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Chapter: 1  

Motion in a Resisting Medium 

     In studying the motion of a body in a resisting medium, we assume that the resistive 

force on a body, and hence its deceleration, is some function of its speed. Such resistive 

forces are not generally conservative, and kinetic energy is usually dissipated as heat. 

For simple theoretical studies one can assume a simple force law, such as the resistive 

force is proportional to the speed, or to the square of the speed, or to some function that 

we can conveniently handle mathematically. For slow, laminar, non-turbulent motion 

through a viscous fluid, the resistance is indeed simply proportional to the speed, as can 

be shown at least by dimensional arguments. One thinks, for example, of Stokes's Law 

for the motion of a sphere through a viscous fluid. For faster motion, when laminar flow 

breaks up and the flow becomes turbulent, a resistive force that is proportional to the 

square of the speed may represent the actual physical situation better. 

1-Horizontal motion in a straight line 

2-Vertical motion in a straight line 

(i) - downwards (falling)  

(ii)- upwards 

1-Horizontal motion in a straight line 

Example:1  A particle moves (travels) in a straight line is subject to a 

resistance  vk , where v   is the velocity and k  is the constant. Show that its 

velocity and position at time t  are given, respectively, te −
= 0vv   ,    






 −

−=
t

x e 


10v

. If the particle starts its motion from the original point by 

initial velocity 0v  and determine maximum distance that travels the particle? 

Solution 
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The motion of Equation in our case is  

Ram −=


                                                                                     (1) 

But, vv kRR =→ , and if we put mk = . Then Eq. (1) becomes  

dt

dv
a =−= v  

Separating variables and integrating yields: 

−= dt
dv


v

 

( ) 1ln ct += −v                                                                              (2) 

From the initial condition at  0=t  0v = , this tends to ( ) 1ln c=0v . 

Substitute into Eq. (2) we have    

Then           

( ) ( )

( ) ( )

t

t
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t




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−
=→=









=












−

+=

−

−

−

00

0

0

v

v

v

v

vv

vv

ln

lnln

lnln

  

te −
= 0vv                  (Answer…..Ans.)                                                 (3) 

The displacement (distance) from Eq. (3) given by  

2c
t

xdt
t

dx
t

dt

dx
eee +
−

−=→
−

=→
−

== 




 0
00

v
vvv                                 (4) 

From the initial condition at  0=t  0=x , this tends to  






00 vv

=→+
−

−= 22

)0(
0 cce  

Then In Eq. (4) we have 






00 vv

+
−

−=
t

x e  







 −

−=
t

x e 


10v

                                                                                  (5) 

When the particle travels to maximum distance, then the velocity equal zero 

and from Eq. (3) we find that 

==
−

= t
te 0


0vv . 

Substituting this value for time into the position function (Eq. 5) gives the 

maximum distance the particle travels as. 

( )









0000 vvvv

=−=





 −

−=





 −

−= 01
)(

11 ee t
x      
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Exercise: A particle moves (travels) in a straight line is subject to a 

resistance vk , where v   is the velocity and k  is the constant. Find both the 

velocity and position at time t , if the particle starts at 0xx =  by initial 

velocity 0v  . Determine maximum distance that travels the particle? 

 

Example:2- A particle moving in a straight line is subject to a resistance 
2vk , where v  is the velocity and k  is the constant. Study the motion if the 

particle starts its motion from the original point by initial velocity 0v ? 

Solution 

 
From the Newton's second law of motion 

Ram −=


                                                                                             (1) 

But, 2vv kRR =→ , and if we put mk = . Then Eq. (1) becomes  

→= −==−= dt
dt

a
dd


2

2

v

vv
v  

1

1
ct +=

−
 −

v
                                                                          (2) 

From the initial condition at  0=t  0vv = , this tends to 
0v

1
1

−
=c . 

Substitute into Eq. (2) we have    

0

0

0 v

v

vvv

1111 +
− =

−
+=

− t
t


 , then  

1+
=

t0

0

v

v
v


                                                                         (3) 

The displacement from Eq. (3) given by  

( ) 21ln
11

cxdtdx
dt

dx
t

tt
+=→=→== +

++  0

0

0

0

0 v
1

v

v1

v

v
v 





              (4) 

From the initial condition at  0=t  0=x , this tends to  

( ) ( ) 01ln1ln0 22)0( ==→+= +





11
cc and again in Eq. (4) we have  

( )1ln += tx 0v
1




                                                             (5) 
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Example:3- A particle moves in a straight line is subject to a resistance  3vk , 

where v   is the velocity and k  is the constant. If the particle starts its motion 

from the original point by initial velocity 0v  prove that 2

0

x
x

t 
2

1

v
+= ,   

10

0

+
=

xv

v
v ? 

Solution 

 
From the Newton's second law of motion 

Ram −=


                                                                                            (1) 

But, 3vkR = . Then in Eq. (1) becomes 
3vkam −= , mk=     3v−=→ a  

dx
d

dx

d

dx

d
 −=→−=→−=

2

23

v

v
v

v
v

v
v  

1

1
cxdx

d
+−=

−
→−=  

vv

v
2

                                                                 (2) 

From the initial condition at  ,0,0 == xt  0vv = , this tends to 

0

11

0

1
)0(

1

vv

−
=→+−=

−
cc  

Substitute into Eq. (2) we have   
0

0

00

11111

v

v

vvvv

+
=+=→−−=

− x
xx


  

10

0

+
=

xv

v
v                                                                              (3) 

The displacement (distance) from Eq. (3) given by  

( ) 2

2

0000

0

0 1
1

cxxtdxxdt
xdt

dx
+







+=→+=→

+
==  


v

2

1
vvv

v

v
v   (4) 

From the initial condition at  0,0 == xt  0vv = , this tends to 

0)0()0()0( 22

2

00 =→+







+= ccv

2

1
v  

Substitute into Eq. (4) we have 
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2-Vertical motion under gravity with linear resistance 
(i)- downwards (falling)  

 

Example:4 - Determine the motion of a body (particle) falling under gravity 

and the resistance of air being assumed proportional to the velocity. 

 

Solution 

 
Taking the downward direction as positive, then the equation of motion will be   

Rgmam −=


                                                                                            (1) 

Whereecomes b 1). Then Eq. ( mk = and if we put vv kRR =→    

 =
−

=
−

=−= 
−

−→→= dt
g

dt
gdt

dv
mmmgam

dvdv

vv
v








1
 

( ) 1ln
1

ctg +=− − v


                                                                               (2) 

From the initial condition at  0,0 == yt  0v = , this tends to 

( ) 1ln
1

cg =−


  and substituting in Eq. (2) we have ( ) ( )gg t ln
1

ln
1


 −=− − v       

( ) ( ) tgg  −=












−− lnln v  

tgt

gg
ee g

g
t

g 
 −=→−=→−=









−
−−

v
vv

ln  

)1( tg
e 



−−= v                                                                                       (3) 

This equation gives the velocity at any instant (moment). If the time increases to 

infinity, then  


g
=v  that is called the terminal velocity.  

 The displacement (distance) from Eq. (3) given by   

2)
1

()1()1( ctt
g

ydttg
dytg

dt

dy
eee +−+=→−−=→−−== 












v       (4) 
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From the initial condition at  0,0 == yt , this tends to 

2222 )
1

0()01
0(0



g
cc

g
c

g
e −=→++→+−+=  and into Eq. (4) 

22
)

1
(







gtt
g

y e −−+= , then    )1(
2

tggt
y e 



−−−=                                    (5) 

 

 

Example:5- Determine the motion of a body falling under gravity and the 

resistance of air being assumed proportional to the square of the velocity. 

Solution 
Taking the downward direction as positive, then the equation of motion will be   

Rgmam −=


                                                                                            (1) 

Where. Then Eq. (1) becomes mk = and if we put 2vv kRR =→    
22 vv  −=−= gammgam Or                                                            

Where 
dy

d
a

v
v= , then 


−

→→ =
−

−
=

−
−= dy

g
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g
g

ddd
22

2

v
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v
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v
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v
v







2

2

1
 

( ) 12ln cyg +−= −  2v                                                                            (2) 

From the initial condition at  0,0 == yt  0v = , this tends to ( ) 1ln cg =   
and into Eq. (2), we have 

( ) ( )gg y ln2ln +−=−  2v  










−
=

2v g

g
y ln

2

1
                                                                                  (3) 

To determine the time from Eq. (2) and where, then 
dt

d
a

v
=    

 =





























→





























=

−

−−= dtg
g

g

g

g
d

g
g

dt

d
2

2

v

v

v
v 2v










1

1  

2
1tanh ctg

g

g
+=









− v



                                                                         (4) 

From the initial condition at  0,0 == yt  0v = , this tends to 

0)0tanh 22
1 ==









− cc
g

g
(




 and again in Eq. (4) we have   

tg
g

g
=









− v




1tanh , then      








= − v
g

g

g
t





1tan
1

                                              (5) 
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(ii) Upwards 

Example: 6- A body is projected vertically upwards with 0v  speed  in a medium that 

exerts a drag-force vk , where k  is a positive constant and v  is the velocity of the body. 

Find the maximum height achieved by the body, the time taken to reach that height? 

Solution 

 
On including the linear resistance force, the scalar equation of motion becomes 

Rgmam −=


 

Where vkR = , then the Equation of motions becomes  

m

k
g

dt

dv

m

k
g

dt

dv
a

dt

dv
mkmgam    v),vv =+−=−−=−−= →=→= (

 

 →−=
+

→+−= dt
g

dv
g

dt

dv

v
v)


(  

( ) 1ln
1

ctg +−= + v


                                                                              (1) 

From the initial condition at 0=t , 0vv = , then    

( ) 10ln
1

ckg =− + v


                                                                                    (2) 

Substitute from (2) into one we find that   

( ) ( )0ln
1
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1
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


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
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g

g
t
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




  −
+=→

−
=

+
→−=









+
+
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0

00
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v

v

v

v
  

( ) ( )ttt eee
g
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g 


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
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++−= 1

1
00 vvv                                      (3) 

For the displacement from (3) we have     

( ) ( )0 01 1
t t t tdy g g

dy dt
dt

e e e e   

 

− − − − 
= = − − → = − − 

 
 v v v               
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0
2

1t tg
y t ce e 

  

− − 
=− − + + 

 

v
                                                                                          (4) 

Again, From the initial condition at 0=t , 0=y , then 

2

0
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( ) ( ) t
gty eg





 −−−= + 1

1
2 0v                                                          (5) 

when the body is stop to the move vertically upwards, in this case 0v =  

( ) ( )









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




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



ln

00
1

 

Then, the arrival time of maximum height 





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


=

+

g

g
t 0v


ln

1

max
                                                                 (6) 

Substitution from Eq. (6) into Eq. (5), then the maximum height achieved by the body is 

given by 
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
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


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
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
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Chapter: 2 
Projectiles 

 

Definition Any object released into the air is called a projectile. Or a projectile is an 

object upon which the only force acting is gravity.  

There are a variety of examples of projectiles. An object dropped from rest is a 

projectile (provided that the influence of air resistance is negligible). An object that is 

thrown vertically upward is also a projectile (provided that the influence of air resistance 

is negligible). And an object which is thrown upward at an angle to the horizontal is also 

a projectile (provided that the influence of air resistance is negligible). A projectile is 

any object that once projected or dropped continues in motion by its own inertia and is 

influenced only by the downward force of gravity. 

Other examples:  

(1) A ball after it has been thrown or hit 

(2) A human body when jumping or diving 

All projectiles have a “parabolic” flight path.  

Trajectory = the flight path of a projectile.  

The trajectory of a projectile consists of a vertical and horizontal component. 

 

In the projectile motion the object moves in a bilaterally symmetrical, parabolic path. 

The path that the object follows is called its trajectory. Projectile motion only occurs 

when there is one force applied at the beginning on the trajectory, after which the only 

interference is from gravity. In a previous atom we discussed what the various 

components of an object in projectile motion are. In this atom we will discuss the basic 

equations that go along with them in the special case in which the projectile initial 

positions are null . 

How do we handle 2D projectile motion mathematically? 

One of the easiest ways to deal with 2D projectile motion is to just analyze the motion in 

each direction separately. In other words, we will use one set of equations to describe 
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the horizontal motion of the lime, and another set of equations to describe the vertical 

motion of the lime. This turns a single difficult 2D problem into two simpler 1D 

problems. We're able to do this since the change in the vertical velocity of the lime does 

not affect the horizontal velocity of the lime. Similarly, throwing the lime with a large 

horizontal velocity does not affect the vertical acceleration of the lime. In other words, if 

you fire a bullet horizontally and drop a bullet at the same time, they will hit the ground 

at the same time.  

 
 

When a particle is projected obliquely near the earth’s surface, it moves simultaneously 

in the direction of horizontal and vertical. The motion of such a particle is called 

Projectile Motion. In the above diagram, where a particle is projected at an angle  , 

with an initial velocity 0v . For this particular case, we will study the motion in two 

direction (horizontal and vertical) 

 

For the particular, we will calculate the following: 
1- The velocity at any time “ t  “ during the motion. 

2- Time of reach maximum height  

3-The maximum height reached during the motion. 

4-Time of flight or total time  

5-The horizontal distance (Range) 

 

Horizontal direction: 

There's no acceleration in the horizontal direction since gravity does not pull projectiles 

sideways, only downward. Air resistance would cause a horizontal acceleration, slowing 
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the horizontal motion, but since we're going to only consider cases where air resistance 

is negligible we can assume that the horizontal velocity is constant for a projectile. So 

for the horizontal direction we can use the following equation                                                                                                                   

00 == xOrxm                                                                               (1)                                    

Integration Eq. (1), we have     10 c
dt

d
x x

x
=→== 

                                                                   

From the initial condition at →=→=
=

cos0 00
v

t
xt  cos01 v=c . Then  

cos0v=x                                                                                      (2)                             

Integration Eq. (2), we have 20 cos ctx += v                                                                 

From the initial condition at 0,0 == xt → , then                 02 =c   

  cos0 tx v=                                                                                    (3)                             

 

Vertical direction: 

Two-dimensional projectiles experience a constant downward acceleration due to 

gravity. Since the vertical acceleration is constant, we can solve for a vertical variable 

with one of the four kinematic formulas which are shown below.    

gymgy Orm −=−=                                                                 (4)                        

Integration Eq. (4), we have           3cty gg
dt

yd
y +→ −=−== 


                                                                                                

From the initial condition at sin,0 00
v==

=t
yt  → sin02 v=c . Then  

gty −= sin0v                                                                                   (5)                       

Integration Eq. (5), we have                                  4

2

0
2

1
sin ctgty +−= v     

From the initial condition at 0,0 == yt , →  04 =c . Then                             

2

0
2

1
sin tgty −= v                                                                              (6) 
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The properties of projectile                                                                                              

(1) Parametric Equation  

From Eq. (3), we find 
cos0v

x
t =  and substitute in Eq.(6), we get 











2

2
2

00

0

2

0
cos2cos

sin

cos2

1
sin

cos2

1
sin

2

0vvv
vv

xg
x

x
g

x
tgty −=










−










=−=

 2
2

sec
2

tan
2

0v

xg
xy −=

 
                                                                   (7)                                           

2- Time of reach maximum height 

The time is taken to reach the maximum point is called the time of reach maximum 

height. The maximum height is reached when 0)=•y( . Using this we can rearrange the 

velocity equation to find the time it will take for the object to reach maximum height. At 

the maximum point, the vertical velocity will vanish, i.e.   

0sin0 =−=• gty v . Then the time of reach maximum height given by 

max

0 siny yt t
g

= = =
v

                                                                     (8)  

 

3-The maximum height (Greatest Height) 

The maximum vertical distance to which the particle reaches during the motion is called 

the maximum height. 

Substitute from Eq. (8) into Eq. (6), we have  

200
0 )

sin
(

2

1
sin)

sin
(

g
g

g
y




 vv
v −= , then 

2

.max sin
2g

hy
2

0v
==       (Maximum Height Formula)                              (9)                     

Note, at the maximum height ( ) 







=  2

.max sin
2

,2sin
2

,
gg

x y
ht

2

0

2

0 vv
. 
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4-Time of flight (Total time of the whole journey)                                                   

The time of flight of a projectile motion is the time from when the object is projected to 

the time it reaches the surface. Or, the total time for which the projectile remains in the 

air is called the time of flight. In this case the projectile is fall on the  −x  axis, i. e. 

( 0=y ),  00
2

1
sin 2

0 =→=−= ttgty v , or                                                                     

sin2 0

g
t

v
=  . 

 So the total time is given by                                                                                          

sin2 0

g
T

v
=                                                                                         (10) 

5-Range  

The range of the motion is fixed by the condition ( 0=y ). Using this we can rearrange 

the parabolic motion equation to find the range of the motion 




2sin
cossin

gg
R

2

0

2

0 vv2
==                                                              (11) 

6. The same property Range                                                                                                   

If we throw (fling) an object by the same initial velocity and with the two angles   and 



−

2
. From Eq. (11), we find that 

2sin1
g

R
2

0v
=                                                                                   (12)                           

Again in Eq. (11) 












−=−=−=
−=




2sincos2cossin)2(sin)
2

(2sin
10

2 
ggg

R
2

0

2

0

2

0 vvv
.Then          

2sin2
g

R
2

0v
=                                                                                   (13)                                 

From Eqs. (12) and (13), some note that, the same range happens at   and 

−

2
. For 

example, at OO 60,30 ==   , we have the same range     g
RR

2

0v

4

3
12 ==    
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 6. The maximum Range       

From Eq. (11) the maximum Range happens at 12sin = . In this case  

g
R

2
max

2

0v
= and 

4


 = . 

 7. The velocity at any point 

 From Eq. (2) and Eq. (5), we have, respectively. 

,cos 22 2

0v=x  

( ) ( )

,2sin
2

1
sin2sin

sin2sinsin

22

0

2

2

0

22

0

2

yggttg

gttggty

−=







−−=

+−=−=





2

0

2

0

2

0

vvv

vvv

 

Then ( ) ygygyx 2sincos2sincos 222222
−+=−+=+=  2

0

2

0

2

0 vvvv 
                   

yg2−= 2

0vv                                                                              (14) 

The direction of velocity is given by   

( ) yggty

x

y

x

2sin

cos

sin

cos
tan

2

0

2

0

0

2 −
=

−
===










2

0v

v

v

v








 

yg2sin

cos
tan

2

0

−
=






2

0v

v
                                                            (15) 

Also, it take the formula 

yg2

cos
cos 0

−
=

2

0v

v 
                                                                    (16) 

Example:1 Determine the angle of projection for which maximum height is equal to the 

range of the projectile? 

Solution 

The maximum height
g

hy
2

sin2

.max

2

0v
==    

The range
gg

R
 2sincossin2 2

0

2

0 vv
==    

)4(tan4tancos2
2

sincossin2

2

sin 1
2

−=→=→=→= 


gg

2

0

2

0 vv
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Example 2: Prove that the maximum range of the projectile is given by 
g

2

0v
, what is the 

angle of  projection for projectile to have maximum range? 

Solution 

The range
gg

R
 2sincossin2 2

0

2

0 vv
==    

Where g  and 2

0v  are constants, so the maximum range verified when 2sin  is the  

greatest possible, that it will be at O45
42

212sin ==→=→=





   

So, the maximum range of the projectile given by 
g

2

0v
 

Example 3: A Jumper leaves the ground at an angle of O20  above the horizontal and at a 

speed of sec/11m=0v  

(A) What is the maximum height reached? 

(B) How far does he jump in the horizontal direction and the necessary time for that? 

Solution 

 
The maximum height (Greatest Height or Maximum Height Formula  ) of the jumper given 

by
 

m

g
h

y

y O

722.0

6.19

152644.14
)116964.0(

6.19

)11
)342.0(

6.19

)11
)20(sin

)8.9(2

)11
sin

2

.max

2
2

2
2

2
2

.max

=

======



(((v2

0 
 

The range of the jumper given by : 

m
g

OR 94.7
8.9

777.77
)64279.0(

8.9

)11
40sin

8.9

)11
2sin

22

=====
((v2

0    

Time of Flight  sec7776.0
8.9

)342.0)(11(
)342.0(

8.9

)11(
20sin

8.9

)11(
sin0 =====

222v
2 O

g
T   

Example 4: A place kicker must kick a football from a point 36 m from the goal.  Half 

the crowd hopes the ball will clear the crossbar, which is 3.05 meters high.  When 

kicked, the ball leaves the ground with a speed of 20 m/s and an angle of 53 degrees 

above the horizontal.                                                                                                               
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(a) By how much does the ball clear or fall short of the crossbar?                                               

(b) Does the ball approach the crossbar while still rising or while falling? 

Solution 

Assume air resistance is negligible, Assume no rotation of the ball. 

The horizontal distance is mx 36=  ,  The initial velocity is  sec/20 m=0v  

The angle of initial velocity speed is  mO53=  

(a) Then the vertical distance is at mx 36=  




 2
2

2

2

sec
2

tan
cos2

tan
2

0

2

0 vv

xg
xyOr

xg
xy −=−=  

Then   
22

2

2

2

)53(cos)22

)36(89
53tan36,

cos2
tan

.
0(v2

0

−=−= Oy
xg

xy


  

m

y

93.38321.4377.47
76.289

8.12700
77.47

)36220()400(2

)1296(89
77.47

)60120()202

)36(89
)3271()36(

.
.

.
..

22

2

=−=−=

−=−=
(    

my 93.3=    

Then the football will pass over the crossbar with a distance of cm8805.393.3 =−  

Then will falling at m
g

R 2351.39
8.9

5046.384
)96126.0(

8.9

00
)106sin(

8.9

00
2sin =====

44v2

0                                  

(b) In order to the football barely makes it over the bar or descending   

222 )8.9(
2

1
)7986.0()20(05.3)8.9(

2

1
)53sin()20(05.3

2

1
sin tttttgty −=→−=→−= 0v

( )




 −=→=+− )05.3)(9.4(49727.159727.15

)9.4(2

1
005.39727.159.4

22 ttt  

   3474.1959727.15
)9.4(2

1
78.591274.2559727.15

)9.4(2

1
=−=t  

  sec2036.0
8.9

99603.1
sec056.3

8.9

9493.29
97667.139727.15

8.9

1
===→= ortt  

Then the football takes sec056.3=t  to arrive the  

The corresponding horizontal distance given by  

mxxtx 71.36)60181.0()61()53cos()05.3()20(cos =→==→= 0v  
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Example 5: A place kicker must kick a football from a point 33.8 m from a goal. As a 

result of the kick, the ball must clear the crossbar, which is 3.05 m high. When kicked 

the ball leaves the ground with a speed of 21.6 m/s at an angle of 53° to the horizontal.  

(a) By how much does the ball clear or fall short of clearing the crossbar? 

(b) Does the ball approach the crossbar while still rising, or falling? Prove your answer 

mathematically. 

Solution 

Assume air resistance is negligible, Assume no rotation of the ball.  

The horizontal distance is mx 8.33=   

The initial velocity is  sec/6.21 m=0v  

The angle of initial velocity speed is  mO53=  

Then the vertical distance is at mx 8.33=  




 2
2

2

2

sec
2

tan
cos2

tan
2

0

2

0 vv

xg
xyOr

xg
xy −=−=  

Then   
22

2

2

2

)53(cos)22

)8.33(89
53tan8.33

cos2
tan

.
1.6(v2

0

−=→−= Oy
xg

xy


  

m

y

124.1183.3395444
976.337

91211195
7747

)36220()56.466(2

)441142(89
95444

)60120()6.212

)833(89
)331()833(

...

.

...
.
....

22

2

=−=−=

−=−=
(

my 124.11=  

The corresponding time given by cos0 tx v=   

Then sec6.2
9859.12

8.33

)6012.0()6.21(

8.33

53cos)6.21(

8.33

cos
0

=====
O

x
t

v
                     

 

Example 6: A stone is thrown from the top of a building upward at an angle of 30.0° to 

the horizontal with an initial speed of 20.0 m/s. The height from which the stone is 

thrown is 45.0 m above the ground.                                                                                              

(A) How long does it take the stone to reach the ground  and the horizontal distance 

from the building ?                                                                                                              

(B) What is the speed of the stone just before it strikes the ground? 
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Solution 

 

 

Analyze: We have the information my 45−= ,   sec/200 m=v , o30=  

The answer is required  

(i)    The horizontal distance until the stone falls to the ground 

(ii)   Time taken until the stone falls to the ground                                                           

(iii) The speed of the stone just before it strikes the ground 

(i) We know that, 


 2
2

2

2

sec
2

tan
cos2

tan
2

0

2

0 vv

xg
x

xg
xy −=−= , then 

)75.0()400(2

10
)577.0(

)866.0()20(2

)10(
)577.0(

))30(cos()20(2

)10(
)30tan(45

2

22

2

22

2 x
x

x
x

x
x

O

O −=−=−=−  

2
22

)60()577.0()60()45(
60

)577.0()45(
)75.0()80(

)577.0(45 xx
x

x
x

x −=−→−=−→−=−

0270062.342 =−− xx  

mx

x

078.72

2

1578.144

2

5378.109)62.34(

2

5444.11998)62.34(

2

108005444.1198)62.34(

2

)2700)(4()62.34()62.34( 2

=

=


=


=

+
=

+
=

 

(ii) The time given by cos0 tx v=  

sec161.4
32.17

078.72

)866025.0(20

078.72

30cos20

078.72

cos0

=====
O

x
t

v
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Another Solution 

We know that −= 2

0
2

1
sin tgty v  2)10(

2

1
30sin)20(45 tt O −=−          

092

2510)10(
2

1

2

1
)20(

2

222 9045045

=−−

−=−=−= −−−

tt

tttttt
 

sec16.4

16.31101
2

9122

2

)9)(4(42

2

)9)(4()2(2 2

=

==
+

=
+

=
+

=

t

t                                                     

(iii) ,sin,cos 00, 







−=








gtyx  vv                                                                                       

Before it strikes the ground the time is sec1.4=t , then   

22
(

2

0

2

0
( )1030sin20()30cos20)sin()cos tgt OO −+=−+=  vvv  

( ) ( ) ( ) ( )

( ) ( ) sec/51.3512619613003132.17

411032.17)1.4(10)5.0sin(20)866.0(20

22

2222

m==+=−+=

−+=−+=

v

 

Example 7: A fire fighter aims a fire hose upward, toward a fire in a skyscraper. The 

water leaving the hose has a velocity of 32.0 m/s. If the fire fighter holds the hose at an 

angle of 78.5°, what is the maximum height of the water stream? 

Solution 

Analyze: We have the information,   sec/320 m=v , o5.78=  

The answer is required  

(i)    The  maximum height of the water stream 

(ii)   Time taken until the stone falls to the ground                                                           

(iii) The speed of the stone just before it strikes the ground 

m

g
h

y

y
O

16.50

6.19

296.983

6.19

)96025.0)(1

6.19

)9799.0()3

)8.9(2

)5.78(sin)3

2

sin

.max

22222

.max

=

======



024(2(2(v2

0 

The  

maximum height of the water from the hose is 50.2 m. 
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Example:8 A projectile is thrown from the top of a building m160  m high, at an angle of 

O30  with the horizontal at a speed of sm /40 40, find 

(i) Time of flight, (ii) Horizontal distance covered at the end of journey                                    

(iii) The maximum height of the projectile above the ground. 

Solution 

 

(i) We know that, 


 2
2

2

2

sec
2

tan
cos2

tan
2

0

2

0 vv

xg
x

xg
xy −=−= , then 

)75.0()3200(

10
)577.0(

)866.0()3200(

)10(
)577.0(

))30(cos()40(2

)10(
)30tan(160

2

2

2

22

2 x
x

x
x

x
x

O

O −=−=−=−  

2
22

)240()577.0()240(160
240

)577.0(160
)75.0()320(

)577.0(160 xx
x

x
x

x −=−→−=−→−=−

0270048.1382 =−− xx  

mx

x

078.72

2

1578.144

2

5378.109)62.34(

2

5444.11998)62.34(

2

108005444.1198)62.34(

2

)2700)(4()62.34()62.34( 2

=

=


=


=

+
=

+
=

 

(ii) The time given by cos0 tx v=  

sec161.4
32.17

078.72

)866025.0(20

078.72

30cos20

078.72

cos0

=====
O

x
t

v
 

Another Solution 

We know that 2

0
2

1
sin tgty −= v   
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092

2510)10(
2

1

2

1
)20(

)10(
2

1
30sin)20(

2

222

2

9045045

45

=−−

−=−=−=

−=

−−−

−

tt

tttttt

tt O

 

sec16.4

16.31101
2

9122

2

)9)(4(42

2

)9)(4()2(2 2

=

==
+

=
+

=
+

=

t

t  
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Chapter: 3 Mechanics of Rigid body 

Definition of the Rigid body 

In physics, a rigid body is a solid body in which deformation is zero or so small it can be 

neglected. The distance between any two given points on a rigid body remains constant 

in time regardless of external forces exerted on it. A rigid body is usually considered as 

a continuous distribution of mass. 

Definition of moment of inertia 
Physical; A measure of the resistance of a body to angular acceleration about a 

given axis 

Mathematic; The Moment of Inertia is equal to the sum of the products of each 

element of mass in the body and the square of the element's distance from the axis. 

It is defined as the sum of second moment of area of individual section about an 

axis  

(1) The basic shapes 

(2) Systems of particles 

(3) Composite bodies (shapes) 

(4) Uninform shapes 

 

The Moment of Inertia of masses  

The mass moment of inertia about a fixed axis is the property of a body that measures 

the body's resilience to rotational acceleration. The greater its value, the greater the 

moment required to provide a given acceleration about a fixed pivot. The moment of 

inertia must be specified with respect to a chosen axis of rotation. 

(1)- For a single mass, the moment of inertia can is expressed as 

For the element dm  that is located a distance a  from the L -axis, the Moment of inertia 

referenced to L -axis is given as 
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2admILL =  

(2)- If a system consists of −n bodies, then the moment of inertia can be given as 

 For the −n elements, they have the mass ndmdmdmdm ,.......,,, 321  that is located a distance 

a  from the L -axis, the moment of inertia referenced to L -axis is given as 

 


=

=++++=
n

i

iinnLL admadmadmadmadmI
1

222

33

2

22

2

11 ............  

(3)- The Moment of Inertia in the plane   

 

Referenced to x -axis is given by         ,2ydmI xx =                                            

Referenced to y -axis is given by          ,2xdmI yy =                                           

Referenced to the original point (O ) is given by 
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                                          yyxxO IIyxmrdmI +=+== )( 222    

OI   is called Polar moment inertial  

(4)- The Moment of Inertia in the plane for number of elements    

 

Referenced to x -axis is given by          
=

=
n

i

iixx ydmI
1

2                                        

Referenced to y -axis is given by         
=

=
n

i

iiyy xdmI
1

2                  

(4)- The Moment of Inertia in space    

 

Referenced to the original point (O ) is given by 

)( 2222 zyxmrmIO ++==                                                              (1) 

Referenced to x -axis is given by          ),( 22 zymIxx +=                                            
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Referenced to y -axis is given by          ),( 22 zxmI yy +=  

Referenced to z -axis is given by          2 2( ),xI m x y= +                                           

Referenced to the plane 0x− =   is given by          ),( 22 zymIxx +=                                            

Referenced to the plane                                          2 2( ),yI m x z= +   is given by         0y− =   

                 Referenced to the plane 0z =  is given by          2 2( ),zI m x y= +                            

                            From previous relation, we have                                              

                                        yozxozxoyo IIIzyxmrmI ++=++== )( 2222

             zzyyxxo IIII ++=2         or   )(
2

1
)( 2222

zzyyxxo IIIzyxmrmI ++=++==

yozxozzz

yozxoyyy

xozxoyxx

IIyxmI

IIzxmI

IIzymI

+=+=

+=+=

+=+=

)(

)(

)(

22

22

22

 

Parallel axis theorem 

Parallel axis theorem is applicable to bodies of any shape. The theorem of parallel axis 

states that the moment of inertia of a body about an axis parallel to an axis passing 

through the centre of mass is equal to the sum of the moment of inertia of body about an 

axis passing through centre of mass and product of mass and square of the distance 

between the two axes.  The parallel axis theorem is much easier to understand in 

equation form than in words. Here it is: 
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In physics, the parallel axis theorem can be used to determine the moment of inertia of a 

rigid object about any axis, given the moment of inertia of the object about the parallel 

axis through the object's center of mass and the perpendicular distance between the axes.                                                                                          

We consider an element ( m ) and its center is ),( cmcm yx (see below Figure)   

 

,2ydmdIxx =  the moment of inertial with respect to x− axis                                                                                              

,2xdmdIyy =  the moment of inertial with respect to y −  axis                                                     

)( 222 yxdmIIrdmdI yyxxO +=+== , the moment of inertial with respect to the point( o )                                                        

 +== dmyxdmrIO )( 222                                                                                     (1) 

 +== dmyxdmrIcm )( 222                                                                                  (2) 

cmcm yyyxxx +=+= ,                                             













+++++=








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22 2222

22

2

  ++
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
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
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



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=

dmyydmxxdmyxdmyxI cmcm

d

cmcm

I

O
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22

2

2222

  

  +++= dmyydmxxdmdII cmcmcmO 222                      

  +++= dmyydmxxdmdII cmcmcmO 222                       



29 

 

 +++= dmyydmxxmdII cmcmcmO 222                                                                 (3) 










=→


==→


= dmydmy

dm

dmy
ydmxdmx

dm

dmx
x ,                                   (4) 









+








++=  dmyydmxxmdII cmcmcmO 222                                    

myymxxmdII cmcmcmO 222 +++=                                                                          (5) 

2

O cmI I md= +                                                                                                         (6)        

 Question:  Let AI   and BI  be moments of inertia of a body about two axes A  and B  

respectively. The axis A  passes through the centre of mass of the body but B  does not, 

So.  

(A) BII A                         (B) BII A                           (C) If the axes are parallel BII A                                            

(D) If the axes are parallel BII A                              (E) If the axes are not parallel BII A                                                                                                                           

The moment of inertia is always less for an axis passing through the center of mass than 

any other parallel axis. We cannot say anything of the moment of inertia about a non 

parallel axis. Thus C is correct. 

 Perpendicular Axis Theorem 

This theorem is applicable only to the planar bodies. Bodies which are flat with very less 

or negligible thickness. This theorem states that the moment of inertia of a planar body 

about an axis perpendicular to its plane is equal to the sum of its moments of inertia about 

two perpendicular axes concurrent with the perpendicular axis and lying in the plane of 

the body. 
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2 ,xxdI dm y=  the moment of inertial with respect to x− axis                                                                                              

2 ,yydI dm x=  the moment of inertial with respect to y −  axis                                                     

2 2 2( ),O xx yydI dmr I I dm x y= = + = + , the moment of inertial with respect to the point (o )                                                        

mrdmrdmrdmyxIO

22222 )( ===+=                                                                  (1) 

yyxxzz III +=                                                                                                               (2)  

 

Example:1  Find the Mass moment of inertia of a thin uniform rod about an 

axis perpendicular to its length and passing through one of its ends. Also, 

about an axis perpendicular to its length and passing through its center? 

Solution 

 

We consider  L  be the length of the Rod,  M  be the mass of the Rod and is the density 

 .          We divided the Rod into many small elements. We select one of them, that has 

length dx , mass dm  and has the distance x  from the left end of the Rod                                                           

For the small element    Lmxdxdxmdxdm
LL L

 =→===→=  00 0
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The moment of inertia about its end is given by 

2

3

3322

3

1

3

1

3

1
)(

0
Lm

L

m
LLdxxdmxI

L

yy =====  
                  2

3

1
LmI yy =                                          

This the moment of inertia of a thin uniform rod about an axis perpendicular to its length 

and passing through one of its ends.                                                                                                         

The moment of inertia of a thin uniform rod about an axis perpendicular to its length and 

passing through its center. From the Parallel axis theorem 

→







+= 

2

2

1
LmII yyyy

2222

2

2

12
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 −
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






+= 

2

12

1
mLI yy =                                                                                                                                

The moment of inertia about its other end  

2222

2

2

12

4

12

31

4

1

12

1

2

1

12

1
mLmLmLLmLmLmI yy =







 +
=+=








+= →








+= 

2

2

1
LmII yyyy

                                                                                                         2

3

1
mLI yy = 

Note: The moment of inertia for a thin uniform Rod that rotates about the axis 

perpendicular to the rod and passing through one end is 2

3

1
mL  . If the axis of rotation 

passes through the center of the Rod, then the moment of inertia is 2

12

1
mL .                        

Problem:  Determine the Mass moment of inertia for a uniform rod with 

negligible thickness about its end if the Rod makes angle with the axis 

rotation?                               

Example 2: Find the Mass moment of inertia of a thin uniform rectangular 

plate about its base and its one of edges axes?                                                                   
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Solution 

We consider a uniform strip with the length )(dx and thickness )(dy as shown in below 

Figure, where the density is  .  

  
bamdydxmdydxdm

b a

 =→=→=  
0 0

.   The moment of inertia about its corner is given 

by  
3 3 3

2 2 2

0
0 0

0
3 3 3

b
b a

b

yy yy

x b a b a m
dI x dm x dx dy I x dx dy y

ab
    



 
 = = → = = = = 
  

     

2

3

1
amI yy =                                                                                                                                                                         

If we select a vertical strip (sector, section), we have 

ba

mababx
bdxxbIdxbxdmxdI

aa

yyyy



333

)(
333

222

00

==







==→==                         

2

3

1
amI yy =              →








+= 

2

2

1
amII yyyy

 

2

2 2 2 2 21 1 1 1 4 3 1

3 2 3 4 12 12y y y y
ma I m a I ma ma ma ma   

   −   = + → = − = =      
   

                                   

2

12

1
maI yy =         Similarly, if we select a horizontal strip, we can prove that: 

22

12

1
,

3

1
bmIbmI xxxx ==                                                                                                           

For axis is perpendicular oyox, )(
3

1

3

1

3

1 2222 bamambmIII yyxxzz +=+=+=                                      

For axis is perpendicular yoxo , :  )(
12

1

12

1

12

1 2222 bamambmIII yyxxzz
+=+=+=                                                                           
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The moment of inertia about its corner is given by (Mass moment of inertia)  

3322

3

1
,

3

1
)(

3

1

3

1
baIbababbmI yyxx ====                     )(

3

1 22 baabIII yyxxo +=+=  

31
,

12x x
I ab  =                                               31

12y y
I ba  =                 )(

12

1 22 babaIII yyxxo +=+=   

Uniform rectangular 

plate ),( ba  

Axis coincides with 

one of its sides 

Axis passing through 

its centroid 

Axis coincides to 

other side 

With respect toaxis yyI −   2

3

1
maI yy =  2

12

1
maI yy =  2

3

1
maI yy =  

With respect toaxis xxI −   
2

3

1
mbIxx =  2

12

1
mbI

xx
=  2

3

1
mbI

xx
=  

With respect to axis 

perpendicular to the 

plane oxy  
)(

3

1 22 bamI zz +=  )(
12

1 22 bamI
zz

+=  )(
3

1 22 bamI
zz

+=  

 

Example 3:  Determine the mass moment of inertia for right Triangular Plate 

(Right-angled triangle)? 

Solution 

We consider a uniform strip with the length ( )x and thickness ( )dy , such that it is parallel 

to x - axis,  as shown in below Figure. Then      

 ham
h

h
ha

h

y
yady

h

y
adyxmdyxdm

h hh
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






−==








−=−==→=   
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Then moment of Inertia with respect to −x  axis:         

=→==

h
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                     2

6

1
hmI xx =                       

Then moment of Inertia with respect to −x  axis: 

→







+= 

2
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1
hmII xxxx

2222

18

1
)23(

18

1

9

1

6

1
hmhmhmhmI xx =−=−=        2

18

1
hmI xx =                                

Then moment of Inertia with respect to −x  axis: 
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2
hmhmhmhmhmII xxxx =+=+=








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2

1
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Also, ,
6

1 2amI yy =           ,
18

1 2amI yy =                 .
2

1 2amI yy =  
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1 2222 hamhmamIII yyxxzz +=+=+= )(
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1 2222 hamhmamIII yyxxzz
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Again, 
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6

1
oomI AB
=                                                                                              
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  Right Triangular Plate 

of height h  and bass a  
About its corner   

About its center of 

mass  
About its vertex  

About its base  2

6

1
mhI xx =  2

18

1
mhI

xx
=  2

2

1
mhI

xx
=  

About its height  2

6

1
maI yy =  

2

18

1
maI yy =  

2

2

1
maI yy =  

About vertical axis )(
6

1 22 hamI zz +=  )(
18

1 22 hamI
zz

+=  )3(
6

1
),3(

6

1 2222 hamIhamI
zzzz

+=+= 

 

 

Example 4:  The Mass Moment of inertia of acute triangular plate?  

http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
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Solution 

We divide the acute triangular plate to two right triangular plate as is shown in Figure   

 

The Moment of inertia of about x −  axis for the two right triangular plate is given as   

( ) ( ) ,
6

1
,

6

1 2

22

2

11
hmIhmI xxxx ==                                                                                                          

For the acute triangular plate                          

( ) ( ) 22

21

2

2

2

121
6

1
)(

6

1

6

1

6

1
hmhmmhmhmIII xxxxxx =+=+=+=  

Example 5: The Mass Moment of inertia of Obtuse triangular plate?  

Solution 

We divided the obtuse triangular plate to two right- triangular plate as is shown below 

Figure   
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The Moment of inertia of about x −  axis for the two right triangular plate is given as   

( ) ( ) 2

2

2

21
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1
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6

1
hmIhmmI

CBDxxABDxx =+=                                                                                 

For the acute triangular plate                      
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)( hmhmhmmIII

CBDxxABDxxABCxx =−+=+=  

 

Example 6 : Find the Mass Moment of inertia of right- triangular plate as is 

shown in figure about all different axes? 

 Solution 

 

From the Figure it is clear that m
ha

ha
IamIhmI BCyyxx
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,

6

1
,

6

1
22

22
22

+
===  

mmmhmI xx
3

8

6

16
)4(

6

1

6

1 22 ==== ,      mmmamI yy
2

3

6

9
)3(

6

1

6

1 22 ====  

mmmmm
ha

ha
IBC

25

24

)25(6

)16()9(

)169(6

)16()9(

))4()3((6

)4()3(

)(6 22

22

22

22

==
+

=
+

=
+

=  

Note that  8 3 24
3 4 5,

3 2 25
xx yy BCI m I m I m  =  =  =  

Example 7:  The Mass Moment of inertia of Circular Ring? 

Solution 
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We select a small element has the mass dm  at any point located at distance ),( yx  from 

the origin point  

 

The Moment of inertia about −z axis (The axis is passing through the center (z-axis) and 

is perpendicular to the Ring) is given as 

dmadIzz

2= ………   →== 
m

zz dmadmaI
0

22   maI zz

2=                                                               

From the Perpendicular axis theorem (Here, the distance between the tangent and the 

diameter is a ) yyxxzz III += . So     2amII yyxx =+                                                                                               

But xxI and yyI  are symmetric, so  yyxx II = , Then                                                          

2

2

1
amII yyxx ==   (The moment of inertia of a ring about of its diameter or the axis passes through the 

diameter) 

From the parallel axis theorem  2222

2

1

2

1
amIamamIamII yyyyyyyy =→+=→+=   
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1
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xx
Iamam
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xx
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→+=


→+=


 

Moment of inertia about an axis is passing through the edge of Ring and perpendicular 

to its plane and parallel an axis is passing through the center (z-axis) and is 

perpendicular to the Ring 

2 2 2 22I I m a I m a m a I m azz
z z z z z z

= + → = + → =       
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Circular Ring For Vertical axis 
 

About axis in the plane of Circular Ring and passes in the its center 

The moment of inertia of the ring about of its diameter 

Axis of 

rotation 
2maI zz =  2

2

1
maII yyxx ==  

Axis of 

rotation 
22maI zz =  

2

2

3
maII

yyxx
==   

 

 

Example 8:  Find the Mass Moment of inertia of Circular area ?  

Solution 

We divided the Circular area to the small Circular Rings, we selected one of them has 

mass ( dm ),thickness ( dr ) and raids ( r ).   

 

So,  2
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2
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1
maI zz =                                                                                                                          

From the Perpendicular axis theorem 

yyxxzz III += . So     
2

2

1
amII yyxx =+ .                                                                                             

But yyxx II ,  are symmetric, so  yyxx II = .     Then    
2

4

1
amII yyxx ==  

Circular area For Vertical axis  
About axis in the plane of Circular 

Ring and passes in the its center   

Axis of 

rotation 
2

2

1
maI zz =  2

4

1
maII yyxx ==  
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Axis of 

rotation 
2

2

3
maI zz =  2

4

5
maII

yyxx
==   

 

Example 9:  Find the Moment of inertia of   Thin Disc?  

Solution 

We divide the solid Disc to the small Circular Rings, we selected one of them has mass 

( dm ),thickness ( dr ),distraction thickness ( z ) and raids ( r ).  
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So, the Moment of inertia of thin Disc is 
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From the Parallel axis theorem     22

2

3
amIamII zzzzzz =→+=                                                             

From the Perpendicular axis theorem  yyxxzz III += . So     2

2

1
amII yyxx =+ .                                          

But 
yyxx II ,  are symmetric, so  yyxx II = .     Then    2

4

1
amII yyxx ==  

Example: 10: Derive the Mass moment of inertia of Hollow Cylinder? 

Solution 

Take the hollow cylinder as the corresponding shape, divide it into an infinite number of 

regular circular rings and take one of these rings with the mass ( dm ) and the radius  ( a ).  

 

Then the moment of inertia of this ring is given as    dmadIzz

2= .  

Then, the total moment of Hollow Cylinder  
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2
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22 amIamdmaI zz

m

zz =→==                                                                                                       

 

Example: 11: Derive the Mass moment of inertia of Solid Cylinder? 

Solution 

We divided the Solid Cylinder it into an infinite number of thin discs and take one of 

these discs with the mass ( dm ) and the radius ( a ). 

 

Then the moment of inertia of this disc is given as. dmadIzz

2

2

1
= . Then the total moment 

of Hollow Cylinder 2

0

22
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1

2

1

2

1
amIamdmaI zz

m

zz =→==     

Example: 11: Derive the Mass moment of inertia of Hollow Sphere? 

 Solution  
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We divided the Hollow Sphere into a number of small circular rings and we consider 

one of them with the mass ( dm ), the radius ( y ) and thickness ( dz ). 

( ) ( ) ( )

2 2

0
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2 2 2 2
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The moment of inertia of this circular ring is given as dmydIzz

2= .                                     

Then the total moment of Hollow Cylinder = dmyI zz

2 , then 
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Example: 12: Derive the Mass moment of inertia of Solid Sphere? 

Solution 

 

We divided the solid sphere into a number of hollow sphere and take one of these sphere 

with mass ( dm ), radius ( r ) and thickness ( dr ). Then the moment inertia of this sphere 

around oz  axis is 2)(
3

2
rdmdIzz = , for whole sphere the moment inertia is given as 

=
2)(

3

2
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Another solution 

Dividing the solid sphere into a number of small disks and taking one of these disks with 

mass ( dm ), radius ( y ) and thickness ( dz ). The moment of inertial of this disc is around 

the oz -axis is given by 2)(
2

1
ydmdIzz =                                                                                                 

For the whole solid sphere is given =
2)(

2

1
ydmI zz  
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Example: 13: Find the Mass moment inertial for the Hollow Circular Cone ?    

Solution 

Divide the Hollow Circular Cone into a number of small circular rings and take one 

of these rings with mass ( dm ), radius ( y ) and thickness ( dL ), which is located higher 

( z ) than the base of the cone with radius ( a ). Note that it is similar to triangles ABC and 

CBA  , we have
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The moment of inertia of this circular ring is given as dmydIzz

2= .                                     
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Example 14: Find the Mass moment inertial for the Solid Circular Cone? 

Solution 

We divided the Solid Circular Cone into a number of small Disks and take one of 

them with mass ( dm ), radius ( y ) and thickness ( dz ), which is located higher ( z ) than 

the base of the cone with radius ( a ). Note that it is similar to triangles ABC and CBA  , 

we have 
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The moment of inertia of this Disk is given as dmydIzz

2= .                                                       

Then the total moment of Solid Circular Cone = dmyI zz

2 , that is given  
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Chapter 69 

Double anc 
r b  

lteratec Integrals 

THE (SIMPLE) INTEGRAL J f ( x )  dx of a function y = f ( x )  that is continuous over the finite 

The interval a I x 5 b was divided into n subintervals h,,  h,, . . . , h, of respective 
lengths A l x ,  A 2 x , .  . . , Anx with A, the greatest of the Akx .  

interval a 5 x I b of the axis was defined in Chapter 38. Recall that 

1. 

n 

2. 

3. 

4. we defined J f (x> dx = lim c f ( x k )  Akx.  

Points x ,  in h,,  x ,  in h,, . . . , x ,  in h, were selected, and the sum 

The interval was further subdivided in such a manner that A, --+ 0 as n -+ + W .  

f ( x k )  Akx  formed. 
k =  1 

b 

k = l  n++m 

THE DOUBLE INTEGRAL. Consider a function z =f (x ,  y )  continuous over a finite region R of 
the x O y  plane, Let this region be subdivided (see Fig. 69-1) into n subregions R I ,  R,, . . . , R, 
of respective areas A I A ,  A , A ,  . . . , A n A .  In each subregion R k ,  select a point Pk(Xk, y k )  and 
form the sum 

n 

f ( x k ,  y k )  ‘ k A  =f(xl, Y l )  ‘ l A  + f ( x 2 ,  Y 2 )  + ’ ’  ’ +f(xn, Yn)  ‘ n A  (69’1) 
k = l  

Now, defining the diameter of a subregion to be the greatest distance between any two points 
within or on its boundary, and denoting by A, the maximum diameter of the subregions, 
suppose the number of subregions to be increased in such a manner that A,+O as n-, +a. 
Then the double integral of the function f ( x ,  y )  over the region R is defined as 

r r  n 

(69.2) 

When z = f ( x ,  y )  is nonnegative over the region R ,  as in Fig. 69-2, the double integral 
(69.2) may be interpreted as a volume. Any termf(x,, y k )  A k A  of (69.1 ) gives the volume of a 
vertical column whose parallel bases are of area A k A  and whose altitude is the distance z k  

measured along the vertical from the selected point Pk to the surface z = f ( x ,  y ) .  This, in turn, 
may be taken as an approximation of the volume of the vertical column whose lower base is the 
subregion R k  and whose upper base is the projection of Rk on the surface. Thus, (69.1 ) is an 
approximation of the volume “under the surface” (that is, the volume with lower base in the 

435 
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x O y  plane and upper base in the surface generated by moving a line parallel to the z axis along 
the boundary of R ) ,  and, intuitively, at least, (69.2) is the measure of this volume. 

The evaluation of even the simplest double integral by direct summation is difficult and will 
not be attempted here. 

THE ITERATED INTEGRAL. Consider a volume defined as above, and assume that the boundary 
of R is such that no line parallel to the x axis or to the y axis cuts it in more than two points. 
Draw (see Fig. 69-3) the tangents x = a and x = b to the boundary with points of tangency K 
and L ,  and the tangents y = c and y = d with points of tangency M and N. Let the equation of 
the plane arc LM K be y = g l ( x ) ,  and that of the plane arc LNK be y = g2(x). 

Divide the interval a I x I b into rn subintervals h, ,  h,, . . . , h, of respective lengths A , x ,  
A2x, . . . , A,x by the insertion of points x = tl, x = 5,, . . . , x = t,-, (as in Chapter 38), and 
divide the interval c I y I d into n subintervals k , ,  k , ,  . . . , k ,  of respective lengths A , y ,  
A 2 y , .  . . , A n y  by the insertion of points y = q,, y = q2, . . . , y = qnP1. Denote by A, the 
greatest A,x, and by pn the greatest A,y. Draw in the parallel lines x = tl,  x = t2, . . . , x = tmP1 
and the parallel lines y = ql, y = q,, . . . , y = qn-,,  thus dividing the region R into a set of 
rectangles RI, of areas A,x A,y plus a set of nonrectangles that we shall ignore. On each 
subinterval h, select a point x = x,, and on each subinterval k, select a point y = y, ,  thereby 
determining in each subregion R,, a point Pl l (x , ,  y , ) .  With each subregion R,,, associate by 
means of the equation of the surface a number z,, = f ( x , ,  y , ) ,  and form the sum 

(69.3) 

Now (69.3) is merely a special case of (69.1 ), so if the number of rectangles is indefinitely 
increased in such a manner that both A,-0 and pn-+O, the limit of (69.3) should be equal to 
the double integral (69.2). 

In effecting this limit, let us first choose one of the subintervals, say hi, and form the sum 
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of the contributions of all rectangles having hi as one dimension, that is, the contributions of all 
rectangles lying in the ith column. When n + +%, pn + 0 and 

Now summing over the m columns and letting m+ +m, we have 

(69.4) 

Although we shall not use the brackets hereafter, it must be clearly understood that (69.4) calls 
for the evaluation of two simple definite integrals in a prescribed order: first, the integral of 
f ( x ,  y) with respect to y (considering x as a constant) from y = g l ( x ) ,  the lower boundary of R,  
to y = g2(x), the upper boundary of R,  and then the integral of this result with respect to x from 
the abscissa x = a of the leftmost point of R to the abscissa x = b of the rightmost point of R. 
The integral (69.4) is called an iterated or repeated integral. 

It will be left as an exercise to sum first for the contributions of the rectangles lying in each 
row and then over all the rows to obtain the equivalent iterated integral 

(69.5) 

where x = h,(y)  and x = h2( y) are the equations of the plane arcs MKN and MLN, respec- 
tively. 

In Problem 1 it is shown by a different procedure that the iterated integral (69.4) measures 
the volume under discussion. For the evaluation of iterated integrals see Problems 2 to 6. 

The principal difficulty in setting up the iterated integrals of the next several chapters will 
be that of inserting the limits of integration to cover the region R. The discussion here assumed 
the simplest of regions; more complex regions are considered in Problems 7 to 9. 

Solved Problems 

1. Let z = f ( x ,  y) be nonnegative and continuous over the region R of the plane xOy whose 
boundary consists of the arcs of two curves y = g,(x) and y = g2(x) intersecting in the points K 
and L, as in Fig. 69-4. Find a formula for the volume V under the surface z = f ( x ,  y). 

Let the section of this volume cut by a plane x = x , ,  where a < x ,  < b,  meet the boundary of R in the 
points S(x, ,  g,(x,)) and T(x,, g 2 ( x l ) ) ,  and the surface z = f ( x ,  y )  in the arc UV along which z = f ( x , ,  y ) .  
The area of this section STUV is given by 

A(xi) = \g2(xJ) f ( x , ,  y )  dy 

Thus, the areas of cross sections of the volume cut by planes parallel to the y O z  plane are known 

functions A(x) = f ( x ,  y )  dy of x ,  where x is the distance of the sectioning plane from the origin. By 

Chapter 42, the required volume is given by 

g, (I, ) 

B2 ( x  ) 

&?l(X) 

This is the iterated integral of (69.4).  
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In 

2. 

3. 

4. 

5. 

6. 

7. 

Problems 2 to 6, evaluate the integral at the left. 

1 2 3 1  I; dydx =I’ [y],”z dx =I’ (x  -2) dx = [: - ;] 0 6  = - 

-12 4 cos 0 l’’ ’ p dp d8 = I [ p4], d8 = (64 cos4 8 - 4) d8 

7rl2 38 sin28 sin48 
+- + --) 32 -4810 = 107T 

= [ 6 4 ( s  4 

Evaluate I I d A ,  where 

parabola y 2  = x 3  and the 
R 

R is the region in the first quadrant bounded by the semicubical 

line y = x .  

The line and parabola intersect in the points (0,O) and (1 , 1) which establish the extreme values of x 

Solution 1 (Fig. 69-5): Integrating first over a horizontal strip, that is, with respect to x from x = y 
and y on the region R. 

(the line) to x = y2I3 (the parabola), and then with respect to y from y = 0 to y = 1, we get 

Solution 2 (Fig. 69-6): Integrating first over a vertical strip, that is, with respect to y from y = x3’2  
(the parabola) to y = x (the line), and then with respect to x from x = 0 to x = 1, we obtain 
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Fig. 69-5 Fig. 69-6 

8. Evaluate dA where R is the region between y = 2 x  and y = xz lying to the left of x = 1 .  

R 

Integrating first over the vertical strip (see Fig. 69-7). we have 

R 

When horizontal strips are used (see Fig. 69-S), two iterated integrals are necessary. Let R ,  denote 

the part of R lying below A B ,  and R ,  the part above AB,  Then 

y y = 2 x  

j((y Y y = 2 x  

(1.2) '  v = r '  T?4i!.ll * - - B ( 1 , 1 )  

Fig. 69-7 Fig. 69-8 

9. Evaluate 1 / x 2  dA where R is the region in the first quadrant bounded by the hyperbola 

xy = 16 and the lines y = x ,  y = 0, and x = 8. (See Fig. 69-9.) 

It is evident from Fig. 69-9 that R must be separated into two regions, and an iterated integral 

evaluated for each. Let R ,  denote the part of R lying above the line y = 2, and R ,  the part below that 

line. Then 

R 

I I x 2  d A  = I I x 2  d A  + I I x 2  d A  = \Y'6'y x 2  dx dy + Io2 /,n x' dx dy 
R R1 R2 

1 16' 

= 3 l2 (7 - y 3 )  dy + (S3 - y ' )  dy = 448 

As an exercise, you might separate R with the line x = 4 and obtain 

I ( x 2  d A  = 1; x 2  dydx + [16" x2  dy dx 
R 
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10. 

Y 

0 

Fig. 69-9 Fig. 69-10 

[CHAP. 69 

c, 

3,1) 

X 

3 

Evaluate 1’ 6, ex2 dx dy  by first reversing the order of integration. 

The given integral cannot be evaluated directly, since ex2 dx is not an elementary function. The 

region R of integration (see Fig. 69-10) is bounded by the lines x = 3y, x = 3, and y = 0. To reverse the 
order of integration, first integrate with respect to y from y = 0 to y = x / 3 ,  and then with respect to x 
from x = 0 to x = 3. Thus, 

I 

Supplementary Problems 

11. Evaluate the iterated integral at the left: 

(c)  I: 6’ (x2 + y 2 )  dy dr = 

( e )  112 10y”2 x/y2 d.x dy = 

(i) 10arctan 312 2 sec B 

p d p d O = 3  

(d) J1: XY2 dY = 
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12. Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the 
iterated integral in both orders. 
( a )  x over the region bounded by y = x2 and y = x3 
(6) y over the region of part (a )  
(c) x2 over the region bounded by y = x, y = 2 x ,  and x = 2 
( d )  1 over each first-quadrant region bounded by 2 y  = x2, y = 3x, and x + y = 4 
(e) y over the region above y = 0 bounded by y 2  = 4x and y 2  = 5 - x 

Am. & 
Am. 
Am. 4 
Am. 3 ,  * 3 

Ans. 5 

Am. 4 over the region in the first quadrant bounded by x 2  = 4 - 2y 

13. In Problem ll(a) to (h), reverse the order of integration and evaluate the resulting iterated integral. 



Chapter 70 

Centroids and Moments of 
Inertia of Plane Areas 

PLANE AREA BY DOUBLE INTEGRATION. If f (x ,  y )  = 1, the double integral of Chapter 69 

becomes I I dA.  In cubic units, this measures the volume of a cylinder of unit height; in square 

units, it m%asures the area of the region R. (See Problems 1 and 2.) 
B P d . )  

In polar coordinates, A = I d A  = 1- I,,,.) P dP do7 where 6 = a, 6 = P7 P , ( 6 ) ,  and P ’ ( V  
R 

are chosen to cover the region R. (See Problems 3 to 5.) 

CENTROIDS. The coordinates (X, r) of the centroid of a plane region R of area A = 

the relations 

and 

or 
R R R R 

(See Problems 6 to 9.) 

THE MOMENTS OF INERTIA of a plane region R with respect to the coordinate axes are given by 

I ,  = I I y 2  d A  and I y  = / / x 2  d A  
R R 

The polar moment of inertia (the moment of inertia with respect to a line through the origin 
and perpendicular to the plane of the area) of a plane region R is given by 

(See Problems 10 to 12.) 

Solved Problems 

1. Find the area bounded by the parabola y = x 2  and the line y = 2 x  + 3. 
Using vertical strips (see Fig. 70-l), we have 

A = $,, dy dx = I:, ( 2 x  + 3 - x2)  dx = 3213 square units 
- 1  xz 

2. Find the area bounded by the parabolas y’ = 4 - x and y 2  = 4 - 4x. 

442 
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/ 0 
- .  

Fig. 70-1 Fig. 70-2 

Using horizontal strips (Fig. 70-2) and taking advantage of symmetry, we have 

2 4-y2  

A = 2 b Iry4n dx dY = 2 l K4 - Y ’ )  - (1 - f Y’)l dY 

= 6 I: (1 - ay’) dy = 8 square units 

3. Find the area outside the circle p = 2 and inside the cardioid p = 2(1 + cos 8). 

Owing to symmetry (see Fig. 70-3), the required area is twice that swept over as 8 varies from 8 = 0 
to 8 = + T.  US, 

A = 2 b  
v / 2  2 ( l + C O S @ )  

p d p d B = 2 ~ ~ * [ S p 2 1 : ” + ‘ 0 ’ ~ ’  de = 4 l’’ (2 cos e + cos2 e )  de 

= 4[2 sin 8 + $ 8  + f sin 28],“‘2 = (T + 8) square units 

Y 

IB 

Fig. 70-3 Fig. 70-4 

4. Find the area inside the circle p = 4 sin 8 and outside the lemniscate p 2  = 8 cos 28. 

The required area is twice that in the first quadrant bounded by the two curves and the line 8 = $ T. 
Note in Fig. 70-4 that the arc A 0  of the lemniscate is described as 8 varies from 8 = ~ / 6  to 8 = n / 4 ,  
while the arc AB of the circle is described as 8 varies from 8 = ~ / 6  to 8 = ~ / 2 .  This area must then be 
considered as two regions, one below and one above the line 8 = ~ / 4 .  Thus, 

n I 4  4 s i n 8  n / 2  4 s i n 8  

A = 2 / v / 6  1V‘- dp d 8 + 2 f v / 4  1 dp de 

v 1 4  

= JvI6 (16 sin2 8 - 8 cos 28) d8 + lv;r 16 sin’ 8 d8 

= ( 2 T + 4V3 - 4) square units 
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+ m  

- 1 2  5. Evaluate N = e dx. (See Fig. 70-5.) 

+ X  +o 
- .2 Since 1" e dx = 1" e - " d y ,  we have 

R 

Changing to polar coordinates (x' + y 2  = p2, dA = p dp do)  yields 

and N = f i I 2 .  

X 

0 

Fig. 70-5 Fig. 70-6 

6.  Find the centroid of the plane area bounded by the parabola y = 6x - x 2  and the line y = x .  
(See Fig. 70-6.) 

R 

x dy dx = (5x2 - x3) dx = = 1 R \ x  dA = \ ,6x-x2 1: 
M ,  = 1 \ y dA = 1"' 1.""' y dy dx = 4 I: [(6x - x2)2 - x'] dx = 

R 

Hence, X = M, /A  = :, = M,/A = 5, and the coordinates of the centroid are (;, 5 ) .  

7. Find the centroid of the plane area bounded by the parabolas y = 2x - x 2  and y = 3 x 2  - 6x. 
(See Fig. 70-7.) 

R 

M,v = I1.x dA = lo2 13z::l x dy dx = 102 (8x2 - 4x3) dx = 

R 

M ,  = 1 1 y dA = lo2 13:111 y dy & = $ [ ( 2 x  - x2)* - (3x2 - 6 ~ ) ~ ]  dx = - E 
R 

Hence, X = M v / A  = 1,  y =  M,/A = - $ ,  and the centroid is ( 1 ,  - 3 ) .  
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Fig. 70-7 Fig. 70-8 

8. Find the centroid of the plane area outside the circle p = 1 and inside the cardioid 

= 0 and that X is the same whether computed for the given area or 

p = 1 + COS 8. 

From Fig. 70-8 it is evident that 
for the half lying above the polar axis. For the latter area, 

7r+8 
8 

1 +COS 8 

A = / / d A = [ l 2 L  [ ( i + c o ~ 8 ) ~ - 1 ~ ] d t 1 =  - 

157r + 32 
48 

n / 2  3 3 1  1 
8 4  32 

sin 20 + 3 sin e - sin3 e + - e + - sin 28 + - sin 4 e l 0  = 

( 16:= 1 :; 4 The coordinates of the centroid are 

9. Find the centroid of the area inside p = sin 8 and outside p = 1 - cos 8. (See Fig. 70-9.) 
n / 2  s i n 0  A = / / d A = l  l - c o s 8 p d p d e =  ~ [ 1 2 ( 2 C o s e - i - c o ~ 2 e ) d e =  - 4 - 7 r  

R 
2 4 

R 

37r-4 
(sin’ e - 1 + 3 COS e - 3 c o s 2  e + cos3 e )  sin e de = ~ 

48 

The coordinates of the centroid are (;;;I:. 1;;::))- 

10. Find I,, I,,, and I, for the area enclosed by the loop of y2 = x2(2 - x ) .  (See Fig. 70-10.) 

A = 1 1 dA = 2 [ 1;- dy dx = 21; x- dx 
R 

1 3 2 f i  1-  (222 - z4) dz = - 4  z3 - 5 zq = - 
fi 15 

= -4  
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X 

Fig. 70-9 

X 

Fig. 70-10 

where we have used the transformation 2 - x = z2. Then 

2 X V T I  

Z , = l ( y 2 d A = 2 1  0 0  1 y ’ d y d x =  ~ l o 2 x 3 ( 2 - x ) 3 ’ 2 d x  
R 

zll]O - 2048fi  - 64 A _ - - -  
fi 3465 231 

I y  = I x 2  dA = 2 IO2 p” x 2  dy dr = 2 Io2 x 3 e  dx 
R 

13312f i  - 416 A 
3465 231 

- -  I ,  = z, + zy = 

11. Find I,, I y ,  and I ,  for the first-quadrant area outside the circle p = 2a and inside the circle 
p = 4a cos 8. (See Fig. 70-11 .) 

R 

R 

4 7 r + 9 f l  a2A 
a4 = 

127r + l l f i  

47r + 9 v 3  
6 2(27r + 3 f l )  

= 4a4 [ I 3  (16 cos4 8 - 1) sin2 8 do = 

3(127r + 1 1 f l )  a4 = 
2 2(2n + 3 G )  Zy = I 1 x2 dA = [ I 3  ’ ( p cos 8)’p dp do = 

R 

207r+21f l  a4 = 207r+21f l  a2A 

3 27r + 3 f l  
zo = I ,  + zy = 

12. Find I,, I y ,  and I, for the area of the circle p = 2(sin 8 + cos 8 ) .  (See Fig. 70-12.) 

Since x2 + y 2  = p2, 
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13. 

14. 

15. 

16. 

17. 

18. 

Fig. 70-11 Fig. 70-12 I;::: 1~2(sin @+cos 0 )  3n14 

I ,  = (x2 + y2) dA = p2p dp de = 4 (sin e + cos 814 de 
R 

= 4[ $8  - COS 28 - Q sin 481 !:;: = 67r = 3A 

It is evident from Fig. 70-12 that f, = fy. Hence, I ,  = Iy = if, = $ A .  

Supplementary Problems 

Use double integration to find the area: 
(a )  Bounded by 3x + 4y = 24, x = 0, y = 0 
(6) Bounded by x + y = 2, 2y = x + 4, y = 0 
(c) Bounded by x2 = 4y, 8y = x 2  + 16 
(d) Within p = 2(1 - cos 8) 
(e) Bounded by p = tan 8 sec 8 and 8 = 7r/3 
( f )  Outside p = 4 and inside p = 8 cos 8 

Ans. 24 square units 
Ans. 6 square units 
Am. square units 
Am. 67r square units 
Ans. $6 square units 
Am. 8( f 7r + a) square units 

Locate the centroid of each of the following areas. 
(a )  The area of Problem 13(a) Am. ( $ , 2 )  
(6) The first-quadrant area of Problem 13(c) Am. ( I ,  5 )  
(c )  The first-quadrant area bounded by y2 = 6x, y = 0, x = 6 Ans. ( y , : )  
( d )  The area bounded by y 2  = 4x, x2 = 5 - 2y, x = 0 Am. (%,$ )  
(e) The first-quadrant area bounded by x 2  - 8y + 4 = 0, x 2  = 4y, x = 0 Am. ( $ , f )  
( f )  The area of Problem 13(e) Am. (ifi, $ )  

167r + 6 f l  
27r + 3 a  ' 277 + 3 f i  

( g )  The first-quadrant area of Problem 13(f) Am. ( 

R R 

Find I, and Iy  for each of the following areas. 
(a) The area of Problem 13(a) 
(6) The area cut from y2 = 8x by its latus rectum 
( c )  The area bounded by y = x 2  and y = x 
(d) The area bounded by y = 4x - x 2  and y = x 

Ans. 
Ans. 
Ans. 
Am. 

I ,  = 6 A ;  fy = ? A  
I ,  = ? A ;  Iy = Y A  
I , =  AA; I Y = " A  10 

I ,  = % A ;  I." = % A  

Find I ,  and Iy for one loop of p2  = ~ 0 ~ 2 8 .  Am. I ,  = ( E  - L ) A ;  fy = ( E  16 + ' ) A  6 16 6 

Find I,, for (a )  the loop of p = sin 28 and (6) the area enclosed by p = 1 + cos 8. Am. (a )  : A ;  
(6) % A  



Chapter 71 

Volume Under a Surface by 
Double Integration 

THE VOLUME UNDER A SURFACE z = f ( x ,  y )  or z = f ( p ,  O), that is, the volume of a vertical 
column whose upper base 

by the double integral 

the surface and whose lower base is in the x O y  plane, is defined 

z dA, the region R being the lower base of the column. 

Solved Problems 

1. Find the volume in the first octant between the planes z = 0 and z = x + y + 2, and inside the 
cylinder x 2  + y 2  = 16. 

From Fig. 71-1, it is evident that z = x + y + 2 is to be integrated over a quadrant of the circle 
x2 + y 2  = 16 in the xOy plane. Hence, 

V =  / / z  dA  = lm ( x  + y + 2) dy dx = /: ( x w  + 8 - x 2  + 2 w )  dx 
R 

=[-I ( 1 6 - ~ ~ ) ” ~ + 8 x - C  + x \ / 1 6 ~ + 1 6 a r c ~ i n ~ x ] ~ = ( ~ + 8 ~ )  1 128 cubicunits 
3 6 

2. Find the volume bounded by the cylinder x 2  + y 2  = 4 and the planes y + z = 4 and z = 0. 

plane. Hence, 
From Fig. 71-2, it is evident that z = 4 - y is to be integrated over the circle x 2  + y 2  = 4 in the xOy 

(4 - y )  dx dy = 2 Lrn (4 - y )  dx dy = 1 6 ~  cubic units 

448 
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3. Find the volume bounded above by the paraboloid x2 + 4y2 = z, below by the plane z = 0, and 
laterally by the cylinders y 2  = x and x2 = y .  (See Fig. 71-3.) 

The required volume is obtained by integrating z = x ’  + 4 y z  over the region R common to the 
parabolas y’ = x and x’ = y in the x O y  plane. Hence, 

V =  Jol 1: (x2  + 4 y 2 )  dy dx = [x’y + $ y 3 ] F  dx = f cubic units I‘ 
4. Find the volume of one of the wedges cut from the cylinder 4x2 + y 2  = u2 by the planes z = 0 

and z = my. (See Fig. 71-4.) 

The volume is obtained by integrating z = my over half the ellipse 4x’ + y’ = a2. Hence, 

m a  
3 

[y’]? dx = - cubic units 

5. Find the volume bounded by the paraboloid x 2  + y 2  = 4z, the cylinder x2 + y 2  = 8 y ,  and the 
plane z = 0. (See Fig. 71-5.) 

The required volume is obtained by integrating z = f (x’ + y ’ )  over the circle x’ + y’ = 8 y .  Using 
cylindrical coordinates, the volume is obtained by integrating z = i p ’  over the circle p = 8 sin 8. Then, 

K 

= & [ [ p 4 ] :  ’ d8 = 256 [ sin4 8 d0 = 9 6 ~  cubic units 

6. Find the volume removed when a hole of radius U is bored through a sphere of radius 2a,  the 
axis of the hole being a diameter of the sphere. (See Fig. 71-6.) 

From the figure, it is obvious that the required volume is eight times the volume in the first octant 
bounded by the cylinder p 2  = a’, the sphere p’ + z’ = 4a2, and the plane z = 0. The latter volume is 
obtained by integrating z = d n  over a quadrant of the circle p = a. Hence, 
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7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Supplementary Problems 

Find the volume cut from 9x2 + 4y2 + 362 = 36 by the plane z = 0. Am. 37r cubic units 

Find the volume under z = 3x and above the first-quadrant area bounded by x = 0, y = 0, x = 4, and 
x’ + y’ = 25. Am. 98 cubic units 

Find the volume in the first octant bounded by x’ + z = 9, 3x + 4y = 24, x = 0, y = 0, and z = 0. 

Ans. 1485/16 cubic units 

Find the volume in the first octant bounded by xy = 42, y = x, and x = 4. Am. 8 cubic units 

Find the volume in the first octant bounded by x’ + y2  = 25 and z = y. Am. cubic units 

Find the volume common to the cylinders x 2  + y2  = 16 and x 2  + z2 = 16. Am. cubic units 

Find the volume in the first octant inside y’ + z’ = 9 and outside y 2  = 3x. Am. 27n/16 cubic units 

Find the volume in the first octant bounded by x 2  + z2 = 16 and x - y = 0. Ans. 9 cubic units 

Find the volume in front of x = 0 and common to y2  + z2 = 4 and y 2  + z’ + 2 x  = 16. 

Am. 28n  cubic units 

Find the volume inside p = 2 and outside the cone z2 = p’. Am. 327r/3 cubic units 

Find the volume inside y 2  + z’ = 2 and outside x 2  - y2  - 2’ = 2. Am. 8 ~ ( 4  - f l ) / 3  cubic units 

Find the volume common to p 2  + z2 = U’ and p = U sin 8. Am. 2(37r - 4)a2/9 cubic units 

Find the volume inside x 2  + y2  = 9, bounded below by x 2  + y2 + 42 = 16 and above by z = 4. 

Ans. 817r/8 cubic units 

Find the volume cut from the paraboloid 4x2 + y2 = 42 by the plane z - y = 2. Am. 9 7  cubic units 

Find the volume generated by revolving the cardioid p = 2( 1 - cos 8) about the polar axis. 

Ans. V =  27r J 1 yp dp d8 = 6 4 ~ 1 3  cubic units 

Find the volume generated by revolving a petal of p = sin 28 about either axis. 

Ans. 327rl105 cubic units 

A square hole 2 units on a side is cut symmetrically through a sphere of radius 2 units. Show that the 
volume removed is i ( 2 f i  + 197r - 54 arctan fi) cubic units. 



Chapter 72 

Area of a Curved Surface by 
Double Integration 

TO COMPUTE THE LENGTH OF A(PLANAR) ARC, (1) the arc is projected on a convenient coor- 

dinate axis, thus establishing an interval on the axis, and (2) an integrand function, 

if the projection is on the x axis or da if the projection is on the y axis, is integrated 
over the interval. 

A similar procedure is used to compute the area S of a portion R* of a surface z = f ( x ,  y ) :  
(1) R* is projected on a convenient coordinate plane, thus establishing a region R on the plane, 
and (2) an integrand function is integrated over R .  Then, 

rn 

If R* is projected on x O y ,  S = 11 d w  dA.  
R 

If R* is projected on yOz ,  S = 1 1 d m  dZ dA.  
R 

If R* is projected on zOx, S = dl+ (z)2 + (%)* dA 
R 

Solved Problems 

1. Derive the first of the formulas for the area S of a region R* as given above. 

Consider a region R* of area S on the surface z = f ( x ,  y ) .  Through the boundary of R* pass a 
vertical cylinder (see Fig. 72-1) cutting the xOy plane in the region R. Now divide R into n subregions 

45 1 
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A A ,  (of areas A A l ) ,  and denote by AS,  the area of the projection of A A ,  on R*. In each subregion A S , ,  
choose a point PI and draw there the tangent plane to the surface. Let the area of the projection of A A ,  
on this tangent plane be denoted by A T , .  We shall use A T t  as an approximation of the corresponding 
surface area A S , .  

Now the angle between the xOy plane and the tangent plane at PI  is the angle yl between the z axis 

with direction numbers [O,O,  11, and the normal, 

PI ; thus 

1 

Then (see Fig. 72-2),  

A T l  cos y, = A A i  and A T l  = sec yi A A I  

n n 

Hence, an approximation of S is 2 A T ,  = 2 sec y, A A i ,  and 
r = l  r = l  

S =  n+ lim f 3u r = l  t s e c y j A A i = \ \ s e c y d A = J \ / m d A  
K R 

2. Find the area of the portion of the cone x2 + y 2  = 3z2 lying above the x O y  plane and inside the 
cylinder x2 + y 2  = 4y. 

Solution 1 : Refer to Fig. 72-3. The projection of the required area on the xOy plane is the region R 
enclosed by the circle x 2  + y 2  = 4 y .  For the cone, 

9z2  + x 2  + y 2  - 12z2 - 4 - - _ -  
so l+(g)2+($)2= 9z2 9z2 3 

d z - 1 x  and - d Z J y _  
dx  3 z dy 3 2 ’  

2 4 v m  
Then S = I\ d1+ (g)’ + (5)’ d A  = l0 dx dy = 2 v3 jO4 jaw dx dy 

R 

S f l  
= 5 J]: v w  dy = - 7r square units v3 3 

Solution 2: Refer to Fig. 72-4. The projection of one-half the required area on the yOz plane is the 
region R bounded by the line y = f i z  and the parabola y = $ z z ,  the latter obtained by eliminating x 
between the equations of the two surfaces. For the cone, 

x 2  + y 2  + 9z2 12z2 - 12z2 -- - -- 
X2 x 2  3 z 2 - y 2  

dx  - 32 dx- -Y_ - and - - - 
d z  x dY x 



CHAP. 721 AREA OF A CURVED SURFACE BY DOUBLE INTEGRATION 453 

Solution 3 :  Using polar coordinates in solution 1, we must integrate /- = -& 
over the region R enclosed by the circle p = 4 sin 8. Then, 

3. Find the area of the portion of the cylinder x2 + z 2  = 16 lying inside the cylinder x2 + y’ = 16. 

Figure 72-5 shows one-eighth of the required area, its projection on the xOy plane being a quadrant 
of the circle x 2  + y 2  = 16. For the cylinder x 2  + z 2  = 16, 

d z  x dZ - - - _ _  and - = O .  So l +  
d x  z dY 

s = 8 lw vD 4 dy dx = 32 J: dx = 128 square units Then 

4. Find the area of the portion of the sphere x2 + y 2  + z2  = 16 outside the paraboloid 
x2  + y 2  + z = 16. 

R bounded by the circle y 2  + z 2  = 16, the y and z axes, and the line z = 1. For the sphere, 
Figure 72-6 shows one-fourth of the required area, its projection on the yOz plane being the region 
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Then 

‘ 1  17 dz = 16 T dz = 8~ square units V-iG-2 = 1616 [arcsin 

5. Find the area of the portion of the cylinder x 2  + y 2  = 6 y  lying inside the sphere x2 + y 2  + z2  = 
36. 

Figure 72-7 shows one-fourth of the required area. Its projection on the yOz plane is the region R 
bounded by the z and y axes and the parabola z2 + 6y = 36, the latter obtained by eliminating x from the 
equations of the two surfaces. For the cylinder, 

d x  - 3 - y  d X  (6’;)’ (6’~)~ x 2 + 9 - 6 y + y Z  - -- 9 
and - = O .  So 1 +  - + - = 

JY x d z  X2 6Y - Y 2  

(jvz 
Then S = 4 L- vA dz dy = 12 L 3 dy  = 144 square units 

6Y - Y  

Supplementary Problems 

6. Find the area of the portion of the cone x2 + y2 = z2 inside the vertical prism whose base is the triangle 
bounded by the lines y = x ,  x = 0, and y = 1 in the xOy plane. Ans. square units 

7. Find the area of the portion of the plane x + y + z = 6 inside the cylinder x2 + y2 = 4. 

Ans. 4 V 3 ~  square units 

8. Find the area of the portion of the sphere x 2  + y2 + z2 = 36 inside the cylinder x2 + y2 = 6y. 

Ans. 7 2 ( ~  - 2) square units 
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9. 

10. 

11. 

12. 

13. 

14. 

15. 

Find the area of the portion of the sphere x2 + y2 + z2 = 42 inside the paraboloid x2 + y 2  = z 

Am. 47r square units 

Find the area of the portion of the sphere x2 + y 2  + z2 = 25 between the planes z = 2 and z = 4. 

Am. 207r square units 

Find the area of the portion of the surface z = xy inside the cylinder x2 + y 2  = 1. 

Ans. 27r(2fi - 1) /3  square units 

Find the area of the surface of the cone x2 + y2 - 9z2 = 0 above the plane z = 0 and inside the cylinder 
x2 + y 2  = 6 y .  Am. 3m7r square units 

Find the area of that part of the sphere x2 + y2 + z2 = 25 that is within the elliptic cylinder 2x2 + y2 = 25. 

Am. 507r square units 

Find the area of the surface of x2 + y2 - uz = 0 which lies directly above the lemniscate 

4p2 = u2 COS 28. Ans. S = v m p  dp d8 = (: - f )  square units 
U 

Find the area of the surface of x2 + y2 + z2 = 4 which lies directly above the cardioid p = 1 - cos 8. 

Am. 8[7r - fi - In (fi + l)] square units 



Chapter 73 

Triple Integrals 

CYLINDRICAL AND SPHERICAL COORDINATES. Assume that a point P has coordinates 
(x, y , z) in a right-handed rectangular coordinate system. The corresponding cylindrical 
coordinates of P are ( r ,  8, z), where ( r ,  0)  are the polar coordinates for the point (x, y )  in the 
xy plane. (Note the notational change here from ( p ,  8) to ( r ,  8) for the polar coordinates of 
(x, y); see Fig. 73-1.) Hence we have the relations 

2 2 2  Y x = r c o s 8  y = r s i n 8  r = x  + y  t a n $ = -  

In cylindrical coordinates, an equation r = c represents a right circular cylinder of radius c with 
the z axis as its axis of symmetry. An equation 8 = c represents a plane through the z axis. 

X 

THE 

2 
Z 

I 

X 

Fig. 73-1 Fig. 73-2 

A point P with rectangular coordinates ( x ,  y, z )  has the spherical coordinates ( p ,  8, c$), 
where p = I OPI, 8 is the same as in cylindrical coordinates, and 4 is the directed angle from the 
positive z axis to the vector OP. (See Fig. 73-2.) In spherical coordinates, an equation p = c 
represents a sphere of radius c with center at the origin. An equation $ = c represents a cone 
with vertex at the origin and the z axis as its axis of symmetry. 

The following additional relations hold among spherical, cylindrical, and rectangular 
coordinates: 

r = p sin 4 
x = p sin 4 cos 8 

z = p cos 4 p 2  = x2 + y2 + z2 

y = p sin 4 sin 8 

(See Problems 14 to 16.) 

TRIPLE INTEGRAL I 11 f ( x ,  y, z )  dV of a function of three independent variables over a 

closed region R of points ( x ,  y, z), of volume V, on which the function is single-valued and 
continuous, is an extension of the notion of single and double integrals. 

R 

456 
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If f ( x ,  y ,  z )  = 1, then I f ( x ,  y ,  z )  dV may be interpreted as measuring the volume of 
R 

the region R .  

EVALUATION OF THE TRIPLE INTEGRAL. In rectangular coordinates, 

d X2(Y) z2(x*.Y) 

= j-,,,, j-l(x,y) f(x9 Y ,  2 )  d z  dx dY, etc. 

where the limits of integration are chosen to cover the region R .  
In cylindrical coordinates, 

rz(0) 22('.0) J I I f(c 8, z )  dV= IaP I r , ( O )  j-l(r,O, f(r, 6, z ) r  dz  dr 
R 

where the limits of integration are chosen to cover the region R. 
In spherical coordinates, 

where the limits of integration are chosen to cover the region R.  
Discussion of the definitions: Consider the function f ( x ,  y ,  z ) ,  continuous over a region R 

of ordinary space. After slicing R with planes x = 6, and y = 77, as in Chapter 69, let these 
subregions be further sliced by planes z = & .  The region R has now been separated into a 
number of rectangular parallelepipeds of volume AV,,, = A x ,  Ayl Azk  and a number of partial 
parallelepipeds which we shall ignore. In each complete parallelepiped select a point 
pl lk(x , ,  y l ,  z k ) ;  then compute f ( x , ,  y l ,  z k )  and form the sum 

f(x~, Y ] ,  ' k )  = f ( x i ,  Y J ~  z k >  A x ~  A z k  (73.1) 
I = ] ,  , m  r = l .  , m  
, = I , .  . . , n  
k = l ,  . . . , p 

j = l , .  . . , n 
k = l . .  . . , p 

The triple integral of f ( x ,  y ,  z )  over the region R is defined to be the limit of (73.1 ) as the 
number of parallelepipeds is indefinitely increased in such a manner that all dimensions of each 
go to zero. 

In evaluating this limit, we may sum first each set of parallelepipeds having Aix and A,y, for 
fixed i and j ,  as two dimensions and consider the limit as each Akz-+O.  We have 

Now these are the columns, the basic subregions, of Chapter 69; hence, 

k = l , ,  . . . p 

CENTROIDS AND MOMENTS OF INERTIA. The coordinates (X, f ,  2 )  of the centroid of U 

volume satisfy the relations 
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R R R R 

R R 

The moments of inertia of a volume with respect to the coordinate axes are given by 

R R R 

Solved P r o ~ l ~ m s  

1. Evaluate the given triple integrals: 

( a )  1’ lPx xyz dz dy dx 

= [ 
^ x  

xyz dz) dy] dx 

xy(2 - x)2 

13 
4 y = o  240 - 6x4 + x’) dr = - 

= 

2 2 
= 2 /0w’2 [r.’]: sin 8 d8 = - - [cos 81;” = 3 

lot [;I2 r2 sin 8 drd8 = 2 10’ r2 sin 8 dr d8 

3 3 

(c )  lo* I”;“ Le‘’ sin 24  dp d 4  d8 

= 2 1  sin 4 d 4  d8 = 2 [(l  - $.\rz) d8 = (2 - f l)~ 

2. Compute the triple integral of F(x, y ,  z> = z over the region R in the first octant bouRded by 
the planes y = 0, z =: 0, x + y = 2 ,  2 y  + x = 6, and the cylinder y 2  + z2 = 4. (See Fig. 73-3.) 

Integrate first with respect to z from z = 0 (the xOy plane) to z = v q  (the cylinder), then with 
respect to x from x = 2 - y to x = 6 - 2 y ,  and finally with respect to y from y = 0 to y = 2. This yields 
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3. Compute the triple integral of f(r, 8, z )  = r2  over the region R bounded by the paraboloid 
r2 = 9 - z and the plane z = 0. (See Fig. 73-4.) 

Integrate first with respect to z from z = 0 to z = 9 - r2, then with respect to r from r = 0 to r = 3, 
and finally with respect to 8 from 8 = 0 to 8 = 27~ .  This yields 

/ / / r2 d V =  JT1* I: /09-r2  r2(r  dz dr do) = c* I: r3(9 - r 2 )  dr d8 

4 2& - 
4. Show that the integrals (a)  4 

(c) 4 f y*/4 1- 0 
dz dy  dx, ( b )  4 l0 dy dx d z ,  and 

dx d z  dy  give the same volume. 

(a)  Here z ranges from z = $(x’  + y’) to z = 4; that is, the volume is bounded below by the paraboloid 
42 = x 2  + y 2  and above the plane z = 4. The ranges of y and x cover a quadrant of the circle 
x2 + y 2  = 16, z = 0, the projection of the curve of intersection of the paraboloid and the plane z = 4 
on the x O y  plane. Thus, the integral gives the volume cut from the paraboloid by the plane z = 4. 

( b )  Here y ranges from y = 0 to y = w; that is, the volume is bounded on the left by the zOx 
plane and on the right by the paraboloid y 2  = 42 - x2. The ranges of x and z cover one-half the area 
cut from the parabola x2 = 42, y = 0, the curve of intersection of the paraboloid and the zOx plane, 
by the plane z = 4. The region R is that of (a) .  

(c) Here the volume is bounded behind by the yOz plane and in front by the paraboloid 42 = x 2  + y2 .  
The ranges of z and y cover one-half the area cut from the parabola y 2  = 42, x = 0, the curve of 
intersection of the paraboloid and the yOz plane, by the plane z = 4. The region R is that of (a). 

5. Compute the triple integral of F( p,  4,  6 )  = 1 / p  over the region R in the first octant bounded 
by the cones 4 = T and 4 = arctan 2 and the sphere p = 6 (See Fig. 73-5.)  
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Integrate first with respect to p from p = 0 to p = s, then with respect to 4 from 4 = i 7 r  to 
4 = arctan 2, and finally with respect to 8 from 8 = 0 to 8 = 7r. This yields 

/ R / / f dV= l O 7 I 2  /:;ran kfi f p2 sin 4 d p  d 4  d8 = 3 

6.  Find the volume bounded by the paraboloid z = 2x2 + y 2  and the cylinder z = 4 - y2 .  (See Fig. 

Integrate first with respect to z from z = 2x2 + y 2  to z = 4 - y’, then with respect to y from y = 0 to 
(obtain x’ + y 2  = 2 by eliminating x between the equations of the two surfaces), and finally 

(obtained by setting y = 0 in x2 + y 2  = 2) to obtain one-fourth of 

73-6.) 

y = 
with respect to x from x = 0 to x = 

the required volume. Thus, 

16 fi 
dx = 7 l0 (2 - x2)3’2 dx = 47r cubic units 

7. Find the volume within the cylinder r = 4 cos 8 bounded above by the sphere r2 + z2  = 16 and 
below by the plane z = 0. (See Fig. 73-7.) 

Integrate first with respect to z from z = O  to z =-, then with respect to r from r = O  to 
r = 4 cos 8, and finally with respect to 8 from 8 = 0 to 8 = 7r to obtain the required volume. Thus, 

= - (sin3 8 - 1) de  = y(37r - 4) cubic units 
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8. Find the coordinates of the centroid of the volume within the cylinder r =2cos8 ,  bounded 
above by the paraboloid z = r2 and below by the plane z = 0. (See Fig. 73-8.) 

m12 ~ C O S B  

v = 2 1  l L r d z d r d s = 2 \ 0 m ’ 2 [ c 0 s B r 3 d r d e  

- r2 
= 2 [ I 2  I: cos r4 COS 8 dr dB = 

- ; [ I 2  [ ~ ~ I ; C O S ~  de = 8 

M y z  = \ \ J x  d v =  2 JOml2 1 
cos4 e de = iT 

2 cos  0 2 
( r  cos e ) r  dz  dr de 

R 

Then X =  M,,,/V= :. By symmetry, y =  0. Also, 

R 

- -  - 332 \om’2 cos6 e de = zr 

and Z = Mxy/V= 9 .  Thus, the centroid has coordinates (: , 0, y ) ,  

9. For the right circular cone of radius a and height h,  find ( a )  the centroid, ( b )  the moment of 
inertia with respect to its axis ( c ) ,  the moment of inertia with respect to any line through its 
vertex and perpendicular to its axis, ( d )  the moment of inertia with respect to any line through 
its centroid and perpendicular to its axis, an (e) the moment of inertia with respect to any 
diameter of its base. 

Take the cone as in Fig. 73-9, so that its equation is r =  z .  Then 
h 

v =  4 \om’2 Joa Jh:Ia r d z  dr de = 4 J: (hr  - r2)  dr de 
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(a)  The centroid lies on the z axis, and we have 

10. 

11. 

= 2 [’2 1: (h’r - r3 dr do = - 1 h’a’ 
2 

Then Z =  Mx,IV= i h ,  and the centroid has coordinates (O,O,  zh). 

R 

(c) Take the line as the y axis. Then 
HI’ a h 

Iy = I I I (x’ + 2’) dV= 4 1 10 Ihrla (r’ cos’ 8 + z’)r dz dr do 
R 

1 h3 
3 a 

= 4 [” [ (hr3 - r4) cos’ 8 + - (h3r - 5 r4)] dr dB 

= - 1 rha’(h’ + 4 1 a’) = (h’ + 4 1 a2)V 
5 

( d )  Let the line c through the centroid be parallel to the y axis. By the parallel-axis theorem, 

Zy = Z, + V( jh)’ and Z, = f ( h ’  + fa’)V- &h2V= &(h’ + 4a2)V 

(e) Let d denote the diameter of the base of the cone parallel to the y axis. Then 

Id = I, + V( f h)’ = & (h’ + 4a’)V + $ h’V= &j (2h’ + 3a’)V 

Find the volume cut from the cone 4 = 7~ by the sphere p = 2a cos 4. (See Fig. 73-10.) 

V =  4 I I I dV= 4 [I’ [I4 IozU ‘OS’ p’ sin 4 d p  d 4  d8 
R 

32a3 T12 
- - - I0 I O T l 4  cos3 4 sin 4 d 4  do = 2a3 1;” do = r a 3  cubic units 

3 

Locate the centroid of the volume cut from one nappe of a cone of vertex angle 60” by a 
sphere of radius 2 whose center is at the vertex of the cone. 
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Take the surfaces as in Fig. 73-11, so that X = = 0. In spherical coordinates, the equation of the 
cone is 4 = ~ / 6 ,  and the equation of the sphere is p = 2. Then 

and Z = M,,/V= i ( 2  + fi). 

12. Find the moment of inertia with respect to the z axis of the volume of Problem 11. 

I z = / / / ( X 2 + Y ’ ) d v = 4  Jo2 ( p ’  sin2 4 ) p ’  sin 4 dp d 4  de 
R 

Supplementary Problems 

13. Describe the curve determined by each of the following pairs of equations in cylindrical coordinates. 

Ans. ( a )  circle of radius 1 in plane z = 2 with center having rectangular coordinates (0, 0,2); ( b )  helix 
on right circular cylinder r = 2; ( c )  vertical line through point having rectangular coordinates 
(1,1,0);  ( d )  line through origin in plane 8 = 7~14, making an angle of 45” with xy plane 

(a )  r = l , z = 2  ( b )  r = 2, z = e (c) e = d 4 ,  r = ID ( d )  e = n/4,  z = r 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Describe the curve determined by each of the following pairs of equations in spherical coordinates. 

?I n 7r 
(c) p = 2 ,  4 = - 

4 
( b )  e =  - - ?  4 =  - 

4 6 
( a )  p = i ,  e = n  

Am. ( a )  circle of radius 1 in XI plane with center at origin; ( b )  halfline of intersection of plane 
0 = 7r14 and cone 4 = n16;  (c)  circle of radius fi in plane I = fi with center on z axis 

Transform each of the following equations in either rectangular, cylindrical, or spherical coordinates into 

equivalent equations in the two other coordinate systems. 

Am. 

( a )  P = 5 (6) z 2 = r 2  ( c )  x 2  + y2 + ( 2  - 1)2 = 1 

(a) x 2  + y 2  + z2 = 25, r2 + z' = 25; ( b )  z2 = x 2  + y2, cos2 4 = 4 (that is, 4 = n14 or 4 = 3 ~ 1 4 ) ;  
(c) r2 + z2 = 22, p = 2 cos 4 

Evaluate the triple integral on the left in each of the following: 

Evaluate the integral of Problem 16(b) after changing the order to dz dx dy. 

Evaluate the integral of Problem 16(c), changing the order to dx dy dz and to dy dz dx. 

Find the following volumes, using triple integrals in rectangular coordinates: 
( a )  Inside x 2  + y 2  = 9, above z = 0, and below x + z = 4 
( 6 )  Bounded by the coordinate planes and 6x  + 4y + 32 = 12 
( c )  Inside x' + y-' = 4x. above z = 0. and below x 2  + y 2  = 42 

Am. 3 6 ~  cubic units 
Am. 4 cubic units 

Am. 67r cubic units 

Find the following volumes, using triple integrals in cylindrical coordinates: 
( a )  The volume of Problem 4 
(6) The volume of Problem 1Y(c) 
(c) That inside r2 = 16, above z = 0, and below 22 = y Am. 6413 cubic units 

Find the centroid of each of the following volumes: 
( a )  Under 2' = xy and above the triangle y = x ,  y = 0. x = 4 in the plane z = 0 
( b )  That of Problem 1Y(b) Am. ( i ,  : , l )  

Am. (3.  ;, g )  

64-97r 
1 6 ( ~ - 1 ) ' 8 ( ~ - 1 ) '  3 2 ( ~ - 1 )  

(c) The first-octant volume of Problem 1Y(a) Am. ( 

(d) That of Problem 1Y(c) Am. (! ,0,?) 
(e) That of Problem 20(c) Am. (0,3n14,37r116) 

Find the moments of inertia I , ,  I,, I, of the following volumes: 

( a )  That of Problem 4 
( b )  That of Problem lY(6)  Am. I , = ~ V ; I y = 2 V ; I , = ~ V  
(c )  That of Problem 1Y(c) 
(d) That cut from z = r2 by the plane z = 2 

Am. 

Am. 
Am. 

I ,  = I ,  = Y V ;  I ,  = Y V  

I ,  = gV; I ,  = gV; I ,  = FV 
I ,  = I ,  = 3V; I ,  = $V 
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23. Show that, in cylindrical coordinates, the triple integral of a function f(r, 8, z) over a region R may be 
represented by 

\ap l:yl) ~ ~ ~ ~ ~ @ ) )  f ( r ,  8, z ) r  dz dr do 

(Hint: Consider, in Fig. 73-12, a representative subregion of R bounded by two cylinders having Oz as 
axis and of radii r and r + A r ,  respectively, cut by two horizontal planes through ( O , O ,  z )  and 
( O , O ,  z + Az), respectively, and by two vertical planes through Oz making angles 8 and 8 + A8, 
respectively, with the xOz plane. Take AV= ( r  A 8 )  Ar Az as an approximation of its volume.) 

24. Show that, in spherical coordinates, the triple integral of a function f( p,  4, 8) over a region R may be 
represented by 

P +2(e) ~ ~ ( 4 . o )  1- I,,,.) I,,,,,) f ( P 7  4, w2 sin 4 dP d4 

(Hint: Consider, in Fig. 73-13, a representative subregion of R bounded by two spheres centered at 0, of 
radii p and p + Ap, respectively, by two cones having 0 as vertex, Oz as axis, and semivertical angles 
and 4 + A 4 ,  respectively, and by two vertical planes through Oz making angles 8 and 8 + A 8 ,  
respectively, with the zOy plane. Take AV= ( p  A+)(p sin 4 A8)(Ap) = p 2  sin 4 Ap A 4  A 8  as an approx- 
imation of its volume.) 
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Lecture III
Solution of first order equations

1 Separable equations

These are equations of the form

y′ = f(x)g(y)

Assuing g is nonzero, we divide by g and integrate to find∫ dy

g(y)
=
∫
f(x)dx+ C

What happens if g(y) becomes zero at a point y = y0?

Example 1. xy′ = y + y2

Solution: We write this as∫ dy

y + y2
=
∫ dx

x
+ C ⇒

∫ dy

y
−
∫ dy

1 + y
= lnx+ C ⇒ ln y − ln(1 + y) = ln x+ C

Note: Strictly speaking, we should write the above solution as

ln |y| − ln |1 + y| = ln |x|+ C

When we wrote the solution without the modulas sign, it was (implicitly) assumed
that x > 0, y > 0. This is acceptable for problems in which the solution domain is not
given explicitly. But for some problems, the modulas sign is necessary. For example,
consider the following IVP:

xy′ = y + y2, y(−1) = −2.

Try to solve this.

2 Reduction to separable form

2.1 Substitution method

Let the ODE be
y′ = F (ax+ by + c)

Suppose b 6= 0. Substituting ax+ by+ c = v reduces the equation to a separable form.
If b = 0, then it is already in separable form.

Example 2. y′ = (x+ y)2

Solution: Let v = x+ y. Then we find

v′ = v2 + 1⇒ tan−1 v = x+ C ⇒ x+ y = tan(x+ C)
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2.2 Homogeneous form

Let the ODE be of the form
y′ = f(y/x)

In this case, substitution of v = y/x reduces the above ODE to a seprable ODE.

Comment 1: Sometimes, substitution reduces an ODE to the homogeneous form. For
example, if ae 6= bd, then h and k can be chosen so that x = u + h and y = v + k
reduces the following ODE

y′ = F

(
ax+ by + c

dx+ ey + f

)
to a homeogeneous ODE. What happens if ae = bd?

Comment 2: Also, an ODE of the form

y′ = y/x+ g(x)h(y/x)

can be reduced to the separable form by substituting v = y/x.

Example 3. xyy′ = y2 + 2x2, y(1) = 2

Solution: Substituting v = y/x we find

v + xv′ = v + 2/v ⇒ y2 = 2x2(C + lnx2)

Using y(1) = 2, we find C = 2. Hence, y = 2x2(1 + ln x2)

3 Exact equation

A first order ODE of the form

M(x, y) dx+N(x, y) dy = 0 (1)

is exact if there exits a function u(x, y) such that

M =
∂u

∂x
and N =

∂u

∂y
.

Then the above ODE can be written as du = 0 and hence the solution becomes u = C.

Theorem 1. Let M and N be defined and continuously differentiable on a rectangle
rectangle R = {(x, y) : |x − x0| < a, |y − y0| < b}. Then (1) is exact if and only if
∂M/∂y = ∂N/∂x for all (x, y) ∈ R.

Proof: We shall only prove the necessary part. Assume that (1) is exact. Then there
exits a function u(x, y) such that

M =
∂u

∂x
and N =

∂u

∂y
.

Since M and N have continuous first partial derivatives, we have

∂M

∂y
=

∂2u

∂y∂x
and

∂N

∂x
=

∂2u

∂x∂y
.

Now continuity of 2nd partial derivative implies ∂M/∂y = ∂N/∂x.
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Example 4. Solve (2x+ sinx tan y)dx− cosx sec2 y dy = 0

Solution: Here M = 2x+sin x tan y and N = − cosx sec2 y. Hence, My = Nx. Hence,
the solution is u = C, where u = x2 − cosx tan y

4 Reduction to exact equation: integrating factor

An integrating factor µ(x, y) is a function such that

M(x, y) dx+N(x, y) dy = 0 (2)

becomes exact on multiplying it by µ. Thus,

µM dx+ µN dy = 0

is exact. Hence
∂(µM)

∂y
=
∂(µN)

∂x
.

Comment: If an equation has an integrating factor, then it has infinitely many inte-
grating factors.

Proof: Let µ be an integrating factor. Then

µM dx+ µN dy = du

Let g(u) be any continuous function of u. Now multiplying by µg(u), we find

µg(u)M dx+ µg(u)N dy = g(u)du⇒ µg(u)M dx+ µg(u)N dy = d
(∫ u

g(u) du
)

Thus,

µg(u)M dx+ µg(u)N dy = dv, whare v =
∫ u

g(u) du

Hence, µg(u) is an integrating factor. Since, g is arbitrary, there exists an infinite
number of integrating factors.

Example 5. xdy − ydx = 0.

Solution: Clearly 1/x2 is an integrating factor since

xdy − ydx
x2

= 0⇒ d(y/x) = 0

Also, 1/xy is an integrating factor since

xdy − ydx
xy

= 0⇒ d ln(y/x) = 0

Similarly it can be shown that 1/y2, 1/(x2 + y2) etc. are integrating factors.
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4.1 How to find intgrating factor

Theorem 2. If (2) is such that

1

N

(
∂M

∂y
− ∂N

∂x

)
is a function of x alone, say F (x), then

µ = e
∫

F dx

is a function of x only and is an integrating factor for (2).

Example 6. (xy − 1)dx+ (x2 − xy)dy = 0

Solution: Here M = xy − 1 and N = x2 − xy. Also,

1

N

(
∂M

∂y
− ∂N

∂x

)
= −1

x

Hence, 1/x is an integrting factor. Multiplying by 1/x we find

(xy − 1)dx+ (x2 − xy)dy

x
= 0⇒ xy − lnx− y2/2 = C

Theorem 3. If (2) is such that

−1

M

(
∂M

∂y
− ∂N

∂x

)
is a function of y alone, say G(y), then

µ = e
∫

G dy

is a function of y only and is an integrating factor for (2).

Example 7. y3dx+ (xy2 − 1)dy = 0

Solution: Here M = y3 and N = xy2 − 1. Also,

− 1

M

(
∂M

∂y
− ∂N

∂x

)
= −2

y

Hence, 1/y2 is an integrting factor. Multiplying by 1/y2 we find

y3dx+ (xy2 − 1)dy

y2
= 0⇒ xy +

1

y
= C

Comment: Sometimes it may be possible to find integrating factor by inspection. For
this, some known differential formulas are useful. Few of these are given below:

d

(
x

y

)
=

ydx− xdy
y2

d
(
y

x

)
=

xdy − ydx
x2

d(xy) = xdy + ydx

d

(
ln
x

y

)
=

ydx− xdy
xy
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Example 8. (2x2y + y)dx+ xdy = 0

Obviously, we can write this as

2x2ydx+ (ydx+ xdy) = 0⇒ 2x2ydx+ d(xy) = 0

Now if we divide this by xy, then the last term remains differential and the first term
also becomes differential:

2xdx+
d(xy)

xy
= 0⇒ d

(
x2 + ln(xy)

)
= 0⇒ x2 + ln(xy) = C
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2.3 Exact Differential Equations

A differential equation is called exact when it is written in the specific form

Fx dx + Fy dy = 0, (2.4)

for some continuously differentiable function of two variables F (x, y). (Note
that in the above expressions Fx = ∂F

∂x
and Fy = ∂F

∂y
).

The solution to equation (2.3) is given implicitly by

F (x, y) + C = 0.

We see this by implicitly differentiating

F (x, y) + C = 0.

with respect to x (and using the chain rule from multivariable calculus) we
see that an exact differential equation must be of the form:

Fx + Fy

dy

dx
= 0, (2.5)

which can be written as

Fx dx + Fy dy = 0. (2.6)

Example 2.6 Find the exact differential equation that is solved by

x2y + y3 sin x + C = 0

Solution: Differentiating, we obtain

(

2xy + y3 cos x
)

dx +
(

x2 + 3y2 sin x
)

dy = 0 ¤

Note that one needs to be extremely careful calling a differential equation
exact, since performing algebra on an exact differential equation can make it
no longer exact. In other words, the differential equation

(

2xy2 + y4 cos x
)

dx +
(

yx2 + 3y3 sin x
)

dy = 0 ¤
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is algebraically equivalent to equation(2.3) but it is not exact, even though
it is still solved by

x2y + y3 sin x + C = 0.

One should recall that if F is continuously differentiable then the mixed
partial derivatives of F must match namely, Fxy = Fyx. This gives us a
method to detect if a differential equation is exact namely:

Exactness Test and Method to Solve an Exact DE
Consider the differential equation

M(x, y) dx + N(x, y) dy = 0

where M and N are both continuously differentiable functions with contin-
uous partials My and Nx. If My = Nx, then the DE is exact. The implicit
solutions are given by F (x, y) + C = 0 where F =

∫

M dx and F =
∫

N dy,
simultaneously, up to a constant C.

We first show that one can obtain a function so that F =
∫

M dx =
∫

N dy, simultaneously, up to a constant C. Given that My = Nx. Consider
∫

M dx −

∫

N dy. Rewrite this as:

∫

(

∫

My dy) dx −

∫

(

∫

Nx dx) dy,

which equals
∫ ∫

0 dx dy

which is a constant.
Suppose that such an F now exists so that F =

∫

M dx and F =
∫

N dy,
simultaneously. Then differentiating we obtain

Fx dx + Fy dy = 0, (2.7)

or
M dx + N dy = 0. (2.8)

Moreover, since Fxy = Fyx we must have My = Nx. ¤
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Example 2.7 Use the test for exactness to show that the DE is exact, then

solve it.
(

x2 + xy − y2
)

dx +

(

1

2
x2

− 2xy

)

dy = 0. (2.9)

Solution:

In this problem, M = x2 + xy − y2 and N = 1

2
x2

− 2xy. Thus,

My = x − 2y

and

Nx = x − 2y,

which implies that the differential equation is exact.
To obtain F we compute F =

∫

M dx and F =
∫

N dy.

F =

∫

M dx =

∫

x2 + xy − y2 dx =
1

3
x3 +

1

2
x2y − xy2 + h1(y)

where h1(y) is an unknown function of y. Similarly,

F =

∫

N dy =

∫

12x2
− 2xy dy =

1

2
x2y − xy2 + h2(x)

where h2(x) is an unknown function of x.

For F to equal both simultaneously, we must have h2(x) = 1

3
x3 and

h1(y) = 0.
Thus F (x, y) = 1

3
x3 + 1

2
x2y − xy2 and hence,

1

3
x3 +

1

2
x2y − xy2 + C = 0

is the solution to the DE. ¤

Example 2.8 Use the test for exactness to show that the DE is exact, then

solve the initial value problem.

(yexy) dx + (xexy + sin y) dy = 0 y(0) = π (2.10)
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Solution:

In this problem, M = yexy and N = xexy + sin y. Thus,

My = exy + xyexy

and
Nx = exy + xyexy,

which implies that the differential equation is exact.
To obtain F we compute F =

∫

M dx and F =
∫

N dy.

F =

∫

M dx =

∫

yexy dx = exy + h1(y)

where h1(y) is an unknown function of y. Similarly,

F =

∫

N dy =

∫

xexy + sin y dy = exy
− cos y + h2(x)

where h2(x) is an unknown function of x.

For F to equal both simultaneously, we must have h2(x) = 0 and h1(y) =
− cos y.

Thus F (x, y) = exy
− cos y and hence,

exy
− cos y + C = 0

is an implicit solution to the DE for any C.
To solve the initial value problem, when x = 0 we must have y = π or
e0

− cos π + C = 0 which implies that C = −2. Thus,

exy
− cos y − 2 = 0

solves the initial value problem. ¤

Exercises

Use the Exactness Test to Determine if the DE is exact.

1. y2 dx + x dy = 0

2.
(

x2 + y2
)

dx + (2xy + cos y) dy = 0



2.3. EXACT DIFFERENTIAL EQUATIONS 25

3. s dr + r ds = 0

4. arctan(y) dx +
x

1 + y2
dy = 0

Use the Exactness Test to show the DE is exact, then solve it.

5. (
√

y + 2x tan y) dx +

(

x

2
√

y
+ x2 sec2 y

)

dy = 0

6.
(

2xy4
− y3 + cos(2x)

)

dx +
(

4x2y3
− 3y2x − 2y

)

dy = 0

7.
(y

x
− 3y2 + x3

)

dx + (ln x − 6xy) dy = 0

8.

(

√

x2 + y2 +
x

√

x2 + y2

)

dx+
xy

√

x2 + y2
dy = 0 (Hint: one integration

is easier, use the easy one to backward engineer the harder one)

9. (cos(xy) − xy sin(xy)) dx +
(

−x2 sin(xy) + y
)

dy = 0 (Hint: one inte-
gration is easier, use the easy one to backward engineer the harder
one))

Use the Exactness Test to show the DE is exact, then solve the initial

value problem.

10. 2xy3 dx + 3x2y2 dy = 0, y(1) = 2

11.
(

y2
− 2xey

)

dx +
(

2xy − x2ey
)

dy = 0, y(2) = 0

12. (a) Show that xy4dx + 4x2y3 dy = 0 is not exact.

(b) Multiply the DE by 1

x
and show that the resulting DE is exact.

(c) Solve the DE from (b). Does the solution in (b) solve the original
DE (in (a))?
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Lecture IV
Linear equations, Bernoulli equations, Orthogonal trajectories, Oblique trajectories

1 Linear equations

A first order linear equations is of the form

y′ + p(x)y = r(x) (1)

This can be written as
(p(x)y − r(x))dx+ dy = 0.

Here M = p(x)y − r(x) and N = 1. Now

1

N

(
∂M

∂y
− ∂N

∂x

)
= p(x)

Hence,

µ(x) = e
∫
p(x) dx

is an integrating factor. Multiplying (1) by µ(x) we get

d

dx

(
e
∫
p(x) dxy

)
= r(x)e

∫
p(x) dx

Integrating we get

e
∫
p(x) dxy =

∫ x

r(s)e
∫
p(s) ds ds+ C

which on simplification gives

y = e−
∫
p(x) dx

(
C +

∫ x

r(s)e
∫
p(s) ds ds

)
Example 1. Solve y′ + 2xy = 2x

Solution: An integrating factor is ex
2
. Hence,

yex
2

=
∫ x

2tet
2

dt+ C ⇒ y = 1 + Ce−x
2

Comment: The usual notation dy/dx implies that x is the independent variable and y
is the dependent variable. In trying to solve first order ODE, it is sometimes helpful to
reverse the role of x and y, and work on the resulting equations. Hence, the resulting
equation

dx

dy
+ p(y)x = r(y)

is also a linear equation.

Example 2. Solve (4y3 − 2xy)y′ = y2, y(2) = 1

Solution: We write this as
dx

dy
+

2

y
x = 4y

Clearly, y2 is an integrating factor. Hence,

xy2 =
∫ y

4y3 dy + C ⇒ xy2 = y4 + C

Using initial condition, we find xy2 = y4 + 1.
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2 Bernoulli’s equation

This is of the form
y′ + p(x)y = r(x)yλ, (2)

where λ is a real number. Equation (2) is linear for λ = 0 or 1. Otherwise, it is
nonlinear and can be reduced to a linear form by substituting z = y1−λ

Example 3. Solve y′ − y/x = y3

Solution: We write this as
y−3y′ − y−2/x = 1

Substitute y−2 = z ⇒ −2y−3y′ = z′. This leads to

z′ + 2z/x = −2

This is a linear equation whose solution is

zx2 = −2x3/3 + C

Replacing z we find

3
x2

y2
+ 2x3 = C

3 Reducible second order ODE

A general 2nd order ODE is of the form

F (x, y, y′, y′′) = 0

In some cases, by making substitution, we can reduce this 2nd order ODE to a 1st
order ODE. Few cases are described below

Case I: If the independent variable is missing, then we have F (y, y′, y′′) = 0. If we
substitute w = y′, then y′′ = w dw

dy
. Hence, the ODE becomes F (y, w, w dw

dy
) = 0, which

is a 1st order ODE.

Example 4. Solve 2y′′ − y′2 − 4 = 0

Solution: With w = y′, the above equation becomes

2w
dw

dy
− w2 − 4 = 0⇒ ln[(w2 + 4)/C] = y ⇒ w = ±

√
Cey − 4

SInce w = y′, we find
dy√

Cey − 4
= ±x+D

The integral on the LHS can be evaluated by substitution.

Case II: If the dependent variable is missing, then we have F (x, y′, y′′) = 0. If we
substitute w = y′, then y′′ = w′. Hence, the ODE becomes F (x,w,w′) = 0, which is a
1st order ODE.
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Example 5. Solve xy′′ + 2y′ = 0

Solution: Substitute w = y′, then we find

dw

dx
+

2

x
w = 0⇒ w = Cx−2

Since w = y′, we further get

y′ = C/x2 ⇒ y = −C/x+D

4 Orthogonal trajectories

Definition 1. Two families of curves are such that each curve in either family is
orthogonal (whenever they intersect) to every curve in the other family. Each family
of curves is orthogonal trajectories of the other. In case the two families are identical,
they we say that the family is self-orthogonal.

Comment: Orthogonal trajectories has important applications in the field of physics.
For example, the equipotential lines and the streamlines in an irrotational 2D flow are
orthogonal.

Slope = dy/dx

Slope =−1/dy/dx

Figure 1: Orthogonal trajectories.

4.1 How to find orthonal trajectories

Suppose the first familiy
F (x, y, c) = 0. (3)

To find the orthogonal trajectories of this family we proceed as follows. First, differ-
entiate (3) w.r.t. x to find

G(x, y, y′, c) = 0. (4)
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Now eliminate c between (3) and (4) to find the differential equation

H(x, y, y′) = 0 (5)

corresponding to the first family. As seen in Figure 1, the differential equation for the
other family is obtained by replacing y′ by −1/y′. Hence, the differetial equation of
the orthogonal trajectories is

H(x, y,−1/y′) = 0 (6)

General solution of (6) gives the required orthogonal trajectories.

Example 6. Find the orthogonal trajectories of familiy of straight lines through the
origin.

Solution: The familiy of straight lines through the origin is given by

y = mx

The ODE for this familiy is
xy′ − y = 0

The ODE for the orthogonal family is

x+ yy′ = 0

Integrating we find
x2 + y2 = C,

which are family of circles with centre at the origin.

ψ2

ψ1

ψr

θ
r

θ

(a) (b)

Figure 2: Orthogonal trajectories.

4.2 *Orthogonal trjactories in polar coordinates

Consider a curve in polar cordinate. The angle ψ between the radial and tangent
directions is given by

tanψ =
r dθ

dr
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Consider the curve with angle ψ1. The curve that intersects it orthogonally has angle
ψ2 = ψ1 + π/2. Now

tanψ2 = − 1

tanψ1

Thus, at the point of orthogonal intersection, the value of

r dθ

dr
(7)

for the second famility should be negative raciprocal of the value of (7) of the first
family. To illustrate, consider the differential equation for the first family:

Pdr +Qdθ = 0.

Thus we find r dθ/dr = −Pr/Q. Hence, the differential equation of the orthogonal
family is given by

r dθ

dr
=

Q

Pr
or

Qdr − r2 P dθ = 0

General solution of the last equation gives the orthogonal trajectories.

Example 7. Find the orthogonal trajectories of familiy of straight lines through the
origin.

Solution: The familiy of straight lines through the origin is given by

θ = A

The ODE for this familiy is
dθ = 0

The ODE for the orthogonal family is

dr = 0

Integrating we find
r = C,

which are family of circles with centre at the origin.

4.3 Oblique trajectories

Here the two families of curves intersect at an arbitrary angle α 6= π/2. Suppose the
first familiy

F (x, y, c) = 0. (8)

To find the oblique trajectories of this family we proceed as follows. First, differentiate
(8) w.r.t. x to find

G(x, y, y′, c) = 0. (9)
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Slope=

Slope=

m

m

1

2

α

Figure 3: Oblique trajectories.

Now eliminate c between (8) and (9) to find the differential equation

H(x, y, y′) = 0. (10)

Now if m1 is the slope of this family, then we write (10) as

H(x, y,m1) = 0, (11)

Let m2 be the slope of the second familily. Then

± tanα =
m1 −m2

1 +m1m2

.

Thus, we find

m1 =
m2 ± tanα

1∓m2 tanα

Hence, from (11), the ODE for the second family satisfies

H
(
x, y,

m2 ± tanα

1∓m2 tanα

)
= 0,

Replacing m2 by y′, the ODE for the second family is written as

H

(
x, y,

y′ ± tanα

1∓ y′ tanα

)
= 0. (12)

General solution of (12) gives the required oblique trajectories.

Note: If we let α→ π/2, we obtained ODE for the orthogonal trajectories.

Example 8. Find the oblique trajectories that intersects the familiy y = x + A at an
angle of 60o



S. Ghorai 7

Solution: The ODE for the given family is

y′ = 1

For the oblique trajectories, we replace

y′ by
y′ ± tan(π/3)

1∓ y′ tan(π/3)
=

y′ ±
√

3

1∓
√

3y′

Thus, the ODE for the oblique trajectories is given by

y′ ±
√

3

1∓
√

3y′
= 1

Simplifying we obtain

y′ =
1−
√

3

1 +
√

3
OR y′ =

1 +
√

3

1−
√

3

Hence, the oblique trajectories are either

y =
1−
√

3

1 +
√

3
x+ C1

Or

y =
1 +
√

3

1−
√

3
x+ C2
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