1.

Introduction

Most natural phenomena, whether in the domain of fluid dynamics,
electricity, magnetism, mechanics, optics, heat flow, economy, bi-
ology can be described in general by partial differential equations
(PDESs). For example, the natural laws of physics, such as Max-
well's equations, Newton's law of cooling, the Navier-Stokes equa-
tions, Newton's equations of motion, and Schrodinger's equation of
guantum mechanics, are stated (or can be) in terms of PDEs, that
Is, these laws describe physical phenomena by relating space and
time derivatives. Derivatives occur in these equations because the
derivatives represent natural things (like velocity, acceleration,
force, friction, flux, current).

Basic Concepts and Definitions

Definition 1.1

A partial differential equation (usually denoted by PDE) is an
equation that contains in addition to the dependent variable and
independent variables , one or more partial derivatives of the de-
pendent variable with respect to one or more independent varia-
bles. In general, it may be written in the form:

F (XY ealaUy Uy sy Uy o) =0 1.2)

involving several independent variables x,y,..., an unknown
function u(x,y,...) of these variables, and the partial derivatives
U Uy ..Uy, Uy ..., of the unknown function.

A Few well-known PDEs
Heat equation: it is a partial differential equation gives the distri-
bution of temperature in a specific region as a function of space
and time when the temperature at the boundaries, the initial distri-
bution of temperature, and the physical properties of the medium
are given.

u, =u,, (heat equation in one dimension)

u =u, +u, (heat equation in two dimensions)

Laplace's equation: it is satisfied by the potential fields in source-
free domains. For example, the Laplace equation is satisfied by the
gravitational potential of the gravity force in domains free from at-
tracting masses, the potential of an electrostatic field in a domain
free from charges, etc.

u, +u, +u, =0 (Laplace’'sequationin Cartesian coordinates)

1 1 I :
u,+=u, +—=u, =0 (Laplace’sequationin polarcoordinates)
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Wave equation: it is a partial differential equation describes vari-
ous oscillatory processes and processes of wave propagation.
U, =u,, +U, +U, (wave equationin threedimensions)

Telegraph equation: is a partial differential equation describes
the voltage on an electrical transmission line with distance and
time

u, =u, +oau, +Au (telegraphequation) ,
Schrodinger equation: it is a partial differential equation that
governs the wave function of a quantum-mechanical system

2
i ha—u = —h—Au +Vu
ot 2m

Definition 1.2

The general solution of a partial differential equation constitute of
arbitrary functions of independent variables involved in (PDE) ra-
ther than on arbitrary constants. These arbitrary functions are de-
fined on some domain D < RR" which is continuously differentia-
ble such that all its partial derivatives involved in equation (1.1)
exist and satisfy (1.1) identically.

We recall that in the case of ordinary differential equations, the
first task is to find the general solution, and then a particular solu-
tion is determined by finding the values of arbitrary constants from
the prescribed conditions. But, for partial differential equations, se-
lecting a particular solution satisfying the additional conditions
from the general solution of a partial differential equation may be
as difficult as, or even more difficult than, the problem of finding
the general solution itself. This is so because the general solution
of a partial differential equation involves arbitrary functions;

the specialization of such a solution to the particular form which
satisfies supplementary conditions requires the determination of
these arbitrary functions, rather than merely the determination of
constants.

As indicated above, the general solution of a linear partial differen-
tial equation contains arbitrary functions. This means that there are
infinitely many solutions and only by specifying the initial and/or
boundary conditions can we determine a specific solution of inter-
est.

Usually, both initial and boundary conditions arise from the physi-
cal problems. In the case of partial differential equations in which
one of the independent variables is the time t , an initial condi-
tion(s) specifies the physical state of the dependent variable u (x,t)

at a particular time t =t, or t =0. Often u(x,0) and/or u, (x,0) are



specified to determine the function u (x,t) at later times. Such con-

ditions are called the Cauchy (or initial) conditions. It can be
shown that these conditions are necessary and sufficient for the ex-
istence of a unique solution. The problem of finding the solution of
the initial-value problem with prescribed Cauchy data on the line

t =0 is called the Cauchy problem or the initial-value problem.

In each physical problem, the governing equation is to be solved
within a given domain D of space with prescribed values of the
dependent variable u (x,t) given on the boundary oD of D . Of-

ten, the boundary need not enclose a finite volume in which case,

part of the boundary is at infinity. For problems with a boundary at

infinity, boundedness conditions on the behavior of the solution at

infinity must be specified. This kind of problem is typically known

as a boundary-value problem, and it is one of the most fundamental

problems in applied mathematics and mathematical physics.

There are three important types of boundary conditions which arise

frequently in formulating physical problems. These are

(i) Dirichlet conditions, where the solution u is prescribed at

each point of a boundary oD of a domain D . The problem
of finding the solution of a given equation parial differential
equation inside D with prescribed values of u on oD is
called the Dirichlet boundary-value problem;

. . ... 0u
(i) Neumann conditions, where values of normal derivative n
n

of the solution on the boundary oD are specified. In this
case, the problem is called the Neumann boundary-value

problem;

(ili)  Robin conditions, where (Z—l:] +auj Is specified onoD . The
corresponding problem is called the Robin boundary-value
problem.

Definition 1.3

The order of a partial differential equation is the order of the high-
est ordered partial derivative appearing in the equation. For exam-

ple
u, +2xu, +u, =e’

Is a second-order partial differential equation, and
Uy TXU, +8U=T7y

Is a third-order partial differential equation, and



ou o

—+—=0,

ot ox
Is a fourth-order partial differential equation.
Definition 1.4
A partial differential equation is said to be linear if the function F
iIs linear function in the dependent variable and all its derivatives
with coefficients depending only on the independent variables, for

example
ou ou :
X2y —+(X —y?)—+yu =sin(x +
Y 5 YTy =sin(e +y)

is linear equation. While the equations

x2y2—§+(><—y2)2y—u+yu2=0,
ou ou
ua_X__:X CcOosu

are nonlinear equations.
In general, the linear partial differential equation of order n
in two independent variables has the form

i+j<n 5i+ju

2 A 00 )5 T =6 Y) (t2)
Where A; (x,y), G(x,y)are functions of the independent varia-
bles.
Definition 1.5

A partial differential equation it is said to be quasi-linear if it is lin-
ear in the highest-ordered derivative of the dependent variable.
That is the coefficients of terms involve functions of only lower order
derivatives of the dependent variables. However, terms with lower
order derivatives can occur in any manner. For example, the equa-
tion
uu, +u, =u

Is first-order quasi-linear partial differential equation., while the
equation

uu,, +xuu, =siny

is a second-order quasi-linear partial differential equation.
Definition 1.6
A quasi-linear partial differential equation it is said to be semi-
linear if the coefficients of highest derivatives are functions of the
independent variables alone, for example

Uy +U,, =U°
Definition 1.7



Homogeneity: The equation (1.2) is called homogeneous if the
right hand side G (x,y) is identically zero forall x andy. If

G (x,y) is not identically zero, then the equation is called nonho-

mogeneous.
Definition 1.8
The linear partial differential equation is called of homogeneous
terms if all the terms of the linear partial differential equation have
the same order, for example
Uy +XY U, —SiNX U, =€

. Formation of partial differential equation
There are two methods to form a partial differential equation

(i) By elimination of arbitrary constants.

(i) By elimination of arbitrary functions.
Elimination of arbitrary constants
Consider a system of geometrical surfaces described by the equa-
tion

X+y

o(x,y,z,a,b)=0, @.4)
where a and b are arbitrary parameters. We differentiate (1.4)
with respect to x and y to obtain

¢ +p¢, =0, ¢ +a¢, =0, (1.5)
where p _ & q -
ox oy

The set of three equations (1.4) and (1.5) involves two arbitrary pa-
rameters a and b . In general, these two parameters can be elimi-
nated from this set to obtain a first-order equation of the form
w(x,y,z,p,q)=0. (1.6)
Thus the system of surfaces (1.4) gives rise to a first-order partial
differential equation (1.6).
In general, if the number of arbitrary constants to be eliminated is
equal to the number of independent variables, then only one first-
order partial differential equation arises. If the number of arbitrary
constants to be eliminated is less than the number of independent
variables, then more than one first-order partial differential equa-
tion is obtained. If the number of arbitrary constants to be elimi-
nated is more than the number of independent variables, the partial
differential equations obtained are of second or higher order.

Example (1)

Find the PDE corresponding to the family of spheres
X?+y?+(z -c)’=r? (1.7)

Solution



Differentiating the equation (1.7) with respect to x and y gives
X+p(@z-c)=0 and vy +q(z-c)=0.
Eliminating the arbitrary constant ¢ from these equations, we ob-
tain the first-order, partial differential equation
yp —xq =0.
Example (2)
Find the PDE corresponding to the family of spheres
(x —a)’+(y =b)*+z%=r?
Solution
We differentiate the equation of the family of spheres with respect
to x and y to obtain
(x —a)+zp=0, (y-b)+zq=0.
Eliminating the two arbitrary constants a and b, we find the non-
linear partial differential equation

2%(p*+q° +1)=r>.

Example (3)
Form the partial differential equation by eliminating the constants
from

Z =ax +by +ab. (1.8)
Solution
Differentiating Eq. (1.8) partially with respect to x and y , we ob-
tain

2 _a=p, Zob-q

OX oy
Substituting p and g for a and b in Eq. (1.8), we get the required
PDE as
Z=pxXx+qy +pq
Example (4)
Find the partial differential equation of the family of planes, the
sum of whose X,V ,z intercepts is equal to unity.

Solution
Let
i + l + Z_ =1
a b c
be the equation of the plane in intercept form, so that a+b +c =1.
Thus, we have
LD A 1, 1.9
a b 1l-a-b
Differentiating Eq. (1.9) with respectto x and y , we have




P — _1 and 9 = —1 (2.10)
1-a-b a l1-a-b b

From Egs. (1.10), we get
p_b (1.12)

q a
Also, from Egs. (1.9) and (1.10), we get

pa=a+b—1:a+Ra—1or a(l+£—p]=1

q q
Therefore,
a=— 4 (1.12)
(p+d-pq)
Similarly, from Egs. (1.9) and (1.10), we find
pb=— P (1.13)
(p+q-pq)

Substituting the values of a and b from Egs. (1.12) and (1.13) re-
spectively to Eqg. (1.9), we have

p+q-pq, . P+Q pqy+p+q Pq, 4
g P —Pq

or

£+l_ z _ 1

q p pg p+q-pq
That is,

P+d—-pq

which is the required PDE.
Example (5)

Find the differential equation of all spheres of radius A, having
center in the xy -plane

Solution
Let
(x —a)’+(y =b)*+z2=217 (1.14)
be the equation of the spheres having center at (a,b,0) in the xy -
plane.

Differentiating Eq. (1.14) with respectto x and y , we have
2(x —a)+2pz =0,2(y —b)+29z =0 (1.15)
Substituting of (x —a) and (y —b) from Eq. (1.15) to Eq. (1.14),
we have
2%(p?+q%+1)= 47

7



which is the required PDE.
Elimination of arbitrary functions
Suppose u and v are any two given functions of x,y and z . Let
F be an arbitrary function of u andv of the form

Fuyv)=0 2.15)
We can form a differential equation by eliminating the arbitrary
function F . For this, we differentiate Eq. (1.15) partially with re-
spectto x and y to get

ﬁ[a_qua_u }+ﬁ[ﬂ+ﬂp}=0 (2.16)
ou|ox oz ov | ox oz
and
oF 8_u+8_uq +8—F ﬂ+ﬂq =0 1.17)
ou|loy oz ov|oy oz
where p—a—Z q—a—Z
ox oy

Now, eliminating oF /du andoF /ov from Egs. (1.16) and (1.17),
we obtain

ou ou ov oV
—+t—P —+—0P
oX 0z ox 0z 0
ou ou oV B
—+t—4 —+—C
oy oz oy oz
which simplifies to
ouy)  ,oluv) _ouv) (1.18)
o(y,z) dz.x) ox.y)
where,
o v
8(u,v):8x OX
o(x,y) |ou oV
o oy
Eq. (1.18) is a linear PDE of the type
Pp +Qq =R
where
P:8(u,v) :8(u,v) Rza(u,v)
o(y,z)’ oz ,x)’ a(x,y)

Eq. (1.18) is called Lagrange's PDE of first order.
If z is given in the form

z =gU)+yl) ()



where ¢, v are arbitrary functions of u,v respectively, and u,v
are functions of x,y . Differentiating Eq. (*) with respect to x and
y , we have

z, =¢'(U, +y'l)v,

z,=¢'U, +y'V)v,

Z, ="+ "W N+ U, + V)V,

Zy =g, +y GV, +4 U, +y V),

Zy, =" Uy +y "GNV P U, Y GV,

Now, eliminating ¢'(u),¢"(u), w'(v), v"(v) from Eg. (**), we ob-
tain

z, U, Vv, 0 0
z, u, v, 0 0
z, u, v, u> v’|=0 (**%)
Zy Uy Vo WU, V)V,
Zyy Uyy Vyy Ui Vj

Equation (***) is a second-order linear partial differential equation,
can be written in the form

Pz, +Qz, +Rz  +3z, +Tz =W,

Where P,Q,R,S, T W are certain functions of x,y . In general a
relation of the form

n
Z :ka(uk)
k=1
where f,,f,,---,f_are arbitrary function, and u,,u,,---,u, are cer-

tain functions of x,y .
The following examples illustrate the idea of formation of PDE.
Example (6)
Form the PDE by eliminating the arbitrary function from
(i) z =f (x +it)+g(x —it),where i =~/-1
(i) f (x +y +z,x2+y2+22):0.
Solution
(i) Given
z =f (x +it)+g(x —it)
Differentiating it twice partially with respect to x and t , we get



8—Z:f "X +it)+g'(x —it)
OX

o’z .., . v

ax2:f (x +it)+g"(x —it) 1.19)
Here, f ' indicates derivative of f with respectto (x +it)and g
indicates derivative of g with respect to (x —it).Also, we have

oz . : i :
—=if’ t)—ig'(x —it
o if '(x +1t)—ig'(x —it)

!

822 /4 H " H
?z—f (x +it)—g"(x —it) (1.20)
From Eqgs. (1.19) and (1.20), we at once, find that
0’z 0z
—+—=0
ox- ot
which is the required PDE.
(ii) The given relation can be written in the form
ou,v)=0,
whereU =X +Y +Z ,V=X’+y’+z°
Hence, the required PDE is of the form
Pp +Qq =R, (Lagrange equation)

where
v
1 2
I:):a(u,v)zéy 8y:‘ Y‘:z(z_y)
oy ,z) a_u ﬂ 1 2z
oz o0z
ou ov
P ()
Q:E?(LI,V):az oz|_[L 22 2 —1)
o(z,x) |ou ov| L 2x
OX OX
and
ou ov
Al L2
R:a(u,v) _|ox o ox | _ X ~2(y —X)
ox,y) |ou av| L 2y
oV oV

Hence, the required PDE is
2z -y)p+2(x —z)q=2(y —x)
or
Z-y)p+(x-z)g=y -x
Example (7)

10



Eliminate the arbitrary function from the following and hence, obtain
the corresponding partial differential equation:

(i) z =xy +f (x2+y2)

(i) z =f (xy/z)

Solution

(i) Given z =xy +f (x2 +y2)

Differentiating it partially with respect to x and y , we obtain
0z

— =y +2xf'(x*+y?)= 1.21

=V (x*+y?)=p (1.21)

0z 1y 2 2

sz +2yf (x +y )=q 1.22)
Eliminating f " from Egs. (1.21) and (1.22), we get

yp-xq=y°’-x"
which is the required PDE.
(i) Given z =f (xy /z)
Differentiating it partially with respectto x and y , we get

2 Y@y yzy=p  (1.23)
OX z
gy—zzwf ‘(xy 12)=q (1.24)
Eliminating f " from Eqgs. (1.23) and (1.24), we find
xp-yq=0
or
pX =qy

which is the required PDE.

A=

Fig. 1
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Solution of partial differential equations of first order
In Section 1.4, we have observed that relations of the form

F(x,y,2,a,b)=0 (2.1
give rise to PDE of first order of the form
f(x,y,z,p,0)=0 (2.2)

Thus, any relation of the form (2.1) containing two arbitrary constants a
and b is a solution of the PDE of the form (2.2) and is called a complete
solution or complete integral.

Consider a first order PDE of the form

P(X, y,z)%m(x, y, z)% “R(x.y.2) (23

or simply

Pp+Qg=R (2.4)
where x and y are independent variables. The solution of Eq. (2.3) is a
surface S lying in the(x, Y, z)—space, called an integral surface. If we
are given that z= f(x,y) is an integral surface of the PDE (2.4). Then,

the normal to this surface will have direction cosines proportional
(oz/ox,0z10y,-1) or(p,q,—1). Therefore, the direction of the normal is

given by n={p,q,-1}. From the PDE (2.4), we observe that the normal
fi is perpendicular to the direction defined by the vector t ={P,Q,R}.

Therefore, any integral surface must be tangential to a vector with com-
ponents {P,Q, R}, and hence, we will never leave the integral surface or

solutions surface. Also, the total differential dz is given by
dz=—dx+—d 2.5
x "ty y (2.5)

From Egs. (2.4) and (2.5), we find
{P,Q,R}={dx,dy,dz}
Now, the solution to Eq. $(0.37)$ can be obtained using the following
theorem:
Theorem 2.1 The general solution of the linear PDE
Pp+Qq=R
can be written in the form F(u,v) =0 , where F is an arbitrary function,
and u(x,y,z)=C, and v(x,y,z) =C, are a solution of the equation
dx _ dy _ dz (2.6)

P(x.y.z) Q(xy.z) R(xY,2)
Proof
We observe that Eq. $(2.6)$ consists of a set of two independent ordinary

differential equations, that is, a two parameter family of curves in space,
one such set can be written as

12



& _Q(uy.2) e
dx P(x,y,2)
which is referred to as “characteristic curve". In quasi-linear case, Eq.
(2.7) cannot be evaluated until z(x,y) is known. Recalling Egs. (2.4) and

(2.5), we may recast them using matrix notation as

{P Q}FZ/&X):(RJ 28)
dx dy |\ ozloy dz

Both the equations must hold on the integral surface. For the existence of
finite solutions of Eq. $(2.8)$, we must have

P Q| |[P R/ |[R Q o
dx dy| |dx dz| |dz dy|
on expanding the determinants, we have
dx  dy  dz

- - (2.9)
P(x,y,z) Q(xY,z) R(xY,z)

which are called auxiliary equations for a given PDE.
In order to complete the proof of the theorem, we have yet to show that
any surface generated by the integral curves of Eq. $(2.9)$ has an equa-
tion of the form F(u,v) =0.
Let

u(x,y,z)=C, and v(xy,z)=C, *)
be two independent integrals of the ordinary differential equations
$(2.9)$. Then, we have

a—udx+6—udy+6—udz=du=0
oy 0z

OX

and
@dx+@dy+@dz =dv=0
OX oy 0z

Solving these equations, we find

dx B dy B dz
OUON OUOV Ouov Oudov oOuov ouov

oyoz 0O0z0y 0OZ0OX OX0OZ OXoy oyoX
which can be rewritten as

dx _ dy _ dz
o(u,v) ~ a(u,v)  8(u,v) (2.10)
a(ya Z) a(Z, X) 6()(’ y)
Now, we may recall from Section $1.4$ that the relation F(u, v)=0,

where F is an arbitrary function, leads to the partial differential equation

13



o(u,v) N o(u,v) _o(u,v)

oy,z) d(zx) axy)

By virtue of Egs. (2.4) and $(2.11)$, Eg. (2.10) can be written as

& _dy_de 21

P Q R
The solution of these equations are known to be u(x,y,z) =C,
andv(x,y,z)=C, . Hence, F(u,v) =0 is the required solution of Eq.
(2.4),if u and v are given by Eq. (*), We shall illustrate this method
through following examples:
EXAMPLE (2.1)
Find the general integral of the following linear partial differential equa-
tions:

(i) y*p—xyq=x(z-2y)

(i) (y +2)p - (x+yz)q=x"—y*.
Solution
(i) The integral surface of the given PDE is generated by the integral
curves of the auxiliary equation
dx dy dz

2

Yoy x(z-2y)
The first two members of the above equation give us

(2.11)

dx_dy or xdx=-ydy
y —X
which on integration results in
X—Z——y—2+C or x*+y*=C
2 2 .
The last two members of Eq. (1) give
dy  dz

= or zdy-2ydy=-ydz

-y z-2y
That is,

2ydy = ydz + zdy
which on integration yields
y’=yz+C, or y*-yz=C,
Hence, the curves given by Egs. (2) and (3) generate the required integral
surface as
F(x2 + yz,yz—yz):O

(if) The integral surface of the given PDE is generated by the integral
curves of the auxiliary equation

14



dx  dy  dz
y+zx —(x+yz) X -y’
To get the first integral curve, let us consider the first combination as

xdx + ydy o az
Xy +2x2 —xy —y2z  x*—y?
or
xdx+ydy  dz
Z(XZ _ yz) Y yz
That is,

xdx + ydy = zdz

On integration, we get
2 2 2

Xy _z._ or xX*+y*-7°=C,

2 2 2
Similarly, for getting the second integral curve, let us consider the com-
bination such as
Similarly, for getting the second integral curve, let us consider the com-
bination such as

ydx + xdy . az

v +xyz—x2—xyz X2 —y?

or

ydx + xdy +dz =0
which on integration results in
Xxy+z=C,
Thus, the curves given by Egs. (2) and (3) generate the required integral
surface as
F(x2 +y? —zz,xy+z):0.
EXAMPLE (2.2) Use Lagrange's method to solve the equation

X 'y z
aaaﬂyzo
|
OX oy

Where z =z(X,y) .

Solution
The given PDE can be written as

0z 0z oz 07| _
X|:—ﬂ—]/5:|— y|:—a—}/&i|+ Z{a@—ﬂ&}—o

15



or
The corresponding auxiliary equations are

oz oz
(7y—ﬂ2)&+ (az —yX)@ =px-ay

dx dy dz

(ry-p2) (az-yx) (Bx-ay)
Using multipliersx,y, and z we find that each fraction is
_ Xdx + ydy + zdz
5 :

Therefore,
xdx+ ydy + zdz =0
which on integration yields
X +y’+2*=C,
Similarly, using multiplierse, S , and y, we find from Eq. (2) that each
fraction is equal to
adx+ pdy + ydz =0
which on integration gives
ax+py+yz=C,
Thus, the general solution of the given equation is found
Thus, the general solution of the given equation is found to be
F(x2 +yi+ zz,ax+ﬂy+;/z):0
EXAMPLE (2.3)
Find the general integrals of the following linear PDEs:
(i) pz—gz=2*+(x+Yy)’
(ii)(x2 - yz) p+(y2 - zx)q =77 —xy .
Solution
(i) The integral surface of the given PDE is generated by the integral
curves of the auxiliary equation
dx dy dz
7 -z 22+(x+y)?

The first two members of Eq. (1) give

dx+dy=0
which on integration yields

X+y=C,
Now, considering Eq. (2) and the first and last members of Eq. (1), we
obtain

220z

2

> = 20dx
z2°+C;

16



Or
zdz

dx =
2’ +C?

which on integration yields
In(z2 +C12)=2x+C2
or

In[z2 +(X+ y)z]—ZX:C2

Thus, the curves given by Egs. (2) and (3) generates the integral surface
for the given PDE as

F(x+ y,Iog{x2+y2+22+2xy}—2x):0

(if) The integral surface of the given PDE is given by the integral curves
of the auxiliary equation
dx dy dz

X*—yz y'-ix z°-xy
Equation (1) can be rewritten as
dx —dy B dy —dz B dz —dx
xX=y)x+y+2) (y-2)(x+y+2) (Z-X)(Xx+y+2)
Considering the first two terms of Eg. (2) and integrating, we get
In(x-y)=In(y-2z)+InC,

XY _¢
y—12
Similarly, considering the last two terms of Eq. (2) and integrating, we
obtain
y—12
Z—X C
Thus, the integral curves given by Egs. (3) and (4) generate the integral

surface
F[z:zyx:ijza
y—2z z—X

INTEGRAL SURFACES PASSING THROUGH A GIVEN CURVE
In the previous section, we have seen how a general solution for a given
linear PDE can be obtained. Now, we shall make use of this general solu-
tion to find an integral surface containing a given curve as explained be-
low:

Suppose, we have obtained two integral curves described by

U(X! y! Z) = Cl
v(x,y,2)=C,

17



from the auxiliary equations of a given PDE. Then, the solution of the
given PDE can be written in the form
F(u,v)=0

Suppose, we wish to determine an integral surface, containing a given
curve C described by the parametric equations of the form
x=x(), y=y®), z=z(),
where t is a parameter. Then, the particular solution (0.48) must be like

ufx(t), y(t), z()} = Cl}

vix(t), y(1), z(t)} =C,
Thus, we have two relations, from which we can eliminate the parameter
$t$ to obtain a relation of the type

F(C..C,)=0,

which leads to the solution given by Eqg. (0.49). For illustration, let us
consider the following couple of examples.

EXAMPLE (2.4)
Find the integral surface of the linear PDE

x(y2 + z) p— y(x2 + z)q :(x2 — yz)z
containing the straight line x+y=0, z=1.

Solution
The auxiliary equations for the given PDE are
dx dy dz

x(y* +12) B —y(X* +2) B (x*-y*)z
Using the multiplier x y z, we have
yzdx + zxdy + xydz =0

On integration, we get
Xyz =C,
Suppose, we use the multipliers $x, y$ and $z$. Then find that each frac-
tion in EqQ. (1) is equal to
xdx+ ydy + zdz =0
which on integration yields
X*+y°+2°=C,
For the curve in question, we have the equations in parametric form as
x=t, y=-t, z=1
Substituting these values in Egs. (2) and (3), we obtain

-t?=C,
2t? +1=C,
Eliminating the parameter $t$, we find

1-2C, =C,

18



or
2C,+C,-1=0
Hence, the required integral surface is
X>+y*+2°+2xyz-1=0
EXAMPLE (2.5)
Find the integral surface of the linear PDE
Xp+yq=12
which contains the circle defined by
X+y +2°=4, X+y+1=2
Solution
The integral surface of the given PDE is generated by the integral curves
of the auxiliary equation
dx dy dz
X Yy z
Integration of the first two members of Eq. (1) gives
Inx=Iny+InC

or
X
y o

Similarly, integration of the last two members of Eq. (1) yields
y
==C
7 2

Hence, the integral surface of the given PDE is

F(ﬁ,ljzo
y Z

If this integral surface also contains the given circle, then we have to find
a relation between x/y andy/z .

The equation of the circle is

X*+y*+2°=4

X+y+2=2
From Egs. (2) and (3), we have
y=x/C, z=y/C,=x/CC,
Substituting these values of $y$ and $z$ in Egs. (5) and (6), we find
2 2
X +X—2+—)2( ~=4, or X 1+i2+—21 =~ |=4
Cl Cl C2 Cl Cl CZ

And

x+i+ X =2, or x£1+i+ L ]:2



From Egs. (7) and (8) we observe
2
1+ iz + % =1+ L + L
C1 C1 CZ C1 C1C2
which on simplification gives us
2 2 2
— 4 —+ > =
Cl C1C2 Cl CZ

That is,

CC,+C,+1=0
Now, replacing C, by x/y and C, byy/z , we get the required integral
surface as

Y Xii-0

yzy
Or
Xy X0
Zy
Or
Xy+xz+yz=0

THE CAUCHY PROBLEM FOR FIRST ORDER EQUATIONS
Consider an interval | on the real line. If x,(s),Y,(s) and z,(s) are three

arbitrary functions of a single variable s | such that they are continuous
in the interval | with their first derivatives.
Then, the Cauchy problem for a first order PDE of the form

F(x,y,z,p,0)=0
is to find a region R in(x,y) , i.e. the space containing (X,(s), y,(s)) for
allsel , and a solution z =¢(x,y) of the PDE $(0.53)$ such that
Z[%(5), Yo (8)] = Z,(s)
and ¢(x,y) together with its partial derivatives with respect to $x$ and
$y$ are continuous functions of x and y in the regionR .

Geometrically, there exists a surface z = ¢(x,y) which passes through the
curveI”, called datum curve, whose parametric equations are

X=X(8), Y=Y,(8), z2=2,(5)
and at every point of which the direction (p,q,—1) of the normal is such
that

F(x,y,z,p,0)=0

This is only one form of the problem of Cauchy.
In order to prove the existence of a solution of Eq. $(0.53)$ containing
the curveI” , we have to make further assumptions about the form of the
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function F and the nature of I". Based on these assumptions, we have a
whole class of existence theorems which is beyond the scope of this
book. However, we shall quote one form of the existence theorem with-
out proof, which is due to Kowalewski (see Senddon, 1986).
Theorem $0.2% If
(i)g(y) , and all of its derivatives are continuous |y —y,|<&
(ii) x, is agiven number and z,=g(y,).9, =9'(Y,) and f(x,y,z,q)
and all of its partial derivatives are continuous in a region S defined by

X =X%| <8,y = Yo| < S.Ja—a,|< 6,
then, there exists a unique function ¢(x,y) such that
(@) ¢(x,y) and all of its partial derivatives are continuous in a region R
defined by

X=%,| <8 |Y—Yo| <6,

(b) For all (x,y) in R, z=¢(x,y) is a solution of the equation

Q:f x,y,z,@ and
OX oy

(c) For all values of y in the interval |y — y,|<8,,8(%,, ¥)=9(y).

Surfaces orthogonal to a given system of surfaces
One of the useful applications of the theory of linear first order PDE is to
find the system of surfaces orthogonal to a given system of surfaces.
Let a one-parameter family of surfaces is described by the equation

F(x,y,2)=C (2.12)
Then, the task is to determine the system of surfaces which cut each of
the given surfaces orthogonally. Let (x,y,z) be a point on the surface
given by Eq. $(2.12)$, where the normal to the surface will have direction
ratios (oF / ox,0F / oy,oF [ 6z) which may be denoted by P ,Q,R.
Let

z=¢(XY)

be the surface which cuts each of the given system orthogonally (see Fig.
0.2).
Then, its normal at the point (x,y,z) will have direction ratios
(oz 1 ox,0z 1 oy,—1) which, of course, will be perpendicular to the normal

to the surfaces characterized by Eq. (2.12). As a consequence we have a
relation

PngQ@—R:O
OX oy

or
Pp+Qgq=R (2.13)
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which is a linear PDE of Lagranges type, and can be recast into
8F@+8F@:6F (2.14)
OX OX oy oy oz
Thus, any solution of the linear first order PDE of the type given by either
Eqg. (2.13) or $(2.14)$ is orthogonal to every surface of the system de-
scribed by Eq. (2.12). In other words, the surfaces orthogonal to the sys-

tem $(2.12)$ are the surfaces generated by the integral curves of the aux-
iliary equations

dx _ dy _ dz
oFlox oF /oy oF/oz

First order non-linear equations

In this section, we will discuss the problem of finding the solution of first
order non-linear partial differential equations (PDES) in three variables of
the form

F(x,y,z,p,9) =0,
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1.2 CLASSIFICATION OF SECOND ORDER PDE

The most general linear second order PDE, with one dependent function u on a domain Q of
points X = (X, X9, ..., X3), N>1, is

n n
2 a,-juxixj+2 Rug +F(u) =G (1.2)
i, j=1 i=1
The classification of a PDE depends only on the highest order derivatives present.

The classification of PDE is motivated by the classification of the quadratic equation of
the form

AX? + Bxy+Cy? + Dx+Ey+F =0 (1.3)

which is elliptic, parabolic, or hyperbolic according as the discriminant B? — 4AC is negative,
zero or positive. Thus, we have the following second order linear PDE in two variables
xandy:

Auy, + Bu,, +Cuy, + Du, + Euy, + Fu=G (1.4)

where the coefficients A, B, C, ... may be functions of x and y, however, for the sake of
simplicity we assume them to be constants. Equation (1.4) is elliptic, parabolic or hyperbolic
at a point (X, Yg) according as the discriminant

B%(X, Yo) — 4A(X, o) C (%o, Yo)

is negative, zero or positive. If this is true at all points in a domain Q, then Eq. (1.4) is said
to be elliptic, parabolic or hyperbolic in that domain. If the number of independent variables
is two or three, a transformation can always be found to reduce the given PDE to a canonical
form (also called normal form). In general, when the number of independent variables is
greater than 3, it is not always possible to find such a transformation except in certain special
cases. The idea of reducing the given PDE to a canonical form is that the transformed
equation assumes a simple form so that the subsequent analysis of solving the equation is
made easy.

1.3 CANONICAL FORMS

Consider the most general transformation of the independent variables x and y of Eq. (1.4)
to new variables &, 7, where

g=¢(xy),  n=n(xy) (1.5)
such that the functions £ and 7 are continuously differentiable and the Jacobian
dEm _|x
J=—7"= = (Sxly —&yix) # 0 (1.6)
axy) |mx ony| YTV
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in the domain Q where Eq. (1.4) holds. Using the chain rule of partial differentiation, the
partial derivatives become

Uy = ua:‘fx + Uy T
Uy = Ug&y + Uy
Uy = Ugel %+ 2Uzp &y + Upall 2 + Usle + Uplh
uxy = Uggfxfy + uzf;] (gxny + gynx) + unnnxny + ugé:xy + unnxy
Uyy = Uge&y + 2Ug,Eyy + Uy 1y + Uy + Uiy, (1.7)
Substituting these expressions into the original differential equation (1.4), we get
Aug; + Bug, +Cu,, +Du; + Eu, + Fu=G (1.8)
where

'E‘=A§)% +B§x§y+C§)2/

B= 2'°§x77x + B(éxny + éynx) + chyny
C = Ay} + B,y +Cng
D = Al + BE,, +C&,y + D&, + EE,

E = Anjg + By +Crpyy + Dy + Enpy
F=F, G=G (1.9)

It may be noted that the transformed equation (1.8) has the same form as that of the original
equation (1.4) under the general transformation (1.5).

Since the classification of Eq. (1.4) depends on the coefficients A, B and C, we can also
rewrite the equation in the form

Auy, +Buyy, +Cuyy, = H (X, y, U, Uy, uy) (1.10)

It can be shown easily that under the transformation (1.5), Eq. (1.10) takes one of the
following three canonical forms:

(1) Uge =Upy = (807, U, Uz, Uy) (1.11a)
or

Uzy =@, (.7, U, Ug, Uy) in the hyperbolic case
(ii) Ugz +Up, =9(5, 7 U, Ug, Uy) in the elliptic case (1.11b)

(iii) Uge = @(5, 7, U, Ug, Uy) (1.11c)
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or

Uyy =@(&, 7, U, Ug, Uy) in the parabolic case

We shall discuss in detail each of these cases separately.
Using Eqg. (1.9) it can also be verified that

B?-4AC = (&1, - &yx) (B? —4AC)
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and therefore we conclude that the transformation of the independent variables does not

modify the type of PDE.

1.3.1 Canonical Form for Hyperbolic Equation

Since the discriminant B2 —4AC >0 for hyperbolic case, we set A=0 and C =0 in Eq. (1.9),

which will give us the coordinates & and 7 that reduce the given PDE to a canonical form

in which the coefficients of Ugg, Uy, are zero. Thus we have

A=A§$+B§x§y+cé:§=0
C=An§+Bany+Cn32,=0

2
(4] 4

2
A& +B77—X +C=0
Ny Ty

Solving these equations for (&x/5y) and (7x/my), we get

& -B+\B’-4AC

which, on rewriting, become

& 2A
n, —B—yB?-4AC
My - 2A

(1.12)

The condition B? >4AC implies that the slopes of the curves E(x y)=C,n(x y)=C, are

real. Thus, if BZ >4AC, then at any point (x, y), there exists two real directions given by the
two roots (1.12) along which the PDE (1.4) reduces to the canonical form. These are called
characteristic equations. Though there are two solutions for each quadratic, we have considered
only one solution for each. Otherwise we will end up with the same two coordinates.
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Along the curve £(x, y)=c;, we have
dé=¢,dx+&,dy=0

dy_ &
dx ¢y

Similarly, along the curve n7(x, y)=c,, we have

dy_ |7
dx Ny

Hence,

(1.13)

(1.14)

Integrating Egs. (1.13) and (1.14), we obtain the equations of family of characteristics & (x, y) =¢;

and 7 (x, y)=c,, which are called the characteristics of the PDE (1.4). Now to obtain the

canonical form for the given PDE, we substitute the expressions of £ and 7 into Eq. (1.8)

which reduces to Eq. (1.11a).

To make the ideas clearer, let us consider the following example:

Uy +10u,y, +3uyy =0

Comparing with the standard PDE (1.4), we have A=3,B=10,C =3, B2 —4AC =64 >0. Hence
the given equation is a hyperbolic PDE. The corresponding characteristics are:

ﬂ=_[5_x]=_ ~B+ B2-4AC

dx Sy 2A

dx 2A

My

Qz_(&jz_ —B-+B2-4AC

To find & and 7, we first solve for y by integrating the above equations. Thus, we get

1
y=3X+¢, y=§x+oz
which give the constants as

g =Yy-3x% C, =y—-Xx/3
Therefore,

{=y-3x=gq, N=y--X=¢
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These are the characteristic lines for the given hyperbolic equation. In this example, the
characteristics are found to be straight lines in the (x, y)-plane along which the initial data,
impulses will propagate.

To find the canonical equation, we substitute the expressions for £ and 7 into Eq. (1.9) to get
A= AEL +BEE, +CES =3(-3)" +10(-3) (1) +3=0
B= 2Aéxnx + B(éxny + éynx) + 2Céyny

=2(3)(-3) (— %) +10 [(—3)(1) N 1(—%)} 23)(1) ()

=6+10 10 +6=12—@=—%
3 3 3

C=0, D=0, E=0, F=0

Hence, the required canonical form is

On integration, we obtain
u(g,n =1(&)+am

where f and g are arbitrary. Going back to the original variables, the general solution is

u(x y)=f(y-3x)+g(y-x/3)
1.3.2 Canonical Form for Parabolic Equation

For the parabolic equation, the discriminant B2-4AC=0, which can be true

if B=0and A or C is equal to zero. Suppose we set first A=0 in Eq. (1.9). Then we
obtain

'E‘:Aé)%‘l'fofy'i'Cf)Z/:O

2
A(%J + B[%}-C =0

& -Bi\B®-4AC

g, 2A

or

which gives
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Using the condition for parabolic case, we get

S__B (1.15)
& 2A
Hence, to find the function £ =£(x, y) which satisfies Eq. (1.15), we set
dy_ _&_B
dx &, 2A
and get the implicit solution
S(x,y)=C

In fact, one can verify that A=0 implies B =0 as follows:
B =2A8m + B(&ey + &ymy) + 2C&y
Since BZ—4AC =0, the above relation reduces to
B = 2A% 7, + 2/ AC (& + &) + 2C&y

= 2(JA +C&) (An, +/Cny)

However,

S B __2VAC __ﬁ
& 2A 2A A
Hence,

B= Z(ﬁfx _\/Kgx) (\/Knx +\/677y) =0

We therefore choose & in such a way that both A and B are zero. Then 77 can be chosen in
any way we like as long as it is not parallel to the &- coordinate. In other words, we choose 7 such
that the Jacobian of the transformation is not zero. Thus we can write the canonical equation
for parabolic case by simply substituting £ and 7 into Eq. (1.8) which reduces to either of

the forms (1.11c).
To illustrate the procedure, we consider the following example:

XPUyy — 2XyUyy + Y2Uy, =€*

The discriminant BZ—4AC=4x2y2—4x2y2 =0, and hence the given PDE is parabolic
everywhere. The characteristic equation is

dy_ & _B__2v__y

dx & 2A G X
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On integration, we have
Xy=¢C
and hence & =xy will satisfy the characteristic equation and we can choose n7=y. To find

the canonical equation, we substitute the expressions for £ and 7 into Eq. (1.9) to get

,K=Ay2+Bxy+cx2 =x2y2 —2x2y2 +y2x2 =0
B=0, C=y? D=-2xy
E=0, F=0, G=¢

Hence, the transformed equation is

Yoy, = 2xyu; = e
or

MUy, = 2E0; + e/
The canonical form is, therefore,

1.3.3 Canonical Form for Elliptic Equation

Since the discriminant B2 —4AC <0, for elliptic case, the characteristic equations

9X=B—JBZ—4AC

dx 2A
dy B+yB*-4AC
dx 2A

give us complex conjugate coordinates, say & and 7. Now, we make another transformation
from (£,7n) to («, B) so that

g+ -1
o= , =
2 p 2i
which give us the required canonical equation in the form (1.11b).
To illustrate the procedure, we consider the following example:
Uy + x2uyy =0
The discriminant B? — 4AC = -4x? < 0. Hence, the given PDE is elliptic. The characteristic
equations are



60 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

dy B-JB’-4AC -4y

=—iX
dx 2A 2
dy B+ B?-4AC iy
dx 2A -

Integration of these equations yields
G _ 2
|y+?=01. -ly+-—=¢,

Hence, we may assume that
1, . 1 .
==X +1y, ==X —i
¢ 5 . =3 y

Now, introducing the second transformation

_é+n _&é-n
== P
we obtain
2
X
== B=y

The canonical form can now be obtained by computing

2
y

B =2A0, By + B(ay By +ay ) +2¢(exy B,) =0
C=AB2 +BB Sy +0p2 =X
5=Aaxx+|3axy+cayy+Dax+an=l

E = ABy + Bfyy + By + DB +Ef, =0

|

= Ao} + Baar, + car

, G=0

o

Thus the required canonical equation is
X2U,,,, + X?Ugs +U, =0
oo 86 o~

or

u
Upg +Ugg = —i
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EXAMPLE 1.1 Classify and reduce the relation

y2 X2
Uy +—Uy

2 2
Uyy — 2XYUyy + XUy =
Y Uy YUyy Wy y

to a canonical form and solve it.
Solution  The discriminant of the given PDE is
B2 —4AC =4x%y? —4x%y? =0
Hence the given equation is of a parabolic type. The characteristic equation is
B -2xy X

d_y=_§_x=__
dx & 2A  2y? y

Integration gives X2 + y2 =¢;. Therefore, £ = X2 + y2 satisfies the characteristic equation. The

n7-coordinate can be chosen arbitrarily so that it is not parallel to &, i.e. the Jacobian of the
transformation is not zero. Thus we choose

E=x*+y?,  p
To find the canonical equation, we compute
X A£2 24022 2.2 2.2 _
A=ASy +BE S, +CEY =4xTy" —8X7y” +4x°y" =0

y

B=0, C = 4ax?y?, D=E=F=G=0
Hence, the required canonical equation is
2,2, _ —
4x°yu,, =0 or u,,=0
To solve this equation, we integrate it twice with respect to 7 to get

u, = £(&), u=f()n+9()

where f (&) and g(&) are arbitrary functions of £. Now, going back to the original independent
variables, the required solution is

u=y2E (¢ +y?)+ g (X +y%)
EXAMPLE 1.2 Reduce the following equation to a canonical form:
(@4 XY Uy + (L+ Y?)Uyy + XUy + YUy =0
Solution  The discriminant of the given PDE is

B2-4AC=-4(1+x%) (1+Yy?)<0
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Hence the given PDE is an elliptic type. The characteristic equations are

d_y_ B—\/B2 —4AC __\/—4(1+x2)(1+ y2) ——i\/1+ y2
dx 2A 2(1+x%) 1+ x?

dy _B+yB®-4AC _. |14y’
dx 2A 1+ x2

On integration, we get

E=In(x+VX2+1)—iln(y++4y2+1)=¢
n=In(x+ VX2 +1)+iln (y+4y* +1) =c,

Introducing the second transformation

$+n n-¢
a:—, =—)
2 P 2i
we obtain

o =In(x+vx%+1)
B=In(y+4y?+1)

Then the canonical form can be obtained by computing

A=Axf +Boyay +Cai=1, B=0, C=1 D=E=F=G=0
Thus the canonical equation for the given PDE is
Uy tUgs =0
EXAMPLE 1.3 Reduce the following equation to a canonical form and hence solve it:

2

Uy —2SIN XU,y —COS” XUy, —COS Xuy =0

Xy
Solution  Comparing with the general second order PDE (1.4), we have
A=1, B =-2sin X, C=—COSZX,
D=0, E =—cos X, F =0, G=0

The discriminate B2 —4AC =4 (sin® x + cos? x) = 4> 0. Hence the given PDE is hyperbolic.
The relevant characteristic equations are

dy B-+B*-4AC

= =-sinx-1
dx 2A
gx__B+JBZ—4AC__1_an

dx 2A
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On integration, we get
Yy =C0S X— X+C, Yy =C0S X+ X+C,
Thus, we choose the characteristic lines as
E=x+y-cosx=c, N=-X+Yy—-C0SX=C,
In order to find the canonical equation, we compute
A=AL+BEE, +CED=0
B= 2A§x77x + B(é:xny + gynx) + 2Cé:yny

=2 (sin x+1) (sin x-1) —45sin? x—2cos? x=—4
C=0, D=0, E=0, F=0, G=0
Thus, the required canonical equation is
Uén =0
Integrating with respect to &, we obtain
u, = (1)
where f is arbitrary. Integrating once again with respect to 7, we have

u=[ t(n)dn+g(©
or
u=y(n)+9()
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where g(&) is another arbitrary function. Returning to the old variables X, y, the solution of

the given PDE is
u(x, y) =w(y—x-cos x) + g(y+ X—cos Xx)

EXAMPLE 1.4 Reduce the Tricomi equation
Uyx + XUyy, =0, x#0
for all x, y to canonical form.

Solution  The discriminant B? — 4AC = —4x. Hence the given PDE is of mixed type:

hyperbolic for x<0 and elliptic for x> 0.

Case | In the half-plane x<0, the characteristic equations are

dx &, 2A 2

dy_ m_B+VBT-4AC

— 2_ — —
dy & _B-VB’-4AC _ 2*/_X=—\/—_x

dx  ny 2A
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Integration yields

2
y=5 (%" +q

2
y=-5 (0" +c,

Therefore, the new coordinates are

EX ) =2 y- R =g

1Y) =2 Y+ R = ¢,

which are cubic parabolas.
In order to find the canonical equation, we compute

_ 9 9
A=AE2 4+ BEE, +CEL =—Zx+0+—>%x=0
ASL +BESE, +CEY 2 2

B =9x, C=0, 5:—%(—x)—1’2=_|§, E=G=
Thus, the required canonical equation is
3, -2 3, N2,
9XUg, _Z(_X) Ug +Z(_X) u, =0
or
1
Ug, = Us —u
én 6 (5 _77)( ¢ TI)
Case Il In the half-plane x> 0, the characteristic equations are given by
dy . dy .
—=iJXx, ——=-iJX
dx VX dx VX

On integration, we have
3 . 3 .
EN=2y=T1(% nxy)=Zy+i (WX’

Introducing the second transformation

we obtain
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The corresponding normal or canonical form is
1
uOlO( +U,B,B +£Uﬁ =0

EXAMPLE 1.5 Find the characteristics of the equation
Uy + Uy +8in* (X)Uyy, + Uy, =0
when it is of hyperbolic type.

Solution  The discriminant B? — 4AC = 4 — 4sin?x = 4cos?x. Hence for all x # (2n — 1)7/2,
the given PDE is of hyperbolic type. The characteristic equations are

dy BFVB’-4AC

=1%Fcos x
dx 2A
On integration, we get
y=X-sin X+¢, y=X+sin X+¢,
Thus, the characteristic equations are
E=y—-x+sinx, n=y-Xx-sin x

EXAMPLE 1.6 Reduce the following equation to a canonical form and hence solve it:
YUy + (X+ Y) Uy + XUy, =0

Solution  The discriminant
B2 —4AC = (x+Y)? —4xy=(x-y)?>0

Hence the given PDE is hyperbolic everywhere except along the line y = x; whereas on the
line y =¥, it is parabolic. When y # x, the characteristic equations are

dy BTVB2-4AC  (x+Y)T(x-Y)

dx 2A 2y
Therefore,
dy_, d_x
dx ' dx vy

On integration, we obtain

y=X+¢, y2=xt+c,
Hence, the characteristic equations are

E=y-%x  n=y"-%x



66 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

These are straight lines and rectangular hyperbolas. The canonical form can be obtained by
computing

A= AL +BEE, +CEL =y —Xx—y+x=0, B=-2(x-vY)?
C=0, D=0, E=2(x-Yy), F=G=0
Thus, the canonical equation for the given PDE is
—2(x—y)2u§,7+2(x—y)u,7:0
or

—2§2u§,7 +2(-$)u, =0

or

Integration yields
du
—=f
¢ o )
Again integrating with respect to 77, we obtain

u= [ tman+o@©

Hence,
1
u=——| f(y’ =x)d(y’ -x*)+g(y-%
y—X

is the general solution.
EXAMPLE 1.7 Classify and transform the following equation to a canonical form:

sin?(X) Uy +SiN (2X) Uy + cos?(X) Uyy =X

Solution  The discriminant of the given PDE is
B? —4AC =sin? 2x—4sin? x cos? x =0

Hence, the given equation is of parabolic type. The characteristic equation is

Integration gives
y=Insin x+¢
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Hence, the characteristic equations are:

E=y-Insinx, n=y
1 is chosen in such a way that the Jacobian of the transformation is nonzero. Now the
canonical form can be obtained by computing

A=0, B=0, C =cos? x, D=1
E=0, F=0, G=x
Hence, the canonical equation is

c0s” (X) Uy, + Uz =X
or
[L- ey, =sinH () —u;

EXAMPLE 1.8 Show that the equation

2N 1
thoc + = ~Ux =¥utt

where N and a are constants, is hyperbolic and obtain its canonical form.
Solution ~ Comparing with the general PDE (1.4) and replacing y by t, we have A=1, B=0,

C= —1/a2, D=2N/x, and E=F =G =0. The discriminant B2 —4AC =4/a > 0. Hence, the

given PDE is hyperbolic. The characteristic equations are
o _BFVB2-4AC __y4/a’ _
dx 2A 2

Therefore,
a1 dt 1

d a dx a
On integration, we get
X X
t=—-+ ’ t =—+
a @ a K
Hence, the characteristic equations are
& =x+at, n=x-at

The canonical form can be obtained by computing
A= Aff +BS St +C§t2 =0,

B= 2A§x77x + B(é:xnt +§t77x) + 2C§t77t =4,

C=0, 5=D§X+E§t=2—N, EanX+Ent=2—N
X X
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Thus, the canonical equation for the given PDE is
2N
4ug, +7(u§ +U,)=0
Expressing x in terms of & and 5, the required canonical equation is

N
u§n+—n(u§ +U,)=0

E+

EXAMPLE 1.9 Transform the following differential equation to a canonical form:
Uyy +2Uyy +4Uy,y +2uU, +3uy, =0

Solution  The discriminant B> —4AC =-12 < 0. Hence, the given PDE is elliptic. The
characteristic equations are

dy B-+vB2-4AC .
- T —11-i3
dx 2A

dy B++VB2-4AC .
L LA FE N
dx 2A

Integration of these equations yields
y=+(1-iV3)x+c, y=+(1+iv3)x+¢,
Hence, we may take the characteristic equations in the form
E=y-(1-i3)x  n=y-(@+iV3)x

In order to avoid calculations with complex variables, we introduce the second transformation

_&+n _¢-n

=5 Py
Therefore,

a=y-X% B=+3x

The canonical form can now be obtained by computing
A= Ax}; +Boor, +Cory =3

B = 2A0, B, + B(ey By +ay By) + 2Cay By = 0

C=AB%+BB B, +CB; =3

D = Ady, + Batyy + Caryy + Doy + Eary =1

E = ABy +BpBy +Cp,, + DB +EB, =243
F=0, G=0
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Thus the required canonical form is
BUyy +3Ugs +U, +2+/3ug =0
or

1
Uge +Ugp = —g(ua +2+/3up)

1.4 ADJOINT OPERATORS

Let
Lu=¢ (1.16)
where L is a differential operator given by
dn n-1
L=ay(X)—+ & (X +--+a,(X
B0 5+ A0+ + a0

One way of introducing the adjoint differential operator L* associated with L is to form the
product vLu and integrate it over the interval of interest. Let

.[B vLudx=[ 15 +J.B uL *v dx (1.17)
A AT A

which is obtained after repeated integration by parts. Here, L* is the operator adjoint to L,
where the functions u and v are completely arbitrary except that Lu and L*v should exist.

EXAMPLE 110 Let Lu=a(x) (d?u/dx®) +b(x) (du/dx) + c(X)u; construct its adjoint L*.

Solution  Consider the equation

B B d%u du
J-A vLu dx = IA v{a(x)y + b(x)& + c(x)u} dx

B d?u B du B
_fA () dx+ j X (bv)&dfo (ov) u dx

However,
B d’u B d,,
[ @rgra=] (@)W
=[u'val’ - IB(av)’u’dx
=[uav]’ —[u(av)]’ + fBu(av)”dx
j ;(bv)%dx ~[u(bv)]E - JABu(bv)’dx

jf(cv)u dx:jfu(cv)dx
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Therefore,

B B
J.A vLu dx =[u’(av) — u(av)” + u(bv)] i + J.A uf(av)” - (bv)’ + (cv)] dx
Comparing this equation with Eq. (1.17), we get

L*v=(av)”—(bv)" +(cv)=av” +(2a’-b)v' + (@” -b"+C)v

Therefore,
2

L*= ad—+(2a’—b)i+(a”—b’+c)
dx? dx
Consider the partial differential equation
L(u) = Au,y + 2BuUyy + Cuyy, + Du, + Euy + Fu=¢ (1.18)
which is valid in a region S of the xy-plane, where A, B, C, ..., ¢ are functions of x and y.
In addition, linear boundary conditions of the general form
ou+ pu, = f

are prescribed over the boundary curve dS of the region S. Let

” vLludo =[ ]+.|.J. uL*vdo
S s

where the integrated part [ ] is a line integral evaluated over ¢S, the boundary of S then L*
is called the adjoint operator. In general, a second order linear partial differential operator L
is denoted by

n

L(u)—z A; awx 2 j_ (1.19)

i, j=1 =1

Its adjoint operator is defined by

n

L*(W)= Y o &X (Ajv)—zI &ixi(av)um (1.20)

i,j=1

Here it is assumed that A; eCc® and B eCW. For any pair of functions u,ve C®, it can
be shown that

N ov N aAj
vL(u) —uL*(v) = z x [2 /-\][ % —u§—j+uv[B Z’TXJH (1.21)

This is known as Lagrange’s identity.
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EXAMPLE 1.11 Construct an adjoint to the Laplace operator given by
L(u) = U, +Uyy (1.22)

Solution  Comparing Eq. (1.22) with the general linear PDE (1.19), we have
A;1=1 Ay =1 From Eq. (1.20), the adjoint of (1.22) is given by

. 7? 9?
L*(Vv) =a7(v)+a—y2(v) = Vy + Vyy

Therefore,
L*(U) = Uy +Uyy
Hence, the Laplace operator is a self-adjoint operator.
EXAMPLE 1.12 Find the adjoint of the differential operator
L(U) = Uy — (1.23)
Solution  Comparing Eq. (1.23) with the general second order PDE (1.19), we have
A,=1 B, =-1. From Eq. (1.20), the adjoint of (1.23) is given by
92
L*(V)=&7(V)—E(—V)=Vxx+vt
Therefore,

L*(U) = Uy, + 4
It may be noted that the diffusion operator is not a self-adjoint operator.

1.5 RIEMANN’S METHOD
In Section 1.2, we have noted with interest that a linear second order PDE
L(u)=G(xy)

is classified as hyperbolic if B? >4AC, and it has two families of real characteristic curves
in the xy-plane whose equations are

s=fxy)=a,  n=hkxy=c
Here, (£, n) are the natural coordinates for the hyperbolic system. In the xy-plane, the curves
&(x, y)=¢ and n(x, y) =c, are the characteristics of the given PDE as shown in Fig. 1.1(a),

while in the &n-plane, the curves £=c, and n=c, are families of straight lines parallel to
the axes as shown in Fig. 1.1(b).
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YA

Characteristics

/i Characteristics

& = const.

5 \ > X
/ \ \n:const. 0 ¢

(@) (b)

Fig. 1.1 Families of characteristic lines.

A linear second order partial differential equation in two variables, once classified as a
hyperbolic equation, can always be reduced to the canonical form
J%u
Ixady

In particular, consider an equation which is already reduced to its canonical form in the
variables x, y:

=F (X y,u,uy,uy)

d%u Ju |, du
—+b— =F (X, 1.24
3x&y+a&x+ gy+cu (X, y) ( )

where L is a linear differential operator and a, b, ¢, F are functions of x and y only and are
differentiable in some domain IR.

L(u) =

Let v(X, y) be an arbitrary function having continuous second order partial derivatives.
Let us consider the adjoint operator L* of L defined by

v 9 P
L* (V) = - —(av) ——(bv) + cv 1.25
v) Ixdy 3X( V) é,y( V) (1.25)
Now we introduce
M = auv—uj—;//, N = buv+v—§l:( (1.26)

then

My + Ny = Uy (av) + u(av), —uyVvy — v,y + Uy (bv) +u(bv), +vyu, +vu

y Xy Xy
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Adding and subtracting cuv, we get

N 9 J 2y _du . du
My +Ny=-u &X—ay—g(av)—(9—y(bv)+cv}+v{gx—ay+a5+ba—y+cu

vLu—-uL*v=M, + N, (1.27)

This is known as Lagrange identity which will be used in the subsequent discussion. The
operator L is a self-adjoint if and only if L =L*. Now we shall attempt to solve Cauchy’s
problem which is described as follows: Let

Luy=F(xy) (1.28)
with the condition (Cauchy data)
(i) u="f(x) on T, a curve in the xy-plane;
(i) 2 =gx) on .
an
That is u, and its normal derivatives are prescribed on a curve I" which is not a characteristic line.

Let T" be a smooth initial curve which is also continuous as shown in Fig. 1.2. Since
Eq. (1.24) is in canonical form, x and y are the characteristic coordinates. We also assume that

the tangent to I" is nowhere parallel to the coordinate axes.

YA

Q\ = P& n)

Data curve R

Fig. 1.2 Cauchy data.

Let P(&,n) be a point at which the solution to the Cauchy problem is sought. Let us draw
the characteristics PQ and PR through P to meet the curve " at Q and R We assume that
u, Uy, U, are prescribed along I'. Let /IR be a closed contour PQRP bounding IR. Since

Eq. (1.28) is already in canonical form, the characteristics are lines parallel to x and y axes.
Using Green’s theorem, we have

J[JM, +Nyaxdy=4, (M dy—N dx) (1.29)
R
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where ZIR is the boundary of IR. Applying this theorem to the surface integral of Eq. (1.27),

we obtain

LR (M dy — N dx) = IRI [VL(u) — uL * (v)] dx dy

In other words,

(1.30)

jr(M dy — N dx) +jRP (M dy — N dx) + LQ (M dy — N dx) = H [VL(u) — uL * (v)] dx dy

Now using the fact that dy=0 on PQ and dx=0 on PR, we have

fr (Mdy - N dx)+jRP M oly—jpQ N dx =M [VL(u)—uL*(V)]dxdy  (1.31)

From Eqg. (1.26), we find that

J.PQ N dx=J.§ bUVdX'f‘Jf vu, dx

Integrating by parts the second term on the right-hand side and grouping, the above equation

becomes
Q
I N dx =[uv]? +J. u(bv —v, )dx
PQ P

Substituting this result into Eq. (1.31), we obtain

[uvl, =[uvlg +J.PQ u(bv —v,)dx —IRP u(av-v,)dy

- j (Mdy-Ndy) +j|£ [VL(u) — uL* (v)]dx dy

Let us choose v(x, y; &, 1) to be a solution of the adjoint equation
L*(v)=0
and at the same time satisfy the following conditions:
(i) vy=bv wheny=n, ie., on PQ
(i) vy=av when x=¢, ie., on PR

(i) v=1  when x=¢& y=7

(1.32)

(1.33)

(1.34a)
(1.34b)
(1.34¢)

We call this function v(x, y; £, 7) as the Riemann function or the Riemann-Green function.

Since L(u)=F, Eqg. (1.32) reduces to
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[ulp=[uv]o - j - [u(av-vy) dy-v(bu+u,) dx]+ j j (VF ) dx dy (1.35)
R

This is called the Riemann-Green solution for the Cauchy problem described by Eq. (1.28)
when u and u, are prescribed on T'. Equation (1.35) can also be written as

[u], =[], — jr uv(ady - bdx) + jr (w, dy—wu, &)+ [[ WF)axady  (1.36)
R

This relation gives us the value of u at a point P when u and u, are prescribed on T". But when
u and uy are prescribed on T, we obtain

[ulp =[wlg —Ir uv(ady—bdx) —Ir (uvy dx+vuy, dy) +” (VF)dxdy (1.37)
R

By adding Egs. (1.36) and (1.37), the value of u at P is given by

[l = 2{wlg + e}~ [, w@dy-ba—— [ uvax-vy &)
+%J-r V(uy dx—uy dy) +JI!- (vF)dx dy (1.38)

Thus, we can see that the solution to the Cauchy problem at a point (£, 77) depends only

on the Cauchy data on T. The knowledge of the Riemann-Green function therefore enables
us to solve Eq. (1.28) with the Cauchy data prescribed on a noncharacteristic curve.

EXAMPLE 1.13 Obtain the Riemann solution for the equation

d%u
=F(X,
IXIy (xy)
given
(i) u=f(x) onT
(ii) @=g(x) onr
an
where T is the curve y=x
Solution  Here, the given PDE is
2%u
L(u) = =F(xy) (1.39)

IxXay
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We construct the adjoint L* of L as follows: setting
M =auv-uvy, N = buv + vu,

and comparing the given equation (1.39) with the standard canonical form of hyperbolic
equation (1.24), we have

a=b=c=0
Therefore,
M =-uvy, N =wu, (1.40)
and
My + Ny = VU, — Uy, = VL(U) —uL*(v)
Thus,
2
L*(v) =2 (1.41)
Ixady

Here, L =L* and is a self-adjoint operator. Using Green’s theorem

fi (M, + Ny)dxdyzij(M dy — N d)

we have
” [VL(U) — uL* (V)] dx dy = LIR(M dy — N d)
R
or
” [VF — uL* (V)] dx dy:J.alR (M dy — N dx) (1.42)
R
But

ij(M dy— N dx) =jr(|v| dy - Ndx)+jQP (M dy — Nolx)+jpR (Mdy—-Ndx)  (1.43)

where

From Fig. 1.3, we have on I', X=Y. Therefore, dx=dy. Hence

ov  Jdu
jr (M dy - N dx) = fr (—ua—y - vﬁjdx (1.44)
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YA

P& n)

Xx=¢&Y

o

Fig. 1.3 An illustration of Example 1.13.

since on QP, y = constant. Therefore, dy =0. Thus,

ou
J-QP(M dy—Ndx)—jQP—N dx_jQP v (1.45)
Similarly, on PR, x = constant. Hence, dx=0. Thus,
j (M dy — N dx) = j M dy j —u—dy (1.46)
ay

Substituting Eqgs. (1.44)—(1.46) into Eq. (1.43), we obtain from Eq. (1.42), the relation

”[VF uL*(v)] dx dy = I(u—dx vﬂde+J‘Qp—vﬂdx+J‘PR—uﬂdy

X X ay
But
au p ov
J.Qp—vgdx =[-wu]q +Iqu5dX
Therefore,
_” Ju
[VF —uL*(v)]dx dy = J. u—dx v—dx
IX

ov ov
+[-wulg +J‘qu5dx+_|‘PR —ua—ydy (1.47)

Now choosing v(x, y; &, 77) as the solution of the adjoint equation such that

(i) L*v=0 throughout the xy-plane

A ,
(i) 5=0 when y=17, i.e., on QP
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(iii) ;—J\;’:O when x=£, i.e.,, on PR
(iv) v=1 at P(&, n).

Equation (1.47) becomes
.[J. (VF)dxdy = J.(u—dx v—dx)+(uv)Q (Up

or

ov

(Wp = (W)q +J. ( —u—dx- v—dx) J.J. (vVF)dxdy

ady

However,
(uW)g — (UW)R = J d(u) = J i(uv) dx + i(uv) dy
Q R™Jr r|dx ay

=Jr (uyVv dX + uvy dx + uyVv dy + uvy, dy)

Now Egq. (1.48) can be rewritten as

Wp = W)r=[_(uyvdy+uvy dy) - [[ (vF) dxdy
R
Finally, adding Eqgs. (1.48) and (1.49), we get
(Wp =5 [W)g + W)l + [ (- dx-w, o)
+%J.r (uyv dy +uv, dy) —JI.E!. (VF) dx dy

EXAMPLE 1.14 Verify that the Green function for the equation
%u L2 2 o"u Ju
IXdy X+y 8x &y

subject to u=0, Jdu/dx=3x* on y=x, is given by

(x+ y){2xy + (& =) (x— y) + 2En}
& +n)°

and obtain the solution of the equation in the form

u=(x-y) (2x* - xy+2y?)

V(X Y. &, m) =

(1.48)

(1.49)
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Solution  In the given problem,

2%u 2 du 2 du
+ =0

L(u)= —+ —=
dxdy X+ydx x+ydy

(1.50)

Comparing this equation with the standard canonical hyperbolic equation (1.24), we have
2

a=b=—2—, C=0, F=0
X+y
Its adjoint equation is L*(v) =0, where
2
L=ty _df | of ]| (1.51)
oOxdy JIx\x+y) Jdy\x+y
such that
(i L*v=0 throughout the xy-plane
(i) N__2 on PQ, i.e.,, on y=n
X X+y
(iii) j—\;: xiyv on PR, i.e,, on x=¢
(1.52)
(iv) v=1 at P(&, n).
If v is defined by
X+
V0% v &) =Y oy (E =) (x= y) + 267] (153)
&+m)
Then
v X+ 2xy+(E-n) (x—-y)+2
2 y3[2y+(§—n)]+ xy+(@E-n)( 3y) én
X (§+n) E+m)
or
ov 1 2
—=—-—[4xy+2y" +2x(E-1n)+2 1.54
™ (§+n)3[ Xy +2y (& —mn)+28n] (1.54)
and
2
v =4(x+ y) (L.55)
IXIy (& +n)’
J 1
= [4xy + 25 — 2y (& - 1) + 267] (1.56)

Ay (E+n)°



380 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Using the results described by Egs. (1.53)-(1.56), Eq. (1.51) becomes

2
L* () = A%V 2 (&v (9v)+ 4v

— _+_
Ixdy x+yldx dy) (x+y)?
_Ax+y) 2
E+m®  (x+y)(E+n)

S[Axy+2(¢ + y*)]

or

4(x+y) 4(x+y) _ 0
€+m® €+’
Hence condition (i) of Eq. (1.52) is satisfied. Also, on y=7.

L*(v)=

wN__ 1 2 _

gx—(é+n)3[4xn+2n +2x(& —n)+28n]
or

ov 1

[217% + 2X(& +1) + 2£7] (1.57)

IX y=n (5"‘77)3
Also, 2vi(x+y) at y=n is given by
2v 2  X+7n

ty X+ E o) [2x37+ (S —m) (x=1) +257]

1
=G p [2n% + 2X(& + 1) + 2&7] (1.58)
From Egs. (1.57) and (1.58), we get
IX  X+y y=1

Thus, property (ii) in Eq. (1.52) has been verified. Similarly, property (iii) can also be
verified. Also, atx=¢&, y=n,

C+mE+m* _,

__¢+n ) —m2 4 2Em =
v [25n+(&—m)*" +247] i’

&+’
Thus property (iv) in Eqg. (1.52) has also been verified.
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From Egs. (1.50) and (1.51), we have

d%u v d(2w) I 2w
vL(u)—uL*(v)=v -u + = + 2
xady  dxdy Ix\x+y) Jdy\x+y

d( duy Jd[ dv) [ 2w d (| 2w
=—|V— |-—|u— |+ —| — [+—| —
dy\ dx) oJIx\ dy) Ix\x+y) Jdy\x+y
d [ 2w av) J( 2w du
=— —U— |[+— +Vv—
IX\x+y dy) dy\x+y Ix

_om_oN
S Ix  dy

where

X+y dy’ Tx+y ax
Now using Green’s theorem, we have

M:2uv ov N 2vu+&u

ﬂ [VL(U) — uL* (V)] dxdy:me(M dy— N dx) ZIS (M dy— N dx)
R

P R
+IQ (M dy—Ndx)+J‘P (M dy— N dx) (1.59)

(see Fig. 1.3) on QP, y=C. Hence, dy=0; on PR, x=C. Therefore, dx=0
Q|| 2uv ov 2uv Ju
= -U— - —d
J-R Hx+y uay}dy {x+y+v8x} X}
Pl | 2uv Ju R| | 2uv ov
_ ZZlg _yZ
-[Q Hx+y+v8xH X+-|.P Hx+y uadey

P P P
J. ( 2w +vﬂj dx=J. 2wV dX+(UV)g —J. uﬂdx
Qix+y JXx Q X+Yy Q JX

However,

Now, using the condition u=0 on y=Xx, Eq. (1.59) becomes

H [VL(U) — uL* (V)] dxdy:fQ( 2w —uﬂ)dy—fQ( 2uv +v@jdx
R

Rix+y dy RI{X+y X

P 2uv P
— dx — —d
J‘ X+y X (UV)p + (UV)Q +J‘ u X

X
P 2uv R ov
dy — — |d
+J.Q X+y Y J.P (u&yj y
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Also, using conditions (ii)—(iv) of Eq. (1.52), the above equation simplifies to
Q
u)p = (uv v—dXx
Wp =)o~ V5
Now using the given condition, viz.
M _ 32 on RQ
IX

we obtain

Up = (W)q -3 f A FX[(Z ;)ién]} X

= (€+ 7 f O + x3En) dx

_ 12 116 .6y, 1 4 ¢4
=T e 3[6(17 &)+ 5)}
52

€ +n)’

[2(€4+52n2+n )+3En (€2 +1?)]

=(E-n) (2% -En+2n°)
Therefore,

u(x y) = (x-y) (2x% - xy+2y?)
Hence the result.

EXAMPLE 1.15 Show that the Green’s function for the equation
d%u

=0
3x(9y+u

V(% y:&m = 2x=8) (y-n)
where Jy denotes Bessel’s function of the first kind of order zero.
Solution  Comparing with the standard canonical hyperbolic equation (1.24), we have
a=b=0, c=1
It is a self-adjoint equation and, therefore, the Green’s function v can be obtained from
%V
Ixady

+v=0
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subject to
ov
5—0 on y=n
ov
a—y—O on x=¢&
v=1 at x=¢&, y=n¢
Let
oK =a(x-£) (y-n)
v _ov g
X 9 Ix
But
0122~ a(y-)
X
Therefore,
J _
2= Loky-m)
Thus,
ov Jdva g
M 07¢k¢ (y-m)
v d[dva iy
Xy ay{&gb K’ (y_")}
_al gy v OV 99 -k IV I
—k[¢ 5o TS = m e y=) Zay}
However,
99 _a ik
Gy k09
Therefore,
v a 1k OV K 1k ko, OVa g,
IX3y k{cb +(1-K)g " (x=E)(y-m)~ ¢ ¢ +o o (y ﬂ)a¢2k (x=9)
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Hence,
2
il +v=0
oxady
gives
k 2 1-k
a ¢_¢2(1—k)ﬂ+_¢ (1_k)ﬂ+¢l‘kﬂ +v=0
k| k dg? Kk d¢ dg
or
a | ok d2V 1-k dv
el -+ —|+v=0
% ((p i’ d¢J
or

2 ’” 4 k2 k
OV + N +—¢v=0
a

Let k =2, a=4. Then the above equation reduces to
1 .
PV oV + v =0=V"+ EV/ +Vv (Bessel’s equation)

Its solution is known to be of the form

v=1Jg(8) = Jo2(x = E)(y — 1)

which is the desired Green’s function.

1.6 LINEAR PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

An nth order linear PDE with constant coefficients can be written in the form

aoa"u+a1 2"u ta 0"u +m+ana”u

ox" X"y 2 ax"2%y oy"
= f(x, y) (1.60)
where ay, a;, ..., a, are constants; u is the dependent variable; x and y are independent
variables. Introducing the standard differential operator notation, such as D =ai, D" = ai
X y

the above equation can be rewritten as

F(D, D)u = (a,D" + a,D™'D’ + a,D"?D"? + ... + a,D"Mu = f(x, y) (1.61)
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It can also be written in more compact form as

F(D,D')uzz ZC”-DiD'j (1.62)
i
n n
where C;; are constants, D:i, D’=i, D" :8_, D" = d , etc.
X ay ox" oy"

As in the case of linear ODE with constant coefficients, the complete solution of Eq. (1.61)
consists of two parts:

(i) the complementary function (CF), which is the most general solution of the
equation F(D, D)u = 0, the one containing, n arbitrary functions, where n is the
order of the DE.

(ii) the particular integral (Pl), is a particular solution, which is free from arbitrary
constants or functions of the equation F(D, D")u = (X, Y).
The complete solution of Eq. (1.61) is then
u=CF + PI (1.63)

It may be noted that, if all the terms on the left-hand side of Eq. (1.61) are of the same
order, it is said to be a homogeneous equation otherwise, it is a non-homogeneous equation.
Now, we shall study few basic theorems as is the case in ODEs.

Theorem 1.1 If uce and up, are respectively the complementary function and particular
integral of a linear PDE, then their sum (ucg + Up) is a general solution of the given PDE.

Proof Since F(D, D)uce = 0,
and F(D, D)up, = f(x, y),
we arrive at
F(D, D)uce + F(D, D)up, = (X, y).
showing that (ucg + up)) is in fact a general solution of Eq. (1.61). Hence proved.
Theorem 1.2 If uy, uy, ..., U, are the solutions of the homogeneous PDE: F(D, D’)u = 0,

n
then ZCiui, where C; are arbitrary constants, is also a solution.
i=1
Proof Since we observe that
F(D, D')(Cu) = GF(D, D')u;

and F(D, D’)Zn:vi =Zn“F(D, D')v

i=1 i=1
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For any set of functions v;, we find at once,

F(D, D’)iciui :iF(D, D')(Ciu)

i=1 i=1
n

= CF(D,D)u =0
i=1

Hence proved.

We shall now classify linear differential operator F(D, D’) into reducible and irreducible
types, in the sense that F(D, D) is reducible if it can be expressed as the product of linear
factors of the form (aD + bD’ + c), where a, b and c are constants, otherwise F(D, D’) is
irreducible. For example, the operator

F(D, D')u = (D? - D2 + 3D + 2D’ + 2)u
=(D+D +1)D-D"+ 2)u

is reducible. While the operator F(D, D")u = (D? — D), is irreducible, due to the fact that it
cannot be factored into linear factors.

1.6.1 General Method for Finding CF of Reducible Non-homogeneous
Linear PDE

The general strategy adopted for finding the CF of reducible equations is stated in the
following theorems:

Theorem 1.3 If the operator F(D, D’) is reducible that is, if (D + bD” + ¢;) is a factor of
F(D, D) and ¢(¢&) is an arbitrary function of a single variable & then, if a = 0,

Uy = exp (—%XJ #(bix — ay) (1.64)

is a solution of the equation F(D, D’)u = 0 (Sneddon, 1986).
Proof Using product rule of differentiation, Eq. (1.64) gives

o[-t = -2t

G S |o
=——Uu +h exp| ——x |¢'(bx—ay).
g ( & j
Similarly, we get

D'y =-3 exp[—%XJW(hX— ay)-
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Thus, we observe that
(@D + bD” + c)u =0 (1.65)

That is, if the operator F(D, D’) is reducible, the order in which the linear factors appear
is immaterial. Thus, if

F(D, D)y = {ﬁ'(aj D+bD’ +¢ )}(a,-D +hD’ +¢)u (1.66)

j=1

where, the prime on the product indicates that the factor corresponding to i = j is omitted.
Combining Egs. (1.65) and (1.66), we arrive at the result F(D, D")u; = 0. Hence proved.

It may be noted that if no two factors of Eq. (1.65) are linearly independent, then the
general solution of Eq. (1.66) is the sum of the general solutions of the equations of the form
(1.65). For illustration, we consider the following examples:

EXAMPLE 1.16 Solve the following equation (D? + 2DD’ + D2 — 2D - 2D’)u = 0.
Solution Observe that the given PDE is non-homogeneous and can be factored as
(D? + 2DD’ + D’? - 2D - 2D")u = (D + D’)(D + D’ - 2)u.
Using the result of Theorem 1.3, we get the general solution or the CF as
Uce = gi(X — Y) + €%¢o(x - Y).
On similar lines, we can also establish the following result:

Theorem 1.4 (Sneddon, 1986) Let (b, D” + ¢) is a factor of F(D, D’)u, and ¢;(&) is an
arbitrary function of a single variable &, then, if b, # 0, we have

U, = exp (_%yJ & (biX) (1.67)

as a solution of the equation F(D, D’)u = 0.

Proof Suppose, the factorisation of F(D, D’) = 0 gives rise to a multiple factors of the
form (aD + bD” + ¢;)", the solution of F(D, D")u = 0 can be obtained by the application of
Theorems 1.3 and 1.4. For example, let us find the solution of

(D + bD’ + ¢)u=0 (1.68)
We set,
(&D + bD’ + ¢)u = U,
then, Eq. (1.68) becomes
(&D + bD’ + ¢)U = 0.
Using Theorem 1.3, its solution is found to be

U = exp (—%x] oi(bix — ay).
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Further, assume that a, # 0, now, in order to find u, we have to solve
(@D + bD" + c)u = exp(—%xj #i(bix — &y).

This is a first order PDE. Using the Lagrange’s method (Section 0.8), its auxiliary equations
are

dx _dy du (1.69)
SR -
One solution of which is given by
bx — ay = A (a constant) (1.70)
Substituting this solution into the first and third of the auxiliary equations, we obtain

dx du

4 —qu+exp(—2xj¢,(/1)

or %+&u=iexp(—&x]¢,(ﬂ).
dx & g g

This being an ODE, its solution can be readily written as

G 1
X |==x¢ (4 tant
uexp(ai XJ 2 X¢ (A) + u (constant)
or u="1x4 (1) + 1] exp (—&x] (1.71)
g g

Thus, the solution of Eq. (1.68) is given by
u = [xgi(bx — ay) + yi(bx — ayle (1.72)
where ¢ and y; are arbitrary functions.

In general, if there are n, multiple factors of the form (gD + b,D’ + ¢;), then the solution
of (aD + bjD’ + ¢;)" u = 0 can be written as

u=exp(—%x][§n;x1‘l¢,j (qu—aiy)] (1.73)

j=1

Here follows an example for illustration.
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EXAMPLE 1.17 Find the solution of the equation (2D — D’ + 4)(D + 2D’ + 1)?u = 0.

Solution The complementary function (CF) corresponding to the factor (2D — D" + 4)
is €2 ¢(-x — 2y). Similarly, CF corresponding to

(D +2D" + 1)? is e[y4(2x — y) + xya(2x - Y)].
Thus, the CF for the given PDE is given by

U= e2g(x + 2y) + e [ya(2x - y) + xya(2x - y)],
where, @, y1, ¥, are arbitrary functions.

1.6.2 General Method to Find CF of Irreducible Non-homogeneous Linear PDE

If the operator F(D, D’) is irreducible, we can find the complementary function, containing
as many arbitrary functions as we wish by a method which is stated in the following theorem:

Theorem 1.5 The solution of irreducible PDE F(D, D’)u = 0 is
u=>yc exp(ax-+hy) (1.74)
i=1

Proof Let us assume the solution of F(D, D’)u = 0 in the form, u = ce™*®, where a, b and
C are constants to be determined. Then, we have

D'u = ca'e®*®, D’y = cbl ™y,
D'Du = cable™
Thus, F(D, D)u = 0 yields
c[F(a, b)]e™™ =0
where c is an arbitrary constant, not zero, holds true iff
F(a, b) = 0, (1.75)
indicating that there exists infinite pair of values (a, b;) satisfying Eq. (1.75). Hence,

u=>y g e (1.76)
i=1
is a solution of irreducible equation
F(D, D)u = 0, (1.77)
provided F(a, b) =0 (1.78)

It may be noted that this method is applicable even for reducible equations. Here follows
an example for illustration:

EXAMPLE 1.18 Solve the following equation (2D? — D2 + D)u = 0.

Solution The given equation is an irreducible non-homogeneous PDE. Using the result
of Theorem 1.5, it follows immediately that
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=t = 3 e
i-1
where a;, b; are related by F(a;, bj) = 0.
That is,
2ai2 - bi2 +q = 0
which gives b? = 2a2 + a,.

1.6.3 Methods for Finding the Particular Integral (PI)
To find the PI of Eq. (1.61), we rewrite the same in the form

u (X, y) (1.79)

— 1 f
F(D, D"
Very often, the operator FX(D, D) can be expanded, using binomial theorem and interpret
the operators D%, (D) as integrations. That is,

DU N=Zfey= [ Fx

y constant

and % f(x,y) = j f(x, y)dy.

X constant
We present below different cases for finding the PI, depending on the nature of f(x, y).
Case | Let f(x, y) = exp(ax + by), then
;eaxmy — #eamby (1.80)
F(D,D’) F(a b)
By direct differentiation, we find D'De™"® = albl e,
In other words,
F(D, D)e™" = F(a, b)e™™,

that is,
1
eax+by =F(ab ea><+by .
(a,b) F(D.D)
Dividing both sides by F(a, b), we get
1 ax+by _ 1 ealx+by
F(D, D) F(a b) ’

provided F(a, b) # 0.

Case Il Let f(x, y) = sin(ax + by) or cos(ax + by), where a and b are constants, then, since
D? sin(ax + by) = —a? sin(ax + by)
DD’ sin(ax + by) = —ab sin(ax + by)
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D" sin(ax + by) = —b? sin(ax + by)
We notice that

w sin(ax + by)

is obtained by setting, D? = —a?, DD’ = —ab, D’?> = —b? provided F(D, D) # 0. Thus,
F(D? DD’, D) sin(ax + by) = F(-a?, —ab, —b?) sin(ax + by)

1 . .
or sin(ax + by) = sin(ax + b 181
F(D?, DD’,D’?) ( Y) F(-a%, —ab, - b?) ( Y) (1.81)
Similarly,
1 1
cos(ax + by) = cos(ax + hy) (1.82)

F(D?, DD’, D) F(-a%, —ab, - b%)

Case Il Let f(x, y) is of the form xPy%, where p and q are positive integers. Then, the Pl
can be obtained by expanding F(D, D’) in ascending powers of D or D’.

Case IV Let f(x, y) is of the form €™ ¢(x, y).
Then,
F(D, D)™™ ¢(x, y)] = €™ F(D + a D’ + b) ¢(x, y).

Let us recall Leibnitz’s theorem for the nth derivative of a product of functions; thus, we have

D"[e™g] = Y nc, (D'e™)(D""¢)

r=0

R [Z nc, a Dn—r¢J
r=0

=e™(D + a)¢
Applying this result, we arrive at
F(D, D)[e*Ygp(x, y)] = Y F(D + a, D’ + b) ¢(x, y) (1.83)
Hence, it follows that
1

1 ax+h _ Aax+b
w[e Yo(x,y)] = € y—F(D+a,D’+b)¢(X'y)

_ X 1 by
=€ F(D+a,D’)e oY)

1

F(D,D’ +b)

e™a(x, y) (1.84)
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For illustration of various cases to find PI, here follows several examples:

EXAMPLE 1.19 Solve the equation (D? + 3DD’ + 2D"%)u = x + V.
Solution The given PDE is reducible, since it can be factored as
(D+D)D +2DWu=x+y 1)
Therefore,
CF = gi(x—y) + $(2x - ) )
where ¢, and ¢, are arbitrary functions.
The PI of the given PDE is obtained as follows:

1
Pl = X+
(D? +3DD’ + 2D’2)( Y)

- -1
’ ’”2
:é 1+(3DD+2DD2]:| (x+y)

=—|1-3

’

[[’)—--}(xw)

- L x+y—%(1)}

2 X3

=§[y—2><]=yx7—? ®)

Adding Egs. (2) and (3), we have the complete solution of the given PDE as

2 X3

U=y =X)+ gy (y=20) +y =

EXAMPLE 1.20 Solve the following equation (D — D’ — 1)(D — D’ - 2)u = € + x.
Solution The CF of the given PDE is

CF = &pi(x + y) + €¥g,(x + ) @)
The PI corresponding to the term €7 is
1 X-y _ 162x—y )

T@2+1-D(2+1-2) 2
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while the Pl corresponding to the term x is

-1
:%(1—D+D’)l(l—%+D) X

2
:1 (1+D_D’+...)(1+E_R+...j X
2 2 2
1 1) 1 3
=—{1+D-D)|x+=|==| x+— 3
;0+0-0)x+2]=2(xs 3} @
Combining Egs. (1), (2) and (3), the complete solution of the given PDE is found to be

u=e*g (x+y) + €, (x + ) +%e2x‘y $X.3

EXAMPLE 1.21 Solve the following equation
(D? + 2DD’ + D2 — 2D - 2D")u = sin(x + 2y).
Solution The given PDE can be factored and rewritten as

(D + D')(D + D" = 2)u = sin(x + 2y) @
for which the CF is given by
CF = gi(x = y) + &¥g(x - Y) )
while
1 .
Pl = sin(x + 2y).

(D? +2DD’ + D’?> = 2D - 2D")
Setting D? = -1, DD’ = -2, D’? = -4, we get

Pl = sin(x + 2y)

1
(2D +2D’ +9)

_ [2(D + D’) - 9]
[4(D? + 2DD’ + D’?) - 81]

sin(x + 2y)

_2(D+D")-9

sin(x + 2
7 (x+2y)

=% [2 cos(x + 2y) + 4 cos(x + 2y) — 9 sin(x + 2y)]

=§ [2 cos(x + 2y) — 3 sin(x + 2y)] 3)
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Adding Egs. (1), (2) and (3), we find that the complete solution of the given PDE as

U= gi(x—y) + e¥plx —y) + % [2 cos(x + 2y) — 3 sin(x + 2y)].

EXAMPLE 1.22 Solve the following equation

(D? — DD’)u = €0S X COS 2y.

Solution The given PDE can be rewritten as

D(D — D’)u = cos x cos 2y

Its CF is given by
CF = ai(y) + doy + %),

while its PI is given by
L1

Pl=————
(D? -DD’) 2

cos(X + 2y) +

_1f 1 1
2| (-1+2) (-1-2)

= %cos(x +2y) — %cos(x -2y)

Hence, the complete solution of the given PDE is given by

U= 6i0) + oy + ) + 5 Cos(x + 2y) = 2 cos(x - 2y).

EXAMPLE 1.23 Find the solution of
(D? + DD’ — 6D’?)u = y co0s X.
Solution The given PDE can be rewritten as
(D + 3D")(D - 2D")u =y cos X
Its CF is given by
CF = ¢(3x - y) + ¢(2x + )
The PI of the given PDE is

plo—t .1
- (D+3D’) (D-2D)

y COS X

. 1 .
Applying the operator —————— first on y cos X
pplying p (D-2D)) y

(D - 2D")u =y cos x

[cos(x + 2y) + cos(x — 2y)]

cos(X — 2y)}

M)
)

@)

@)

)

@)
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Its auxiliary equations are
dx dy  du

1 -2 ycosx.

The first two members give
y + 2x = A (constant).
From the first and the third members, we have
du =y cos x dx = (41 — 2x) cos x dx,

on integration, we get
u= j(l— 2X) cos X dx

where A is to be replaced by (y + 2x) after integration. Now, Eq. (3) gives

1

Pl = m[(ﬂ —2x)sin X — Isin x(—2)dx}

1

= m[(ﬂ —2X) sin x — 2 cos X]

:m[ysin X —2¢0s X]

= [[(2+ 3% sin x - 2 cos x]dx

= (A +3x)(-cos x) + 3Jcos X dx —2sin X.
Now, replacing A by (y — 3x), we get
Pl = -y cos x + sin x
Hence, the solution of the given PDE is found to be
u=_CIl+ Pl
= $(3x —y) + ¢(2X + y) — y cos X + sin x.
EXAMPLE 1.24 Show that a linear PDE of the type

o9ty
Xy ——— = f X,
Zi,Zj,aJ Y ey~ Y
can be reduced to a one with constant coefficients by the substitution
E=log x, n=1logy.

95

(4)
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Solution
du_udE 1
ox o9& adx xad&
ox d&
That is,
0 0
—_——= D
Xox g Pl
Therefore,
n-1 n n-1
xi X" CARCH X" Jgu +(n=1x"? o u
ox ox"t ox" ox"t
n n-1
or x”auz(xi—n+ljx”‘18 u
ox" ox ox"t
By setting n = 2, 3, 4, ... in Eq. (2), we obtain

2
X2 37‘; - (D —1)x% =D(D - u,

3
x3a—‘;: D(D —1)(D - 2)u,
oX
and so on. Similarly, we can show that
y%:ﬂ: D’ ,
dy dn
0%u
—=D’(D’-1u,
o ( )
o%u
and =DD’u
Xyaxay

and so on. Substituting these results into the given PDE, it becomes

F(D, D')u = (€5, e = f(& n)
where,
9 o=
& o7
Thus, Eq. (3) can be seen as a PDE with constant coefficients.

D

M)

)

©)
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For illustration, here follows an example.
EXAMPLE 1.25 Solve the following PDE

(®D? + 2xy DD’ + y’D’?)u = x%y? (1)
Solution Using the substitution
& =1log x, n = log y and using the notation
respectively, the given PDE reduces to a PDE with constant coefficients, in the form
[D(D - 1) + 2DD’ + D’(D’ - 1)Ju = €27,

— ’

On rewriting, we have

(D + D)(D + D’ - 1)u = &&*21 )
The CF of Eq. (2) is given by
CF = ¢:(§~m) + € ¢, (&~ 1), (3)
while, its PI is obtained as
PI = L e
2+2)(2+2-1
1 2E+2n
=—¢ . 4
- (4)
Transforming back from (&, n) to (x, y), we find the complete solution of the given PDE as
X2y2
u= gy(log x — log y) + X d,(log x — log y) + ==

X X 1
y o= lJexn(3) v

1.7 HOMOGENEOUS LINEAR PDE WITH CONSTANT COEFFICIENTS

Equation (1.61) is said to be linear PDE of nth order with constant coefficients. It is also
called homogeneous, because all the terms containing derivatives are of the same order. Now,
Eqg. (1.61) can be rewritten in operator notation as

[aoD" + ;D™ D’ + a,D"2D? + ... + a,D"™u = F(D, D")u = f(x, y) (1.85)

As in the case of ODE, the complete solution of Eqg. (1.85) consists of the sum of CF
and PI.
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1.7.1 Finding the Complementary Function

Let us assume that the solution of the equation F(D, D")u = 0 in the form

u= ¢y + mx) (1.86)
Then, :
Diu = mgi(y + mx), D'l = ¢i(y + mx),
and D'Du = mg™ (y + mx).

Substituting these results into F(D, D")u = 0, we obtain
(@m" + ggm™ + g™ + ... + a)¢'(y + mx) = 0,
which will be true, iff
am" + aym™ + a,m™? + ... + 3, =0 (1.87)
This equation is called an auxiliary equation for F(D, D")u = 0.

Let m;, m,, ..., m, are the roots of Eq. (1.87). Depending on the nature of these roots,
several cases arise:

Case | When the roots my, m,, ..., m, are distinct. Corresponding to m = my, the CF is
u= ¢y + mx). Similarly, u = ¢o(y + myx), u = ¢s(y + mgx), etc. are all complementary
functions. Since, the given PDE is linear, using the principle of superposition, the CF of
Eq. (1.85) can be written as

CF = ¢u(y + mX) + go(y + mpX) + -+ + @py + M)
where, ¢, ¢,, ..., @, are arbitrary.

Case Il  When some of the roots are repeated. Let two roots say m; and m, are repeated,
and each equal to m. Consider the equation

(D - mD")(D — mD)u = 0.
Setting (D — mD”)u = z, the above equation becomes

(D - mD)z =0,
ox ay
which is of Lagrange’s form. Writing down its auxiliary equations, we have
d_dy _dz
1 -m O

The first two members gives y + mx = constant = a(say).
The third member yields z = constant.

Therefore, z = ¢(y + mx) is a solution.

Substituting for z, we get

(D - mDu = ¢(y + mx)
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which is again in the Lagranges form, whose auxiliary equations are
d_dy
1 —-m ¢(y+nx)
which gives,
y + mx = constant
and u = Xx¢(y + mx) + constant
Hence, the CF is
u=xgly + mx) + y(y + mx).
In general, if the root m is repeated r times, then the CF is given by
U= Xy + mX) + X2,y + M) + e+ gy + )
where, @, ¢, ..., ¢, are arbitrary.
For illustration, we consider the following couple of examples.
EXAMPLE 1.26 Solve the following PDE (D*® - 3D?D’ + 4D"®)u = 0.

Solution Observe that the given PDE is a linear homogeneous PDE. Dividing throughout
by D’ and denoting (D/D’) by m, its auxiliary equation can be written as

m -3 + 4 = (m+ 1)(m-2)? = 0.
Therefore, the roots of the auxiliary equation are -1, 2, 2. Thus,
CF =gy — %) + gy + 2X) + X g5y + 2X).
EXAMPLE 1.27 Solve the following PDE
(D® + DD? - 10D®)u = 0.
Solution Observe that the given equation is a linear homogeneous PDE. Denoting (D/
D’) by m. The auxiliary equation for the given PDE is given by
m +m-10 = (m - 2)(m? + 2m + 5) = 0.
Its roots are: 2, (-1 + 2i), (-1 — 2i).
Hence, the required CF is found to be

U= gy + 2xX) + go(y — X + 2ix) + @s(y — X — 2ix).
1.7.2 Methods for Finding the PI

Methods for finding the PI, in the case of linear homogeneous PDE’s are, similar to the one’s
developed in the Section 1.6 for linear non-homogeneous PDEs. That is, the Pl for the
equation

F(D, D)u = f(x, y)
is obtained from

1

Up = Pl= ————
F(D, D"

f(x. y).
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However, when the above stated methods fail we have a general method, which is applicable
whatever may be the form of f(x, y), and is presented below:

We have already assumed that F(D, D’) can be factorised, in general, say into n linear
factors. Thus,

1
PI :m f(X, y)

Pl = ! f
(D-mD’)(D-m,D’)...(D-m,D’)

(xy)

- 1 . 1 1 f
(D-mD’) (D-m,D’) (D-m,D’)
In general, to evaluate

(xy)-

1
—f X1 1
©-mDy &Y
we consider the equation

(D —= mD)u = f(x, y)

or p-mg = f(x, y) (Lagrange’s form)
for which the auxiliary equations are

d_dy __du

1 -m fxy

Its first two members, yield
y + mx = ¢ (constant)
The first and last members gives us
du = f(x, y)dx = f(x, ¢ — mx).
On integration, we get

u='|.f(x,c—mx)dx

or (D_—lmD,)f(x,y)zjf(x,c—er()dx

After integration, we shall immediately replace ¢ by (y + mx). Applying this procedure
repeatedly, we can find the PI for the given PDE. For illustration, we consider the following
examples:

EXAMPLE 1.28 Solve the following PDE
(D? - 4DD’ + 4D?)u = Y.
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Solution The given equation is a linear homogeneous PDE. Its auxiliary equation can
be written as

m -4m+ 4 =(m-2)>%=0.

In this example, the roots are repeated and they are 2, 2. The complementary function and
particular integral are obtained as

CF = ¢1(y + 2X) + X¢o(y + 2X) 1)
and PI =;2e2X+y
(D-2D)

If we set D =2, D’ = 1, we observe that F(D, D’) = 0, which is a failure case. Therefore,
we shall adopt the general method to find PI. Now, noting that
1

Zsjﬁﬁauxwzjfam—m@w.

plo—t .1 _gxm
(D-2D’) (D-2D")

— 1 je(z X+C—2X) dx
(D-2D")

S SN
(D-2D) "~ (D-2D)

= J xelC=2X+2X) gy — ecj xax

2 2
X X
_z_ey+2x 2
> =5 (2)

From Egs. (1) and (2), the complete solution of the given PDE is found to be

= eC

2
U= iy + 2X) + Xy + 2X) + %e"*zx.

EXAMPLE 1.29 Find a real function u(x, y), which reduces to zero when y = 0 and satisfy
the PDE
’u  u
B
Solution In symbolic form, the given PDE can be written as
(D? + DY)u = —1(x% + y?)
Its auxiliary equation is given by
(m? + 1) = 0, which gives m = #i.

— (% +y?).
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Hence,
CF = ¢u(y + iX) + do(y — iX) 1)
BEANCESD
D’? (1+ D?/D"?)

-1
and Pl=—— 2(x* +y?) =
(D2+D4)( y)

2 -1
= foz [1+ DD’ZJ (2 +y?)

S {1— D* +~-1(x2+y2)

=—_-Xy (2)

Hence, the complete solution of the given PDE is found to be

. . V3
U= gy + X) + 0oy = iX) = XY ®3)
Finally, the real function satisfying the given PDE is given by
T 2.2
== 4
u=--x7y (4)
which of course — 0 as 'y — O.
EXERCISES

1. Find the region in the xy-plane in which the following equation is hyperbolic:

[(x— y)? = 1uyy + 22U,y +[(x— y)* —1uy, =0
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2. Find the families of characteristics of the PDE
@a- xz)uXX —Uy, =0
in the elliptic and hyperbolic cases.
3. Reduce the following PDE to a canonical form
Uy + XYUyy, =0
4. Classify and reduce the following equations to a canonical form:

(@ YUy — XUy, =0, x>0, y>0.
XK 1%

(b) Uy +2uUy, +uyy =0.

(©) euy+euy =u.

(d) xzuxX +2XyYUyy + yzuyy =0.

() AUy +5Uyy, +Uyy +Uy +Uy =2.

vy
5. Reduce the following equation to a canonical form and hence solve it:

Uy +10u,y, +3uy, =0
6. If L(u):czuXX — Uy, then show that its adjoint operator is given by
L* = G2V — Vi
7. Determine the adjoint operator L* corresponding to
L(u) = Au, + Buyy, +Cu,y + Du, + Euy + Fu

where A, B, C, D, E and F are functions of x and y only.
8. Find the solution of the following Cauchy problem

Uy =F (X y)
given
u= f(x), ﬂ= g(x) on the line y=x
an

using Riemann’s method which is of the form

(g, 0) =511 00)+ 1 (6)1 5 [ 900 ce- [ Fx ) ceey
R

where IR is the triangular region in the xy-plane bounded by the line y = x and the
lines x= Xy, y=Yp through (%, ¥p)-
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9. The characteristics of the partial differential equation

2 2 2
£+2 Iz +coszx£+2£+3£=0
I Ixdy ay>  Ix dy

when it is of hyperbolic type are... and... (GATE-Maths, 1997)

10. Using 7= X+ Y as one of the transformation variable, obtain the canonical form of
2 2 2
&u_z au +(9u:0.
X2 Ixdy  gy?

(GATE-Maths, 1998)

Choose the correct answer in the following questions (11-14):
11. The PDE

y3uXX —-(x% -1) Uy =0 is
(A) parabolic in {(x, y):x<0}
(B) hyperbolic in {(x, y):y>0}
(C) elliptic in IR?
(D) parabolic in {(x, y): x> 0}. (GATE-Maths, 1998)
12. The equation
X (Y=1) 2o — X(Y* ~1D) 2 + V(Y —1) 2 + 2, =0
is hyperbolic in the entire xy-plane except along
(A) x-axis (B) y-axis
(C) A line parallel to y-axis (D) A line parallel to x-axis.

(GATE-Maths, 2000)
13. The characteristic curves of the equation

XUy = YUy, =X°y? +X, x>0 are
(A) rectangular hyperbola (B) parabola
(C) circle (D) straight line.
(GATE-Maths, 2000)
14. Pick the region in which the following PDE is hyperbolic:

YUy + 2XYUyy, + XUyy = Uy + Uy
(A) xy#1 (B) xy#0

(C©) xy>1 (D) xy>0.
(GATE-Maths, 2003)
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15. Solve the following PDEs:
i) (D-D-1)(D-D"-2u=0
(i) (D+D' -1)({D+2D"-3)u=0
16. Solve the following PDE:
(D> + DD’ +D+ D + )u=0
17. Solve the following PDEs:
(i) (D? - DD’ + D’ — 1)u = cos(x + 2y)
(i) D(D - 2D’ - 3)u = ¥
(i) 2D+ D" -1)%D-2D"+2)°%=0
18. Find the complete solution of the following PDEs:
(i) (X*D? - 2xy DD’ + y?D"2 — xD + 3yD")u = 8(y/X)
(i) D(D - 2D’ - 3)u = ¥
19. Find the complete solution of the following PDEs:
(i) (D? +3DD” + 2DHu=x+y
(ii) (D? + D’?)u = cos px cos qy
(ili) (D>~ DD’ — 2D"?)u = (y — 1)&
(iv) (4D? - 4DD’ + D?)u = 16 log (x + 2y)
(v) (D? - 3DD’ + 2D"?)u = ¥ + sin (x — 2y)

105
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Elliptic Differential Equations

2.1 OCCURRENCE OF THE LAPLACE AND POISSON EQUATIONS

In Chapter 1, we have seen the classification of second order partial differential equation into
elliptic, parabolic and hyperbolic types. In this chapter we shall consider various properties
and techniques for solving Laplace and Poisson equations which are elliptic in nature.

Various physical phenomena are governed by the well known Laplace and Poisson equations.
A few of them, frequently encountered in applications are: steady heat conduction, seepage
through porous media, irrotational flow of an ideal fluid, distribution of electrical and magnetic
potential, torsion of prismatic shaft, bending of prismatic beams, distribution of gravitational
potential, etc. In the following two sub-sections, we shall give the derivation of Laplace and
Poisson equations in relation to the most frequently occurring physical situation, namely, the
gravitational potential.

2.1.1 Derivation of Laplace Equation

Consider two particles of masses m and my situated at Q and P separated by a distance r as
shown in Fig. 2.1. According to Newton’s universal law of gravitation, the magnitude of the
force, proportional to the product of their masses and inversely proportional to the square of
the distance, between them is given by

F=g™M (2.1)
r2

where G is the gravitational constant. It r represents the vector PQ, assuming unit mass at

Q and G =1, the force at Q due to the mass at P is given by

F:_ﬂ:v(ﬂj (22)

rd r

106
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zA
Q(m)

Y
<

X
Fig. 2.1 |lllustration of Newton’s universal law of gravitation.

which is called the intensity of the gravitational force. Suppose a particle of unit mass moves
under the attraction of a particle of mass m; at P from infinity up to Q; then the work done
by the force F is

j; F-dr :J; V(%)-dr =% (2.3)

This is defined as the potential V at Q due to a particle at P and is denoted by

__m (2.4)
.

From Eq. (2.2), the intensity of the force at P is
F=-VV (2.5)
Now, if we consider a system of particles of masses m, m,,..., m, which are at distances

r,r,..., Iy respectively, then the force of attraction per unit mass at Q due to the system is

n n
m m
F=) v1=v) (2.6)
2V
The work done by the force acting on the particle is

IrF-drzzn“ﬂz—v @.7)
” izt i
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Therefore,
2 2% m N 2m
VYV =-V — = Ve—_L=0, r 2.8
Y X VIS0 g0 (2:8)

where
2 9?5

V2 =divV = + +
Xt Ay? 97

is called the Laplace operator.
In the case of continuous distribution of matter of density p in a volume 7, we have

V (XY, 2) =” Mdr (2.9)

where r ={(x-&)? +(y-n)? +(z-¢)?}? and Q is outside the body. It can be verified that

VA =0 (2.10)
which is called the Laplace equation.

2.1.2 Derivation of Poisson Equation

Consider a closed surface S consisting of particles of masses m, m,,..., m,. Let Q be any
point on S Let 2 rn M be the total mass inside S and let g, g,,..., Oy be the gravity
field at Q due to the presence of my, m,,..., m, respectively within S Also, let 2 gI g, the

entire gravity field at Q. Then, according to Gauss law, we have

” g-dS=—47GM (2.11)
S

where M = [[[ pdz, p is the mass density function and 7 is the volume in which the masses
T
are distributed throughout. Since the gravity field is conservative, we have
g=VV (2.12)

where V is a scalar potential. But the Gauss divergence theorem states that

Jé[g-d8=f£jv-gdf (2.13)

Also, Eq. (2.11) gives
” g-dS=-47G ”'f pdr (2.14)
S T
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Combining Egs. (2.13) and (2.14), we have

J.J. (V-g+4nGp)dr =0

implying
V.-g=—4zGp=V-VV
Therefore,

VA =-47Gp (2.15)

This equation is known as Poisson’s equation.

2.2 BOUNDARY VALUE PROBLEMS (BVPs)

The function V, whose analytical form we seek for the problems stated in Section 2.1, in
addition to satisfying the Laplace and Poisson equations in a bounded region IR in R®, should
also satisfy certain boundary conditions on the boundary JIR of this region. Such problems
are referred to as boundary value problems (BVPs) for Laplace and Poisson equations. We
shall denote the set of all boundary points of IR by JIR. By the closure of IR, we mean the

set of all interior points of IR together with its boundary points and is denoted

by IR. Symbolically, R.= RUJIR.

If a function f ec™ (f “belongs to” c), then all its derivatives of order n are continuous.
If it belongs to c©, then we mean f is continuous.

There are mainly three types of boundary value problems for Laplace equation. If f ¢© and
is specified on the boundary JIR of some finite region IR, the problem of determining a
function w(x, y, z) such that vy =0 within IR and satisfying y = f on JIR is called the
boundary value problem of first kind, or the Dirichlet problem. For example, finding the

steady state temperature within the region IR when no heat sources or sinks are present and
when the temperature is prescribed on the boundary JIR, is a Dirichlet problem. Another

example would be to find the potential inside the region IR when the potential is specified
on the boundary ZIR. These two examples correspond to the interior Dirichlet problem.

Similarly, if fec@® and is prescribed on the boundary JIR of a finite simply

connected region IR, determining a function w(x, y, z) which satisfies sz//=0 outside IR and

issuch that = f on JIR, is called an exterior Dirichlet problem. For example, determination
of the distribution of the potential outside a body whose surface potential is prescribed, is an
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exterior Dirichlet problem. The second type of BVP is associated with von Neumann. The
problem is to determine the function w(X, Yy, z) so that Vzl//=0 within IR while dwidn is
specified at every point of /IR, where Jdy/dn denotes the normal derivative of the field

variable . This problem is called the Neumann problem. If w is the temperature, Jwidn is

the heat flux representing the amount of heat crossing per unit volume per unit time along
the normal direction, which is zero when insulated. The third type of BVP is concerned with

the determination of the function (X, y, z) such that Vzl/lz 0 within IR, while a boundary

condition of the form Jdyldn+hy = f, where h>0 is specified at every point of JIR. This
is called a mixed BVP or Churchill’s problem. If we assume Newton’s law of cooling, the
heat lost is hy, where y is the temperature difference from the surrounding medium and h>0 is

a constant depending on the medium. The heat f supplied at a point of the boundary is partly
conducted into the medium and partly lost by radiation to the surroundings. Equating these
amounts, we get the third boundary condition.

2.3 SOME IMPORTANT MATHEMATICAL TOOLS

Among the mathematical tools we employ in deriving many important results, the Gauss
divergence theorem plays a vital role, which can be stated as follows: Let JIR be a closed
surface in the xyz-space and IR denote the bounded region enclosed by JIR in which F is
a vector belonging to ¢c® in IR and continuous on IR. Then

H F-ﬁdszj”v-lzdv (2.16)
JR R

where dV is an element of volume, dSis an element of surface area, and i the outward drawn
normal.
Green’s identities which follow from divergence theorem are also useful and they can be

derived as follows: Let F=f@, where f is a vector function of position and ¢ is a scalar

function of position. Then,
m V-(fg)dV = H A-fo dS
R IR

Using the vector identity
V-(fg)=f -Vo+oV-f

fng(/ﬁdV:JJl; ﬁ-fq)ds_J'IJJ NELY,

we have
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If we choose f = Vi, the above equation yields

Hw.vwdvzﬂ' ¢ﬁ.vwd3—f”¢vzy/dv (2.17)
R IR R
Noting that A-Vi is the derivative of ¥ in the direction of A, we introduce the notation
A-Vi =dyldn
into Eq. (2.17) to get
jg V¢-Vl//dV=Jﬁ|; ¢%d$—jg oV OV (2.182)

This equation is known as Green’s first identity. Of course, it is assumed that
both ¢ and w possess continuous second derivatives.

Interchanging the role of ¢ and y, we obtain from relation (2.18a) the equation

jgw-wv: Jj y2las- jg V2 dv (2.18b)
Now, subtracting Eq. (2.18b) from Eq. (2.18a), we get
fg (@VZy —pVig)dV = Ji (¢§—z— w%) ds (2.19)

This is known as Green's second identity. If we set ¢ =y in Eq. (2.18a) we get

J.ilp;'.. (Vo)aV = J,‘.,; ¢%d5—”|;j PV2p AV (2.20)

which is a special case of Green’s first identity.

2.4 PROPERTIES OF HARMONIC FUNCTIONS

Solutions of Laplace equation are called harmonic functions which possess a number of
interesting properties, and they are presented in the following theorems.

Theorem 2.1 If a harmonic function vanishes everywhere on the boundary, then it is identically
zero everywhere.

Proof If ¢ is a harmonic function, then V2¢p=0in IR. Also, if =0 on JIR, we

shall show that ¢ =0 in R = RU JIR. Recalling Green’s first identity, i.e., Eq. (2.20), we get

[[f corou-]] 62es- [[fsv'oar
R JR R
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and using the above facts we have, at once, the relation
m (Vo)2dV =0
R

Since (V¢)? is positive, it follows that the integral will be satisfied only if V¢ =0. This

implies that ¢ is a constant in IR. Since ¢ is continuous in IR and ¢ is zero on JIR, it
follows that =0 in IR.

Theorem 2.2 If ¢ is a harmonic function in IR and Jdg/In=0 on JIR, then ¢ is a constant
in R.

Proof Using Green’s first identity and the data of the theorem, we arrive at
jﬂ (Vg)2dV =0
R

implying V¢ =0, i.e., ¢ isaconstantin IR. Since the value of ¢ is not known on the boundary

JdIR while dgldn=0, it is implied that ¢ is a constant on /IR and hence on IR.
Theorem 2.3 If the Dirichlet problem for a bounded region has a solution, then it is unique.

Proof If ¢ and ¢, are two solutions of the interior Dirichlet problem, then

Vg =0 in IR; #=f ondR
V%, =0 in IR; ¢,=f ondR
Let y=¢ —¢,. Then
Ve =V2p - V24, =0 in IR;

v=¢-¢p=Ff-Ff=0 ondR
Therefore,
Viy=0in R, w=0 ondR

Now using Theorem 2.1, we obtain =0 on ﬁ, which implies that ¢, = ¢,. Hence, the solution
of the Dirichlet problem is unique.

Theorem 2.4 If the Neumann problem for a bounded region has a solution, then it is either
unique or it differs from one another by a constant only.
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Proof Let ¢ and ¢, be two distinct solutions of the Neumann problem. Then we have
Vi =0 in R; gﬁz f ondR,
n

Vg, =0 in IR; %:f on JIR

Let w=¢ —¢,. Then
Vi =v?4 -V%¢,=0 in R
ﬂ:%_%zo on JIR
an dJn JIn

Hence from Theorem 2.2, i is a constanton IR, i.e., ¢ — ¢, = constant. Therefore, the solution

of the Neumann problem is not unique. Thus, the solutions of a certain Neumann problem
can differ from one another by a constant only.

2.4.1 The Spherical Mean

Let IR be a region bounded by JIR and let P(x,y,z) be any point in IR. Also,
let S(P, r) represent a sphere with centre at P and radius r such that it lies entirely within
the domain IR as depicted in Fig. 2.2. Let u be a continuous function in IR. Then the
spherical mean of u denoted by U is defined as

_ 1
0= ” u(Q) ds (2.21)

S(P,r)

Q@ Q)

S(P,r)

Fig. 2.2 Spherical mean.
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where Q(&, 7, ) is any variable point on the surface of the sphere S(P,r) and dS is the
surface element of integration. For a fixed radius r, the value u(r) is the average of the values
of u taken over the sphere S(P,r), and hence it is called the spherical mean. Taking the
origin at P, in terms of spherical polar coordinates, we have

E=x+r5sin @ cos ¢

n=y+rsin@sing

{=z+rcos6
Then, the spherical mean can be written as

1

2
u(r)=—- g J.” u(x+rsin¢9cos¢,y+rsin93in¢,z+rc039)r2 sin 6 d6 d¢
Armr© 79=076=0

Also, since u is continuous on S(P, r), U too is a continuous function of r on some interval

0<r <R, which can be verified as follows:
1 . u r pm .
U(r)zaﬂu(Q)smede d¢=%j@ fo sin 6 d6 d¢ = u(Q)
Now, taking the limit as r — 0, Q — P, we have
rE;[O a(r)=u(P) (2.22)
Hence, T is continuous in 0<r <R

2.4.2 Mean Value Theorem for Harmonic Functions

Theorem 2.5 Let u be harmonic in a region IR. Also, let P(x, y, z) be a given point in IR
and S(P, r) be a sphere with centre at P such that S(P, r) is completely contained in the domain
of harmonicity of u. Then

1
uP) =T =" [[ v@as

S(P,r)
Proof Since u is harmonic in IR, its spherical mean t(r) is continuous in IR and is
given by

s J wore-

S(P,r)

1
4xr?

u(r) =

2w o7
IO fo U n, &)resin @ do dg
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Therefore,

da(r) _ 1 2~
dr A Jo

7[ -
.[o (Ug&; + U7 +Us g, ) sin 6 d6 dg
1 27 ¢# . . . .
:E fo .[o (ug sin @ cos ¢ +u,, sin &'sin ¢ +u, cos 6) sin 6 d6 d¢ (2.23)

Noting that sin & cos ¢, sin @ sin ¢ and cos @ are the direction cosines of the normal A on

S(P, 1),
Vu=iug + ju, +kug, A= (im, jny, kng),

the expression within the parentheses of the integrand of Eq. (2.23) can be written as Vu-A. Thus

d‘(’j(r) -1 . H vu-frsin 6 do dg
r A SP.r)
_ 1 5 J. Vu-nds
Adrr S(Pr)
1 .
= ” V-VudV (by divergence theorem)
Arr?
V(P,r)
_ 1 ” v2udV =0 (since u is harmonic)
4xr? V(P

Therefore, c:j_uzol implying U is constant.
r

Now the continuity of U at r =0 gives, from Eq.(2.22), the relation

() =u(P) =, ,,lrz jj u(Q) ds (2.24)

S(P.r)

2.4.3 Maximum-Minimum Principle and Consequences

Theorem 2.6 Let IR be a region bounded by JIR. Also, let u be a function which is

continuous in a closed region R and satisfies the Laplace equation V2u=0 in the interior
of |R. Further, if u is not constant everywhere on IR, then the maximum and minimum values
of u must occur only on the boundary JIR.
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Proof Suppose u is a harmonic function but not constant everywhere on IR. If possible,
let u attain its maximum value M at some interior point P in IR. Since M is the maximum
of u which is not a constant, there should exist a sphere S(P, r) about P such that some of

the values of uon S(P,r) must be less than M. But by the mean value property, the value
of u at P is the average of the values of u on S(P,r), and hence it is less than M. This
contradicts the assumption that u=M at P. Thus u must be constant over the entire
sphere S(P,r).

Let Q be any other point inside IR which can be connected to P by an arc lying entirely

within the domain IR. By covering this arc with spheres and using the Heine-Borel theorem
to choose a finite number of covering spheres and repeating the argument given above, we
can arrive at the conclusion that u will have the same constant value at Q as at P. Thus u

cannot attain a maximum value at any point inside the region IR. Therefore, u can attain its
maximum value only on the boundary JIR. A similar argument will lead to the conclusion

that u can attain its minimum value only on the boundary JIR.

Some important consequences of the maximum-minimum principle are given in the following
theorems.

Theorem 2.7 (Stability theorem). The solutions of the Dirichlet problem depend continuously
on the boundary data.

Proof Let u; and u, be two solutions of the Dirichlet problem and let f; and f, be given
continuous functions on the boundary ZIR such that

V=0 in R, uw="f ondR,
Vi, =0 in R; u,=f, ondR
Let u=u —u,. Then,
Viu=viy, -viu,=0 in RR; u=f,-f, ondR

Hence, u is a solution of the Dirichlet problem with boundary condition u= f; — f, on JIR. By
the maximum-minimum principle, u attains the maximum and minimum values on JIR. Thus
at any interior point in IR, we shall have, for a given £ >0,
—€ <Umin SUSUpax <&
Therefore,
lul<e in IR, implying |y —uy|<e
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Hence, if
|f,— fol<e on dIR, then|u -u,|<e on R
Thus, small changes in the initial data bring about an arbitrarily small change in the
solution. This completes the proof of the theorem.

Theorem 2.8 Let {f.} be a sequence of functions, each of which is continuous on R and
harmonic on IR. If the sequence {f,} converges uniformly on 2R, then it converges uniformly

on R.
Proof Since the sequence {f,} converges uniformly on JIR, for a given £>0, we
can always find an integer N such that

| fo— fnl<e for n,m>N
Hence, from stability theorem, for all n,m> N, it follows immediately that
| fp—fal<e in R

Therefore, {f,} converges uniformly on R.

EXAMPLE 2.1 Show that if the two-dimensional Laplace equation V2u =0 is transformed
by introducing plane polar coordinates r, & defined by the relations x=rcos @, y=rsin g, it
takes the form

J2u 1du 1 J«

—t-—+=—=

ar? radr % 96?

Solution  In many practical problems, it is necessary to write the Laplace equation

invarious coordinate systems. For instance, if the boundary of the region JZIR is a circle,

then it is natural to use polar coordinates defined by x=rcos 8, y=rsin 8. Therefore,

r2=x?+y?, 6 =tan"(y/x)
—qi sin cos &
r, =cosé, ry =sin o, O, =———, 0. =
r y r
since
sin 8
u=u(r,6) u)(=urrx+u¢949x=[ur cosH—ugT)
Similarly,
Uy = Uy +Ugby =(ur sin @ +uy, cosaj
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Now for the second order derivatives,

Uy = (Uy )y = (Uy ) Iy +(Uy) g Oy = (ur Cos & —Uy Mj cos 0+(u Cos & — Uy sin 0) (—ﬁJ
rJ rJg r

Therefore,

sin @ sin @
Uyx = | Upp COS € — Uy ——+ Uy —— |C0S 6
r r

+ (Ure C0S & — U, Sin 6 — Ugg S"r] o_ Uy cors 6)(— S": 0) (2.25)

Similarly, we can show that

cos 8 cosf ) .
Uyy = Uy SIN O+ Upg —— p — Uy 2 sin @

+ (um sin 6 + U, cos 6 + Uy, CO: o Ug S": Bj(cors 0) (2.26)

By adding Egs. (2.25) and (2.26) and equating to zero, we get

L g =0 (2.27)

1
U Uy = Urp + Ly +r2

which is the Laplace equation in polar coordinates. One can observe that the Laplace equation
in Cartesian coordinates has constant coefficients only, whereas in polar coordinates, it has
variable coefficients.

EXAMPLE 2.2 Show that in cylindrical coordinates r, 8, z defined by the relations x=r cos 6,

y=rsin @, z=z, the Laplace equation V?u=0 takes the form

o"2u+1o7u 1&2 aZ
ar? ror 392 g

Solution  The Laplace equation in Cartesian coordinates is

2u Ju Q4
+

Veu= + =
I Iy? 97

The relations between Cartesian and cylindrical coordinates give

r2=x%+y?, 6 = tan"* (y/x), z=12
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Since
u=uf(r,é, 2

sin @
u,=ur, +Uu,6, +u,z =u coséd—UuU,| —
r

cos @
r

u, =ur, +Uu,6, +u,z, =Uu, sin 0+ug(
u,=ur,+ud, +u,=u,
for the second order derivatives, we find

Uy = (ux)x = (ux)r fx + (ux)aex + (ux)zzx

= {Ur cos 6 — Uy (ﬂﬂ cos é){ur C0s 6 — U (sm Hﬂ (_ Sl ‘9)
r r r o r

r r
. in in
+(ur9 cos 8 — U, S|n9—u198S Q_UQ COS@)(—S 6) (2.28)
r r r

Similarly

uyy = (uy)y = (uy)r ry + (uy)eey + (uy)zzy

6} sin ¢9+{ur sin 6 +uy COSQ} (—COSQ)
r r 6 r

. cos
=| U, Sin@+Uug

. cos @ cos@ ) .
=| Uy SIN G + Uy ———Uyg —— |sin O
r r

+ (urg sin 6+ U, CoS 6 +Ugy cors o_ Ug Sirr] ej(cors 9) (2.29)
Uy, = Uy, (2.30)

Adding Egs. (2.28)-(2.30), we obtain
Viu=u, +%ur +ri2u919 + Uy, (2.31)
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EXAMPLE 2.3 Show that in spherical polar coordinates r, 8, ¢ defined by the relations
X=rsin@® cos¢, y=rsin@sing, z=r cos @, the Laplace equations V2u =0 takes the form

a(zau) 1 a(. au) 1 d%
—|r*—|+———|sinf— |+ — =
ar\ Jr) sin@ d6 0 ) sin?@ dp?

Solution  In Cartesian coordinates, the Laplace equation is

2, — -
Viu=uy, +Uy +U, =0

In spherical coordinates, u=u(r, 9, ¢), r>=x+ y2 +7%, cos@ = ZIr, tan o =ylx
It can be easily verified that

6)X:cosé’cosg/), eyzcosesm¢, ezz_sme
r r r
sin ¢ CoS ¢
= — y =, =O
x rsin@ Y rsing &

Now,

oS 6 cos ¢ sin ¢
_u¢ -
r rsiné

Uy = Uy Iy + Ug8y + U@y = U, SIN 6 COS @ + Uy

cos@sing U cos ¢
r rsiné

Uy = U Ty +Ugby + Usdy = U, Sin @sin ¢ + Uy

y

sin @
Uy = U T, +UgB; +Uy@, = U, COS 6 +Ug (——)
r

For the second order derivatives,
Uy = (ux)r Iy + (ux)a ex + (ux)¢¢x

. cos 6 cos sin
:(ur sin @ cos ¢ + Uy p ¢_u¢rsin¢9

J -(sin @ cos @)

% rsing r

cosecosgb_u sinq)] (cosecos¢)
r
0

+[ur sin 6 cos ¢ + Uy

+[ursin6608¢+ue 9 rsing rsiné

cosecos¢_u sin ¢ _sing
' 0
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cos? 6 cos? ¢ sin® ¢
2 Ugo +—5
r resin“ o

2 2
= (sin“ @ cos” g)u,, + Uy

. 2 .
+ur9(25m 6 cos 6 cos ¢)+Ur¢(_25m¢cos¢)

r r

) ; 2 2 02
+Ugy| - C0Ss 6 cos ¢ sin ¢ ru C0s“ @ cos ¢+sm 1)
r2sin 6 r r

. 2 . .
+u¢[sm¢cos¢+ cos“ @ cos ¢ sin ¢ sin ¢cos¢]

r? r?sin’@ r?sin?e
cos@sin’¢ 2 cos @sin @ cos” ¢ (2.32)
r2sin 6 r2
. . cos @ sin cos . .
Uyy = (Uy); Ty + (Uy ) By + (Uy)y @y = (ur sin @sin ¢+ uy ¢ + Uy . sin¢9j (sin @ sin @)
r

. . cos @ sin cos cos @ sin
+(ursm6?sm¢+u(9 ¢+u¢ - ¢j ¢
rsin@ 0 r

+(ur sin @'sin ¢+ Uy cosfsing COS¢J cos ¢
r
¢

Prsing) rsing

cos? @sin ¢ cos? ¢
2 Ugo +—5 -

r resin“g

. .2 .
+um[25|n¢9coses|n ¢)+Ur¢(2 cos ¢ sin ¢)

= (sin®sin? g)u,, +

Upgp

r r

; 2 9 cin? 2
+u9¢[2C039003¢3m¢J+ur[COS @ sin ¢)+cos q)]

r?sin @ r r

Zsinecosesin2¢ cos@cosz¢
+Ug| — +——
r resin @

singcosg sin ¢ cos ¢ cos? 6 sin ¢ Cos @
Tl - 2 T 2.2, 2 in2
r r<sin“é r<sin“@
(2.33)
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Similarly,

U, = (uz)r 2+ (uz)eez + (uz)¢ 9,

= (ur cos @ — Uy y) (cos ) +(ur Cos @ — Uy y) —(—ﬂ)
r (4

) 25sin 6 cos @ sin @
= ul'l' CoS 0 - Ure + u90 2
r r
.2 .
u sin“ @ U cos 923|n 0 (2.34)
r r
Adding Egs. (2.32)—(2.34), we obtain
1 1 2 cos @
Viu=u, +— Uy + Ugp +—Uy, + =0
"2 % r2sin o %y r?sin @
which can be rewritten as
2
V2u=i(r2ﬂ)+;i[sin BQJ+LQ=O (2.35)
ar\" Jr) sin@ d6 0 ) sin?6 Jp?

2.5 SEPARATION OF VARIABLES

The method of separation of variables is applicable to a large number of classical linear
homogeneous equations. The choice of the coordinate system in general depends on the shape
of the boundary. For example, consider a two-dimensional Laplace equation in Cartesian
coordinates.

V2u=uxx+uyy =0 (2.36)
We assume the solution in the form

u(x y) = X(x)Y(y) (2.37)
Substituting in Eq. (2.36), we get

X"Y+Y”X=0

X :—Y :k
X Y

where k is a separation constant. Three cases arise.
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Case | Let k=p?, p is real. Then

C:TZ(— X =0 and V-F p’Y =0
whose solution is given by
X =ceP +ce ™
and
Y =3 C0S py +C4 Sin py
Thus, the solution is

u(x, y) = (ce™ +c,e ™) (c; cos py+c,sin py) (2.38)

Case Il Let k=0. Then

(227)2(20 and %:0

Integrating twice, we get

X =CX+Cq
and

Y=cy+¢G
The solution is therefore,

u(x y) = (Gsx+C) (c7y + ) (2.39)

Case Il Let k=—p2. Proceeding as in Case I, we obtain

X =g COS PX+Cq SiN pX
Y =c e +gpe ™
Hence, the solution in this case is
u(x, y) = (Cg cOs px+cyg sin px) (ce™ +cipe” ™) (2.40)

In all these cases, ¢ (i =1,2,...,12) refer to integration constants, which are calculated by
using the boundary conditions.
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2.6 DIRICHLET PROBLEM FOR A RECTANGLE

The Dirichlet problem for a rectangle is defined as follows:

PDE: V2u=0, 0<x<a 0<y<b
BCs: u(x,b)=u(a, y)=0, u(o, y)=0, u(x,0)=f(x) (2.41)

This is an interior Dirichlet problem. The general solution of the governing PDE, using the
method of variables separable, is discussed in Section 2.5. The various possible solutions of
the Laplace equation are given by Egs. (2.38-2.40). Of these three solutions, we have to
choose that solution which is consistent with the physical nature of the problem and the given
boundary conditions as depicted in Fig. 2.3.

y
A
y=b
u=0
x=0 X=a
u=0 u=0
u="f(x) -
(0] y=0

Fig. 2.3 Dirichlet boundary conditions.
Consider the solution given by Eq. (2.38):
u(x, y) = (ce™ +ce™™) (cs cos py+¢ysin py)
Using the boundary condition: u(0, y)=0, we get
(¢ +¢2) (C3 cos py +¢4 sin py) =0

which means that either ¢, + ¢, =0 or c;cos py + ¢, sin py=0. But c;cos py+ ¢, sin py # 0;
therefore,

C+c,=0 (2.42)
Again, using the BC; u(a, y) =0, Eq. (2.38) gives
(€% +ce ) (c3c0s py +¢4 Sin py) =0
implying thereby
ce® +c,e® =0 (2.43)

To determine the constants c;, ¢,, we have to solve Egs. (2.42) and (2.43); being homogeneous,
the determinant
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1 1
e e

‘= 0
for the existence of non-trivial solution, which is not the case. Hence, only the trivial solution
u(x, y) =0 is possible.

If we consider the solution given by Eq. (2.39) u(x, y) = (csX+Cg) (c; ¥ + ¢g), the boundary

conditions: u(0, y)=u(a, y)=0 again yield a trivial solution. Hence, the possible solutions

given by Egs. (2.38) and (2.39) are ruled out. Therefore, the only possible solution obtained
from Eq. (2.40) is

u(x, y) = (cg cos px+cyq sin px) (c;e™ +c,6 ™)
Using the BC: u(0, y)=0, we get cg =0. Also, the other BC: u(a, y) =0 yields

Cosin pa (e +cpe ™) =0
For non-trivial solution, c;q cannot be zero, implying sin pa= 0, which is possible if pa=nz or

p=nxr/a, n=1, 2,3,... Therefore, the possible non-trivial solution after using the superposition
principle is

u(x y)= i sin ?[an exp (nzyla) + by, exp (—nry/a)] (2.44)

n=1

Now, using the BC: u(x, b) =0, we get

sin ?[an exp (nzbla) + b, exp (—nzb/a)] =0

implying thereby
a, exp (nzbfa) + by, exp (—nzbla) =0
which gives

_ . exp(nzbla) B
b, = an—exp(_mb/a), n=12,...,

The solution (2.44) now becomes

oo

u(x )_2 2a,,sin (nﬂx/a)[exp{mr (y—b)/a}—exp{—nzr(y—b)/a}}
= 2 e (Crurbla) 2

n=1

YA | )
) g‘l exp (nvbia) " (PX/@)sin h{nz(y —bj/e}
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Let 2a,/[exp (—nzb/a)] = A,. Then the solution can be written in the form
u(x, y)=Y A, sin (nrxia) sinh {rvr(y - b)/a} (2.45)
n=1
Finally, using the non-homogeneous boundary condition: u(x, 0) = f(x), we get

i A, sin (nzx/a) sinh (—nzbla) = f (X)

n=1

which is a half-range Fourier series. Therefore,
. 2 (a .
A, sinh (—n7rb/a)=a'|.O f (x) sin (N7 x/a) dx (2.46)

Thus, the required solution for the given Dirichlet problem is

u(x, y)= i A, sin (nrx/a) sinh {nz (y — b)/a} (2.47)

n=1
where

2 1

= m .[o f(X) sin (nzrx/a) dx

A,

2.7 THE NEUMANN PROBLEM FOR A RECTANGLE
The Neumann problem for a rectangle is defined as follows:
PDE: V2u=0, 0<x<a 0<y<b
BCs: u, (0, y)=uy(a y) =0, uy (%, 0)=0, uy (%, b) = f(X) (2.48)

The general solution of the Laplace equation using the method of variables separable is
given in Section 2.5, and is found to be

u(x, y) = (¢ cos px+c, sin px) (c;e” +c,e ™)
The BC: u,(0, y)=0 gives
0=c,p(cse™ +c,e™)
implying ¢, =0. Therefore,

u(x, y) =¢ cos px(cze™ +c,e) (2.49)
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The BC: u,(a, y)=0 gives
0=—c psin pa(ie™ +c,e”?)

For non-trivial solution, ¢, # 0, implying

sin pa=0, pa=nr, p=n—” (n=0,12,..)
a
Thus the possible solution is
u(x, y) = cos 2% (Ae””y’a+ Be Y2y (2.50)

Now, using the BC: Uy (X,0)=0, we get

0=cos @(AM— BM)
a a a

implying B= A Thus, the solution is
nrx
u(x, y) = Acos e [exp (nzry/a) + exp (—nry/a)]

=2Acos ﬂcosh nry
a

Using the superposition principle and defining 2A= A,, we get

- nrx nry
u= A, cos — cosh —= (2.51)
ng() a

a

Finally, using the BC: uy(x b)= f(x), we get

t) =3 A, cos = Psinh b
“~ a a a

which is the half-range Fourier cosine series. Therefore,
,’-\1Ms,|nh£b = 2 f (X) cos—dx
a a a a

Hence, the required solution is

u= A+ 2 A, cos—cosh n:zy (2.52)
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where

2

1 a
=1z sinh (nbla) -[0

£ (%) cos % dix
a
2.8 INTERIOR DIRICHLET PROBLEM FOR A CIRCLE

The Dirichlet problem for the circle is defined as follows:

PDE: V2u=0, 0<r<a 0<6<2z

BC: u(a, 8)=f(9), 0<0<2rn (2.53)
where f (@) is a continuous function on ZIR. The task is to find the value of u at any point
in the interior of the circle IR in terms of its values on JIR such that u is single valued and

continuous on IR.

In view of circular geometry, it is natural to choose polar coordinates to solve this
problem and then use the variables separable method. The requirement of single-valuedness

of uin IR implies the periodicity condition, i.e.,
u(r,@+2r)=u(r,9), 0<r<a, (2.54)
From Eq. (2.27), V2u=0 which in polar coordinates can be written as
1 1 0
Urr +?Ur +r—2U99 =

If u(r,8)=R(r)H(6), the above equation reduces to

2

R'H +~RH + = RH”=0
r r

This equation can be rewritten as

2 4 / ”
rFRI+rR R (2.55)
R H

which means that a function of r is equal to a function of 8 and, therefore, each must be
equal to a constant k (a separation constant).

Case | Let k=A% Then
r’R’+rR - 1°R=0 (2.56)
which is a Euler type of equation and can be solved by setting r = €%. Its solution is

R=cge +ce  =qrt +cr
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Also,
H”+A%H =0
whose solution is
H =c;cos A6 + ¢, sin 10
Therefore,

u(r,9)=(olr1+ozr”1)(%cos A6 + ¢4 sin 10) (2.57)

Case Il Let k=-A2. Then
r’R” +rR + A°R=0, H”-1%H =0
Their respective solutions are

R=ccos(AInr)+c,sin(4Inr)

H = cye™ +c,e?

Thus
u(r,@)=[ccos(AInr)+c,sin(A1Inr)] (%e’w + c4e_’w) (2.58)
Case Il Let k=0. Then we have
rR”+R' =0

Setting R’(r) =V (r), we obtain

rd—V+V =0, i.e.,d_v+ﬂ:o

dr V

Integrating, we get InVr =In c;. Therefore,

v=a_dr
rodr

On integration,

R=c/Inr+c,
Also,

H”=0

After integrating twice, we get

H=c0+c,

Thus,
u(r,9)=(cInr+c,) (60 +c¢y) (2.59)



130 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Now, for the interior problem, r =0 is a point in the domain IR and since In r is not defined
at r =0, the solutions (2.58) and (2.59) are not acceptable. Thus the required solution is
obtained from Eq. (2.57). The periodicity condition in 8 implies

C3C0S A8 + ¢4 8in A6 = ¢z ¢0s (A (6 + 27)) + ¢4 Sin (A(0 + 27))

cz[cos 10 —cos (A0 + 2A7x)] + cy[sin A6 —sin (10 + 2Ax)] =0
or
2sin Az[cgsin (160 + Ar) — ¢4 cos (A6 + Ax)] =0
implying sin Az =0, Ax=nz, A=n(n=0,1,2,...). Using the principle of superposition and

renaming the constants, the acceptable general solution can be written as

u(r, o) = i (cyr" +dyr™™) (a, cos né + by, sin ng) (2.60)
n=0

At r =0, the solution should be finite, which requires d,, =0. Thus the appropriate solution
assumes the form

u(r,8) = i r" (A, cos nd + B, sin ng)

n=0

For n=0, let the constant Ay be Ay/2. Then the solution is
u(r,9)=%+2r”(%cosn€+8nsin no) (2.61)
n=1

which is a full-range Fourier series. Now we have to determine A, and B,, so that the BC:
u(a, 9) = f (@) is satisfied, i.e.,

f(6)= i a" (A, cos n@ + By, sin ng)
n=0
Hence,

1 p2r
A==|" f(6)de
Y0

2
a"A, =%foﬂ f (6) cos ng do (2.62)

2
a”Bn=1f " £(0)sinno do, n=1,2,3, ...
Y0
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In Egs. (2.62) we replace the dummy variable 6 by ¢ to distinguish this variable from the
current variable @ in Eq. (2.61). Substituting Eg. (2.62) into Eq. (2.61), we obtain the relation

r" cos ng
a" 7

u(r,9)=%_|.02” f(0) d¢+2[ [, cos () 1(9) dg
n=1

r" sin n@

2r
i sm(ngb)f(gb)dgb}

a

Interchanging the order of summation and integration, we get

u(r, 6) =£J.02” f(¢) d¢+%.l.02” f(¢) i (é) {cos ng cos NG +sin ng sin nd}dg
n=1

2z > n
-~ [" 1@ [§+21 @ cos n(¢—e)}d¢ (2.63)

To obtain an alternative expression for u(r, &) in closed integral form, we can proceed as
follows:

Let
c= i (LJ cosn(p—6)
n=1 a
S= i (L) sinn(gp-0)
n=1 a
so that

=] n
o N di(9-0)
C+IsS= —e
>
n=1
Since r<a,(r/a)<1 and |¢ @<y,
> . n i (6-6)
C+iS=Z |:(L)e'(¢—9):| :%
nopL\@ [L-(rl)e™]

_ (ra){e ™ — (r/a)}
[1-(rfa)e @O[1- (r/a)e (@9
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Equating the real part on both sides, we get

__[r/a)cos (p-6) - (r?/a®)]
[1— (2r/a) cos (¢ — 6) + (r?/a?)]

Thus, the expression in the square brackets of Eq. (2.63) becomes

1, [(r/a) cos (p—6) - (r?/a®)] _ a? —r?
2 [1-(2r/a)cos (¢ —6) + (r’/a®)] 2[a® - 2ar cos (¢ —6) +r?]

Thus, the required solution takes the form

a(r.o) =2 [ @10

(2.64)
27 30 [a? - 2ar cos (¢ — 6) +r?]

This is known as Poisson’s integral formula for a circle, which gives a unique solution for
the Dirichlet problem. The solution (2.64) can be interpreted physically in many ways: It can

be thought of as finding the potential u(r,8) as a weighted average of the boundary
potentials f(¢) weighted by the Poisson kernel P, given by
~ a?—r?
[a® - 2ar cos (¢ — 0) +r?]

It can also be thought of as a steady temperature distribution u(r, 8) in a circular disc, when

the temperature u on its boundary JIR is given by u= f(¢) which is independent of time.

2.9 EXTERIOR DIRICHLET PROBLEM FOR A CIRCLE
The exterior Dirichlet problem is described by
PDE: V2u=0
BC: u(a 6) = f(0) (2.65)
u must be bounded as r — oo,

By the method of separation of variables, the general solution (2.60) of V2u=0 in polar
coordinates can be written as

u(r,8) = i (cr" +d,r~™) (a, cos n@ + by, sin ng)
n=0

Now as, r — o, we require u to be bounded, and, therefore, c, =0.
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After adjusting the constants, the general solution now reads

u(r,0) = Z r~" (A, cos né + By, sin ng)
n=0
With no loss of generality, it can also be written as

u(r, 6) =%+ Y, 17" (A, cos ng + By sin n) (2.66)
n=1
Using the BC: u(a, 8) = f (8), we obtain
AL ¥ 4 ;
UORE + a~"(A,cos nd + B, sin no)
n=1
This is a full-range Fourier series in f (@), where
1 r2r7
== f(8)do
m=—[" 10
2
a "A, =£J‘ " £(6) cosn6 d6 (2.67)
T J0
2
a™"B, =1j " £(6)sinno d6
zdo

In Eq. (2.67) we replace the dummy variable 8 by ¢ so as to distinguish it from the current
variable 8. We then introduce the changed variable into solution (2.66) which becomes

r—nan

pa > 2z
u(r,:S’):%J.O2 f(¢)d¢)+2 l: - c0S nHJ.O cos (ng) f(¢)dg
n=1

#1—sin nefoz’[ sin (ng) f (¢) d¢}
or
u(r,e)zi_“h f (@) [1+i (Ejn cos n(¢—9)]d¢) (2.68)
70 2 &=r
Let

Czi (?a) cosn(g—6)

n=1
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S= i [?a)n sinn(¢—6)

n=1

Then,
oo n
c+is=Y Kf)e‘@"")}
~ | {r
n=1
Since 2 <1, |é©@9|<1. We have
r

ciised_ €9 (@) [¢9%) — (ain)]
r - (air)e@ 9] - (ar)e@ 01— (ar)e’ @]

Hence,

__[(arr) cos (p-6) - (a%Ir?)]
[1— (2a/r) cos (¢ — 6) + (a%/r?)]

Thus the quantity in the square brackets on the right-hand side of Eq. (2.68) becomes

1, [(a/r) cos (¢ — 6) — (a%/r?)] _ r’—a?
2 [1-(2alr)cos (¢ —6) +(a%/r?)] 2[r? —2ar cos (¢ —6) +a°]

Therefore, the solution of the exterior Dirichlet problem reduces to that of an integral equation
of the form

1 2 (r*-a*)f(9)
0)=— d 2.69
ur.6) 2w 40 [r?-2ar cos (¢ —6) +a?] (2:69)

EXAMPLE 2.4 Find the steady state temperature distribution in a semi-circular plate of
radius a, insulated on both the faces with its curved boundary kept at a constant temperature
U, and its bounding diameter kept at zero temperature as described in Fig. 2.4.

Ao=n2

A
ny

u=0 2}

<
1
3

Fig. 2.4 Semi-circular plate.
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Solution  The governing heat flow equation is
U = V2u
In the steady state, the temperature is independent of time; hence u;, =0, and the temperature
satisfies the Laplace equation. The problem can now be stated as follows: To solve
PDE: V2u(r,6)=u, +%ur +ri2u99 =0
BCs: u(a, 8) =U,, u(r,0)=0, u(r,7)=0
the acceptable general solution is
u(r,8)= (cr)“ + Dr‘)“) (Acos 16+ Bsin 10) (2.70)
From the BC: u(r,0)=0, we get A=0; however, the BC: u(r,z)=0 also gives
B sin ﬂzr(cr’1 + Dr"i) =0

implying either B=0 or sin Az =0. B=0 gives a trivial solution. For a non-trivial solution,

we must have sin Az =0, implying
Ar=nr, n=12,...
meaning thereby A =n. Hence, the possible solution is
u(r,8)=Bsin né'(Cr’1 + Dr"i) (2.71)

In Eq. (2.71), we observe that as r — 0, the term r~* — . But the solution should be finite

at r=0, andso D =0. Then after adjusting the constants, it follows from the superposition
principle that,

u(r,8)= 2 B,r" sin nd
n=1

Finally, using the first BC: u(a, &) =U,, we get

u(a, @)=Ug = 2 B,a" sin n@
n=1
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which is a half-range Fourier sine series. Therefore,

Wo

2 ) , for n=13,...
Bna”:—.[” Upsinngdg={ nr
zJo
0, for n=2,4, ...
Hence,
41U
Bn: on; n=1, 3,
nra

With these values of B,, the required solution is

u(r,tS‘):A'UT0 i E(L) sin n@

n=odd nia

2.10 INTERIOR NEUMANN PROBLEM FOR A CIRCLE

The interior Neumann problem for a circle is described by

PDE: VZu=0, O<r<a 0<@<2z (2.72)
Jdu Jdu(a b)

BC: === g(o), r=a
oan oar 9(0)

Following the method of separation of variables, the general solution (2.60) of equation
V2u=0 in polar coordinates is given by
u(r, )= 2 (cyr" +d,r~™) (a, cos nd + by, sin ng)
n=0

Atr =0, the solution should be finite and, therefore, d, = 0. Hence, after adjusting the constants,
the general solution becomes

u(r,8) = 2 r" (A, cos nd + B, sin ng)
n=0
With no loss of generality, this equation can be written as

u(r,e):%+ir”(ﬁh cos né + B, sin ng) (2.73)

n=1

% =) nr"(A, cos n + B, sin no)
r
n=1
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Using the BC:
du
a—(a, ) =9(9)
r
we get
g(6) = Y., na"" (A, cos ng + B, sin ng) (2.74)
n=1

which is a full-range Fourier series in g(@), where
2
na" A, =1J. " 9(6) cos no dé
7o

2
na"!B, :EJ. " 9(6) sin no d (2.75)
zJo

Here, we replace the dummy variable 6 by ¢ to distinguish from the current variable € in
Eq. (2.74). Now introducing Eq. (2.75) into Eq. (2.73), we obtain

oo

u(r,8)= 2 =) J.OZE 9(¢) (cos ng cos né +sin ng sin nd) d¢

or

u(r, e)_—+jo g(qﬁ)E( )—cosn(gb 6)do (2.76)

This solution can also be expressed in an alternative integral form as follows: Let

C= 2( j—cosn(gb 6)
S= 2( j—smn(q) 6)

Therefore,

n

- 1
ctis=Y dn(0-6) _ Z{Le'(ff’—ﬁ)} 1
( j T~ la n

2 3
{fei <¢—e)} {f d <¢—9)} {fei <¢—e)}
a a a

a
T 1 2 3
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or

C+is=-21n {1—£ei W’—”)}: “2n [1—£cos (@—6)—itsin (¢—e)} 2.77)
T a T a a

To get the real part of In z, we may note that

W=Inz or z=¢V

u+iv

i.e, x+iy=e""" =¢e"cosv+ie" sinv. Therefore,

x=¢e"cosv, y=e"sinv

i.e., u=In|z|. Therefore,

a r 2 (r . 2
C= — In J(l—gcos(gb—e)) +(gsm (¢—¢9))

__a, a? — 2ar cos (¢ — 6) + r?
z a2

Thus the required solution is

V4 2 _ _ 2
u(r,é?):AO EJ-OZ In\/a 2arcos(¢p—-0)+r 9(0) dg (2.78)

2 a2

which is again an integral equation.

2.11 SOLUTION OF LAPLACE EQUATION IN CYLINDRICAL COORDINATES

The Laplace equation in cylindrical coordinates assumes the following form:

1 1
vau = Upy +FUr +r—2u99 +U,, =0 (2.79)

We now seek a separable solution of the form
u(r,8,2)=F(r,0)Z(z) (2.80)
Substituting Eq. (2.80) into Eq. (2.79), we get
A*F_ 10F_ 1 9°F d’z

LAy B AS SR LA B R
ar? ror r2 96 dz?

or

PRI LPFIL dPZ1
g2 ror 299 )F d2zZ y
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where k is a separation constant. Therefore, either

d—z+ kZ=0 (2.81)

dz?
or

2 2
J F+1§—F+i&——KF 0 (2.82)

g rar r? 9e?
If k is real and positive, the solution of Eq. (2.81) is

Z = cos [kz+c,sin \/kz
If k is negative, the solution of Eq. (2.81) is
Z=qel* 1o e vk
If k is equal to zero, the solution of Eq. (2.81) is

Z=gz+¢C
From physical considerations, one would expect a solution which decays with increasing z

and, therefore, the solution corresponding to negative k is acceptable. Let k =-A12. Then
Z =qet? + et (2.83)
Equation (2.82) now becomes
A*F 10F 1 J*F
—+= +
orZ ot o (2 962
Let F(r,8)= f(r)H (). Substituting into the above equations, we get

+A%F =0

f”H+—f’H+ fH”+/12fH 0
I’

or

’”

H
=k’ (sa
m (say)

(rzf”+rf’+12r2f)%=—

From physical consideration, we expect the solution to be periodic in 8, which can be obtained
when k’ is positive and k’ =n?. Therefore, the acceptable solution will be

H = c; cos né + ¢, sin n@ (2.84)
When k’ =n?, we will also have

rzz—fﬂd +(A%r2-n®)f =0 (2.85)
r
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which is a Bessel’s equation whose general solution is given by
f = AJ,(Ar) + BY, (4r) (2.86)
Here, J,(Ar) and Y, (Ar) are the nth order Bessel functions of first and second kind, respectively.

Since Y, (Ar) — — as r — 0, Y,,(Ar) becomes unbounded at r = 0. Continuity of the solution
demands B=0. Hence the most general and acceptable solution of V2u=0 is
u(r, 8, z)=J,(Ar) (ce” +c,e ) (c,cos nd +c, sin nd) (2.87)

EXAMPLE 2.5 A homogeneous thermally conducting cylinder occupies the region 0<r < a,
0<6 <2z, 0<z<h, where r, 8, z are cylindrical coordinates. The top z=h and the lateral

surface r =a are held at 0°, while the base z=0 is held at 100°. Assuming that there are no
sources of heat generation within the cylinder, find the steady-temperature distribution within
the cylinder.

Solution  The temperature u must be a single valued continuous function. The steady
state temperature satisfies the Laplace equation inside the cylinder. To compute the temperature
distribution inside the cylinder, we have to solve the following BVP:

PDE: V2u=0
BCs: u=0° on z=h,
u=0° onr=a,

u=100° on z=0

The general solution of the Laplace equation in cylindrical coordinates as given in Section 2.11

is
r(r, 6, z) = J,(Ar) (¢, cos N6 + ¢, sin ) (cz** +c,e )

Since the face z=0 is maintained at 100° and since the other face and lateral surface of the
cylinder are maintained at 0°, the temperature at any point inside the cylinder is obviously

independent of 8. This is possible only when n=0 in the general solution. Thus,
u(r, 2) = Jo(Ar) (Ae** + Be %)
Using the BC: u=0 on z=h, we get
0=Jo(Ar) (Ae™ + Be M)

implying thereby Ae*M + B =0, from which

At

e—lh

B=-
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Therefore, the solution is

Jo(Ar) A _ (g
u(r. 2) = 06(3_13 [ _ g Az

or
u(r, z2) = Jg(4Ar) Asinh A (z—h)

where A =2A/e*". Now using the BC: u=0 on r =a, we have
0= AJq(Aa)sinh A(z-h)

implying J,(4a) =0, which has infinitely many positive roots. Denoting them by &,, we
have &, = Aa, and therefore,
1o
a
Thus the solution is

u(r,z):AlJo(%r)sinh [%”(z—h)] n=12,...
Using the principle of superposition, we have
u(r,2)= Z AJo (%{r) sinh [%"(z— h)}

The BC: u=100° on z=0 gives
SN fnh) (énr)
100 = sinh | —=—|Jy| =
RS

which is a Fourier-Bessel series. Multiplying both sides with rJ,(&,,r/a) and integrating, we
get

a Enr - . &h)ra Enr & r)
100 | rJy| 2™ |dr = sinh | —2"— rJo| 2% | Jg| 22 |dr
e o= B e [0l [
Using the orthogonality property of Bessel’s function, namely,

0, if i#]

a
XJIn(@X) In(ajx)dx =1 52 o
J.O 7J§+1(ai)1 if i= J



142 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

where ¢, «;j are the zeros at J,(x) =0, we have

n=1
Therefore,
A, = 2;0 : rdo (ﬂ) dr
a’sinh (—”)Jf(fn) a
Setting
ol =R
a ¢n
the relation for A, can also be written as
A, = 2§0h fj xJ (X) dx
Zsinn( 1" a2 (&)

Using the recurrence relation
x"J (x)=i[x”\] (]
n-1 dx n !
For n=1, we get
'[ xJp (X) dx = xJ1 (X)

Now, A, can be written as

én
3 200 xJ;(X) 3 200
&2sinh (=& a) 2 (&) . &nsinh (=¢,h/a) J,(&,)
Hence, the required temperature distribution inside the cylinder is

& y(Earfa) sinh [(£,/a) (2 h)]
H(r,2) =200 21 £, sinh (~&,hia) (&)

where &, are the positive zeros of Jy(&).
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EXAMPLE 2.6 Find the potential u inside the cylinder 0<r<a, 0<6<2r, 0<z<h, if

the potential on the top z=h, and on the lateral surface r = a is held at zero, while on the

base z= 0, the potential is given by u(r, 8,0) =V, (1- r?/a%), where \, is a constant; r, 8, z are
cylindrical polar coordinates.

Solution  The potential u must be a single-valued continuous function and satisfy the
Laplace equation inside the cylinder. To compute the potential inside the cylinder, we have
to solve the following BVP:

PDE: V2u=0
BCs: u=0 on z=h,
u=0 onr=a,

r2
u=Vy|l-— on z=0
a2

In cylindrical coordinates, the general solution of the Laplace equation as given in Section 2.11
is

u(r, 8, 2) = J,,(Ar) (c, cos N6 + ¢, sin nB) (cze’? + ¢, %)

Since the face z= 0 has potential Vy(1- r2/a2), which is purely a function of r and is independent

of & and since the other faces of the cylinder are at zero potential, the potential at any point

inside the cylinder will obviously be independent of 8. This is possible only when n=0 in
the general solution. Thus,

u(r, 2) = Jo (Ar) (Ae*? + Be *?)
Using the BC: u=0 on z=h, we obtain

0=Jo(4r) (A’ + Be M)

implying Ae*" + Be™*" =0, which yields

Hence, the solution is

u(r, 2) = e_% Jo(Ar)[e* M _ g4z
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or
u(r, z) = AJgy(Ar)sinh A(z-h)

where A = Ale ™, Now, using the BC: u=0 on the lateral surface, i.e., on r = a, we get
0=AJy(4a)sinh A(z-h)

implying Jy(4a) =0. This has infinitely many positive roots; denoting them by &, we shall
have

E,=da or A=¢,/a

The solution now takes the form
u(r, 2) = AJ (ﬁ)sinh F—”(z— h)}, n=12,...
a a

The principle of superposition gives
S énrj : [;‘n }
u(r, 2)= Jo| = |sinh | ==(z-h
(r. 2 n§:1j,Aqo[a 2 (z-h)

2

r_Z) on z=0 yields
a

g g el

This is a Fourier-Bessel’s series. Multiplying both sides by rJ,(,r/a) and integrating, we get

Vo foa [1—;—2JrJO(§m jdr 2 Ahsmh( ol )J.Oa rJO(%jJO(QE—gJ dr

Using the orthogonality property of the Bessel functions

The last BC: u=V, (1—

a 0, if i#]
f X3, (eX) I, (@, x) dx =1 g2
0

S3ae). =]

where ¢, & are the zeros of J,(x)=0, we get

o 2
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which gives

2V, a r2 Ear
A, = 0 [1——J rdo (L) dr
asinh (—ggh)\llz(ffn) J.O a’ a

By letting &,r/a= x, this equation can be modified to
_ Vo
gtsinn (-1 | 326

a
Using the well-known recurrence relation

A [ (€3 - x2)x30(0 o

x*J,_1(X) = %[xa\]a(x)] for a=12,...

we get
[x3H00=x109, [ x2309=x23,(9

From these relations, we obtain

A= T IR A
g4 sinh (—;)Jf@n)
Integrating by parts, we get
_ 4V0 fn ZJ d
A i (&) 922 Jo Koo
4V0 §n 2
= d[x“J
£ sinh (-&./a) I2 () Jo" apa 0
ol D23, (5

" £ dsinh (=&,0a) I2 (&)

Thus,

_ Nyd, (&)
&2sinh (~&yhia) 37 (&)

145
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The recurrence relation
2n
Ina () +Ip(¥) = 7Jn(x)

for n=1 gives

Jo(fn)+J2(5n)=§J1(5n)
Hence,
36 =2 (&)
2\5n §n 1\5n
since Jy(&,) =0. Therefore,
8VO‘]1(‘):n)

£5 sinh (=&yta) 37 (&)
Thus, the required potential inside the cylinder is

w MyJo ({:r) sinh F‘;(z— h)}

u(r,2)=y

33 (E) sinh (—ih)

2.12 SOLUTION OF LAPLACE EQUATION IN SPHERICAL COORDINATES

In Example 2.3, the Laplace equation is expressed in spherical coordinates and has the
following form:

d(,0u), 1 9 (. ,du 1 %
viu=2 |2 |4 — 2L 9_) —— =0 2.88
U o (r o”r}rsin 0 96 (sm 26 +sin20 I¢p? (289)
Let us assume the separable solution in the form
u(r, 8,9)=R(r) F(0, ¢) (2.89)

Substituting Eq. (2.89) into Eq. (2.88), we get
ad( ,JdR R Jd (. JF R J°F
—| = |t——|sinf0—— |+ —5——>5=0
or ar ) sin@ 26 20 ) sin“0 do
Separation of variables gives
2
d rzﬁ —.i a(sin 9&':)+_1‘9F
ar U dr sin@ | d6 20 ) sin 6 9p?

F
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where u is a separation constant. Therefore,

1d(2dR)_
2 (r dr)_ U (2.90)
1 d (. JF 1 J%F
—|sinf— [+——|= 2.91
Fsineliae( 079) sin907¢2:| A (291)
Equation (2.90) gives
d’R _ dR
2
rc-—m-+2r—+uR=0
dr? dr #

which is a Euler’s equation. Hence, using the transformation r = €%, the auxiliary equation
can be written as

D(D-1)+2D+u=D?+D+u=0
where D =d/dz Its roots are given by

N E T

2
Let u=-o(a+1); then we get

N () e

Hence, D =« and —(a+1). Therefore, the solution of Euler’s equation is

R=gr% +c,r (@ (2.92)

Taking —u = (a+1), Eq. (2.91) becomes

2
i(sin 90”—':)+_L§—F+a(a+l) Fsing=0
20 70 ) sin@ Jp?
Inserting
F=H(@)®(¢)
into the above equation and separating the variables, we obtain
. 2
siné i(sin Gd—H)+a(a+1) sin@H |= _Ldo =v?
H [de do O g¢?
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where V2 is another separation constant. Then

2
I 20 (2.93)
do¢

sin@| d (. _dH . 2
T{@ (sm 0¥)+a(a+1) sin (0) H}:v (2.94)
The general solution of Eq. (2.93) is
@ = C5COS Vv + ¢4 Sin v (2.95)

provided v = 0. If v =0, the solution is independent of ¢ which corresponds to the axisymmetric
case. Equation (2.94) becomes, for the axisymmetric, case,

i(sin Gd—H)+a(a+l) sin(@)H =0
de de

Transforming the independent variable @ to x and by letting x=cos @, the abvoe equation
becomes

i[sin ed—H%)%+a(a+l)sin ()H =0
dx dx do ) do
ie.,
i[(1—cos2 6) d—H}+a(a+l)H =0
dx dx
or
d >, dH
— | 1-x°)— DH =0 .
dx[( X“) dx}+a(cx+ ) (2.96)

This is the well-known Legendre equation. Its general solution is given by
H = c5F, (%) +C5Q, (X), -1<x<1 (2.97)

where P, Q, are Legendre functions of the first and second kind respectively. For convenience
let & be a positive integer, say o =n. Then

H = ¢ B, (cos 8) + c5Q, (cos 8) (2.98)
Continuity of H(8) at 8 =0, # implies the continuity of H(X) at x=11. Since Q,(X) has a
singularity at x = 1, we choose ¢cg = 0. Therefore, in axisymmetric case the solution of Laplace
equation in spherical coordinates is given by

u(r, 8, ¢) ={ar” +c,r M} (c;) [osPy (cos )]
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After renaming the constants and using the principle of superposition, we find the solution
to be

u(r, 8) = i [Ar"+B,r "R (cos 6) (2.99)

n=0
EXAMPLE 2.7 In a solid sphere of radius ‘a’, the surface is maintained at the temperature
given by
kcosg, 0<6<x/2
f(@)=
0, ml2<0<rx

Prove that the steady state temperature within the solid is

4

? 3
u(r,e)zkliFb(cose)+%(%)l31(cos 9)+%(g) PZ(COSH)_S_Z(La) P, (cos 0)+~}

Solution It is known that the steady state temperature distribution is governed by
the Laplace equation. In spherical polar coordinates, the axisymmetric solution of the Laplace
equation in general with the assumption that the temperature should be finite at the origin is
given by Eq. (2.99) in the form

u(r,0) = i A.r"P, (cos 8) (2.100)
n=0
Using the given BC: u(a, 8) = f (8), we have
u(a @)= ()= i A.a"P,(cos 6) = i b, P, (cos )
n=0 n=0

where A,a" =h,. This is a Fourier-Legendre series, where

2n+1 ¢l
by == j_l £ (8) P,(cos 6)de@
In the present problem,
1
b, = 2”+1j0 f ()P, (cos 6) d
Let cos @ = X,
1 ¢l 11 k
% 2-[0 b(x) 2J.o X~
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Hence, we get

k
Py
Also,
bl—E kx-x-dx=—=Aa
=51, ==
Therefore,
k(1
=8
5 (1 51 3x%-1 5
b, =—1] kxP,(X)dx=—=1] kx dx=—Kk
2 2J.0 2(X) 2-|.o 16
Thus,
5
=" Kk.—
A 16 32
Further,
7 ¢l 7 (1, 5x3-3x
=—| kxP dx=—| k dx=0
by zfo XP; (x) dx 2.[0 X 5 X
Similarly, noting that P4(x)=%(35x4 —30x? +3), we get
3 4
by =——k=Asa
4= Ay
Hence,

3 1
— ke
& 32 3

Substituting these values of Ay, A;, A,,... into Eq. (2.100), we obtain, finally, the required
temperature as

u(r,8) =k [% Py (cos 6) +%(£j R (cos 6)

2 4
+%(£j P, (cos 8) + (—%)(éj P,(cos 6) +-- } -
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EXAMPLE 2.8 Find the potential at all points of space inside and outside of a sphere of
radius R=1 which is maintained at a constant distribution of electric potential

u(R, 8) = f(8) = cos 26.

Solution It is known that the potential on the surface of a sphere is governed by the
Laplace equation. The Laplace equation in spherical polar coordinates is

&_211+g@+i&2u+cot9@+ 1 A

a2 v dr 12962 12 90 r%sin?0 d¢?
The possible general solution by variables separable method, after using superposition principle,
is given by Eq. (2.99). Thus we have two possible solutions:

w(r,0) = i A.r"P,(cos ) (2.101)
n=0

U, (r,0) = i By P, (cos 8) (2.102)
= rn+1

For points inside the sphere, we take the series (2.101). Why is this so? Applying the BC: u(R, 8)
= f(0) =cos 26, we obtain

oo

()=, AR"P,(cos8)

n=0

which is a generalized Fourier series of f (@) in terms of the Legendre polynomials. Using
the orthogonality property, we get

2n+1 1
AR == [ 1O R ox
Let x=cos 8. Then we have
A, = 22nF;-nlJ';f f (8)R,(cos 8) sin 6 dO

For points outside the sphere, we take the series (2.102). Why is this so? Using the BC:
u(R,8) = f(0), we get

f(@)= i % P, (cos )
n=0

Again, using the orthogonality property of Legendre polynomials, we have

B, = % R”“J.O” f (8) P, (cos 6)sin 6 do
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In the present problem, it is assumed that at R=1, f(8) = cos 26 = 2 cos? & —1= 2x> —1. Hence,

_2n+lpl o,
A= f_l(zx ~1) P,(x) dx
However,
(9= (3¢ -1
Therefore,
4 1
22 —1=2R () - =
SP0-3
Thus,

_2n+1
2

HRLCESH WAL

Using the orthogonality property of Legendre polynomials, all integrals vanish except those
corresponding to n=0 and n=2. We obtain, therefore,

110 1
AO——E-gj_lPO (k=7
540 4
AQ_EEJ_lPZ(X)dX—g
Also,

_2n+1
2

B, fl (252 ~1) B, (x) dx

_2n+l1
2

HRLCIES RLIOIY

which, on using the orthogonality property, gives the non-vanishing coefficients as
1 4
Bo=-3 B =3
Substituting these values of Ay and A, into Eq. (2.101), we obtain
w(r,6)= —%+%r2P2(cost9)

which gives the potential everywhere inside the sphere. Similarly, substituting the values of
By and B, into Eq. (2.102), we get
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Uy (r, 6) = _3_1r+3%P2 (cos 6)

which gives the potential outside the sphere.

EXAMPLE 2.9 Find a general spherically symmetric solution of the following Helmholtz
equation:

(V2 -k®Hu=0
Solution  In spherical polar coordinates, the Helmholtz equation can be written as

du 2du 1 J%u coté du 1 d4
et ot s at T T a2 2
are radr r° 96 re d0 r°sin“@ d¢

k’u=0 (2.103)

In view of spherical symmetry, we look for u to be a function of r alone. Hence, Eq. (2.103)
becomes

2
FUL 2N 2,
oré ror
Therefore, we have to solve
2
rzﬁ+2rﬂ—k2r2u =0 (2.104)
g'?rz or
Let
1
u=—=F(r
NG (r)
Differentiating twice with respect to r and rearranging, we obtain
du F(r)
2r—=——=4+2JrF(r
2
29U —gr‘”ZF(r) _ 2Ry + r2E ()
oz 4

Substituting the above relations, Eqg. (2.104) becomes
r2F”(r)+rF’(r) —(kzrz +%) F(r)=0
or

2
r2F”(r)+rF’(r) J{(ik)z r? - (%j }:(r) =0
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This is the Bessel equation whose solution is
F(r) = Ady,(ikr) + BYy, (ikr)
where Jy;,, Yy, are Bessel functions with imaginary arguments, and is rewritten as
F(r) = Aly,(kr)+ BKy, (kr)
Therefore,
u(r) =2 [Aly, (k) + By (k)]

But as r — <o, the solution should be finite, which is possible only if A=0. It is also known

that for large z,
T _—z
Ky (2)=,—€
v2(2) =, >y

Thus the acceptable spherically symmetric solution of the Helmholtz equation is given by

u(r)=Br¥2 | ek _Cgl
2kr r

2k

where

2.13 MISCELLANEOUS EXAMPLES

EXAMPLE 2.10 Show that the velocity potential for an irrotational flow of an incompressible
fluid satisfies the Laplace solution.

Solution  Let us consider a closed surface S enclosing a fixed volume V in the region
occupied by a moving fluid as shown in Fig. 2.5.

>>

Fig. 2.5 Conservation of mass.
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Let p be the density of the fluid. If A is a unit vector in the direction of the normal to the
surface element dSand g the velocity of the fluid at that point, then the inward normal velocity

is (—q-A). Hence the mass of the fluid entering per unit time through the element dSis (—q-Nn)dS. It
follows therefore that the mass of the fluid entering the surface Sin unit time is

-[[ pta-yas
S

Also, the mass of the fluid within Sis
fIf oo
Y,

So the rate at which the mass goes on increasing is given by
1% ([ p
zflf PdV-flfﬁdV

By conservation of mass, the rate of generation of mass within a given volume under the
assumption that no internal sources are present is equal to the net inflow of mass through the
surface enclosing the given volume. Thus,

[ 22 ar=J] pa-nes
\% S

=—” div (pq) dV [using the divergence theorem]
Vv

Therefore,

J.\J/.J[%)+div(pq)}dV=O

Since the integrand is a continuous function and since this result is true for any arbitrary
volume element dV, it follows that the integrand is zero. Therefore,

ap
—+V-pg=0
o pq

which is called the equation of continuity. For an incompressible fluid, p =constant and,
therefore,

V.q=0
Further, if the flow is irrotational, i.e., there exists a velocity potential ¢ such that
q=-V¢
Hence,
V.q=V-V¢=V2p=0
Thus, an incompressible irrotational fluid satisfies the Laplace equation.
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EXAMPLE 2.11 A thin rectangular homogeneous thermally conducting plate lies in the xy-
plane defined by 0<x<a, 0<y<h. The edge y=0 is held at the temperature Tx(x—a),

where T is a constant, while the remaining edges are held at 0°. The other faces are insulated
and no internal sources and sinks are present. Find the steady state temperature inside the
plate.

Solution  Since no heat sources and sinks are present in the plate, the steady state
temperature u must satisfy V2u=0. Hence the problem is to solve
PDE: VZu=0
BCs: u(0, y)=0, u(a, y)=0, u(x b)=0, u(x, 0)=Tx(x—a)

This is a typical Dirichlet’s problem. The general solution satisfying the first three BCs is
given by Eq. (2.47). Therefore,

- () . [nx
u(x y)= n2=1 A, sin (?x) sinh [?(y— b)}
where

—nb E f(x)sin(ﬂxjdx
aJo a

A, sinh
Using the last BC: u(x, 0) =Tx(x—a) = f(x), we get

—fveb E Tx(x a)sm(ﬂx)dx
a a

A,sinh
_r :x(x a)sin (Mx)dx
=_% %{ X(X— a)d{cos H
= _a {(x a)cos —XH ——.f (2x - a)d[sm(ﬂxﬂ
nr 0 a
_2at {(Zx a)sm( xﬂ .[ 25m( )
iz 0
2aT { . Za[ (nzr )T}
=——jasinnr+—|cos| —X
n°z nr a 0
_2aT 2a 4a2T

————(cosnr-1) =
2.2 nr

nzr

[( " -1
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Thus the required temperature distribution is given by
> 2
u(x )=y cosech [—Ebj‘f—aa[(—l)” _1]sin (Tx) sinh [E(y—b)}
~ a Jr'r a a
EXAMPLE 2.12 Solve

v2u=o, 0<x<a, 0<y<b
satisfying the BCs:
u@©y)=0,  u(x0=0,  u(xb)=0

M (ay)=Tsin® Y
IX a

Solution  Using the variables separable method, one of the acceptable general solutions
is given by Eq. (2.38). Hence

u(x, y) = (qe™ +ce”) (c;cos py +cysin py)
Using the BC: u(x,0) =0, we get
0=c3(qe™ +ce ™)
implying c; = 0. Therefore,
u(x, y) =cysin py(ce™ +ce”™)
Now, using the BC: u(x, b)=0, we obtain
0=c,sin pb(ceP +c,e ™)
¢, #0 (why?) implying sin pb=0 which gives
pb=nz or p:%, n=123,...
Thus,

u(x, y) =y sin (% y) (ce™ +ce ™)

Renaming the constants, we have

u(x, y)=sin (%y)[Aexp (%x)+ B exp (—%xﬂ n=12,...

If we use the BC: u(0, y)=0, we get

0= sin(% yj (A+B)
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giving A+ B =0; therefore, A=-B. Thus,

=i 53] on((5x)-eo (-3

=2Asin (%y)sinh (EXJ n=12...
b b

Differentiating with respect to x, we obtain

u = ZAMsin (M yjcosh (E x]
Ix b b b

The last BC yields

Tsin3 7Y = 2AM in (M yj cosh (Ma)
a b b b

from which we can determine 2A. Hence, the required solution is

u(x y)= BT in3 Y sech ™ asinh (M x)
nz a b b

The principle of superposition gives the required solution as
u(x, y) = 2 b—Tsin"“”—ysech (Ea) sinh (Ex)
172 a b b

EXAMPLE 2.13 Find the potential function u(x, y, z) in a rectangular box defined
by 0<x<a, 0<y<b, 0<z<c (see Fig. 2.6), if the potential is zero on all sides and the

bottom, while u= f(x, y) on the top of the box.

z
A

Fig. 2.6 Rectangular box.
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Solution  The potential distribution in the rectangular box satisfies the Laplace equation.
Thus the problem is to solve

2, _ -
ViU =Uy +Uyy +U, =0

subject to the BCs:
u©0,y,2=u(a vy, 2=0
u(x0,2)=u(xb,2)=0
u(x,y,0)=0
u(x, y,c)=f(xy)
Following the variables separable method, let us assume the solution in the form
u(x, y, 2) = X(x)Y(y)Z(2)
Substituting into the Laplace equation, we get
X" (X)Y(Y)Z(2) + X(QY"(Y) Z(2) + X(X)Y(y) 2"(2) =0

which can also be written as

YY), 2@ XM _ e
Yly) Z(@ @ X(x *

where /, is a separation constant. Thus we have
X”(X) + A£X(X) =0 (2.105)

After the second separation, we also have
2@ 42 Y'O)_;2

z@ 7Yy
Y”(y)+A2Y(y) =0 (2.106)
Z2"(2)-232(2)=0 (2.107)

where 13 = A7 + 3. The general solutions of Egs. (2.105)—(2.107) are
X(X) = ¢ €os 41X+ ¢, sin A4 X
Y(y)=c3 €08 Ly +¢48in Ay
Z(2) = ¢5 cosh 432+ ¢z sinh A3z
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From the BCs,

X(0)= X(a)=0
Y(0)=Y(b)=0
Z(0)=0

X(0)=0 gives ¢, =0
X(a)=0 gives Za=mr.

Therefore,

A= % m=12,
Similarly,

Y(0)=0 gives c3=0

Y(b) =0 gives Lb=nz
Therefore,

nzw
=—, n=12...
& b

Also, Z(0) =0 gives ¢; = 0. Further, we note that

2
A3 =22 +25 =n2(m—2+2—2)=1§n (say)

a
Then
2 2
m n
=7 —_—t =
A3 Z 7 A

The solutions now take the form
X(X) = ¢y Sin mex, m=12,...
a

Y(y)=c4nsin%y n=12...

Z(2) = gy sinh Az

Let ¢y = CmCanCemn: then, after using the principle of superposition, the required solution is

u(x,y,2)=XX)Y(y)Z(2) =m§? g sm—sm ?smh AmnZ (2.108)
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Using the final BC: f(x, y)=u(x,y,c), we get

. . MmaX . nry
f(x,y)= Cpn SiNh ¢ sin——sin —=
(X, y) z 2 mn Amn a b

which is a double Fourier sine series. Thus, we have
. 4 ra b . mzX . nmy
h - f(x, —~Zsin—=2Ldxd 2.109
Crun SIND A C " Io J-o (%, y) sin - sin— ~dxdy ( )

Therefore, Eqgs. (2.108) and (2.109) constitute the required potential.

EXAMPLE 2.14 Find the electrostatic potential u in the annular region bounded by the
concentric spheresr =a, r = b, 0 <a< b (see Fig. 2.7), if the inner and outer surfaces are kept

at constant potentials u; and u,, u; # u,.
Solution The electrostatic potential satisfies the Laplace equation
vaiu=0
It is natural that we choose spherical polar coordinates. From the problem, it is evident that

we are looking for a solution with spherical symmetry which is independent of 6 and ¢.
Hence, u=u(r).

Fig. 2.7 Annular region.

Thus, we have to solve

PDE: (rz ou

-2 _j=0 (2.110)
or or

subject to
BCs:u=u atr=a
u=u, atr=b
Integrating Eqg. (2.110) with respect to r, we obtain

Ju
r2 2=

5 = A (a constant of integration)
r
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Again, integrating, we get
u=——+B
Now, using the BCs, we have
A A
=——+B, u=-—+B
" a 2 b

Solving these equations, we get

__ bl g - (Wb - (Uy/a)
(t/a) - (1/b)’ (1/b) - (L/a)

Hence, using these values, the required potential is

o= gaam o))

EXAMPLE 2.15 A thermally conducting solid bounded by two concentric spheres of radii
a and b as shown in Fig. 2.8, a<Db, is such that the internal boundary is kept at f;(8) and

the outer boundary at f,(0). Find the steady state temperature in the solid.

Solution It is known that the steady temperature T satisfies the Laplace equation. In
the present problem,

T=T(r,0)

z

Fig. 2.8 Region bounded by two concentric spheres.

Thus, we have to solve

PDE:V2T =0
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subject to the boundary conditions
T="1(©) atr=a
T=1,(0) atr=b

In spherical polar coordinates, for axially symmetric case, the solution of the Laplace equation
is given by Eq. (2.99) as follows:

T(r,6)= i (Aqr” +%) P,(cos 6)
n=0

Using the BCs:

f,(8) = i [Aha” +%) P, (cos ) (2.111)
n=0 a

f (6)=i Ab" + By P, (cos 6)

2 bn+1 n (2112)
n=0

In order to find the coefficients A, and B, we have to express f,(6) and f,(8) in terms
of Legendre polynomials and compare the coefficients. In this process, the following orthogonality
relation is useful:
0, if m#n
f; P, (cos 8) R, (cos 8) sin 6 d@ = 2

) if m=n
2n+1

Thus, multiplying both sides of Eq. (2.111) by B,(cos 8)sin & and integrating, we obtain

oo

T . B
Io f, (8) By (cos 8)sin 6 dO = 2 (Aha” + anzl

n=0

jf: R, (cos 6) Ry, (cos 6)sin 6 do

2( Aam +i) 2 (2.113)

a™l j2m+1

Similarly, Eq. (2.112) gives

oo

j: (6) Pn(cos O)sin g do = Y (Ahb”+ By )j: P, (cos 8) P, (cos 6)sin 6 d&

0 bn+1

n=

_ Bm 2 (2.114)
- (A"bm ¥ p™1 ) 2m+1
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Let
2m+1j§ f,(6)P, (cos ) sin 6 do =C,,
2m2+1 j: £,(6)P,(cos 6) sin 6 dg =D,

Then Egs. (2.113) and (2.114) reduce to

B
A"+ —"_=C_
am+1

n Bm —
Amb + bm+1 - Dm

Solving this pair of equations, we obtain

am+1 _ Dmbm+1
2m+l b2m+1

Ay =S

a

am+1bm+l(Cmbm _ Dmam)
By =

b2m+1 _ a_2m+1

Hence, the required steady temperature is

T(r,0)= i (Anrm + rile P, (cos 6)

m=0

where A,, and By, are given by Egs. (2.115) and (2.116).

(2.115)

(2.116)

EXAMPLE 2.16 A thin annulus occupies the region 0<a<r<h, 0<68 < 2x. The faces are
insulated. Along the inner edge the temperature is maintained at 0°, while along the outer
edge the temperature is held at T = K cos (8/2), where K is a constant. Determine the temperature

distribution in the annulus.
Solution  Mathematically, the problem is to solve
PDE: V?T=0, a<r<h, 0<6<2x
BCs: T(a,0)=0
T(b, &) =k cos /2
The required general solution is given by Eq. (2.57) in the form

T(r,8)=(cr" +c,r™") (c5 cos né + ¢, sin nd)
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Using the first BC, we get
0=(ca" +c,a ") (c3cos nd + ¢, sin n)

implying thereby ¢a" +c,a™ =0, or ¢, = —clazn. After adjusting the constants suitably, we have

2n
T(r,0)= [r“ —a—n] (Acos n@ + B sin ng)
r

The principle of superposition gives
2

oo n
T(r,6)=)) (r” —a—nJ (A, cos né + B, sin ng)
n=1 r
Now, using the second boundary condition, we obtain
T(b, 6) = K cos % =)' (0" -b™"a>") (A, cos N6 + B sin ng)
n=1

which is a full-range Fourier series. Hence,

2
A, (b" —b‘”azn)zlj " K cos & cos n6 do
Jo 2
2
=L i cos(n+l)9+cos(n—l)0 do
27 J0 2 2
2
. 1 . 1
sinfn+= 10 sin|n——= |6
K ( 2) ( 2)

“or 1 1

2 2

=0
implying A, =0. Also,

2
B, (b" —-b"a") =EJ‘ g cosg sin ng do
Jo 2
2
=LJ. i sin(n+£)9+sin(n—l)0 de
2z Jo 2 2
27
cos(n+l)6 cos(n—lje
k 2 2

=—— +
2r n+l n-t
2 2
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2r n+1 n+1 n—1 n—E
2 2 2 2
k 1 1 k 2n
Tinss n-2| Tn2-=
2 4
or
8kn

By(b" -b "a™") = ———
" 7 (4n? —1)

Thus the temperature distribution in the annulus is given by

oo

T(r,6)=%2 n { (r/a)" - (a/r)” }sin no

m & an? 1| (b/a)" - (a/b)™"

EXAMPLE 2.17 V is a function of r and @ satisfying the equation

ON 1N 1%V
-t —_— - — =
gr? v ar r?96°
within the region of the plane bounded by r=a, r=b, 8=0, 8 =x/2. Its value along the

boundary r =a is 8(a/2—-8), along the other boundaries is zero. Prove that

2 xa (r/b)*™2 —(b/r)*™2 | sin(4n-2)6
V=2
™ Z‘l (a/b)*™? —(b/a)*" 2| (2n-1)°

Solution  The task is to solve the PDE

&_I_lo"\/ 1 9N

_t— =
gr? v ar r?96°

subject to the following boundary conditions:

(i) V(b,8)=0, 0<0<nl2
(i) V(r,7z/2)=0, a<r<b
(i) Vv(r,0)=0, a<r<b

(V) V(a8)=0(/2—-8), 0<8<xl2.
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The three possible solutions (see Section 2.8) are given as follows:
V = (grP +c,rP) (c; cos po +c, sin pé)
V =[gcos(plnr)+c,sin(plinr)] (%epg +c4e’p‘9)

V=(qlnr+c) (G0 +¢cy)

Since the problem is not defined for r = 0, o, the second and third solutions are not acceptable.
Hence, the generally acceptable solution is the first one. The boundary condition (iii) gives

0=c3(arP+cr ")
implying c; =0. The boundary condition (ii) implies

0=, sin p%(olerrczr_p)
Therefore,
sinp%:O or p=2n, n=12,...

Thus, the possible solution of the given equation has the form
V(r, 6) = ¢, sin (2n8) (cr 2" +c,r ")
Now, applying the boundary condition (i), we get
0= ¢, sin (2n6) (cb?" +c,b™2")
which gives ¢, = —gb*". Therefore,

V(r, 6) = cicy sin (2n8) [r 2" — r 2"p*N]
Superposing all the solutions, we obtain
V(r,6) = i ¢, sin (2n6) (r2" —r2"p*")
n=1
Satisfying boundary conditions (iv), we get
g4n _p4n

9(%—0) = 2 C, Sin (2n6) (T]

which is a Fourier sine series. Thus, we have

2 72 (& . a’n —pn
EJ.O e(a—e)sm(Zn@)—cn[T
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Integrating by parts, we obtain

4n _ p4n
(10_62){_cos (ZnQ)}_(E_Ze){ sin (2n9)} ( 2){cos (ZnH)} =Cn£ a’"-b
2 2n 2 4n? sn® ], 41 a™"
On simplification, we get
1 T a4n _b4n
—F{(—l)n _1}:ch (T]
Thus,

. (azln _ b4n] o — for n odd
_Cn - | =
4 a2n

0, for n even

Hence, the required solution is

a 4n-2 ) r8n 4 _b8n 4
V(r 0) 2 pn (2n 1)3 ( ) Sin (4n—2)9[wl

which can be recast in the form given in the problem.

EXAMPLE 2.18 Determine the potential of a grounded conducting sphere in a uniform
field defined by

PDE: V2u=0, 0<r<a 0<fO<nm 0<¢<2n
BCs: (i) u(a 68)=0.

(i) u—>—Egrcos@ as r — oo

Solution  In spherical polar coordinates, with axial symmetry, the solution of the Laplace
equation is given by Eq. (2.99) in the form

u(r, 6) = Z(Ahr + B” )P(cose)
Using the boundary condition (ii), we have
u(r, o) = z A.r"P, (cos 8) = —Eqyr cos 8
n=0

which is true only for n=1, when B (cos 8) =cos 8. Also, A, =0 for n>2. Therefore,

u(r,8)= Ar cos @ =—Eyr cos o
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implying A, = —-E,. Hence,
u(r,6)=-Egrcos @+ 2 il P, (cos 8)
n=1T
Now, applying the boundary condition (i), we get
n+l1

- B
0=—E0acos¢9+2 —"_P (cos &)
n=1 @

Multiplying both sides by P, (cos ) sin & and integrating between the limits O to 7, we have

. = B _
Eqa JZZ cos (8) P, (cos 8)sin 6 d6 = 2 anil f; P,(cos 8) P, (cos @) sin@ dg (2.117)

n=1

Using the orthogonality property

0, for m#n
T
j P, (cos 6) Py (cos O)sin 6do={
0 ,  for m=n
2m+1
we obtain
B, 2 z .
—— ——=Eja| cos(8)P,(cosd)singde
g o1 = E0a | 005 (0) P (o)
or
2m+1 me2 (7 .
B, = 5 Eqa Io cos (8) P, (cos 8) sin 6 d@

It can be verified that the integral on the right-hand side of the Eq. (2.117) vanishes for
all mexcept when m=1, in which case

B, = Ea°
Therefore, the required potential is given by

Eqa’

cos @
r2

u(r,8)=—Eyrcos @+

EXAMPLE 2.19 The steady, two-dimensional, incompressible viscous fluid flow past a circular
cylinder, when the inertial terms are neglected (Stokes flow), is governed by the biharmonic

PDE: V4 =0, where y is the stream function. Find its solution subject to the BCs:
(i) w(r,8)=7dwldr=0 onr=1

(i) w(r,@8)—>rsingd as r—co.
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Solution  In view of the cylindrical geometry, we can write
Vi =v23(VZy) =0
where
P 19 1 9
VZW:[W+FE+?F}/I
Using the variables separable method, let us look for a solution of the form
w(r,8)=f(r)sing

Therefore,
v . dy
—=1f’(r)sin 6, ——=f(r)cos @
oar ") 00 (")
821// . &21// .
—-=f"(r)sin g, —=—"f(r)siné@
or? ) 26° )
Hence,

sz/=[f”(r)+%f’(r)—%f(r)}sine
r
which can also be written in the form

V2w =F(r)sin @

where
F(r)= f”(r)+lf’(r)—i2f(r)
r r
Therefore,
Vi =Vv2(V2y) = V2[F(r)sin 6] =0
ie.,
., 1_, 1 .
[F (r)+?F (r)——ZF(r)}smO:O
r
implying

F”(r)+1F’(r)—i2F(r)=O
r r

Introducing the transformation r = e?, D = d/dz, the above equation becomes

[D(D-1)+D-1]F(r)=0
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or
(D> -1 F(r)=0
Its complementary function is

_ B
F(r)y=Ae’+Be *=Ar+—
p

or

f”(r)+lf’(r)—i2f(r)=Ar+E
r r r

287 (r)+rf/(r)— £(r)= Ar® + Br

which is a homogeneous ordinary differential equation. Again using the transformation r = &%,
D =d/dz, we get
[D(D-1)+D-1] f = Ae’? + Be?
or
(D? 1) f = Ae’? + Be?
Its complementary function is
f(r)=Ce* +De *
while its particular integral is

3z 7
_r (A€’? + Be?) = A + Bze
D?-1 8 2

Therefore,
f(r)=Cr+2+ér3+Er Inr
r 8 2
Thus, we have
W=(5r3+Er Inr+Cr+stin6
8 2 r

Now to satisfy the BC: w —rsin 8, as r — o and from physical considerations, we choose
A =0, Therefore,

1//=(%r Inr+Cr+$jsin9
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The boundary condition =0 on r =1 gives (C+D)sin @ =0, implying C =-D. Also, the
boundary condition Jdy/dr =0 on r =1 gives

E+C—D=O=E—2D
2 2

implying B =4D. Hence, the general solution is

r 1
=2D|{rInr—-—+—sin @
v ( 2 ZrJ

EXAMPLE 2.20 The problem of axisymmetric fluid flow in a semi-infinite or in a finite
circular pipe of radius a is described as follows in cylindrical coordinates:

PDE: V2u=0, O<r<a
BCs: (i) ﬂ:O atr=0
or

... du Ju
(")E_O' ﬁ—V(z) atr=a

Show that the speed of suction is given by
V(2)= —2 o, (A, cosh oy z+ By sinh ¢, 2) Jy (@)
n=1
Solution  In cylindrical coordinates (r, 8, 2),
_Pu tau 1 u_
a2 rar 2992 97
In axisymmetric case, the above equation becomes

vau

Ju 1du Jd%u

Z 422 2 o0 2.118

a2 radr 9z ( )
Let u(r, z2)= f(r) ¢(2) which, when substituted into Eq. (2.118), gives

f7+@r)f’ " 5
¢ p a“ (say)
Then
0" —a’p=0 (2.119)

f”+%f’+a2f:0 (2.120)
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The solution of Eqg. (2.119) is
¢ = Acosh az+ Bsinh oz

Equation (2.120) can be rewritten as

r2f7+rf’+a?r?f =0
which is a Bessel’s equation of zeroth order whose general solution is

f =Jy(ar)+DYy(ar)
Here, Jy(ar) and Yy (ar) are zeroth order Bessel functions of first and second kind respectively.
Therefore, the typical solution is

u=(Acosh az+Bsinh az) [Jg(ar) + DYy (ar)]
Now, Yy (ar) is infinite at r =0, and hence D = 0. Therefore, the possible solution is
u=(Acosh az+ Bsinh az) Jy(ar)
The condition Ju/dr =0 at r =0 is automatically satisfied, since Jj(ar)=0 atr =0. Now the

boundary condition Ju/dz=0 atr = agives J,(aa) =0, implying that za are the zeros of the

Bessel function J,. Let these zeros be ¢,a(n=0,1,2,...). Thus the appropriate solution is

u(r,2)="Y (A, cosh o, z+ By sinh a,2) Jo (ar)

n=1
Using the fact that, J; =-J;, the speed of suction is given by

V(2)= (%) = —2 o, (A, cosh o,z + By sinh o, 2) 3y (o,@)
r=a n=1

EXAMPLE 2.21 Solve the following Poisson equation:
2%u  d%u
St =2
axs dy
subject to the boundary conditions

u©,y)=u(5, y)=u(x,0=u(x4)=0

Solution ~ We assume the solution of the form
u=v+ow (2.121)

where v is a particular solution of the Poisson equation and @ is the solution of the corresponding
homogeneous Laplace equation. That is,
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V=2 (2.122)
V=0 (2.123)
It is customary to assume that v has the form
v(X, y)=a+bx+cy+dx2 +exy + fy2
Substituting this into Eq. (2.122), we get
2d+2f =2
Let f =0. Then d =1. The remaining coefficients can be chosen arbitrarily. Thus we take
V(X, y) = —5X+ X (2.124)

so that v reduces to zero (satisfies the boundary conditions) on the sides x=0 and x=5.
Now, we shall find @ from

V=0, 0<x<5, O<y<4 (2.125)
satisfying

®(0,y)=-v(0,y)=0
w(5,y)=-v(5Yy)=0
(X, 0) = —Vv(X, 0) = —(-5x + x?)
@ (X, 4) =—V(X, 4) = —(-5x + X?)

The above conditions are obtained by using Egs. (2.121), (2.124) and the given boundary
conditions. By using the superposition principle (see Section 2.5), the general solution of
Eq. (2.125) is found to be

(X, y)= i sin (nzx/5) [a,, exp (nzy/5) + b, exp (—nzy/5)] (2.126)

n=1

Now, applying the non-homogeneous BC: @(x, 0) =—(—5x+x2), we get, after renaming the
constants, the equation

w(x,0)=—(-5x+ x2) = 2 A, sin (nzx/5)

Also, applying the BC: @ (X, 4) = —(-5x + x2), Eq. (2.126) can be rewritten in the form

N anr . 4nm . nzx
—(-5x+x?) = a, cosh —— + b, sinh —— |sin —~ (2.127)
(5x0) = 3, ancosh A2+ by sinh 427 |

n=1
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which gives
2 (3 2y .. X
=—| (5x- —d
a, c '[0 (5x—x“)sin c X
Now, integrating by parts, the right-hand side yields

5

2 3
an=§ (5x—x2)(—%cos%x)—(5—2x)[ n5 sm%}ﬂ 2)(:7[3 COS%XJ:'

2| 2 2 (g8
=g T cost | =

0

nz n\z

_4(5%) [i_ cos nzr}_ 4G)°%1 1 (D"
7 Ln n® z~ |n n
Hence,
2
8(35 3) when n is odd
a,=17°n (2.128)
0, when n is even
Also, from Eq. (2.127), we have
ancosh—+bnsmh4—m=2.|. (5x- x)sm( de ap,
Therefore,
a, [1— cosh (g nfrﬂ
b, = (2.129)
o[ 5]
sinh| =nz
5

Substituting a,,, b, from Egs. (2.128) and (2.129) into Eq. (2.126), we get

- 5o ot o )
ol o ) ]
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or
o(x, y)= 2‘1 [sinh {”?”(4— y)} +sinh (%” yﬂ sin (”: x)/sinh (;‘ nfcj (2.130)

Combining Egs. (2.124), (2.128) and (2.130), the solution of the given Poisson equation is
uix, y) =

2 o . . .
X(X_5)+8xf 3 sinh (2n—1)7z(4—y)/5+5|:h [(2n-1)ry/5] X{sm [(2n—1);rx/5]}
n=1 sinh [(Zn —1)54 (2n-1)

EXAMPLE 2.22 Let IR be a region bounded by JIR. Let P(x, y, z) be any point in the

interior of IR, as shown in Fig. 2.9. Let ¢ be a harmonic function in IR; also, let y =1/r, where
r is the distance from P. Applying Green’s second identity, show that

_ Lot 9 (1
¢(P)_47[J.J.|:I’07n o'?n(rﬂds

Fig. 2.9 An illustration of Example 2.22.

Solution  Since  possesses a point of discontinuity in IR at P(x, y, z), Green’s second
identity cannot be directly applied to ¢ and ¥. However, y =1/r is bounded in IR-X, with
the boundary JIR U JZX,, where X, is a sphere of radius & with centre at P. Now applying
Green’s second identity (2.19) to functions ¢ and y in IR-X,, we get

”I {Wz(l”) —%stﬁ}dv = H {qﬁ%(l/r) - (1/r)%} ds
R-Z, IR

+ ” ¢%(1/r)d8— H (1/r)(%)d8 (2.131)
Iz, Iz,
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From the right-hand side of Eq. (2.131), we observe that the last two integrals depend only
on e. But in the direction of the exterior normal to g%, we find that

J
—
o AN

J
——Y
&r( r

9%, r=¢ €

Therefore,

A7

82
Q=41

ﬂ ¢%(1/r)d8 =i2 ” #dS =
%, € s,
where ¢*(Q) is the average value of ¢(Q) on gX,. Further, the third integral
2 1 a¢j (&p*)
|| wr==ds=-= Z2|dS = —4ze| Z—
J-[( r)8n £ ” (&n e an
Iz, Iz,
where (dgldn)* is an average value of the normal derivative on JX . Substituting these results

and using the fact that V2(1/r)=0 in IR-X,, we obtain

B J ¢ . 94,
”f (—1/r)V2¢dV—Ji|; p%(l/r)—(l/r)%}dsww (P)+4ﬂe(%) (2.132)

R-Z,
Now, taking the limit as £ — 0, and using the fact that ¢ is harmonic in IR-X,, we arrive
at the fundamental result

_1 99 _ 49
¢(P)—4”é|‘l.£ [(1/r)(9n ¢&n(1/r)}ds (2.133)

Thus, the value of a harmonic function at any point of IR can be obtained in terms of the
values of ¢ and Jd¢/dn on the boundary JIR of the region IR.

EXAMPLE 2.23 Find the solution of the following Helmholtz equation, using separation of
variables method:

V2U + K2U = U + Uy + Uy + KU =0 (2.134)
Solution It may be noted that the Laplacian in cartesian coordinates is a PDE with constant

coefficients, while in cylindrical or spherical coordinates, it is a PDE with variable coefficients.
Thus, let us assume the solution of the given Helmholtz equation in the form

ux, y, 2) = X(x) Y(y) 2(2)

where X(X) is a function of x alone, Y(y) is a function of y alone, Z(2) is a function of z only.
Substituting into the given Helmholtz equation, we get

X"(x) Y(y) Z(2) + X(¥) Y'(¥) Z(2) + X(9 Y(y) Z'(2) + K*X(x) Y(y) Z() = O,
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which can be rewritten as
X)), Y0, 2@, 2
X(x) Y@y Z(»
This equation is satisfied iff

X0 _ 2 YO 2 2@ o
X0 T Yy Tz (2:139)

and K? =K{ +K5 + K}

The sign of these separation constants K;, K, and K3 need not be same, of course depends
on the physical considerations. The solution of the three ODEs in Eq. (2.135) can be written
in the form

X(x) = Ce** + C,e
Y(y) = C,e*? +C,e kY (2.136)
Z(2) = G5 + e 'Ke?
Hence, in general, the solution of Eq. (2.134) can be written as
ux, y, 2 = AéX" + Be K",
However, if K2 is positive, the solution is of the form
ux, y, 2 = A cos(Kix + Kyy + Ks2) + B sin(Kix + Koy + Kj2),
while, if K? is negative, the solution is found to be
u(x, y, 2 = A cosh(K;x + Kyy + K32) + B sinh(K;x + Kyy + K32).

EXERCISES
1. Solve the following boundary value problem:
PDE: V2u=0, 0<r<10, 0<6<zx

400

BCs: u(10, 8) = — (76 — 6?)
T

u(r,0)=0=u(r,n)

u(o, ) is finite

2. A homogeneous thermally conducting solid is bounded by the concentric spheres
r=a, r=b, 0<a<hb. There are no heat sources within the solid. The inner surface
r =ais held at constant temperature T, and at the outer surface there is radiation
into the medium r > b which is at a constant temperature T,. Find the steady temperature
T in the solid.
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. A thermally conducting solid bounded by two concentric spheres of radii a and b,
a<hb, is such that the internal boundary is kept at T, and the outer boundary
at T,(L-cos 8). Find the steady state temperature in the solid.

. A thin annulus occupies the region 0 <a<r <b, 0<8 < 2x, where b>a. The faces
are insulated, and along the inner edge, the temperature is maintained at 0°, while
along the outer edge, the temperature is held at 100°. Find the temperature distribution
in the annulus.

. A thermally conducting homogeneous disc with insulated faces occupies the
region 0 <r < a in the xy-plane. The temperature u on the rimr =a, is

C, 0<f0<«a
u=

0, a<6<2rx

where « is a given angle 0 <a < 2z. Find the series expression for temperature at
interior points of the disc. In particular, consider the case when C =100, o = 7/2.

If ¥ is a harmonic function which is zero on the cone 6 = & and takes the value Ze,r"
on the cone @ = 3, show that, when o <6 < 3,

B i o Q,(cos &) P, (cos 6) — P, (cos &) Q,(cos 8) n
V'= 2% Q (cos )P, (cos B) — P (cos @) Q, (cos f)

n=0

. Show that

q
[r=r’|

W= ' (q is constant)

is a solution of the Laplace equation.
. Solve the following
2 2
PDE: 8_¢+107_¢+i_(9 ¢ _
ar? v dr 1% gp?
7
BCs: v, =—=0 atr=a
Toor
v, =U_, cos o at r=oo
_19

Vy = =-U_sino
"t J0
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9.

10.

11.

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

In the theory of elasticity, the stress function y, in the problem of torsion of a beam
satisfies the Poisson equation

2 2
‘9—‘2”+‘9—"2/=—2, 0<x<1 0<y<l
oxc  dy
with the boundary conditions =0 on sides x=0, x=1, y=0 and on y=1. Find
the stress function .

For an infinitely long conducting cylinder of radius a, with its axis coincident with
its z-axis, the voltage u(r, 8) obeys the Laplace equation

V2u =0, 0<r<e, 0<0<2r

Find the voltage u(r,8) for r>a if Lt u(r,8)=0, subject to the condition
r—oo

Ml _Ygnag
arl., a

Hadamard’s example:
(@) Consider the Cauchy problem for the Laplace equation

Uy + Uy =0 (E11.1)

subject to u(x, 0) =0, uy (X, O)=%sin nx, where n is a positive integer. Show that

its solution is

un (X, y) izsinh ny sin nx (E11.2)
n

(b) Show that for large n, the absolute value of the initial data in (a) can be made
arbitrarily small, while the solution (E11.2) takes arbitrarily large values even at the
points (X, y) with |y| as small as we want.

(c) Letfand gbe analytic, and let u; be the solution to the Cauchy problem described
by

=0

Ugx +Uyy

subject to
u(x, 0) = f(x), uy(x,0) = g(x) (E11.3)

and let u, be the solution of the Laplace equation (E11.1) subject to
u(x,0) = f(x),uy(x,0) =g(x)+(l/n)sin nx. Show that

Us (X, ¥) — Uy (X, y) =—5 sinh ny sin nx (E11.4)

1
n2
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(d) Conclude that the solution to the Cauchy problem for Laplace equation does not

depend continuously on the initial data. In other words, the initial value problem

(Cauchy problem) for the Laplace equation is not well-posed. It may be noted that

a problem involving a PDE is well-posed if the following three properties are satisfied:
(i) The solution to the problem exists.

(i) The solution is unique.

(iii) The solution depends continuously on the data of the problem.
Fortunately, many a physical phenomena give rise to initial or boundary or IBVPs
which are well-posed.

12. Find the solution of the following PDE using separation of variables method
Uy — Uy + u=0.
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Parabolic Differential Equations

3.1 OCCURRENCE OF THE DIFFUSION EQUATION

The diffusion phenomena such as conduction of heat in solids and diffusion of vorticity in
the case of viscous fluid flow past a body are governed by a partial differential equation of
parabolic type. For example, the flow of heat in a conducting medium is governed by the
parabolic equation

pC%zdiv(KVTMH(r,T,t) 3.1)

where o is the density, C is the specific heat of the solid, T is the temperature at a point with

position vector r, K is the thermal conductivity, t is the time, and H (r, T, t) is the amount of
heat generated per unit time in the element dV situated at a point (x, y, 2 whose position
vector is r. This equation is known as diffusion equation or heat equation. We shall now
derive the heat equation from the basic concepts.
Let V be an arbitrary domain bounded by a closed surface Sand let V =V U S, Let T(x, Y,
z,t) be the temperature at a point (X, y, 2) at time t. If the temperature is not constant, heat
flows from a region of high temperature to a region of low temperature and follows the
Fourier law which states that heat flux q (r, t) across the surface element dSwith normal A is
proportional to the gradient of the temperature. Therefore,
q(r,t)=—-KVT(r,t) (3.2)
where K is the thermal conductivity of the body. The negative sign indicates that the heat flux

vector points in the direction of decreasing temperature. Let A be the outward unit normal
vector and g be the heat flux at the surface element dS Then the rate of heat flowing out
through the elemental surface dS in unit time as shown in Fig. 3.1 is

dQ=(q-M)dS (3.3)

182
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Fig. 3.1 The heat flow across a surface.

Heat can be generated due to nuclear reactions or movement of mechanical parts as in inertial
measurement unit (IMU), or due to chemical sources which may be a function of position,

temperature and time and may be denoted by H (r, T, t). We also define the specific heat of

a substance as the amount of heat needed to raise the temperature of a unit mass by a unit
temperature. Then the amount of heat dQ needed to raise the temperature of the elemental

mass dm= p dV to the value T is given by dQ =CpT dV. Therefore,

Q= f\ﬂ CpT dV
. ffop T

The energy balance equation for a small control volume V is: The rate of energy storage in
V is equal to the sum of rate of heat entering V through its bounding surfaces and the rate
of heat generation in V. Thus,

mC m(r A gy - - Hq nd5+” H(r,T,t)dv (3.4)
Using the divergence theorem, we get

”j [Cp%(r, t)+divq(r, t) - H(r,T,t)} dv =0 (3.5)
\%

Since the volume is arbitrary, we have
o”T(r t)

o —divg(r,t)+H (r,T,t) (3.6)
Substituting Eq. (3.2) into Eq. (3.6), we obtain
szv-[KVT (r, )]+ H(r,T,t) (3.7)

at
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If we define thermal diffusivity of the medium as

K
o=—
pC
then the differential equation of heat conduction with heat source is
1ATEY _gogg gy HOTY (3.8)
o ot K
In the absence of heat sources, Eq. (3.8) reduces to
D (3.9)

This is called Fourier heat conduction equation or diffusion equation. The fundamental problem
of heat conduction is to obtain the solution of Eq. (3.8) subject to the initial and boundary
conditions which are called initial boundary value problems, hereafter referred to as IBVPs.

3.2 BOUNDARY CONDITIONS

The heat conduction equation may have numerous solutions unless a set of initial and boundary
conditions are specified. The boundary conditions are mainly of three types, which we now
briefly explain.

Boundary Condition I: The temperature is prescribed all over the boundary surface. That
is, the temperature T(r, t) is a function of both position and time. In other words, T = G(r,t) which

is some prescribed function on the boundary. This type of boundary condition is called the
Dirichlet condition. Specification of boundary conditions depends on the problem under
investigation. Sometimes the temperature on the boundary surface is a function of position
only or is a function of time only or a constant. A special case includes T(r, t) =0 on the
surface of the boundary, which is called a homogeneous boundary condition.

Boundary Condition I1:  Theflux of heat, i.e., the normal derivative of the temperature JT/dn,

is prescribed on the surface of the boundary. It may be a function of both position and time,
ie.,

aT

—=f(r,t

o (r.t)
This is called the Neumann condition. Sometimes, the normal derivatives of temperature may
be a function of position only or a function of time only. A special case includes

ﬂzo on the boundary

an

This homogeneous boundary condition is also called insulated boundary condition which
states that the heat flow is zero.
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Boundary Condition I11: A linear combination of the temperature and its normal derivative
is prescribed on the boundary, i.e.,
KL ohT =G(r,t)
oan

where K and h are constants. This type of boundary condition is called Robin’s condition. It
means that the boundary surface dissipates heat by convection. Following Newton’s law of
cooling, which states that the rate at which heat is transferred from the body to the surroundings
is proportional to the difference in temperature between the body and the surroundings, we
have

JT

-K—=h(T -T,
o (T-Ta)
As a special case, we may also have
Kﬂ+ hT =0
an

which is a homogeneous boundary condition. This means that heat is convected by
dissipation from the boundary surface into a surrounding maintained at zero temperature.

The other boundary conditions such as the heat transfer due to radiation obeying the
fourth power temperature law and those associated with change of phase, like melting, ablation,
etc. give rise to non-linear boundary conditions.

3.3 ELEMENTARY SOLUTIONS OF THE DIFFUSION EQUATION

Consider the one-dimensional diffusion equation

2
IT 1IN cx<oo t>0 (3.10)
ox> o ot
The function
T, 1) = exp[~(x - )% (4a)]
' \/W (3.11)

where £ is an arbitrary real constant, is a solution of Eq. (3.10). It can be verified easily as
follows:

aT 1 (x=9% 1 )
7 - - —(x = &% (4ot
v SR R exp [-(x = &)/ (4at)]
a1 —-2(x=9¢)
ox Jamot Aot

exp [~(x — &2 (401)]
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Therefore,
°T 1 1 (x-&)? ) 19T
= - —(x-&)%(4at)] == —
Ew: ’—47wzt|: 2ot a2l exp [-(x— &)/ (4at)] o

which shows that the function (3.11) is a solution of Eq. (3.10). The function (3.11), known
as Kernel, is the elementary solution or the fundamental solution of the heat equation for the
infinite interval. For t > 0, the Kernel T(x, t) is an analytic function of x and t and it can also
be noted that T(x, t) is positive for every x. Therefore, the region of influence for the diffusion

equation includes the entire x-axis. It can be observed that as | x| — o, the amount of heat
transported decreases exponentially.
In order to have an idea about the nature of the solution to the heat equation, consider

a one-dimensional infinite region which is initially at temperature f(x). Thus the problem is
described by

2
PDE:ﬂzaﬂ, —co< X<oo, t>0 (3.12)
at IxX?
IC: T(x 0)= f(x), —co < X<oo, t=0 (3.13)
Following the method of variables separable, we write
T(x t) = X(x) B(t) (3.14)
Substituting into Eq. (3.12), we arrive at
X"_18_, (3.15)
X ap

where A is a separation constant. The separated solution for S gives

B =Cce™ (3.16)
If >0, we have S and, therefore, T growing exponentially with time. From realistic physical
considerations, it is reasonable to assume that f(x) — 0 as |x|— oo, While |T(x,t)|<M as
| X| > e. But, for T(x, t) to remain bounded, A should be negative and thus we

take ﬂ:—,uz. Now from Eg. (3.15) we have

X7+ u?X =0
Its solution is found to be
X =€ COS X+ C,sin ux
Hence

T(x t, 1) = (Acos ux+ Bsin ux) gt (3.17)
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is a solution of Eq. (3.12), where A and B are arbitrary constants. Since f (x) is in general not
periodic, it is natural to use Fourier integral instead of Fourier series in the present case. Also,
since A and B are arbitrary, we may consider them as functions of u# and take

A= A(u), B=B(u). In this particular problem, since we do not have any boundary conditions

which limit our choice of 4, we should consider all possible values. From the principles of
superposition, this summation of all the product solutions will give us the relation

T(x t)=J.:T(X’t,ﬂ)dﬂ z.[: [A(u)cos pix+ B(u)sin uxle ™t (3.18)

which is the solution of Eq. (3.12). From the initial condition (3.13), we have
T(x0)=f(x)= J:o [A(u)cos ux+ B(u) sin ux] du (3.19)
In addition, if we recall the Fourier integral theorem, we have
f(t):lfw U“’ f (x) cos w(t—x)dx}dw (3.20)
I [J-
Thus, we may write

f(x)=%j0°° [j:f(y)cosu(x—y)dy}du

0 [

= I cos UXI f (Y)COS ,Uy dy+3in ,UXJ f (y) sin uy dy du (321)
T J0 oo
Let

A== [" f(ycosuydy

1 pe .
Bu)==[f(y)sinuydy
JT J—oo
Then Eqg. (3.21) can be written in the form
f(x)= J.: [A(u) cos ux+ B(u)sin ux] du (3.22)

Comparing Egs. (3.19) and (3.22), we shall write relation (3.19) as

T(x, 0) = f(x)=%f: Ui f(y) cos,u(x—y)dy} du (3.23)
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Thus, from Eg. (3.18), we obtain
L=l 2
T(x =" jo U_w f(y) cos i (x— y) exp (—o’t) dy} du (3.24)

Assuming that the conditions for the formal interchange of orders of integration are satisfied,
we get

1 oo oo
Tx==[ 1) { [ exp (-aut) cos u(x-y) du} dy (3.25)
T - 0
Using the standard known integral

J:o exp (-s?) cos (2bs) ds= g exp (-b?) (3.26)

Setting s= u+/ot, and choosing

b=
2ot
Equation (3.26) becomes
=) _ 2 \/E
ot _ — —(x—v)2 3.27
jo e ™ 00s 1 (x- y) dut = = exp [-(x - )7/ (4en)] (3.27)

Substituting Eq. (3.27) into Eg. (3.25), we obtain

T(% t)=ﬁ [t expl-(x- y)(4at)] dy (3.28)

Hence, if f (y) is bounded for all real values of y, Eq. (3.28) is the solution of the problem
described by Egs. (3.12) and (3.13).

EXAMPLE 3.1 In a one-dimensional infinite solid, —eo < X< o, the surface a<x<b is
initially maintained at temperature T, and at zero temperature everywhere outside the surface.
Show that

T b-x a-—X
Tx,t)=-2|erf | —= |—erf| ===
0= 2 et ok ) -e( )|
where erf is an error function.

Solution  The problem is described as follows:
PDE: Ty =Ty, —o<X<o
IC: T=T,, a<x<b

=0 outside the above region
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The general solution of PDE is found to be
T )= [ 1(&) expl-(x~ &) (4] o
" Jrot V-

Substituting the IC, we obtain

T(x )= 2 | " exp [~(x— &)/ (4ot)] A
" JArot Ja
Introducing the new independent variable n defined by
__X=¢
=" Jaen

and hence

d¢ = /4ot dn

the above equation becomes

Ty (b-0NGat) 2 T,
T(x1)=—= e dnz?o{%

(b—-x)N(4at) 2 2 (a—x) W (4ot) 2
e e’d
NZRICRNNCEDS) I f "}

" dn— 5
0

0 "Iz

Now we introduce the error function defined by

erf (2) = % [ exp (1) dn

Therefore, the required solution is
T, b-x a-—x
T(xt)=-2]erf —erf
0= ot (o ()

3.4 DIRAC DELTA FUNCTION

According to the notion in mechanics, we come across a very large force (ideally infinite)
acting for a short duration (ideally zero time) known as impulsive force. Thus we have a
function which is non-zero in a very short interval. The Dirac delta function may be thought
of as a generalization of this concept. This Dirac delta function and its derivative play a useful
role in the solution of initial boundary value problem (IBVP).

Consider the function having the following property:

1/2¢, [t|<e
o.(t) = (3.29)
0, [t|>e
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Thus,
oo £ 1
Lo S, (t)dt = f,g Sodt=1 (3.30)

Let f (t) be any function which is integrable in the interval (-¢, €). Then using the Mean-
value theorem of integral calculus, we have

fw f(t)é'g(t)dt:ij.g ft)dt= (&), —e<é<e (3.31)
—oo 2eJ-¢

Thus, we may regard J(t) as a limiting function approached by &, (t) as € — 0, i.e.

5()= Lt 6.() (3.32)

As £ — 0, we have, from Egs. (3.29) and (3.30), the relations

(in the sense of being very large)

5= Lt 6,={= =0 (3.33)
0, if t=0
f S(t) dt =1 (3.34)

This limiting function &(t) defined by Eqgs. (3.33) and (3.34) is known as Dirac delta function

or the unit impulse function. Its profile is depicted in Fig. 3.2. Dirac originally called it an
improper function as there is no proper function with these properties. In fact, we can observe
that

1= stydt= Lt S.(t)dt= Lt 0=0
f_m ® g—>0~|.|t|>g e(® £—0

8.

1/2¢

! t

-0 €
Fig. 3.2 Profile of Dirac delta function.

Obviously, this contradiction implies that 6(t) cannot be a function in the ordinary sense.
Some important properties of Dirac delta function are presented now:
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PROPERTY I on o(t)dt=1

PROPERTY II: For any continuous function f (t),
f; f(1)S(t) dt = f(0)
Proof Consider the equation
EEOJ.: f00,0d= Lt @), —e<f<e
As £— 0, we have £ — 0. Therefore,
f: f(H)S(t) dt = f(0)
PROPERTY II; Let f(t) be any continuous function. Then

j: S(t-a) f(t)dt=f(a)

Proof Consider the function

le, a<t<a+e
5e(t_a) =
0, elsewhere
Using the mean-value theorem of integral calculus, we have
oo 1 rate
j S, (t-a)f (1) dt:—j ft)dt= f(a+6e), 0<@O<1
—oco g a

Now, taking the limit as £ — 0, we obtain

j_w S(t-a) ft)dt=f(a)

Thus, the operation of multiplying f (t) by 6 (t —a) and integrating over all t is equivalent to
substituting a for t in the original function.

PROPERTY IV O (-t) =d(t)

PROPERTY V: J(at) = §5(t), a>0
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PROPERTY VI: If o(t) is a continuously differentiable. Dirac delta function vanishing for large
t, then

j°° f(t) & (t)dt =—f(0)
Proof Using the rule of integration by parts, we get
j TR dt=[f®)O)]", - j T F) s dt

Using Eq. (3.33) and property (I11), the above equations becomes

f: f(t) &'(t)dt = — ()

PROPERTY VII: Jm o'(t—a) f(t)dt=—f'(a)

Having discussed the one-dimensional Dirac delta function, we can extend the definition to
two dimensions. Thus, for every f which is continuous over the region S containing the

point (£,7), we define (x—¢&, y—n) in such a way that

[[o0=¢y-m) t(x y)do =& n) (3.35)
S

Note that d(x—¢&, y—17) is a formal limit of a sequence of ordinary functions, i.e.,

(=& y-m= Lt 5(r) (3.36)

where r? = (x—&)? + (y—1)?. Also observe that

f S(x=8)o(y—m) f(x, y)dxdy=f(S 7) (3.37)
Now, comparing Egs. (3.35) and (3.37), we see that
S(x=&,y—m=56(x=8)(y-n) (3.38)

Thus, a two-dimensional Dirac delta function can be expressed as the product of two one-
dimensional delta functions. Similarly, the definition can be extended to higher dimensions.
EXAMPLE 3.2 A one-dimensional infinite region —e < x <o is initially kept at zero

temperature. A heat source of strength gs units, situated at x =¢ releases its heat instantaneously
at time t=7. Determine the temperature in the region for t > 7.
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Solution Initially, the region —ee < X< is at zero temperature. Since the heat source
is situated at x=¢ and releases heat instantaneously at t =7, the released temperature

at x=¢ and t=r7 isa J- function type. Thus, the given problem is a boundary value problem
described by

9T g(xt) _1JT

PDE ,
&XZ k o Jt

—o < X<oo, t>0
IC: T(xt)=F(x)=0, —co< X< oo, t=0

g(x, 1) = gs6(x-¢) 6(t-7)

The general solution to this problem as given in Example 7.25, after using the initial condition
F(x)=0, is

ot at’ = , Sy, Y /
To=1 mj%m g(X, t') exp [-(x— X2 [{ha(t -t dx (3.39)
Since the heat source term is of the Dirac delta function type, substituting
9(x, 1) =gs6(x—¢) 6 (t—17)

into Eqg. (3.39), and integrating we get, with the help of properties of delta function, the
relation

_o gy texp[-(x—&°HAat-t)H .. .,
T(X!t)_k\/m 0 m §(t T)dt

Therefore, the required temperature is

ooty = 29s &P [F(x=&)*K{4at-DH  tor t> 1

k JAro(t—1)

EXAMPLE 3.3 An infinite one-dimensional solid defined by —eo < X< o is maintained at

zero temperature initially. There is a heat source of strength gg(t) units, situated at x=¢£, which

releases constant heat continuously for t > 0. Find an expression for the temperature distribution
in the solid for t> 0.

Solution  This problem is similar to Example 3.2, except that g(x, t) = g¢(t) 6(x—-¢&) is
a Dirac delta function type. The solution to this IBVP is

T2 [ 8

=0 [ 4ror(t—t")

exp [~ (X = &) H{da (t —t')}] dt’ (3.40)
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It is given as gg(t) = constant = g(say). Let us introduce a new variable 7 defined by

X— B2
Vda(t-t) n% 4o
Therefore,
g2
a1 08y
n 20
Thus, Eq. (3.40) becomes

x—¢& exp (-17°)
T(x,t)= ———"d
(. gSZK,/nJ.(x—g)/«Mm n? 7
However,
2 2
n -1
dn n n
Hence,

oo

X=¢

e n oo _ 2
T t)=gem—2 || - — -2 e d
(* gSZKx/ﬂ' [ n ]( i -l.(x—f)/J—(4o:t) n
X=¢) 1/ 4ot

Recalling the definitions of error function and its complement
2 X 2
f = — w d y f S :1
erf (X) J;?-[oe n erf (o)

erfc(x) =1—erf (x) = \/—U exp (-n?)dn - J- exp(-n )dnj

- [ epentn

the temperature distribution can be expressed as

Alternatively, the required temperature is
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3.5 SEPARATION OF VARIABLES METHOD

Consider the equation
2
I _ 2T (3.41)
ot IxX°
Among the many methods that are available for the solution of the above parabolic partial
differential equation, the method of separation of variables is very effective and straightforward.
We separate the space and time variables of T(x, t) as follows: Let

T(x t) = X(x) B(t) (3.42)
be a solution of the differential Eq. (3.41). Substituting Eq. (3.42) into (3.41), we obtain
X2_1 p =K, a separation constant
X aop

Then we have

2
‘ZTZ(— KX =0 (3.43)
d
Eﬁ—aKﬂ =0 (3.44)

In solving Eqgs. (3.43) and (3.44), three distinct cases arise:

Casel When K is positive, say A2, the solution of Eqgs. (3.43) and (3.44) will have the form
X=ge®+ce™,  foce?t (3.45)

Case Il When K is negative, say —42, then the solution of Egs. (3.43) and (3.44) will have
the form

X =€, €0S AX+ C, Sin AX, B= %e—aﬁzt (3.46)
Case Il When K is zero, the solution of Eqgs. (3.43) and (3.44) can have the form

X =¢gX+Cp, B=c, (3.47)
Thus, various possible solutions of the heat conduction equation (3.41) could be the following:
2
T(x 1) = (c[e™ + ce ) e
’ s —Ollzt
T(X, t) = (¢ cos Ax+ ¢ sin AX) € (3.48)

T(X, 1) =X+
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where

C = CiG3, G =CC
EXAMPLE 3.4 Solve the one-dimensional diffusion equation in the region 0<x<7,t >0,
subject to the conditions

(i) T remains finite as t — oo
(i) T=0,if x=0and r for all t

X, 0<x<xl/2

(i) Att=0,T= x
T—X, ESXSﬂ'.

Solution  Since T should satisfy the diffusion equation, the three possible solutions are:

T(x 1) = (g™ + e ) et

T(x,t) = (¢, coSs AX+ C, Sin AX) e @t

T(x 1) =(qx+¢c)

The first condition demands that T should remain finite as t — . \We therefore reject the first
solution. In view of BC (ii), the third solution gives

0=c -0+0cy, O=¢-m+c,

implying thereby that both ¢, and c, are zero and hence T=0 for all t. This is a trivial
solution. Since we are looking for a non-trivial solution, we reject the third solution also.
Thus, the only possible solution satisfying the first condition is

; —aA’t
T(x,t) =(c cos Ax+cC,sin Ax)e
Using the BC (ii), we have

0=(c;Cos AX+C,8in AX) |, o

implying ¢, = 0. Therefore, the possible solution is
T(xt)= cze_o"12t sin Ax

Applying the BC: T =0 when x=7, we get
sinAr=0= Az =nz

where n is an integer. Therefore,
A=n
Hence the solution is found to be of the form

2
T(x 1) =ce " sin nx
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Noting that the heat conduction equation is linear, its most general solution is obtained by
applying the principle of superposition. Thus,

— 2
T(xt)= Z c,e ™" tsin nx
n=1
Using the third condition, we get

T(x,0)= i C, Sin nx

n=1

which is a half-range Fourier-sine series and, therefore,

2 (7 . 2| #l2 . 7 .
C, _;J‘O T (%, 0) sin nx dx_;Uo Xsin nx dx+_|.”/2 (7z — x)sin nx dx}

Integrating by parts, we obtain

. nl2 . T
2 cos nNx  sin nx cos Nx  sin nx
cn:—[(—x . ) +{—(;z—x) +— } }
n

T n n 0 n l2
or
_4sin (n7/2)

nz

Thus, the required solution is
o ot

T(xt) _4 D © S"; (07/2) cin nx

z n=1 n

EXAMPLE 3.5 A uniform rod of length L whose surface is thermally insulated is initially
at temperature 8 = 6. At time t=0, one end is suddenly cooled to 8 = 0 and subsequently
maintained at this temperature; the other end remains thermally insulated. Find the temperature
distribution &(x, t).

Solution  The initial boundary value problem IBVP of heat conduction is given by

2

PDE: aj:aﬁ, 0<x<L,t>0
ot IxX?

BCs: 6(0,t) =0, t>0
ﬁ(L,t):O, t>0
X

IC: 6(x0)=6,, 0<x<L
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From Section 3.5, it can be noted that the physically meaningful and non-trivial solution is
0(x t) = A (Acos Ax+ Bsin AX)
Using the first boundary condition, we obtain A=0. Thus the acceptable solution is
6 = Be tsin Ax

20
X

Using the second boundary condition, we have

2
= ABe “tcos Ax

2
0=ABe “ 1t cos AL

implying cos AL = 0. Therefore,
The eigenvalues and the corresponding eigenfunctions are

_ @2n+Y)x

n=0,12,...
2L

n

Thus, the acceptable solution is of the form

=Bexp[-a{(2n+1)/ 2L}27r2t] sin (%) X

2n+1 j
X
L

0(xt)= i B, exp [—a{(2n+1)/2L}2n2t]sin( >
n=0

Using the principle of superposition, we obtain

Finally, using the initial condition, we have

by =), Bysin (zgzlnxj

n=0

which is a half-range Fourier-sine series and, thus,

2 rL 2n+1
B.=—| 6,sin| —— d
nLIOOI(ZL”XjX

2 2L (2n+1 ) -
=—| -6, cos TX
L @n+)x 2L 0

= —&[cos {(2n+1) 7/2} - cos 0] = 4%
@n+Y) 7z @n+Y) 7z
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Thus, the required temperature distribution is

O(xt) = Zf) %exp [—a{(2n+1)/2L}* z?t] sin (22:1“)

EXAMPLE 3.6 A conducting bar of uniform cross-section lies along the x-axis with ends
at x=0 and x= L. Itis kept initially at temperature 0° and its lateral surface is insulated. There
are no heat sources in the bar. The end x =0 is kept at 0°, and heat is suddenly applied at
the end x=L, so that there is a constant flux gy at x=L. Find the temperature distribution
in the bar for t > 0.

Solution  The given initial boundary value problem can be described as follows:

2
PDE: ﬂ = aﬂ

ot Ix?
BCs: T(0,1) =0, t>0

JT
—(Lh=ap, t>0

IC: T(x,0)=0, 0<x<L

Prior to applying heat suddenly to the end x=L, when t=0, the heat flow in the bar is
independent of time (steady state condition). Let

T(X 1) =T () +Ti(x 1)

where T is a steady part and T, is the transient part of the solution. Therefore,

2
ﬁ T(S) _0
o =
X
whose general solution is
T(S) =Ax+B

when x=0, Ty =0, implying B=0. Therefore,

T(S) = AX
Using the other BC: 07_:%' we get A=(,. Hence, the steady state solution is
X

T(s) = toX
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For the transient part, the BCs and IC are redefined as
(i) T(0,t)=T(0,1)-T(0)=0-0=0
(i) IT(L, t)/dx=dT(L,t)/dx—dT4(L,t)/dX=0y -y =0
(iii) T(% 0)=T(X, 0) = Teg) (X) =—GpX, 0 < X< L.

Thus, for the transient part, we have to solve the given PDE subject to these conditions. The
acceptable solution is given by Eq. (3.48), i.e.

2
T.(x t) = e ® (Acos Ax+ Bsin Ax)
Applying the BC (i), we get A=0. Therefore,
2
T(x t) = Be* tsin Ax
and using the BC (ii), we obtain

dn

2.
=Ble 1t cos AL =0
IxX x=L

implying /1L=(2n—l)%, n=1,2,... Using the superposition principle, we have

_ - . _ 2 2... (2n-1
T(x )= Bexp[-a{(2n-1)/2L¥ x t]sm( oL ﬂx)

n=1

Now, applying the IC (iii), we obtain

. _(2n-1
T(% 0) =—gyX = E
1(%, 0) = —0ggX nlensm( oL nx)

Multiplying both sides by sin (anql__lﬁxJ and integrating between 0 to L and noting that

0, n#m

X sin 2m-1 X |dx =
d TR R =
2 1

L . (2n-1
sin
Io B ( 2L
we get at once, after integrating by parts, the equation

—q 4L [sin(zm_lﬁﬂ _g Lt
° (2m-1)272 2 ™2

n=m
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or
- L(_l)m—lz B L
% (2m-1)%7? m2
which gives
B - (-1)"8Lgy
(2m-1)%z?

Hence, the required temperature distribution is

T(xt)= q0x+8;—go 21 %exp [—a{(2m-1)/L¥ 7%t sin(zr;L_lzsz

EXAMPLE 3.7 The ends A and B of a rod, 10 cm in length, are kept at temperatures 0°C
and 100°C until the steady state condition prevails. Suddenly the temperature at the end A is
increased to 20°C, and the end B is decreased to 60°C. Find the temperature distribution in
the rod at time t.

Solution  The problem is described by

2
PDE:ﬂzaa—T, 0<x<10
ot Ix?
BCs: T(0,1) =0, T(10,t) =100

Prior to change in temperature at the ends of the rod, the heat flow in the rod is independent
of time as steady state condition prevails. For steady state,

2
d_z _0
dx
whose solution is
T(S) = AX+ B
When x=0, T =0, implying B =0. Therefore,
T(S) = AX

When x=10, T =100, implying A=10. Thus, the initial steady temperature distribution in
the rod is

T(S) (X) = 10X

Similarly, when the temperature at the ends A and B are changed to 20 and 60, the final steady
temperature in the rod is

T (X) =4x+20
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which will be attained after a long time. To get the temperature distribution T(x,t) in the

intermediate period, counting time from the moment the end temperatures were changed, we
assume that

T 1) =Ty (X 1) + T (X)
where T;(x,t) is the transient temperature distribution which tends to zero as t — co. Now,
Ti(x,t) satisfies the given PDE. Hence, its general solution is of the form
—aA?t :
T(x,t)=(4x+20)+e (B cos Ax +csin Ax)
Using the BC: T =20 when x =0, we obtain

2
20 =20+ Be ™
implying B=0. Using the BC: T =60 when x =10, we get
sin104 =0, implying l:rl]—g, n=12,...

The principle of superposition yields

_ N _ 2015in [ %
T(x,t) = (4x+20)+ Y ¢, exp[-a(nz/10) t]sm(lo)x

n=1

Now using the IC: T =10x, when t=0, we obtain

10X = 4x+20+ Y ¢, sin (rl]—gx)

or
. (nx
6x—-20= C,SIn| —X
2o (10 )
where

2 rlo . (nx 1 800 200
C,=— 6x — 20)sin| —x |dx=—=| (-)" —-=—"
n 10-[0( ) (10 J 5_( ) nz nﬂ}

Thus, the required solution is

(nn)z } . (m )
p|—a|—| t|sin| —x|.
10 10

T(x,1) =4X+20—12 {(_1)n @_@} ex
5 n=1 nx nx
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EXAMPLE 3.8 Assuming the surface of the earth to be flat, which is initially at zero
temperature and for times t >0, the boundary surface is being subjected to a periodic heat

flux go cos at. Investigate the penetration of these temperature variations into the earth’s
surface and show that at a depth x, the temperature fluctuates and the amplitude of the steady
temperature is given by

f 2 = exp[~f(0/20) x]

Solution  The given IBVP is described by

aT 9T
PDE: —=oa—~ 3.49
ey (3.49)
BC:—%: gpcoswt at x=0, t>0 (3.50)
IC:T(x,0)=0 (3.5

We shall introduce an auxiliary function T satisfying Egs. (3.49)—(3.51) and then define the
complex function Z such that

Z=T+iT
We can easily verify that Z satisfies
2
pDE: %% - a—& (3.52)
ot IxX?
BC: —'7—2_90 ot at x=0,t>0
IX

IC:Z=0 in the region, t=0

Let us assume the solution of Eq. (3.52) in the form

Z=f(x)d”
where f (x) satisfies
2
d f§><)_igf(x)=0 (3.53)
dx o
_df(x)

= at x=0 3.54
™ Jo (3.54)
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Also,
f(x) is finite for large x. (3.55)
The solution of Eq. (3.53), satisfying the BC (3.55), is

f(x) = Aexp[-/(iow/a) X]
The constant A can be determined by using the BC (3.54). Therefore,
1 o -
f(%) =f90\g exp[-/(iw/a) x]

Thus,

Z= go\/%%exp [lot—/ (iw/ o) X] (3.56)

It can be shown for convenience that

~ 1+i 1 1-i
= T

Thus, Eq. (3.56) can be written in the form

Its real part gives the fluctuation in temperature is

T(X,t)=& z—aGXP[—,/EXJ{COS(M—,/ﬁxJﬂin(a)t— /ﬁxﬂ
:& z_aexp(_ ﬂchos(wt_ EX_EJ
2 N w \ 2c 200 4

Hence, the amplitude of the steady temperature is given by the factor
do |2 (0]
— |—exp|—,/—X
V2V o p( \ 20 )

EXAMPLE 3.9 Find the solution of the one-dimensional diffusion equation satisfying the
following BCs:

(i) T is bounded as t — oo
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(i) s =0, for all t
3Xx=0

(iii) i =0, for all t
IX|y—a

(iv) T(x,0)=x(a-x), O<x<a

Solution  This is an example with insulated boundary conditions. From Section 3.5, it
can be seen that a physically acceptable general solution of the diffusion equation is

T(x t)=exp (—aﬂzt) (Acos Ax+ Bsin AX)
Thus,

% = exp (—aA’t) (- A4 sin Ax+ BA cos Ax) (3.57)

Using BC (ii), Eq. (3.57), gives B =0. Since we are looking for a non-trivial solution, the use
of BC (iii) into Eq. (3.57) at once gives

sin Aa=0 implying Ala=nr, n=0,12,...

Using the principle of superposition, we get

- 2
_ —on2 _ —al ™™ A
T(x 1) =) Aexp(-oA’t) cos Ax n}_%/%exp{ a( a) t}cos( a)x.

The boundary condition (iv) gives

< e\ nr
T(x,0)=x(a-x)=A~Ay + ngl A, exp [—a(?) t} cos(—)x

a
where
2 ra 2 a’
=— ax-— dx=—
A== [ @) dx="
A, _g.[a (ax— x2) cos(ﬂx) dx
aJo a
2a° 2a°
=—— (L+cos nr) = L+ (-)"
n’z? n’z?
Therefore,
432
A - for n even
=1 n‘r

0, for n odd
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Hence, the required solution is

a’ 4a° 1 nz A%
T(x,t):———2 2 —Zcos(—) Xexp —a(—) t
6 T n=2,4,...even n a a

EXAMPLE 3.10 The boundaries of the rectangle 0 < x<a, 0<y<b are maintained at zero
temperature. If at t=0 the temperature T has the prescribed value f (X, y), show that for

t>0, the temperature at a point within the rectangle is given by

T(X Y, t):% 2 2 f(m, n) exp (—a/lr%nt) sinTXsin ry
m=1 n=1

where
_rarb . mTx . nry
f(m, n)_j0 jo f(x,y)sin == sin = dxdy
and
2 2
2 2 m n
Him = [Tb—z]
Solution  The problem is to solve the diffusion equation described by
2 2
PDE:£=0: 8—T+3—T , O<x<a 0<y<b t>0
ot X% ay?
BCs: T(0,y,t)=T(a, y,t)=0, O<y<b, t>0
T(x0,t)=T(x, b, 1) =0, O<x<a t>0
IC: T(xy,0)=f(x ), O<x<a 0<y<hb
Let the separable solution be
T=XXY(y) B
Substituting into PDE, we get
X +Y =£ﬂ __p2
X Y alf

Then g’ +aA?B=0
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Hence,
X"+ p*X =0

Y

=-22+p* =-q° (say)

Therefore,
Y/l + qZY -
Thus, the general solution of the given PDE is

T(X y,t)=(Acos px+ Bsin px) (ccos qy+ D sin qy)e“)”1 t
where
22=p?+qf
Using the BC: T(0, y,t)=0, we get A=0. Then, the solution is of the form
T(x, y,t) = Bsin px(ccos gy + D sin qy)e
Applying the BC: T(x,0,t)=0, we get c=0. Thus, the solution is given by
T(x, y,t) = BD sin pxsin qye ™
Application of the BC: T(a, y,t) =0 gives
sin pa=0, implying pa=nr

or

Using the principle of superposition, the solution can be written in the form

- (nm ). )
T i ,t - aA‘t
(%, y,1) E A, sin (—a x)sm aye

n=1

Using the last BC: T(x, b,t) =0, we obtain

Thus, the solution is found to be

T(X Yy, t)= 2 2 Afmsm (_Xj sm(rr:: y) e—alzt

207
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where

2

2
P2y M N
p-+q WA,

Finally, using the IC, we get
. (nr ) . (mr
T(X y,00=f(xy)= sin| —x |sin| —
% ¥, 0)= (X y)= Am (a} (byj
which is a double Fourier series, where
2 2pa b . (M . (nz
=== f hilad i
A 2 b-[o J.o (X, y)sm[ 3 x)sm[ b y)dxdy
Hence, the required general solution is
N — 2
T(X Yy, t)= 2 2 f(m n)e“sin (Exjsin(ﬂy)
m=1 n=1 a b

where

4 b . .
f(m, n)=£j0a .[o f(x, y)sm(%x)sm(%y)dx dy

and

3.6 SOLUTION OF DIFFUSION EQUATION IN CYLINDRICAL

COORDINATES
Consider a three-dimensional diffusion equation
ar 2
—=aVT
n

In cylindrical coordinates (r, 8, z), it becomes

1JT _9%T 19T 1 9°T  J°T 358
=t — = —+— (3.58)
adt g2 ror 2992 972
where T=T(r, 0, z,1).
Let us assume separation of variables in the form

T(r,0,z1t)=R(r)H(0)Z(2) (1)
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Substituting into Eq. (3.58), it becomes

’

1 1
R'HZB+-RHZB+—H"RZB+Z"RH 3 ="-RHZ
r r

QI

or

R +EE+iH_+Z =£ﬂ =_/12
R TR 2H Z abf

where —42 is a separation constant. Then
B+ oA? p=0

R// l R/ 1 H// Z//
+A%=— ~ = —u? (say)

+__
R rR 2 H

Thus, the equations determining Z, R and H become

Z,’—‘LIZZZO
R +15+i|_I +22+,u2=0
R rR 2 H
or
R/l RI H//
2 2, .2\ ,2 2
r +r—+ A+ u)rc-=——=v-(sa
Tt (ARt = =S =P (say)
Therefore,

H”+v?H =0
2
R”+£R’+{(12 +,uz)—v—2}R=0
r r
Equations (3.59)—(3.61) have particular solutions of the form
ﬁ — e*OM.Zt

H =ccosvé + D sin v@

Z=Ae"? +Be#*

209

(3.59)

(3.60)

(3.61)

(3.62)

The differential equation (3.62) is called Bessel’s equation of order v and its general solution

is known as

R(r) = GJy (YA? + 1°r) + G, (yA? + 1)
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where J,(r) and Y, (r) are Bessel functions of order v of the first and second kind, respectively.
Of course, Eq. (3.62) is singular when r = 0. The physically meaningful solutions must be twice
continuously differentiable in 0 <r <a. Hence, Eq. (3.62) has only one bounded solution, i.e.

R(r)=J, (A% +u°r)

Finally, the general solution of Eq. (3.58) is given by
2
T(r,0, z,t) = e " [Ae“Z + Be “Z][C cos VO + D sin v6] J,, (A + °r)
EXAMPLE 3.11 Determine the temperature T(r,t) in the infinite cylinder 0<r <a when
the initial temperature is T(r, 0) = f (r), and the surface r = a is maintained at 0° temperature.

Solution  The governing PDE from the data of the problem is

JaT 2
LARpNVE
a Z

where T is a function of r and t only. Therefore,
T 1T _1JT (3.63)
N2 rdr oot
The corresponding boundary and initial conditions are given by
BC: T(a,t)=0 (3.64)
IC: T(r,0)= f(r)
The general solution of Eq. (3.63) is
T(r,t)=Aexp (—a/lzt) Jo (4r)
Using the BC (3.64), we obtain
Jo(Aa)=0

which has an infinite number of roots, £,a(n=1,2,...,e0). Thus, we get from the superposition
principle the equation

T, )= Avexp (-a&it) Jo(&ar)

n=1

Now using the IC: T(r,0)= f(r), we get

f)=Y, Adoar)
n=1
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To compute A, we multiply both sides of the above equation by rJ,(&,,r) and integrate with
respect to r to get

[ O¥End =3 A o) JoEn dr
n=1

0 forn=m

a2 2
An [?] Ji(€na) forn=m

which gives

2
f d
A= s )j uf (U)3p (€ du

Hence, the final solution of the problem is given by

T(r,t)_%i Og’“ exp (- afmt)“ uf(u)Jo(fmu)du}
m=1 1 méa.

3.7 SOLUTION OF DIFFUSION EQUATION IN SPHERICAL
COORDINATES

In this section, we shall examine the solution of diffusion or heat conduction equation in the
spherical coordinate system. Let us consider the three-dimensional diffusion Eq. (3.9), and let

T=T(r, 6, ¢,1). In the spherical coordinate system, Eq. (3.9) can be written as

2 2
2T 29T 1 6’( aTj 1 9T 17 (3.65)

-t sin @— |+ 53
Ir? o r?sing 96 r?sin’@ d¢? Ta it
This equation is separated by assuming the temperature function T in the form
T=R()H(@)D(¢) 5(t) (3.66)
Substituting Eq. (3.66) into Eq. (3.65), we get

R 2R 1 1d(i0de 1 d’® 1ﬂ’

et | SNt
R r R r?sing H déo de cDrsm9d¢> aﬂ

where A2 is a separation constant. Thus,

dg  .»
——+ A =0
a AP
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whose solution is

B= cle“)"12t (3.67)
Also,
2 2
r?sine 1 ﬂ+z£ +;i(sin6d—H) A2 :—id—dj:m2 (say)
Rl dr?2 rdr| Hr2sing do de @ d¢?
which gives
2
d—?+ m’® =0
do¢
whose solution is
@ (p) =™ +c,e™ (3.68)

Now, the other separated equation is

2 2
1 (—d R+2 de+—l d (sin ed—H)+lz= m

E dr? ?E Hrzsineﬁ

de resin< @
or
2 2
r—(R”+§R’)+/12 2 m __1 i(sin Hd—H)
R r sin2g Hsing do de
=n(n+1) (say)
On re-arrangement, this equation can be written as
R”+ER’+{AZ ——n(”jl)}mo (3.69)
r r
and
2 2
- 1 sined H+cos¢9d—H + m =n(n+1)
H sin @ de? dé | sin%e
or
2 2
OI—|;|+cot6'd—l_|+ n(n+1)— _m2 H=0 (3.70)
de de sin“ @

Let R=(Ar)™Y2y(r); then Eq. (3.69) becomes

2
(ary Y2 [w”(r) Ly + {AZ —MM ~0

r
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Since (Ar)#0, we have

2
y(r)+ % w'(r)+ {/12 _(n+l2) +r12/2) } w(r)=0

which is Bessel’s differential equation of order (n+1/2), whose solution is

w(r) = Adpi (Ar) + BY, 0 (Ar)

Therefore,

R(r) = (Ar) Y2 [Adgq/0(Ar) + BY,y, g/ (Ar)]

213

(3.71)

where J, and Y,, are Bessel functions of first and second kind, respectively. Now, Eq. (3.70)

can be put in a more convenient form by introducing a new independent variable

L =cosf

so that

cot 6 = uhf1- u?

aH__ 1— 2 dH
de du
d’H , d’H  dH
—=A-u)-u——
g’ = a2 M du
Thus, Eq. (3.70) becomes
d?H dH m?
1- 12— -2u—+|n(n+1) - H=0
“ du? ﬂd,u 1-u?

which is an associated Legendre differential equation whose solution is

H(6) = APy (1) + B'QR (1)

(3.72)

(3.73)

where P"(u) and Qp'(u) are associated Legendre functions of degree n and of order m, of

first and second kind, respectively. Hence the physically meaningful general solution of the

diffusion equation in spherical geometry is of the form

T(r.6.9.)= 2 Aim (/lr)_llz Jniw2 (Ar) P (cos 6) eirim‘/j_‘)’}L2t

A,mn

(3.74)

In this general solution, the functions Q'(u) and (ﬂr)‘“zYmﬂz(ﬂr) are excluded because

these functions have poles at x4 =+1 and r =0 respectively.
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EXAMPLE 3.12 Find the temperature in a sphere of radius a, when its surface is kept at
zero temperature and its initial temperature is f(r, 9).

Solution  Here, the temperature is governed by the three-dimensional heat equation in
spherical polar coordinates independent of ¢. Therefore, the task is to find the solution of
PDE

19T _9°T 29T, 1 0 ( ngﬂ) (3.75)
a dt  gr2 r Ir r2sing 90 20
subject to
BC:T(a 6,t)=0 (3.76)
IC:T(r,8,0)=f(r,6) (3.77)
The general solution of Eq. (3.75), with the help of Eq. (3.74), can be written as
T, 0,1)= Ayp(Ar) 23,072 (Ar) Ry (cos g)e (3.78)

A.n
Applying the BC (3.76), we get
Jnpp(4@)=0

This equation has infinitely many positive roots. Denoting them by &, we have
T(r,0,t =i il &f,r)’ Jnay2 (&1) Py (cos 8) exp (—arE2t) (3.79)
Now, applying the IC and denoting cos @ by u, we get
f(r, cos™(u)) =i il A (GD Jn2 (GT) P,

Multiplying both sides by B, (x)du and integrating between the limits, -1 to 1, we obtain

[, 1 0057 () Rty 2 > A ED 20020 [ Pl ) di
n=0 i=1

- Y A0 060 (5
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or

2n+1) (1 _ - _

( 5 )j_l Pa(u) f(r,cos () du= 3 AyED 200G for n=0,1,2.3,..
i=1

Now, to evaluate the constants A, we multiply both sides of the above equation

by r3/2Jn+1,2(§jr) and integrate with respect to r between the limits O to a and use the

orthogonality property of Bessel functions to get

1/2(2n+1

i > J'[Oa r¥23n,02(&;r) dr Ull P, (1) f(r, cos™ (1)) dﬂ}

= 2 A _[Oa MIns12(Gi1) Insar (é:jr) dr
i=1

1w ,
=§2 A [Ina2GNPP, n=0,123,... (3.80)
=
Thus, Egs. (3.79) and (3.80) together constitutes the solution for the given problem.

3.8 MAXIMUM-MINIMUM PRINCIPLE AND CONSEQUENCES

Theorem 3.1 (Maximum-minimum principle).
Let u(x,t) be a continuous function and a solution of

Uy = Oty (3.81)

for 0<x<I, 0<t<T, where T>0 is a fixed time. Then the maximum and minimum values
of u are attained either at time t =0 or at the end points x=0 and x=1 at some time in the
interval 0<t<T.

Proof To start with, let us assume that the assertion is false. Let the maximum value
of u(x,t) for t=0(0<x<I) orforx=0o0rx=1(0<t<T)be denoted by M. We shall assume
that the function u(x,t) attains its maximum at some interior point (X, to), in the rectangle

defined by 0<x,<I, 0<ty, <T, and then arrive at a contradiction. This means that

u(x, tp)=M +¢ (3.82)

Now, we shall compare the signs in Eq. (3.81) at the point (X, t). It is well known from
calculus that the necessary condition for the function u(x, t) to possess maximum at (Xo, to) is

Ju 7%u
= t.)=0 - < 3.83
aX(XOI O) ’ &)(2 (XOytO)<0 ( )
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In addition, u(xy, ty) attains maximum for t =t,, implying

Ju
— (X%, ty) =0 (3.84)
ot (%0 to)

Thus, with the help of Egs. (3.83) and (3.84) we observe that the signs on the left- and right-
hand sides of Eq. (3.81) are different. However, we cannot claim that we have reached a
contradiction, since the left- and right-hand sides can simultaneously be zero.

To complete the proof, let us consider another point (x;, t;) at which 92u/gx? <0 and
duldt > 0.
Now, we construct an auxiliary function

V(X t)=u(x,t)+A(t; —t) (3.85)

where 4 is a constant. Obviously, v(x,tg) =u(Xy, ty) =M +¢& and A(ty —t) < AT. Suppose
we choose A>0, such that 1<e&/2T; then the maximum of v(xt) for t=0 or
for x=0, x=1 cannot exceed the value M +¢&/2. But v(x,t) is a continuous function and,

therefore, a point (X, t;) exists at which it assumes its maximum. It implies

M+el2<sv(x, ) 2Vv(X, ) =M +¢
This pair of inequalities is inconsistent and therefore contradicts the assumption that v
takes on its maximum at (x,,ty). Therefore, the assertion that u attains its maximum either
at t=0 or at the end points is true.
We can establish a similar result for minimum values of u(x, t). If u satisfies Eq. (3.81),
—u also satisfies Eq. (3.81). Hence, both maximum and minimum values are attained either

initially or at the end points. Thus the proof is complete. We shall give some of the consequences
of the maximum-minimum principle in the following theorems.

Theorem 3.2 (Uniqueness theorem). Given a rectangular region defined by 0 < x<1, 0<t<T,

and a continuous function u(x, t) defined on the boundary of the rectangle satisfying the heat
equation

Uy = QUyy
This equation possesses one and only one solution satisfying the initial and boundary conditions
u(x, 0) = f(x)

u(0,1) =g (t), ul, t) = g, (t)
where f (X), gi(t), g»(t) are continuous on their domains of definition.

Proof Suppose there are two solutions u;(x,t), u,(x, t) satisfying the heat equation as
well as the same initial and boundary conditions. Now let us consider the difference



PARABOLIC DIFFERENTIAL EQUATIONS 217

V(X, t) =us (X, t) —ug(x,t)
It is also a solution of the heat conduction equation for 0< x <1, 0<t<T and is continuous
in xand t. Also, v(x,t)=0, 0<x<I and v(0,t)=v(l,t)=0, 0<t<T. Hence, v(x,t) satisfies
the conditions required for the application of maximum-minimum principle. Thus, v(x,t)=0 in

the rectangular region defined by 0<x <1, 0<t<T. It follows therefore that u,(x, t) = u, (X, t).

Another important consequence of the maximum-minimum principle is the stability property
which is stated in the following theorem without proof.

Theorem 3.3 (Stability theorem). The solution u(x,t) of the Dirichlet problem

Up = OUyy, 0<x<lI, 0<t<T
u(x, 0)= f(x), 0<x<l
u(0,t)=g(t), u(l,t)=h(), 0<t<T

depends continuously on the initial and boundary conditions.

3.9 NON-LINEAR EQUATIONS (MODELS)

Today various studies of fluid behaviour are available which encompass virtually any type of
phenomena of practical importance. However, there are many unresolved important problems
in fluid dynamics due to the non-linear nature of the governing PDEs and due to difficulties
encountered in many of the conventional, analytical and numerical techniques in solving
them. In the following, we shall present few non-linear model equations to have a feel for this
vast field of study.

3.9.1 Semilinear Equations

Reaction—diffusion equations that appear in the literature are frequently semilinear and are of
the form u, = V2u + f(u, X, t).

Typically, they appear as models in population dynamics, with inhomogeneous term
depending on the density of local population. In chemical engineering, f varies with temperature
and/or chemical concentration in a reaction like f(u) = AuM.

3.9.2 Quasi-linear Equations

Many problems in fluid mechanics, when formulated mathematically, give rise to quasi-linear
parabolic PDEs. A simple example concerns the flow of compressible fluid through a porous
medium. Let p denotes fluid density. Following Darcy’s law, which relates the velocity V to

the pressure p as
U
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Then, the equation of conservation of mass is given by
ap
—+V-(pV)=0
o (V)
and the equation of state p = p(p) can be combined to get
)
L V-K(p)Vp]

where K(p) is proportional to pg_p. The model can then be written as the porous medium
0

equation in the form

ap n
L4V (p"V
T (Pp"Vp)

where n is a positive constant.

3.9.3 Burger’s Equation

The well-known Burger’s equation is non-linear and finding its solution has been the subject
of active research for many years. For simplicity, let us consider one-dimensional Burger’s
equation in the form

U + UUy = VUyy

1
or U — [Vux —EUZJ =0 (3.85a)

which is actually the non-linear momentum equation in fluid mechanics without the pressure
term. v is the physical viscosity. Here vu,, measures dissipative term and uu, measures
convective term, while u; is the unsteady term. Hopf (1950) and Cole (1951) gave independently
the analytical solution for a model problem using a two-step Hopf—Cole transformation described

by

uix t) = yx
v = -2v log ¢(x, t)
That is,
u=—2v¥x (3.85b)
¢
Thus,

¢th ¢X¢t
=-2v| == |+ 2v——
Uy V[ Vv >



PARABOLIC DIFFERENTIAL EQUATIONS 219

3
Uy =— 2v(¢ﬂj + GV[—Q)X?X ] - 4v(¢—’3<] -
¢ ¢ ¢

Inserting, these derivative expressions into Eq. (3.85a) and on simplification, we arrive at

2 o= ) - (= A =0 (3.85¢)

Therefore, we have to solve Eqg. (3.85c¢) to find ¢(x, t), and using this result in Eq. (3.85b),
we obtain an expression for u(x, t) which of course satisfies Eq. (3.85a). Thus, if @(x, t)
satisfies heat conduction equation

} = Vi (3.85d)

which also means solving trivially Eq. (3.85c). This is also called linearised Burger’s equation.
Equivalently, we may introduce the transformation:

vy =\,
2 (3.85¢)
Yy = VU, — ?

in such a way, satisfying that w, = y,. Then, the above transformation can be rewritten as

w2
Wh = Vit — 7)‘ (3.85f)

Also, Eqg. (3.85b) can be recast in the form
#(x, t) = elvix 021 (3.859)

Thus, knowing ¢(x, t), we can find u(x, t) from Eqg. (3.85b). It may also be observed that
Eqgs. (3.85d) and (3.85f) are equivalent.

Hence, the transformation of non-linear Burger’s equation into heat conduction equation,
made life easy to get analytical solution to the Burger’s equation.

3.9.4 Initial Value Problem for Burger’s Equation

The IVVP for Burger’s equation can be stated as follows. Solve
PDE: U + UUy = VUyy, —o00 < X < oo, t >0
IC: u(x, 0) = f(x) (3.85h)

Under the transformation defined by Eqg. (3.85b) and using (3.85g), the given IVP can be
restated as a Cauchy problem, described by

PDE: ¢ = Voy,
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IC: g(x, 0) = B(X)= e[ 2ol 0] (3.85i)

Using, the standard, separation of variables, method of solution, as given in Eq. (3.28), the
solution to Eq. (3.85i) is found to be

2
o= [ ¢(x)exp[ i }df (3.85))

Substituting the expression for @(x), the above equation can be rewritten as

o)== | exp| -1 %0 o

where,

f(& x,t):ij(a)da+%-

Finally, using Eq. (3.85b), the exact solution of the IVP for Burger’s equation as stated

in Eq. (3.85h) is found to be
w(x_é:) f(f,X,t)
J‘w exp{— oy }df}

u(x, t) = [ BalL
exp[—f (52;( v } dé

Here, the function f(¢, x, t) is known as Hopf-Cole function.

(3.85k)

3.10 MISCELLANEOUS EXAMPLES

EXAMPLE 3.13 A homogeneous solid sphere of radius R has the initial temperature distribution
f(r), 0<r <R, where r is the distance measured from the centre. The surface temperature

is maintained at 0°. Show that the temperature T(r,t) in the sphere is the solution of

2
T, =c? (T” +?T,j

where ¢ is a constant. Show also that the temperature in the sphere for t>0 is given by

T(r,t)=%2 B, sin (%r)exp (-A21), ﬂﬂz%
n=1



PARABOLIC DIFFERENTIAL EQUATIONS 221

Solution  The temperature distribution in a solid sphere is governed by the parabolic
heat equation
T, =c?VT
From the data given, T is a function of r and t alone. In view of the symmetry of the sphere,
the above equation with the help of Eq. (3.65) reduces to
2 2
T =c°| T, +?Tr (3.86)

Setting v=rT, the given BC gives
VIRt)=rT(Rt)=0
while the IC gives
v(r,0)=rT(r,0)=rf(r)
Since T must be bounded at r =0, we require

v(0,t)=0
Now,

\Y V.-V
werm (2]
r

Similarly, finding T,, and substituting into Eq. (3.86), we obtain
V, = G2V,
Using the variables separable method, we may write v(r,t) = R(r)z(t) and get
R(r) = Acos kr + Bsin kr
7(t) = exp (—c2k?t)
Thus, using the principle of superposition, we get
v(r,t)= i (A, cos kr + By, sin kr) exp (—c2k2t)
n=1
Also, using v(0,t) =0, we have
(A coskr+B,sinkr)|,_og=0
implying A, =0. Also, v(R,t) =0 gives B, sin kR=0, implying sin kR= 0, as B, # 0. Therefore,

kR=nr, k:%, n=12,...
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Thus, the possible solution is
oo 2.2 2
. (nw c'n“rt
v(r,t)= sin| —r |exp| —

Finally, applying the IC: v(r,0) =rf(r), we get

— . (nz
rf(r)= B, sin| —r
) Z:’”'(R j
n=1
which is a half-range Fourier series. Therefore,
2 (R . (nr
B,=— f —r |d
n R-[o r (r)sm( Rr) r

But v(r,t)=rT(r,t). Hence, the temperature in the sphere is given by

1 - . (nr c?nlr?t
T(r,t)=— B,sin| —r |exp| —
(rH="2 B (R) p[ 2

n=1

EXAMPLE 3.14 Acircular cylinder of radius a has its surface kept at a constant temperature
To. If the initial temperature is zero throughout the cylinder, prove that for t> 0.

_ 29 Jo(&a g2
T("'t)—To{l azl—fnal((:na)exp( 5nkt>}

where +&,+&,,..., £ &, are the roots of Jy(£a)=0, and k is the thermal conductivity which
is a constant.

Solution It is evident that T is a function of r and t alone and, therefore, the PDE to
be solved is

AT 1T _1JT (3.87)
AN radr kot
subject to
IC: T(r,0)=0, O<r<a
BC: T(at)=T,, t>0
Let

T(r, t)=Ty +Ty(r, 1)
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so that
T(r,0)=-T, (3.88)
T,(at)=0 (3.89)

where T, is the solution of Eq. (3.87). By the variables separable method we have (see
Example 3.11),

T,(r, t) = AJy(Ar) exp (-A%kt)
Using the BC: Ty(a, t)=0, we get
Ay (Aa) exp (-~A%kt) =0
which gives Jy(1a)=0 as A=0. Let &,&,,...,&,, be the roots of Jy(4a)=0. Then the

possible solution using the superposition principle is

T 1) = Y Avdo(Gar) exp (—£7k) (3.90)

n=1

Using the IC: T;(r, 0)=-T, into Eq. (3.90), we obtain
> Ado(&n =Ty
n=1
Multiplying both sides by rJy(&,,r) and integrating, we get
a nd a
T [ 1o dr =Y A, [ 130 (Ent) Jo(&or) o
n=1

= An J.Oa rd3(&,r)  if m=n; otherwise 0

2

= An - 33 En)

But,
T jarJ (&) dr =T, jfmaiJ 0 x=£n
0 0 0\Gm 0 0 gm 0 o m
TO éma d
=21, < DA 00] o

= —;—g[le(X)] gma = —a—-lb\]l(fma)

m
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Therefore,
2 T
Ay 98 ) == 2 1)
or
2T, 1
A= T

Hence, Eqg. (3.90) becomes

& Jg(E.r) exp (—Eak)
n=1 Jl(fna) é:n

Finally, the complete solution is found to be

2.& Jo(Er) exp (-£3K)
1-%
angl ‘]l(gna) ‘fn ]

T =-2T,

T(r,t)=T0{

EXAMPLE 3.15 Determine the temperature in a sphere of radius a, when its surface is
maintained at zero temperature while its initial temperature is f(r, 6).

Solution Here the temperature is governed by the three-dimensional heat equation in
polar coordinates independent of ¢, which is given by

(3.91)

l@:&_zl’l+zﬂ+ 1 i(s aU)
kot or2 radr r2sing 90
Let
u(r,o,t)=R(r)H(O)T(t)

By the variables separable method (see Section 3.7), the general solution of Eqg. (3.91) is
found to be

u(r,0,1)=> Y A (Ar) 23,1 (Ar) By (cos 8) exp (—kA%t) (3.92)
A n

In the present problem, the boundary and initial conditions are
BC: u(a,6,t)=0 (3.93)
IC: u(r,6,0)=1(r,0) (3.94)
Substituting the BC (3.93) into Eq. (3.92), we get
Jni2(48)=0 (3.95)
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Let &a, &a,..., &a,... be the roots of Eq. (3.95). Then the general solution can be put in the form

oo

u(r, 6,t) = 2 f‘, i (1) 2 3 1y2 (ET) Py (cos B) exp (—kETY) (3.96)
i=1

Now using the IC, we obtain
f(r.6)= 2 Y AiGN ™2 n012(6n) P (cos )
n=1i=1
Multiplying both sides by P, (cos )d (cos #) and integrating, we have

f P, (cos ) f (r, 8)d (cos §) = 2 2 A (&) ”ZJn+1,2(4ﬁr)j P.2(cos 8)d (cos )

n=1 i=1
Using the orthogonality property of Legendre polynomials, we get

S 2
[, Putcoso)  (r,6)d(cos 0) =2 2 Al P G (2 +1]

Rearranging and multiplying both sides of the above equation by r3/2Jn+1,2(§i r) and integrating
between the limits 0 to a with respect to r, we get

2n2+1j‘0al 2300 (&) er‘1 P, (cos @) f(r,8)d (cos 8) = A,; J r n+1/2(§.r)§.1/2dr
a’ __, ,
= A 7{Jn+1/2(§ia)}
Therefore,
(2n+1) &2 2 .
Ani = _[ Jns12 (&) drf P,(cos @) f(r,8)d (cos &) (3.97)

a? {3}, (GR)Y
Hence, we obtain the solution to the given problem from Eq. (3.96), where A, is given by
Eq. (3.97).
EXAMPLE 3.16 The heat conduction in a thin round insulated rod with heat sources present
is described by the PDE
U — o,y = F (X, t)/pc, O<x<l, t>0 (3.98)

subject to

BCs:u(0,t)=u(l,t)=0

IC: u(x,0)=f(x), 0<x<I (3.99)

where p and c are constants and F is a continuous function of x and t. Find u(x,t).
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Solution It can be noted that the boundary conditions are of homogeneous type. Let
us consider the homogeneous equation

U — Uy, =0 (3.100)
Setting u(x,t) = X(X)T(t), we get
L

=_/2 3.101
T X (say) ( )

which gives X” + 42X =0. The corresponding BCs are
X(0)=X(1)=0
The solution of Eq. (3.101) gives the desired eigenfunctions and eigenvalues, which are

2
X, (X) =sin A,x, /1%=(—j . n21 (3.102)

For the non-homogeneous problem (3.98), let us propose a solution of the form
u(x )= To(t) Xn(x) (3.103)
n=1

It is clear that Eq. (3.103) satisfies the BCs (3.99). From the orthogonality of eigenfunctions,
it follows that

T.(t) =|3j; u(x, t) X, (x) dx
However,
Ty (0) =|3j: £(x) sin(lmx) x (3.104)

which is an IC for T(t). Introducing Eqg. (3.103) into the governing equation (3.98), we get

Y 1% -a 3 Toxy= (3.105)
n=1 n=1 pe
Now, we shall expand F(xt)/pc, so that it is represented by a convergent series

on O0<x<lI, t>0 in the form

=) () Xn(¥) (3.106)

n=1

F
pC
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where

_2 (P F(xt) . (T
on() =] jo T sm( | x)dx (3.107)

Thus, gn(t) is known. Now, Eq. (3.105), with the help of Eqg. (3.101), becomes

2 Xn(Th + l%]aTn —0,y)=0
n=1
Therefore, it follows that
Ti (1) + A50T, (1) = G 1) (3.108)
Its solution with the help of IC (3.104) is
t
Ta() =Ta(0) exp (~Ah0) + | exp [Aa(z ~ )] (r) d7 (3.109)
From Egs. (3.103) and (3.109), the complete solution is found to be
i 1
u(xt)=>y {Tn (0) exp (—Aat) + jo exp [A2a(z —t) q,(7) dr} X (X)
n=1

In the expanded form, it becomes

ux =y H% NIGENE df} exp (~Apot)
n=1

2 [ o0 {20, %Xn@dé dr}xnm (3.110)

It can be verified that the series in Eq. (3.110) converges uniformly for t > 0. By changing
the order of integration and summation in Eq. (3.110), we get

- —220t) Xp (X)X,
U(X'I)ZJ;{EGXM ) Xa (X0 (6)

— ] (e

n=1

ol | & exp{-Aha(t— D} X, () Xa (&) |F(& 1)
+Io .[o [2 1/2 } pc dedr

n=1

which can also be written in the form

u(x t) = f(') G(x, &:1) f(§)d§+f; fc') G(x, &t —@%dg dr  (3.111)
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where

= —22at) X () X,y
6 En=Y exp ( |)/2 (%) X, (&)
n=1

is called Green’s function. More details on Green’s function are given in Chapter 5.

EXAMPLE 3.17 The temperature distribution of a homogeneous thin rod, whose surface is
insulated is described by the following IBVP:

PDE: Vi — vy = 0,0 <X<L,0<t< o (3.112)
BCS: v(0, t) = v(L,t) =0 (3.113)
IC: v(x, 0) =f(x), 0 < x<L (3.114)

Find its formal solution.
Solution Let us assume the solution in the form

v(x, t) = X(X)T(t)
Eq. (3.112) gives
XT = X'T
X7 T’ )
or N =?=—a (say)
where o is a positive constant. Then, we have
X+ X =0
and T+ AT=0

From the BCS
v(0, t) = X(0)T(t) = O,

and v(L, t) = X(L)T() = 0,
we obtain, X(0) = X(L) = 0 for arbitrary t. Thus, we have to solve the eigenvalue problem
X"+ X =0

subject to X(0) = X(L) = 0.
The solution of the differential equation is
X(X) = A cos ax + B sin ax.
Since X(0) = 0, A = 0. The second condition yields
X(L) =Bsinol =0
For non-trivial solution, B # 0 and therefore we have
sin oL = 0, implying o = nAlL, forn=1, 2, 3, ...
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Thus, the solution is obtained as

Xn(X¥) = B, sm%

Next, we consider the equation
T+0T=0
whose solution can be written as

T(t)=Ce -a't

or Tn (t) — Cne_(n”/L)Zt-

Hence, the non-trivial solution of the given heat equation satisfying both the boundary
conditions is found to be

v, (x,t) = a,e (") ‘sm[nij (3.115)

where a, = b,c, (arbitrary constant).
To satisfy the IC, we should have

nzx
v(x,0) = f(x sin
(x,0)=f(x)= Zan ( : ]
which holds good, if f(xX) is representable as Fourier Sine series with Fourier coefficients

a, _—J f(x)sm(nﬂx)dx

Hence, the required formal solution is

v(x, t) = 2[ J. f(z’)sm i d }e—(nzz/L)tsm(nlffx)

EXERCISES
1. A conducting bar of uniform cross-section lies along the x-axis, with its ends at x = 0
and x = 1. The lateral surface is insulated. There are no heat sources within the body.

The ends are also insulated. The initial temperature is Ix—x2,0<x<|I. Find the
temperature distribution in the bar for t > 0.

2. The faces x=0, x=a of a finite slab are maintained at zero temperature. The initial

distribution of temperature in the slab is given by T(x,0) = f(x), 0 < x < a. Determine
the temperature at subsequent times.
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3. Show that the solution of the equation
ar_oT
ad  Ix?

satisfying the conditions:
(i) To0ast— o
(ii) T=0 for x=0 and x=a for all t>0
(iii) T=xwhen t=0 and 0< x<a
is

T(x )= 2a z (DA 1) sm( a jxexp [-(nr/a)?t]
JT _ T

&’X
(i) T=0 when x=0 and 1 for all t

4. Solve the equation Z— satisfying the conditions:

2X, 0<x<12

2(1-x), %ngl when t=0.
5. Solve the diffusion equation
20  [9%6 196
—=Vv|—+=
ot ore or ar
subject to

r=0, @ is finite, t>0

r=a, =0, t>0
ezi(az—rz), t=0
4u

Here, P, 4 and v are constants.
6. A homogeneous solid sphere of radius R has the initial temperature

distribution f(r),0<r <R, where r is the distance measured from the centre. The
surface temperature is maintained at 0°. Show that the temperature T(r, t) in the

sphere is the solution of T, = ¢? (T” +ETIr ) Show that the temperature in the sphere
r
for t>0 is given by
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oo

1 . ([ hr 2

T(r,t)=— — —Ant

GLEEDY anm( = rjexp( )
n=1

where 4, =cnz/R and ¢ is a constant.

If ¢(x) is bounded for all real values of x, show that
N Ly £)2
T == [ 9() e [-(x- &)@k d

is a solution of T, = kT, such that T(x, 0) = ¢(X).

An infinite homogeneous solid circular cylinder of radius a is thermally insulated to
prevent heat escape. At any time t, the temperature T(r, t) at a distance r from the
axis of symmetry is given by the heat conduction equation with axial symmetry. At
time t = 0, the initial temperature distribution at a distance r from the axis is known
to be a function of r. Find the temperature distribution at any subsequent time.

Let T =(X, Y, 2) represent a point in three-dimensional Euclidean space R;. Find a
formal solution u(r, t) which satisfies the diffusion equation

U = av?u, t>0
and the BC: u(r,0) = f (1), where T e R;.
% _5%
a I’
6(0,t)=0(a,t)=0 and 9(x, 0) = g, (constant).
(GATE-Maths, 1996)

Solve 0<x<a, t>0 subject to the conditions
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Hyperbolic Differential Equations

4.1 OCCURRENCE OF THE WAVE EQUATION

One of the most important and typical homogeneous hyperbolic differential equations is the
wave equation. It is of the form

d%u
Ez
where c is the wave speed. This differential equation is used in many branches of Physics and
Engineering and is seen in many situations such as transverse vibrations of a string or
membrane, longitudinal vibrations in a bar, propagation of sound waves, electromagnetic
waves, sea waves, elastic waves in solids, and surface waves as in earthquakes. The solution
of a wave equation is called a wave function.
An example for inhomogeneous wave equation is

c2vau (4.1)

J%u

M?
where F is a given function of spatial variables and time. In physical problems F represents
an external driving force such as gravity force. Another related equation is

~c?Viu=F (4.2)

&zu ou 22

—+2y—-c"Vu=F 4,
a2 T “3)
where ¥ is a real positive constant. This equation is called a wave equation with damping
term, the amplitude of which decreases exponentially as t increases. In Section 4.2, we shall
derive the partial differential equation describing the transverse vibration of a string.

232
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4.2 DERIVATION OF ONE-DIMENSIONAL WAVE EQUATION

Suppose a flexible string is stretched under tension 7 between two points at a distance L
apart as shown in Fig. 4.1. We assume the following:

1. The motion takes place in one plane only and in this plane each particle moves in
a direction perpendicular to the equilibrium position of the string.

2. The tension 7 in the string is constant.

YA

T
. pds @ y=y(x 1)

@) Sdx A
Fig. 4.1 Flexible string.

3. The gravitational force is neglected as compared with tension 7z of the string.
4. The slope of the deflection curve is small.

Let the two fixed ends of the string be at the origin O and A(L, 0) which lies along the
x-axis in its equilibrium position. Consider an infinitesimal segment PQ of the string. Let p be

the mass per unit length of the string. If the string is set vibrating in the xy-plane, the
subsequent displacement, y from the equilibrium position of a point P of the string will be
a function of x and time t, while an element of length dx is stretched into an element of length

ds given by
2 2
ds= 1+(ﬂ) dx = 1+l(ﬂ) dx
X 2\ dx

The elementary elongation is given by

2
dL = ds—dx:i(ﬂ) dx
2\ dx

while the work done by this element against the tension 7 is

Ix

2J0
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If U is the potential energy of the string, then

¢l (dy 2
:W e —
U 2'[0 T(&Xj dx

Also, the total Kinetic energy T of the string is given by

_1¢L (dy 2
T_Z-[o p(at) ox

Using Hamilton’s principle (See—Sankara Rao, 2005), we have

[
5L0 (T -U)dt=0

L]
j (T —U)dt
fo
is stationary. In other words,
1t L] (y)? é’y)2
= — | —7| == |dxdt
2 1 J.o [p(o”tj T(o'?x
is stationary, and is of the form

H F(X 1Y, Yy, Yp) dxdt

Noting that x and t are independent variables, from the Euler-Ostrogradsky equation, we have

IF_I[oF)_2[IF)_,
ady Jt\dy, ) Ix\ dyy

ad( dy d( _dy

—|p—=|-—|7—=—|=0

c?t[p c?tj &x( &x)
If the string is homogeneous, then p and 7 are constants, in which case the governing equation
representing the transverse vibration of a string is given by

which gives

PPy 5%
ot? Ix? 44)
where

(;2 = z'/p (4.5)
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EXAMPLE 4.1 Consider Maxwell’s equations of electromagnetic theory given by
V-E=4np
V-H=0

V><E=—12ﬂ

c ot
vxyom 10E
c ot

where E is an electric field, o is electric charge density, H is the magnetic field, i is the
current density, and c is the velocity of light. Show that in the absence of charges, i.e.,
when p=i=0, E and H satisfy the wave equations.

Solution  Given

curIE=V><E=—£(9—H

c ot

Taking its curl again, we get

Vx(VxE)=Vx(—£a—H)=—i(1VxH)

c ot Jdt\c
__11(3&5)__38&
T ocotlcat) 2 g2

Moreover, using the identity
Vx(VXE)=V(V-E)-V2E=-V’E
it follows directly that
1 9%
rara

Similarly, we can observe that the magnetic field H also satisfies

V2E

2
c° ot

which is also a wave equation.
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4.3 SOLUTION OF ONE-DIMENSIONAL WAVE EQUATION BY

CANONICAL REDUCTION
The one-dimensional wave equation is
Uy — C?Uy, =0
Choosing the characteristic lines
E=x-ct, n=x+ct
the chain rule of partial differentiation gives
Uy = U8y +UpyTTy = Ug + Uy
U = Ug&y + U7k = c(Uy, — Ueg)
In the operator notation we have

&8&&(3&)
=C

Ix dE In' N \dn O
Thus, we get

Z AN B

2 \ag o) U e Tt

2
%ﬂz(%é 2y +Uyp)
Substituting Egs. (4.8) and (4.9) into Eq. (4.6), we obtain

4“571 =0
Integrating, we get

u@E,n)=¢()+wvmn),

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

where ¢ and y are arbitrary functions. Replacing & and 1 as defined in Eq. (4.7), we have

the general solution of the wave equation (4.6) in the form
u(x, t) =g (x—ct) +y(x+ct)

(4.11)

The two terms in Eqg. (4.11) can be interpreted as waves travelling to the right and left,

respectively. Consider

W (X, t) = ¢(x—ct)
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This represents a wave travelling to the right with speed ¢ whose shape does not change as
it travels, the initial shape being given by a known function ¢(x). In fact, by setting t=0

in the argument of ¢, it can be observed that the initial wave profile is given by
Uy (x, 0) = #(x)
At time t=1/c,
U (x,1/c) =g (x-1)

Let x"=x-1. Then ¢(x—1) =¢(x’). That is, the same shape is retained even if the origin
is shifted by one unit along the x-axis. In other words, the graph of u;(x,1/c) is the same as
the graph of the original wave profile translated one unit to the right. At t=2/c, the graph
of uy(x,2/c) is the graph of the wave profile translated two units to the right. Thus, in

particular, at t=1, we have u;(x,1)=¢(x—c). Hence in one unit of time, the profile has
moved ¢ units to the right. Therefore, ¢ is the wave speed or speed of propagation. Using
similar argument, we can conclude that the equation u, (x, t) = w(x+ct) is also a wave profile

travelling to the left with speed c along the x-axis. Hence the general solution (4.11) of one-
dimensional wave equation represents the superposition of two arbitrary wave profiles, both
of which are travelling with a common speed but in the opposite directions along the x-axis,
while their forms remain unaltered as they travel. This situation is described in Fig. 4.2.

u

A
uy(x, 0) = ¢(x)

u,(x, 1/c) u(x, 1)

l |

| I

-1 0 1, 1/c) (c, 1)

Fig. 4.2 Travelling wave profile.

Let k be an arbitrary real parameter. Consider then
u(x, t) = g[k(x —ct)]+ wik(x + ct)] (4.12)
This is also a solution of the one-dimensional wave equation. Further, let ¢ =kc. Then

u(x, t) = g[kx — wt] + wlkx + wt] (4.13)
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A function of the type given in Eq. (4.13) is a solution of one-dimensional wave equation iff
o =kc. Therefore, waves travelling with speeds which are not the same as ¢ cannot be
described by the solution of the wave equation (4.6). Here, (kx+ at) is called the phase for

the left travelling wave. We have already noted that x +ct are the characteristics of the one-
dimensional wave equation.

EXAMPLE 4.2 Obtain the periodic solution of the wave equation in the form

U(X, t) — Aei(kXia)t)

where i=+/-1,k=*wlc, A is constant; and hence define various terms involved in wave
propagation.
Solution  Let u(x,t)= f(x)ef'™ be a solution of the wave equation
Uy = czuxx
Then
Uy = F7()e"™™, u, = —f(X)o’e™
Substituting into the wave equation, we get

2
F700+ 2 £ () =0
C

Its general solution is found to be
f(x) = ¢, exp[i (w/c)x] + ¢, exp [-i (w/c)X]
Therefore, the required solution of the wave equation is
u(x, t) = [c, exp{i(@lc)x}+ ¢, exp{—i(wlc)x}]e*'*
Since k =+ wlc, the time-dependent wave functions are of the form

U(X, t) — Aei(kXia)t)

Hence, u(x, t) = Ae'®*@) is a solution of the wave equation, and is called a wave function.

It is also called a plane harmonic wave or monochromatic wave. Here, A is called the
amplitude, @ the angular or circular frequency, and k is the wave number, defined as the



HYPERBOLIC DIFFERENTIAL EQUATIONS 239

number of waves per unit distance. By taking the real and imaginary parts of the solution,
we find the linear combination of terms of the form

Acos (kxtwt), Asin (kx £ wt)

representing periodic plane waves. For instance, consider the function u(x, t) = Asin (kx — at).
This is a sinusoidal wave profile moving towards the right along the x-axis with speed c.
Defining the wave length A as the length over which one full cycle is completed, we
have 4 =2x/k, thereby implying that k = 27z/A.

Suppose an observer is stationed at a fixed point x,; then,

u(xo,t+ij: Asin (kx0 —a)t—wi)
c c

= Asin (kxy — ot — 27) = Asin (kxy — wt)
Thus, we have

u(Xg.t+4c) =u(xg, t)

Hence, exactly one complete wave passes the observer in time T = A/c, which is called the

period of the wave. The reciprocal of the period is called frequency and is denoted by
f=UT

The function, u= Acos (kx—awt) = Asin (z/2+kx — wt), also represents a wave train except

that it differs in phase by z/2 from the sinusoidal wave. Now consider the superposition of

the sinusoidal waves having the same amplitude, speed, frequency, but moving in opposite
directions. Thus, we have

u(x,t) = Asin[k(x—ct)]+ Asin [k(x +ct)]
=2Asin kx cos (kct) = 2A cos (kct) sin kx

Its amplitude factor [2Acos (kct)] varies sinusoidally with frequency @. This situation is

described as a standing wave. The points x, =nz/k, n=0,£1,+2,... are called nodes. No
displacement takes place at a node. Therefore,

u(x,,ty=0 forall t

The nth standing wave profile will have (n—1) equally spaced nodes in a given interval
as shown in Fig. 4.3.
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Fig. 4.3 Standing wave profiles.

4.4 THE INITIAL VALUE PROBLEM; D’ALEMBERT’S SOLUTION
Consider the initial value problem of Cauchy type described as
PDE: Uy — C%Uyy, =0, —o0 < X<oo,t20 (4.14)
ICs: u(x, 0) =n(x), U (x, 0) =v(x) (4.15)

where the curve on which the initial data 7(x) and v(x) are prescribed is the x-axis. 77(x) and v(x)
are assumed to be twice continuously differentiable. Here, the string considered is of an
infinite extent. Let u(x,t) denote the displacement for any x and t. At t =0, let the displacement

and velocity of the string be prescribed. We have already noted in Section 4.3 that the general
solution of the wave equation is given by

u(x,t) =d(x +ct) + w(x—ct) (4.16)

where ¢ and ¥ are arbitrary functions. Substituting the I1Cs (4.15) into Eq. (4.16), we obtain
o(x) +y(x) =1(x)
e[’ (x) — ¥’ (x)]=Vv(X)

Integrating the second equation of (4.17), we have

(4.17)

009 -w00== [ V(e
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Addition and substraction of this equation with the first relation of Egs. (4.17) yield

), Lo
00 =" [ T u(E) de

w09 =" v de

respectively. Substituting these relations for ¢(x) andy(x) into Eq. (4.16), we at once have

1 1 px+ct
u(x ) =20 et +n(x—el+ o= - (@) d (4.18)

This is known as the D’ Alembert’s solution of the one-dimensional wave equation. If v=0, i.e.,
if the string is released from rest, the required solution is

1
u(x, ) =~ In(x+ct) +n(x-ct)] (4.19)
The D’Alembert’s solution has an interesting interpretation as given in Fig. 4.4.

“ P(XO’ tO)

(Xo - Cto: O) (Xo + CtOv O)
Fig. 4.4 Characteristic triangle.
Consider the xt-plane and a point P(xy, t;). Draw two characteristics through p backwards,

until they intersect the initial line, i.e., the x-axis at Aand B. The equation of these two
characteristics are

XEct=Xy £cty

Equation (4.18) reveals that the solution u(x, t) at P(xy,ty) can be obtained by averaging the

value of n at Aand B and integrating v along the x-axis between Aand B. Thus, to find the
solution of the wave equation at a given point P in the xt-plane, we should know the initial
data on the segment AB of the initial line which is obtained by drawing the characteristics
backward from P to the initial line. Here the segment AB of the initial line, on which the value
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of u(x,t)at P depends, is called the domain of dependence of P, and the triangle PAB is

called the characteristic triangle (see Fig. 4.4), which is also called the domain of determinancy
of the interval.

EXAMPLE 4.3 A stretched string of finite length L is held fixed at its ends and is subjected
to an initial displacement u(x, 0) = u, sin (zx/L). The string is released from this position with
zero initial velocity. Find the resultant time dependent motion of the string.

Solution  One of the practical applications of the theory of wave motion is the vibration
of a stretched string, say, that of a musical instrument. In the present problem, let us consider
a stretched string of finite length L, which is subjected to an initial disturbance. The governing
equation of motion is

PDE: Uy —C?Uy, =0,0< X< L, t>0 1)
BCs: u(0,t)=u(L,t)=0 2)
ICs: u(x, 0) =ug sin (zx/L), 3)
Ju B
2 (x0)=0 (4)

In Section 4.3, we have shown the solution of the one-dimensional wave equation by canonical
reduction as

u(x 1) = p(x— ct) +y (x+ Ct) (5)

One of the known methods for solving this problem is based on trial function approach. Let
us choose a trial function of the form

u(x, t) = A[sin%(x+ ct) +sin % (x—ct)] (6)
where A is an arbitrary constant. Now, we rewrite Eq. (6) as

u(x,t) =2Asin (”—ijcos (certJ @

obviously, Eq. (7) satisfies the initial condition (3) with A=uy/2, while the second initial

condition (4) is satisfied identically. In fact Eq. (7) also satisfies the boundary condition (2).
Therefore, the final solution is found to be

u(x, t) =ug sin (”—ijcos (CﬂTtJ (8)
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It may be noted that the trial function approach is easily adoptable if the initial condition is
specified as a sin function. However, it is difficult if the initial conditions are specified as a

general function such as f(x). In such case, it is better to follow variables separable method
as explained in Section 4.5.

EXAMPLE 4.4 Solve the following initial value problem of the wave equation (Cauchy
problem), described by the inhomogeneous wave equation

PDE: Uy — C%Uy = f (X, 1)
subject to the initial conditions

u(x,0)=n09,  uw(x0)=v(x)

Solution ~ To make the task easy, we shall set u=u +u,, so that v, is a solution of
the homogeneous wave equation subject to the general initial conditions given above. Then
u, will be a solution of

2 2
d uz_cza Uy

=f(xt 4.20
ot? IxX? D (420

subject to the homogeneous ICs

o0 Y2 - 4.21
u,(x,0) =0, o (x,0)=0 (4.21)

To obtain the value of u at P(x, ty), we integrate the partial differential equation (4.20) over
the region IR as shown in Fig. 4.4, to obtain

2 2
_Lj (%‘02 i;f JdX dt = ig £ (x, t) dx dit

Using Green’s theorem in a plane to the left-hand side of the above equation to replace the
surface integral over IR by a line integral around the boundary JIR of IR, the above equation

reduces to
_” [i 2% ) 2 (% :|dxdt=H f(x, t) dx dt
- IX ox ) ot ot o

and finally to

U ger 2 P2 4 |
Lm ( oL+ c? dt)— Ljf(x, t) dx dt (4.22)
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Now, the boundary JIR comprises three segments BP, PAand AB. Along BP, dx/dt =—c;
along PB, dx/dt =c. Using these results, Eq. (4.22) becomes

J c @dtjtaﬁdx —J c aﬁdt+@dx
BP | ot X PA | Ot X

du, 2 duy B
—IAB(W"“C W‘“Hj f O 1) deet

The integrands of the first two integrals are simply the total differentials, while in the third
integral, the first term vanishes on AB in view of the second IC in Eqg. (4.21), and the second

term also vanishes because AB is directed along the x-axis on which dt/dx=0. Then we arrive
at the result

JBPC du, — JPAC du, = ',g f(x 1) dx dt

which can be rewritten as

cu, (P) — cuy (B) + cu, (P) — cu, (A) =ﬂf(x, t)dx dt (4.23)
R

Using the first IC of Eq. (4.21), we get u,(A)=u,(B)=0, and hence Eq. (4.23) becomes
1
uz(P)—EJ.J-f(X, t) dx it
R
with the help of Fig. 4.4, we deduce
1 to XQ+Ct0—Ct

P)=— f(x t) dxdt 4.24
WP = [ [ g T DA (4.24)
Now, using the fact that u=u +u,, as also using Eq. (4.24) and D’Alembert’s solution
(4.18), the required solution of the inhomogeneous wave equation subject to the given ICs is

given by

1 1 px+ct
U =2 +n(x-a)+= [ v@dg

1 tO X0+Ct0—Ct
= f(xt) dxdt .
+ZJO J.Xo—ct0+ct (x,t) dx (4.25)

This solution is known as the Riemann-Volterra solution.
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4.5 VIBRATING STRING—VARIABLES SEPARABLE SOLUTION

Following Tychonov and Samarski, it is known that transverse vibration of a string is normally
generated in musical instruments. We distinguish the string instruments depending on whether
the string is plucked as in the case of guitar or struck as in the case of harmonium or piano.
In the case of strings which are struck we give a fixed initial velocity but does not undergo
any initial displacement. In the case of plucked instruments, the strings vibrate from a fixed
initial displacement without any initial velocity. The vibrations of stretched strings of musical
instruments, vocal cards, power transmission cables, guy wires for antennae structures, etc.
can be examined by considering the basic form of wave equations as discussed in Sections 4.3
and 4.4.

Let a thin homogeneous string which is perfectly flexible under uniform tension lie in its

equilibrium position along the x-axis. The ends of the string are fixed at x=0 and x=L. The
string is pulled aside a short distance and released. If no external forces are present which
correspond to the case of free vibrations, the subsequent motion of the string is described by

the solution u(x,t) of the following problem:
PDE: u, —c?u, =0, 0<x<L, t>0 (4.26)

BCs: u(0,t)=0, t>0

u(L,t)=0, t>0 (4.27)
ICs: u(x,0)= f(x), U (% 0)=g(x) (4.28)

To obtain the variables separable solution, we assume
u(xt)=X(X)T(t) (4.29)

and substituting into Eq. (4.26), we obtain

d°T d2x
2 - T 2
dt dx

d?X/dx®  d?T/dt?
X T

= k (a separation constant)

Case | When k>0, we have k=A2. Then

2
X _22x =0
ox

2
d—z —c2AT =0
dt
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Their solution can be put in the form

X =g e + et
T= Q),ec)Lt +¢y e—c)Lt
Therefore,
u(x 1) =(ce™ +ce ™) (ce™ +c,e6 M)
Now, use the BCs:
u(0,t)=0=(g +¢,) (ce™ +c,e7H)

which imply that ¢, +c¢, =0. Also, u(L,t)=0 gives

et + et =0
Equations (4.33) and (4.34) possess a non-trivial solution iff

1 1

_ AL L _
T —eM_el=p

or

1-e#*t =0 implying M =1 or AL=0

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

This implies that A =0, since L cannot be zero, which is against the assumption as in Case

I. Hence, this solution is not acceptable.

Case Il Let k=0. Then we have

2 2

dx dt
Their solutions are found to be

X = Ax+ B, T=ct+D
Therefore, the rquired solution of the PDE (4.26) is
u(xt)=(Ax+B) (ct+ D)

Using the BCs, we have

u(0, t)=0=B(ct+ D), implying B=0

u(L, t)=0= AL (ct+ D), implying A=0

Hence, only a trivial solution is possible. Since we are looking for a non-trivial solution,

consider the following case.
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Case Il When k<0, say k=-22, the differential equations are
2 2
ax ? +a2x =0, 9T 2T+c2;LZT=0
dx

Their general solutions give

u(x, t) = (¢ cos Ax+ ¢, sin AX) (C3 COSCAL + C4 Sin CAt) (4.35)

Using the BC: u(0,t)=0 we obtain ¢; =0. Also, using the BC: u(L, t) =0, we get sinAL =0,
implying that A, = nz/L, n=1,2,..., which are the eigenvalues. Hence the possible solution is

u,(x,t) = sin?(ﬁh cos mECt + B sinn”TCtJ, n=12,... (4.36)

Using the superposition principle, we have

u(x, t)= 2 sm—(ﬁh cos—+ anmm—d) (4.37)
The initial conditions give
u(x 0)=f(=Y A sin=>
n=1
which is a half-range Fourier sine series, where
2L . nrx
== f —d 4.38
A, Ljo (X) sin 3 X (4.38)
Also,
- . X ( nm
X, 0)=9g(x)= B,sin——| —c
U 0=909=2, B L(L)
which is also a half-range sine series, where
2 L . X
=— X)sin— dx 4.39
B, =——[ “g(9sin= (4.39)

Hence the required physically meaningful solution is obtained from Eq. (4.37), where A, and
B, are given by Egs. (4.38) and (4.39). u,(x, t) given by Eq. (4.36) are called normal modes

of vibration and nzc/L =w,,n=1,2,... are called normal frequencies.
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The following comments may be noted:

()
(i)
(iif)

(iv)

v)

The displaced form of the stretched string defined by Eq. (4.36) is referred to
as the nth eigenfunction or the nth normal mode of vibration.

The period of the nth normal mode is 2L/nC, which means nC/2L cycles per
second, called its frequency.

The frequency can be expressed as

n 12
f=Z
2L p

Thus, the frequency can be increased either by reducing L or by increasing the
tension .

For a given L, 7 and p, the first normal mode n = 1, vibrates with the lowest

frequency
/ T C
f = > =—,
4°p 2L

is called the fundamental frequency.

If the stretched string can be made to vibrate in a higher normal mode, the
frequency is increased by an integer multiple. The deflected configuration of the
stretched string corresponding to the given normal mode at a specified time
t=1t*, can be obtained from Eq. (4.36). The deflected shapes corresponding to
the first three normal modes and the associated frequencies are depicted in
Fig. 4.4.

/

u(x, t) 5 Stretched string u(x, t) %
fn i

C
First mode, n =1, frequency = 2% Second mode, n = 2, frequency = -~

u(x f) = sin<ﬂL—X> {A1 sin(ch> + B, cos(ch>} Up(x, ) = Sin(z%x> {Az sin(ch—m> + 5, C°S<26L_m>}

u(x, tg

Third mode, n = 3, frequency = g—f

ug(x, f) = sin(%) {A3 sin(sCL—”t> + B, Cos(C’:%ﬂt)}

Fig. 4.4(a) Normal modes of a vibrating stretched string.
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EXAMPLE 4.5 Obtain the solution of the wave equation

2
Uy = Uy

under the following conditions:
(i) u(O,t)=u(2,t)=0
(i) u(x, 0)=sin®zx/2
(iii)  u(x,0)=0.

Solution We have noted in Example 4.4 that the physically acceptable solution of the
wave equation is given by Eq. (4.35), and is of the form

u(x, t) = (¢ cos Ax + ¢, sin Ax) [c €os (CAt) + ¢4 sin (CAt)]
Using the condition u(0, t)=0, we obtain ¢, =0. Also, condition (iii) implies ¢, =0. The
condition u(2,t)=0 gives
sin24=0,
implying that
A=nrl2, n=12,...

Thus, the possible solution is

ux t)=y %sin%cosmTCt (4.40)
n=1

Finally, using condition (ii), we obtain

- X . amXx 3 . ax 1 . 37X
2 A, sin—— =sin® — = =sin— - =sin——
a 2 2 42 4 2

which gives A =3/4, A; =-1/4, while all other A,’s are zero. Hence, the required solution is

3. ax__mct 1 . 3xx __ 3xct
u(x, t) =—sin—cos— — —=sin——cos——
4 2 2 4 2 2

EXAMPLE 4.6 Prove that the total energy of a string, which is fixed at the points x=0, x=L
and executing small transverse vibrations, is given by

L 2 2
ET J. ﬂ + i ﬂ dx
2 Jofl dx 2\ at
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where ¢ =Tlp, p is the uniform linear density and T is the tension. Show also that if

y=f(x—ct),0<x<L,then the energy of the wave is equally divided between potential
energy and kinetic energy.

Solution  The kinetic energy (KE) of an element dx of the string executing small transverse
vibrations is given by (see Fig. 4.5)
1 ady 2
- dx)| ==
5 (P %&)

YA

ds

Ofx=0 x=L

Fig. 4.5 Vibrating string.

Therefore,

Tl 1(dyY
Total KE =— —| — | dx 4.41
2 J.0 c? ( ot ) ( )

However, ds? = dx? +dy2, which gives

o (o] o

Hence, the stretch in the string is given by

ds— dx—— 8y dx
2| Ix
Now, the potential energy (PE) of this element is given by
pE=L7( YY) o
2 | dx

Therefore,

Total PE = — J (gy) dx (4.42)
X
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When added, Egs. (4.41) and (4.42) will yield the required total energy of the string. If
y = f(x—ct), then

ady ady

L =—cf’(x—ct), ===f"(x—ct
g cf "(x —ct) EM (x—ct)
YV 2 na
X =l (f
(2] -y

From Eqg. (4.41),
1_¢L a2
Total KE==T f)“dx
ST I, ()
From Eq. (4.42),
Total PE:l
2
which clearly demonstrates that the total KE = total PE.

L n2
T.[O(f)dx

EXAMPLE 4.7 A string of length L is released from rest in the position y= f(x). Show
that the total energy of the string is
2 oo
Lall s2k?
4L

n=1
where

2L .
Ke =IIO f (x) sin (sx/L) dx
T-tension in the string
If the mid-point of a string is pulled aside through a small distance and then released,
show that in the subsequent motion the fundamental mode contributes 8/z2 of the total

energy.

Solution If f(x) can be expressed in Fourier series, then

f(X)=(29/2)+ Y, (ay cosnx-+bysinnx)
n=1
Here, (g cosx+b;sinx) is called the fundamental mode. Following the variables separable
method and using the superposition principle, the general solution of the wave equation is

y(x t)= 2 K, sin%cos% (4.43)
=1
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where

2L . nxX
ky=—| f —d
n Ljo (X)sin 3 X
and the total energy is obtained from
L 2 2
E= IJ. (ﬂ) +i ﬂ dx
2J0 [\ ox c2\ ot

dy ~ , hm__ nmx ___cnxt
= k, —cos——cos T

From Eq. (4.43),

Using the standard integrals

0, m#n

2r . .
J. sinmxsinnx dx =
0 I, m=n

27 0, m#n
I €cosmxcosnx dx =
0 Z, m=n
We have
L 2.2 2 NxX
Io( j Iancos—cos
71'2 2.2 > cnrt
=— kSn‘cos® ——
2LZ n L
Also,

IL%( j Z k2n? snzcnm(;

=—z k2n? smzﬁ

(4.44)

(4.45)

(4.46)
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Substituting Eqgs. (4.45) and (4.46) into Eq. (4.44), we obtain

Tt

=—— nzkﬁ
22l ~

Now, the transverse motion of the string is described by the equation

- . neX _ nmct
X, t) = k,, sin——cos——
y(x 1) 21 nsin— i
where
2L . X
=— f (xX) sin——d
=2 [ t0sn" o
But the equation of the line OP is (see Fig. 4.6)

yzzTgx, 0<x<L/2

P(L/2, &

A - X
0] ©,0) To)

Fig. 4.6 An illustration of Example 4.7.

while the equation for the line of PA is
yz_zTg(x— L), L/2<x<L

Therefore,

L/2 L
Ky =EU 2—gxsin@dx+_“ —Z—E(X—L)sinmdx]
L{/o L L L2 L L

Integration by parts yields

"L

212 B 2¢ 2 |. mx
—|—=——+———|sin—
L n?72 L n2s?

8¢ . n&
=——sin— for nodd
n‘r

253

(4.47)

(4.48)
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Substituting this value of k, into Eq. (4.47), we obtain

E_zsz o 64523216ng2 1

- 4 4 2 2
4L nodd T n Lﬂ- nodd n

but we know that

Hence,

2( 2
Total energy, E =£ T
Lz? | 8

while the total energy due to the fundamental mode is 16T&?/Lz2. Hence the result.

4.6 FORCED VIBRATIONS—SOLUTION OF NON-HOMOGENEOUS
EQUATION

Consider the problems of forced vibrations of a finite string due to an external driving force.
If we assume that the string is released from rest, from its equilibrium position, the resulting
motion of the string is governed by

PDE: u, —cu, =F(x, t)  0<Xx<L, t>0 (4.49)
BCs: u(0, t)=u(L, t) =0, t>0 (4.50)
ICs: u(x, 0)=u(x 0)=0, 0<x<L (4.51)

Here, F(x, t) is the external driving force. To obtain the solution of the above problem, we

proceed as follows: Taking the solution of vibrating string in the absence of applied external
forces as a guideline, we assume the solution to this case to be

u(x, t) = i ¢n(t)sin? (4.52)
n=1

It can be seen easily that the BCs are satisfied. The function u(x, t) defined by Eq. (4.52)
also satisfies the 1Cs (4.51), provided.

#n(0)=¢n(0)=0, n=12,.. (4.53)
Substituting the assumed solution (4.52) into the governing PDE (4.49), we obtain

>,

n=1

n?r? X
; c2¢>n(t)}smT: F(x t)

|:¢n (t) + z
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or
— [ - 2 X
2‘1 [n®)+@f ,) Jsin== = F(x. 1 (4.54)
where
nrc
Wy, =0 (4.55)

and the dots over ¢ denote differentiation with respect to t. Multiplying Eq. (4.54) by

sin kzx/L and integrating with respect to x from x=0tox=L and interchanging the order
of summation and integration, we get

kr L . kr _
2 [¢n(t)+a)n¢n(t)].|‘ smﬂsm—xdx 'f F(x t)smTde=Fk(t)

From the orthogonality property of the function sin (nzx/L), we have

. 2 L. 2k7Z'X B
[ )+ @ 4 @] | sin® == dx= R (1)

or

[g}ﬁk(t)+a)|f¢k(t)]=%lfk(t), k=12 ... (4.56)

This is a linear second order ODE which, for instance, can be solved by using the method
of variation of parameters. Thus, we solve

Py (1) + 0 9y (1) = Fi(t) (4.57)
subject to
& (0) = (0)=0

where

— 2L . kmx
Fk(t)—tjo F(x, t)sin="=dx

The complementary function for the homogeneous part is Acoswyt + Bsinw,t. Taking A and
B as functinos of t, let

oy (t) = A(t) cosm, t + B(t) sin myt

. (t) = Acos ayt + B sin oyt — Amy Sin oyt + Beoy, COs oy t
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We choose A and B such that
Acos oyt + Bsin gyt =0 (4.58)
Therefore,
& (1) = Aw? cos mt — Bay sin ot — Amy sin oyt + By, cosayt
Substituting these expressions into Eq. (4.57), we get
oy (Bcosmyt — Asin ) = F (t) (4.59)
Solving Eqs. (4.58) and (4.59) for Aand B, we obtain

A(t) —_ IEk (t)Sln a)kt

Fy (t) cos a, t
@y

B(t) =

Integrating, we get

A== [ R@)sin g o
Wy 0

B=— [ 'R (&) cos & o2
Y0
Thus,
1 ¢t= .
o=—[ F(@sin[ot-&]de (4.60)
Y0

It can be verified easily that zero ICs are also satisfied. Hence the formal solution to the
problem described by Egs. (4.49) to (4.51), using the superposition principle, is

ux =3 {wi | ; E.(&)sin [, (t —§)]d§}sin% (4.61)
n=1 n

Thus, if u; is a solution of the problem defined by Egs. (4.26) to (4.28) and if u, is a solution

of the problem described by Egs. (4.49)—(4.51), then (u; +u,) is a solution of the IBVP
described by

PDE: Uy — C?Uyy, = F(x, 1), 0<x<L,t>0 (4.62)
BCs:u(0,t)=u(L,t)=0, t>0 (4.63)

ICs:u(x, 0) = f(x), U (x,0)=9(x) (4.64)
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Hence, the solution of this nonhomogeneous problem is found to be

u(x, t)= 2 (A, cosapt + By sin a)nt)sin?

n=1

+2_1 L)inf; Fa(@)sin fan(t - £)] ¢ |sin ™ (4.65)

This solution may be termed as formal solution, because it has not been proved that the series
actually converages and represents a function which satisfies all the conditions of the given
physical problem.

4.7 BOUNDARY AND INITIAL VALUE PROBLEMS FOR
TWO-DIMENSIONAL WAVE EQUATIONS—METHOD
OF EIGENFUNCTION

Let IR be a region in the xy-plane bounded by a simple closed curve JIR. Let R=IRUJIR.
Consider the problem described by

PDE: u, —c?Vau=F(x, vy,1), xyelR, t=0 (4.66)
BCs: B(u)=0 on /IR, t>0 (4.67)

ICs: u(x,y,0)=1f(x,y) in R

w(x y,00=g(xy) in IR (4.68)
where B(u) =0 stands for any one of the following boundary conditions:
(i) u=0on JR (Dirichlet condition)
(i) %:0 on JIR (Neumann condition)

(iii) u:%:o on /IR  (Robin/Mixed condition)
n
Before we discuss the method of eigenfunctions, it is appropriate to introduce Helmholtz
equation or the space form of the wave equation. The wave equation in three dimensions may
be written in vectorial form as

Uy =c2 V2u
By the variables separable method, we assume the solution in the form
u(x, y, zt)=9(x y, 2) T(t)
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Substituting into the above wave equation, we obtain
T =c*TV?¢

which gives

=——=—/ (aseparation constant)

thereby implying

T+ 42T =0 (4.69)
V29416 =0 (4.70)

Equation (4.70) is the space form of the wave equation or Helmholtz equation. Of course,
¢ =0is the trivial solution Eq. (4.70). But a nontrivial solution ¢ exists only for certain

values of {A,,}, called eigenvalues and the corresponding solution {¢,}, are the eigenfunctions.
Corresponding to each eigenvalue A, there exists at least one real-valued twice continuously

differentiable function ¢,, such that

Vg +1.6,=0 in R
#, =0 on JIR

It may be noted that the sequence of eigenfunctions (¢,) satisfies the orthogonality property
_U Pn®y dA=0 forall nzm
R

As in the case of one-dimensional wave equation, each continuously differentiable function
in IR, which vanishes on JIR, can have a Fourier series expansion relative to the orthogonal

set {¢,}. Thus the solution to the proposed problem can be written as

u(x, y, t)=i Ca(®) #n (X, Y) (4.71)
n=1

where C, (t) has to be found out. Substitution of the Fourier series into the PDE (4.66) yields

oo

Y [Ca®en(x ¥) - C7Crt) V28 (x )= F(x ¥,1)

n=1

But
V2¢n = _An¢n
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Therefore,

i [€. (1) + @7Ch (D] 6 = F(x, Y 1) (4.72)
n=1

where
=C?%A,, n=12,.. (4.73)

Multiplying both sides of Eq. (4.72) by ¢,, and integrating over the ragion IR and interchaning
the order of integration and summation, we obtain

3 1600+ @21 [[ % Yo Y)GA= [[ Fo aA
n=1 R R

Using the orthogonality property, this equation can be reduced to

Con(t) + @*Cy (t) = Fry (t) (4.74)
where
Fm(t)—” ™ ﬂ F(X, Y, 1) (X ) dA (4.75)
and
19mIP= [[ 10ml*dA (4.76)
R

The series (4.71) satisfies the ICs (4.68) is
Y, Ca0¢n (x M) = F(x )

Y Cal0)n (X V) =0(x )

In order to determine C,,(0) and Cn(O), we multiply both sides of the above two equations by

0y, and integrate over IR and use the orthogonality property to get

Cm(0)=

. Jj (% Y)gm(x ) dA (4.17)

Cn(0) = jj 9(x, Y)dm(x, ) dA

Il m||
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Using the method of variation of parameters, the general solution of Eq. (4.74) is given by
t
Cin(t) = A, cosopt + By, sin ot +ijo Fn(&)sino,(t-&)dé
a)n

Using Eq. (4.77), we obtain

An= jj f (% ¥)9m(x y)dA (4.78)

|I¢m||

—H 9(% Y)#m(x y)dA  m=1,2,.
Ol O

Hence, the formal series solution of the general problem represented by Egs. (4.66)—(4.68) is

u(x, yt)= 2 (A, c0s @t + By sin apt) g (X y)+2 “;Fn@)sin{wn(t—f)}df}»n(x,y)

n=1

(4.79)

4.8 PERIODIC SOLUTION OF ONE-DIMENSIONAL WAVE EQUATION
IN CYLINDRICAL COORDINATES

In cylindrical coordinates with u depending only on r, the one-dimensional wave equation
assumes the following form:

2
1o ou)_12u (4.80)
rorl ar ) 2 g2
If we are looking for a periodic solution in time, we set
u=F(r) e (4.81)
Then
é’u t |a)t
P, T = o?F(r)e
ar " ot?

Inserting these expressions, Eq. (4.80) reduces to

2
li[rF (Ne*]1=-2-F(r)e
rd c



HYPERBOLIC DIFFERENTIAL EQUATIONS 261

or

F7(r)+

F'(r) w_2 (r)=0 (4.82)
,

which has the form of Bessel’s equation and hence its solution can at once be written as

F= AJO( c) BYo(wCr] (4.83)

In complex form, we can write this equation as

oD SR ORI

It can be rewritten as
F=CHY (w—r)+ CHEP (“’—r) (4.85)
c c

where H{P H{? are Hankel functions defined by

H(l) = Jo( S )+|Yo(a::r) (4.86)
2) _ wr
Ho™ = 0( c J Yo( c J (4.87)

which behave like damped trigonometric functions for large r. Thus the solution of one-
dimensinoal wave equation becomes

u= Cle""‘H‘l)£ - J+C '“’tHéz)(%r] (4.89)

Using asymptotic expressions, for H® and H{? defined by

Hél) (X) = 2 o (x-l4)
\ zx (4.89)
HP(x) = /i e <7 for large x
X
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the general periodic solution to the given wave equation in cylindrical coordinates is

wlc) (r —ct)

u(r, 1) = 2c [Cle‘i”"" exp [i (wlc)(r +ct) +C,d exp [i
o

N

] (4.90)

4.9 PERIODIC SOLUTION OF ONE-DIMENSIONAL WAVE EQUATION

IN SPHERICAL POLAR COORDINATES

In spherical polar coordinates, with u depending only on r, the source distance, the wave

equation assumes the following form:

19(,0u) 107
2ol T2 e
ré or or c° ot

We look for a periodic solution in time in the form

r>0

u=F(r)e™
Then
Ju 700 ot 9u 2 jot
—=F()e™, —=-w"F(r)e
G Fmet 2, Q)
Substituting these derivatives into Eqg. (4.91), we obtain
. 2 .
L7 (e2poty -2 p(r)det
reor c
i.e.
. 2
ize'“‘[rzF”+ 2rF )= -2 dF
r c
Therefore,
2
F”+3F’+“’—2 F=0
C
Let
o Y2
SERT
c
Then

(4.91)

(4.92)

(4.93)
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Substituting into Eq. (4.93), we obtain

® —1/2 1 ® 2 1 2
(2] [WH_W{(_) (2] }Wm]:o
Cc r Cc 2r

Since [Qr)io, we have
c

2 2
[w”(r)+1w’(r)+{(9) —(i) }w(r)]=0
r c 2r

which is a form of Bessel’s equation, whose solution is given by

w(r)=AJdy [Qr )+ BJ_ /5 (Qr )
c C

where A" and B” are constants. Therefore,

® —1/2 , ® , ®
F(r)z(gr) [AJllz(ErJ-f‘ B‘]_llz(zr)]
F(r) 2%\]1/2 (%r )+%‘]—1/2 (%r)

2 .
i (X) = /—smx
X
J_2(X) =, /i CoS X
X

F(r)= 2c [Asm(wr/c) . Bcos(a)r/c)]
Tw r r

or

But, we know that

Therefore,

In complex form,

exp(lra)r/c) e exp (—rl wr/c)

F(N=C,

263

(4.94)

(4.95)

(4.96)

(4.97)
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Thus, the required solution of the wave equation is

u(r, 1) =C, exp (ia)/<r:)(r +ct) +C, exp(—ia)ic)(r —ct) (4.98)

4.10 VIBRATION OF A CIRCULAR MEMBRANE

To find the solution of the wave equation representing the vibration of a circular membrane,
it is natural that we introduce polar coordinates (r, 8),0<r <a,0<6 < 2x. Thus, the governing
two-dimensional wave equation is given by

2 2 2
PDE: %0—’_;:0—’_;]+1@+i207_;’ (4.99)
ct M e rdr rc 90
and the boundary and initial conditions are given by
BCs:u(a 6,t)=0, t=0 (4.100)

i.e. the boundary is held fixed, and

ICs: u(r, 8,0) = fy(r, 6), %(r, 0, 0)= f,(r, 6) (4.101)
Let us look for a solution of Eq. (4.99) in the following variables separable form:
u=R(r) H(@®) T(t) (4.102)
Substituting into Eq. (4.99), we obtain
RHZT =RHT +1R’HT +i2RH’T
c r r

Dividing throughout by RHT/c?, we get

T” Z[R” 1R 1 H”
+ JR—

T R rR H
Then
T+ u’T=0 (4.103)
” 2 ”
2R R u’ o 2
r“—+r—+-—r“=——=Kk“(sa
R 2 (say)
i.e.

2
rZR”+rR’+{u—2r2—k2JR=O (4.104)
c
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H”+k?H=0 (4.105)

Here, yz and k? are arbitrary separation constants. The general solutions of Egs. (4.103)-
(4.105) respectively are

T = Acos ut + Bsin ut

R= P‘Jk[%r}" QYk (”—Cr) (4.106)

H = Ecosk6é + Fsinké

where J,.,Y, are Bessel functions of first and second kind respectively of order k. Thus, the
general solution of the wave equation (4.99) is

u(r,0,t)=(Acos ut + Bsin ut) {PJk (%r) + QY (%r)} (Ecosk6 + Fsinkd)  (4.107)

Since the deflection is a single-valued periodic function in 6 of period 2z, k must be integral,

say k=n. Also, since Y, (ur/c) - as r —0, we can avoid infinite deflections at the
centre (r =0) by taking Q =0. Again noting that the BC: (4.100) implies that the deflection u

is zero on the boundary of the circular membrane, we obtain

Ha_
‘Jn( c ) 0 (4.108)

which has an inifinte number of positive zeros. These zeros (roots) are tabulated for several
values of n in many handbooks. Their representation requires two indices. The first one
indicates the order of the Bessel function, and the second, the solution. Thus denoting the

roots by u,,(n=0,12,...;m=1,2,3,...), we have, after using the principle of superposition,
the solution of the circular membrane in the form

ur.6.)=>y Y PJ, [ﬂ”Tmr)(Acosyt + Bsin ut) (Ecosné + F sinng)
m=l n=1

Alternatively,

u(r,o,t)= Z 2 J, (ﬂ”T’"r){[am cos 6 + by, sinnd]cos ut +[c,, cosné +d,, sinnd]sin ut}

m=l n=1

(4.109)
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Now, to determine the constants, we shall use the prescribed ICs which yield

oo oo ) ﬂ r
fl(r,e):z 2 (anmcosn6?+bnmsmn0)\]n(%) (4.110)

m=1l n=1

fo(r,0) = 2 2 Hom (Com €OSNE +d, o Sinnéd)J, (’U”Tmr)
m=1l n=1

Hence, the solution of the circular membrance is given by Eq. (4.109), where

fi(r, 6) J, (,Llnmi cosndr dr dé
 ma’[J; (ﬂnm)] I I ¢

—J. j sinn@rdrdé
w3’ [}, (4o )12

cosn@r dr dé,

sinn@r dr d@

2 2r 0 a r
_naZ[Ja(unmnzI 0 J 0 fZ(r’a)J”(“ e
Z(r H)Jn(:unm

ﬂa[J(ﬂ )]'[ '[

4.11 UNIQUENESS OF THE SOLUTION FOR THE WAVE EQUATION

In Section 4.5, we have developed the variables separable method to find solutions to the
wave equation with certain initial and boundary conditions. A formal solution for the non-
homogeneous equation is also given in Section 4.6. In this section, we shall show that the
solution to the wave equation is unique.

Uniqueness Theorem The solution to the wave equation

Ug =C%Uyy, O<x<lL, t>0 (4.111)
satisfying the ICs:

u(x,0)=1(x), 0<x<L
u(x,0)=g(x), 0<x<L
and the BCs:
u(0,t)=u(L,t)=0

where u(x,t) is twice continuously differentiable function with respect to x and t, is unique.
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Proof Suppose u, and u, are two solutions of the given wave equation (4.111) and let
v=U, —U,. Obviously v(x t) is the solution of the following problem:
v, =c%v,, O<x<L, t>0 (4.112)

v(x,00=0, v(x,0)=0, 0<x<L
and
v(0, t)=v(L,t)=0
It is required to prove that v(Xx, t) is identically zero, implying u, =u,. For, let us consider
the function

1cL
E(t) :E.[o (c®v,2 + V%) dx (4.113)

which, in fact, represents the total energy of the vibrating string at time t. It may be noted
that E(t) is differentiable with respect to t, as v(x, t) is twice continuously differentiable. Thus,

dE (L1
P Jo [c Vy Vi + vtt]dx (4.114)
Integrating by parts, the right-hand side of the above equation gives us

L L L
.[o c?v,v,, dx =|:02vxvt ] - _[0 c?v,v,, dx

But, v(0, t) =0 implies v, (0, t) =0 for t >0 and v(L, t) =0 implying v, (L, t)=0 for t >0. Hence,
EQ. (4.114) reduces to

dE L

= ol — Py dk=0

In other words, E(t)=constant=c(say). Since v(x, 0)=0 implies v,(x, 0)=0, and
Vv, (%, 0)=0, we can evaluate c and find that

dx=0

E(0)=c= IOL [c2v2X +V2 ] B

which gives E(t) =0, which is possible if and only if v, =0 and v, =0 forall t>0,0<x<L
which is possible only if v(x,t)=constant. However, since v(x, 0)=0, we find v(x, t)=0.

Hence, u (X, t)=u,(X, t). This means that the solution u(x, t) of the given wave equation
is unique.
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4.12 DUHAMEL’S PRINCIPLE

With the help of Duhamel’s principle, one can find the solution of an inhomogeneous equation,
in terms of the general solution of the homogeneous equation. We shall illustrate this principle

for wave equation. Let the Euclidean three-dimensional space be denoted by R;, and a point
in R; be represented by X =(x, X%, x3). If v(X,t,7) satisfies for each fixed ¢ the PDE
Ve (X, 1) =C?VA(X, 1) =0, X in R,,
with the conditions
v(X,0,7)=0, v(X,0,7)=F(X, 7)

where F(X,t)denotes a continuous function defined for X in R;, and if u satisfies
t
u (X, t)=jov(X, t—z, 7)dr
then u(X, t) satisfies

U, —c’VZu=F(x t), Xin Ry, t>0
u(X, 0)=u (X, 0)=0
Proof Consider the equation
U, —C*V2u=F(X, t) (4.115)
with
u(X, 0)=u (X, 0)=0
Let us assume the solution of the problem (4.115) in the form

u(x t) =j; v(X, t—7, 7)dr (4.116)

where v(X, t—7, 7) is a one-parameter family solution of
Vg —C’V?v=0 forall (4.117)
Further, we assume that at t=7,

v(X, 0, 7)=0 for all values of 7 (4.118)

Now, differentiating with respect to t under integral sign and using the Liebnitz rule, from
Eq. (4.116), we have

u =Vv(X, 0, t)+I; Vi (X, t—7, 7)d7r
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Using Eq. (4.118), we get
U :J.; Vi(X, t—7, 7)dr
Differentiating this result once again with respect to t, we obtain
U =% (X, 0, )+ [ (X, t-7, 1) dr (4.119)

Noting that u satisfies Eq. (4.115), v satisfies Eq. (4.117), and after using Eq. (4.117), the
above equation reduces to

U, =V (X, 0, t)+I;C2V2VdT

Finally, using Eq. (4.116), the above equation reduces to

u, —c*VZu=v/(X, 0, t) (4.120)
Comparing Egs. (4.115) and (4.120), we obtain
Vi (X, 0, t)=F(X, t) (4.121)

Therefore, if v satisfies the equation
Vg —C*V?v=0
with the conditions
v(X,0,7)=0,%(X,0,7)=F(X,7) att=r
then, u defined by Eq. (4.116) satisfies the given inhomogeneous equation (4.115) and the

specified conditions. Here, the function v(X, t) is called the pulse function or the force
function.

EXAMPLE 4.8 Use Duhamel’s principle to solve the heat equation problem described by
U (X 1) =ku, (X t)+ F(X t), —co<X<oo, t>0 (4.122)

u(x, 0)=0, —oo < X< oo
Solution We have obtained, in Section 3.3, the unique solution of the problem
Vi (X, 1) = kv (X, t), —o < X<oo, 1 >0
v(x, 0) = f(x, 1)

in the form

V4 0 = [ e -(x- ) ()
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Hence, using Duhamel’s principle, the solution of the corresponding inhomogeneous problem
described by Eq. (4.122) is given by

ux t, T)=_[;V(X,t—f, 0)dz

or

ot L ~(x=¢)?
uxt o= I_m/mk(t—r) eXka(t—r)} f@ydedr - (4129)

4.13 MISCELLANEOUS EXAMPLES

EXAMPLE 4.9 A uniform string of line density o is stretched to tension pc? and executes
a small transverse vibtration in a plane through the undisturbed line of string. The ends
x =0, L of the string are fixed. The string is at rest, with the point x =p drawn aside through
a small distance & and released at time t=0. Find an expression for the displacement

y(x, t).

Solution The transverse vibration of the string is described by
1
PDE: Y, = Vi (4.124)
c

The boundary and initial conditions are
BCs: y(0,t)=y(L,t)=0
IC: y,(x,0)=0

Using the variables separable method, let

y (1) =X(X)T(t)
then, we have from Eq. (4.124),

XT_11_

X 2T
The equation of the string is given by (see Fig. 4.7)

+12

£X

b

e(x-1L)
(b-L)

, 0<x<b

y(x,0)=
, b<x<L
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The solution to the given problem is discussed now for various values of A.

y
A

P, &

ALO _

01(0,0) (b, 0)
Fig. 4.7 lllustration of Example 4.9.

Case | Taking the constant A =0, we have
X"=T"=0
whose general solution is
X = AX+B, T=Ct+D
Therefore,
y(x,t) = (Ax+ B) (Ct + D)

Using the BCs at x=0, L, we can observe that A=B =0, implies a trivial solution.

Case Il Taking the constant as +42, we have
X" =A*X =0=T"-c*A°T
Thus, the general solution is
y(X, t)=(Acosh Ax+ Bsinh Ax) (C cosh cAt + D sinh cAt)
Now the BCs:
y(0, t)=0 gives A=0

and

y(L, t)=0 gives Bsinh AL=0

which is possible only if B=0. Thus we are again getting only a trivial solution.

Case Ill If the constant is —12, then we have

X"+ 22X =0=T"+c*1*T =0
In this case, the general solution is
y (% t) = (Acos Ax+ Bsin Ax) (P cos cAt + Q sin cAt)



272 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
using the BCs:

y(0,t)=0 gives A=0

y(L,t) =0 gives Bsin AL=0

For a non-trivial solution, B#0= AL = nx. Therefore, A=nx/L,n=1,2,... Also, using the

IC: y,(x,0)=0, we can notice that Q=0. Hence, the acceptable non-trivial solution is

y(x t)= BPsm%cos? n=12,...

Using the principle of superposition, we have

nmx cnrt

, )= in —— cos ——
y(x )Z b, sin —cos =
n=1
which gives
< _nmx
y(x 0)= sin —
& ey

This is half-range sine series, where

2L . nrX
bh:f.[o y(X, O)sdex

2
=—J —xsm—d IOL bg

(x—L)sin @dx
L L L

b
_ 2 _cos(nﬂx/L)Xb_E _sin (nz/L) X
Lb il | Lb| Pz |

2¢ [_cos(nﬂx/L)(X_L)]L_ 2¢ |:_sin(nfcx/L)]L
b

+
L(b-L) /L . Lb-L)| nZn?

or

2el? _nzb
b, =—— sin
n“‘z°b(L-b) L

Hence the subsequent motion of the string is given by

o 2
y(x t)=2 2¢el sin nzhb . nrx et
“~ n’z’b(L-b) L L L
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EXAMPLE 4.10 Find a particular solution of the problem described by
PDE:y, -y, =g(X)coswt, O0<x<L, t>0
BCs: y(0, t)=y(L, t)=0, t>0

where g(x) is a piecewise smooth function and @ is a positive constant.

Solution Taking the clue from Example 4.9, we assume the solution in the form
- . nTx
Yoo =3 Ayt)sin="—
n=1

To determine A,(t), we consider the Fourier sine expansion of g(x) in the form

N . nTXx
g =Y B, sin=—
n=1

and substitute into the given PDE which yields

oo 2 oo
2 A’{(t)+(@) A, ) sin@=cos a)tz B, sin@
n=1 L L n=1 L
Choosing A,(t) as the solution of the ODE
e Y
A’{(t)+(T) A, (t) = B, cos ot
we have for any n, the particular solution

A (t)= A cosot if w;t%

|

Hence, the required particular solution is given by

Therefore,

y(x, t) =cos wt Z By sin(nzxiL)

“~ (nrcll)? - w?
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EXAMPLE 4.11 A rectangular membrane with fastened edges makes free transverse
vibrations. Explain how a formal series solution can be found.

Solution Mathematically, the problem can be posed as follows:
Solve

PDE: uy —C*(Ugy +Uy) =0, 0<x<a 0<y<b

subject to the BCs:

() u@ vy, 1)=0

(i) u(a vy, t)=0

(ii)) u(x 0,t)=0

(iv) u(x, b, t)=0
and ICs:

u(x,y,0)=f(xy), uw(xy0=9(xy)
We look for a separable solution of the form
u(x, y, ) =X(X) Y(y) T()

Substituting into the given PDE, we obtain

177 X" Y 2
——=—+—=-1 (sa
AT X Y (sy)
Then
T’ +c°A*T =0
X" Y’ 2
+ A =——= sa
N v oM ()
thus yielding

Y +u?Y=0, X'+(A%-pu?)X=0
Let A% —u® = p?, u? =q¢°. Then A2 = p? + ¢ =r2. Therefore, we have
X"+ p’X=0, Y'+0g°Y=0, T +r%c’T=0
The possible separable solution is
u(x, y,t) =(Acos px+ Bsin px) (C cos gy + D sin qy) (E cos (rct) + F sin (rct))

Using the BCs: u(0, y, t)=0gives A=0
u(x, 0,t)=0givesC=0
u(a vy, t)y=0gives p=mr/a, m=12,...

u(x, b, t)=0gives q=nrh, n=12,...
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Using the principle of superposition, we get

oo oo

nry

u(x v, t)=2 2 [An, cos (rct) + By, sin (ret)] sin X Sin (4.125)
m=1l n=1 a b
where
2 2
12—+ 0% =2 m_+n_
p~+q Z B2
Applying the initial condition: u(x, y,0)= f(x, y), Eq. (4.125) gives
f(x,y)=2 2 Amsinmsinw
m=1l n=1 a b
where
4 rachb . mrTX . nwy
= —Zsin 22 4.126
A abjO Jof(x, y)sin - sin— dx dy ( )
Finally, applying the initial condition: u, (X, y,0)=g(x, y), Eq. (4.125) gives
a(x, y)=chZansinwsinw
m=1n=1 a b
where
4 cacb .mrTXx . nwy
= —~Zsin =2 4.127
B abcrjo jog(x,y)5|n - sin— dx dy ( )

Hence, the required series solution is given by Eq. (4.125), where A, and B,,, are given by
Egs. (4.126) and (4.127).

EXAMPLE 4.12 Solve the IVP described by
PDE: Uy — C2Uy = F(X, 1), —co<X<oo,t>0
with the data

() F(x, t)=4x+t, (ii) u(x, 0)=0, (iii) u(x, 0)=cosh bx.

Solution In Example 4.4, we have obtained the Riemann-Volterra solution for the
inhomogeneous wave equation in the following form:

u(x, t)=%[n(x—ct)+77(x+ct)]+2ic_[xxjcc:v(§) d§+2icj;_£ F(x, tydxdt  (4.128)
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Since u(x, 0)=n(x)=0, the first term on the right-hand side of Eq. (4.128) vanishes. Also,

X+ct

1
— \
2C Y x=ct

(€)dg = [ cosh b dz

- X+Ct
_ LSBT L inhb(x+ ct) —sinh b(x— ct)]
2c{ b )4 2bc

= (cosh bx sinh (bct))/bc

and
1 1
> ji F(x t)dxdt =2—Cj£ (4x+1) dx dt

From Fig. 4.4, we can write the equation of the line PA in the form

_X= Xty
c

t

or

X=X, +Ct—ct
Similarly, the equation of the line PB is

X=Xy +Cty —ct
Thus

2ic ji F(x t)dt= j;o jx’::;tf;zt (4x+1) dx it

= [ 7 (4xgt 4t +ttg —t2) dit = 2513 +£3/6
The required solution at any point (x, t) is, therefore, given by

3
o2+
6

u(x 1) = cosh bx S|Cnh (bct)

EXAMPLE 4.13 Derive the wave equation representing the transverse vibration of a string

in the form
-2
u duY| 9
——=Cc"91+| — —
ot? X NG
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Solution Consider the motion of an element PQ =4§s of the string as shown in Fig. 4.8.

In equilibrium position, let the string lie along the x-axis, such that PQ is originally at P'Q’.
Let the displacement of PQ from the x-axis, be denoted by u. Let T be the tension in the string
and p be the density of the string. Writing down the equation of motion of the element PQ

of the string in the u-direction, we have
é;
Q‘
P

_% v
T/
SX
o P’ Q
Fig. 4.8 An lllustration of Example 4.13.

Au

- X

2

Tsin (y+0y)—T sinl//zpé‘s%
Neglecting squares of small quantities, we get
2
T cos ydy = p65% (4.129)
by noting that
U
tany =——, sec’ydy =—— 56X
X
Equation (4.129) becomes
2 2 2
pﬂzTcos3 PUPX 1 st y/a—l; (4.130)

but

2 -1
coszy/z%z 14( M (4.131)
1+tan“y Ix
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Using Eq. (4.131) into Eqg. (4.130), we get

-2
Au T Ju¥| 9%
— =1+ — -
oa? p Ix Ix

If we define ¢® =T/p, the required wave equation is

-2
Pu_gli (Y] Pu (4.132)
ot? X e '

This is a non-linear second order partial differential equation.

EXAMPLE 4.14 Using Duhamel’s principle solve the following IBVP:
PDE: Uy — Uy = f(X, 1), 0 < X <L, 0<t<oo
BCS: u(0, t) = u(L,t) =0
IC: u(x, 0) =0,0<x<L.
Solution Using Duhamel’s principle, the required solution is given by

t
u(x, t) = jo v(x,t— 7, 7)dz

where v(x, t, 7) is the solution of the homogeneous problem described as
Vi— Ve =0,0<Xx<L, 0<t<e
vi0,t, ) =v(L, t, ) =0
and ux, 0, 79 = f(x, 7).
Now, recalling Example 3.17, the solution to this homogeneous problem is obtained as

N . [ nzx
V(X t, 7) = Z,ane_(””’”2t sin (%) :
n=1

Observe that, the Fourier coefficients a, depends on the parameter 7, so that

a, =a,(7) :%J-OL f(x, 1) sin(%)dx

Hence, the solution to the gives IBVP is found to be

t
u(x,t) = .[0 21 an(z') e—(n/r/L)2 (t-7) sin ( nijdf.
n=.



HYPERBOLIC DIFFERENTIAL EQUATIONS 279

EXERCISES

1. A homogeneous string is stretched and its ends are at x=0 and x=I. Motion is
started by displacing the string into the form f(x) =uysin (zxA), from which it is
released at time t=0. Find the displacement at any point x and time t.

2. Solve the boundary value problem described by

PDE: u, —cu,, =0, 0<x<1,t>0
BCs: u(0, t)=u(l, t)=0, t>0
ICs: u(x,0)=10sin (zx/I), 0<x<lI
u (x, 0)=0
3. Solve the one-dimensional wave equation

Uy =C%Uy, O0<X<7,t20

subject to
u=0 when x=0and x=r
U =0 when t=0 and u(x, 0)=x, O<x<nm
4. Solve
Uy = C2Uyy, 0<x<l,t>0
subject to

u(©, t)=0, u(, t)=0 for allt
u(x, 00=0, u, (x 0)=hsin® (zx/l)
5. Solve the vibrating string problem described by
PDE: u, —c%u,, =0, 0<x<l, t>0
BCs: u(0, t)=u(l, t)=0, t>0
ICs: u(x, 0) = f(x), 0<x<l
u (x, 0) =0, 0<x<l

6. In spherical coordinates, if u is a spherical wave, i.e. u=u(r,t), then the wave
equation becomes

1o

)1
r2 or or

T2 o

which is called the Euler-Poisson-Darboux equation. Find its general solution.
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7. Solve the initial value problem described by

PDE:u, —c?u, =e*

with the given data
u(x,0)=5 U (x0)=x

8. Sovle the initial value problem described by
PDE: u, — c?u,, = xé
with the data
u(x, 0)=sinx, u(x 0)=0
9. Solve the initial boundary value problem described by
PDE: u, =c%u,, x>0, t>0
with the data:
u(x, 0)=0, U (% 0)=0,x>0
u(0, t)y=sint, t>0

10. Determine the solution of the one-dimensional wave equation

2 2
a—f—%a—fzo, O<x<at>0
ax: ¢ ot

with ¢ as a constant, under the following initial and boundary conditions:

- x/b, 0<x<b
(i) @(x 0)= f(X)={(a_X)/(a_b), b<x<a

. ~
(i) at(x,O)—0,0<x<a

(i) ¢(0, t)=¢(a t)=0, t>0.

11. A piano string of length L is fixed at both ends. The string has a linear density p
and is under tension 7. Attime t = 0, the string is pulled a distance s from equilibrium
position at its mid-point so that it forms an isosceles triangle and is then released

(s<L). Find the subsequent motion of the string.

12. Obtain the normal frequencies and normal modes for the vibrating string of Problem 11.
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13. A flexible stretched string is constrained to move with zero slope at one end x =0, while

the other end x =L is held fixed against any movement. Find an expression for the
time-dependent motion of the string if it is subjected to the initial displacement given
by

TX
X, 0)=y,cos| —
y(x, 0)=y, (ZLJ

and is released from this position with zero velocity.
14. Show that if f and g are arbitrary functions, then
u=f(x-vt+iay)+g (x—-vt—iay)
is a solution of the equation
1

vy CZ

Uy +U Uy

provided o =1-v?/c?,
Choose the correct answer in the following questions (15 and 16):
15. The solution of the initial value problem

Uy =4U,,, t>0, —o <X <o

satisfying the conditions u(x, 0)=x, u,(x, 0)=0is
(A) x (B) X212 (C) 2x (D) 2t (GATE-Maths, 2001)
16. Let u=w(x, t) be the solution to the initial value problem
Ut = Uyy for —co< X <o, t>0

with u(x, 0) =sinx, u,(x, 0) =cosx, then the value of y (7/2, z/6) is

(A) J3/2 (B)12 (C)1V2 (D)1 (GATE-Maths, 2003)
17. Solve the following IBVP
PDE: Uy = Uy + f(X, 1), 0 < X< 7, 0 <t <o

BCS: u(0, t) =u(xr, t) =0
IC:u(x,0)=0,0<x<r
Using Duhamel’s principle.
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