMPLE 3
A rough uniform rod of length 2ais placed on a rough table at right angles to
its edge; if its center of gravity be initially at distance b beyond the edge, show

that the rod will begin to slide when it has turned through an angle
pna’(a® + 9b%)~! where p represents the coefficient of friction.

0 SOLUTION

Initially the rod was at right angles to the edge of the rough table, now it has

turned through an angle@. Let there be no sliding when the rod has turned

through this angle. Let F and R be the force of friction and normal reaction
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on the rod. Acceleration of G along and perpendicular to GO are respectively

b6* and b6 . Equations of motion of center of gravity G are

Mbé = Mgcos® — R (1)
and Mbé? = F — Mgsin6 ee(2)

Taking moments about O, the point of contact of the rod and table, we have

IoézMgbcosg, I, :M[b2+§a2]

3gb

=6=—"
a? + 3b2

cos @ wee(3)

Multiply Eq. (3) by 26 and integrate, we get

6% = 6—gbsinﬁ «.(4)

a* + 3b?

The constant of integration vanishes as initially when 6 =0, 6§ =0 .

Putting the values of 6 and 6% in Equations (1) and (2) from (3) and (4), we

get
2
R = —Mb.icose + Mgcos8 = Micos@
a® + 3b° a® + 3b%
2 2
and F = Mgsin0 + Mb.6—gbsin0 = ﬂMgsinO
a® + 3b° a® + 3b°
Now, the sliding commences when F = uR i.e.
2 2 2 2
ﬂMgsiHHZMCose :tanH:L
a’® + 3b® a’® + 3b® a® + 9b?

O EXAMPLE 4
A thin uniform rod of mass m and length 2a has one end attached to a smooth

hinge and is allowed to fall from a horizontal position. Show that the horizontal

strain on the hinge is greatest when the rod is inclined at angle 45° to the

vertical, and that the vertical strain is then 1.375 times the weight of the rod.
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(O SOLUTION

Let OA = 2aand let the rod makes an angle 6 with
the horizontal after time ¢ . The figure behind shows
the free body diagram (FBD) and mass acceleration
diagram for an arbitrary position of the rod. The FBD
contains X andY , the unknown components of the
pin reaction at O. Since the path of G is a circle of

radius r = acentered at O, the normal components

of a is a, =7r0*=ab*, and its tangential

- n

component is a, =8 = af. Observe that the

angular acceleration 6 is assumed to be clockwise. Equations of motion of G

along and perpendicular to GO are

Mab = —Y cos6 + Xsin6 + Mgcos6 wee(1)
and Ma6® = Ysin6 + X cos® — Mgsin6 wee(2)

Again the moment equation about O is

i;Maz 6 = Mgacos® =6 = i—gcose wee(3)
a

Integrating Equation (3) we get 6% = z—gsinﬂ-i— c
a

From initial condition & = 0 when 8= 0 therefore, C=0 = 6* = z—gsin0
a

Putting this value of 8% in Equation (2), we get
%Mgsine =Y sin0 + X cos@ — Mgsin0

= Ysinf + X cosf = gMgsinH wee(4)

With the help of Equation (3), the Equation (1) becomes



Kinetics of A Rigid Body [;h i

%Mg cosd = —Y cosO + X sin@ + Mgcos6

= Y cosf — Xsinf = ng cos @ ...(5)

Multiply Equation (4) by cos@ and Equation (5) by sin® and adding, we have

5 1

X =|-—=-|Mg sinBcosO:gMgsiHZB
2 4 8

Similarly, we have
5., 1,
Y = Mg Esm 0+ZCOS (7]

We observe that X is maximum when sin20 =1 i.e. when 20 == /2 or
60 = m /4,s0when 8 = = / 4we have

Y = Mg El+11 = 1.375Mg
22 42

i.e. Y is 1.375 times the weight of the rod.
0O EXAMPLE 5
The 360-Ib uniform plate shown in the figure rotates in the AT

o
vertical plane about a smooth pin at A. The plate is released
from rest when @ = 0. Determine the components of reaction
at pin A, <
0 SOLUTION
Mg

The mass of the plate is m = 360 / 32.2 = 11.18 slugs and the

moment of
inertia about its mass center G is

1
I =—M(a?+0b?
5 M ) A

The figure behind shows the free body diagram (FBD)

A

and mass acceleration diagram for an arbitrary position of
the plate. The FBD contains XandY, the unknown

components of the pin reaction at A. Since the path of G

is a circle of radius r = \l(0.5a)2 + (0.5b)* = £ (say)
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centered at A, the normal components of ais a, = €6%, and its tangential
component is a, = 78 = £6. Observe that the angular acceleration & is

assumed to be clockwise.

Equations of motion of G along and perpendicular to GA are

MO = —Y cos@ + X sin@ + Mg cos wee(1)
and M£6® =Y sin@ + X cos® — Mgsin6 we(2)

Again the moment equation about A is

1M(a2 +b*)0 = Mglcos® = 6= 39¢ cos 6 wee(3)
3 (12 + b2
] . -y 6gl .
Integrating Equation (3) we get 6* = sinf+ C
a’® + b?

From initial condition & = 0 when 6= 0 therefore, C= 0

= 0% = 6g¢ sin @
a* + b?

Putting this value of 62 in equation (2), we have

M 269 2s.in49=Ysin(9—}-XcosO—Mgsin49
a®+b

= Ysin6 + X cos@ = gMgSinO wee(4)

Via the help of Equation (3), the Equation (1) turns into

M 239 S cos0 = —Y cos6 + Xsin6 + Mg cos 6
a®+b

= Y cos@ — Xsinf = ng cos @ ...(5)

From equations (4) and (5) the components of reaction at A can be found.

0 EXAMPLE 6
A right cone of angle 2« can turn freely about an axis passing through the

center of its base and perpendicular to the axis; if the cone starts from rest with
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its axis horizontal, show that when the axis is vertical, the thrust on the fixed

6 + 3cos®

axis is to the weight of the cone as
4+ 6cos’

O SOLUTION
Let initially the cone be as shown in the figure. After any time ¢, let the cone

take the position as shown. If the height of the cone is OO’ = h then

0G = ih where G denotes the center of gravity of the cone. Now since the

C.G. of the cone i.e. point G is describing a circle of radius(h / 4) , the

equations of motion of G are

M[ih]@2 =X — Mgsinf  ...(1)
and M[ih]e = Mgcosf — Y wee(2)

Where denote the components of reaction at O along and perpendicular to OX.

Taking moments about O, we get

2
Mh—(2 + 3tan’ o) = Mg 1h cos@
20 4
= hé = ;gcose wee(3)
2 + 3tan’ o

Multiplying both sides of Equation (3) by 26 and integrating we get

ne* =— 0 gsino+c

_2+3tan2a
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Initially & = 0 when #= 0 giving thereby the constant, C= 0

ho* = Lgsine wee(4)
2 + 3tan’ o

Substituting Equation (4) in (1) we have

M[lh]Lgsma — X — Mygsin6hé?
4 )(2+ 3tan’ a)h

9 + 6tan’

= X = Mgsin6
4 + 6tan’ o

Also using Equation (3) in (2) we get

3 + 6tan’ o
8 + 12tan’

Y = Mg cosO

When the axis is vertical i.e. when 6 = (7/2) we have

9 + 6tan’®

X = Mg
4 + 6tan’ o

], v =0

Then resultant pressure is R = VX2 +Y? = X

R = Mg

9 +6tan2a]

4 + 6tan’ o

— Mg 9cos’ o + Gsinza]

4cos? a + 6sin?
X _ 6+3cos’

Mg 4+ 6cos’
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B The Compound Pendulum

In order to determine the motion of a body acted on by the force of gravity
only and moving about a fixed horizontal axis.

Let us take plane of the paper as the plane through the center of gravity G of
the body and perpendicular to the fixed axis. Let the plane meet the axis in C
and let be the angle between a plane fixed in space and a plane in the body.

Let CG = h. The forces on the body are

(i) its weight Mg acting downward through G.

(i) the reaction at C of the fixed axis.

We take moments about the fixed axis to eliminate this reaction.

The equation of motion is
MK*0 = —Mghsin® (MK = I,)

g_ _gh gh .
= 0= —EsmO = 2 (6 beingsmall) ...(1)

Equation (1) shows that the motion is Simple Harmonic Motion. Hence the

time of complete oscillation of compound pendulumis +~ = 2m/k2/(gh)

4 Simple Equivalent Pendulum,

We know that equation of motion of a particle of any mass suspended by a
string of length L is

6=—9sn0=-—20  (Obeingsmall)
L L

The time of complete oscillation is + = Zm/L/g

If 27r(L/g = 2m\|k?/(gh) then L = k%/h

This length (k* / h)in the case of a compound

pendulum is called the length of the simple
equivalent pendulum.
If O is the point on CG produced such that (the length of the simple equivalent

pendulum) then the point O is called the center of oscillation.



(]

ImIllustrative Examplesll

O EXAMPLE 6
A solid homogeneous cone of height hand vertical angle
2a oscillates about a horizontal axis through its vertex,

show that the length of the simple equivalent pendulum is
1 2
gh(4 + tan® )

O SOLUTION
Let OX be the vertical axis through the vertex O. Let us

take a circular disk PQ of thickness dy at distance y from
O. Moment of inertia of disk about OX =

(pmy® tan® ozdy)[iy2 tan® o + 7° ]
Therefore Moment of inertia of whole cone about OX is
1 h
I, = p tan? a[l + — tan? a]fy4 dy
4 0
1 2 L 5
= —prtan” |1 + —tan” a |h
5 4
= lp7rtan2 a 4+ tan®> o h®
20
1
=%M 4 4 tan’ o h? [M:Epﬂ'hstarﬂa

Since k2:%4+tan2a h? and OG:%h

Therefore the length of the simple equivalent pendulum is

2
=% _limtatah
0G 5

0O EXAMPLE 7
A rectangular plate swings in a vertical plane about one of
its corners. If its period is one second, find the length of the

diagonal.
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(O SOLUTION

Let k£ be the radius of gyration of the plate about the axis, through A and
perpendicular to its plane, then we have

ME? = %M(a2 +b%) + Mh? (parallel axis theorem)

v o= h:lfa2+b2
3 3 2

BG=GD, further distance of center of gravity from A = AG=h

2 2
Since the period = 27 fk— =27 fﬂ = 4w gi
hg 3hg 3g
But as given the period =1 therefore, 47r,/h/(3g) =1 = h=3g/(167?)

Hence the length of the diagonal is 2k = (3g / 87?)

0O EXAMPLE 8 /j kIF

Three uniform rods AB, BC, CD each of length a, are

freely jointed at B and C and suspended from the points A 2 4

and D which are in the same horizontal line and a distance

a apart. Prove that when the rods move in a vertical plane, ] a -
B

the length of simple equivalent pendulum is 5a/6
0 SOLUTION

The system forms a compound pendulum swinging about the horizontal AD.
The figure is self-explanatory. Let m be the mass of each rod.

Let h be the depth of C.G of the system from AD and k be the radius of
gyration of the system about the horizontal axis AD, then we easily obtain =

sum of the moments of inertia of the three rods about AD, i.e.

3mk* =m a®/3 +m a®/3 +ma® = k® =5a%/9
And h= m a/2 +m a/2 +ma /(3m)= 2a/3

Therefore, the length of simple equivalent pendulum is (k*/h) = (5a/6)
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PROBLEMS

3 A uniform slender rod of length L = 36 in. and weight W = 4 Ib hangs i
freely from a hinge at A. If a force P of magnitude 1.5 Ib is applied
horizontally as shown to the left (h=24 in), determine (a) the angular | |~%
acceleration of the rod, (b) the components of the reaction at A.

O A rope is wrapped around a cylinder of radius r and mass m as shown.
Knowing that the cylinder is released from rest, determine the velocity of

the center of the cylinder after it has moved downward a distance L.

3 A thin, homogeneous, semicircular plate of mass m and radius r

as shown. It is released from rest when 6 = 90°. At this instant,
determine the linear acceleration of point B expressing it in terms of
the acceleration of gravity g.

O The homogeneous thin hoop of weight Wand radius r
shown is released from rest and rolls without sliding down the
inclined plane under the action of its weight and the applied P = Wid
force P. Determine (a) the angular acceleration of the hoop,

(b) the frictional force, (c) the acceleration of the mass center
G, and (d) the minimum coefficient of friction required to assure that the thin

hoop rolls without sliding. Express answers in terms of W and r.

tT

O The homogeneous cylinder of weight W = 100 N and radius r = 0.25 m is
released from rest as shown in Figure. Determine the tension in the

inextensible cord, the angular acceleration of the cylinder and the

acceleration of its mass center G. Assume that the cylinder does not slip on

the cord.
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O A half section of a uniform cylinder of mass m is at rest

when a force P is applied as shown. Assuming that the section N /;—? p
rolls without sliding. Determine (a) its angular acceleration, B C

(b) the minimum value of . compatible with the motion.

O A wheel of radius r and centroidal radius of gyration K is
released from rest on the incline and rolls without sliding.
Derive an expression for the acceleration of the center of the

wheel in terms of r, k, 3, and g.

O A sphere of radius r and weight W is released with no initial velocity on the
incline and rolls without slipping. Determine (a) the minimum value of the
coefficient of static friction compatible with the rolling motion, (b) the velocity
of the center G of the sphere after the sphere has rolled 10 ft, (c) the velocity of
G if the sphere were to move 10 ft down a frictionless 30° incline.

O Find the length of the equivalent simple pendulum in the following cases,
the axis being horizontal

Q) Circular disk; axis a tangent to it Ans.(5a/4)

(i) Hemisphere; axis a diameter of the base Ans. (16a/15)

(iii))  Anelliptic lamina when the axis is a latus rectum.





