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Chapter: 1
Motion in a Resisting Medium

In studying the motion of a body in a resisting medium, we assume that the resistive
force on a body, and hence its deceleration, is some function of its speed. Such resistive
forces are not generally conservative, and kinetic energy is usually dissipated as heat.
For simple theoretical studies one can assume a simple force law, such as the resistive
force is proportional to the speed, or to the square of the speed, or to some function that
we can conveniently handle mathematically. For slow, laminar, non-turbulent motion
through a viscous fluid, the resistance is indeed simply proportional to the speed, as can
be shown at least by dimensional arguments. One thinks, for example, of Stokes's Law
for the motion of a sphere through a viscous fluid. For faster motion, when laminar flow
breaks up and the flow becomes turbulent, a resistive force that is proportional to the

square of the speed may represent the actual physical situation better.

1-Horizontal motion in a straight line
2-Vertical motion in a straight line
(i) - downwards (falling)

(i1)- upwards

1-Horizontal motion in a straight line

Example:1 A particle moves (travels) in a straight line is subject to a

resistance kv, where v is the velocity and « is the constant. Show that its

velocity and position at time t are given, respectively, v=v,e *! |

X = V7° (1—e"“ ) If the particle starts its motion from the original point by

initial velocity v, and determine maximum distance that travels the particle?

Solution




Positive direction
R=kv_ - N
0 L

w1 X

[

The motion of Equation in our case is

ma=-R (1)

But, R« v - R=kv, and if we put k=ma. Then Eq. (1) becomes
dv

a=—Av=—
dt

Separating variables and integrating yields:

jd—\:’: —Afdt

In(v)=—At+c, (2)

From the initial condition at t=0 v=o0, this tends to In(v,)=c,.

Substitute into Eq. (2) we have
In(v)=—At+In(vy)

Then {m(v)—ln(vo) }:—/lt

|n{l}= o Y _g At

Vo Vo
s v=v,e At (Answer.....Ans.) (3)
The displacement (distance) from Eq. (3) given by
v=%=voe_ﬂt —>_“dx=.|‘voe_’1t dt —>x=—\;—°e_’“ +C, (4)

From the initial condition at t=0 x=0, this tends to
0=_V_oe—ﬂ(0)+cz - C2=V—0
2 2

Then In Eq. (4) we have
_ﬁe_ﬂ’t +V_O

A 2
Vo (4 At
x= (1 e j (5)
When the particle travels to maximum distance, then the velocity equal zero

and from Eq. (3) we find that
—At

X =

L V=Vve€ =0 = t=ow.
Substituting this value for time into the position function (Eqg. 5) gives the

maximum distance the particle travels as.

|




Exercise: A particle moves (travels) in a straight line is subject to a
resistance kv, where v is the velocity and « is the constant. Find both the
velocity and position at time t, if the particle starts at x=x, by initial

velocity v, . Determine maximum distance that travels the particle?

Example:2- A particle moving in a straight line is subject to a resistance
kv?, where v is the velocity and k is the constant. Study the motion if the
particle starts its motion from the original point by initial velocity v,?

Solution
. m Positive direction
R=kv'= -
| | =+ X

[ e

From the Newton's second law of motion

ma=-R (1)
But, Raev - R=kv?, and if we put k=ma1. Then Eq. (1) becomes
a=—avi= o (Yot
dt v
.'._71:—/1t+cl (2)
From the initial condition at t=0 v=v,, this tends to clz\_/—l.
0

Substitute into Eq. (2) we have
N P SN lv0t+1’ then

Y A % Vo
VO
e Avyt+1 (3)
The displacement from Eq. (3) given by
_ox__ Vo _ 1 ved _1
V=g T Avii — [dx= /ljﬂvot+1dt —>x_}bln(ﬂ,v0'[+1)+c2 (4)

From the initial condition at t=0 x=0, this tends to

0=%In(l(0)+1)+c2 - :%In(l):o and again in Eq. (4) we have

x:%ln(ﬂ,vot+1) (5)




Example:3- A particle moves in a straight line is subject to a resistance kv?,

where v is the velocity and «k is the constant. If the particle starts its motion

from the original point by initial velocity v, prove thatt= i+212 X,

Vo

v
v=—90 7
Vo Ax+1

Solution

m  Posifive direction

R=kv N
0 I

[

From the Newton's second law of motion

ma=—R (1)
But, R=kv®. Then in Eq. (1) becomes

ma=—-kv?, Ai=km — a=—AV?

v -y — N_ v — d—\2/=—/1dx
dx dx %
\O/I—\Z{:—/I_[dx —>_71:—/1x+c1 (2)

From the initial condition at t=0, x=0, v=v,, this tends to

_—1=—/I(0)+cl — ¢ = -1

Vo, 0
Substitute into Eq. (2) we have —2-ax- L 5 1_gye b _VeAx+l
v v, v A A
—_ VO
Y= VoAx+1 (3)

The displacement (distance) from Eq. (3) given by

_dx_ v _ _(L 2
V_dt_vo/lx+1 - J.vodt_J.(vOZXJrl)dx—) vot_(zvolx +xj+c2 (4)

From the initial condition at t=0, x=0 v=v,, this tends to

v0(0)=(%v0/1(0)2+(O))+c2 — ¢, =0

Substitute into Eq. (4) we have
x 1

vot:[£v02x2+x)+0—> P vo/lx2+iz—+—/1x2 Lot Xilape
2 2V, Vo, Vv, 2 A




2-Vertical motion under gravity with linear resistance
(i)- downwards (falling)

Example:4 - Determine the motion of a body (particle) falling under gravity
and the resistance of air being assumed proportional to the velocity.

Solution
t=0,y =0, V= 0 Initially
R

O T l After tem t

mg

+y  Positive direction

Taking the downward direction as positive, then the equation of motion will be

ma=mgj—-R 1)

Whereecomes b 1). Then Eqg. (k=miand if we put Rav - R=kv
o _adv dv. 1. —Adv _

ma=mg m/lv_mdt_—> Ig—/lv_jdt — /Ifg—/lv_jdt

.'.—%In(g —AV)=t+c, (2)

From the initial conditionat t=0, y=0 v =0, this tends to

—lln(g)=c1 and substituting in Eq. (2) we have—lln(g —;w):t—lln(g)

A A A
{In(g —Av)-In(Q) }:—ﬂ,t
|n{9—/1V}=_M L 97V oAt g jy—ge M
g g
cy_ Y94 oAt
..v_ﬂ(l e ") 3)

This equation gives the velocity at any instant (moment). If the time increases to
infinity, then v =% that is called the terminal velocity.

The displacement (distance) from Eq. (3) given by

_dy_g,. a-at (94 oAt 9, la-at
== a-e )—>J‘dy—jz(1 et »y="(+— e e, (4)




From the initial condition at t=0, y=0, this tends to
1 - 1 .
0:%(0+Ze O)+c2 — %(O+Z)+C2 — CZ:—% and into Eq. (4)

1 t -
y=%(t+?e M)—% ,then -y= %—%(1—9 ) (5)

Example:5- Determine the motion of a body falling under gravity and the
resistance of air being assumed proportional to the square of the velocity.
Solution
Taking the downward direction as positive, then the equation of motion will be
ma=mg—R (1)
Where. Then Eq. (1) becomes k=miand if we put Rav — R=kv?
ma=mg-mAv’> Or a=g-Av’
Where a=vd—v, then
dy
v EIAY o (=1l 5%1%%%%¥=nw
..In(g AV? )_—2/1y+cl (2)
From the initial conditionat t=0, y=0 v=0, this tends toln(g)=c,

and into Eq. (2), we have
In(g —Av?)=—21y+In(g)

yzf%m(gfafj ©

To determine the time from Eqg. (2) and where, then a:d—v

- .
i “f”(f{mj

\/atanh 1{\/7v}—gt+c2 (4)

From the initial conditionat t=0, y=0 v =0, this tends to

tanh‘l{ \/% (0)} =¢, =¢, =0 and again in Eq. (4) we have

tanh‘l{\/zv}:gt, then tzi\/gtan‘l{\/zv} (5)
g gVi g

@

@




(11) Upwards

Example: 6- A body is projected vertically upwards with v, speed in a medium that
exerts a drag-force kv, where k is a positive constant and v is the velocity of the body.
Find the maximum height achieved by the body, the time taken to reach that height?

Solution

Positive direction

ty

O l ] After tem t

R Mg

t=0,y=0,v=yv,

Initially

On including the linear resistance force, the scalar equation of motion becomes
ma=mg—R
Where R =kv, then the Equation of motions becomes

dv dv k dv k

ma=-mg-Kkv=m— sa=—=-0g—— T ——(g+AV), A=—

R S M m
dv dv
—=—[(g+4AV) > =—[dt >
Idt [(g+4v) jg+/1v ]
.'.%ln(g‘Fﬂ,V):—t-f-Cl (1)
From the initial condition at t=0, v=v,, then
—%In(g+kv0):cl (2)

Substitute from (2) into one we find that
—%In(g +/1v)=t—%ln(g L av,)

{In(g £AV)-In(g+Av,) }:_m

In{ g+/1v}: -At - g+Av et g+/1v:(g+/1vo)e_’1t

g+Av, g+Av,
... 9.1 —At o a—At 0 —it
- v_—z+z(g +Av,)€ =y, e —Z(l—e ) (3)

For the displacement from (3) we have

v=Pove S (1e ) o fay= [ vee =16 |




A A A
Again, From the initial condition at t=0, y=0, then

y:—ﬁe_“—g(uie_“j+c2 (4)

0=—ﬂe‘(0)—E[(0)+ie‘((’)j+(~,2 SN T NP L
A A P

A A A X
y:—Xieﬂ“—g{t+ie_Mj+lﬁ+ﬁ%

A A A A A
Syt —/u) g
..y:?(g+lv0)(l—e —zt (5)

when the body is stop to the move vertically upwards, in this case v=0
v:%{@4nh%)€%l—g}:0—a (g+Av,)e*_g=0

eAt__ 9 o e’lt:—g—till/2 —>ﬂlzln{£ltjfﬁJ
g+Av, g

g
Then, the arrival time of maximum height
1 g+Av
tmax—z'n(—g j ©)

Substitution from Eq. (6) into Eq. (5), then the maximum height achieved by the body is
given by

_J1 At 9. )1 9 91 [ g+4vg
o= | (0 200 e L (g1 - S| 9|

1 +Av 1 +Av
a2 S} %) (g2, S 222

v +Av
ymax:_o_%ln J 0
A A g

10




Chapter: 2
Projectiles

Definition Any object released into the air is called a projectile. Or a projectile is an
object upon which the only force acting is gravity.

There are a variety of examples of projectiles. An object dropped from rest is a
projectile (provided that the influence of air resistance is negligible). An object that is
thrown vertically upward is also a projectile (provided that the influence of air resistance
Is negligible). And an object which is thrown upward at an angle to the horizontal is also
a projectile (provided that the influence of air resistance is negligible). A projectile is
any object that once projected or dropped continues in motion by its own inertia and is
influenced only by the downward force of gravity.

Other examples:

(1) A ball after it has been thrown or hit

(2) A human body when jumping or diving

All projectiles have a “parabolic” flight path.

Trajectory = the flight path of a projectile.

The trajectory of a projectile consists of a vertical and horizontal component.

In the projectile motion the object moves in a bilaterally symmetrical, parabolic path.
The path that the object follows is called its trajectory. Projectile motion only occurs
when there is one force applied at the beginning on the trajectory, after which the only
interference is from gravity. In a previous atom we discussed what the various
components of an object in projectile motion are. In this atom we will discuss the basic
equations that go along with them in the special case in which the projectile initial
positions are null .

How do we handle 2D projectile motion mathematically?

One of the easiest ways to deal with 2D projectile motion is to just analyze the motion in

each direction separately. In other words, we will use one set of equations to describe

11




the horizontal motion of the lime, and another set of equations to describe the vertical
motion of the lime. This turns a single difficult 2D problem into two simpler 1D
problems. We're able to do this since the change in the vertical velocity of the lime does
not affect the horizontal velocity of the lime. Similarly, throwing the lime with a large
horizontal velocity does not affect the vertical acceleration of the lime. In other words, if
you fire a bullet horizontally and drop a bullet at the same time, they will hit the ground

at the same time.

y Vv
_ (xy)
El] ~~ _ Flight path
mg N

~
~

without air drag "\ .

Fling to the top

When a particle is projected obliquely near the earth’s surface, it moves simultaneously
in the direction of horizontal and vertical. The motion of such a particle is called
Projectile Motion. In the above diagram, where a particle is projected at an angle «,

with an initial velocity v,. For this particular case, we will study the motion in two

direction (horizontal and vertical)

For the particular, we will calculate the following:
1- The velocity at any time “t ““ during the motion.

2- Time of reach maximum height

3-The maximum height reached during the motion.
4-Time of flight or total time

5-The horizontal distance (Range)

Horizontal direction:

There's no acceleration in the horizontal direction since gravity does not pull projectiles

sideways, only downward. Air resistance would cause a horizontal acceleration, slowing

12




the horizontal motion, but since we're going to only consider cases where air resistance
Is negligible we can assume that the horizontal velocity is constant for a projectile. So
for the horizontal direction we can use the following equation

mx=0 Or %X=0 (1)

Integration Eq. (1), we have  x =%: 0 — X=¢

From the initial conditionat t=0 — X _ =v,cosa — ¢, =v,cosa. Then
X =V,CoSa @)
Integration Eq. (2), we have Xx=v,t cosa +c,

From the initial conditionat t=0, x=0 — ,then c,

Il
o

X =V, tcosa 3)

Vertical direction:

Two-dimensional projectiles experience a constant downward acceleration due to
gravity. Since the vertical acceleration is constant, we can solve for a vertical variable

with one of the four kinematic formulas which are shown below.
my=-mg Or y=-g (4)

) . dy .
Integration Eq. (4), we have yzaz—g — y=—0t+c,
From the initial conditionat t=0, y| _ =v,sina — c,=v,sina. Then
Y =V,sina — gt 5)
Integration Eq. (5), we have y=v,t Sina—%gtz +C,
From the initial conditionat t=0, y=0, — ¢,=0.Then

y:votsinoz—%gt2 (6)

15




The properties of projectile

(1) Parametric Equation

From Eq. (3), we find t= X__ and substitute in Eq.(6), we get
V, COSa
1 1 x Y sina gx
=V, tsina-=gt’=v sinag—= = X—
y=Votsina=39 O[vo cowj “72 g[vo cowj cosa 2vicos’a

2

y=xtana — ngxz sec’ o (7)

0

2- Time of reach maximum height

The time is taken to reach the maximum point is called the time of reach maximum

height. The maximum height is reached when (y* =0). Using this we can rearrange the

velocity equation to find the time it will take for the object to reach maximum height. At

the maximum point, the vertical velocity will vanish, i.e.

y" =Vv,sina—gt=0. Then the time of reach maximum height given by

V, .
t =t=-Lsina (8)

y: ymax g

3-The maximum height (Greatest Height)

The maximum vertical distance to which the particle reaches during the motion is called
the maximum height.
Substitute from Eq. (8) into Eq. (6), we have

y=v, (VoSN Ging — L g (VoSIN@y2 than
2 g
2
Y :h:;/—;sinza (Maximum Height Formula) (9)

. i v Ve
Note, at the maximum height (x, , V... )= ﬁsta, ismza .

14




4-Time of flight (Total time of the whole journey)

The time of flight of a projectile motion is the time from when the object is projected to
the time it reaches the surface. Or, the total time for which the projectile remains in the

air is called the time of flight. In this case the projectile is fall on the x- axis, I. e.

(y=0), y:votsina—%gtzzo — t=0,0r

vV, .
t=2-"Lsina .
g

So the total time is given by

T :Z%Sina (10)

5-Range
The range of the motion is fixed by the condition (y =0). Using this we can rearrange
the parabolic motion equation to find the range of the motion

2 o1 2
R 2vgsina COSA _ Vo ¢inoy (11)
9 9

6. The same property Range

If we throw (fling) an object by the same initial velocity and with the two angles « gn(d

%—a. From Eq. (11), we find that

V2
R, :?"sin 2a (12)

2 2 2
Again in Eq. (11) R, = —°sin2(Z - a) = O sin(7— 2a) = —°{sinzcos2a — cosz sin2a +.Then
g 2 g g |5 R

0 -1
2

R, :%sin 20 (13)

From Eqgs. (12) and (13), some note that, the same range happens at « gnd %—a. For

_ﬁﬁ

example, ata =30°, « =60° , we have the same range  R,=R .

15




6. The maximum Range

From Eqg. (11) the maximum Range happens at sin2a=1. In this case

2

R =Y and ==,
29 4

7. The velocity at any point

From Eq. (2) and Eq. (5), we have, respectively.
x* = v} cos’ «a,
y? = (v,sina — gt)’ = v2sin’a — 2gtv,sina +(gt)’

=V sina — Zg(votsina —%gtzj: visin®a—2gYy,

Then v =+/%*+y? = V2 cos’ a +V2sin’a —2g y = /v2( cos’ a +sin’ )29 y
v=,V5-2gy (14)

The direction of velocity is given by

V, COSa V, COSa
tant9—— 0 0

y \/» J,sine — gt \/V sin®a —2gy

tang =+ Yo 008 (15)
\/vosm a—-29Yy

Also, it take the formula

C0SO =+ 20 coSa (16)

CJVi-2gy

Example:1 Determine the angle of projection for which maximum height is equal to the

range of the projectile?

Solution
2 ainl
The maximum height y, ., = =V052'n «
g
2 - 2 -
The rangeR = 2V,SINaCosa _ V,Sin2a
g g
visina  2v2sinacosa sina B
02 =—2 - =2 cosa »>tana =4 — a =tan""(4)
g g

16




2
Example 2: Prove that the maximum range of the projectile is given by %, what is the

angle of projection for projectile to have maximum range?
Solution
2vgsinacosa _ vgsin2a

g g
Where g and v; are constants, so the maximum range verified when sin2« is the

The rangeR =

greatest possible, that it will be at sin2a =1 — 2a = %—> a= % = 45°

2

So, the maximum range of the projectile given by %

Example 3: A Jumper leaves the ground at an angle of 20° above the horizontal and at a
speed of v, =11m/sec

(A) What is the maximum height reached?

(B) How far does he jump in the horizontal direction and the necessary time for that?

Solution

The maximum height (Greatest Height or Maximum Height Formula ) of the jumper given
by
Voo _ A7 oo (A1) . _ (19° _
Vo, =N= 2 sin“a 29.8) (sin207) 196 (0.342) 196 (0.116964)
" You =0.722m
The range of the jumper given by :

2 2 2
R="0sin2q = -V ginage = LD 064279 =
g 9.8 9.8

14.152644
19.6

o _ 7.94m

Time of Flight T = 2 Yo ging :%sinZOo =%(0.342) :w =0.7677sec
g : : :

Example 4: A place kicker must kick a football from a point 36 m from the goal. Half
the crowd hopes the ball will clear the crossbar, which is 3.05 meters high. When
kicked, the ball leaves the ground with a speed of 20 m/s and an angle of 53 degrees

above the horizontal.

17




(@) By how much does the ball clear or fall short of the crossbar?

(b) Does the ball approach the crossbar while still rising or while falling?
Solution

Assume air resistance is negligible, Assume no rotation of the ball.

The horizontal distance is x=36m , The initial velocity is v, =20 m/sec
The angle of initial velocity speed is «=53°m

(@) Then the vertical distance is at x=36m

2 2

gX

gXx )
g 2v;cos’ a y 2v?
2 2

2vicos’a’ 2(20)? (cos53)°

9.8(36)° _, 4, _ 9.8(1299

y =(36) (1.327) -

2(20)2(0.6012)% - 2(400)(0.3622)
=47.77—- 127008 _ 47.77—-43.8321=3.93m
289.76
. y=3.93m

Then the football will pass over the crossbar with a distance of 3.93-3.05=88cm

2
Then will falling at R = %sin 2a =%sin(106) =%(0.96126) :%58046 ~39.2351m

(b) In order to the football barely makes it over the bar or descending

y=v0tsina—%gt2 N 3.05:(20)tsin(53)—%(9.8)t2—> 3.05=(20)t(0.7986)—%(9.8)t2

4.9t°-159727t+3.05=0 — t= ﬁ[w.wzm J@5.9727F —4(4.9)(3.05)}
1 1
t=——[15.9727++/2551274-59.78|= ——[15.9727+/195.3474
2(4.9)[ ] 2(4.9)[ ]

t=9—18[15.9727i13.97667]—> t= 2959;193:3.0563% or 1:99003

=0.2036sec

Then the football takes t =3.056 sec to arrive the

The corresponding horizontal distance given by
X=V,t cosa — Xx=(20)(3.05) cos(®3)=(61)(0.6018]) > x=36.71m

18




Example 5: A place kicker must kick a football from a point 33.8 m from a goal. As a
result of the Kkick, the ball must clear the crossbar, which is 3.05 m high. When kicked
the ball leaves the ground with a speed of 21.6 m/s at an angle of 53° to the horizontal.
(@) By how much does the ball clear or fall short of clearing the crossbar?

(b) Does the ball approach the crossbar while still rising, or falling? Prove your answer

mathematically.
Solution
Assume air resistance is negligible, Assume no rotation of the ball.
The horizontal distance is x=33.8 m
The initial velocity is v, =21.6 m/sec
The angle of initial velocity speed is a=53°m

Then the vertical distance is at x=33.8 m

2 2

gXx gX 2
=Xtana - ————— Or y=xtana - sec
y “ 2vicos’ a Y “ 2v2 “
2 2
Then y:xtana—% —  y=338tan53° - 9.8 (233'8) -
2V, Cos" a 2(21.6)" (cos53)
2
y=(33.8) (L.33) . 2<f.82(33.8)122 44,954 2 49.8(1142.44)22
(21.6) (0.6012) (466.56)(0.3622) . y=11.124m
=47.77—- M:44.954— 33.83=11.124m
337.976
The corresponding time given by X=v,tcosa
Then t= X 33.8 33.8 _33.8 _26 sec

v coSar (21.6)c0s53° (21.6)(0.6012) 12.9859

Example 6: A stone is thrown from the top of a building upward at an angle of 30.0° to
the horizontal with an initial speed of 20.0 m/s. The height from which the stone is
thrown is 45.0 m above the ground.

(A) How long does it take the stone to reach the ground and the horizontal distance
from the building ?

(B) What is the speed of the stone just before it strikes the ground?

19




Solution

v

;=20.0m/s

= 30.0° T~

i x

=
—
)

et
o
=}
=
-

o 1 o o o o

Analyze: We have the information y=—45m, v,=20m/sec, a =30°

The answer is required
(i) The horizontal distance until the stone falls to the ground
(i) Time taken until the stone falls to the ground

(iii) The speed of the stone just before it strikes the ground

2 2

(i) We know that, y = xtana — % = xtang — 2 X2 sec’a, then
2vycos o 2Vq
45— oy____ @Ox  _ o aox ook
A5 =Xtan(300) ~ S 07 cos@)E T 220 0866 O X 2(200)(0.75)
G X2 2
~45=(05TT)x= o ioas = ~(49)=(057T) x— > ~(45) (60)=(05TD(60) x~ X

x? —34.62x—2700=0

L (3462)+ J(34.62)? + (4)(2700)  (34.62)++/11985444+10800

2 2
_ (34.62)+4119985444  (34.62)+109.5378 144.1578
2 2 2

X=72.078m
(ii) The time given by x=v,tcosa

X 72078 72078 72078

= = 5 = =4.161sec
V,cosa 20cos30” 20(0.866025 17.32

20




Another Solution

We know that y:votsina—%gtz = —45=(20)t sinSOO—%(lo)tZ

—45=(20)t%—%(10)t2 = —450=10t-5t* = —90=2t-t*

t?-2t—-9=0

+./(2)? +./ N
t=2_ (2)2+(4)(9) =2_ 4;(4)(9) =2J_r221+9 1+ 10 21+ 3.16
t=4.16sec

{D) ()’(, y ):(vo cosa, V,sina — gt J

Before it strikes the ground the time is t =4.1sec, then

v= \/(Vo cosa)? +(v, sina - gt)? = \/( 20c0s30°)?2 +(20sin30° —10t)?

= \/(20 (0.866))? +(20sin(0.5) —10 (4.1))> = \/(17.32)2 +(10—41)
v=1/(17.32)? +(~31) = /300 + 961 = /1261 =35.51m/sec

Example 7: A fire fighter aims a fire hose upward, toward a fire in a skyscraper. The
water leaving the hose has a velocity of 32.0 m/s. If the fire fighter holds the hose at an

angle of 78.5°, what is the maximum height of the water stream?
Solution

Analyze: We have the information, v,=32m/sec, a =78.5°

The answer is required

(i) The maximum height of the water stream

(it) Time taken until the stone falls to the ground

(iii) The speed of the stone just before it strikes the ground

Vo —h- visina  (32)%(sin785°)2  (32)%(0.9799°  (1024)(0.96025  983.296
max. 29 2(9.8) 19.6 19.6 196 The

Y., =50.16m

maximum height of the water from the hose is 50.2 m.
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Example:8 A projectile is thrown from the top of a building 160 m m high, at an angle of
30° with the horizontal at a speed of 40 m/s 40, find
(i) Time of flight, (ii) Horizontal distance covered at the end of journey

(iii) The maximum height of the projectile above the ground.

Solution

u = 40[m/s

160 m

2 2
gX _ gX
> = Xtano — >

2
2V, Cos” o 2Vg

(i) We know that, y = xtana — sec’ ., then

(10) x* B
2(40)? (cos(30°))?

__@ox = (0577 x— 20X X"
(3200) (0.866) (3200) (0.75)

—~160=xtan(30°) - x(0.577) -

2 2

(320))((075) — —160=(0.577) x- ﬁ% —160(240) =(0.577) (240) x — x*
x* —138.48x—2700=0

~160=(0.577)x—

L (3462) J(34.62)? + (4)(2700)  (34.62)++/11985444+10800

2 2
_ (34.62)++/119985444  (34.62)+109.5378 144.1578
2 2 2
X=72.078m
(ii) The time given by x=v,tcosa
. X _ 72078 _ 72078 72078 _, ..

v cosz 20c0s30°  20(0.866025  17.32

Another Solution

We know that y =v,t sina—%gtz
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—45=(20)t sin30° —%(1O)t2
—45:(20)t%—%(10)t2 — —450=10t-5t* = —90=2tt
t?-2t-9=0

2 (2)22+(4)(9) 2« 4;(4>(9) =2i2V21+9 ~1+10=1+3.16

t=4.16sec
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Chapter: 3 Mechanics of Rigid body
Definition of the Rigid body

In physics, a rigid body is a solid body in which deformation is zero or so small it can be

neglected. The distance between any two given points on a rigid body remains constant
in time regardless of external forces exerted on it. A rigid body is usually considered as
a continuous distribution of mass.

Definition of moment of inertia
Physical; A measure of the resistance of a body to angular acceleration about a

given axis

Mathematic; The Moment of Inertia is equal to the sum of the products of each
element of mass in the body and the square of the element's distance from the axis.
It is defined as the sum of second moment of area of individual section about an
axis

(1) The basic shapes

(2) Systems of particles

(3) Composite bodies (shapes)

(4) Uninform shapes

The Moment of Inertia of masses

The mass moment of inertia about a fixed axis is the property of a body that measures
the body's resilience to rotational acceleration. The greater its value, the greater the
moment required to provide a given acceleration about a fixed pivot. The moment of
inertia must be specified with respect to a chosen axis of rotation.

(1)- For a single mass, the moment of inertia can is expressed as
For the element dm that is located a distance a from the L -axis, the Moment of inertia
referenced to L -axis is given as

24




Fig. 1
I, =dma’

(2)- If a system consists of n-bodies, then the moment of inertia can be given as
For the n-elements, they have the mass dm, dm,, dm,,......,dm, that is located a distance

a from the L -axis, the moment of inertia referenced to L -axis is given as
dn,

dm, .
3

Q dm,

a, ?
] a, s a
I
| | | .

Fig. 2

n
I, =dma’ +dm,a’ +dm,a +............ +dm,al =) dm a’
i=1

(3)- The Moment of Inertia in the plane

,1.

dm
X
»
y
O [
Fig. 3
Referenced to x-axis is given by I, =dmy?
Referenced to y -axis is given by I, =dmx?,

Referenced to the original point (O) is given by
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lo =dmr? =m(x* +y?) =1l +1,,
I, is called Polar moment inertial
(4)- The Moment of Inertia in the plane for number of elements

Y

dm,
X dm
L O . 2 dm,

- v

X dm
s D X, ﬁ) "
L x
Fig. 4
Referenced to x-axis is given by I, = Zn:dmi y?
i=1
Referenced to y -axis is given by L, =Zn“dmi x?
i=1
(4)- The Moment of Inertia in space
|
m
Yy
- -
0 ]
x
.1.
X Fig. 5
Referenced to the original point (O) is given by
lo =mr? =m(x* +y* +2°) 1)
Referenced to x-axis is given by I, =m(y* +2%),
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Referenced to y -axis is given by l,, =m(x* +2%),

Referenced to z-axis is given by I =m(x*+y?),

Referenced to the plane-x=0 is given by I, =m(y* +2°%),

Referenced to the plane I, =m(x*+2°), is given by ~y=0
Referenced to the plane z=0 is given by I, =m(x*+Yy?),

From previous relation, we have

2 2 2 2
l,=mr =mX +y +z°) =1, +1,+1,

21 =1 +1, or Io=mr2=m(x2+y2+zz)=%(lxx+IW+IZZ)

o Xx+Iyy

Ixx = m(y2 + 22) = Ixoy + Ixoz
Iyy:m(x2+zz):lxoy+lyoz
Izz :m(X2 + yZ) = Ixoz + Iyoz
Parallel axis theorem

Parallel axis theorem is applicable to bodies of any shape. The theorem of parallel axis

states that the moment of inertia of a body about an axis parallel to an axis passing
through the centre of mass is equal to the sum of the moment of inertia of body about an
axis passing through centre of mass and product of mass and square of the distance
between the two axes. The parallel axis theorem is much easier to understand in

equation form than in words. Here it is:

Rotation Axis through
axis center of mass
L/ A S/

d




In physics, the parallel axis theorem can be used to determine the moment of inertia of a
rigid object about any axis, given the moment of inertia of the object about the parallel
axis through the object's center of mass and the perpendicular distance between the axes.

We consider an element (m) and its center is (x ) (see below Figure)

cm ! ycm

Fig. 7
dl,, =dmy?, the moment of inertial with respect to x- axis
dl,, =dmx?, the moment of inertial with respect to y- axis
dly =dmr?=1_+1, =dm(x*+y?*), the moment of inertial with respect to the point(o)
Iy =jr2dm=j (X% + y?)dm (1)
I :Ir’zdm:I (X% +y'*)dm (2

X=X +Xgy Y=Y + Yo

lo = [ r*dm=| {(m X, jz +(y'+ Yo jz}dm

:j {x'z + X 22X X, Y Y +2Y' Y, }dm

g :J‘(x’2 +y"? jdm+_|-(xfm +Y2 jdm+ 2xcmjx’dm+ 2ycm.[y'dm

[ —
Icrn _d2

Ig =1, +_[d2dm+2xcmj'x’dr;1+2ycm_[y'dm

Io=1g, +dzj dm+2xcmfx’dm+2ycmfy’dm
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IozIcm+d2m+2xcmjx’dm+2ycmjy’dm (3)

—>jy'dmzyjdm 4)

lg=1,,+d’m+2x, Xm+2y_ym (5)

l, =1, +md? (6)
Question: Let 1, and 15 be moments of inertia of a body about two axes A and B
respectively. The axis A passes through the centre of mass of the body but B does not,

So.
(A) 1,<1g (B) 14>1g (C) If the axes are parallel 1, <1,

(D) If the axes are parallel 1, > 1, (E) If the axes are not parallel 1, >1,

The moment of inertia is always less for an axis passing through the center of mass than
any other parallel axis. We cannot say anything of the moment of inertia about a non

parallel axis. Thus C is correct.

Perpendicular Axis Theorem

This theorem is applicable only to the planar bodies. Bodies which are flat with very less
or negligible thickness. This theorem states that the moment of inertia of a planar body
about an axis perpendicular to its plane is equal to the sum of its moments of inertia about
two perpendicular axes concurrent with the perpendicular axis and lying in the plane of
the body.
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di, =dmy?, the moment of inertial with respect to x- axis

dl,, =dmx*, the moment of inertial with respect to y— axis

dly =dmr? =1 _+1, =dm(x* +y?),, the moment of inertial with respect to the point (o)
Iozj(x2+y2)dm=_[r2dm= rzjdmzrzm @

Izz=|><><+|yy (2)

Example:1 Find the Mass moment of inertia of a thin uniform rod about an

axis perpendicular to its length and passing through one of its ends. Also,

about an axis perpendicular to its length and passing through its center?
Solution

A A
T T
o

r

We consider L be the length of the Rod, M be the mass of the Rod and is the density

p. We divided the Rod into many small elements. We select one of them, that has

length dx, mass dm and has the distance x from the left end of the Rod

L
For the small element dm:pdx—>m:J.0Lde:pjo dx =px, - m=pL

dm= pdx

- Y _— .-
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|~J|I““1
v |t

~—X —=a

The moment of inertia about its end is given by

I S T L 21 s 1 s m 1 . P
IW_dem_jox(pdx)_gpL —§pL pL3_§mL ..Iyy_gmL

This the moment of inertia of a thin uniform rod about an axis perpendicular to its length

and passing through one of its ends.

The moment of inertia of a thin uniform rod about an axis perpendicular to its length and

passing through its center. From the Parallel axis theorem

2 2
IW:Iy,y,+m(1Lj —>1mL2:Iy,y,+m(le - Iy,y,=1mL2—1mL2:(Ll—_:J’ijzzlmL2
2 3 2 3 4 12 12
: 1 2
. |y,y,:EmL

The moment of inertia about its other end

2 2
|,,,,=im|_2+m E|_ :im|_2+1m|_2=E LzzimLzl,,,,:l,,+m 1|_ —
Y12 2 12 4 12 12 vyl 2
) 1
. |y”y”=§mL

Note: The moment of inertia for a thin uniform Rod that rotates about the axis

perpendicular to the rod and passing through one end is %mLZ . If the axis of rotation

passes through the center of the Rod, then the moment of inertia iS%mLZ.

Problem: Determine the Mass moment of inertia for a uniform rod with
negligible thickness about its end if the Rod makes angle with the axis
rotation?

Example 2: Find the Mass moment of inertia of a thin uniform rectangular

plate about its base and its one of edges axes?
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Solution

We consider a uniform strip with the length (dx) and thickness (dy) as shown in below
Figure, where the density isp .

Rectangle

a

- a -

b a
dm=pdxdy —>m = p[[dxdy —» m=pab . The moment of inertia about its corner is given
00

3
by dI,, = x*dm = p x* dxdy elwzpﬁﬂxzdxdy:p{%} [v]o = 3 PP
0

. 1
.Iwzgma

If we select a vertical strip (sector, section), we have

X_ST ba’ ba® m

a
dl, =x’dm=px*(bdx) — 1, =pb|x* dx=pb = =
” px* (bdx) ng 3] =3P
N 1Y
yy_gma Iy =1, +m Ea -
1 ? 1 4-3 1
“ma’= +m| Za| -»l.. =—ma*-=ma’=| — | ma®*=-—ma’
vy 4 12 12
yy = émaz Similarly, if we select a horizontal strip, we can prove that
Ixlembz, IX,X,:imb2
3 12
TN 1 1 2 1 2 1 2 2
For axis is perpendicular ox,oy 1, =|XX+|W=§mb +3ma =§m(a +b?)
For axis is perpendicular ox,oy": 1, ,=1, +1 —imb2+ima2—im(a2+b2)
Perp O g = hee Ty = 15 12 12
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The moment of inertia about its corner is given by (Mass moment of inertia)

1 1 1 1 1
| ==mb®= =(ab)b® ==ab?, | ==ba’ | =1_+1_ ==ab(a*+b?
o= gMmb’ = _(ab)b® = v=3 o= byt 1, =;ab(@’ +b?)
1 =Lap, | = Lpa ly =l +1, =—ab(a® +b?)
xx 12 yy 12 12
Uniform rectangular Axis coincides with Axis passing through Axis coincides to
plate (a,b) one of its sides its centroid other side
With respect toaxis Iyy - |yy = %ma2 |y,y, = éma2 |y,,y” = %ma2
i is | I, = L b? ., = L b? I = L b?
With respect toaxis |,, — = gm WX = Em N §m
With respect to axis 1 1 1
perpendicular to the l,, = 3 m(a® +b?) o = Em(a2 +b%) | 1,y ==m(a’+b?)
plane oxy

Example 3: Determine the mass moment of inertia for right Triangular Plate
(Right-angled triangle)?
Solution

We consider a uniform strip with the length (x)and thickness (dy), such that it is parallel

to x - axis, asshown in below Figure. Then

h h 2h 2
dm:pxdy—>m:p'fxdy:p'[a(l—%)dy:ap{y—y—} :ap{h—h—}a m=1anhp
0 0

2h |, 2h 2
.1.
3
Right-Tringale
4 1(0.h) o
XX _ V=N N J_'—(.rzjr—O
Nn-X VW O-a h-0
y
dm 7 d B _a(l_E)
h 1 ay
X 0
I X .
L, : \
B .
(0,0)@ . (a.0)
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Then moment of Inertia with respect to x - axis:

h
dl, =y’dm=pxy’dy — Ixxzpjxyzdy , but §+%:1 — x:a(l—%)
0

3

h h 3 4h
Yy .2 2 Y y© Y
Iy =p|lald-=)y dy=pa| (Y -=-) dy=pa{———}
! h ! h 3 4h

° = Imp?
3 4 Sl ==
l,=pa b :ipahe’(4—3):ipah3 m zlmhz 6
3 4h| 12 12 1in, ©
Sahp
2
Then moment of Inertia with respect to x' — axis:
2
=1, +m Ihl S Ly :lmhz—lmhzzimhz(?,—Z):imh2 I LI
3 6 9 18 18 18
Then moment of Inertia with respect to x” - axis:
2
L=, +m(ghj L2 = Lmneaeg) =2 mi? | —=mh?
3 18 9 18 18 2
Also, IW:%maz, Iy,y,:%maz, |y :%maz.
_ _ 1 2 1 2_1 2 2 _ _ 1 2 1 2 _ 1 2 2
IZZ_IXX+IW_gma +gmh _Em(a +h?) IZ,Z,_IX,X,+Iy,y,_1—8ma +Emh _Em(a +h?)

Again, |, = %m(oo’)2

where %(oo')AB , AB=,/(0—a)? +(h—0)? =va>+h?

1 ?h? 1 1 1 h
|5 =—=m(00")? :%m ,Also —ah==(00")AB ==(00")va’+h?* > 00’ = _an
6 6(a’+h?) 2 2 2 JaZ+n?
Right Triangular Plat . i _
of r:?eightnf?ns:dabrassaae About its corner About I,;Sa(s:gmer of About its vertex
. 1 1 1
About its base I = Emh2 e =Emh2 |y :Emhz
. . 1 1 1
About its height l, = 6ma2 = Ema2 |y = Ema2
About vertical axis l,, = %m @+h* | 1,, = % M(@® +h) |ty =gm@a ), 1, - sm(a+307)

Example 4: The Mass Moment of inertia of acute triangular plate?
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Solution

We divide the acute triangular plate to two right triangular plate as is shown in Figure
y

Acute-Tringale

L m,

a

The Moment of inertia of about x - axis for the two right triangular plate is given as

1 1
(Ixx)lzgmlhzi (Ixx)zzgmzh21

For the acute triangular plate

1 1 1 1
IXX =(IXX)l—'—( |>o<)2 =Emlh2 + Emz h2 =E(m1+ mz)h2=gmh2

Example 5: The Mass Moment of inertia of Obtuse triangular plate?
Solution

We divided the obtuse triangular plate to two right- triangular plate as is shown below
Figure

Obtuse-Tringale
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The Moment of inertia of about x - axis for the two right triangular plate is given as

1 1
(Ixx)ABD:g(ml"'mz)hz’ (Ixx)csozgmzh2

For the acute triangular plate

1 1 1
(1) nec =(|xx)ABD +(Ixx)CBD :E(m1+ mz)hz _Emz h? =Em1h2

Example 6 : Find the Mass Moment of inertia of right- triangular plate as is
shown in figure about all different axes?

Solution
y
[
Right-Tringale
B -
- X
5
h=4
T \—- .X.
| \ >
o - C
a=>—— "
212
From the Figure it is clear that Ixlemhz, |W:1ma2, BC :%m
6 6 6(a”+h%)
Ixx=1mh2=1m(4)2=Em=§m, |W:1ma2:1m(3)2:gm:§m
6 6 6 3 6 6 6 2

L L N © O S O [ O N O [P 7
6(@>+h?)  6(B)°+(4)?) 6(9+16)  6(25) 25

Note that 3<4<5, | =§m>lyy:gm> —Z—gm

XX IBC -

Example 7: The Mass Moment of inertia of Circular Ring?

Solution
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We select a small element has the mass dm at any point located at distance (x,y) from

the origin point

. m, dm=apdé
| « o
\ R~ . 1 —~ .
' N | dd a lykeasmé
| \ | —~—
" r_\ y o x
= x=acosf

The Moment of inertia about z —axis (The axis is passing through the center (z-axis) and
Is perpendicular to the Ring) is given as
2

=a m

y24

dl, =a%dm......... I, =[a’dm=a’[dm > |
0

From the Perpendicular axis theorem (Here, the distance between the tangent and the

diameterisa) I,,=1,+1, .S0 1, +1, ,=ma’

* 1%

But 1, and I, are symmetric,so I, =1, , Then

XX

2

w =1y (The moment of inertia of a ring about of its diameter or the axis passes through the

I, =1 :lma
2
diameter)

. 1 1
From the parallel axis theorem 1, =1, ,+ma’— |, =-ma’+ma*— I, =-ma’
2 2

1 1
Lo =y +ma’ - L :Ema2+ma2 = b =-ma?

Moment of inertia about an axis is passing through the edge of Ring and perpendicular
to its plane and parallel an axis is passing through the center (z-axis) and is
perpendicular to the Ring

|, , =l +ma’—>1, , =ma’*+ma* -1, , =2ma’
1 1 1

3/




Circular Ring For Vertical axis About axis in the plane of Circular Ring and passes in the its center
The moment of inertia of the ring about of its diameter

Axis of 2
g —ma2 l,, =1, ==ma
rotation l,, =ma XTI T,
AXxis of 2 _ _3
rotation l,,, =2ma Iy = Iy,y, =3 ma

Example 8: Find the Mass Moment of inertia of Circular area ?

Solution
We divided the Circular area to the small Circular Rings, we selected one of them has

mass (dm),thickness (dr) and raids (r).

a Kﬂl‘r
P
X

]

a

=ra’p

a 2
S0,dm=2zrpdr —» m=2;;,o_[ rdr —>m=27zp%
0

0

42 4 4 4
27pr | _zmpda’ _mpa’m _zpa’ m

1, IJ.I’deIJ-I’Z(Zﬂ'I'de’) :27rpj'r3dr:
0

4 | 2 2 m 2 za’p
1 >
I _=—-—ma
2z 2
From the Perpendicular axis theorem
1
I, =l,+1, .S0 IXX+IW=Ema :
: 1
But 1,1, are symmetric,so 1,=1,. Then |XX=|W=Zma2
Circular area For Vertical axis R o oot it i conor
Axis of 1 5 1
) .. =—ma lyw =1,y =—mMa
rotation 9 XOW Ty
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Axis of 3 5 _5 )
rotation 17 o X'y g

Example 9: Find the Moment of inertia of Thin Disc?

Solution

We divide the solid Disc to the small Circular Rings, we selected one of them has mass

(dm),thickness (dr),distraction thickness (Az) and raids (r).

y Thin Circular disk

] 2 | 2 3 2
Io=1ly=3mr® I.=3smr® [..=%5mr

WA
=S
=
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a 2@
dm=2zrpAzdr - m :ZzszzJ. rdr ->m= anAz% =ra’pAz
0 0
So, the Moment of inertia of thin Disc is
rtf a’
l, =J. r? dm=_|. r? (Zfrr,oAzdr)=27r,oAzja r3dr=27rpAzZ =7rpAZ7
0
0

_7Z'pa4m_72'pA2a4 m 1

I 5 - l,=-ma
2 m 2 rma‘pAz 2

z

2z

From the Parallel axis theorem 1, =1_+ma*— 1, = gma

From the Perpendicular axis theorem 1, =1, +1,.S0 I+l ,=-ma

1

H 2
But I,,1, aresymmetric,so I, =1, . Then IXX:IW:Zma

yy

Example: 10: Derive the Mass moment of inertia of Hollow Cylinder?
Solution

Take the hollow cylinder as the corresponding shape, divide it into an infinite number of

regular circular rings and take one of these rings with the mass (dm) and the radius (a).

y
Then the moment of inertia of this ring is given as  dl,, =a’dm.

Then, the total moment of Hollow Cylinder
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2z 2z

m
I :J.azdm:ma2 — |_=ma
0

Example: 11: Derive the Mass moment of inertia of Solid Cylinder?

Solution

We divided the Solid Cylinder it into an infinite number of thin discs and take one of

these discs with the mass (dm) and the radius (a).

7 .
Q

\
3
/

X
Then the moment of inertia of this disc is given as. dl =%a2 dm. Then the total moment

m

of Hollow Cylinder 1, :j%azdm :%maz - 1, :%maz
0

Example: 11: Derive the Mass moment of inertia of Hollow Sphere?

Solution

a1




R sind
LI R

0.4 do

We divided the Hollow Sphere into a number of small circular rings and we consider

one of them with the mass (dm), the radius (y) and thickness (dz).

dm=27yp dz=2z(asinf)p add ->m= Zﬂpar sinfdd —-m=-27p a’ cos@‘
=-27 p a*(cos(z)—cos(0) ) =-27 p a*(-1-1)= 27rpa (1+1)==4rp a’

The moment of inertia of this circular ring is given as dl,, =y?*dm.

Then the total moment of Hollow Cylinder 1, :Iyzdm, then

:I yzdm:27zpa4_r (sin)zsianH:ana“Lr (1—005249)sin¢9d¢9J
0 0

=272'pa{_r sin ede—j" (cos )’ d (-sin )

0

=2rpa’ —cose+%(cose)3} ’ =2rpa’ —cos(z)+= (cos(n)) {—cos(0)+ (cos(0)) H

1 1 1.1 _2|_8_
=2rpall l+=—1-1+=¢|=2zpafl 1+=+1-= | =27paf 2-=|=—
IZZ:§7r,oa4 m2 _Zima? Then IZZ:

3 4ra’p 3 3"
For the symmetric of axes 1, =1,=1, :%ma2

Also, we know I, +1,, +1, =21,
21, _Zma?+2ma’ + 2ma? = Sma? = 2ma?
3 3 3 3

| =ma?

0
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Example: 12: Derive the Mass moment of inertia of Solid Sphere?

Solution

S
S AN,

We divided the solid sphere into a number of hollow sphere and take one of these sphere

with mass (dm), radius (r) and thickness (dr). Then the moment inertia of this sphere

around oz axisis dl,, =§(dm)r2, for whole sphere the moment inertia is given as

:jg(dm)r2 , Where dm=4zr’pdr— m=47rpj r’ dr=%7z a’p. Then
0

2 a2 8 8 r|' s
=|=(dm)r? = |=(4xr? dr ==~z plrtdr==—x p—| =—7x pa°
I3()£3 p 3’0! 3775 "157 7
|u=§ﬂpasm 87rpa M _Zma  Then |zz=3ma2
15 m 15 4 3 5 5
3
Where the axes are Symmetrical 1, =1,=1, :émaz
Also I +1 +1_=21, Then 21, :zma2+gma2+gma2:§ma2|O:§ma2
y 5 5 5 5 5

Another solution
Dividing the solid sphere into a number of small disks and taking one of these disks with

mass (dm), radius (y ) and thickness (dz). The moment of inertial of this disc is around

the oz -axis is given by dl, = %(dm) y?

For the whole solid sphere is given 1,, = J%(dm) y’?
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1

|ZZ:j%(dm)y2=j2

—a

(7zy2,odz)y2 :%ﬂpiy“dz :%ﬂpj(yz)zdz :%ﬂpj(az —7%)?dz

1 % 0 o224 1 o 255 1.
== a*—2a“z°+z)dz== a‘z——-a“z°+=z
27rpfa( ) 2”/{ ; =3

:17[10 a5_ga5+1a5 — _a5+3a5_la5 :lﬂ-p a5_za5+la5+a5_ga5+la5
2 3 5 3 5 2 3 5 3 5

2

:—ﬂp[a‘r’ _2g8 +1a5} :i7r,o[15—10+3]a5 :Eﬂpa :Eﬂpa =Zma
2 3 5 15 15 15 4 3 5
ra‘p
3
1, _Zma?
5
Note that

dm=7zy’pdz—> m=7xp I y:dz=7x p I (@*-z*) dz=rx p{azz—%zﬂ
m=x p{at%as—(—aﬂ%a‘?’ﬂ:ﬂ p[as—%aﬂa"'—%ae’}:% p{as—éa"}:gﬂ a’p
Example: 13: Find the Mass moment inertial for the Hollow Circular Cone ?

Solution

Divide the Hollow Circular Cone into a number of small circular rings and take one
of these rings with mass (dm), radius (y ) and thickness (dL ), which is located higher

(z) than the base of the cone with radius (a). Note that it is similar to triangles ABC and

A'B'C, we have .

h-—z y
h a

> y=2-2> 2="(a-y)
h a

a7




=L =~ +a’

B

The moment of inertia of this circular ring is given as dl,, =y?*dm.

Then the total moment of Hollow Circular Cone 1, ='[y2 dm

h
Note that , wheredm=2zyp dL— m =2;zpj ydL
0

2 2
dL = 1+(%) dy = 1+(Dj dyziva2+h2 dy:Edy.Then
\ y \" la a a

2a

dm:27rpj ydL= 27zpj ygdy: 2ﬁp§y7
0 0

L a
=2ﬂpg?—>m=naLp.Then

0

I —j"yzdm j'y(27zy dL) =27 jy —dy 27 Ly—4a—27z Ea—4—7rL a
«=) 0 P P P O P >
:ana—m:ana— m__lha IZZ:Ema2
2 m 2 maLp 2 2
Again, dL= /1+ :‘/ dz— \/h2+a dz——
L z L h?
dm= ZﬂpIydL—ZﬂpJ‘—Z—dZ—Zﬂpah —2 paF——)m:ﬂ'aLp
0
T T : a’L z*
Izzzjyzdm jy (2zyp dL) 27zpj[ j—dz_Z p—jz dz = —4?
0 0 0
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a’L h* a am al
=21 p—F —=7nlp — =7lp — —=7lp —
P h* 4 P 2 P 2 m P 2

Example 14: Find the Mass moment inertial for the Solid Circular Cone?

Solution

We divided the Solid Circular Cone into a number of small Disks and take one of
them with mass (dm), radius (y) and thickness (dz), which is located higher (z) than

the base of the cone with radius (a). Note that it is similar to triangles ABC and AB'C,

we have
N2 Y Ly-Ba--z="a-y)
h a h a
h—:z
4 T
v
h
4 el B N
- _O_ - =
X

Note that

h 2 2 h
dm=7zy2 p dz— m:ﬂpj(%(h—z)j dZ:ﬂp% [ (h2 —2hz+ 22)dz
0 0
h
a’ 2 7 a’ h® 1
—zpi|hiz—2hi + | =zpd R -+ | S m=>za’h
”phz( 2 3j ”phz[ 3j 37 NP

0

The moment of inertia of this Disk is given as dl,, =y*dm.

Then the total moment of Solid Circular Conel, = j y®dm, that is given
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h h

2dm :J.zz(;zyzp dz): ﬂp.(').Zzyde = ﬁpzzz(%(h—z)jzdz

0
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N
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2 h 2 3 4 5
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Chapter 69

Double and Iterated Integrals

b
THE (SIMPLE) INTEGRAL f f(x) dx of a function y = f(x) that is continuous over the finite
interval @ < x = b of the X axis was defined in Chapter 38. Recall that

1. The interval ¢ < x = b was divided into n subintervals k,, h,,..., h, of respective
lengths A x, A,x,...,A,x with A, the greatest of the A, x.
2. Points x,;in h, x, in hz, ..., x,in A, were selected, and the sum Z f(x,) A x formed.

The interval was further subdmded in such a manner that A, —>0 as n— +o,
4. We defined f f(x)dx = lim_ Z Fx,) Agx.

THE DOUBLE INTEGRAL. Consider a function z = f(x, y) continuous over a finite region R of
the xOy plane. Let this region be subdivided (see Fig. 69-1) into n subregions R,, R,,..., R,
of respective areas A A, A,A, ..., A A. In each subregion R,, select a point P,(x,, y,) and
form the sum

121 i y) 8 A = flx, y) A A+ flxy, y2) 8,4+ -+ flx,, y,) A,A (69.1)

Now, defining the diameter of a subregion to be the greatest distance between any two points
within or on its boundary, and denoting by A, the maximum diameter of the subregions,
suppose the number of subregions to be increased in such a manner that A, —0 as n— +o.
Then the double integral of the function f(x, y) over the region R is defined as

f f flx, y)dA= tim 2 f(x,, y,) 8,A (69.2)
ot
R
z
y e BT “I:?r'll'%:u -
(2%, yx) 4 =Y s
: J2 = f(z,¥)
F;
. x " R
Fig. 69-1 Fig. 69-2

When z = f(x, y) is nonnegative over the region R, as in Fig. 69-2, the double integral
(69.2) may be interpreted as a volume. Any term f(x,, y,) A, A of (69.1) gives the volume of a
vertical column whose parallel bases are of area A, A and whose altitude is the distance z,
measured along the vertical from the selected point P, to the surface z = f(x, y). This, in turn,
may be taken as an approximation of the volume of the vertical column whose lower base is the
subregion R, and whose upper base is the projection of R, on the surface. Thus, (69.1) is an
approximation of the volume ‘“‘under the surface” (that is, the volume with lower base in the
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xOy plane and upper base in the surface generated by moving a line parallel to the z axis along
the boundary of R). and, intuitively, at least, (69.2) is the measure of this volume.

The evaluation of even the simplest double integral by direct summation is difficult and will
not be attempted here.

THE ITERATED INTEGRAL. Consider a volume defined as above, and assume that the boundary
of R is such that no line paralle]l to the x axis or to the y axis cuts it in more than two points.
Draw (see Fig. 69-3) the tangents x = @ and x = b to the boundary with points of tangency K
and L, and the tangents y = ¢ and y = d with points of tangency M and N. Let the equation of
the plane arc LMK be y = g,(x), and that of the plane arc LNK be y = g,(x).

e M| W 7."'_.[ v
4] i

Fig. 69-3
Divide the interval ¢ = x =< b into m subintervals k, h,, . . ., k,, of respective lengths A x,
A,x,...,A x by the insertion of points x=¢,x=&,,...,x=¢, , (as in Chapter 38), and
divide the interval ¢ <y =d into n subintervals k,, k,, ... .k, of respective lengths Ay,
A,y,...,A,y by the insertion of points y=n,, y=m,....,y=m,_,. Denote by A, the
greatest A x, and by p, the greatest A, y. Draw in the parallel nes x = ¢, x=§,,. .. ,.x=§,_,
and the parallel lines y=mn,, ¥y =7,,..., y=m, ,, thus dividing the region R into a set of

rectangles R, of areas Ax Ay plus a set of nonrectangies that we shall ignore. On each
subinterval A, select a point x = x,, and on each subinterval &, select a point y = y,, thereby
determining in each subregion R, a point P (x,.y;). With each subregion R, associate by
means of the equation of the surface a number z,, = f(x,, y;). and form the sum

2 fx,y)AxAy (69.3)

Jj=1.2.....n

Now (69.3) is merely a special case of (69.1), so if the number of rectangles is indefinitely
increased in such a manner that both A — 0 and u, — 0, the limit of (69.3) should be equal to
the double integral (69.2).

In effccting this limit, let us first choose one of the subintervals, say &,, and form the sum

[}i} flx,, y].) A,y] Ax (i fixed)
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of the contributions of all rectangles having A, as one dimension, that is, the contributions of all
rectangles lying in the ith column. When n— +%, u,—0 and

lim [E fxi ¥)) 8, y] Ax= U

n—+x £1(x;)

82(11)

fxi, y) dY] Ax=d(x)Ax

Now summing over the m columns and letting m— + >, we have

lim 2 d(x)Ax = fb &(x) dx = Lb [f::) flx, y) dy] dx

m—s+x )

j jSz(x) flx, y) dy dx (69.4)

Although we shall not use the brackets hereafter, it must be clearly understood that (69.4) calls
for the evaluation of two simple definite integrals in a prescribed order: first, the integral of
f(x, y) with respect to y (considering x as a constant) from y = g,(x), the lower boundary of R,
to y = g,(x), the upper boundary of R, and then the integral of this result with respect to x from
the abscissa x = a of the leftmost point of R to the abscissa x = b of the rightmost point of R.
The integral (69.4) is called an iterated or repeated integral.

It will be left as an exercise to sum first for the contributions of the rectangles lying in each
row and then over all the rows to obtain the equivalent iterated integral

f LZM f(x, y) dx dy (69.5)

where x = h(y) and x = h,(y) are the equations of the plane arcs MKN and MLN, respec-
tively.
In Problem 1 it is shown by a different procedure that the iterated integral (69.4) measures
the volume under discussion. For the evaluation of iterated integrals see Problems 2 to 6.
The principal difficulty in setting up the iterated integrals of the next several chapters will
be that of inserting the limits of integration to cover the region R. The discussion here assumed
the simplest of regions; more complex regions are considered in Problems 7 to 9.

Solved Problems

1. Let z = f(x, y) be nonnegative and continuous over the region R of the plane xOy whose
boundary consists of the arcs of two curves y = g,(x) and y = g,(x) intersecting in the points K
and L, as in Fig. 69-4. Find a formula for the volume V under the surface z = f(x, y).

Let the section of this volume cut by a plane x = x,, where @ < x, < b, meet the boundary of R in the
points S(x,, g,(x,)) and T(x,, g,(x,)). and the surface z = f(x, y) in the arc UV along which z = f(x,, y).
The area of this section STUV is given by

£2(x;)
A(x,) =f flx;. ¥) dy

Thus, the areas of cross sections of the volume cut by planes parallel to the yOz plane are known

&2

functions A(x) = f f(x, y) dy of x, where x is the distance of the sectioning plane from the origin. By
&(

Chapter 42, the requ1red volume is given by

oo awrace [ e ]

This is the iterated integral of (69.4).
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In Problems 2 to 6, evaluate the integral at the left.

2,

1 x 1 1 7 x2 x} 1 1
LL"W’FL U’hzdﬁﬁ, (x—x)dx=[7"?]o=a
2 3y 2 )
2 3 2
fn fy (x+y)dXdy:f1 [5x *‘xy]y’dy:f1 6y” dy =[2)°) =14
2 xex 2 i 5
J—l L szdy dx:jil [XY];;;jzdx:Ll P+ 2P -2 +2x) dx =3
T rcosé - N
J‘) L psmﬂdde:J; [%pzsiﬂﬁlgosodoz%L COSZOSin9d0=[—écos30]g=§

w2 dcos 8 w2 1 4co56 w2
3 _ - 4 — 4 _
J; L p dp dO—J;) [4 p ]2 de L (64cos” 0 —4) db

_ 30 sin28 sin40> ]””2_
—[64(8+ 7 + n 400 =107

Evaluate J JdA, where R is the region in the first quadrant bounded by the semicubical

R
parabola y* = x* and the line y = x.

The line and parabola intersect in the points (0, 0) and (1, 1) which establish the extreme values of x
and y on the region R.

Solution 1 (Fig. 69-5): Integrating first over a horizontal strip, that is, with respect to x from x = y
(the line) to x = y*'* (the parabola), and then with respect to y from y =0 to y =1, we get

] }'2'3 1

R

Solution 2 (Fig. 69-6): Integrating first over a vertical strip, that is, with respect to y from y = x**
(the parabola) to y = x (the line), and then with respect to x from x =0 to x = 1, we obtain

1 x 1
J'J'dA=J; L’Z dydx=L (x=x"HNdx=[ix*-3x"? =%
R
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1,1 (1,1

Fig. 69-5 Fig. 69-6

8. Evaluate fjdA where R is the region between y = 2x and y = x” lying to the left of x = 1.
R
Integrating first over the vertical strip (see Fig. 69-7), we have

1 2x 1
ffdA=LJ;z dydx=L 2x—-x)dx=1
R

When horizontal strips are used (see Fig. 69-8), two iterated integrals are necessary. Let R, denote
the part of R lying below AB, and R, the part above AB. Then

1 oV 2 1
[fan-ffaneffanm[ [ [ o= 52
R R, &; ¥ ¥

Fig. 69-7 Fig. 69-8

9. Evaluate ffxz dA where R is the region in the first quadrant bounded by the hyperbola
R
xy = 16 and the lines y =x, y =0, and x = 8. (See Fig. 69-9.)

It is evident from Fig. 69-9 that R must be separated into two regions, and an iterated integral
evaluated for each. Let R, denote the part of R lying above the line y = 2, and R, the part below that

line. Then
4 rlery 2 8
ffxsz=J.fx2dA+jfxsz=LI xzdxdy+L[xzdxdy
y v
R R,

16’
3 ——y dy+3 (8 —y*) dy = 448

As an exercise, you might separate R with the line x = 4 and obtain

4 rx f l167x
2 —_ 2 2
ffx dA—LLx dydx+J;J; x*dydx
R
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10.

11.
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Yy
¥
& o
R 8,2 =
AL EES 02 oot 0 x
1
0 R, x
Fig. 69-9 Fig. 69-10

1 3
Evaluate L L e* dx dy by first reversing the order of integration.
¥

The given integral cannot be evaluated directly, since j e* dx is not an elementary function. The
region R of integration (see Fig. 69-10) is bounded by the lines x =3y, x =3, and y = 0. To reverse the
order of integration, first integrate with respect to y from y =0 to y = x/3, and then with respect to x
from x =0 to x = 3. Thus,

13 o 3 rxi3 B 3 o
J;)jlye d.xdy=J:)J; € dydx:L [e Y]n dx

3
=1 L e  xdx=[te" D= ("~ 1)

Supplementary Problems

Evaluate the iterated integral at the left:

1 2 2 3
(a)J;f'drdy=1 (b)LL(X+y)dxdy=9
4 2 1 .
(C)le(xz+y2)d)’dx=%o (d)LJ;;xyzd)’dx=%
2 ’J/z . v
@ [ ) ot acay= O [ o aya=g
1 x2 4 [B-y
(g)f f xel dydx=13e—1 (h)f J ydedy = 2
(1] 0 2 y
arctan 372 25ec P .2 2
(i)L L pdpdf=3 (i)L Lp’cosedpd0=%

n/3 tan 6 scc @ 2w 1-¢cos @
(k)L L p’cos’ 0.dp do = % ) L L plcos’0dpdo=Er



CHAP. 69] DOUBLE AND ITERATED INTEGRALS 441

12. Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the
iterated integral in both orders.
(a) x over the region bounded by y = x> and y = x° Ans. %
(b) y over the region of part (a) Ans. 3
() x* over the region bounded by y=x, y =2x, and x =2 Ans. 4
(d) 1 over each first-quadrant region bounded by 2y = X,y=3x,and x+y=4 Ans. §. %
(e) y over the region above y = 0 bounded by y* =4x and y*=5—-x Ans. 5
Ans. 4

1 2
) ———=—== over the region in the first quadrant bounded by x* =4 -2
(f m g q y y

13. In Problem 11(a) to (h), reverse the order of integration and evaluate the resulting iterated integral.



Chapter 70

Centroids and Moments of
Inertia of Plane Areas

PLANE AREA BY DOUBLE INTEGRATION. If f(x, y) =1, the double integral of Chapter 69

becomes dA. In cubic units, this measures the volume of a cylinder of unit height; in square

units, it measures the area of the region R. (See Problems 1 and 2.)

B [oy(8)
In polar coordinates, A = ffdA =f f p dp do, where 0 = a, 8 = 8, p,(6), and p,(8)

e1(8)

R
are chosen to cover the region R. (See Problems 3 to S.)

CENTROIDS. The coordinates (x, y) of the centroid of a plane region R of area A = f J d A satisfy
R

the relations

Ax = My and y

Ay=M,
or f].fdA=fJ'di and fffdA=ffydA
R R R R

(See Problems 6 to 9.)

THE MOMENTS OF INERTIA of a plane region R with respect to the coordinate axes are given by

1x=[jy2 dA and 1),=fj’x2 dA
R R

The polar moment of inertia (the moment of inertia with respect to a line through the origin
and perpendicular to the plane of the area) of a plane region R is given by

[(,=lx+1_\,=fj(x2+y2)dA
R

(See Problems 10 to 12))

Solved Problems

1. Find the area bounded by the parabola y = x* and the line y =2x + 3.

Using vertical strips (see Fig. 70-1), we have

3 2x+3 3
A =j_l Jz dy dx =j_l (2x + 3 — x*) dx = 32/3 square units

2 Find the area bounded by the parabolas y> =4 — x and y* =4 — 4x.

442
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¥

©.2)

v 3,9)

xr

0

-1,1) .
70 —-7 ©,—2)
Fig. 70-1 Fig. 70-2

Using horizontal strips (Fig. 70-2) and taking advantage of symmetry, we have
2 ra-y? 2
— = 2y 12
a=2f [ aray=2[ @-y)-a- e
2
= 6J; (1 - %y*) dy =8 square units

3. Find the area outside the circle p = 2 and inside the cardioid p = 2(1 + cos 6).

Owing to symmetry (see Fig. 70-3), the required area is twice that swept over as 0 varies from 8 =0
to 8 = 3 7. Thus,

w/2 r2(l+cos@) w2 wi2
A=2L L pdpd0=2J; [%pz]i“”°’°’d0=4j; (2 cos @ + cos’ 9) d6

/2

=4[2sin @ + 16 + }sin20];"° = (7 + 8) square units

Fig. 70-4

4, Find the area inside the circle p = 4 sin 8 and outside the lemniscate p° = 8 cos 26.

The required area is twice that in the first quadrant bounded by the two curves and the line 6 = ! 7.
Note in Fig. 70-4 that the arc AO of the lemniscate is described as 8 varies from 6 = 7/6 to 8 = #/4,
while the arc AB of the circle is described as 8 varies from 8 = 7/6 to 8 = /2. This area must then be
considered as two regions, one below and one above the line 8 = 7/4. Thus,

/4 4 5in 6 w/2 4s51in @
A=2L/o J;Vz—cm—mpdpd0+2f"/4f<1 p dp do
m/4

mi2

=J/6 (16sin20~8c0520)d6+J'M 16 sin’ 8 do

”

= (%7 + 4V3 - 4) square units
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Evaluate N = L e * dr. (See Fig. 70-5.)

+x s + o ;
Sincef e dx=j0 e’ dy, we have
[}

N2=J’o e"zde'0 ef":dy=J; L e"":”z’dxdy:jfe"’z"z) dA
R

Changing to polar coordinates (x* + y* = p°, dA = p dp d8) yields

T R L I P I e
) 0 0 2 0 2 Jo 4

a— + %

and N =Vv7/2.

4 )

Fig. 70-5 Fig. 70-6

[CHAP. 70

Find the centroid of the plane area bounded by the parabola y = 6x — x° and the line y = x.

(See Fig. 70-6.)
5 rox-x2 s
A=JJ'dA=Lf dydx:J:,(SX—xz)dxz%

R

5 6x —x? 5
M,f””f“ﬁ,f xdydx=L (5x* = x')dx = B
R

s réx—x? s
Mx=ffydA=Lf ydydx=%ﬁ) [(6X—X2)2—x2]dx=%
R

Hence, t=M_/A=3,y=M_/A =5, and the coordinates of the centroid are (3, 35).

Find the centroid of the plane area bounded by the parabolas y =2x — x* and y = 3x% - 6x.

(See Fig. 70-7.)

2 - x? 2
= = _ 42 T
A—]fdA—LLJZ_mdydx—L (8x —4x"}dx = 7§
R
2 r2x-x? 2
My=ffdi=J0L2-6 xdydx=L(8x2—4x")dx=%"
R

2 (2r-x2 2
M,=”ydA=L L ydydx=§L [(@x - x*)" = (3x* ~ 6x)"] dx = -
R

Hence,. =M /A=1,y=M,/A=~4%, and the centroid is (1, - 3).
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v
v
0 (2,0) x
x
0
Fig. 70-7 Fig. 70-8

8. Find the centroid of the plane area outside the circle p=1 and inside the cardioid
p=1+cosé.

From Fig. 70-8 it is evident that y = 0 and that x is the same whether computed for the given area or
for the half lying above the polar axis. For the latter area,

w2 1+cos @ l w2 7l’+8
— = = = 2_ 12 =
A—]fdA J; J; p dp do 2[0 [(1+cos@) —1°] db 3
R

n/2 1+cos @ 1 w2
My=[fdi=L ﬁ (pcosO)pdpd0=5j0 (3cos® 6 +3cos® 6 +cos® @) db
R

1[3 3. . .. 3 1. 1, ]"’2_157r+32
—3[20+4sm20+35m8 sin 0+80+4sm20+3251n400 = T
. . 157 + 32 )
The coordinates of the centroid are ( 6(m +8)° 0).

9. Find the centroid of the area inside p = sin 8 and outside p =1 — cos 6. (See Fig. 70-9.)

w/2 rsiné 1 "2 4_"
A=ffdA=L fl pdpd6=§fo (2c050—1—c0s20)d9=T
R

—cos @

w2 sin 8
My=f]di=L J:‘w”(pcoso)p dp dB
R

1 _
== (sm30—l+3cosB—3c0520+cos30)cosod8=u
3 Jo 48

w/2 rsiné@

M,=ffydA=L jl_ o(psin())pdpdt)
R
—1f"/2 in® 0 — 1+ 3cos 8 — 3cos 6 + cos® 6) sin 6 d6 = S —2
=3 (sin cos cos cos” #) sin T

157 -44 37 -4 )

The coordinates of the centroid are (12( =) 2(=m)

10. Find I, I, and ], for the area enclosed by the loop of y* = x*(2 — x). (See Fig. 70-10.)

x fyo

2 rxVZ-x 2
A=jfdA=2LL dydx=2J; xV2—-xdx
R

15]" 32V2
vi 15

0
- 2 ygr=—a| 2}
= 4]\5(22 z2)dz= 4[32 52
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Fig. 70-9 Fig. 70-10

where we have used the transformation 2 — x = z°. Then

2 rxV2-x 2 2
1,=ffy2dA=2LL ydydx= 7 ox’(z—x)“dx

R

°  2048VZ 64

= - = _9__L ll] — - T
52777377007 | s o A

_ 4 2“_4[8,12,2
=3 \/5(2 ')z dz-—§

2 xV2-x 2
IL=]]x"dA=2 dyde=2] ©V2Z-xdx
4 o Jo 0
R

(1]
8 12 6
—415(2 Z2°Y'z% dz 4[32 5z+,’z z

+1_133l2\/§_ﬂ
7T 3465 231

11.  Find I,, I,, and [, for the first-quadrant area outside the circle p =24 and inside the circle
p =4acos 6. (See Fig. 70-11.)

w/3 rdacos@ 1 "3 +
A=jfdA=f f ,odpd6=—f [(4acos(9)2—(2a)2]d8=ZL—3\/—§a2
0 2a 2 0 3
R

w/3 prdacosé w3
1= j j y dA= J; L (psin 6)°p dp do = % L {(4a cos 8)* ~ (2a)*} sin® 9 db
R

411’ + QVE a4 — 4” + 9V§ a
6 202w +3V3)
ni3 [4acosd 127 + 11V3 3127 + 11V3)
- 2 = 2 = ‘= :
1,“UX an=[ [, (oeosoyodpas 2 T amevy

207 +21V3 gt = 20 +21V3
3 27 +3V3

w3
=4a‘L (16 cos* 8 — 1) sin” 9 d9 = ‘A

L=1+1= a’A

12. Find [/

X

I, and I, for the area of the circle p = 2(sin 8 + cos 8). (See Fig. 70-12.)

Since x* + y2 =p?



CHAP. 70]

CENTROIDS AND MOMENTS OF INERTIA OF PLANE AREAS

v
14
z
o X
(#]
Fig. 70-11 Fig. 70-12
3w/ 4 2(sin 8 +cos 0) 3nm/4
10=fj(x2+y2)dA=j_ oo ppdp do=4 e (sin @ + cos 8)* do
R
=4[36 —cos20 - }sind46] i =67 =3A
It is evident from Fig. 70-12 that I, = I . Hence, I, =1I = }I,= 3 A.
Supplementary Problems
13. Use double integration to find the area:
(a) Bounded by 3x +4y =24, x =0,y =0 Ans. 24 square units
(b) Bounded by x + y=2,2y=x+4,y=0 Ans. 6 square units
(c) Bounded by x* =4y, 8y = x> + 16 Ans. ¥ square units
(d) Within p =2(1 - cos 6) Ans. 6m square units
(e) Bounded by p =tan@sec and 8 = /3 Ans.  }V3 square units
(f) Outside p =4 and inside p =8 cos 8 Ans. 8(%iw+ V3) square units
4. Locate the centroid of each of the following areas.
(a) The area of Problem 13(a) Ans. (8.2)
(b) The first-quadrant area of Problem 13(c) Ans. (3, %)
(c) The first-quadrant area bounded by y*=6x, y =0, x =6 Ans. (2.9
(d) The area bounded by y* =4x, x’=5-2y, x=0 Ans. (8. %)
(e) The first-quadrant area bounded by x> —8y +4=0, x* =4y, x =0 Ans. (2, %)
(f) The area of Problem 13(e) Ans. (V3,8
+
(g) The first-quadrant area of Problem 13( f) Ans (126:+ 36\/\? oy 323\/3)
B B g8
1S. Verify that } j [g3(8)— g2(8)] do =j f o P dp de =ffdA; then infer that
a a 8
R
jff(x, y)dA =J’ff(p cos 6, p sin 8)p dp db
R R
16. Find /, and I, for each of the following areas.
(a) The area of Problem 13(a) Ans. I, =6A;1 =%A
(b) The area cut from y* = 8x by its latus rectum Ans. I, =%A; 1 =%A
(c) The area bounded by y = x> and y = x Ans. I =73A1 =3%A
(d) The area bounded by y =dx — x> and y =x Ans. 1= A1,=%
17 Find /, and I, for one loop of p° = cos 20 A 1 *(l—l)A'! —(1+1)A
. 8 , p of p* = cos 26. ns. L=\176"6/40L=\16"5
18. Find I, for (a) the loop of p =sin 26 and (b) the area enclosed by p =1+ cosé. Ans.

(b) A

447

(a) A,



Chapter 71

Volume Under a Surface by
Double Integration

THE VOLUME UNDER A SURFACE :z = f(x, y) or z = f(p, 8), that is, the volume of a vertical

1.

2.

column whose upper base is in the surface and whose lower base is in the xOy plane, is defined

by the double integral V= z dA, the region R being the lower base of the column.

Solved Problems

Find the volume in the first octant between the planes z =0 and z = x + y + 2, and inside the
cylinder x* + y* = 16.

From Fig. 71-1, it is evident that z=x + y + 2 is to be integrated over a quadrant of the circle
x*>+y® =16 in the xOy plane. Hence,

4 Vie—x2 4 1
v=”sz=L L (x+y+2)dydx=fo (x\/lé—x2+8—§x2+2\/16—x2>dx
R

3 4
= [—% (16 — x*)"? + 8x — % + xV16 — x* + 16 arcsin % x]o = (% + 817) cubic units

Find the volume bounded by the cylinder x° + y° =4 and the planes y + z =4 and z = 0.

From Fig. 71-2, it is evident that z =4 — y is to be integrated over the circle x° + y° = 4 in the xOy
plane. Hence,

2 Va2 2 Va2
V= j‘z f_m (4—-y)dxady =2f_2j (4 — y) dx dy = 167 cubic units

0

Fig. 71-3
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Find the volume bounded above by the paraboloid x* + 4y* = z, below by the plane z = 0, and
laterally by the cylinders y2 =x and x~ =y. (See Fig. 71-3.)

The required volume is obtained by integrating z = x* + 4y* over the region R common to the
parabolas y* = x and x* = y in the xOy plane. Hence,

1 VX 1
V:ﬁ f (x* +4y*) dy dx :L [x*y + §y°]\¥ dx = 3 cubic units
) X

Find the volume of one of the wedges cut from the cylinder 4x* + yi= a’ by the planes z =0
and z = my. (See Fig. 71-4.)

The volume is obtained bv integrating z = my over half the ellipse 4x* + y* = a”. Hence,

ar2 Vaz—ax? ar2 _ ma
V=2J:] J; mydydx:mj; [Ye " dx = 3

3

cubic units

Find the volume bounded by the paraboloid x* + y* = 4z, the cylinder x* + y2 =8y, and the
plane z =0. (See Fig. 71-5.)

The required volume is obtained by integrating z = }(x* + y*) over the circle x* + y* =8y. Using
cylindrical coordinates, the volume is obtained by integrating z = 1 p° over the circle p = §sin 8. Then,

w r8siné 7 r8sing
- - =1 3
V—szdA J;L zp dp db AJ’OL p~ dp dp
R

=% L [p%)5¢ do = 256L sin® 6 d0 = 967 cubic units

Fig. 71-4 Fig. 71-6

Find the volume removed when a hole of radius a is bored through a sphere of radius 2a, the
axis of the hole being a diameter of the sphere. (See Fig. 71-6.)

From the figure, it is obvious that the required volume is eight times the volume in the first octant
bounded by the cylinder p* = a’, the sphere p° + z° = 44°, and the plane z =0. The latter volume is
obtained by integrating z = \/4a” — p* over a quadrant of the circle p = a. Hence,

w2 a wi2
V= 8L J:) Vda™ - p'pdp dg =1 L (8a® — 3V3a’) d8 = 4(8 — 3V3)a’w cubic units
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10.

11,

12.

13.

14.

18.

16.

17.

18.

19.

21.

22.

VOLUME UNDER A SURFACE BY DOUBLE INTEGRATION [CHAP. 71

Supplementary Problems

Find the volume cut from 9x* + 4y’ + 36z = 36 by the plane z = 0. Ans. 3 cubic units

Find the volume under z =3x and above the first-quadrant area bounded by x =0, y =0, x =4, and
x*+y'=25  Ans. 98 cubic units

Find the volume in the first octant bounded by x> + z=9, 3x+4y =24, x =0, y =0, and z =0.
Ans. 1485/16 cubic units

Find the volume in the first octant bounded by xy =4z, y = x, and x = 4. Ans. 8 cubic units
Find the volume in the first octant bounded by x> + y* =25 and z = y. Ans. 3 cubic units

Find the volume common to the cylinders x> + y* =16 and x> + z° =16.  Ans. % cubic units
Find the volume in the first octant inside y> + z° =9 and outside y* =3x.  Ans. 27#/16 cubic units
Find the volume in the first octant bounded by x* + z2 =16 and x ~y=0.  Ans. % cubic units

Find the volume in front of x =0 and common to y> + z° =4 and y*> + z*> + 2x = 16.

Ans. 28w cubic units

Find the volume inside p =2 and outside the cone z° = p>. Ans. 32w/3 cubic units

Find the volume inside y*> + z° =2 and outside x’ —y’ — z° =2. Ans. 8mw(4—V2)/3 cubic units
Find the volume common to p°+ z* =4 and p = asin 6. Ans. 2(37 — 4)a*9 cubic units

Find the volume inside x> + y*> =9, bounded below by x* + y* + 4z = 16 and above by z = 4.

Ans. 8lw/8 cubic units
Find the volume cut from the paraboloid 4x* + y> = 4z by the plane z — y = 2. Ans. 9 cubic units

Find the volume generated by revolving the cardioid p = 2(1 — cos 8) about the polar axis.
Ans. V= Zﬂff yp dp d6 = 647/3 cubic units

Find the volume generated by revolving a petal of p = sin 26 about either axis.

Ans. 327/105 cubic units

A square hole 2 units on a side is cut symmetrically through a sphere of radius 2 units. Show that the
volume removed is $(2V2 + 197 — 54 arctan V?2) cubic units.



Chapter 72

Area of a Curved Surface by
Double Integration

TO COMPUTE THE LENGTH OF A(PLANAR) ARC, (1) the arc is projected on a convenient coor-

2
dinate axis, thus establishing an interval on the axis, and (2) an integrand function, 14 (?)
2 b
if the projection is on the x axis or 1+ (d_y) if the projection is on the y axis, is integrated
over the interval.

A similar procedure is used to compute the area S of a portion R* of a surface z = f(x, y):
(1) R* is projected on a convenient coordinate plane, thus establishing a region R on the plane,
and (2) an integrand function is integrated over R. Then,

az\’ dz\’
s s o 05 [ 1+ () + () o
If R* is projected on xOy, S I[\/l % + 3y dA
R
. . ax\’ ax\’
If R* is projected on yOz, § = 1+\—=] + (— dA.
ay dz
R

2 J 2
If R* is projected on zOx, S=ff \/1 + (%) + (%) dA.
R

Solved Problems

1. Derive the first of the formulas for the area S of a region R* as given above.

Consider a region R* of area S on the surface z = f(x, y). Through the boundary of R* pass a
vertical cylinder (see Fig. 72-1) cutting the xOy plane in the region R. Now divide R into n subregions

z y = 73
i

P, &

R
e .'_J 3

Fig. 72-1

451
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AREA OF A CURVED SURFACE BY DOUBLE INTEGRATION [CHAP. 72

AA, (of areas AA,), and denote by AS, the area of the projection of A4, on R*. In each subregion AS,,
choose a point P, and draw there the tangent plane to the surface. Let the area of the projection of AA,
on this tangent plane be denoted by AT,. We shall use AT, as an approximation of the corresponding
surface area AS,.

Now the angle between the xOy plane and the tangent plane at P, is the angle v, between the z axis

. d d
with direction numbers [0. 0, 1], and the normal, [— —I — —f 1] =[ ii j—;

s s 1], to the surface at
ax ay
P;; thus

1
B
\!((716 + (9)’) + 1

AT.cosy, =AA, and AT, =secy, AA,

cos vy, =

Then (see Fig. 72-2),

AT,

Hence, an approximation of § is 2 AT, = E secy, AA,, a

S= lim Zsecy,AA ffsecydA f] a—;) +1dA

n— k%

Find the area of the portion of the cone x* + y° = 3z” lying above the xOy plane and inside the
cylinder x* + y2 =4y.

Solution 1: Refer to Fig. 72-3. The projection of the required area on the xOy plane is the region R
enclosed by the circle x* + y* = 4y. For the cone,

dz 1x dz 1 Y (62) (62)2 927+ X +y* 1227 4
g = ==Z + +{ =) = . = = -
dx 3z and dy 3z So ! dax ay 9z° 9z 3
B (92 . ((9_2 J¢ J\4‘_‘ B J‘ J\/J\ ¥
Then = j y B + ) + ﬁy/ dA = Vi —=dx dy = \/— o Jo dx dy

, 5 3
= % J Vdy —y  dy = 8’,;\/—_ 7 square units

Solution 2: Refer to Fig. 72-4. The projection of one-half the required area on the yOz plane is the
region R bounded by the line y =V3z and the parabola y = 3z°, the latter obtained by eliminating x
between the equations of the two surfaces. For the cone,

ax y dx 3z 1+<ax) +(ﬂ)2=’r2+y2+922 127° 1277

=—= —=—. S
ay X and dz x © ay iz

¥ P 372 — yz

1 TAR 5 4\/— , 4\/—
Then SZZL f’\_‘ V;\/—z dz dy - j [,/"—'_)\,\,zxzd _ J' Vay =y dy
VAW z __‘/
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(0. 4

Fig. 72-3 Fig. 72-4

d ] 2
Solution 3: Using polar coordinates in solution 1, we must integrate \ 1 + ( ﬂi) + ((T;) =3

over the region R enclosed by the circle p = 4sin 6. Then,
2 ™ 4 sin @ 2 1 ™ Jiseinn
5*”73‘”‘—[, o G edeas= 5 [ 1

8V3
\/— j *0.do = —3 7 square units

3. Find the area of the portion of the cylinder x* + z° = 16 lying inside the cylinder x* + y* = 16.
P y ying y y

Figure 72-5 shows one-eighth of the required area, its projection on the xOy planc being a quadrant
of the circle x* + y*> = 16. For the cylinder x* + z° =16,

9z x dz (dz)z (32)2 Xtz 16
_— = — = _— = R “+ _ + _ = = =
P . and 3y 0 So 1 X 3y . T

V lﬁ x2
Then S= 8] f dy dx = 32J dx = 128 square units

4. Find the area of the portion of the sphere XX+ y2 + z° = 16 outside the paraboloid
X’ +y +z=16.

Figure 72-6 shows one-fourth of the required area, its projection on the yOz plane being the region
R bounded by the circle y* + z° = 16, the y and z axes, and the line z = |. For the sphere,

: -I'.._‘

(4,0,0)

Fig. 72-5
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x__Y and 9x __z So 1+(a_x)2+(5_x)2=x2+y2+22= 16
ay x dz x’ dy dz x* 16-y*—2°
2 F v Vie-z?
Then S=4J'!'\/l+(£) +(§) dA=4j f -—-iz—zdydz
i ay 2z o Jo \/lﬁ—y — 2
V16— 22

3
dz = 16J0 % 7 dz = 87 square units

1
= 16f [arcsin —y——]
0 Vie— z2 1o

5. Find the area of the portion of the cylinder x* + y* = 6y lying inside the sphere x* + y*> + z° =
36.

2+ 6y = 36,
z=0

Fig. 72-7

Figure 72-7 shows one-fourth of the required area. Its projection on the yOz plane is the region R
bounded by the z and y axes and the parabola z* + 6y = 36, the latter obtained by eliminating x from the
equations of the two surfaces. For the cylinder,

dx 3-y ox (8x)2 (d’x)2 ¥ +9-6y+y° 9
—_— = — —_—= . +{ — —_ = =
ay x and 9z 0 So 1 Ay %z % 6y —y°
6 \V36-6y 3 6 \/6
Then S= 4[0 J:] ——6\/7—)12 dzdy= 12!'0 Vs dy = 144 square units

Supplementary Problems

6. Find the area of the portion of the cone x* + y* = z” inside the vertical prism whose base is the triangle
bounded by the lines y = x, x =0, and y =1 in the xOy plane. Ans. V2 square units

7. Find the area of the portion of the plane x + y + z = 6 inside the cylinder x* + y* = 4.

Ans.  4V37 square units

8. Find the area of the portion of the sphere x* + y* + z* = 36 inside the cylinder x* + y* = 6y.

Ans.  72(w — 2) square units
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10.

11.

12,

13.

14,

15.

Find the area of the portion of the sphere x* + y* + z* = 4z inside the paraboloid x* + y* = z.

Ans. 41 square units

Find the area of the portion of the sphere x* + y* + z> =25 between the planes z =2 and z = 4.

Ans. 207 square units

Find the area of the portion of the surface z = xy inside the cylinder x* + y* =1.

Ans. 2m(2V2 - 1)/3 square units

Find the area of the surface of the cone x* + y*> — 9z” = 0 above the plane z =0 and inside the cylinder
x*+y*=6y.  Ans. 3V10# square units

Find the area of that part of the sphere x* + y* + z% = 25 that is within the elliptic cylinder 2x* + y* = 25,

Ans. 507 square units

Find the area of the surface of x> + y° — az = 0 which lies directly above the lemniscate
4 5
4p* = a’ cos 26. Ans. S= p ff Vap® + a’p dp do = % (3 - %) square units

Find the area of the surface of x* + y*> + z° = 4 which lies directly above the cardioid p =1 — cos 6.

Ans.  8[m — VZ—In(V2+ 1)] square units



Chapter 73

Triple Integrals

CYLINDRICAL AND SPHERICAL COORDINATES. Assume that a point P has coordinates
(x,y,z) in a right-handed rectangular coordinate system. The corresponding cylindrical
coordinates of P are (r, 6, z), where (r, 8) are the polar coordinates for the point (x, y) in the
xy plane. (Note the notational change here from (p, 8) to (r, 8) for the polar coordinates of
(x. y); see Fig. 73-1.) Hence we have the relations

x=rcos@ y=rsiné rr=x"+y? tan6=£

In cylindrical coordinates, an equation r = ¢ represents a right circular cylinder of radius ¢ with
the z axis as its axis of symmetry. An equation 6§ = c represents a plane through the z axis.

p P(r, 8, 2)

I P(p. 6, ¢)
I
7 ¢/ 12
0 y o ' y
x/ 8 r 6N l
x ™ !
— N,
/ y N
x K Y
Fig. 73-1 Fig. 73-2

A point P with rectangular coordinates (x, y, z) has the spherical coordinates (p, 6, ¢),
where p = |OP|, 8 is the same as in cylindrical coordinates, and ¢ is the directed angle from the
positive z axis to the vector OP. (See Fig. 73-2.) In spherical coordinates, an equation p = ¢
represents a sphere of radius ¢ with center at the origin. An equation ¢ = ¢ represents a cone
with vertex at the origin and the z axis as its axis of symmetry.

The following additional relations hold among spherical, cylindrical, and rectangular
coordinates:

r=psin¢ z=pcos ¢ pl=xt+y'+ 7’
X =psin ¢ cos 8 y=psin¢sin g
(See Problems 14 to 16.)

THE TRIPLE INTEGRAL J’ j J f(x, ¥, z) dV of a function of three independent variables over a

R
closed region R of points (x, y, z), of volume V, on which the function is single-valued and
continuous, is an extension of the notion of single and double integrals.

456
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If f(x, y,z)=1, then jjjf(x, y, z) dV may be interpreted as measuring the volume of
R

the region R.

EVALUATION OF THE TRIPLE INTEGRAL. In rectangular coordinates,

b ry(x) rzyx.y)
ffff(x,y,z)d‘/:f f " j( ) flx. y, 2)dz dy dx
a Jy(x zp{x.y
R

d rxy(y) rza(x.y)
:f f f f(x. y, 2) dz dx dy, etc.

82l 1 (x.¥)

where the limits of integration are chosen to cover the region R.
In cylindrical coordinates,

B [ry6) [230n0)
fRf J' f(r,8,z)dV= L fn«’) J;l(r.ﬂ) f(r. 0, z)r dz dr dé

where the limits of integration are chosen to cover the region R.
In spherical coordinates,

B rd,(0) rpy(6.6) .
[! f flp, &, 8) dV=j!z 00 Jio0) f(p, &.0)p"sin ¢ dp dop d6

where the limits of integration are chosen to cover the region R.

Discussion of the definitions: Consider the function f(x, y, z), continuous over a region R
of ordinary space. After slicing R with planes x = £ and y =7, as in Chapter 69, let these
subregions be further sliced by planes z = ¢,. The region R has now been separated into a
number of rectangular parallelepipeds of volume AV, = Ax, Ay; Az, and a number of partial
parallelepipeds which we shall ignore. In each complete parallelepiped select a point
P (x;s ¥, 2,); then compute f(x,, y,, z,) and form the sum

2 flx.y,.2,)Ax, Ay, Az, (73.1)

The triple integral of f(x, y, z) over the region R is defined to be the limit of (73.1) as the
number of parallelepipeds is indefinitely increased in such a manner that all dimensions of each
go to zero.

In evaluating this limit, we may sum first each set of parallelepipeds having A, x and Ay, for
fixed i and j, as two dimensions and consider the limit as each A,z — 0. We have

14 £33
lim X flxin v 2,) 8,z Ax Ay :[ flxi yi, 2)dz Ax Ay
k=1 21

p—+x

Now these are the columns, the basic subregions, of Chapter 69; hence,

i=1..... m

lim > fix, ¥, 2,) AV, =ijf(x, v, z) dz dx dy =ffff(x. v, z) dz dy dx
R R

CENTROIDS AND MOMENTS OF INERTIA. The coordinates (x, y, z) of the centroid of a
volume satisfy the relations
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ffaref [ e 5] [fare [ [ra
of [Jar=f{]cav

The moments of inertia of a volume with respect to the coordinate axes are given by

1,=”f(y2+z2)dv 1y=f”(zz+x2)dv Iz=[jj(x2+y2)dv

Solved Problems

1. Evaluate the given triple integrals:

1 1~x p2-x
(a) fo L L xyz dz dy dx

:LX -J: X(J:quzdz)dy] dx
LU e L2 0

r 2 _ 2qy=)-x
:j i&%ﬁ] d,x—lj(4x—12)t +13x° —6x* + x%) dx = 5
0 L

13
240

y=40

il i 2
(b) j f f zr’sin @ dz dr do
0 4 Jo

J j[ ]r sin @ dr d@ = ZJ’ [r sin @ dr d@

2
3

=3 J:) (r’]isin@ do = [cos 0]y =
Ed sec ¢
(©) Ju L J:J sin2¢ dp d¢ db

=2L"L"dsin¢d¢do=2f(1»%x/i)d():(z—\/?)n

2, Compute the triple integral of F(x, y, z) = z over the region R in the ﬁrst octant bounded by
the planes y =0, z=0, x + y=2, 2y + x =6, and the cylinder y*> + z° =4. (See Fig. 73-3.)

Integrate first with respect to z from z = 0 (the xOy plane) to z = \/4 — y* (the cylinder), then with
respect to x from x =2 — y to x = 6~ 2y, and finally with respect to y from y =0 to y = 2. This yields

2 ro-2v Vaoy? 2 r6-2y
— _ 1,2)1Va-y?
J'IJ‘de-LJ;_y L zdzdxdy—LL_y [:12°)5 dx dy
R

[ T aea=1 ey a-
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=%
XY
// :
e li
_s |
gt = i
\ 1
| |
|
(0,2,0) v
- F 0 B ———
il 77
.8 A
z / - 7
x
Fig. 73-3 Fig. 73-4

3. Compute the triple integral of f(r, 6, z) = r® over the region R bounded by the paraboloid
r* =9 -z and the plane z =0. (See Fig. 73-4.)

Integrate first with respect to z from z=0to z=9 - r*, then with respect to r from r=0to r = 3,
and finally with respect to 6 from 8 =0 to 8 =27, This yields

27 £3 pu-—pt 27 3
fffrzdv=f“ L f“ rz(rdzdrd9)=J; J:' (9~ r’)drdd
R

2 2w
4 3 243 2
=J [57 —%,r°]l,d0=J B do=%q
QO (4]

4 Vib-x2 4 4 r2VZ pVdAzZ-x2
4. Show that the integrals (a) 4[ f f ) dz dy dx, (b) 4f f j dy dx dz, and
a4 4 Viaz o2 0 Jo (x2+y) /4 0o Jo 0
(c) 4J; fzm L dx dz dy give the same volume.

(a) Here z ranges from z = 1(x” + y°) to z = 4; that is, the volume is bounded below by the paraboloid
4z =x*+y* and above the plane z =4. The ranges of y and x cover a quadrant of the circle
x* +y? =16, z =0, the projection of the curve of intersection of the paraboloid and the plane z = 4
on the xOy plane. Thus, the integral gives the volume cut from the paraboloid by the plane z = 4.

(b) Here y ranges from y =0 to y = V4z — x7; that is, the volume is bounded on the left by the zOx
plane and on the right by the paraboloid y° = 4z — x”. The ranges of x and z cover one-half the area
cut from the parabola x* =4z, y =0, the curve of intersection of the paraboloid and the zOx plane,
by the plane z =4. The region R is that of (a).

(¢) Here the volume is bounded behind by the yOz plane and in front by the paraboloid 4z = x* + y°.
The ranges of z and y cover one-half the area cut from the parabola y° =4z, x =0, the curve of
intersection of the paraboloid and the yOz plane, by the plane z = 4. The region R is that of (a).

5. Compute the triple integral of F(p, ¢, 8) = 1/p over the region R in the first octant bounded
by the cones ¢ = }7 and ¢ = arctan2 and the sphere p = V6. (See Fig. 73-5.)
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Fig. 73-5 Fig. 73-6

Integrate first with respect to p from p =0 to p = V6, then with respect to ¢ from ¢ = ;7 to
¢ =arctan 2, and finally with respect to 6 from 8 =0 to 8 = }#. This yields

1 w/2 farctan 2 /6 7!/2 farctan 2
J'J’f dv = ] f f) —p smd;dpd(todﬂ 3J' J sin ¢ d¢ df

o[ (e - )

6. Find the volume bounded by the paraboloid z = 2x + y and the cylinder z =4 — y? (See Fig.
73-6.)

Integrate first with respect to z from z =2x” + y’ to z =4 — y°, then with respect to y from y =0 to

y =V2 - x? (obtain x* + y* =2 by eliminating x between the equations of the two surfaces), and finally
with respect to x from x =0 to x = V2 (obtained by setting y =0 in x” + y* =2) to obtain one-fourth of
the required volume. Thus,

2-x , F 2-x
v=4L L Lz+zdzdydx=4j’o J’“ [(4—y*)+ (2" + y*)) dy dx
3]\/2 x2

2
- 4L [4y —2xy - %I_ Sy j Y*'? dx = 44r cubic units

7. Find the volume within the cylinder r = 4 cos # bounded above by the sphere r* + 2 = 16 and
below by the plane z =0. (See Fig. 73-7.)

Integrate first with respect to z from z =0 to z = V16 — r>. then with respect to r from r =0 to
r=4cos 6, and finally with respect to 8 from § =0 to 8 = 7 to obtain the required volume. Thus,

T fdcosd rV16—r2 7 r4cosd
V=J; J:] L rdzdrd6=J:) J'n rV16 — r* dr do

=-9 L (sin® 6 — 1) d8 = % (3w — 4) cubic units
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Fig. 73-7 Fig. 73-8

8. Find the coordinates of the centroid of the volume within the cylinder r = 2 cos 8, bounded
above by the paraboloid z = r* and below by the plane z =0. (See Fig. 73-8.)

2cos B w2 2cos @
V= 2J f [ rdzdrdg= ZJ' f ridrde

=%J; [Feee? do = 8] cos* @do =3

wi2 r2cos® [rl
M.vz:fff“w:z[) J; J; (rcos 8)rdzdrdb
R

2cos @ w2
=2L L r"cosﬂdrd0=%ﬁ) cos® 9 dp =2m

Then ¥ =M _,/V= 4. By symmetry, y =0. Also,

w2 2¢cos @ 2 w2 2cos @
=fffzdv=2f J J zrdzdrdozf J r*drde
0 0 0 0 Q
R

=¥J'0 cos® 0 df = i

and z=M_/V= 4. Thus, the centroid has coordinates (3,0, %

9. For the right circular cone of radius a and height A, find (a) the centroid, (&) the moment of
inertia with respect to its axis (c), the moment of inertia with respect to any line through its
vertex and perpendicular to its axis, (4) the moment of inertia with respect to any line through
its centroid and perpendicular to its axis, an (e) the moment of inertia with respect to any
diameter of its base.

Take the cone as in Fig. 73-9, so that its equation is r = - z. Then

2
h
h
V= 4_{ ff rdzdrdf= 4J j( —; drdB

f d0——17ha

b)l
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(0,,0)

Fig. 73-9

(a) The centroid lies on the z axis, and we have

w/2 ra rh
Mxy=fjjzdv=4f f f zrdz dr do
0 0 Jhria

_ _n _l 2 ZJ.”/Z _1 2.2
2J J ’r 2r drd9—2ha . d9~417ha
Then 7= M,,/V= }h, and the centroid has coordinates (0, 0, ih).

() 1—ffj(x +y*)dv= 4J’ JLa(r Vrdzdrde = %5mha' = £a’V

(c) Take the line as the y axis. Then

w2 a h
Iy=jjf(x2+zz)dv=4j; LL/ (r* cos® @ + z°)r dz dr db
w2 l h3
—4f f[ hr ——r)c0520+§(h3r——3r‘)]drd0
a

= % 1rha2(h2 + % az) = % (h2 + % a2>V
(d) Let the line ¢ through the centroid be parallel to the y axis. By the parallel-axis theorem,
L=1+V(h)?® and I =3k +ia V- Fh'V=g(h" +4a")V
(e) Let d denote the diameter of the base of the cone parallel to the y axis. Then
I,=1+V(ihY = (W’ +4a°)V + Lh°V= 5 (2h* + 3a*)V

10.  Find the volume cut from the cone ¢ = j# by the sphere p =2a cos ¢. (See Fig. 73-10.)

w2 n/d r2acosd
V:4fjjdV=4L JO L p’sin ¢ dp dé de
R

_ 324’

w/4 wi2
J; L cos’ ¢ sin ¢ do do =24’ fo d® = ma® cubic units

11.  Locate the centroid of the volume cut from one nappe of a cone of vertex angle 60° by a
sphere of radius 2 whose center is at the vertex of the cone.
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Fig. 73-10 Fig. 73-11

Take the surfaces as in Fig. 73-11, so that x = y = 0. In spherical coordinates, the equation of the
cone is ¢ = 7/6, and the equation of the sphere is p =2. Then

o[ [fares [ st 2 [ [ ansan

2 (F-) [ -

Mxy=fjfzdv=4£”2£w J; (p cos ¢)p’sin ¢ dp d dP

w2 rw
=8f0 L sin2¢ d¢p db =«
and 2=M_/V=3(2+V3).

12.  Find the moment of inertia with respect to the z axis of the volume of Problem 11.

1, =Jjj(x2 +yY) (1V=4Lmj:/ﬁ J: (p?sin® ¢)p’ sin ¢ dp dep do

128 (72 (¢ | 128 /2 3 ™2 5— 2\/‘
R ] s saa=1E(3-3va) [ a0 5T e ovi)-

Supplementary Problems

13. Describe the curve determined by each of the following pairs of equations in cylindrical coordinates.
(@) r=1,2z=2 by r=2,z=¢ (c) 8=m/d, r=V2 d)ye==m/4,z=r

Ans.  (a) circle of radius 1 in plane z = 2 with center having rectangular coordinates (0, 0, 2); (b) helix
on right circular cylinder r =2; (c) vertical line through point having rectangular coordinates
(1,1,0); (d) line through origin in plane 6 = w/4, making an angle of 45° with xy plane



14.

15.

16.

17.

18.

19.

21.

22.

TRIPLE INTEGRALS (CHAP. 73

Describe the curve determined by each of the following pairs of equations in spherical coordinates.
™ m

Ans. (a) circle of radius 1 in xz plane with center at origin; (b) halfline of intersection of plane
6 = 7/4 and cone ¢ = m/6; (c) circle of radius V2 in plane z = V2 with center on z axis

@ p=1,0=m ) 6=17.

Transform each of the following equations in either rectangular, cylindrical, or spherical coordinates into
equivalent equations in the two other coordinate systems.
(@) p=5 ) 22=r° () F+y +(z—1)Y=1

Ans. (@) X +y’+27=25r+2°=25, (b) 22 =x*+y’ cos’ ¢ =
(¢)r*+2 =2z, p=2cos ¢

i (thatis, ¢ = 7/4 or ¢ =3w/4);

Evaluate the triple integral on the left in each of the following:

1 2 3
(a) J;flfzdzdxdy=l
1 x xy
(b) L J':J; dzdydx = %
6-x/2 r4-2%/3-x/3
L xdzdydx]

6 F12-2v (4—2y:3-x/3 12
(c) L L J; xdzdxdy =144 [=L L

w2 r4 VTGS
@] [,

2w pmw S
(e) L L L p*sin ¢ dp dé db = 2500

(16 -r)Y%rzdrdz do = 3w

Evaluate the integral of Problem 16(b) after changing the order to dz dx dy.
Evaluate the integral of Problem 16(c), changing the order to dx dy dz and to dy dz dx.

Find the following volumes, using triple integrals in rectangular coordinates:

(a) Inside x* + y* =9, above z =0, and below x + z =4 Ans. 367 cubic units
(b) Bounded by the coordinate planes and 6x + 4y + 3z =12 Ans. 4 cubic units
(c) Inside x* + y* =4x, above z =0, and below x° + y* =4z Ans. 6 cubic units

Find the following volumes, using triple integrals in cylindrical coordinates:
(a) The volume of Problem 4

(b) The volume of Problem 19(c)

(¢) That inside r* = 16, above z =0, and below 2z =y Ans. 64/3 cubic units

Find the centroid of each of the following volumes:

(a) Under z° = xy and above the triangle y = x, y =0, x =4 in the plane z=0 Ans. (3,%.9)
(b) That of Problem 19(b) Ans. (3.2,
64 -97 23 737 - 128
(c) The first-octant volume of Problem 19(a) Ans. (16(17 ) B -1) 327 1) )
(d) That of Problem 19(c) Ans. (3.0, %
(e) That of Problem 20(c) Ans. (0, 31r/4 37/16)
Find the moments of inertia /., I,, I, of the following volumes:
(a) That of Problem 4 Ans. 1 =1 =%V [ =%V
(b) That of Problem 19(b) Ans. 1, =3V, =2V, [ =RV
(¢) That of Problem 19(c) Ans. 1 =RV, 1 =BV, I =%V
(d) That cut from z = r* by the plane z =2 Ans. I =1 =3V;1 =3V
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23,

Show that, in cylindrical coordinates, the triple integral of a function f(r, 6. z) over a region R may be

represented by
B rra(8) riy(r.6)
f J’ J f(r, 0, z)rdz dr do

18 1(r.8)

(Hint: Consider, in Fig. 73-12, a representative subregion of R bounded by two cylinders having Oz as
axis and of radii r and r+ Ar, respectively, cut by two horizontal planes through (0,0, z) and
(0,0, z + Az), respectively, and by two vertical planes through Oz making angles 6 and 6 + A8,
respectively, with the xOz plane. Take AV = (r A6) Ar Az as an approximation of its volume.)

z z
& Ap
p-\._‘ e
Sl = pA®
B A\
A T\
0 | l v
e A
AT
v @
‘_.:. pli!w As
z)
x
Fig. 73-12 Fig. 73-13

Show that, in spherical coordinates, the triple integral of a function f( p, ¢, 8) over a region R may be
represented by

B [#3(8) rpid.8)
] f f f(p, &, 6)p° sin & dp do dé

100) Jp(0.8)

(Hint: Consider, in Fig. 73-13. a representative subregion of R bounded by two spheres centered at O, of
radii p and p + Ap, respectively, by two cones having O as vertex, Oz as axis. and semivertical angles ¢
and ¢ + A¢, respectively, and by two vertical planes through Oz making angles 8 and 6 + A8,
respectively, with the zOy plane. Take AV = (p A¢)(p sin ¢ AB)(Ap) = p’sin ¢ Ap Ad Af as an approx-
imation of its volume.)
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Lecture III

Solution of first order equations

1 Separable equations

These are equations of the form

v = f(x)g(y)

Assuing ¢ is nonzero, we divide by g and integrate to find

dy /
—— = | f(x)de +C
J =]
What happens if g(y) becomes zero at a point y = yo?
Example 1. 2y = y + 9>

Solution: We write this as

/ dy :/dz—l—C’:/dy—/dyzlnx—l—C:lny—ln(l—Fy):lnx—i—C
Y+ 42 x Y 1+y

Note: Strictly speaking, we should write the above solution as
Injy] —In|1+y|=Inlz|+C

When we wrote the solution without the modulas sign, it was (implicitly) assumed
that z > 0,y > 0. This is acceptable for problems in which the solution domain is not
given explicitly. But for some problems, the modulas sign is necessary. For example,
consider the following IVP:

vy =y+y°, y(-1)=-2.

Try to solve this.

2 Reduction to separable form

2.1 Substitution method

Let the ODE be
y' = F(ax + by + ¢)

Suppose b # 0. Substituting ax + by + ¢ = v reduces the equation to a separable form.
If b= 0, then it is already in separable form.

Example 2. ¢ = (z +y)?
Solution: Let v =z +y. Then we find

vV =v"+1=tan 'v=2+C =z +y=tan(z + C)
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2.2 Homogeneous form

Let the ODE be of the form
y = fy/x)
In this case, substitution of v = y/x reduces the above ODE to a seprable ODE.

Comment 1: Sometimes, substitution reduces an ODE to the homogeneous form. For
example, if ae # bd, then h and k can be chosen so that + = u+ h and y = v+ k

reduces the following ODE
J = F <a:v+by+c>

dr +ey+ f
to a homeogeneous ODE. What happens if ae = bd?
Comment 2: Also, an ODE of the form

Y =y/x+g(x)h(y/z)
can be reduced to the separable form by substituting v = y/x.
Example 3. zyy = y? + 222, y(l) =2
Solution: Substituting v = y/x we find
v+ v =v+2/v =9y =22*(C + Ina?)
Using y(1) = 2, we find C' = 2. Hence, y = 22*(1 + In z?)

3 Exact equation

A first order ODE of the form

M(z,y)dx + N(z,y)dy =0 (1)
is exact if there exits a function u(x,y) such that
= Ou and N = @
ox dy

Then the above ODE can be written as du = 0 and hence the solution becomes u = C'.
Theorem 1. Let M and N be defined and continuously differentiable on a rectangle
rectangle R = {(z,y) : |v — x| < a,|y —yo| < b}. Then (1) is exact if and only if
OM /0y = ON/Oz for all (z,y) € R.

Proof: We shall only prove the necessary part. Assume that (1) is exact. Then there
exits a function u(x,y) such that

= Ou and N = @
ox dy
Since M and N have continuous first partial derivatives, we have
oM *u ON  d%u

Oy Oydx wme Tar T 0xdy’
Now continuity of 2nd partial derivative implies OM /0y = ON /0.
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Example 4. Solve (2 + sin x tany)dz — cos z sec’ y dy = 0

Solution: Here M = 2z +sinx tany and N = — coszsec’ y. Hence, M, = N,. Hence,
the solution is u = C, where u = 2% — cosx tany

4 Reduction to exact equation: integrating factor

An integrating factor pu(z,y) is a function such that
M(z,y)dx + N(x,y)dy =0 (2)
becomes exact on multiplying it by u. Thus,
puM dx + pN dy = 0

is exact. Hence
O(pM) _ 9(uN)
oy or
Comment: If an equation has an integrating factor, then it has infinitely many inte-
grating factors.

Proof: Let p be an integrating factor. Then
uMdx + pN dy = du

Let g(u) be any continuous function of u. Now multiplying by ug(u), we find

pg(u)M dx + pg(u)N dy = g(u)du = pg(u)M dx + pg(u)N dy = d (/ g(u) dU)
Thus,
pg(w)M dx + pg(u)N dy = dv, whare v = / g(u) du

Hence, pg(u) is an integrating factor. Since, g is arbitrary, there exists an infinite
number of integrating factors.

Example 5. zdy — ydx = 0.

Solution: Clearly 1/2? is an integrating factor since

dy — yd
YW I _ 0= d(y/z) =0

22
Also, 1/zy is an integrating factor since

xdy — ydx

—0=dl —0
” = dIn(y/)

Similarly it can be shown that 1/y? 1/(2? + y?) etc. are integrating factors.
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4.1 How to find intgrating factor

Theorem 2. If (2) is such that
(o)
N \ 0y ox
is a function of x alone, say F(x), then
[=e J Fdx
is a function of x only and is an integrating factor for (2).
Example 6. (zy — 1)dz + (2* — 2y)dy = 0
Solution: Here M = 2y — 1 and N = 22 — zy. Also,
(o o)
N \ Oy ox
Hence, 1/z is an integrting factor. Multiplying by 1/ we find
(vy — 1)dz + (2* — ay)dy
x
Theorem 3. If (2) is such that

T

=0=a2y—Inz—9y*/2=0C

1 (oM _ON
M \ oy ox

is a function of y alone, say G(y), then
is a function of y only and is an integrating factor for (2).
Example 7. y3dz + (zy* — 1)dy = 0
Solution: Here M = 3 and N = zy? — 1. Also,
1L (OM ONY\ 2
M \ oy or ) vy
Hence, 1/y? is an integrting factor. Multiplying by 1/4* we find
yldr + (zy® — 1)dy
Y2
Comment: Sometimes it may be possible to find integrating factor by inspection. For
this, some known differential formulas are useful. Few of these are given below:

d(m) _ ydx — xdy

1
=0=ay+-=C
Y

2

Y Y
d(y) _ xdy —dem
x x

d(xy) = xdy+ ydx

p <ln AT ydx — xdy
Y Ty
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Example 8. (22%y + y)dz + xdy = 0
Obviously, we can write this as
20%ydr + (ydr + xdy) = 0 = 22%ydx + d(zy) =0

Now if we divide this by zy, then the last term remains differential and the first term
also becomes differential:

d(zy)

2xdr + oy =0= d(xz —|—1n(a:y)) =0= 2" +In(zy) =C
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2.3 Exact Differential Equations

A differential equation is called ezact when it is written in the specific form

F,dx+ F, dy =0, (2.4)
for some continuously differentiable function of two variables F'(x,y). (Note
that in the above expressions F, = g—i and F, = %—5).

The solution to equation (2.3) is given implicitly by
F(z,y)+C =0.
We see this by implicitly differentiating
F(z,y)+C =0.

with respect to = (and using the chain rule from multivariable calculus) we
see that an exact differential equation must be of the form:

dy
.+ F,—=0, 2.5
+ yd(E ( )
which can be written as
F,dx+ F, dy = 0. (2.6)

Example 2.6 Find the exact differential equation that is solved by

2y +yPsine +C =0

Solution: Differentiating, we obtain

(Qxy + 9 cos x) dr + (x2 + 3y? sin rc) dy=0 0O

Note that one needs to be extremely careful calling a differential equation
exact, since performing algebra on an exact differential equation can make it
no longer exact. In other words, the differential equation

(2zy” + y* cosz) dz + (yz° + 3y’ sinz) dy =0 O
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is algebraically equivalent to equation(2.3) but it is not exact, even though
it is still solved by
2?y +yPsinz +C = 0.

One should recall that if F'is continuously differentiable then the mixed
partial derivatives of F' must match namely, F,, = F,,. This gives us a
method to detect if a differential equation is exact namely:

Exactness Test and Method to Solve an Exact DE
Consider the differential equation

M(z,y) de 4+ N(z,y) dy =0

where M and N are both continuously differentiable functions with contin-
uous partials M, and N,. If M, = N,, then the DE is exact. The implicit
solutions are given by F(z,y) + C =0 where F' = [ M dx and F = [ N dy,
simultaneously, up to a constant C.

We first show that one can obtain a function so that F' = f M dx =
[ N dy, simultaneously, up to a constant C'. Given that M, = N,. Consider
[ M dx— [ N dy. Rewrite this as:

[ty ayy o= [ ([ . o) ay,

/ / 0 dz dy
which is a constant.

Suppose that such an F' now exists so that £ = f M dx and ' = f N dy,
simultaneously. Then differentiating we obtain

which equals

F,dx+ F, dy =0, (2.7)

or
M dx+ N dy = 0. (2.8)

Moreover, since Fy, = F,, we must have M, = N,. O
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Example 2.7 Use the test for exactness to show that the DFE is exact, then
solve 1t.

1
(x2 +ry — yQ) dr + (5:752 — 2:1:y> dy = 0. (2.9)

Solution:
In this problem, M = 2% + 2y — y? and N = %xQ — 2xy. Thus,

M, =z —2y
and
N, =z — 2y,

which implies that the differential equation is exact.
To obtain F' we compute F' = [ M dz and F = [ N dy.

1 1
F:/Malac:/acQ—i—avy—y2 da::§x3+§:c2y—xy2+h1(y)

where hy(y) is an unknown function of y. Similarly,

1
F:/N dy:/12x2—2xy dy:§x2y—xy2+hg(x)

where hy(z) is an unknown function of x.
For F to equal both simultaneously, we must have hy(z) = iz® and

3
hi(y) = 0.
Thus F(z,y) = %x?’ + %xzy — xy? and hence,

1 1
§x3+§x2y—xy2+020

is the solution to the DE. OJ

Example 2.8 Use the test for exactness to show that the DE is exact, then
solve the initial value problem.

(ye™) dr+ (ze™ +siny) dy =0 y(0) =7 (2.10)
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Solution:
In this problem, M = ye™ and N = ze™ + siny. Thus,

M, = e" 4 zye™

and
N, = ™ + zye™,

which implies that the differential equation is exact.
To obtain F we compute F' = [ M dx and F = [ N dy.

F—/de—/ye‘”ydx—ezy—i-hl(y)

where hi(y) is an unknown function of y. Similarly,

F:/N dy:/xemy+siny dy = €™ — cosy + ho(x)

where hs(z) is an unknown function of z.

For F' to equal both simultaneously, we must have hy(z) = 0 and hy(y) =
—CosYy.

Thus F(z,y) = " — cosy and hence,

e —cosy+C =0

is an implicit solution to the DE for any C.
To solve the initial value problem, when x = 0 we must have y = 7 or
e? — cosm + C = 0 which implies that C' = —2. Thus,
e —cosy—2=0

solves the initial value problem. 0

Exercises
Use the Fxactness Test to Determine if the DE is exact.
Ly de+xdy=0

2. (2 +y?) dao+ (2zy + cosy) dy =0
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10.

11.

12.

. arctan(y) dz +
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sdr+rds=0

1+ y? dy =0

Use the Ezxactness Test to show the DE is exact, then solve it.

(Vy + 2xtany) dx + <ﬁ + 2% sec y) dy =0

(2xy4 — 3+ cos(23:)) dr + (41’23/3 — 3w — 2y) dy =0

(x 3y? —|—:l:>dx+(lnx—6:z:y)d =0

x xy
2?2+ Y2+ — | dz+ —dy = 0 (Hint: one integration
( 7?2+ y2> Va4 y?

is easier, use the easy one to backward engineer the harder one)

(cos(zy) — zysin(zy)) dz + (—2”sin(zy) + y) dy = 0 (Hint: one inte-
gration is easier, use the easy one to backward engineer the harder
one))

Use the Exactness Test to show the DFE is exact, then solve the initial
value problem.

22y dr + 32%y? dy =0, y(1) =2
(y* — 2ze) do + (2zy — 2%e?) dy = 0, y(2) =0

(a) Show that xy*dzr + 4%y dy = 0 is not exact.
(b) Multiply the DE by = and show that the resulting DE is exact.

(c) Solve the DE from (b). Does the solution in (b) solve the original

DE (in (a))?
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Lecture IV

Linear equations, Bernoulli equations, Orthogonal trajectories, Oblique trajectories

1 Linear equations

A first order linear equations is of the form
y' +p(z)y =r(z) (1)
This can be written as
(p(z)y —r(z))de +dy = 0.
Here M = p(x)y — r(z) and N = 1. Now
1 (OM ON
v () oo
Hence,
() = ef
is an integrating factor. Multiplying (1) by u(x) we get

dd (efp(m)dmy) _ T(I)@fp(w)dz
xr

Integrating we get
eJ P@ vy — / r(s)efp(s) s+ C

which on simplification gives
y = ¢ Jp@)de <C’ + /xr(s)efp(s)ds ds>
Example 1. Solve y' + 2zy = 2z
Solution: An integrating factor is e**. Hence,
yer = /x2tet2dt+C:>y: 1+ Ce™
Comment: The usual notation dy/dx implies that z is the independent variable and y
is the dependent variable. In trying to solve first order ODE,; it is sometimes helpful to

reverse the role of x and y, and work on the resulting equations. Hence, the resulting
equation
dx
& +p(y)r =r(y)
is also a linear equation.
Example 2. Solve (43> — 2xy)y’ = y?, y(2) =1

Solution: We write this as

Clearly, y? is an integrating factor. Hence,
2 (Y3 2 _ 4
xy = | ydy+C=uzy"=y +C

Using initial condition, we find zy? = y* + 1.
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2 Bernoulli’s equation

This is of the form

Y+ p(@)y = r(@)y, (2)
where A is a real number. Equation (2) is linear for A = 0 or 1. Otherwise, it is
nonlinear and can be reduced to a linear form by substituting z = '~

Example 3. Solve y —y/x =1
Solution: We write this as
y Py —y =1
Substitute y =2 = z = —2y 3y = 2’. This leads to
2+ 2z/r=-2
This is a linear equation whose solution is
z2® = -2 /34+C

Replacing z we find
2

35 42t =C
y

3 Reducible second order ODE

A general 2nd order ODE is of the form

F(z,y,y,y") =0

In some cases, by making substitution, we can reduce this 2nd order ODE to a 1st
order ODE. Few cases are described below

Case I: If the independent variable is missing, then we have F(y,y/,y") = 0. If we

substitute w = 3/, then y” = w‘fl—w. Hence, the ODE becomes F(y, w, wcé—“’) = 0, which
y y

is a 1st order ODE.

Example 4. Solve 2y" —y? —4=0

Solution: With w = 3/, the above equation becomes

d
dez:—w2—4—O:>ln[(w2+4)/C]—y:>w—j:\/Cey—4

SInce w = ¢/, we find
_ Yy
vCe¥ —4

The integral on the LHS can be evaluated by substitution.

=4z + D

Case II: If the dependent variable is missing, then we have F(x,y,y") = 0. If we
substitute w = ¢/, then y” = w’. Hence, the ODE becomes F'(z,w,w’) = 0, which is a
1st order ODE.
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Example 5. Solve zy” + 2y =0

Solution: Substitute w = ¢/, then we find
d 2
fw+—w:0:>w:0x’2
de x

Since w = v/, we further get

y =C/2* =y=—-C/x+D

4 Orthogonal trajectories

Definition 1. Two families of curves are such that each curve in either family is
orthogonal (whenever they intersect) to every curve in the other family. Each family
of curves is orthogonal trajectories of the other. In case the two families are identical,
they we say that the family is self-orthogonal.

Comment: Orthogonal trajectories has important applications in the field of physics.
For example, the equipotential lines and the streamlines in an irrotational 2D flow are
orthogonal.

Slope =-1/dy/dx

Slope = dy/dx

Figure 1: Orthogonal trajectories.

4.1 How to find orthonal trajectories

Suppose the first familiy
F(z,y,c) =0. (3)

To find the orthogonal trajectories of this family we proceed as follows. First, differ-
entiate (3) w.r.t. x to find
G(z,y,y,c) = 0. (4)
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Now eliminate ¢ between (3) and (4) to find the differential equation

H(z,y,y')=0 (5)

corresponding to the first family. As seen in Figure 1, the differential equation for the
other family is obtained by replacing y' by —1/y’. Hence, the differetial equation of
the orthogonal trajectories is

H(x,y,—l/y’) =0 (6)

General solution of (6) gives the required orthogonal trajectories.

Example 6. Find the orthogonal trajectories of familiy of straight lines through the
oTLgIn.

Solution: The familiy of straight lines through the origin is given by

Yy =mzx
The ODE for this familiy is

zy —y=0
The ODE for the orthogonal family is

z+yy =0
Integrating we find

xZ + y2 — C,

which are family of circles with centre at the origin.

(a (b)

Figure 2: Orthogonal trajectories.

4.2 *Orthogonal trjactories in polar coordinates

Consider a curve in polar cordinate. The angle ¢ between the radial and tangent

directions is given by
— rdf
any = —
dr
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Consider the curve with angle ;. The curve that intersects it orthogonally has angle

¢2:¢1+7T/2. Now
1

tan ¢1

Thus, at the point of orthogonal intersection, the value of

tan 7702 = —

rdf
o ")

for the second famility should be negative raciprocal of the value of (7) of the first
family. To illustrate, consider the differential equation for the first family:

Pdr + Qdf = 0.

Thus we find rdf/dr = —Pr/Q. Hence, the differential equation of the orthogonal

family is given by
rdd  Q

dr ~ Pr
or
Qdr—r*Pdi=0
General solution of the last equation gives the orthogonal trajectories.

Example 7. Find the orthogonal trajectories of familiy of straight lines through the
origin.

Solution: The familiy of straight lines through the origin is given by

0=A
The ODE for this familiy is

dg =0
The ODE for the orthogonal family is

dr =0
Integrating we find

r=0C,

which are family of circles with centre at the origin.

4.3 Oblique trajectories

Here the two families of curves intersect at an arbitrary angle o # /2. Suppose the
first familiy
F(z,y,c)=0. (8)

To find the oblique trajectories of this family we proceed as follows. First, differentiate
(8) w.r.t. z to find
G(z,y,y,c) = 0. 9)
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Slope=m;

Slope=m,

Figure 3: Oblique trajectories.

Now eliminate ¢ between (8) and (9) to find the differential equation

H(z,y,y') = 0. (10)
Now if m; is the slope of this family, then we write (10) as

H(z,y,my) =0, (11)

Let ms be the slope of the second familily. Then

mi;—m
+tano = —+ %
1+ m1mme
Thus, we find
me £ tan o
ma

- 1 Fmytana
Hence, from (11), the ODE for the second family satisfies

me £ tan o ) _ 0
1 Fmytana,)

H (l’y
Replacing my by 3/, the ODE for the second family is written as

Yy + tan« )

— | = 0. 12
1Fy tana (12)

H (w,y,
General solution of (12) gives the required oblique trajectories.
Note: If we let o« — 7/2, we obtained ODE for the orthogonal trajectories.

Example 8. Find the oblique trajectories that intersects the familiy y = x + A at an
angle of 60°
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Solution: The ODE for the given family is
y=1
For the oblique trajectories, we replace
F oy y' £ tan(7/3) _ y £+/3
L Fy'tan(r/3) 133y
Thus, the ODE for the oblique trajectories is given by
yEV3
1FV3y

Simplifying we obtain

1_
y/: \/g OR yl:
1++3 1-v3

Hence, the oblique trajectories are either
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