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MOMENTS OF INERTIA  

(SECOND MOMENT) 

 

n attempting to solve the equations of motion of a Rigid Body in a 

manner similar to that employed for a single particle, it will be 

found that certain new quantities appear, which depend on the extent and shape 

of the body, on its density, and on the way in which it may be moving in 

respect of some particular line or system of coordinate axes. These quantities 

are called Moments of Inertia and Products of Inertia or second moments. A 

moment of inertia of a body about any line is denned to be the sum of the 

products of all the material elements of the body by the squares of their 

perpendicular distances from this line. It may be denoted in general by the 

letterI . When rectangular coordinate axes are used, the moments of inertia of 

a point of mass m  about the axes are defined by  

2 2

2 2

2 2

( )

( )

( ) ....(1)

X

Y

Z

I z y m

I x z m

I x y m  

and about the planes are denoted by 
2

0
2

0
2

0 ....(2)

X

Y

Z

I x m

I y m

I z m  

and about a point O  is given by

 2 2 2
O ( ) ....(3)I x y z m  

 It is clear that we can deduce from these equations that 

I 

MOMENTS OF INERTIA 
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1- The moment of inertia of a body about three perpendicular axes equals 

the moment of inertia about the point of their intersection , that is 

O2X Y ZI I I I  

2- The moment of inertia of a body about two perpendicular planes equals 

the moment of inertia about the axis of their intersection , that is 

0 0X Y ZI I I  

3- The moment of inertia of a body about three perpendicular planes 

equals the moment of inertia about the point of their intersection, that 

is 0 0 0 OX Y ZI I I I  

 General case 

Now to obtain the moment of inertia of a rigid body we divide the rigid body to 

an infinite number of differential elements each of them of mass dm   

therefore, the previous relations of moment of inertia become About the axes 

2 2

2 2

2 2

( )

( )

( ) ....(1 )

X

Y

Z

I z y dm

I x z dm

I x y dm  

about the planes are denoted by 
2

0

2
0

2
0 ....(2 )

X

Y

Z

I x dm

I y dm

I z dm  

and about a point O  is given by

 2 2 2
O ( ) ....(3 )I x y z dm  

 Theorem of Parallel Axes 

There is a simple relationship between the moments of inertia about two 

parallel axes, provided that one of the axes passes through the centroid of the 

body. Referring to the shown figure, let be the centroid of the body, therefore 

the moment of inertia of the body about an axis (Z  say) is equal to its moment 
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of inertia about a parallel axis through its 

center of gravity (Z ), together with the 

product of the whole mass and the square 

of the distance between the axes.  

Let the given axis be taken as axis of Z . 

Let ( , , )x y z  be the coordinates of a 

differential element of mass dm , ( , , )x y z  

the coordinates of the center of gravity of 

the body G, and let , ,x x x y y y z z z . 

Where ( , , )x y z represents the coordinates of the differential element with 

respect to GX Y Z  passing through the center of gravity. The moment of 

inertia about OZ  

2 2

2 2

2 2 2 2

( )

( ) ( )

( ) 2 2

ZI x y dm

x x y y dm

x y dm x y dm x x dm y y dm

 

But 0x dm and 0y dm , therefore the moment of inertia about OZ

2 2 2 2

2

( )Z

Z

I x y dm M x y

I Md dm M
 

where the first sum is the moment of inertia about an axis through G  parallel 

toOZ (Z ), and the remaining terms are the product of the whole mass and the 

square of the distance between the two axes 2 2 2x y d . 

 Plane Lamina  

The moment of inertia of a plane lamina about an axis 

perpendicular to its plane is equal to the sum of the 

moments of inertia about any two perpendicular axes in the 

plane that intersect on the first axis. Take the plane of the 
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lamina as the plane of XY and the perpendicular axis asOZ . Then, since 

Z 0 at all points on the lamina, we have 

2 2 2, ,X Y ZI y dm I x dm I r dm  

But 2 2 2r x y hence we get  

2 2

2 2

( )

Y X

Z

X Y

I I

I x y dm

x dm y dm I I  

 Radius of Gyration of an Area 

In some structural engineering applications it is common practice to introduce 

the radius of gyration of area. The radii of gyration of an area about the axes 

X, Y  and point O  respectively, are defined as 

0
0, ,X Y

x y

I I I
K K K

A A A
 

The radius of gyration of an area about an axis has units of length and is a 

quantity that is often used for the design of columns in structural mechanics.  

However, the radii of gyration are not a distance that has a clear-cut physical 

meaning, nor can be determined by direct measurement; its value can be 

determined only using the previous formulas. The radii of gyration are related 

by the equation 2 2 2
0 x yK K K which can be obtained from the previous 

relation. 

 Moments of Inertia for an Area about Inclined Axes 

In structural and mechanical design, it is sometimes necessary to calculate the 

moments and product of inertia XI , YI , and X YI  for an area with respect to 

a set of inclined X  and Y axes when the values for , XI , YI , and XYI are 

known. To do this we will use transformation equations which relate the X, Y

and X , Y coordinates. From the shown figure, these equations are 



  5  

cos sin

cos sin

x x y

y y x
 

With these equations, the moments and product of inertia of dA  about the X  

and Y  axes become 

2 2

2 2

( cos sin )

( cos sin )

( cos sin )( cos sin )

X

Y

X Y

dI y dA y x dA

dI x dA x y dA

dI x y dA x y y x dA

 

Expanding each expression and integrating, realizing that  

2
XI y dA , 2

YI x dA  and XYI xydA , we obtain 

2 2

2 2

2 2

cos sin 2 sin cos

sin cos 2 sin cos

(cos sin ) ( )sin cos

X X Y XY

Y X Y XY

X Y XY X Y

I I I I

I I I I

I I I I

 

Using the trigonometric identities sin2 2sin cos  and 

2 2cos2 cos sin  we can simplify the above expressions, in which case 

2 2

2 2

cos sin sin 2

sin cos sin 2

1
cos2 ( )sin 2

2

X X Y XY

Y X Y XY

X Y XY X Y

I I I I

I I I I

I I I I

 

If 0X YI  
then 

2
tan 2 XY

Y X

I

I I
 

It is evident that when the law of m  is 

known and the shape of the body is given, 

the finding of a moment or of a product of 

inertia involves integration; and the 

following examples will serve to show how 

the process of integration may be used for 

this purpose. Further on, several 

propositions will be given by which the 

method may be usually much simplified. 
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Illustrative Examples
 

 

 EXAMPLE 1 

Determine the moment of inertia of a uniform rod of lengthL  about an axis 

normal to it at one of its ends. 

 SOLUTION 

Consider the differential element of the rod as shown in the figure It is located 

on the rod at the arbitrary point x  from the one end of the rod say O  with 

length dx  then the mass of the element is dm dx where  is the density 

(mass per unit length)  and therefore the moment of inertia of this element 

about Y axis is 2
YdI x dm therefore the moment of inertia of the whole rod 

is obtained by integration, so  

2

2

3

0

3 2 2

2

2

0

1

3

1

3

1 1

3 3

Y

Y
L L

M

dI dx

I

dx x

L

x dm x

x

L

dm

x

ML L

 

0

Remember

L

M dm dx L  

 EXAMPLE 2 

Determine the moment of inertia of the area of a rectangular with lengths ,a b  

about an axis coincident with side a .  

 SOLUTION 

Consider a strip (dashed line) having a thicknessdx ; length a , and located in 

an arbitrary position and has a distance y from X  axis. The mass of the 

element is dm adx ,  is the mass per unit area.  

2 2
X y dmd bdyyI  
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2

3

0

2

3 2

0

2

1

3

1 1

3 3

1

3

a

X
a

M

I

b dy y

ba ab a

y dm

y

Ma

0

Note that

a

M dm bdy ba

 EXAMPLE 3 

Determine the moment of inertia of the area of triangle about an axis 

coincident with side h  as shown.  

 SOLUTION 

Consider a thin rectangular element (dashed line) having a thicknessdx ; length 

x , and located in an arbitrary position so it has a distance x  from Y  axis. The 

mass of the element is dm ydx  where 
h

y h x
a

 

Thus the moment of inertia of the triangle about axis Y  is given by  

2

2

3 3

0

2 2

2 2

0 0

4

4

1

3 12
1 1 1

6 2 6

Y

Y
a

a

a

M

dI

I

dx dx

h
x ha

h

x dm

x dm

h
x y x h x

a

h
x
a

a a Ma

0

2

00

Where

1

2 2

a

a a

M dm ydx

h h
h x dx hx x ha

a a

 EXAMPLE 4 

Determine the moment of inertia of a circular arc of radius a  which subtends 

an angle 2  at its center O about an axis normal to the its plane at O . 
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 SOLUTION 

Take the axis of OX , with C is the middle point of the arc, and a 

perpendicular axis OY . Let d  be the length of any differential element on 

the arc as shown where the mass of this element is given by 

,dm d d ad  hence 

2
O

2( )R dm RdRdI

 

2 3R dm RI dO

3

2 232 (2 )

M

R

R R R R

I

M
O

 

 Now for special case, semicircle where 2         

3 /2 2 2
/2

( ) )(

M

R R MRI R M RO  

 Now for special case,  a circle (cord) where 2 2        

23 2(2 ( 2) )

M

R R MR M RI RO

That is the moment of a circle of radius R  about an axis normal to it and 

passing through the center is 2MR  

 EXAMPLE 5 

Determine the moment of inertia of a circular arc of radius a  which subtends 

an angle 2  at its center O about a symmetric axis X  as shown. 

 

 SOLUTION 

Take the axis OX , with C is the middle point of the arc, and a perpendicular 

axis OY . Let d  be the length of any differential element on the arc as shown 

where the mass of this element is given by ,dm d d ad  hence 
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2 2 2sin ( )XdI y dm R Rd  

23

3

sin

(1 cos2 )

2

X R

R

I d

d

 

3 2

3

3

1

2
1 sin 2 1 sin 2

2 sin 2 (2 )
2 2 2 4

sin 2

2X

M

I R

R R R R
 

21 sin 2
1

2 2X M RI  

 Now for special case, semicircle where 2         

2 21 sin 2 1
1 (

2 2 2
)X M R MR M RI  

 Now for special case, a circle (cord) where 2 2        

2 21 sin 2 1
1 ( 2

2 2
)

2X M R MR MI R  

In the same manner the moment of inertia about Y axis is given by 

2 2 2cos ( )Y x dmI RdR  

Now we can deduce the moment of inertia about a normal axis to the plane of 

the circular arc passing through its center (as obtained before) by applying 

perpendicular axes theorem  

O

2 2

23 2

3 cos sin

cos sin

X YI I

d d

d

I

R

R

 

3 3 2
O 2I R d R MR  
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 EXAMPLE 6 

Find the moment of inertia of a solid spherical segment of height h  of a sphere 

of radius a about X -axis as shown 

 SOLUTION 

Let O  be the center of the sphere and 

OX  an axis at right angles to the base 

of  the segment meeting it in D  and 

the curved surface in C , so that 

OD a h  and DC h . Taking 

slices of the segment (thin disks) 

parallel to its base of radius y , then 

2dm y dx But ,x y  
are co-

ordinates of a point on a circle of 

radius a , viz. the section of the sphere by the plane of the paper; so that 

2 2 2y a x , the moment of inertia of the element is 21

2X md yI d  

2 4 2 2 2

2 2

2 4

2

4 2

(

( 2

1 1
( )

2 2

1
)

2

1
)

2

a

a h
a

a h
a

X

a h

yI y dx y a

a x dx

a a x dx

dm x

x

  

   2 34 51 1

2 5

2

3

a

a h

a xa xx  

 Now for special case, solid hemisphere where h a  then         

3 54 2

5 3 2 2

0

1 1

2 5
4 2 2 2

15 5 3 5

2

3

a

X

M

I a a xx

a

x

a a Ma
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 EXAMPLE 7 

Determine the moment of inertia for the area under the curve 2y x and 

bounded by the X, Y axes and the line x a   

 SOLUTION 

A differential element is chosen to be a thin rectangular (strip) parallel to Y  

axis of thickness dx  as shown in the figure. The element intersects the curve at 

the arbitrary point ( , )x y , and so it has a height y . 

The mass of the element isdm ydx , then we obtain 

2 2

5

0

4

0
0

3 2

5

2

( )

1 1

5 5

3 1 3

5 3 5

a

Y

a
a

M

x dmd x ydx

x dx x a

a Ma

I

a

0

2 31

3

a

M dm ydx x dx a  

 Obtain the moment of inertia of this case about X  axis  

 EXAMPLE 8 

Find the moment of inertia for the area bounded by the two parabola 23y x  

and 24y x x about Y axis as shown. 

 SOLUTION 

The differential element is chosen to be a thin rectangular parallel to Y  axis of 

thickness dx  as shown in the figure. The element intersects the curves at the 

arbitrary point ( , )x y , and so it has a height 2 1( )y y . The mass of the element 

is determined by 
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2 1
2 2

2

4 3

4

dm y y dx

x x x dx

x x dx

1

2

0
1

3 4

0
1

4

0

2

2 2

5

4 ( )

4 ( )

1 1 1
4

4 5 5

Y

Y

x dm

x dm x x x dx

x x dx

x x

dI

I

1

2

0

2
4 ( )

3
M dm x x dx

 
1 3 2 3

5 10 3 10Y

M

MI  

 Obtain the moment of inertia about X  axis 

 EXAMPLE 9 

Obtain the moment of inertia of the volume of revolution that generated by 

revolving a given curve ( )y f x  round the X axis from 0x  and x a .  

 SOLUTION  

Consider a differential element (thin 

disk of radius y  and thickness dx ) is 

selected to be parallel to Y  axis with 

thickness dx  it intersects the generating 

curve at the arbitrary point ( , , 0)x y and 

so its radius isy . The mass of the 

element is 2 2( )dm y dx f x dx , 

therefore  

421 1

22XI dm yy dx  
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4

0

1
( )

2

a

XI f x dx  

 Again for a special case as y x  we get a solid right circular cone and then  

4

4
4

4
0 0

2

4 5

1

2

1

2

5 1

1

2

11

2 0

X

hh

y dx

d

I dm y

a a x
x a h
h

x
h

 
Since we have

 

2

0

21

3

h
a

M dm x ax h
h

d

 
4 2 2

2

1 3 1

310 10

3

10

X

M

I a h a h a

Ma

 

where h

 

is the height of the circular cone.  

 EXAMPLE 10

Determine the moment of inertia for the surface of revolution that generated by 

revolving a given curve ( )y f x  round the X axis from 0x and x a .  

 SOLUTION  

Let us consider a differential element 

(thin ring of radius y and thickness d ) 

is selected to be parallel to Y  axis with 

thickness d  it intersects the generating 

curve at the arbitrary point ( , , 0)x y and 

so its radius is y . The mass of the 

selected element is 2dm yd

2 ( )f x d , by differentiation the 

equation ( )y f x  with respect to x  we 
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get ( )
dy

f x
dx

then  21 ( ) .f xd dx
 
Since we have 2

XdI my d  

2

0

3

2 32 ( )

1 ( )2 ( )

X
a

I dm f x

f x dxf

y d

x
 

 Obtain moment of inertia for a hollow right circular cone . 

 EXAMPLE 11 

Determine the moment of inertia for area of semicircle of radius a  when the 

density is proportional to the distance fromO . 

 SOLUTION 

Let us consider a differential element of semicircle of radius r  and thickness  

dr and let the density of this element is  Orr r  

Then the mass of the element is 2r dr rm rd d  

The moment of the element about O  is OdI

2 2 2
O OdI r dm dI rr dr  

2
O

0

4

5

0

5

5 5

a

a

I r dm

dr

r a

r

 

0

0

2 3 3

0
3

Note

3

a
a

a

r dr

r dr a

M d

r

m

 

 

5 2 2
O

33 3

5 5 3 5

M

aI a a Ma

 
 EXAMPLE 12 

Find the moment of inertia of the area of Circular Sector of radius a  and which 

subtends an angle X  at its center O  when the density is proportional to the 

distance fromO . 
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 SOLUTION 

 Let the differential element be a circular arc of radius r  which subtends an 

angle X  at its center and has thickness dr which its moment of inertia is 

21 sin 2
1

2 2
r dm (Ex. 5) mass 2dm rdr -where k , kr  is a 

constant, then 22 kdm r dr    

Therefore the moment of inertia about X axis is XdI . 

   

21 sin 2
1

2 2XdI r dm
 

2 21 sin 2
1 2

2 2
kX r dd rI r

 
2

XI r dm

4 5

0

sin 2 sin 2
1 1

2

1
k k

5 2

a

X drI r a

2

0

2

0

3 3

0

k

2
k k

3

2

2
2

3
k

a

a
a

r dr

r d r

M dm

r a

 

2

5

3 2

1
k

5
3 2 3

k
10 3 10

sin 2
1

2
sin 2 sin 2

1 1
2 2

X

M

a M

I

a

a

a
 

 EXAMPLE 13 

Find the moment of inertia of a solid sphere of radius a  

about X axis, as shown. 

 SOLUTION 

Consider a differential element (thin disk of radius y ) is 

selected to be parallel to Y  axis with thickness dx  it 

intersects the generating curve at the arbitrary point 
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( , , 0)x y and so its radius isy . The mass of the element is 2dm y dx , 

therefore 21

2XdI y dm
 

2 2 2

2

4

4 2

4

4 4

2

2 2 4

32 2 4 5

0

2

0

1 1 1

2 2 2

1 1
(

2 2

1
( Even

)

2 )

2
2 )

Function
2

1
(

53

X

a a

a a
a

a
a a

X

y dx

x

a

dI y dm y y dx

I y dx a dx

a x dx

a x dx a

x

a x a xx x

 

58

15XI a

But we have 

2 2

2 2

0

332

0

(

2 (

1

3

)

4
2

)

3

a

a
a

a

a x dx

a x dx

a

M dm

x x a

 

5 3 2 24

3

8 2 2

15 5 5X

M

a a a aI M  

Note according to symmetry we get X Y zI I I  

 This problem can be resolved by considering the differential element a 

hollow sphere of radius r and thickness dr  

 

 EXAMPLE 14 

Find the moment of inertia of a hollow sphere of radius a  about X axis, as 

shown. 
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 SOLUTION 

Consider a differential element (thin ring or cord of radius y ) is selected to be 

parallel to Y  axis with thickness dx  it intersects the generating curve at the 

arbitrary point ( , , 0)x y and so its radius isy . The mass of the element is

2dm yd , therefore the moment of inertia of the element about X axis is  

2
XdI y dm  

2 2 32 2XdI y dm y d y dy

32
a

X

a

I y d
 

2
2 2 2

2 2 Or

1 ,
dy

dd x

dy x
ydy xdx

d

x y
d

x

a
x

y

2

2
1 , ,dx
x a

d d
yy
dx

 

33 2

2 2

0

3 4

2 2

2

0

2 2 2

2 ( ) 4 ( )

1 8
4

3 3

a a a

a a a
a a

a

X

a

dx dx

d

a
I y d y a y

y

a a x a a x

a a x

x dx

x a

but we have

2

2

2 2 (2 ) 4

a

a
a

a

M dm

a
a a a

y

yd

y dx

 

4 2 2 28 1 2
4

3 3 3
M

X a aI a a M
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 Product of Inertia for an Area 

It will be shown here that the property of n area, called the product of inertia, is 

required in order to determine the maximum and minimum moments of inertia 

for the area. These maximum and minimum values are important properties 

needed for designing structural and mechanical members such as beams, 

columns, and shafts. The product of inertia of the area in the figure with 

respect to the X  and Y  axes is defined as 

XYI xydm  

If the chosen element of area has a differential 

size in two directions, as shown in the figure, a 

double integration must be performed to evaluate

XYI . Most often, however, it is easier to choose 

an element having a differential size or thickness 

in only one direction in which case the evaluation 

requires only a single integration. 

Like the moment of inertia, the product of inertia has units of length raised to 

the fourth power, e.g., m
4
, mm

4
 or ft

4
, in

4
. However, since x  or y  may be 

negative, the product of inertia may be either 

positive, negative, or zero, depending on the 

location and orientation of the coordinate axes. For 

example, the product of inertia XYI for an area 

will be zero if either the X  or Y  axis is an axis of 

symmetry for the area, as shown. Here every 

element dA  located at point ( , )x y  has a corresponding element dA  located at

( , )x y . Since the products of inertia for these elements are, respectively, 

xydA and xydA , the algebraic sum or integration of all the elements that are 

chosen in this way will cancel each other. Consequently, the product of inertia 
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for the total area becomes zero. It also follows from the definition of XYI  that 

the “sign” of this quantity depends on the quadrant where the area is located.  

 

 Moments of Inertia for Composite Areas, Volumes 

A composite area consists of a series of connected “simpler” parts or shapes, 

such as rectangles, triangles, and circles. Provided the moment of inertia of 

each of these parts is known or can be determined about a common axis, then 

the moment of inertia for the composite area about this axis equals the 

algebraic sum of the moments of inertia of all its parts. The following 

examples will serve to show how this process can be used to determine the 

moment of inertia of the composite body. 
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Illustrative Examples

 

 EXAMPLE 1 

Determine the product of inertia XYI  of the area of a rectangular with lengths 

,a b  about axes coincident with its sides.  

 SOLUTION 

Consider an area dA dxdy  differential element, and located in an arbitrary 

position and has a distance y from X  axis and x  from Y  axis. The mass of 

the element is dm dA dxdy ,  is the mass per unit area.  

XY xydm xydI dxdy  

0

2

0
0

2

0

2

0

2

1

2

1

2

11 1

4 4 3

X
b

b

a

a

b

M

YI

dxdy

yx dy

a ydy

b a ab a

xydm

xy

M bab

 
 EXAMPLE 2 

Determine the product of inertia of the area of the triangle about axes 

coincident with its sides as shown.  

 SOLUTION 

Consider a thin rectangular area having a thicknessdx and dy ; and located in 

an arbitrary position so it has a distance y  from X  axis and  x  from Y  axis. 

Again, the mass of the element is dm dxdy  where 
h

y h x
a

 

Thus the product of inertia of the triangle is given by  
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 EXAMPLE 3 

Determine the moment of inertia of the shaded area 

about the X and Y axes. 

 SOLUTION 

The plate is divided into three segments as shown in the 

figures below. Here triangle area  and the area of the 

small rectangle  is considered “negative” since it must 

be subtracted from the larger one  .  The following table involves the 

moments of inertia about the X and Y axes. 

 

 

 

 

 

 

No. iA ft
2 

XI  ft
4
 YI  ft

4 

 (1/2)(3)(3)=4.5 (1/6)(4.5)(3)
2
 

(1/6)(4.5)(3)
2
 

 (3)(3)=9 (1/3)(9)(3)
2 

(1/3)(9)(3)
2 

 (2)(1)=2 (1/12)(2)(2)
2 
+2(2)

2 
(1/12)(2)(1)

2 
+2(2.5)

2 

Therefore the moment of inertia of the shaded area is 
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4
1 2 3

4
1 2 3

( ) ( ) ( ) 6.75 27 8.6667 25.08 ft

( ) ( ) ( ) 6.75 27 12.6667 21.08 ft
X X X

Y Y Y

I I I

I I I
 

Note that the theorem of parallel axes is applied for the shape   

 EXAMPLE 4 

Determine the moments of inertia for the cross-

sectional area of the member shown about the X and Y  

centroid axes. 

 

 SOLUTION 
 

Composite Parts, the cross section can be subdivided 

into the three rectangular areas A, B, and D as shown. 

For the calculation, the centroid of each of these 

rectangles is located in the figure. 

Parallel-axis theorem, the moment of inertia of a 

rectangle about its centroid axis is 31

12
ba .  Hence, 

using the parallel-axis theorem for rectangles A and D, the calculations are as 

follows: 

3 2 9 4

3 2 9 4

1
(100)(300) 100(300)(200) 1.425(10 ) mm

12
1

(300)(100) 100(300)(250) 1.90(10 ) mm
12

X

Y

I

I
 

Rectangle B 

3 9 4

3 9 4

1
(600)(100) 0.05(10 ) mm

12
1

(100)(600) 1.80(10 ) mm
12

X

Y

I

I
 

Then the moments of inertia for the entire cross section are thus 

9 9 9 4

9 9 9 4

2(1.425(10 )) 0.05(10 ) 2.90(10 ) mm

2(1.9(10 )) 1.80(10 ) 5.60(10 ) mm
X

Y

I

I
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 EXAMPLE 5 

Determine the moment of inertia of the shaded area about 

the X  and Y axes. 

 SOLUTION 

Composite Parts, the cross section can be subdivided into 

the two areas, i.e. rectangular and a triangle  as shown.

 

 

Parallel-axis theorem, the moment of inertia of a rectangle about X axis is 

21
(9)

3
M .  using the parallel-axis theorem for triangle , the calculations are as 

follows: 

For the whole rectangular 

2 4

2 4

1
(108)(9) 2916 in

3
1
(108)(12) 5148 in

3

X

Y

I

I
 

for the triangle  

2 4

2 2 2 4

1
(27)(9) 364.5 in

6
1
(27)(6) (27)(2) (27)(10) 2754 in

6

X

Y

I

I
 

therefore the moment of inertia for shaded area is 

4

4

2916 364.5 2550.5 in

5148 2754 2394 in
X

Y

I

I
 

 EXAMPLE 6 

Determine the moment of inertia XI  and YI  of the 

shaded area. 

 SOLUTION 

The plate is divided into three segments as shown in the figures below. Here 

the area of the rectangle  and the triangle area  and a circle area  which is 

considered “negative” since it must be subtracted from the larger one  .   

For the whole rectangular 

 

 
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3 8 4

3 8 4

1
(200)(300) 18(10 ) mm

3
1
(300)(200) 8(10 ) mm

3

X

Y

I

I
 

for the triangle  

2 8 4

2 2 2

8 4

1
(22500)(300) 3.375(10 ) mm

6
1
(22500)(150) (22500)(50) (22500)(250)

6
14.343(10 ) mm

X

Y

I

I  

for the circle area  

4 2 2 8 4

4 2 2 8 4

1 22 22
(75) (75) (150) 4.226(10 ) mm

4 7 7
1 22 22

(75) (75) (100) 2.016(10 ) mm
4 7 7

X

Y

I

I
 

therefore the moment of inertia for shaded area is 

8 8 8 8 4

8 8 8 8 4

18(10 ) 3.375(10 ) 4.226(10 ) 17.149(10 ) mm

8(10 ) 14.343(10 ) 2.016(10 ) 20.327(10 ) mm
X

Y

I

I
 

 EXAMPLE 7 

Evaluate the moment of inertia of the shaded area about Y  axis. 

 SOLUTION 

The plate is divided into three segments as shown in the 

figure. Here the areas of the quarter circle  and triangle 

 are considered “negative” since it must be subtracted 

from the larger square   .   

for segment  the moment of inertia about Y  axis is 

2 41
(9)(3) 27 in

3YI  

for segment  the moment of inertia about Y  axis is 

2 2 2 41 1 1 1
(1.5)(1.5) (1.5) - (1.5)(1.5) (0.5) + (1.5)(1.5) (2.5) 7.17 in

6 2 2 2YI  

for segment  the moment of inertia about Y  axis is 

 

 

 

 
 

 
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2 2 41 1
(1.5) (1.5) 0.994 in

4 4YI  

therefore the moment of inertia for shaded area is 

427 7.17 0.994 18.83 inYI  

 

 EXAMPLE 8 

Determine the moment of inertia of the assembly given 

about Z
 

axis. The conical frustum has a density of 

38Mgm , and the hemisphere has a density of 

34Mgm . There is a 25-mm-radius cylindrical 

hole in the center of the frustum. 

 SOLUTION 

The assembly can be thought of as consisting of four segments as shown in 

Figures below. For the calculations,  and  must be considered as 

“negative” segments in order that the four segments, when added together, 

yield the total composite shape. Using the following table, the computations for 

the moment of inertia of each piece are shown. The mass of each piece can be 

computed from m V and used for the calculations. Also, 

3 6 31 Mg m 10 kgmm   

 

 

 

 

 

 

 

so that we get for segment  the moment of inertia about Z  axis is 
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2 2 6 23 1
(50) 1575kgmm (8(10) ) (50) (100) 2.1kg

10 3ZI M M  

for segment  the moment of inertia about Z  axis is 

2 2 6 32 2
(50) 1048 kg mm (4(10) ) (50) 1.048kg

5 3ZI M M  

for segment  the moment of inertia about Z  axis is 

2 2 6 23 1
(25) 98.25 kgmm (8(10) ) (25) (100) 0.524 kg

10 3ZI M M  

for segment  the moment of inertia about Z  axis is 

2 2 6 21
(25) 490.625 kgmm (8(10) ) (25) (100) 1.57 kg

2ZI M M
 

hence the moment of inertia of the a the assembly 

21575 1048 98.25 490.625 2034.125 kgmmZI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  27  

PROBLEMS 

 

 Determine the moment of inertia of a uniform rod of 

lengthL  about X  and Y  axes as shown. 

 

 

 

 Find the moment of inertia of an elliptic plate, of small thickness and 

uniform density. 

 

 

 

 

 Find the moment of inertia of shaded area about  X  and Y  axes as shown 
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 Determine the moment of inertia for the 

beam’s cross-sectional area about the X axis 

passing through the centroid C of the cross 

section. 

 

 

 

 

 

 Determine the product of inertia of the shaded area with respect to the X  

and Y axes. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Determine the moment of inertia of truncated cone 

about the Z- axis. 



 

KINEMATICS OF A RIGID BODY 

 

 

hen dealing with the kinematics of a rigid body, we are 

concerned with the geometric relationships that exist among 

displacements, velocities, and accelerations of various particles in a body in 

motion without regard to the forces causing the motion or caused by it. A rigid 

body is said to be in plane motion if all of its particles move in parallel planes. 

Three types of plane motion are identified in this chapter. The first type is 

known as translation which could be either rectilinear or curvilinear. The 

second type deals with rotation about a fixed axis. The third type is referred to 

as general plane motion which is a combination of a translation and a rotation. 

Outer space provides one of many areas where kinematics plays a primary role. 

While on Earth, a force is required to maintain a body at a constant velocity 

because of friction; in outer space, no such force is required. However, basic 

kinematics applies equally will here on Earth and in space. The implication is 

that, irrespective of your engineering discipline, the knowledge of basic 

kinematics of rigid bodies will provide you with the basic foundations upon 

which dynamic principles are based. In a society where technology is 

pervasive, there is a need for understanding basic concepts and training of the 

individuals who design and organize the production of much of that 

technology. This chapter should enhance your enthusiasm for and the pleasure 

you derive from problem solving and reducing concepts to solid expression. 

The case study accompanying this chapter provides a clear illustration of the 

joys and frustrations of being an engineer. 

 

W 

KINEMATICS OF A RIGID BODY 
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 Rectilinear and Curvilinear Translations 

The kinematics of rigid bodies will be considered. We will investigate the 

relations existing between the time, the positions, the velocities, and the 

accelerations of the various particles forming a rigid body. The various types of 

rigid-body motion can be conveniently grouped as follows: 

1. Translation. A rigid body is said to be in translation if any straight line inside 

the body keeps the same direction during the motion. It can also be observed 

that in a translation all the particles forming the body move along parallel 

paths. If these paths are straight lines Figure 1a, the motion is said to be a 

rectilinear translation if the paths are curved lines, the motion is a curvilinear 

translation Figure 1b. In both cases, note that a straight line, such as A1B1, 

remains parallel to itself throughout the entire motion.  

 

 

 

 

2. Rotation about a Fixed Axis. In this motion, the particles forming the rigid 

body move in parallel planes along circles centered on the same fixed axis 

Figure 1c. If this axis, called the axis of rotation, intersects the rigid body, the 

particles located on the axis have zero velocity and zero acceleration. Rotation 

should not be confused with certain types of curvilinear translation. For 

example, the plate shown in Figure 2a is in curvilinear translation, with all its 

particles moving along parallel circles, while the plate shown in Figure 2b is in 

rotation, with all its particles moving along concentric circles. In the first case, 

any given straight line drawn on the plate will maintain the same direction, 

whereas in the second case, point O remains fixed. Because each particle 

moves in a given plane, the rotation of a body about a fixed axis is said to be a 

plane motion.  

(a) 
Fig. 1  (c) 

A1 

B1 

A2 

B2 

A1 

B1 

(b) 

A1 

B1 

A2 

B2 
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3. General Plane Motion. There are many other types of plane motion, i.e., 

motions in which all the particles of the body move in parallel planes. Any 

plane motion which is neither a rotation nor a translation is referred to as a 

general plane motion. Two examples of general plane motion are given in 

Figure 3. 

 

 

 

 

 

4. Motion about a Fixed Point. The three-dimensional motion of a rigid body 

attached at a fixed point O, e.g., the motion of a top on a rough floor Figure 4a, 

is known as motion about a fixed point.  

5. General Motion. Any motion of a rigid body which does not fall in any of 

the categories above is referred to as a general motion as shown in Figure 4b.  

 

 

 

Fig. 3 

Fig. 4a Fig. 4b 

A1 

B1 

A2 

B2 

Fig. 2 

(a) 
(b) 

A1 
B1 

C1 D1 

A1 
B1 

C1 D1 

A2 

B2 

C2 D2 

A2 

B2 

C2 

D2 
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 Translation Motion Consider a rigid body in plane motion, as shown in 

Figure 5, which is assumed to be executing curvilinear translation parallel to 

the X-Y  plane. The position vectors to particles A and B on this rigid body are 

rA  and rB  respectively, and the position vector of particle B relative to 

particle A is |rB A . Therefore, the positions of any two particles A and B on a 

rigid body may be related by the following vector equation: 

|r r r ....(1)B A B A  

 

 

 

 

 

  

 

 

 

Thus, if the position of any one particle on a rigid body, such as A, is known, 

the position of any other particle, such as B, may be determined by previous 

Eq. (1) if its position relative to particle A is known. If we differentiate Eq. (1) 

with respect to time, we have  

|rr r
....(2)

B AB A
dd d

dt dt dt
 

By definition, because a rigid body implies that the positions of the particles 

relative to each other do not change, it follows that the term 
|rB Ad

dt
must 

vanish, and Eq. (2) reduces to 
r rB Ad d

dt dt
 Because 

rB
B

d
v

dt  
and  

rA
A

d
v

dt  
it follows that 

Fig. 5 

Path of A 

Path of B 

B A 
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....(3)A Bv v  

where Av and Bv represent the velocities of points A and B, respectively. Thus, 

according to Eq. (3), if the velocity of one particle, such as A, in a rigid body is 

known, the velocity of any other particle, such as B, may be found. In other 

words the velocities of all particles in a translating rigid body are the same at a 

given instant of time. As known, these velocity vectors must be tangent to the 

paths of motion, as shown in Figure 5. If we now differentiate once more Eq. 

(3) with respect to time and replace the time derivatives of the velocities by 

accelerations,  

....(4)A Ba a  

where Aa  and Ba represent the acceleration vectors of particles A and B, 

respectively. Again, thus, if the acceleration of one particle, such as A, is 

known, the acceleration of any other particle, such as B, may be determined. In 

other words, the accelerations of all particles in a translating rigid body are all 

the same at a given instant of time. The accelerations of the two particles A and 

B are sketched in Figure 5. Note that these accelerations could have any 

direction depending upon the conditions specified in a given problem. It is 

obvious from the above discussion that the translating motion of a rigid body is 

completely defined if the motion of one of the particles is fully specified. 

Therefore, the equations developed for the motion of a particle may be used 

equally well to analyze the translating motion of a rigid body. The concepts 

discussed above are illustrated in the following examples. 

That is, when a rigid body is in translation, all the points of the body have the 

same velocity and the same acceleration at any given instant (Figure 5). In the 

case of curvilinear translation, the velocity and acceleration change in direction 

as well as in magnitude at every instant. In the case of rectilinear translation, 

all particles of the body move along parallel straight lines, and their velocity 

and acceleration keep the same direction during the entire motion. 
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 Rotation about a Fixed Axis 

Consider a rigid body which rotates about a fixed axisAA . Let P be a point of 

the body and r  its position vector with respect to a fixed frame of reference. 

For convenience, let us assume that the frame is centered at point O on AA

and that the Z  axis coincides with AA  (Fig. 6a). Let B be the projection of P 

onAA ; since P must remain at a constant distance from B, it will describe a 

circle of center B and of radius sinr , where  denotes the angle formed by 

r  andAA . The position of P and of the entire body is completely defined by 

the angle  the line BP forms with the ZX  plane. The angle  is known as the 

angular coordinate of the body and is defined as positive when viewed as 

counterclockwise from A . The angular coordinate will be expressed in 

radians (rad) or, occasionally, in degrees, or revolutions (rev). We recall that 

o1 rev 2 rad 360  

 

We know that the velocity /v dr dt of a particle P is a vector tangent to the 

path of P and of magnitude /v dS dt . Observing that the length S of the 

arc described by P when the body rotates through is 

(BP) ( sin )S r  

B

P

Fig. 6 

B

P

(b) (a) 
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and dividing both members by t , we obtain at the limit, as t  approaches 

zero, 

0
lim = sin ....(*)
t

S dS
v r

t dt
 

where  denotes the time derivative of . (Note that the angle  depends on 

the position of P within the body, but the rate of change  is itself independent 

of P.) We conclude that the velocity v  of P is a vector perpendicular to the 

plane containing AA and r , and of magnitude v  defined by Eq. (*). But this 

is precisely the result we would obtain if we drew along AA a vector k̂

and formed the vector product r  (Figure 6b). We thus write 

....(5)
dr

v r
dt

 

The vector  is directed along the axis of rotation, is called the angular 

velocity of the body and is equal in magnitude to the rate of change  of the 

angular coordinate; its sense may be obtained by the right hand rule from the 

sense of rotation of the body. The acceleration a  of the particle P will now be 

determined. Differentiating Eq. (5) and recalling the rule for the differentiation 

of a vector product, we write 

( )

....(6)

dv d
a r

dt dt
d dr

r
dt dt
d

r v
dt

 

The vector /d dt  is denoted by  and is called the angular acceleration of 

the body. Substituting also for v  from Eq. (5), we have 

( ) ....(7)
dv

a r r
dt  

Differentiating k̂  and recalling that k̂  is constant in magnitude and  

direction, we have
 



Kinematics of Rigid Body

 
36  

ˆ ˆ ....(8)
d

k k
dt

 

Thus, the angular acceleration of a body rotating about a fixed axis is a vector 

directed along the axis of rotation, and is equal in magnitude to the rate of 

change  of the angular velocity. Returning to Eq. (7), we note that the 

acceleration of P is the sum of two vectors. The first vector is equal to the 

vector product r ; it is tangent to the circle described by P and therefore 

represents the tangential component of the acceleration. The second vector is 

equal to the vector triple product ( )r obtained by forming the vector 

product of  and( )r ; since ( )r  is tangent to the circle described by 

P, the vector triple product is directed toward the center B of the circle and 

therefore represents the normal component of the acceleration. 

 Rotation of a Representative Slab  

The rotation of a rigid body about a fixed axis can be defined by the motion of 

a representative slab in a reference plane perpendicular to the axis of rotation. 

Let us choose the XY  plane as the reference plane and assume that it 

coincides with the plane of the figure, with the Z  axis pointing out of the 

paper (Fig. 6c). Recalling from k̂  we note that a positive value of the 

scalar corresponds to a counterclockwise rotation of the representative slab, 

and a negative value to a clockwise rotation. Substituting k̂  for  into Eq. 

(5), we express the velocity of any given point P of the slab as ˆv k r  

 

 

 

 

 

Fig. 6c 
Fig. 6d 
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Since the vectors k̂  andr are mutually perpendicular, the magnitude of the 

velocity v  is v r   and its direction can be obtained by rotating r  

through 90° in the sense of rotation of the slab. 

Substituting k̂  and
 

k̂   into Eq. (7), and observing that cross-

multiplying r  twice by k̂  results in a 180° rotation of the vector r , we express 

the acceleration of point P as 

2ˆ ....a k r r  

Resolving a
 
into tangential and normal components (Fig. 6d), we Write 

2 2

ˆ

....
t t

n n

a k r a r

a r a r
 

The tangential component ta  points in the counterclockwise direction if the 

scalar  is positive, and in the clockwise direction if is negative. The 

normal component na  always points in the direction opposite to that of r , that 

is, toward O. 

 

 Equations Defining the Rotation of a Rigid Body about a Fixed Axis  

The motion of a rigid body rotating about a fixed axis AA  

is said to be known when its angular coordinate  can be 

expressed as a known function of t. In practice, however, the 

rotation of a rigid body is seldom defined by a relation 

between  and t . More often, the conditions of motion will 

be specified by the type of angular acceleration that the body 

possesses. For example, a may be given as a function of t , 

as a function of , or as a function of . Recalling the 

relation k̂  and Equation (8), we write 

2

2
and ...(9)

d d d

dt dt dt
 



Kinematics of Rigid Body

 
38  

From the chain rule we get, 

...(10)
d d d

d dt d
 

These equations are similar to those obtained before for the rectilinear motion 

of a particle, their integration can be performed by following the procedure 

outlined before. Two particular cases of rotation are frequently encountered: 

1. Uniform Rotation. This case is characterized by the fact that the angular 

acceleration is zero. The angular velocity is thus constant, and the angular 

coordinate is given by the formula  

0 0

0

0Or ...(11)

t

d dt d dt

t

t

 

2. Uniformly Accelerated Rotation. In this case, the angular acceleration is 

constant. The following formulas relating angular velocity, angular coordinate, 

and time can then be derived in a manner similar to that described previous. 

The similarity between the formulas derived here and those obtained for the 

rectilinear uniformly accelerated motion of a particle is apparent. 

0 ...(12)t  

2
0 0

1
...(13)

2
t t  

2 2
0 02 ( ) ...(14)  

It should be emphasized that formula (11) can be used only when 0 , and 

formulas (12-14) can be used only when constant. In any other case, the 

general formulas (9) and (10) should be used. 
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 General Plane Motion 

As indicated before, we understand by general plane motion a plane motion 

which is neither a translation nor a rotation. As we will presently see, however, 

a general plane motion can always be considered as the sum of a translation 

and a rotation.  

 

 

 

 

Consider, for example, a wheel rolling on a straight track (Fig. 7). Over a 

certain interval of time, two given points A and B will have moved, 

respectively, from A1 to A2 and from B1 to B2. The same result could be 

obtained through a translation which would bring A and B into A2 and 1B  (the 

line AB remaining vertical), followed by a rotation about A bringing B into B2. 

Although the original rolling motion differs from the combination of 

translation and rotation when these motions are taken in succession, the 

original motion can be exactly duplicated by a combination of simultaneous 

translation and rotation. Another example of plane motion is given in Fig. 8, 

which represents a rod whose extremities slide along a horizontal and a vertical 

track, respectively. 

This motion can be replaced by a translation in a horizontal direction and a 

rotation about A (Fig. 8a) or by a translation in a vertical direction and a 

rotation about B (Fig. 8b).  In the general case of plane motion, we will 

consider a small displacement which brings two particles A and B of a 

representative slab, respectively, from A1 and B1 into A2 and B2 (Fig. 9). This 

displacement can be divided into two parts: in one, the particles move into A2 

and 1B  while the line AB maintains the same direction; in the other, 1B moves 

Fig. 7 Plane Motion Translation with A Rotation about A= +

= +
A1

B1

A1

B1

A2

B2

A2

B2
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into B2 while A remains fixed. The first part of the motion is clearly a 

translation and the second is a rotation about A. 

 

Recalling, the definition of the relative 

motion of a particle with respect to a moving 

frame of reference—as opposed to its 

absolute motion with respect to a fixed 

frame of reference—we can restate as 

follows the result obtained above: Given two 

particles A and B of a rigid slab in plane motion, the relative motion of B with 

respect to a frame attached to A and of fixed orientation is a rotation. To an 

observer moving with A but not rotating, particle B will appear to describe an 

arc of circle centered at A. 

 

Fig. 9 Repeated 

A1 

B1 

A2 

B2 

B1 

Fig. 8 

(a) 

+ 

+ 

= 

= 

Plane Motion                           =                Translation with A                  +                       Rotation about A 

    Plane Motion                           =                Translation with B                  +                       Rotation about B 

A1 

B1 

A2 

B2 

A1 

B1 

A2 

B2 

A1 A2 

B2 

A1 

B1 

B2 

A2 

B2 

(b) 
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 Analysis of Plane Motion in Terms of a Parameter  

In the case of certain mechanisms, it is possible to express 

the coordinates x and y of all the significant points of the 

mechanism by means of simple analytic expressions 

containing a single parameter. It is sometimes advantageous 

in such a case to determine the absolute velocity and the 

absolute acceleration of the various points of the mechanism 

directly,   since the components of the velocity and of the 

acceleration of a given point can be obtained by 

differentiating the coordinates x and y of that point. Let us consider again the 

rod AB whose extremities slide, respectively, in a horizontal and a vertical 

track (see figure besides). The coordinates Ax  and By  of the extremities of the 

rod can be expressed in terms of the angle  the rod forms with the vertical: 

sin , cosA Bx l y l  

Differentiating this equation twice with respect to time, we write 

2

2

cos , cos sin

sin , sin cos
A A A A

B B B B

v x l a x l l

v y l a y l l
 

Recalling that , , we obtain 

2 2

cos , sin ....(1)

cos sin , sin cos ....(2)
A B

A B

v l v l

a l l a l l
 

We note that a positive sign for Av  or Aa  indicates that the velocity Av  or 

the acceleration Aa  is directed to the right; a positive sign for Bv  or Ba  

indicates that Bv  or Ba  is directed upward. Equations (1) can be used, for 

example to determine Bv  and  when Av  and  are known. Substituting for 

 in (2), we can then determine Ba  and  if Aa  is known 

 

A 

B 
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Illustrative Examples

 

 

 EXAMPLE 1 

The motion of a disk rotating is defined by the relation 

/40.4(1 )te , where  is expressed in radians and t  in 

seconds. Determine the angular coordinate, velocity, and 

acceleration of the disk when (i)
 

0t , (ii) 3 st , (iii) t  

 SOLUTION 

Angular displacement of the disk 

 

/4
0

0.75
3

0.4(1 ) 0 rad

0.4(1 ) 0.211rad

0.4(1 ) 0.4 rad

t
t

t

t

e

e

e

 

Angular velocity of rotating disk 

 

/4 1
0

0.75 1
3

1

0.1 0.1 rad s

0.1 0.00472 rad s

0.1 0 rad s

t
t

t

t

e

e

e

 

Angular acceleration of the disk 

  

/4 2
0

0.75 2

3

2

1 1
rad s

40 40
1

0.012 rad s
40
1

0 rad s
40

t
t

t

t

e

e

e

 

 

 EXAMPLE 2 

The angular acceleration of an oscillating disk is defined by the relation

. Determine (i) the value of  for which -18 rad s when 0

and 4  rad when 0 , (ii) the angular velocity of the disk when 

3 rad . 
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 SOLUTION 

Since the angular acceleration 
d d d d

dt d dt d  
therefore,   

d
d d

d
 

Integrating we get 

2 21 1

2 2
c  

But as given -18 rad s when 0  thus ,
 
( )  

2 21 1
(8) (0) 32

2 2
c c  

Once again as  4  rad when 0  we get 

2 21 1
(0) (4) 32 4

2 2
 

That is the angular coordinate is given by 2 264 4  the angular velocity 

can be obtained by differentiation 2 264 4
 
with respect to time, we get     

2 8 4  

Then the angular acceleration when 3 rad is 

-2
3

4(3) 12 rad s
t  

 EXAMPLE 3 

The figure shows the position of a rectangular lamina at 

0t , the displacement of a point a is given by 

23.9 4.8 , 2.2 9.6 5x t y t t , where ,x y  is 

expressed in meters and t  in seconds. In addition, the angular 

position of the line ab is given by 21.9 0.3t  where  

is expressed in radians. Determine the position after 2 s and 

calculate the velocity of the point a when 1 st . 
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 SOLUTION 

2
2 2

2
2 2 o o

2

3.9 4.8 3.9 4.8(2) 13.5 m

2.2 9.6 5 2.2 9.6(2) 5(2) 3 m

1.9 0.3 1.9(2) 0.3 7.9 rad 452.45 92.45

t

t

t

x t x

y t t y

t

The components of velocity are 

1
1

1
1

1
1

4.8 4.8 m s

9.6 10 9.6 10(1) 0.4 m s

3.8 3.8(1) 3.8 rad s

t

t

t

x x

y t y

t

 

Therefore the translation velocity is 2 2 1(4.8) (0.4) 4.82ms   whereas the 

angular velocity is 13.8 rad s  

 

 

 

 

 

 

 

 

 EXAMPLE 4 

Rod AB moves over a small wheel at C while end 

A moves to the right with a constant velocity Av . 

Derive expressions for the angular velocity and 

angular acceleration of the rod. 

 SOLUTION 

From the geometry of the figure we have  

  cotAx b  

Thus by differentiation we get  

2 2csc csc ......A Av x b b

where  is the angular velocity of the 

rigid rod. Therefore, 

 

 

 

 

A 

B 

C 

A 

B 

C 
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1
2

rad s ......
csc
Av

b
 

Also A Aa x  

Because Av  is constant,  0ca  and it follows that 

2 2 2

2 2 2

2 csc cot csc

2 csc cot csc 0
Aa b b

b b
 

where  is the angular acceleration of the rigid plate. Therefore,   

2 -22 cot rad s .....  

 EXAMPLE 5 

The rectangular plate ABCD, shown in the 

Figure, is constrained to move so that corner 

B slides in a vertical track and corner C in a 

horizontal track. If corner C moves to the 

right with a constant velocity -10.75 mscv , 

determine the angular velocity 
 
and angular 

acceleration   of the plate. Express your 

answers in terms of the angular position  

measured clockwise from the vertical track. 

 SOLUTION 

From the geometry of the figure we have

 sincx a  

Thus by differentiation we get  cos cos ......c cv x a a  

where  is the angular velocity of the rigid plate. Therefore, 

10.5
rad s ......

cos cos
cv

a
 

Also c ca x  

Because cv  is constant,  0ca  and it follows that 

0.5 m 

A 

B 

D 

C 
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2 sin cos 0ca a a  

Thus    2 sin cos 0ca a a  

where  is the angular acceleration of the rigid plate. Therefore, 

2 tan  

Or  

2
1

2

0.5 0.25
tan tan rad s .....

cos cos
 

 

 EXAMPLE 6 

 

Refer to previous example, determine the velocity Dv  and the acceleration 

Da  of corner D. Express your answers in terms of the angular position 0 

measured clockwise from the vertical track. 

 SOLUTION 

Once more again and according to the geometry of Figure in previous example, 

 

cos sin cos

sin
D c

D

x x b a b

y b
 

Therefore  

( ) cos sin

and ( ) cos
D x D

D y D

v x a b

v y b
 

Using the results given in previous Example for Cv  and , respectively, 

( ) cos sin tan 1 tan

and ( ) cos

D x v c v

D y c

b b
v a b v v v

a a
b

v b v
a

 

Since 2 2( ) ( )D D x D yv v v , it follows that 

2 2

2
-1

1 tan

1 1
0.75 1 tan m s ....

9 3

D v
b b

v v
a a  
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The direction of Dv  is defined by the angle  (see Figure) where 

1

( ) /
tan

( ) tan
1 tan

1
tan ......

3 tan

D y

D x

v b a b

v b a b

a  

To obtain the components of acceleration of point D ( , )D Dx y differentiation 

the components of velocity ( , )D Dx y  so that 

2 2

2

2

( ) sin cos cos sin

( sin cos ) ( cos sin ) ......

and ( ) sin cos ......

D x D

D y D

a x a a b b

a b a b

a y b b

 

Or by substituting for  and we get 

2 2

2 3 2 3
( )       and ( ) ( sin sin ) 0

cos cos
c c

D x D y

bv bv
a a

a a
 

Since 2 2( ) ( )D D x D ya a a , it follows that 

2
-2

2 3 3

0.125
( ) m s ......

cos cos
c

D D x

bv
a a

a
 

 

where the negative sign indicates a sense for an which is opposite to the 

positive direction of the X  axis. Thus, Da  is pointed to the left as shown in the 

Figure, for the case when the velocity of corner C is constant and pointed to the 

right (i.e., in the positive X  direction). 
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 EXAMPLE 7 

Member AB in the figure shown starts from 

rest, when 0 , and rotates in 

counterclockwise direction at a constant 

angular acceleration . In terms of ,b  and 

, develop expressions for the velocity Bv  

and acceleration Ba  of the collar-slider unit 

B which is constrained to move along a smooth vertical track. If 0.75mb  

and -25.0 rad s , determine Bv  and Ba  for o30  

 SOLUTION 

From the geometry of  the figure we have tanBy b  

Thus by differentiation we get       2 2sec sec .....B Bv y b b      

where  is the angular velocity of the rigid member. 

Differentiation again to evaluate the acceleration of point B we get, 

2 2

2 2

sec 2 sec tan

sec ( 2 tan ) .......
B Ba y b b

b b
 

where  is the angular acceleration of the rigid member 

since -25.0 rad s 5 or 5
d

d d
d

 

by integrating we have, 2 10 c since the member starts from rest 

0,  when 0 , so 0c  and then 2 10  

when 0.75mb  and -25.0 rad s and o30  Note  
30

10 / 6  

2 2 -1sec (0.75) 10 / 6 sec 30 2.288 msBv b  

2 2

2 -2

sec ( 2 tan )

10
sec 30 (0.75)(5) 2(0.75) tan 30 11.09m s

6

Ba b b
 

 

 
A 

B 
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 Instantaneous Center of Rotation in Plane Motion  

Consider the general plane motion of a slab. We propose to show that at any 

given instant the velocities of the various particles of the slab are the same as if 

the slab were rotating about a certain axis perpendicular to the plane of the 

slab, called the instantaneous axis of rotation. This axis intersects the plane of 

the slab at a point C, called the instantaneous center of rotation of the slab. 

We first recall that the plane motion of a slab can always be replaced by a 

translation defined by the motion of an arbitrary reference point A and by a 

rotation about A. As far as the velocities are concerned, the translation is 

characterized by the velocity Av  of the reference point A and the rotation is 

characterized by the angular velocity  of the slab (which is independent of 

the choice of A). Thus, the velocity Av  of point A and the angular velocity  

of the slab define completely the velocities of all the other particles of the slab 

(Figure 10a). Now let us assume that Av  and  are known and that they are 

both different from zero. (If 0Av , point A is itself the instantaneous center 

of rotation, and if 0 , all the particles have the same velocity Av .) These 

velocities could be obtained by letting the slab rotate with the angular velocity 

 about a point C located on the perpendicular to Av at a distance /Ar v

from A as shown in Figure 10b. We check that the velocity of A would be 

perpendicular to AC and that its magnitude would be ( / )A Ar v v .  

 

(a) (b) 
(a) 

(b) Fig. 10 
Fig. 11 

c c 
c 

A 
A 

A 
A 

B B 
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Thus the velocities of all the other particles of the slab 

would be the same as originally defined. Therefore, as 

far as the velocities are concerned, the slab seems to 

rotate about the instantaneous center C at the instant 

considered. The position of the instantaneous center can 

be defined in two other ways. If the directions of the 

velocities of two particles A and B of the slab are 

known and if they are different, the instantaneous center 

C is obtained by drawing the perpendicular to Av  

through A and the perpendicular to Bv through B and determining the point in 

which these two lines intersect (Figure 11a). If the velocities Av  and Bv  of 

two particles A and B are perpendicular to the line AB and if their magnitudes 

are known, the instantaneous center can be found by intersecting the line AB 

with the line joining the extremities of the vectors Av  and Bv  (Figure 11b). 

Note that if Av  and Bv  were parallel in Figure 11a or if Av  and Bv  had the 

same magnitude in Figure 11b, the instantaneous center C would be at an 

infinite distance and  would be zero; all points of the slab would have the 

same velocity. To see how the concept of instantaneous center of rotation can 

be put to use, let us consider again the rod as shown. Drawing the 

perpendicular to Av through A and the perpendicular to Bv through B (Figure 

12), we obtain the instantaneous center C. At the instant considered, the 

velocities of all the particles of the rod are thus the same as if the rod rotated 

about C. Now, if the magnitude Av of the velocity of A is known, the 

magnitude  of the angular velocity of the rod can be obtained by writing 

cos
A Av v

AC l
 

The magnitude of the velocity of B can then be obtained by writing 

A 

B 
C 
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( ) sin tan
cos
A

B A

v
v BC l v

l
 

Note that only absolute velocities are involved in the computation.  

The instantaneous center of a slab in plane motion can be 

located either on the slab or outside the slab. If it is located 

on the slab, the particle C coinciding with the instantaneous 

center at a given instant t  must have zero velocity at that 

instant. However, it should be noted that the instantaneous 

center of rotation is valid only at a given instant. Thus, the 

particle C of the slab which coincides with the instantaneous center at time t 

will generally not coincide with the instantaneous center at time t t ; while 

its velocity is zero at time t, it will probably be different from zero at time

t t . This means that, in general, the particle C does not have zero 

acceleration and, therefore, that the accelerations of the various particles of the 

slab cannot be determined as if the slab was rotating about C. As the motion of 

the slab proceeds, the instantaneous center moves in space. But it was just 

pointed out that the position of the instantaneous center on the slab keeps 

changing. Thus, the instantaneous center describes one curve in space, called 

the space centrode, and another curve on the slab, called the body centrode 

(Figure 13). It can be shown that at any instant, these two curves are tangent at 

C and that as the slab moves; the body centrode appears to roll on the space 

centrode. 

 Rolling Motion without Slipping 

A special type of motion of a rigid body is that which occurs in the case of 

bodies capable of rolling, such as cylinders, spheres, hoops, and wheels in 

general. Figure 14a shows a circular disk of radius R  that is rolling on a 

horizontal surface with angular velocity  and angular acceleration , both 

clockwise. Observe that the path of the center O is a straight line parallel to the 

surface. Rolling without slipping occurs if the contact point C on the disk has 

Fig. 13 

Space Centrode 

Body Centrode 
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no velocity; i.e., the disk does not slide along the surface. This case deserves 

special attention because it occurs in many engineering applications.  

 

 

 

 

 

Applying the relative velocity equation, to point C and O, where O is the center 

of the disk, we have OCO Cv v r  

Substituting C
ˆ0,v k  and OC

ˆr Rj  

O
ˆ ˆ ˆ( )v k R j R i  

As expected, this result shows that the velocity of the center O is parallel to the 

surface on which the disk rolls, its magnitude being Ov R  As shown in 

Figure 14b. It is convenient here to derive the acceleration of O. The 

acceleration of O can be obtained by differentiation of the equation 

O
ˆ ˆ ˆ( )v k R j R i . Noting that R  and î  are constants, we get 

O
ˆd

a R R i
dt

 

Thus the acceleration of O is also parallel to the surface of rolling, and its 

magnitude is Oa R  as shown in Figure 14c. It should be noted that 

although the velocity of C is zero, its acceleration is not zero. 

 

 

 

 

 

Fig. 14

C

Path of O

(a) (b)

(c)
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Illustrative Examples

 

 EXAMPLE 1 

A rod AB of length 0.8 m  executes general plane 

motion such that end A is constrained to move along a 

horizontal track while end B moves along a vertical 

track, as shown in the figure. If the end A moves to the 

right with a constant velocity -14 msAv , determine 

the angular velocity 
 
and linear velocity of end B. 

Express your answers in terms of the angular position  measured 

counterclockwise from the vertical track. Determine the velocity of point a. 

 SOLUTION 

By drawing the perpendicular to Av  through A and the 

perpendicular to Bv through B and determining the point 

in which these two lines intersect (Figure).   

-14
5.774 rad s

cos 0.8cos30
A Av v

AC l
 

Therefore the linear velocity of end B is  

-1( ) 5.774(0.8sin30) 2.3094 msBv BC  

 EXAMPLE 2 

Rod AB of length  can slide freely along the 

floor and the inclined plane. Denoting by Av  the 

velocity of point A, derive an expression for (i) 

the angular velocity of the rod, (ii) the velocity 

of end B. 

 SOLUTION 

A 

B 

A 

B 
C 

A 

B 
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By drawing the perpendicular to Av  through A and the 

perpendicular to Bv through B and determining the 

point in which these two lines intersect (see Figure).   

A B

c c

v v

AI BI
 

From the sin law (triangle ABIc) we have 

cos( )

sin sin(90 ) sin(90 ) sin
c c

c

AI BI
AI  

hence 

sin

cos( )
A A

c

v v

AI
and 

cos

cos( )
A

B c

v
v BI  

 EXAMPLE 3 

A uniform rectangular lamina ABCD is moving so that the 

velocity of A  is in the direction of the diagonal Ad, and the 

magnitude of the velocity of point B is . Determine the angular 

velocity of the rectangular and the velocity of point D with 

respect to point B 

 SOLUTION 

Instantaneous center of rotation can be determined by drawing 

the perpendicular to Av  through A and the perpendicular to Bv

through B and determining the point in which these two lines 

intersect in cI  as shown. Let

 
cI

 

lies a distance x from A (since the direction 

of velocity of B is unknown), since    4 13Bv  

2 2 2 2( ) (6) 2( )(6)cos 36 9.6 ......(1)cI B x x x x

20 , ....(2)

and 4 13 ( ) ....(3)
A

B c

v x

v I B
 

Dividing these two equations (2) and (3)  

A 

C 

B 

D 

IC 

 

8
 c

m
 

6 cm
 

A 

B 

Ic 
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20
by squaring 

4 13 c

x

I B
 

2 20 75 0 Or ( 5)( 15) 0 i.e. 5, 15x x x x x x  

The problem has two solutions 

-2 -2
1 2

20 20 20 4
4 rad s ....(4) and rad s .....(5)

5 15 3x
 

Therefore the corner D has two solutions 

2 2 2 2( ) (8) 2( )(6)cos 64 9.6
2cI D x x x x  

So the first solution is 

2 -1
1 5
( ) 4 (5) 64 9.6(5) 46.8 cmsD c x

v I D  

The second one is 

2 -1
2 15

4
( ) (15) 64 9.6(15) 27.74 cm s

3D c x
v I D  

 EXAMPLE 4 

Determine the angular velocity of link BC and the 

velocity of the piston C at the instant shown,  

 SOLUTION 

Since  ...(1)B C
BC

C C

v v

I B I C
 

and    -16(0.2) 1.2 msBv r

 
From sin law, we have 

0.8

sin 60 sin 90 sin 30

1.6 m, 1.38 m

C C

C C

BI CI

CI BI

 

Therefore, from equation (1) ( ) 1.2(1.38)C Cv I C
 

-1=1.39 msCv    and -10.86 rad sBC  

A 

B 

C 

30 

0.8 m 

A 

B 

C 

30 

IC 
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 EXAMPLE 5 

Pulley B is being driven by the motorized pulley A that is 

rotating at -120 rad s . At time 0t , the current in the 

motor is cu off, and friction in the bearings causes the pulleys to 

coast to a stop. The angular acceleration of a during  the 

deceleration is -12.5 rad st , where is in seconds. 

Assuming that the derive belt does not slip on the pulleys, 

determine (i) the angular velocity of B as a function of time ; (ii) 

the angular displacement of B during the period of coasting; and 

(iii) the acceleration of point C on the straight portion of the belt 

as a function of time.  

 SOLUTION 

Because the belt does not slip, every point on the belt that is in contact with a 

pulley has the same velocity as the adjacent point on the pulley. Therefore, the 

speed of any  point on the belt is 

...(1)A A B Bv R R  

So that 

75
0.5

150
A

B A A A
B

R

R
 

Differentiating with respect to time, we obtain for the angular acceleration of 

pulley B    -10.5 0.5( 2.5 ) 1.25 rad sB A t t  

Because /B Bd dt , we have B Bd dt or 

2
11.25 0.625B Bdt tdt t C  

The initial condition, -120 rad s when 0t , yields -1
1 20 rad sC

 hence the angular velocity of pulley B is 220 0.625 ....B t  
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We let the angular position of a line in B measured from a fixed reference line. 

Recalling that /B Bd dt  we integrate B Bd dt  to obtain  

2 3
2(20 0.625 ) 0.2083 20B Bdt t dt t t C  

Letting 0B

 

when 0t , we have 2 0C , which gives 

30.2083 20B t t  

The pulley comes to rest when 220 0.625 0B t , which yields 

5.627 st . The corresponding angular position of the line in B is 

3
5.627

0.2083(5.627) 20(5.627) 112 radB t
 

Therefore, the angular displacement of pulley B as it coasts to a stop is 

5.627 0
112 0 112 rad .....B B Bt t

 

Because the direction of rotation does not change, the total angle turned 

through by the pulley B during the deceleration is also 112 rad   

Substituting 150 mmBR  and 220 0.625B t  into Eq. (1), the speed of 

point C (which is the same for all points on the belt) is 

2 2 -1150(20 0.625 ) 93.75 3000 mmsCv t t  

Because the path of point C on the belt is a straight line, the acceleration of C 

is    -1187.5 mms .....C Ca v t  

We could obtain the same result by observing that Ca  is equal to the tangential 

component of acceleration of a point on the rim of pulley b (pulley A could 

also be used). Thus  

-1150( 1.25 ) 187.5 mmsC B Ba R t t  
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 EXAMPLE 6 

When the linkage in Figure is in the position shown, the 

angular velocity of bar AB is -12 rad sAB clockwise. 

For this position, determine the angular velocities of bars 

BC and CD and the velocity of C using the instant centers 

for velocities 

 SOLUTION 

Because A and D are fixed points, 

they are the instant centers for bars 

AB and CD respectively. The 

instant center for the bar BC, 

labeled O in the figure, is located 

at the point of intersection of the 

lines that are perpendicular to the 

velocity vectors of B and C. 

Because Bv and Cv  are perpendicular to AB and CD, respectively, the instant 

center is at the intersection of these two lines 

The distnace to B and C from O, found from the triangle OBC, are  

50
86.6 mm

tan 30
50

100 mm
sin 30

BO

CO

r

r
 

The instant centers, A, O and D, can now be used to compute the required 

angular velocities directly from the figure. Considering the motion of AB ( the 

instant center is at A), we find that -160(2) 120 mmsB BA ABv r , 

directed as shown in figure. Analyzing the motion of BC (the instant center is 

at O) yields  

-1120
1.386 rad s .....

86.6
B

BC
BO

v

r
 

A 
B 

C 

D 

60 mm 

5
0
 m

m
 

30 

A 
B 

C 

D 

60 mm 

5
0
 m

m
 

30 

 

O 
30 
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And   -1100(1.386) 138.6mms .....C CO BCv r  

 EXAMPLE 7 

Figure beside shows a wheel of radius R that is rolling without slipping with 

the clockwise angular velocity . For the position shown, determine the 

velocity vectors for (i) point A; and (ii) point B 

 SOLUTION 

We choose the point O (the center of the wheel) as the reference point, because 

its velocity is known ( ˆ
Ov Rwi ) 

The velocity AOv  is computed by assuming that the 

point O is fixed. Therefore the equation becomes 

 ˆ ˆ
A O AO Av v v v R i R j

 

 from which the velocity of A is found to be 

   2Av R  

Again for point B  

ˆ ˆ
B O BO Bv v v v R i R i  

from which the velocity of A is found to be   2Av R  

 

 

 

 

 

 

 

 

 

 
 

A O 

 

 

 

 

B 

O 

O 

 

A 

B 

 

O A 

B 
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PROBLEMS 

 Member AB of length  executes general plane motion 

such that end A is constrained to move along a horizontal 

track while end B moves along a vertical track, as shown in 

the figure. If member AB has a constant counterclockwise 

angular velocity , determine in terms of ,  and , the 

velocity Av  and the acceleration Aa  of end A. If -14 rad s , o45 , and 

15 in , determine Av  and Aa . 

 

 If the wheel rotates clockwise at a constant angular velocity , determine 

the velocity Bv  and acceleration Ba  of point B in terms of , , and r . If 

1.5 ftr 1500rpm (revm ) , and 5 ft , determine cv  and ca  for 

o30  

 

 

 

 

 

 

 

 The angualr velocity of bar AB in figure is 3 rad s
-1

 clockwise in the 

position shown. Determine the angular velocity of bar BC and the velocity of 

the slider C in this position.  

 

 

 

 

A 

B 

A 

B 

C 

100 mm 

30 

A 

B 

C 
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 The motion of rod AB is guided by pins attached at A 

and B which slide in the slots shown. At the instant shown, 

o45 and the pin at B moves upward to the left with a 

constant velocity of -16 in s . Determine (a) the angular 

velocity of the rod, (b) the velocity of the pin at end A. 

 

 

 Collar A moves upward with a constant velocity 

of -11.2 m s . At the instant shown when o30 , 

determine (a) the angular velocity of rod AB, (b) the 

velocity of collar B.  

 

 

 

 

 Knowing that at the instant shown the angular velocity of 

rod AB is 15 rad/s clockwise, determine (a) the angular 

velocity of rod BD, (b) the velocity of the midpoint of rod BD. 

 

 

 

 The flywheel rotates counterclockwise about O with the constant angular 

velocity 0 . When 0 , the speed of the piston A is determine 0 .  

 

 

 

A 

B 

A 

B 

D E 

0.2 m 

0.2 m 

0.6 m 

0.25 m 

A 

B 
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 When the mechanism is in the position shown, the 

velocity of slider D is -11.25 msDv . Determine the 

angular velocities of bars AB and BD at this instant 

 

 

 

 

 A pulley and two loads are connected by inextensible cords 

as shown. Load A has a constant acceleration of -2300 mms  

and an initial velocity of -1240 mms , both directed upward. 

Determine (i) the number of revolutions executed by the pulley 

in3 s , (ii) the velocity and position of load B after 3 s , (iii) the 

acceleration of point D on the rim of the pulley at 0t . 

 

 

 

  The end of the cord that is wrapped around the hub of the 

wheel is pulled to the right with the velocity -1700 mms . 

Find the angular velocity of the wheel, assuming no slipping. 

 

 

 

 The wheel is rolling without slipping. Its center has a 

constant velocity of -10.6 m s  to the left. Compute the angular 

velocity of bar BD and the velocity of point D when 0 . 

D 

B 

A 

D 

375 mm 

125 mm 



 

KINETICS OF A RIGID BODY 

 

n this chapter we will study the kinetics of rigid bodies, i.e., the 

relations existing between the forces acting on a rigid body, the 

shape and mass of the body, and the motion produced. We studied similar 

relations, assuming then that the body could be considered as a particle, i.e., 

that its mass could be concentrated in one point and that all forces acted at that 

point. The shape of the body, as well as the exact location of the points of 

application of the forces, will now be taken into account.  

We will also be concerned not only with the motion of the body as a whole but 

also with the motion of the body about its mass center. Our approach will be to 

consider rigid bodies as made of large numbers of particles.  

 Reduction a System of Forces 

 

When a number of forces and couple moments are acting on a body, it is easier 

to understand their overall effect on the body if they are combined into a single 

force and couple moment having the same external effect. The two force and 

couple systems are called equivalent systems since they have the same external 

effect on the body Figure 1. 

Suppose a system of forces 1 2, , ....., , ....,i nF F F F  is reduced at a chosen point O  

to a single force F  and a single couple M viz. the obtaining result is o,M F  

where 

o
1 1

,
n n

i i i
i i

M r F F F  

I 

Fig. 1 
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 Angular Momentum of a Rigid Body 

Consider a rigid slab in plane motion. Assuming that the 

slab is made of a large number n of particles Pi of mass 

im , we note that the angular momentum HG of the slab 

about its mass center G can be computed by taking the 

moments about G of the momenta of the particles of the 

slab in their motion with respect to either of the frames 

Oxy or Gx'y' (Figure 2).  

Choosing the latter course, we write  

1

( )
n

G i i i
i

H r v m  

where ir  and  i iv m denote, respectively, the position vector and the linear 

momentum of the particle Pi relative to the centroidal frame of reference Gx'y'. 

But since the particle belongs to the slab, we have i iv r , where  is 

the angular velocity of the slab at the instant considered. We write 

1

( ( ) )
n

G i i i
i

H r r m  

Referring to Figure 6, we easily verify that the expression obtained represents a 

vector of the same direction as  (that is, perpendicular to the slab) and of 

magnitude equal to 2
i ir m . Recalling that the sum 2

i ir m  

represents the moment of inertia I of the slab about a centroidal axis 

perpendicular to the slab, we conclude that the angular momentum HG of the 

slab about its mass center is  

GH I  

Differentiating both members of previous equation we obtain 

GH I I  

G 

Pi 

O 

Fig. 2 
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Thus the rate of change of the angular momentum of the slab is represented by 

a vector of the same direction as  (that is, perpendicular to the slab) and of 

magnitude I .  

It should be kept in mind that the results obtained in this section have been 

derived for a rigid slab in plane motion. They remain valid in the case of the 

plane motion of rigid bodies which are symmetrical with respect to the 

reference plane. However, they do not apply in the case of nonsymmetrical 

bodies or in the case of three-dimensional motion. 

 

 Plane Motion of a Rigid Body D'Alembert's Principle 

Consider a rigid slab of mass m moving under the action of several external 

forces 1 2 3, , , ......F F F  contained in the plane of the slab (Figure 1). Substituting 

for HG from equation GH I   into equation GH I I  and writing 

the fundamental equations of motion in scalar form, we have 

, , ,x x y y z z gF ma F ma F ma M I  

These equations show that the acceleration of the mass center G of the slab 

and its angular acceleration are easily obtained once the resultant of the 

external forces acting on the slab and their moment resultant about G have 

been determined. Note that the equations 

, ,x x y y z zF ma F ma F ma  

 do not give any information about the rotation of the body, as shown in the 

figure, although the same force acts on the body but the body has different 

effect. 

 

 

 

 

 

G G 
G 
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 Constrained Plane 

Most engineering applications deal with rigid bodies 

which are moving under given constraints. For example, 

cranks must rotate about a fixed axis, wheels must roll 

without sliding, and connecting rods must describe 

certain prescribed motions. In all such cases, definite 

relations exist between the components of the 

acceleration a  of the mass center G of the body 

considered and its angular acceleration ; the corresponding motion is said to 

be a constrained motion.  

The solution of a problem involving a constrained plane motion calls first for a 

kinematic analysis of the problem. Consider, for example, a slender rod AB of 

length l and mass m whose extremities are connected to blocks of negligible 

mass which slide along horizontal and vertical frictionless tracks. The rod is 

pulled by a force P applied at A as shown in Figure 3. We know that the 

acceleration a of the mass center G of the rod can be determined at any given 

instant from the position of the rod, its angular velocity, and its angular 

acceleration  at that instant. Suppose, for example, that the values of  , and 

 are known at a given instant and that we wish to determine the 

corresponding value of the force P, as well as the reactions at A and B. We 

should first determine the components xa  and ya  of the acceleration of the 

mass center G. We next apply D’Alembert’s principle as plotted in Figure 4a, 

using the expressions obtained for xa  and ya . The unknown forces P, NA, and 

NB can then be determined by writing and solving the appropriate equations. 

 

 

 

 

A 

B 

Fig. 3 

Fig. 4 

A 

B 

A 

B 

(a) (b) 
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Suppose now that the applied force P, the angle , and the angular velocityv   

of   the rod are known at a given instant and that we wish to find the angular 

acceleration  of the rod and the components xa  and ya of the acceleration of 

its mass center at that instant, as well as the reactions at A and B. The 

preliminary kinematic study of the problem will have for its object to express 

the components xa  and ya of the acceleration of G in terms of the angular 

acceleration of the rod. This will be done by first expressing the acceleration 

of a suitable reference point such as A in terms of the angular acceleration 

. The components xa  and ya of the acceleration of G can then be 

determined in terms of a, and the expressions obtained carried into Figure 4a. 

Three equations can then be derived in terms of , NA, and NB and solved for 

the three unknowns. Note that the method of dynamic equilibrium can also be 

used to carry out the solution of the two types of problems we have considered 

(Figure 4b). When a mechanism consists of several moving parts, the approach 

just described can be used with each part of the mechanism. The procedure 

required to determine the various unknowns is then similar to the procedure 

followed in the case of the equilibrium of a system of connected rigid bodies. 

Earlier, we analyzed two particular cases of constrained plane motion: the 

translation of a rigid body, in which the angular acceleration of the body is 

constrained to be zero, and the centroidal rotation, in which the acceleration  a  

of the mass center of the body is constrained to be zero. Two other particular 

cases of constrained plane motion are of special interest: the noncentroidal 

rotation of a rigid body and the rolling motion of a disk or wheel. These two 

cases can be analyzed by one of the general methods described above. 

However, in view of the range of their applications, they deserve a few special 

comments.  

 

 Non-Centroidal Rotation, The motion of a rigid body constrained to rotate 

about a fixed axis which does not pass through its mass center is called non-
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centroidal rotation. The mass center G of the body moves 

along a circle of radius r  centered at the point O, where the 

axis of rotation intersects the plane of reference as 

illustrated in Figure 5. Denoting, respectively, by  and  

the angular velocity and the angular acceleration of the line 

OG, we obtain the following expressions for the tangential 

and normal components of the acceleration of G:  

2, and ....(1)t na r a r  

Since line OG belongs to the body, its angular velocity  and its angular  

acceleration  also represent the angular velocity and the angular acceleration 

of the body in its motion relative to G. Equations (1) define, therefore, the 

kinematic relation existing between the motion of the mass center G and the 

motion of the body about G. They should be used to eliminate ta  and na  from 

the equations obtained by applying d’Alembert’s principle (Figure 6) or the 

method of dynamic equilibrium as shown in Figure 7.  

An interesting relation is obtained by equating the moments about the fixed 

point O of the forces and vectors shown, respectively, in parts a and b of  

Figure 6. We write  2
o ( ) ( )M I Mr r I Mr  

But according to the parallel-axis theorem, we have,  2
oI Mr I  where oI

denotes the moment of inertia of the rigid body about the fixed axis. We 

therefore write 

Fig. 5 

G

O

= 

G

O

= 0

Fig. 7 

G

O

(a)

G

O

(b)Fig. 6 
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o o .....(2)M I  

Although formula (2) expresses an important relation between the sum of the 

moments of the external forces about the fixed point O and the product oI , it 

should be clearly understood that this formula does not mean that the system of 

the external forces is equivalent to a couple of moment oI . The system of the 

effective forces, and thus the system of the external forces, reduces to a couple 

only when O coincides with G—that is, only when the rotation is centroidal. In 

the more general case of noncentroidal rotation, the system of the external 

forces does not reduce to a couple.  

A particular case of noncentroidal rotation is of special interest the case of 

uniform rotation, in which the angular velocity  is constant. Since  is zero, 

the inertia couple in Figure (7) vanishes and the inertia vector reduces to its 

normal component. This component (also called centrifugal force) represents 

the tendency of the rigid body to break away from the axis of rotation. 

 

 Remember That 

Plane motion of a rigid body: The problems that you will be asked to solve 

will fall into one of the following categories. 

i. Rigid body in translation. For a body in translation, the angular acceleration 

is zero. The effective forces reduce to the vector ma  applied at the mass 

center. 

ii. Rigid body in centroidal rotation. For a body in centroidal rotation, the 

acceleration of the mass center is zero. The effective forces reduce to the 

couple I . 

iii. Rigid body in general plane motion. You can consider the general plane 

motion of a rigid body as the sum of a translation and a centroidal rotation. The 

effective forces are equivalent to the vector ma  and the coupleI .  
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G

 
A 

N 

O

 

Illustrative Examples

 

 EXAMPLE 1 

A thin uniform rod of length L and mass m hangs freely from a hinge at A. If it 

is allowed to fall with initial velocity equals zero from a horizontal position.  

Determine the maximum value of angular acceleration of its center of gravity 

and find the associated tangential acceleration ta of the end of the rod. 

 SOLUTION 

Let the rod OA at any instant t
 
makes an angle 

 
with the initial horizontal 

position OX. Let G be the center of gravity and GN perpendicular to OY. 

The angular formula of Newton’s second law we get 

o oM I  

Taking the momentum about the point O 

o
1
cos

2
M mg L  

Since the moment of inertia of the rod about any of its ends is 2
o
1

3
I mL  

therefore,  

21 1 3
cos cos

2 3 2

g
mg L mL

L
 

That is the angular acceleration is a function of 
 
hence the maximum value is 

obtained when 0  and its value is max
3

2

g

L
 

Therefore the associated tangential acceleration ta of the end of the rod is   

max
3

2ta L g  

 EXAMPLE 2 

A straight uniform rod of length a and mass m can turn freely about one end O, 

hangs from O vertically. Find the least angular velocity with which it must 

begin to move so that it may perform complete revolution in a vertical plane. 

 SOLUTION 
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Let the rod OA at any instant t
 
makes an angle 

 
with the initial vertical 

position OY. Let G be the center of gravity and GN perpendicular to OY. The 

equation of angular motion of the rod is 

21
sin

3 2

a
ma mg  

Since the moment of effective forces about O = 21

3
ma   

And moment of external forces about O = sin
2

a
mg  

Thus    2 3 sina g   

Multiply the above Equation by  and integrating we get 

2 3 cosa g c ,  c is integration constant.  

Let when 0  we have, 2 3c a g  

Therefore, 2 2 3 (1 cos )a a g  

We require that 0  when  to complete revolution, hence 

20 3 (1 cos ) 6 /a g g a  

 EXAMPLE 3 

The 360-Ib uniform plate shown in the figure rotates in the 

vertical plane about a smooth pin at A. The plate is released 

from rest when 0 . (i) Show that the differential equation 

of motion for the plate is -20.996(4cos 3 sin ) rad s  

(ii) Integrate the differential equation of motion analytically 

to obtain the angular velocity of the plate as a function of 

(iii) Find the maximum value of .  

 SOLUTION 

The mass of the plate is 360/32.2 11.18 slugsm  and the moment of  

inertia about its mass center G is  

 

G

 
A 

N 

O
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2 2 21
(11.18)(8 6 ) 93.17 slug ft

12
I  

The figure behind shows the free body diagram (FBD) and mass acceleration 

diagram for an arbitrary position of the plate. The FBD contains nA and tA , the 

unknown components of the pin reaction at A. Since the path of G is a circle of 

radius 5 ftr centered at A, the normal components of a is 2 25na r , 

and its tangential component is 5ta r . Observe that the angular 

acceleration  is assumed to be clockwise. Now, by taking the momentum 

about A we have 

(360cos )4 (360sin )(3) 93.17 11.18(5 )5  

which reduces to  

-20.966(4cos 3 sin ) rad s  

The identical result could be obtained by using the special 

case of momentum equation  

A AM I  

2(360cos )4 (360sin )(3) (93.17 11.18(5) )  

To find the angular velocity as a function of , we use the formula 
d

d
 

hence  

-20.966(4 cos 3 sin ) rad s

0.966(4 cos 3 sin )

d

d
d d

 

The result of integrating this equation analytically is 

21 0.966(4 sin 3 cos )
2

c  

The constant of integration c  is evaluated by applying the initial condition 

0  when 0 , which gives 2 -23(0.966)rad sc . Therefore, the last 

equation becomes 
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21 0.966(4 sin 3 cos 3)
2

 

From which the angular velocity is found to be 

 EXAMPLE 4 

One end of a light string is fixed to a point of the rim of a uniform circular disk 

of radius a
 
and mass M

 
and the string is wounded several times around the 

rim. The free end is attached to a fixed point and the disk is held so that the 

part of the string not in contact with it is vertical. If the disk be let go, find the 

acceleration and tension of the string. 

 SOLUTION 

Let the free end be attached to the fixed point P and let A be the initial position 

of the center of gravity G. let T  be the tension of the string, there being no 

horizontal force the center of gravity will move vertically downwards. Let y
 

be the distance moved by G in time and during this period, 
 
be the angle 

turned through some radius.  

,y a y a y a  

The equation of motion of the center of gravity of circular disk is 

....(1)My Mg T  

The equation of angular motion about the center of the disk is  

o oM I  

The moment of inertia of the disk about an axis passing through its center is 

2
o
1

2
I Ma  

Taking the momentum about the center of the disk  

oM Ta  

Therefore, from the last three equations we have 

21 1 1

2 2 2y

Ma Ta T Ma My  
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Substituting this value of tension in Equation (1) we get  

1 2

2 3
My Mg My y g  

In which gives the vertical acceleration of the center of the disk and to obtain 

the tension, substituting this value in Eq. (1) 

1 1

2 3
T My Mg  

 EXAMPLE 5 

Two equal masses 1m and 2m  ( 1 2m m ) are suspended by a light string 

over a circular pulley of mass M and radius b . There is no slipping and the 

friction of the axis can be neglected. If a  be the acceleration; show that this is 

constant, and if 2k  be the radius of gyration of the pulley about the axle, show 

that 
2

2
2 2(( ) ( ) )

b
k g a m g a m

ma
  

 SOLUTION 

Let in time t , 1m moves a distance y  downwards and 2m moves distance 

upwards. Let be the angle through which the pulley has rotated in time t . 

Since y b y b  

Equations of motion of 1m and 2m are 

1 1 1 2 2 2...(1) and ....(2)m y m g T m y T m g  

Equation of motion of the pulley is 

2
o o 1 2

1

2
M I Mb Tb T b  

2
1 2 1 22

1 1
.....(3)

2 2

x
Mb T T Mx T T

b
 

Adding three Equations (1), (2) and (3) , we get 

1 2
1 2 1 2

1 2

( )1
( )

2 1

2

m m g
m m M x m m g x a

m m M
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which is constant.  From above we get  1 2 1 2
1

( )
2

m m M a m m g  

Since the radius of gyration of a circular disk (pulley) about its center is 

2
2 o 21 1

2 2

I Ab
k b

A A
 

2

1 2 1 22

2
2

1 2

( )

( ) ( )

k
m m M a m m g

b
b

k g a m g a m
Ma

 

Again by subtracting Equation (1) from Equation (2), we get 

2 1 2 1 1 2

2 1 2 1 1 2

2 1 1 2

( )

( )

( )

m m x T T m m g

T T m m x m m g

m m a m m g

 

 EXAMPLE 6 

A fine sting has two masses M and M tied to its ends and passes over a rough 

pulley; of mass m  and radius a whose center is fixed. If the string does not 

slip over the pulley, show that M will descend with acceleration

/ 2 2M M g M M m . If the pulley be not sufficiently rough to 

prevent sliding, and be the descending mass, show that its acceleration is 

/M M e M M e
 

and find the angular acceleration of the 

pulley. 

 

 SOLUTION 

First part, when the pulley is rough enough to prevent sliding. 

Proceeding like previous examples the equations of motion of 

masses and pulley are 

...(1)

and ....(2)

Mx Mg T

M x T M g
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And taking moment of effective forces about the center of pulley, we get 

21
( ) ...(3)

2
ma T T a  

Again ,x a x a  therefore Equation (3) turns into 

1
...(4)

2
mx T T  

Adding Equations (1), (2) and (4), we have 

1
( )

2
2( )

2 2

x M M m M M g

M M g
x

M M m

 

Second part, when the pulley is not sufficiently rough to prevent sliding, then 

we cannot take x a . In this case, from Statics, we have 

....(5)T T e  

Solving Equations (1), (2) and (5), we have 

 

2 2
, , and

MM ge MM g M M ge
T T x g

M M e M M e M M e
 

Further putting above values of T and T in Equation (3), we get 

2

4 1
.

ag e MM

ma M M e
 

 

 EXAMPLE 7 

Two unequal masses, M and M rest on two rough planes inclined at an 

angles and to the horizon; they are connected by a fine string passing over 

a small pulley, of mass m  and radius a , which is placed at the common 

vertex of the two planes; determine the acceleration of either mass. Where 

and are the coefficients of friction, M  is the mass which moves 

downwards.  
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 SOLUTION 

Suppose that in time t , the mass M moves a distance x  downwards. Also M

moves a distance x  upwards. Let the pulley turn through an angle , in the 

same time t . 

,x a x a x a  

The equation of motion of the masses and are 

sin cos ...(1)

sin cos ...(2)

Mx Mg Mg T

M x T M g M g

 

Equation of motion of pulley is 

21 1
( ) ...(3)

3 3
ma T T a mx T T  

By adding the three Equations (1), (2) and (3), we have 

1
(sin cos ) (sin cos )

3
3 (sin cos ) (sin cos )

3 3

m M M x g M M

g M M
x

m M M
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 Reactions of the Axis Rotation 

A body moves about a fixed axis under the 

action of forces and both the body and the forces 

are symmetrical with respect to the plane 

through the center of gravity perpendicular to the 

axis, find the reaction of the axis of rotation . 

Let O be the point where the plane through G 

perpendicular to the axis of rotation meets this 

axis. By symmetry the actions on the axis reduce 

to a single force at O, the center of suspension. 

Let the components of this single force be X  and Y  along and perpendicular 

to GO respectively. Now G describes a circle around O as center, its 

acceleration along and perpendicular to GO are 2h andh . Equations of 

motion of center of gravity are 

2 cos ....(1)Mh X Mg  

sin ....(2)Mh Y Mg  

By taking moments about O, 2
o ....(3)I Mk Mgh where k  is the 

radius of gyration about the axis. Y is obtained by eliminating  from 

Equations (2) and (3) by integrating Equation (3) and determining the constant 

from the initial conditions, and then from equation (1) we can findX . 

Resultant reaction 2 2R X Y and tan ( / )Y X where  is the angle 

which the direction of R  makes with GO. Note that on resolving X and Y

horizontally and vertically.  

The horizontal reaction = sin cosX Y  

and vertical reaction = cos sinX Y  
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 Rolling Motion 

Another important case of plane motion is the motion of 

a disk or wheel rolling on a plane surface. If the disk is 

constrained to roll without sliding, the acceleration a  of 

its mass center G and its angular acceleration  are not 

independent. Assuming that the disk is balanced, so that 

its mass center and its geometric center coincide, we first 

write that the distance x  traveled by G during a rotation  of the disk is

x r , where r  represents the radius of the disk. Differentiating this relation 

twice, we write  ( )x r r  

Recalling that the system of the effective forces in plane motion reduces to a 

vector ma  and a couple I , we find that in the particular case of the rolling 

motion of a balanced disk, the effective forces reduce to a vector of magnitude 

mr attached at G and to a couple of magnitude I . We may thus express that 

the external forces are equivalent to the vector and couple shown in Figure. 

When a disk rolls without sliding, there is no relative motion between the point 

of the disk in contact with the ground and the ground itself. Thus, as far as the 

computation of the friction force F  is concerned, a rolling disk can be 

compared with a block at rest on surface. The magnitude F  of the friction 

force can have any value, as long as this value does not exceed the maximum 

valueF N , where  represents the 

coefficient of static friction and N  is the 

magnitude of the normal reaction force. In 

the case of a rolling disk, the magnitude 

F  of the friction force should therefore be 

determined independently of N  by 

solving the equation obtained from Figure beside.  

G
G

CC

P

W

N

F

=
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When sliding is impending, the friction force reaches its maximum value 

F N and can be obtained from N . These two different cases can be 

summarized as follows: 

Rolling, no sliding: ,F N a r  

Rolling, no sliding: ,F N a r  

 A uniform sphere rolls down an inclined plane whose inclination to horizon 

be , rough enough to prevent any sliding; discuss the motion. 

Initially, the sphere was rest with its point P in contact 

with O. During the motion, after any time t , let the 

center C of the sphere describes a distance x on the 

inclined plane and is the angle through which the 

sphere turns.  Thus CP a line fixed in the body, makes an 

angle  with the normal to the plane, a line fixed in 

space. Let F  be the frictional force and R  the normal 

reaction force at the point of contact, then the equations 

of motion of the center of gravity of the sphere are 

sin ...(1)Mx Mg F  

Since there is no motion perpendicular to the plane, we have 

cos 0 Or cos ...(2)My Mg R R Mg  

Also Equation of motion about the center of gravity is 

22 ...(3)
5
a M Fa  

According to there is no sliding, so we have OB PB  

,x a x a  

From Equation (3)   
2

5
Mx F  

Substituting this value of F in Equation (1), we readily get 
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7 5
sin or sin ....(4)

5 7
Mx Mg x g  

i.e. the sphere rolls down with a constant acceleration therefore by integrating 

5
sin

7

dx
g t c

dt
 

The constant of integration c  vanishes as t and x vanish together. Integrating 

again, we get, 

25
sin

14
x g t  

Because the constant of integration again vanishes, as t  and x  vanish 

simultaneously. For the case of hollow sphere, the acceleration is. 

3
sin

5
x g  

Pure rolling: Eliminating x  from Equations (1) and (4), we get  

5
sin sin

7
2

sin
7

F mg Mg

Mg
 

Also from Equation (2) cosR Mg . In order there may be no sliding /F R

must be less than  i.e. for pure rolling F R  

thus, 
2
tan
7

F

R
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Illustrative Examples 
 

 

 EXAMPLE 1 

A uniform solid cylinder is placed with its axis horizontal on a plane, whose 

inclination to the horizon is , Prove that the least coefficient of friction 

between it and the plane, so that it may roll and not slide, is tan / 3 . If the 

cylinder be hollow, and of small thickness, the least value is tan / 2  

 SOLUTION 

At any time t , Let the axis of the cylinder describe a 

distance x and be the angle turned, since there is no 

sliding so we have x a . Also the equations of motion 

of a center of gravity are given by 

sin ....(1)

and 0 cos ...(2)

Mx Mg F

Mg R
 

Again taking moments about the axis through G, the 

center of gravity of the solid cylinder, we have 

21 1
.....(3)

2 2
Ma Fa Mx F  

hence elimination of Mx  in between Equations (1) and (3), we get 

1
sin ....(4) but cos ....(5)

3
F Mg R Mg  

For pure rolling,  
1
tan
3

F

R
 

In the same manner for hollow cylinder and we can obtain the least value of 

coefficient of friction to prevent sliding is 
1
tan
2

F

R
 

 EXAMPLE 2 

A cylinder rolls down a smooth plane whose inclination to the horizontal is , 

unwrapping, as it goes, a fine string fixed to the highest point of the plane, find 

its acceleration and the tension of the string. 
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 SOLUTION 

When the cylinder has rolled down a distance x along the plane, Let T be the 

tension in the string and in this time (say t ), let be the angle turned by the 

cylinder, then as the string is tight, the motion of the 

pure rolling i.e. BP OB x a which gives 

,x a x a  

Now equations of motion of the center of gravity of 

the cylinder are 

sin ....(1)

and 0 cos ...(2)

Mx Mg T

My Mg R
 

Now taking moments about the center, we get 

21 1
( ) .....(3)

2 2
Ma Ta Mx T x a  

Equations (1) and (3) give  

3 2
sin sin

2 3
Mx Mg x g  

and then         
1

sin
3

T Mg  

 EXAMPLE 3 

A rough uniform rod of length 2a is placed on a rough table at right angles to 

its edge; if its center of gravity be initially at distance b  beyond the edge, show 

that the rod will begin to slide when it has turned through an angle 

2 2 2 1( 9 )a a b  where  represents the coefficient of friction. 

 SOLUTION 

Initially the rod was at right angles to the edge of the rough table, now it has 

turned through an angle . Let there be no sliding when the rod has turned 

through this angle. Let F  and  R  be the force of friction and normal reaction 
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G

 B 

 

 O 

on the rod. Acceleration of G along and perpendicular to GO are respectively 

2b  and b . Equations of motion of center of gravity G are 

2

cos ....(1)

and sin ....(2)

Mb Mg R

Mb F Mg
 

Taking moments about O, the point of contact of the rod and table, we have 

2 2
o o

2 2

1
cos ,

3
3

cos ....(3)
3

I Mgb I M b a

gb

a b

 

Multiply Eq. (3) by 2 and integrate, we get 

2
2 2

6
sin ...(4)

3

gb

a b
 

The constant of integration vanishes as initially when 0, 0  . 

Putting the values of  and 2  in Equations (1) and (2) from (3) and (4), we 

get 

2

2 2 2 2

3
. cos cos cos

3 3

gb Mga
R Mb Mg

a b a b
 

and 
2 2

2 2 2 2

6 9
sin . sin sin

3 3

gb a b
F Mg Mb Mg

a b a b
 

Now, the sliding commences when F R  i.e. 

2 2 2 2

2 2 2 2 2 2

9
sin cos tan

3 3 9

a b Mga a
Mg

a b a b a b
 

 EXAMPLE 4 

A thin uniform rod of mass m and length 2a  has one end attached to a smooth 

hinge and is allowed to fall from a horizontal position. Show that the horizontal 

strain on the hinge is greatest when the rod is inclined at angle o45  to the 

vertical, and that the vertical strain is then 1.375  times the weight of the rod. 
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 SOLUTION 

Let  2OA a and let the rod makes an angle  with 

the horizontal after time t . The figure behind shows 

the free body diagram (FBD) and mass acceleration 

diagram for an arbitrary position of the rod. The FBD 

contains X andY , the unknown components of the 

pin reaction at O. Since the path of G is a circle of 

radius r a centered at O, the normal components 

of a  is 2 2
na r a , and its tangential 

component is ta r a . Observe that the 

angular acceleration  is assumed to be clockwise. Equations of motion of G 

along and perpendicular to GO are 

2

cos sin cos ....(1)

and sin cos sin ....(2)

Ma Y X Mg

Ma Y X Mg
 

Again the moment equation about O is 

24 3
cos cos ....(3)

3 4

g
Ma Mga

a
 

Integrating Equation (3) we get 2 3
sin

2

g
C

a
 

From initial condition 0  when 0  therefore, 0C  2 3
sin

2

g

a
 

Putting this value of 2  in Equation (2), we get 

3
sin sin cos sin

2
5

sin cos sin ....(4)
2

Mg Y X Mg

Y X Mg
 

With the help of Equation (3), the Equation (1) becomes 

G

 B 

 

O 
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3
cos cos sin cos

4
1

cos sin cos ...(5)
4

Mg Y X Mg

Y X Mg
 

Multiply Equation (4) by cos  and Equation (5) by sin  and adding, we have 

5 1 9
sin cos sin 2

2 4 8
X Mg Mg  

Similarly, we have 

2 25 1
sin cos
2 4

Y Mg  

We observe that X  is maximum when sin2 1  i.e. when  2 / 2  or

/ 4 , so when / 4we have 

5 1 1 1
. . 1.375
2 2 4 2

Y Mg Mg  

i.e. Y  is 1.375  times the weight of the rod. 

 EXAMPLE 5 

The 360-Ib uniform plate shown in the figure rotates in the 

vertical plane about a smooth pin at A. The plate is released 

from rest when 0 . Determine the components of reaction 

at pin A. 

 SOLUTION 

The mass of the plate is 360 / 32.2 11.18 slugsm  and the 

moment of  

inertia about its mass center G is  

2 21
( )

12
I M a b  

The figure behind shows the free body diagram (FBD) 

and mass acceleration diagram for an arbitrary position of 

the plate. The FBD contains X andY , the unknown 

components of the pin reaction at A. Since the path of G 

is a circle of radius 2 2(0.5 ) (0.5 )r a b (say) 
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centered at A, the normal components of a is 2
na , and its tangential 

component is ta r . Observe that the angular acceleration  is 

assumed to be clockwise.  

Equations of motion of G along and perpendicular to GA are 

2

cos sin cos ....(1)

and sin cos sin ....(2)

M Y X Mg

M Y X Mg
 

Again the moment equation about A is 

2 2
2 2

1 3
( ) cos cos ....(3)

3

g
M a b Mg

a b
 

Integrating Equation (3) we get 2
2 2

6
sin

g
C

a b
 

From initial condition 0  when 0  therefore, 0C   

2
2 2

6
sin

g

a b
 

Putting this value of 2  in equation (2), we have 

2
2 2

6
sin sin cos sin

5
sin cos sin ....(4)

2

g
M Y X Mg
a b

Y X Mg

 

Via the help of Equation (3), the Equation (1) turns into  

2
2 2

3
cos cos sin cos

1
cos sin cos ...(5)

4

g
M Y X Mg
a b

Y X Mg

 

From equations (4) and (5) the components of reaction at A can be found. 

 EXAMPLE 6 

A right cone of angle 2  can turn freely about an axis passing through the 

center of its base and perpendicular to the axis; if the cone starts from rest with 
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its axis horizontal, show that when the axis is vertical, the thrust on the fixed 

axis is to the weight of the cone as
2

2

6 3 cos

4 6cos
. 

 SOLUTION 

Let initially the cone be as shown in the figure. After any time t , let the cone 

take the position as shown. If the height of the cone is OO h , then 

1
OG

4
h  where G denotes the center of gravity of the cone. Now since the 

C.G. of the cone i.e. point G is describing a circle of radius ( / 4)h  , the 

equations of motion of G are 

21
sin ....(1)

4
1

and cos ....(2)
4

M h X Mg

M h Mg Y
 

Where denote the components of reaction at O along and perpendicular to OX. 

Taking moments about O, we get 

 

 

 

 

 

 

 

2
2

2

1
(2 3 tan ) cos

20 4
5

cos ....(3)
2 3 tan

h
M Mg h

h g

 

Multiplying both sides of Equation (3) by 2  and integrating we get  

2
2

10
sin

2 3 tan
h g C  
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Initially 0  when 0  giving thereby the constant, 0C   

2
2

10
sin ....(4)

2 3 tan
h g  

Substituting Equation (4) in (1) we have 

2
2

1 10
sin sin

4 (2 3 tan )
M h g X Mg h

h
 

2

2

9 6 tan
sin

4 6 tan
X Mg  

Also using Equation (3) in (2) we get  

2

2

3 6 tan
cos

8 12 tan
Y Mg  

When the axis is vertical i.e. when ( /2)we have 

2

2

9 6 tan
, 0

4 6 tan
X Mg Y  

Then resultant pressure is 2 2R X Y X  

2

2

2 2

2 2

2

2

9 6 tan

4 6 tan
9 cos 6 sin

4 cos 6 sin
6 3 cos

4 6 cos

R Mg

Mg

X

Mg
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 The Compound Pendulum 

In order to determine the motion of a body acted on by the force of gravity 

only and moving about a fixed horizontal axis. 

Let us take plane of the paper as the plane through the center of gravity G of 

the body and perpendicular to the fixed axis. Let the plane meet the axis in C 

and let be the angle between a plane fixed in space and a plane in the body. 

Let CG h . The forces on the body are  

(i) its weight Mg acting downward through G. 

(ii) the reaction at C of the fixed axis. 

We take moments about the fixed axis to eliminate this reaction. 

The equation of motion is 

2 2

2 2

sin ( )

sin ( being small) ...(1)

CMk Mgh Mk I

gh gh

k k
 

Equation (1) shows that the motion is Simple Harmonic Motion. Hence the 

time of complete oscillation of compound pendulum is  22 /( )k gh  

 Simple Equivalent Pendulum,  

We know that equation of motion of a particle of any mass suspended by a 

string of length L  is   

sin ( being small)
g g

L L
 

The time of complete oscillation is 2 /L g  

If 22 / 2 /( )L g k gh  then 2/L k h  

This length 2( / )k h in the case of a compound 

pendulum is called the length of the simple 

equivalent pendulum. 

If O is the point on CG produced such that (the length of the simple equivalent 

pendulum) then the point O is called the center of oscillation. 
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Illustrative Examples 
 EXAMPLE 6 

A solid homogeneous cone of height h and vertical angle 

2  oscillates about a horizontal axis through its vertex, 

show that the length of the simple equivalent pendulum is

21
(4 tan )

5
h  

 SOLUTION 

Let OX be the vertical axis through the vertex O. Let us 

take a circular disk PQ of thickness dy at distance y  from 

O. Moment of inertia of disk about OX =

2 2 2 2 21
( tan ) tan

4
y dy y y  

Therefore Moment of inertia of whole cone about OX is 

2 2 4

0

2 2 5

2 2 5

2 2 3 2

1
tan 1 tan

4

1 1
tan 1 tan

5 4
1

tan 4 tan
20
3 1

4 tan tan
20 3

h

XI y dy

h

h

M h M h  

Since  2 2 23 3
4 tan and OG

20 4
k h h  

Therefore the length of the simple equivalent pendulum is 

2
21

tan 4
OG 5

k
l h  

 

 EXAMPLE 7 

A rectangular plate swings in a vertical plane about one of 

its corners. If its period is one second, find the length of the 

diagonal.  
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 SOLUTION 

Let k  be the radius of gyration of the plate about the axis, through A and 

perpendicular to its plane, then we have 

2 2 2 2

2 2 2 2 2

1
( ) (parallel axis theorem)

12
4 4 1

,
3 3 2

Mk M a b Mh

Mh k h h a b
 

BG=GD, further distance of center of gravity from A = AG= h 

Since the period = 
2 24

2 2 4
3 3

k h h

hg hg g
 

But as given the period =1 therefore, 

   

24 /(3 ) 1 3 /(16 )h g h g  

Hence the length of the diagonal is 22 (3 / 8 )h g  

 EXAMPLE 8 

Three uniform rods AB, BC, CD each of length a, are 

freely jointed at B and C and suspended from the points A 

and D which are in the same horizontal line and a distance 

a apart. Prove that when the rods move in a vertical plane, 

the length of simple equivalent pendulum is 5a/6  

 SOLUTION 

The system forms a compound pendulum swinging about the horizontal AD. 

The figure is self-explanatory. Let m be the mass of each rod. 

Let h  be the depth of C.G of the system from AD and k  be the radius of 

gyration of the system about the horizontal axis AD, then we easily obtain = 

sum of the moments of inertia of the three rods about AD, i.e. 

2 2 2 2 2 23 /3 /3 5 /9mk m a m a ma k a  

 And        /2 /2 / (3 ) 2 /3h m a m a ma m a  

Therefore, the length of simple equivalent pendulum is 2( / ) (5 /6)k h a  

A 

B C 

D 

a 

a 

a 



  93  

PROBLEMS 
 
 A uniform slender rod of length L = 36 in. and weight W = 4 lb hangs 

freely from a hinge at A. If a force P of magnitude 1.5 lb is applied 

horizontally as shown to the left (h=24 in), determine (a) the angular 

acceleration of the rod, (b) the components of the reaction at A. 

 

 

 A rope is wrapped around a cylinder of radius r and mass m as shown. 

Knowing that the cylinder is released from rest, determine the velocity of 

the center of the cylinder after it has moved downward a distance L. 

 

 A thin, homogeneous, semicircular plate of mass m and radius r 

as shown. It is released from rest when o90 . At this instant, 

determine the linear acceleration of point B expressing it in terms of 

the acceleration of gravity g. 

 

 The homogeneous thin hoop of weight Wand radius r 

shown is released from rest and rolls without sliding down the 

inclined plane under the action of its weight and the applied 

force P. Determine (a) the angular acceleration of the hoop, 

(b) the frictional force, (c) the acceleration of the mass center 

G, and (d) the minimum coefficient of friction required to assure that the thin 

hoop rolls without sliding. Express answers in terms of W and r. 

 

 The homogeneous cylinder of weight W = 100 N and radius r = 0.25 m is 

released from rest as shown in Figure. Determine the tension in the 

inextensible cord, the angular acceleration of the cylinder and the 

acceleration of its mass center G. Assume that the cylinder does not slip on 

the cord. 

B 

O 

 
 

B 

L 

h 

P 

O 

30 

P = W/4 

G 
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 A half section of a uniform cylinder of mass m is at rest 

when a force P is applied as shown. Assuming that the section 

rolls without sliding. Determine (a) its angular acceleration, 

(b) the minimum value of  compatible with the motion. 

 

 A wheel of radius r and centroidal radius of gyration k is 

released from rest on the incline and rolls without sliding. 

Derive an expression for the acceleration of the center of the 

wheel in terms of r, k, , and g. 

 

 A sphere of radius r and weight W is released with no initial velocity on the 

incline and rolls without slipping. Determine (a) the minimum value of the 

coefficient of static friction compatible with the rolling motion, (b) the velocity 

of the center G of the sphere after the sphere has rolled 10 ft, (c) the velocity of 

G if the sphere were to move 10 ft down a frictionless 30° incline. 

 

 Find the length of the equivalent simple pendulum in the following cases, 

the axis being horizontal 

(i) Circular disk; axis a tangent to it  Ans.(5a/4) 

(ii) Hemisphere; axis a diameter of the base Ans. (16a/15) 

(iii) An elliptic lamina when the axis is a latus rectum. 




