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Chapter (1) 

Vector calculas 

1-1   Introduction : 

     Vectors are introduced in physics and mathematics courses , primarily in 

the Cartesian coordinates system . Although cylindrical may be found in 

calculus texts The spherical coordinates system is seldom presented . All three 

coordinate systems must be used in electromagnetic . 

    In this chapter we study the concepts of vector functions of one or more 

scalar variables and their applications and also study a vector differential 

operators and various  derivatives of vector functions . 

1-2Vector function of a single variable : 

   If  to each value of  scalar variable   𝑡  , in certain interval  [𝑎 , 𝑏] , there 

corresponds by any law what is over , a unique value of a variable vector 𝑟 , 

then                   𝑟 is called a vector function of the scalar variable 𝑡 defined in 

the interval [𝑎 , 𝑏].                 If   𝑟  is a vector function of scalar variable 𝑡  , 

then we write  𝑟 = 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ , where 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   indicates the law of  correspondence . 

Examples : 

 (1)- The function   𝑟 = 𝑎 cos 𝑡  𝑖 + 𝑏 sin 𝑡   𝑗 +  0𝑘   is a vector equation of the 

ellipse    
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1   ,  which represents a circle when   𝑎 = 𝑏  . 
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  (2)- The function   𝑟 = 𝑎 t2   𝑖 + 2𝑎 t    𝑗 +  0𝑘   is a vector equation  of the 

parabola     𝑦2 = 4 𝑎𝑥   . 

 

1-3Limit of a vector function: 

    A vector function  𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗    is said to have a limit   𝐿    as  𝑡    tends to   𝑎    , if 

for a given   𝜖 > 0    , however small it may be , there exists a  𝛿 > 0  ,  such 

that   

|𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝐿| < 𝜖    such   0 < |𝑡 − 𝑎| ≤ 𝛿    . This fact , we express 

symbolically as  ,                                  𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  = L𝑡⟶𝑎
lim      . 

Properties of a limit: 

   Let   𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑓1(𝑡)𝑖 + 𝑓2(𝑡)𝑗 + 𝑓3(𝑡)𝑘   &   𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑔1(𝑡)𝑖 + 𝑔2(𝑡)𝑗 +

𝑔3(𝑡)𝑘        

Be two vector functions  ,   𝜑(𝑡)   be a scalar function of  𝑡    , and    

 �⃗⃗� = 𝐿1𝑖 + 𝐿2𝑗 + 𝐿3𝑘   & �⃗⃗⃗� = 𝑀1𝑖 + 𝑀2𝑗 + 𝑀3𝑘    

As two constant vector  such that : 

 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  = L⃗⃗𝑡⟶𝑎
lim      ,      𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  = M⃗⃗⃗⃗𝑡⟶𝑎

lim      and    𝜑(𝑡) = l𝑡⟶𝑎
lim       

Then: 

(𝑖)    𝑓1(t) = L1𝑡⟶𝑎
lim  , 𝑓2(t) = L3𝑡⟶𝑎

lim  , 𝑓1(t) = L3𝑡⟶𝑎
lim    

                        (𝑖𝑖)    [𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ± 𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗] = L⃗⃗ ±
𝑡⟶𝑎

lim  
M⃗⃗⃗⃗  
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        (𝑖𝑖𝑖)    [𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗.  𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗] = L⃗⃗ .  M⃗⃗⃗⃗
𝑡⟶𝑎

lim
 

     (𝑖𝑣)    [𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∧   𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗] = L⃗⃗  ∧   M⃗⃗⃗⃗
𝑡⟶𝑎

lim  
 

                         (𝑣)    φ(t)𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  = l L⃗⃗⃗ 𝑡⟶𝑎
lim    ,  (𝑣𝑖)    |𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|  = | L⃗⃗⃗| 

𝑡⟶𝑎

lim  
  . 

1-4 Continuity of a vector function: 

A vector function  𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   is said to be continuous at   𝑡 = 𝑎    if : 

(𝑖)    𝑓(𝑎)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     is defined (𝑖𝑖)  𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑡⟶𝑎
lim   exists  (𝑖𝑖𝑖)  𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑓(𝑎)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑡⟶𝑎

lim    

A vector function  𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   is said to be continuous in the 

interval   [𝑎, 𝑏]    if it is continuous for every value of    𝑡    in  
[𝑎, 𝑏]    . 

Remarks : 

(𝑖)   If   𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗    be  continuous , then 𝑓1(𝑡), 𝑓2(𝑡) 𝑎𝑛𝑑 𝑓3(𝑡)   are also 

continuous  scalar functions and conversely is right . 

(𝑖𝑖)   If   𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗     and     𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗      be to  continuous vector functions 

and let  𝜑(𝑡)    be to  continuous scalar function of     𝑡   then :  

  (𝑎)   𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗     (𝑏)   𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗. 𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗     (𝑐)   𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∧ 𝑔(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗    (𝑑)   𝜑(𝑡)𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗       

Are also  continuous . 

 1-5 Derivative of a vector function: 
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[𝑎] Derivative 

Let 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   be to  vector function then:  

𝑓(𝑡 + 𝛿𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝛿(𝑡)
=  𝑡⟶𝑎

lim    
𝛿(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝛿(𝑡)
 

𝑡⟶𝑎

lim  

 

If it exists , is called the differential coefficient of   𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  with 

respect to    𝑡   , and is denoted by     
df⃗⃗⃗⃗⃗

dt
    or    𝑓′(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   . 

 

A vector function  𝑓(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   is said to be differentiable  if it has a 

differential coefficient for all values of    𝑡  belongs to its 

interval of definition . 

[𝑏] Geometrical interpretation of derivative: 

Let  𝑟 = 𝑓(𝑡)⃗⃗⃗⃗⃗⃗⃗⃗     be  a continuous and single 

valued vector function  of the scalar 

variable    𝑡  . 

Let  𝑂  be the origin . Let  𝑃 &𝑄  be tow 

neighboring points on a  continuous 

curve . Corresponding to the values  𝑡   

and     𝑡 + 𝛿𝑡  of the scalar variable so that 
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  𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ = 𝑟 𝑎𝑛𝑑   𝑂𝑄⃗⃗⃗⃗⃗⃗⃗ = 𝑟 + 𝛿𝑟⃗⃗⃗⃗⃗     ,  therefore  

  𝑃𝑄⃗⃗⃗⃗ ⃗⃗ = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓  𝑄 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓  𝑃 

      = (𝑟 + 𝛿𝑟⃗⃗⃗⃗⃗) − 𝑟 𝑎𝑛𝑑 =   𝛿𝑟⃗⃗⃗⃗⃗     

Thus         
δ(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗

δ(t)
=

PQ⃗⃗⃗⃗⃗⃗⃗

δ(t)
    

When    Q → P → 0  , the chord     PQ⃗⃗⃗⃗⃗⃗ →  tangent   PT⃗⃗⃗⃗⃗⃗   to the curve at   

P , thus geometrically , the  derivative  
dr⃗⃗⃗⃗⃗

dt
   of a vector 

function represents  a vector whose direction is that of the 

tangent   PT⃗⃗⃗⃗⃗⃗   

To the curve  AB  at   P  in the sense of increasing  t   of the 

slope of the tangent  at  P  . 

[𝑐] Unit tangent vector  to the curve : 

Let  𝑃 &𝑄  be tow neighboring points 

on a  curve . Let  𝐴  be any fixed on it 

and    s &𝑠 + 𝛿𝑠  be the arc lengths  

measured along the curve from  A  to  

  P   and from  A  to  Q  respectively . 
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Let  r = f(s)    be  a continuous and single valued scalar 

function  of the scalar variable    s  . Let 𝑂  be the origin of 

reference and let OP⃗⃗⃗⃗⃗⃗ = r⃗  and  OQ⃗⃗ ⃗⃗ ⃗⃗ = r⃗ + δr⃗⃗ ⃗⃗  . Therefore 

𝑃𝑄⃗⃗⃗⃗ ⃗⃗ = (𝑟 + 𝛿𝑟⃗⃗⃗⃗⃗) − 𝑟  =   𝛿𝑟⃗⃗⃗⃗⃗ 

  Thus           
δr⃗⃗⃗⃗⃗

δs
=

PQ⃗⃗⃗⃗⃗⃗⃗

δs
   , when   Q → P,   δs → 0  , the chord  

PQ⃗⃗⃗⃗⃗⃗ → PT⃗⃗⃗⃗⃗⃗ ,  the tangent to the curve at  P . 

Thus geometrically     𝛿𝑠⟶0
lim     

δr⃗⃗⃗⃗⃗

δs
=

dr⃗⃗⃗⃗⃗

ds
   represents a vector 

whose direction is that of the tangent   PT⃗⃗⃗⃗⃗⃗    to the curve  AB  at  

P  in the sense of  increasing   s  . Further : 

|  
dr⃗⃗

ds
| =  𝛿𝑠⟶0

lim     |
δr⃗⃗⃗⃗⃗

δs
| =  𝑄⟶𝑃

lim  
|δr⃗⃗⃗⃗⃗|

arc PQ
=  𝑄⟶𝑃

lim  chord PQ

arc PQ
= 1   . 

Thus      
dr⃗⃗

ds
 is a unit vector along the tangent PT⃗⃗⃗⃗⃗⃗   at   P in the 

direction of increasing  s , and we shall denote it by  t or  t̂ . 

That is          
dr⃗⃗

ds
  . 

[𝑑] Successive derivatives: 

In general  
dr⃗⃗

dt
   is a function of  t and if it possesses a 

derivative,  
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then the derivative    
𝑑

𝑑𝑡
(  
dr⃗⃗

dr
) denoted by  

d2r⃗⃗

dt2
 . 

Similarly , the higher derivatives of   r⃗  is defended as :  

        
dnr⃗⃗

dtn
= 

d

dt
 (
dn−1r⃗⃗

dtn−1
)   ,   for all    n ≥ 2 .   

[𝑒] General rules of  differentiation: 

If    u(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   &v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     be two differential vector functions of the 

scalar   t  , and   φ(t) be a differentiable function of  t , then : 

 (i) 
𝑑

𝑑𝑡
(  u⃗⃗  ±  v⃗⃗) =

du⃗⃗⃗

dt
±
dv⃗⃗⃗

dt
    

(ii) 
𝑑

𝑑𝑡
(  u⃗⃗ . v⃗⃗) =  u⃗⃗ .

dv⃗⃗⃗

dt
± v⃗⃗ .

du⃗⃗⃗

dt
    

(iii) 
𝑑

𝑑𝑡
(  u⃗⃗  ∧  v⃗⃗) =  u⃗⃗  ∧

dv⃗⃗⃗

dt
±
du⃗⃗⃗

dt
 ∧ v⃗⃗   

(iv) 
𝑑

𝑑𝑡
( φ u⃗⃗ ) =  φ

du⃗⃗⃗

dt
±
dφ

dt
 u⃗⃗    

Examples : 

(1)-Show that the derivative of a vector of constant 

magnitude is perpendicular  to the vector ,or show that the 

necessary and sufficient condition for the vector   v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    to 

have a constant magnitude is       v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .
dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
= 0     .  
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The solution : 

Let  v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   be a vector of constant magnitude    v(t) . then : 

  
dv(t)

dt
= 0 ⟺

d|v(t)|

dt
= 0 ⟺

d|v(t)|2

dt
= 0⟺

d(v(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ .v(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗)

dt
= 0      

 ⇔  
d

dt
(v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) = 0 ⇔ v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .

d

dt
 v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ +

d

dt
 v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

By rule (ii)    ⇔ 2 v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .
d

dt
 v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 0  ⇔  v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .

d

dt
 v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 0  . 

Thus , the derivative of a vector of constant magnitude is 

perpendicular  to the vector  . 

-------------------------------------------------------------------------

-- 

(2)-If   v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    be the differential vector function of the scalar 

t , prove that      
d

dt 
(v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧  

dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
) = v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧  

d2v(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt2
       . 

The solution : 

d

dt 
(v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧  

dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
) = v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧

d

dt
(
dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
) +

dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
∧
dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
 by rule 

(iii)   = v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧
d

dt
(
dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
) + 0⃗⃗ = v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧

d

dt
(
dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
) (since A⃗⃗⃗  ∧

A⃗⃗⃗ = 0⃗⃗)         
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= v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧
d2

dt2
(v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )  . 

-------------------------------------------------------------------------

--- 

(3)-Prove  that the necessary and sufficient condition for the 

vector   v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    to have a constant direction is   v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧  
dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
=

0    

The solution : 

Let  v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = v(t) t where    t  is a unit vector in the direction 

of the vector   v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     .   Then : 

v(t)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ∧  
dv(t)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗

dt
= 0⃗⃗ ⇔ v t ∧  

dv t

dt
= 0⃗⃗ ⇔ v t ∧  (

dv 

dt
t + v

dt 

dt
) =

0⃗⃗     ⇔ v t ∧
dv 

dt
t + v t ∧ v

dt 

dt
= 0⃗⃗ ⇔ v t ∧ t

dv 

dt
+ v2t ∧

dt 

dt
=

0⃗⃗ 

 ⇔ v (0⃗⃗)
dv 

dt
+ v2t ∧

dt 

dt
= 0⃗⃗  ⇔ v2t ∧

dt 

dt
= 0⃗⃗ ⇔

dt 

dt
= 0⃗⃗   

(this result becausethat  t  ≠ 0⃗⃗) ⇔

t  is of constant direction ⇔ v⃗⃗  is of constant direction .   
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-------------------------------------------------------------------------

--- 

(4)-Prove  that the necessary and sufficient condition for the 

vector   f(t)⃗⃗ ⃗⃗ ⃗⃗⃗   to be constant is    
df(t)⃗⃗⃗⃗⃗⃗⃗⃗

dt
= 0   .     

The solution : 

Let f(t)⃗⃗ ⃗⃗ ⃗⃗⃗  be a constant vector . Then we have   f(t + δt)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

f(t)⃗⃗ ⃗⃗ ⃗⃗⃗     

so that 

  
df(t)⃗⃗⃗⃗⃗⃗⃗⃗

dt
=  𝛿𝑡⟶0

lim  f(t+δt)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ −f(t)⃗⃗⃗⃗⃗⃗⃗⃗

𝛿𝑡
=  𝛿𝑡⟶0

lim  0⃗⃗⃗

𝛿𝑡
=  0⃗⃗     

Conversely  .  Let  f(t)⃗⃗ ⃗⃗ ⃗⃗⃗ = f1i + f2j + f3k  and   
df(t)⃗⃗⃗⃗⃗⃗⃗⃗

dt
= 0⃗⃗ 

.then: 

   
𝑑f1

𝑑𝑡
 i +

𝑑f2

𝑑𝑡
 j +

𝑑f3

𝑑𝑡
 k  =  0⃗⃗ ⟹

𝑑f1

𝑑𝑡
= 0 ,

𝑑f2

𝑑𝑡
= 0 ,

𝑑f3

𝑑𝑡
= 0 . 

   ⟹ f1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , f2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , f3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

   ⟹ f(t)⃗⃗ ⃗⃗ ⃗⃗⃗   = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  . 

-------------------------------------------------------------------------

--- 
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1-6 Scalar  and vector point function: 

In this section we propose to study two types  of functions . One is a scalar 

function while the other is a vector function  . 

[𝑎] Scalar point function:  

If  to each point     P(x, y, z)    of a region R   , there exists a  

definite scalar denoted   by φ(P) or φ(x, y, z)  , then φ  is 

said to be scalar point function for the region R  .  

The set of all points of the region   R  together with the set of 

all values of the scalar  function   φ be is said to be a scalar 

field  R  . 

Example: 

The temperature of a body at any instant ,  density of a body 

and potential due to gravitationally matter are examples of  

scalar point function . 

[𝑏] Vector point function:  

If  to each point     P(x, y, z)    of a region R   , there exists a  

definite vector denoted   by  f⃗ (P) or  f⃗ (x, y, z)  , then f⃗  is 

said to be vector point function for the region R  .  
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The set of all points of the region   R  together with the set of 

all values of the vector function    f⃗ (P) is said to be a vector 

field  R  . 

Example: 

The velocity of a moving fluid  at any instant ,  and the 

gravitational  intensity of force are examples of  vector  point 

function . 

1-7 Vector differential operator   ∇⃗⃗⃗  : 

Vector differential operator   ∇⃗⃗⃗  (read as del or  nabla) is 

defined as : 

  ∇⃗⃗⃗=
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘 ≡ 𝑖

𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
   . 

The operator  ∇⃗⃗⃗  serves a vector differential operator   . 

[𝑎] Gradient of a scalar point function:  

Let  φ(x, y, z)  be a continuously differential  scalar function 

. 

The gradient of   φ  , denoted by  ∇⃗⃗⃗φ  or simply 𝑔𝑟𝑎𝑑φ  is 

defined as : 
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                  𝑔𝑟𝑎𝑑φ = ∇⃗⃗⃗φ =
𝜕φ

𝜕𝑥
𝑖 +

𝜕φ

𝜕𝑦
𝑗 +

𝜕φ

𝜕𝑧
𝑘  . 

The   ∇⃗⃗⃗φ   is vector  . If  𝐶 is a constant , then  ∇⃗⃗⃗Cφ = C∇⃗⃗⃗φ   

. 

Geometrical significance of grad of scalar point function: 

If  φ is a scalar point function  , 

 then 𝑔𝑟𝑎𝑑φ is a vector normal to 

 the   surface  φ(x, y, z) = C  , and 

 has A magnitude equals to the rate 

 of change of  φ  along this normal . 

[𝑏] Divergence  of a vector point function:  

The divergence  of a vector point function 

  f⃗ (x, y, z) = fx𝑖 + 𝑓𝑦𝑗 + 𝑓𝑧𝑘 is denoted by  ∇⃗⃗⃗ . f⃗  , or simply  

𝑑𝑖𝑣 f⃗    , as : 

             𝑑𝑖𝑣 f⃗  = ∇⃗⃗⃗ . f⃗ =
𝜕fx

𝜕𝑥
+
𝜕fy

𝜕𝑦
+
𝜕fz

𝜕𝑧
    

The   𝑑𝑖𝑣 f⃗   is scalar  . If  𝐶 is a constant , then  ∇⃗⃗⃗ . Cf⃗ =

C∇ .⃗⃗⃗⃗⃗ f⃗   . 
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Physical  significance of div (in electrostatic ): 

𝑑𝑖𝑣 f⃗    represents the amount of electric flux   𝑣   per unit 

volume per unit time . Generally  the divergence is roughly a 

measure of a vector 𝑓𝑖𝑒𝑙𝑑′  increasing in the direction it 

points. 

But more accurately  a measure of that 𝑓𝑖𝑒𝑙𝑑′  tendency to 

converge  on or repel  from a point . 

If the flux 𝑣   entering any element of space is the same as 

that leaving it (that is 𝑑𝑖𝑣 f⃗ = 0  ) everywhere , then such a 

point function is called a solenoid vector function .   

[𝑐] Curl of a vector point function:  

The curl of a vector point function 

  f⃗ (x, y, z) = fx𝑖 + 𝑓𝑦𝑗 + 𝑓𝑧𝑘 is denoted by  ∇⃗⃗⃗  ∧ f⃗  , or simply  

𝑐𝑢𝑟𝑙 f⃗    , as : 

             𝑐𝑢𝑟𝑙 f⃗  = ∇⃗⃗⃗ ∧ f⃗ =
|

|

i         j          k

𝜕

𝜕𝑥
      

𝜕

𝜕𝑦
      

𝜕

𝜕𝑧
 

fx       fy       fz 
    

|

|
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The 𝑐𝑢𝑟𝑙 f⃗  is vector. If 𝐶 is a constant, then ∇⃗⃗⃗ ∧ Cf⃗ =

C(∇⃗⃗⃗ ∧ f⃗⃗ ⃗⃗ ⃗) . 

Physical  significance of curl (in electrostatic ): 

In vector calculus , the curl (or rotor) is a vector operator that 

describes the rotation of a vector field .The direction of the 

curl is the axis of rotation ,as determined by the right-hand 

role, and the magnitude of the curl is the magnitude of the 

rotation . 

[𝑑] Some properties for the vector differential operator ∇⃗⃗⃗  

: 

Let     A⃗⃗⃗  &B⃗⃗⃗    are  two differentiable  vector functions of the  

, and    ϕ&𝜓   are  two differentiable  scalar  functions , and 

If  α &𝛽 as two arbitrary constants , then : 

(1) ∇⃗⃗⃗ (αϕ ± βψ) = α∇⃗⃗⃗ϕ ± β∇⃗⃗⃗ψ       , ∇⃗⃗⃗α =  ∇⃗⃗⃗β =  0⃗⃗   . 

(2) ∇⃗⃗⃗ (ϕ ψ) = ϕ∇⃗⃗⃗ϕ + ψ∇⃗⃗⃗ϕ       . 

(3) ∇⃗⃗⃗  (
ϕ 

ψ
) = (ψ∇⃗⃗⃗ϕ − ϕ∇⃗⃗⃗ψ) ψ2⁄   
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(4)∇⃗⃗⃗(A⃗⃗⃗. B⃗⃗⃗)

= (B⃗⃗⃗. ∇⃗⃗⃗)A⃗⃗⃗ + (A⃗⃗⃗ . ∇⃗⃗⃗)B⃗⃗⃗ + B⃗⃗⃗ ∧ (∇⃗⃗⃗ ∧ A⃗⃗⃗) + A⃗⃗⃗

∧ (∇⃗⃗⃗ ∧ B⃗⃗⃗) 

(5)∇⃗⃗⃗ . (∝ A⃗⃗⃗ + 𝛽B⃗⃗⃗) =∝ (∇⃗⃗⃗ . A⃗⃗⃗) + 𝛽(∇⃗⃗⃗ .  B⃗⃗⃗) 

(6) ∇⃗⃗⃗ . (ϕ A⃗⃗⃗) = (∇⃗⃗⃗ϕ). A⃗⃗⃗ + ϕ(∇⃗⃗⃗ . A⃗⃗⃗ )       . 

(7) ∇⃗⃗⃗  ∧  (ϕ A⃗⃗⃗) = (∇⃗⃗⃗ϕ) ∧ A⃗⃗⃗ + ϕ(∇⃗⃗⃗ ∧ A⃗⃗⃗ )       . 

(8)∇⃗⃗⃗  ∧ (∝ A⃗⃗⃗ + 𝛽B⃗⃗⃗) =∝ (∇⃗⃗⃗  ∧  A⃗⃗⃗) + 𝛽(∇⃗⃗⃗  ∧   B⃗⃗⃗) 

(9)∇⃗⃗⃗. (A⃗⃗⃗ ∧ B⃗⃗⃗) = B⃗⃗⃗ . (∇⃗⃗⃗ ∧ A⃗⃗⃗) − A⃗⃗⃗. (∇⃗⃗⃗ ∧ B⃗⃗⃗) 

(10)∇⃗⃗⃗ ∧ (A⃗⃗⃗ ∧ B⃗⃗⃗)

= B⃗⃗⃗ . (∇⃗⃗⃗ ∧ A⃗⃗⃗) − B⃗⃗⃗(∇⃗⃗⃗. A⃗⃗⃗) − (A⃗⃗⃗. ∇⃗⃗⃗)B⃗⃗⃗ + A⃗⃗⃗ (∇⃗⃗⃗. B⃗⃗⃗) 

 (11)∇⃗⃗⃗ . (∇⃗⃗⃗ϕ ) = ∇2ϕ = 
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
     

Where     (∇2=
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
) is called Laplace operator. 

(12)∇⃗⃗⃗  ∧  (∇⃗⃗⃗ϕ ) = 0⃗⃗ 

(13)∇⃗⃗⃗ . (∇⃗⃗⃗ ∧  A⃗⃗⃗) = 0 

(14)∇⃗⃗⃗  ∧  (∇⃗⃗⃗ ∧  A⃗⃗⃗) = ∇⃗⃗⃗(∇⃗⃗⃗. A⃗⃗⃗) − ∇2A⃗⃗⃗ 
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Examples :      Calculate : 

(i)-∇⃗⃗⃗ 𝑓(r)             (ii)-∇⃗⃗⃗ . r⃗                      (iii)-∇⃗⃗⃗ ∧  r⃗   

   (iv)-∇⃗⃗⃗. (r⃗𝑓(r))                (v)-∇⃗⃗⃗ ∧ (r⃗𝑓(r)) 

Where                r⃗  = x𝑖 + 𝑦𝑗 + 𝑧𝑧𝑘 

 The solution : 

(i)-  It is clear that     𝑓(r) = 𝑓(√𝑥2 + 𝑦2 + 𝑧2) =

𝑓(𝑥, 𝑦, 𝑧) 

Then     ∇⃗⃗⃗ 𝑓(r) =
𝜕f(r)

𝜕𝑥
𝑖 +

𝜕f(r)

𝜕𝑦
𝑗 +

𝜕f(r)

𝜕𝑧
𝑘 

But       
𝜕f(r)

𝜕𝑥
=

𝑑𝑓

𝑑𝑟
 
𝜕r

𝜕𝑥
=

2𝑥

2√𝑥2+𝑦2+𝑧2
 𝑓′  =

𝑥

𝑟
  𝑓′   

Similarly     
𝜕f(r)

𝜕𝑦
 =

𝑦

𝑟
  𝑓′      &      

𝜕f(r)

𝜕𝑧
 =

𝑧

𝑟
  𝑓′       

(ii)-      ∇⃗⃗⃗ . r⃗ = (
𝜕

𝜕𝑥
𝑖 +

𝜕

𝜕𝑦
𝑗 +

𝜕

𝜕𝑧
𝑘) . (x𝑖 + 𝑦𝑗 + 𝑧𝑧𝑘) 

                     = (
𝜕𝑥

𝜕𝑥
+
𝜕𝑦

𝜕𝑦
+
𝜕𝑧

𝜕𝑧
) = 3 
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(iii)-                  ∇⃗⃗⃗ ∧ r⃗ =
|

|

i         j          k

𝜕

𝜕𝑥
      

𝜕

𝜕𝑦
      

𝜕

𝜕𝑧
 

x       y         z 
    

|

|
= 0⃗⃗    

(iv)-     ∇⃗⃗⃗. (r⃗𝑓(r)) =
𝜕

𝜕𝑥
(𝑥𝑓(𝑟)) +

𝜕

𝜕𝑦
(𝑦𝑓(𝑟)) +

𝜕

𝜕𝑧
(𝑧𝑓(𝑟)) 

     = 𝑓(𝑟)
𝜕𝑥

𝜕𝑥
+ 𝑥

𝜕𝑓

𝜕𝑥
+ 𝑓(𝑟)

𝜕𝑦

𝜕𝑦
+ 𝑦

𝜕𝑓

𝜕𝑦
+ 𝑓(𝑟)

𝜕𝑧

𝜕𝑧
+ 𝑧

𝜕𝑓

𝜕𝑧
 

= 3 𝑓(𝑟) +
(𝑥2 + 𝑦2 + 𝑧2)

𝑟
𝑓′ ,     𝑓𝑟𝑜𝑚  (𝑖) 

= 3 𝑓(𝑟) + 𝑟𝑓′      

(v)-     ∇⃗⃗⃗ ∧ (r⃗𝑓(r)) = 𝑓(𝑟) ∇⃗⃗⃗ ∧  r⃗ + ∇ ⃗⃗⃗⃗ (𝑓(𝑟)) ∧  r⃗   

= 𝑓(𝑟) 0⃗⃗ + r0⃗⃗⃗⃗ (𝑓
′) ∧  r⃗  ,   𝑓𝑟𝑜𝑚  (𝑖)&(𝑖𝑖) 

= 0⃗⃗ + 0⃗⃗ = 0⃗⃗  ,   𝑠𝑖𝑛𝑐𝑒  r0 ⃗⃗ ⃗⃗ ⃗ ∥ r ⃗⃗⃗ 

-------------------------------------------------------------------------

-- 

 

 

 



Electrostatics (II)                                           Dr.Mohamed Abd El-Aziz 
_______________________________________________________ 

       20 
 

  



Electrostatics (II)                                           Dr.Mohamed Abd El-Aziz 
_______________________________________________________ 

       21 
 

 

Chapter (2) 

Vector Integration 

1-1 Introduction : 

Let   𝑟 = 𝑥(𝑡)𝑖 + 𝑦(𝑡)𝑗 + 𝑧(𝑡)𝑘  ,   be the position vector of a point  

𝑃(𝑥, 𝑦. 𝑧). 

For all values of      𝑡 ∈ [𝑎, 𝑏]    . The point    𝑃.  describes the curve   𝐶 . 

The curve  𝐶  is called  smooth curve if   𝑟(𝑡) possesses a continuous first  

derivative  (not equal to zero vector) for all  𝑡 ∈ [𝑎, 𝑏]    . 

A curve which is made up of finite numbers of smooth curves is called 

piecewise smooth curve  . A curve is said to be closed curve if its initial and 

terminal points  

are same . 

Throughout this chapter we shall consider only  smooth curves unless 

otherwise     

mentioned .   

Definition :A closed smooth curve which does not intersect itself 

anywhere is known as simple closed curve .  
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Examples : circle  , ellipse  

 

 

Definition :A region is said to be simply connected if any  closed 

curve  

lying entirely within the region can be constructed (or shrunk) continuously 

for a  

point without any portion of the curve passing out of the region .    
  A region which is not simply connected is called multiply connected region . 

Examples : Regions inside the circle , cubes , sphere , ….  , are simply   

connected regions . 

Definition :A surface   𝑟 = 𝑓(𝑢, 𝑣)  is said to be smooth if it is 

possesses continuous first order partial derivatives  . 

Throughout this chapter we shall consider only  smooth surfaces  unless  

otherwise    mentioned .   

 

1-2 Line Integral : 

Let  𝐶 be a smooth curve given by       𝑟 = 𝑓(𝑡)  . 

     𝑟 = 𝑥(𝑡)𝑖 + 𝑦(𝑡)𝑗 + 𝑧(𝑡)𝑘  ,   be the position vector of a point  𝑃(𝑥, 𝑦. 𝑧). 
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For all values of      𝑡 ∈ [𝑎, 𝑏]    . The point    𝑃.  describes the curve   𝐶 . 

Let  �⃗�(𝑟)   be a  continuous vector point function on 𝐶   .  . 

Let   𝐴 be a fixed point on     𝐶  and 𝑆  be the length of the curve from   𝐴 to 

any point     𝑃(𝑥, 𝑦, 𝑧)   on  𝐶  . Then we have  
𝑑𝑟

𝑑𝑠
   is the unit vector tangent to 

the curve at   𝑃  . Thus , the component of  �⃗�(𝑟)   along the tangent at 𝑃   is  

�⃗� .
𝑑𝑟

𝑑𝑠
   .  

It is clearly a function of   𝑆  for any point on the curve . Then  : 

  

                           ∫
c
 F⃗⃗⃗ .

dr⃗⃗

ds
    or                        ∫

c
 F⃗⃗⃗ . dr⃗     

Is called  the tangent line integral of   �⃗�(𝑟)     along   𝐶  . 

Observations on line integral : 

(1)  Since the integrand of the above tangential line integral is scalar ,then it is 

the  

ordinary line integral of elementary calculus .   

(2)  If  𝐶  is a closed curve , then we denote the above tangential line integral 

by putting a circle on the integral sign as   :        ∲
𝑐
�⃗� . 𝑑𝑟     .    

(3)  If  𝐶  is a join of finite smooth curves    𝐶1 , 𝐶2 , …… , 𝐶𝑛     , then  : 

∲
𝑐
�⃗� . 𝑑𝑟 = ∲

𝑐1
�⃗� . 𝑑𝑟 + ∲

𝑐2
�⃗� . 𝑑𝑟 + …… + ∲

𝑐𝑛
�⃗� . 𝑑𝑟 = ∑ ∲

𝑐𝑖
�⃗� . 𝑑𝑟𝑛

𝑖=1       .    

(4)  If    �⃗� = 𝐹1(𝑥, 𝑦, 𝑧)𝑖 + 𝐹2(𝑥, 𝑦, 𝑧)𝑗 + 𝐹3(𝑥, 𝑦, 𝑧)𝑘    , then  : 
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                           ∫
c
 F⃗⃗⃗ . dr⃗ = ∫

c (𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘) . (𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧𝑘)     

                                          = ∫
c
(𝐹1𝑑𝑥 + 𝐹2𝑑𝑦 + 𝐹3𝑑𝑧)      

(5)  The line integral        ∫
𝑐
 𝐹⃗⃗⃗⃗  . 𝑑𝑟      can be also be written as   ∫

𝑐
 𝐹⃗⃗⃗⃗  .

𝑑𝑟

dt
 dt    

.      

(6)  The other types line integrals are         ∫
𝑐
 𝐹⃗⃗⃗⃗  ∧ 𝑑𝑟      and   ∫

𝑐
φ dr⃗    . 

(7)  If    �⃗�   is the force acting on a particle to displace along the curve  𝐶  , 

then  

      ∫
𝑐
 𝐹⃗⃗⃗⃗  . 𝑑𝑟 , represents physically the total work done during the 

displacement from  A to B  . 

(8)  If    �⃗�   is the velocity of a fluid particle  along the curve  𝐶  , then  

  ∲
𝑐
�⃗� . 𝑑𝑟, is called  the circulation around the curve .   

(9)  If  the circulation     ∲
𝑐
�⃗� . 𝑑𝑟 = 0   , around every closed curve 𝐶 in the 

region   𝑅 then    𝐶  , then    �⃗�  is called  irrotational in   𝑅 .   

Examples : 

(1) Evaluate     ∫ �⃗� . 𝑑𝑟
(1,2)

(0,0)
   if        �⃗� = 3𝑥𝑦𝑖 − 𝑦2𝑗    along the curve   𝐶  : 

         𝑦 = 2𝑥2  on the plane      𝑥𝑦  . 

The solution : 

   𝐼 = ∫ �⃗�. 𝑑𝑟 = ∫ (3𝑥𝑦𝑖 − 𝑦2𝑗) . (𝑑𝑥𝑖 + 𝑑𝑦𝑗)
(1,2)

(0,0)

(1,2)

(0,0)
= ∫ (3𝑥𝑦𝑑𝑥 −

(1,2)

(0,0)

𝑦2𝑑𝑦) 
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Along the line      𝑦 = 2𝑥2   that is     (𝑑𝑦 = 4𝑥𝑑𝑥)     , we get : 

                 𝐼 = ∫ 3𝑥 (2𝑥2)
1

0
𝑑𝑥 − (2𝑥2)2(4𝑥𝑑𝑥) 

                   = ∫ (6 𝑥3 − 16 𝑥5)
1

0
𝑑𝑥 = [

3𝑥3

2
−
8𝑥6

3
]
0

1

= 
3

2
− 

8

3
= − 

7

6
      . 

----------------------------------------------------------------------------------------------

--- 

(2) Evaluate   ∫
𝑐
  (𝑥2 + 𝑥𝑦)𝑑𝑥 + (𝑥2 + 𝑦2)𝑑𝑦     , where 𝐶  is the square 

formed by  the lines         𝑦 = ±1       &      𝑥 = ±1  . 

       The solution : 

I =  ∫
𝑐
 (𝑥2 + 𝑥𝑦)𝑑𝑥 + (𝑥2 + 𝑦2)𝑑𝑦 =

∑ ∫
𝑐𝑖
  (𝑥2 + 𝑥𝑦)𝑑𝑥 + (𝑥2 + 𝑦2)𝑑𝑦4

𝑖=1      

Equation to         𝑐1  𝑖𝑠   𝑦 = −1   (∴ 𝑑𝑦 = 0) .      

 

 

Hence : 

 ∫
𝑐1
  (𝑥2 + 𝑥𝑦)𝑑𝑥 + (𝑥2 + 𝑦2)𝑑𝑦 = ∫ (𝑥2 + 𝑥(−1))𝑑𝑥

1

−1
+ (𝑥2 +

(−1)2)(0)    

                                 = [
𝑥3

3
−
𝑥2

2
]
−1

1

= 
2

3
      . 

 

Equation to         𝑐2  𝑖𝑠  𝑥 = 1  (∴ 𝑑𝑥 = 0) .  Hence : 
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∫
𝑐2
  (𝑥2 + 𝑥𝑦)𝑑𝑥 + (𝑥2 + 𝑦2)𝑑𝑦 = ∫ (1 + 𝑦2)𝑑𝑦

1

−1

= [𝑦 +
𝑦3

3
]
−1

1

= 
8

3
   .  

Equation to         𝑐3  𝑖𝑠  𝑦 = 1  (∴ 𝑑𝑦 = 0) .  Hence : 

∫
𝑐3
(𝑥2 + 𝑥𝑦)𝑑𝑥 + (𝑥2 + 𝑦2)𝑑𝑦 = ∫ (𝑥2 + 𝑥)𝑑𝑥

−1

1

= [
𝑥3

3
+
𝑥2

2
]
1

−1

= −
2

3
 . 

      Equation to         𝑐4  𝑖𝑠  𝑥 = −1  (∴ 𝑑𝑥 = 0) .  Hence : 

∫
𝑐4
  (𝑥2 + 𝑥𝑦)𝑑𝑥 + (𝑥2 + 𝑦2)𝑑𝑦 = ∫ (1 + 𝑦2)𝑑𝑦

−1

1

== [𝑦 +
𝑦3

3
]
−1

1

= − 
8

3
   . 

   Substation   these result we get :                                  

                       I =
2

3
+
8

3
−
2

3
−
8

3
=  0   . 

----------------------------------------------------------------------------------------------

-- 

(3) Compute the line integral    ∫
𝑐
 𝑦2 𝑑𝑥 − 𝑥2𝑑𝑦     , about the  triangle whose 

vertices are                (1,0)  ,   (0,1)   &    (−1,0)  . 

      

 

  The solution : 

 

I = ∫
𝑐
 𝑦2 𝑑𝑥 − 𝑥2𝑑𝑦 = ∑ ∫

𝑐𝑖
 𝑦2 𝑑𝑥 − 𝑥2𝑑𝑦 3

𝑖=1      
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On      𝑐1  we have       
 𝑦−𝑦1

𝑥−𝑥1
 =

 𝑦2−𝑦1

𝑥2−𝑥1
⇒

 𝑦−0

𝑥−1
=

 1−0

0−1
 ⇒

 𝑦

𝑥−1
=

 1

−1
      

                                         ⇒   𝑦 = −𝑥 + 1 ⇒ (∴ 𝑑𝑦 = −𝑑𝑥) .      

Hence : 

   ∴    ∫
𝑐1
 𝑦2 𝑑𝑥 − 𝑥2𝑑𝑦 = ∫ (−𝑥 + 1)2(−𝑑𝑥)

0

1
 − 𝑥2(−𝑑𝑥)         

 = ∫ (2𝑥2 − 2𝑥 + 1)𝑑𝑥
0

1

= [
2

3
𝑥3 − 𝑥2 + 𝑥]

1

0

= ((0) − (
2

3
− 1 + 1)) = −

2

3
 

On      𝑐2  we have    
 𝑦−𝑦1

𝑥−𝑥1
 =

 𝑦2−𝑦1

𝑥2−𝑥1
⇒

 𝑦−1

𝑥−0
=

 0−1

−1−0
 ⇒

 𝑦−1

𝑥
= 1      

                                         ⇒   𝑦 = 𝑥 + 1 ⇒ (∴ 𝑑𝑦 = 𝑑𝑥) .      

Hence : 

   ∴    ∫
𝑐2
 (𝑥 + 1)2 𝑑𝑥 − 𝑥2𝑑𝑥 = ∫ (2𝑥 + 1)

−1

0
 dx = [𝑥2 + 𝑥]0

−1 = 0      

 

On      𝑐3  we have      𝑐3  𝑖𝑠  
 𝑦−𝑦1

𝑥−𝑥1
 =

 𝑦2−𝑦1

𝑥2−𝑥1
⇒

 𝑦−0

𝑥+1
=

 0−0

1+1
 ⇒

 𝑦

𝑥+1
= 0      

                                         ⇒   𝑦 = 0 ⇒ (∴ 𝑑𝑦 = 0) .      

Hence : 

   ∴    ∫
𝑐3
 (0)2 𝑑𝑥 − 𝑥2(0) = 0  

Substation   these result we g                I = −
2

3
+ 0 + 0 = −

2

3
 

----------------------------------------------------------------------------------------------

---          
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(4) If        �⃗� = (3𝑥2 + 6𝑦)𝑖 − 14𝑦𝑧𝑗 + 20 𝑥𝑧2𝑘        , then evaluate   

∫
𝑐
 𝐹⃗⃗⃗⃗  . 𝑑𝑟 : 

      From     (0,0,0)       to    (1,1,1)     along the path    𝑥 = 𝑡, 𝑦 = 𝑡2, 𝑧 = 𝑡3      

. 

The solution : 

On  the path    𝑥 = 𝑡, 𝑦 = 𝑡2, 𝑧 = 𝑡3    we have : 

                  𝑑𝑥 = 𝑑𝑡      ,    𝑑𝑦 = 2𝑡𝑑𝑡     𝑎𝑛𝑑     𝑑𝑧 = 3 𝑡2𝑑𝑡               

Also              𝑥 = 0  𝑡𝑜 𝑥 = 1 ⟹   𝑡 = 0   𝑡𝑜 𝑡 = 1          

Thus 

           ∫
𝑐
 𝐹⃗⃗⃗⃗  . 𝑑𝑟 = ∫

𝑐
(3x2 + 6y)dx − 14 yz dy + 20 xz2dz        

                 𝐼 = ∫ (3𝑡2 + 6𝑡2 )
1

0
𝑑𝑡 − 14(𝑡2)(𝑡3)(2 𝑡𝑑𝑡) + 20(𝑡)(𝑡6)(3𝑡2𝑑𝑡)  

𝐼 = ∫ (9𝑡2 − 28 𝑡6 + 60 𝑡9 )
1

0

𝑑𝑡 = [3𝑡3 − 4𝑡7 + 6 𝑡10]0
1 = 5 

Exercises: 

(1) Evaluate   ∫
𝑐
 𝐹⃗⃗⃗⃗  . 𝑑𝑟    , in the following cases :  

  (𝑖)      �⃗� = (3𝑥𝑦)𝑖 − 𝑦2𝑗    , 𝑤ℎ𝑒𝑟𝑒  𝐶 𝑖𝑠 𝑦 = 2𝑥2𝑓𝑟𝑜𝑚  (0,0) 𝑡𝑜 (1,2)  . 

  (𝑖𝑖)      �⃗� = (𝑥2 + 𝑦2)𝑖 −

2𝑥𝑦𝑗    , 𝑤ℎ𝑒𝑟𝑒  𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑥𝑦 −  . 

𝑝𝑙𝑎𝑛𝑒 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑏𝑦  𝑦 = 0 , 𝑥 = 𝑎 , 𝑦 = 𝑏𝑎𝑛𝑑 𝑥 = 0     . 
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(𝑖𝑖𝑖)      �⃗� = (2𝑥 + 𝑦)𝑖 − (3𝑦 −

𝑥𝑥𝑦)𝑗    , 𝑤ℎ𝑒𝑟𝑒  𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢 𝑥𝑟𝑣𝑒  𝑖𝑛 𝑡ℎ𝑒 𝑥𝑦 −   

𝑝𝑙𝑎𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑙𝑖𝑛𝑒𝑓𝑟𝑜𝑚 (0,0) 𝑡𝑜 (2,0) 𝑡𝑜 (3,2) . 

(2) Evaluate   ∫
𝑐
(xy + z2)𝑑𝑥  , 𝑤ℎ𝑒𝑟𝑒  𝐶 𝑖𝑠 𝑎𝑟𝑐 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑒𝑙𝑖𝑥      

    𝑥 = cos 𝑡 , 𝑦 = sin 𝑡 , 𝑧 = 𝑡 𝑤ℎ𝑖𝑐ℎ 𝑗𝑖𝑜𝑛𝑠  (1,0,0) 𝑎𝑛𝑑  (−1,0, 𝜋)  

 

 1-3 Surface Integral : 

 Let   by       𝑟 = 𝑓(𝑥, 𝑦)  be a smooth surface  by  𝑆  ,and   by    �⃗�(𝑟)  is a  

continuous vector point  function . Let    𝑛  be unit vector outer normal to the  

surface     𝑆   , then the integral :  

                    Evaluate   ∫
𝑐
 𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆     or           ∬

𝑆
�⃗�   .𝑛 𝑑𝑆      

Is called the surface integral or normal integral of   �⃗�(𝑟)  over the region  𝑆  . 

Observations on surface integral : 

(1)  The other type of line integral are  

            ∫
S
 F⃗⃗⃗  ∧ dS⃗⃗       ,            ∫

S
φ dS⃗⃗      ,                ∫

S
 F⃗⃗⃗  dS     

(2)  If      �⃗� = 𝐹𝑥(𝑥, 𝑦, 𝑧)𝑖 + 𝐹𝑦(𝑥, 𝑦, 𝑧)𝑗 + 𝐹𝑧(𝑥, 𝑦, 𝑧)𝑘    , then  : 

                           ∫
c
 F⃗⃗⃗ . dS⃗⃗ = ∬

𝑆
𝐹𝑥 𝑑𝑦𝑑𝑧 + 𝐹𝑦 𝑑𝑥𝑑𝑧 + 𝐹𝑧 𝑑𝑥𝑑𝑦      

(3)  If      𝑆    is a closed surface then the surface integral is denoted by                                              
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                           ∲
𝑆
 𝐹⃗⃗⃗⃗  . 𝑑𝑆⃗⃗⃗⃗⃗         

(4)  If        �⃗�    represents the velocity of a fluid particle  , then the total 

outward  

flux of     �⃗�   across a closed  surface  𝑆  is  the surface integral      ∲
𝑆
 𝐹⃗⃗⃗⃗  . 𝑑𝑆⃗⃗⃗⃗⃗     .    

Further , if        ∲
𝑆
 𝐹⃗⃗⃗⃗  . 𝑑𝑆⃗⃗⃗⃗⃗ = 0    , across every closed surface   𝑆 in a region   𝑅 

,  

then      �⃗�  is called solenoidal   vector point function in    𝑅  . 

(5)  Surface integral can be used in estimation of gravitational field , electric  

force and magnetic force . 

Example : 

Evaluate     ∫
𝑆
 𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆     , where       �⃗� = 2𝑥2𝑖 − 𝑦2𝑗 + 4𝑧𝑥𝑘    and     𝑆  is 

the surface      𝑦2 + 𝑧2 = 9  , bounded by       𝑥 = 0 𝑎𝑛𝑑  𝑥 = 2  in the first 

octant . 

The solution  

Surface   𝑆  is projected along   and    𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒  is   and     𝑂𝐶𝐴𝐵 ,the 

normal to the surface        𝜑 = 𝑦2 + 𝑧2 − 9 = 0    is       

𝑛 =
∇⃗⃗⃗ 𝜑

|∇⃗⃗⃗ 𝜑|
=

2𝑦𝑗+2𝑧𝑘

√4𝑦2+4𝑧2
=

𝑦𝑗+𝑧𝑘

√𝑦2+𝑧2
       

     ∫
𝑆
 𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆 = ∬

𝑆
�⃗�   .𝑛 

𝑑𝑥 𝑑𝑦

|𝑛 .𝑘|
                 (1)      

                       𝑛 . 𝑘  ==
𝑦𝑗+𝑧𝑘

√𝑦2+𝑧2
 . 𝑘 =  

𝑧

√𝑦2+𝑧2
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     𝐹⃗⃗⃗⃗  . 𝑛 = (2𝑥2𝑖 − 𝑦2𝑗 + 4𝑧𝑥𝑘)  . (
𝑦𝑗+𝑧𝑘

√𝑦2+𝑧2
) =

−𝑦3+4𝑧2𝑥

√𝑦2+𝑧2
   

Substituting in     (1)  ,  we get  : 

                ∫
𝑆
 𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆 =    ∬

𝑆 
 
−𝑦3+4𝑧2𝑥

𝑧
 𝑑𝑥 𝑑𝑦                 

                 =    ∬
𝑆 
 
−𝑦3+4𝑥(9−𝑦2)

√9−𝑦2
 𝑑𝑥 𝑑𝑦                 

                                       = ∫ ∫
−𝑦3+4𝑥(9−𝑦2)

√9−𝑦2
 𝑑𝑥 𝑑𝑦

2

0

3

0
 

= ∫ [
−𝑥𝑦3 + 2𝑥2(9 − 𝑦2)

√9 − 𝑦2
]

𝑥=0

𝑥=2

 𝑑𝑦
3

0

 

= ∫
−2𝑦3 + 8(9 − 𝑦2)

√9 − 𝑦2
 𝑑𝑦

3

0

                     (2) 

Putting       𝑦 = 3 sin 𝜃   ,so that         𝑑𝑦 = 3 cos 𝜃  𝑑𝜃     ,  (2)  reduces to  =

∫ (−6 𝑠𝑖𝑛3𝜃 + 72 𝑐𝑜𝑠2𝜃)𝑑𝜃
𝜋

2
0

 = −6 [
2

3
+ 72

1

2
(
𝜋

2
)]   = −(4 + 108𝜋)                 

1-4Green’ theorem in a plane: 

Statement :  If    𝑅  is a closed region in      𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 bounded by a 

simple closed curve     𝐶 and if  and     𝑃(𝑥, 𝑦)  𝑎𝑛𝑑 𝑄(𝑥, 𝑦) are continuous 

function having continuous partial derivatives in  𝑅  ,  then: 

       ∮𝑃 𝑑𝑥 + 𝑄 𝑑𝑦 =   ∬𝑅
  (𝑄𝑥 − 𝑃𝑦)𝑑𝑥𝑑𝑦  where   𝑅 𝑄𝑥 =

𝜕𝑄

𝜕𝑥
  , 𝑃𝑦 =

𝜕𝑃

𝜕𝑦
 

Examples : 

Verify Green theorem for     ∮(3𝑥 − 8 𝑦2) 𝑑𝑥 + (4 𝑦 − 6𝑥𝑦) 𝑑𝑦     where  𝐶   
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is the boundary of the region bounded by   𝑥 = 0 𝑎𝑛𝑑  𝑦 = 0 𝑎𝑛𝑑 𝑥 + 𝑦 =  1   

The solution  

Here     𝑃 = 3𝑥 − 8 𝑦2 𝑎𝑛𝑑  𝑄 = 4 𝑦 − 6𝑥𝑦   

   ∴  𝑃𝑦 = −16 𝑦 𝑎𝑛𝑑  𝑄𝑥 = −6𝑦   

Now    :  𝐶 = 𝑐1 + 𝑐2 + 𝑐3      where  

 𝑐1 = 𝑂𝐴    ∶ 𝑦 = 0  , ⟹   𝑑𝑦 = 0  , 

𝑐2 = 𝐴𝐵    ∶ 𝑦 = −𝑥 + 1  , ⟹   𝑑𝑦 = −𝑑𝑥  and 

𝑐3 = 𝐵𝑂    ∶ 𝑥 = 0  , ⟹   𝑑𝑥 = 0   

   ∴  𝐼 = ∫
c1
    + ∫

c2
    + ∫

c3
 

= ∫ (3𝑥 )
1

0

𝑑𝑥 + ∫ (3𝑥 − 8(−𝑥 + 1)2 )
0

1

𝑑𝑥 

                         +(4(−𝑥 + 1) − 6𝑥(−𝑥 + 1))(−𝑑𝑥) + ∫ (4𝑦 )
0

1
𝑑𝑦     

                     = 3∫ 𝑥
1

0
𝑑𝑥 + ∫ (−14𝑥2 + 29𝑥 − 12)

0

1
𝑑𝑥 + 4∫ 𝑦

1

0
𝑑𝑦 

=
3

2
−
7

6
− 2 = −

5

3
= 𝐿.𝐻. 𝑆            (1) 

Further   ∵  𝑃𝑦 = −16 𝑦 𝑎𝑛𝑑  𝑄𝑥 = −6𝑦   

Hence       ∬
𝑅
  (𝑄𝑥 − 𝑃𝑦)𝑑𝑥𝑑𝑦 = ∬𝑅

  (−6𝑦 + 16𝑦)𝑑𝑥𝑑𝑦           

= 10∫ ∫ 𝑦 𝑑𝑥 𝑑𝑦
𝑥=−𝑦+1

𝑥=0

𝑦=1

𝑦=0

= 10 ∫ 𝑦 [𝑥]0
−𝑦+1

1

0

𝑑𝑦 
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= 10∫ 𝑦(−𝑦 + 1) 𝑑𝑦 =
1

0

10∫ 𝑦(−𝑦2 + 𝑦) 𝑑𝑦
1

0

 

= [−
𝑦3

3
+
𝑦2

2
]
0

1

= 10 [−
1

3
+
1

2
] =

10

6
[−1] = −

5

3
= 𝑅.𝐻. 𝑠         (2) 

From    
𝑦3

3
+
𝑦2 

2
  (1)   &  (2)    ,we see that the theorem is verified . 

Exercises: 

(1) Verify Green’ theorem for     ∮(𝑥𝑦 + 𝑦2)𝑑𝑥 + 𝑥2 𝑑𝑦    where  𝐶   

is determined by     𝑥 = 𝑦2 𝑎𝑛𝑑  𝑦 = 𝑥2    

(2) Verify Green’ theorem for   the scalar line integral of   

   �⃗� = (𝑥2 − 𝑦2)𝑖 + 2𝑥𝑦𝑗   over the rectangular region bounded by the  

          𝑥 = 0 , 𝑦 = 0, 𝑥 = 𝑎 𝑎𝑛𝑑  𝑦 = 𝑏    

1-5 Stoke’ theorem in a plane: 

Statement :  Let    𝑆  be an open surface  bounded by a simple closed 

curve       𝐶 and if     �⃗� = 𝐹𝑥𝑖 + 𝐹𝑦𝑗 + 𝐹𝑧𝑘    ,   be any continuously 

differentiable vector point function then : 

                   ∲
𝐶
 𝐹⃗⃗⃗⃗  . 𝑑𝑟⃗⃗⃗⃗⃗ = ∫

𝑆
 𝑐𝑢𝑟𝑙  𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆              (∗)       Where    𝑛     is the 

unit external normal vector at any  point on  𝑆   . 

Note :  Stoke’ theorem is another relation between a line integral and a 

surface integral . 

Observations on Stoke’ theorem: 
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(1)  writing     𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘     so that   𝑑𝑟⃗⃗⃗⃗⃗ = 𝑑𝑥𝑖 + 𝑑𝑦𝑗 + 𝑑𝑧𝑘    and  

since the unit vector   𝑛     can be written as :  𝑛 = cos𝛼 𝑖 + cos𝛽 𝑗 +

cos 𝛾 𝑘     ,then  

The relation      (∗) reduces to 

              ∲
𝑐
Fx + Fy + Fz = ∫S  

|

|

i         j          k
𝜕
𝜕𝑥
      𝜕

𝜕𝑦
      𝜕

𝜕𝑧
 

Fx       Fy      Fz 
    

|

|
 . 𝑛  𝑑𝑆         

               ∫
𝑆
 [  (

𝜕Fz

𝜕𝑦
−
𝜕Fy

𝜕𝑧
) cos 𝛼 + (

𝜕Fx

𝜕𝑧
−

𝜕Fz

𝜕𝑥
) cos𝛽 + (

𝜕Fy

𝜕𝑥
−

𝜕Fx

𝜕𝑦
) cos 𝛾]   𝑑𝑆               

 (2)  Let    , �⃗� = 𝑃𝑖 + 𝑄𝑗 be a vector function which is continuously 

differentiable  in a region   𝑆     of   𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒     bounded by a closed curve  

𝐶    .Then : 

       ∲
𝐶
 𝐹⃗⃗⃗⃗  . 𝑑𝑟⃗⃗⃗⃗⃗ = ∲

𝐶 (𝑃𝑖 + 𝑄𝑗) . (𝑑𝑥𝑖 + 𝑑𝑦𝑗)  =   ∲𝐶Pdx + Qdy         (1)      

And 

 

Let    ,𝑐𝑢𝑟𝑙 �⃗� =  
|

|

i         j          k
𝜕
𝜕𝑥
      𝜕

𝜕𝑦
      𝜕

𝜕𝑧
 

P       Q      0 
    

|

|
=   (

𝜕𝑄
𝜕𝑥
−
𝜕𝑃
𝜕𝑦
 ) 𝑘         ( 𝜕

𝜕𝑧
= 0)  
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Hence      ∫
𝑆
 𝑐𝑢𝑟𝑙  𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆 =   ∫

𝑆
 (
𝜕𝑄
𝜕𝑥
−
𝜕𝑃
𝜕𝑦
 ) 𝑘   . 𝑘  𝑑𝑥 𝑑𝑦           (∗)        

                   =  ∫
𝑆
 (
𝜕𝑄
𝜕𝑥
−
𝜕𝑃
𝜕𝑦
 )   𝑑𝑥 𝑑𝑦               (2)        

(𝑠𝑖𝑛𝑐𝑒 𝑛 = 𝑘 𝑖𝑠 𝑎 𝑢𝑖𝑛𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒)  

Expressions        (1)   &  (2)     implies that the Stoke theorem reduces to 

Green  

Theorem in this case . Hence Green theorem  

In a plane is referred to as Stoke theorem (that is Green theorem is particular 

case  

of  Stoke theorem in a plane ) . 

Exercises: 

(1) Verify Stoke theorem for     �⃗� = (𝑥2 + 𝑦2)𝑖 − 2𝑥𝑦𝑗    taking around the 

rectangular whose vertices are   (−𝑎, 0), ( 𝑎, 0) , (𝑎, 𝑏) , (−𝑎, 𝑏)   . 

 

1-6 Gauss divergence’theorem: 

Statement :  If    �⃗�   is a  continuously differentiable vector point function 

in  

the region    𝐸  bounded by the  closed surface   𝑆    then : 

                              ∲
𝑆
 𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆 = ∫

𝐸
 𝑑𝑖𝑣  𝐹⃗⃗⃗⃗   𝑑𝑉           

Where     𝑛    is the unit external normal vector at any point on    𝑆   .  
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Note :This theorem is a relation between a surface integral and volume 

integral. 

Example : 

Verify Gauss divergence ’theorem �⃗� = (𝑥2 − 𝑦2)𝑖 + (𝑦2 − 𝑧𝑥)𝑗 +

(𝑧2 − 𝑥𝑦)𝑘  ,   

Taken over the rectangular parallelepiped      0 ≤ 𝑥 ≤ 𝑎 , 0 ≤ 𝑦 ≤ 𝑏 , 0 ≤

𝑧 ≤ 𝑐   

 

 ∮(3𝑥 − 8 𝑦2) 𝑑𝑥 + (4 𝑦 − 6𝑥𝑦) 𝑑𝑦     where  𝐶   

is the boundary of the region bounded by   𝑥 = 0 𝑎𝑛𝑑  𝑦 = 0 𝑎𝑛𝑑 𝑥 + 𝑦 =  1   

The solution  

Substituting  In the relation :  

                              ∲
𝑆
 𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆 = ∫

𝐸
 𝑑𝑖𝑣  𝐹⃗⃗⃗⃗   𝑑𝑉           

We see That 

            𝑑𝑖𝑣  𝐹⃗⃗⃗⃗ = 2𝑥 + 2𝑦 = 2𝑧 = 2(𝑥 + 𝑦 + 𝑧)           

 ∴ ∫
𝐸
 𝑑𝑖𝑣  𝐹⃗⃗⃗⃗   𝑑𝑉 == ∫ ∫    ∫ 2(𝑥 + 𝑦 + 𝑧)

𝑎

0
    𝑑𝑥 𝑑𝑦

𝑏

0

𝑐

0  
𝑑𝑧 

          

                = 2∫ ∫    ∫ [
𝑥2

2
+ (𝑦 + 𝑧)𝑥]

0

𝑎
𝑎

0
     𝑑𝑦

𝑏

0

𝑐

0  
𝑑𝑧 

                   = 2∫ ∫    [
𝑎2

2
+ (𝑦 + 𝑧)𝑎]      𝑑𝑦

𝑏

0

𝑐

0  
𝑑𝑧 
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                   = 2𝑎 ∫ ∫    [
𝑎

2
+ (𝑦 + 𝑧)]      𝑑𝑦

𝑏

0

𝑐

0  
𝑑𝑧 

                               = 2𝑎 ∫ [
𝑎

2
𝑦 + (

𝑦2

2
+ 𝑧𝑦)]

0

𝑏
𝑐

0  
𝑑𝑧  

=
2𝑎𝑏

2
∫ [𝑎 + (𝑏 + 2𝑧)]
𝑐

0  

𝑑𝑧 

=
2𝑎𝑏

2
[𝑎𝑧 + (𝑏𝑧 + 𝑧2)]0

𝑐  

= 𝑎𝑏[𝑎𝑐 + (𝑏𝑐 + 𝑐2)] 

= 𝑎𝑏𝑐[𝑎 + 𝑏 + 𝑐] = 𝑅.𝐻. 𝑆                   (1) 

On the surface       𝑆 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 + 𝑆5 + 𝑆6   , we have : 

For         𝑆1 = 𝑂𝐴𝐵𝐶    : will be          𝑧 = 0 , 𝑛 = −𝑘    ,  then : 

𝐼1 = ∫𝑆1
   𝐹⃗⃗⃗⃗  . 𝑛  𝑑𝑆 = −∫

𝑆1
  (𝑧2 − 𝑥𝑦)  𝑑𝑥 𝑑𝑦   

     = −∫
𝑆1
  (−𝑥𝑦)  𝑑𝑥 𝑑𝑦 = −∫ ∫   (−𝑥𝑦)  𝑑𝑥 𝑑𝑦 = ∫   [

𝑥2

2
]
0

𝑎

 𝑦 𝑑𝑦
𝑏

0

𝑎

0

𝑏

0  
   

= ∫
𝑎2

2

𝑏

0  
𝑦𝑑𝑦 =

𝑎2

2
∫ 𝑦
𝑏

0  
𝑑𝑦 =

𝑎2

2
[
𝑦2

2
]
0

𝑏

=
𝑎2𝑏2

4
  . 

Similarly on      𝑆2 = 𝐹𝐺𝐷𝐸    : will be     𝑧 = 𝑐 , 𝑛 = 𝑘    ,  then :  𝐼2 = abc
2   

And on   𝑆3 = 𝑂𝐶𝐷𝐸   : will be     𝑥 = 0 , 𝑛 = −𝑖    ,  then :  𝐼3 =
b2c2

4
    

And on   𝑆4 = 𝐴𝐵𝐺𝐹   : will be     𝑥 = 𝑎 , 𝑛 = 𝑖    ,  then :  𝐼4 = 𝑎
2𝑏𝑐 −

b2c2

4
    

And on   𝑆5 = 𝑂𝐴𝐹𝐸   : will be     𝑦 = 0 , 𝑛 = −𝑗    ,  then :  𝐼5 =
a2c2

4
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And on   𝑆6 = 𝐵𝐶𝐷𝐺   : will be     𝑦 = 𝑐 , 𝑛 = 𝑗    ,  then :  𝐼6 = 𝑎𝑏
2𝑐 −

a2c2

4
    

From all above we see that    

𝐼 = ∑ 𝐼𝑖 = 𝑎𝑏𝑐(𝑎 + 𝑏 + 𝑐)
6
𝑖=1                             (2)    

From            (1)     &    (2)   , we get that the theorem is verified . 

 

 

 

 

 

 

 

 

Chapter (3) 

Coordinate systems  

3-1 The type of coordinates : 

A problems which has cylindrical or spherical symmetry could be expressed 

in the familiar Cartesian coordinate system . However , the solution fail to 

show the symmetry and in most cases would be needlessly complex 

.Therefore throughout this course , in addition to the Cartesian system , the 

circular cylindrical  and  the spherical coordinate systems ,will be used  . All 
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three will examined together in order to illustrate the similarities and 

differences .  

   A point  𝑃 is described by three coordinates , in Cartesian  (𝑥, 𝑦. 𝑧) , in 

circular cylindrical   (𝜌, 𝜑. 𝑧) , and in spherical  (𝑟, 𝜃. 𝜑), as shown in fig. (1). 

The angel 𝜑  is the same angle in both the cylindrical and spherical systems 

,but in different order . The 𝑧  coordinate is the same in both the cylindrical 

and Cartesian systems in the same order . In the cylindrical coordinate   𝜌  is 

measures the distance from the  𝑧  -axis while    𝑟  in spherical coordinate 

measures the distance from the origin to that point  .  

 

 

   

 

 

 

The component forms of a vector in three systems are  

                  𝐴 = 𝐴𝑥𝑖 + 𝐴𝑦𝑗 + 𝐴𝑧𝑘   ,                    (Cartesian )   
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                  𝐴 = 𝐴𝜌𝜌0+𝐴𝜑𝜑0 + 𝐴𝑧𝑘   ,                (cylindrical ) 

                  𝐴 = 𝐴𝑟𝑟0+ 𝐴𝜃𝜃0 +  𝐴𝜑𝜑0   ,             (Spherical ) 

It should be noted that the components  𝐴𝑥 , 𝐴𝜌, 𝐴𝜃 , … . . , 𝑒𝑡𝑐   , are not 

generally constants but more often are functions of the coordinates in that 

particular system 

,and the  𝑖, 𝜌0, 𝜃0, … . . , 𝑒𝑡𝑐     are unit vectors described in the  fig. (2)   below 

 

 

 

 

 

3-2 Differential Volume , Surface and line Elements : 

There are relatively few problems in electrostatic an electromagnetic that can 

be solved without some sort of integration-along a curve , over a surface, or 

throughout a volume . Hence the corresponding differential elements must be 

clearly understood .   

When the coordinates of  point𝑃(𝑥, 𝑦, 𝑧)are expanded to(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 +

𝑑𝑧)   

Or (𝜌 + 𝑑𝜌, 𝜑 + 𝑑𝜑, 𝑧 + 𝑑𝑧)  or  (𝑟 + 𝑑𝑟, 𝜃 + 𝑑𝜃 , 𝜑 + 𝑑𝜑)  , a differential 

volume    𝑑𝜈  is formed. To the first order in infinitesimal quantities the 

differential volume is ,in all three coordinate system , a rectangular box . The 

value of  𝑑𝜈  in each system is given in  fig. (3)  . 
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From   fig. (3)  may also be read the areas of the surface elements that bound 

the differential volume . For instance ,in spherical coordinates , the differential 

surface element perpendicular to  𝑟0  is  

𝑑𝑠 = (𝑟 𝑑θ)(𝑟 sin 𝜃 𝑑𝜑) =   𝑟2 sin 𝜃  𝑑𝜃 𝑑𝜑 

The  differential line element ,  𝑑𝑙  is the diagonal through   𝑃 . Thus : 

                   𝑑𝑙2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2   ,                              (Cartesian ) 

                   𝑑𝑙2 = 𝑑𝜌2 + 𝑟2𝑑𝜑2 + 𝑑𝑧2   ,                          (cylindrical ) 

                   𝑑𝑙2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 𝑠𝑖𝑛2𝜃𝑑𝜑2,             (Spherical ) 
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Chapter (4) 

Coulomb Forces  

4-1 Coulomb’ Law: 

There is a force between tow charges  which is directly  proportional to the 

charge magnitudes and inversely proportional to the 

square of the separation distance .  

  This coulomb law , in vector form stated as : 

                    F⃗⃗ =  
Q1Q2

4πϵd2
a               (1)    

 Where   𝑎   is a unit vector in the direction 

 of    𝑅21⃗⃗ ⃗⃗ ⃗⃗ ⃗  which is the vector from   𝑄2  to  𝑄1  and   𝑄2𝑑 = |𝑅21⃗⃗ ⃗⃗ ⃗⃗ ⃗|  . 

𝜖  is  the permittivity of the medium , with the units      𝐶2 𝑁2.𝑚2⁄   , or , 

equivalently , Farads per meter    (𝐹 𝑚⁄ )   , where , the force   �⃗�   is  Newton 
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 (𝑁)   , the distance is in meters  (𝑚) and the desired unit of charge is the 

Coulomb (𝐶)  

, those are in the Rational  SI units . For free space or vacuum  we see That : 

               𝜖 = 𝜖0 = 8.854 × 10
−12  𝐹 𝑚⁄  ≅ (10−9 36𝜋⁄ ) 𝐹 𝑚⁄   

For media other than free space  𝜖 = 𝜖0𝐶𝑟  , where   𝐶𝑟  is the permittivity or 

dielectric constant . 

Free space is to be assumed in all problems and examples as well as the 

approximate value for   𝜖0   , unless there is a statement to contrary . 

Because   𝐶   is a rather large ,  charges are often given in : 

Micro coulomb   𝜇𝐶 = 10−6𝐶 

nano   coulomb   𝑛𝐶 = 10−9𝐶 

pico   coulomb   𝑝𝐶 = 10−12𝐶 

In equation    (1) , the force  F⃗⃗ =  𝐹21⃗⃗⃗⃗⃗⃗⃗    means the force produced by charge 

the    

𝑄2on the charge   𝑄1  ,so the inverse is  𝐹12⃗⃗ ⃗⃗ ⃗⃗ =  −𝐹21⃗⃗⃗⃗⃗⃗⃗    and   𝑅12⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −𝑅21⃗⃗ ⃗⃗ ⃗⃗ ⃗   . 

The equation    (1) can be rewritten , by refers the vectors w.r.t. to reference 

of coordinates system   (𝑜𝑥𝑦𝑧)  for example . 
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This can be shown as in the front figure  

To be    

 

 

𝐹21⃗⃗⃗⃗⃗⃗⃗ =  
Q1Q2

4πϵ|r⃗⃗1−r⃗⃗2|
3 (

r⃗⃗1−r⃗⃗2

|r⃗⃗1−r⃗⃗2|
)  =

Q1Q2

4πϵ|r⃗⃗1−r⃗⃗2|
2
(r⃗1 − r⃗2)             (2)    

Note that if there is a  𝑛  charges  𝑄1, 𝑄2, ……… ,𝑄𝑛   which have the position 

vectors  r⃗1, r⃗2, …… . , r⃗n   ,the force on the charge  𝑄1  with position vector  r⃗1  

is 

                  �⃗� = ∑
Q1Q2

4πϵ|r−r⃗⃗i|
2
(r − r⃗i)

𝑛
𝑖=1              (3)    

Examples : 

(1) Find the force on the charge  𝑄1 = 20 𝜇𝐶   ,due to charge  𝑄2 = −300 𝜇𝐶    

,where  𝑄1 is at   (0,1,2) 𝑚   while    𝑄2  is  at   (2,0,0) 𝑚    . 

 

The solution  

Referring to the figure  
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𝑅21⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −2𝑖 + 𝑗 + 2𝑘     

 �⃗� =
𝑅21⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|𝑅21|
 =   

1

3
(−2𝑖 + 𝑗 + 2𝑘)     

Then    

𝐹21⃗⃗⃗⃗⃗⃗⃗ =
(20×10−6)(−300×10−6)

4𝜋(10−9 36𝜋⁄ )(3)2
(
−2𝑖+𝑗+2𝑘

3
)     

       = 6(
−2𝑖+𝑗+2𝑘

3
)  𝑁 = (4𝑖 − 2𝑗 − 4𝑘)  𝑁    . 

The force magnitude is 6 𝑁  and its direction is such that  𝑄1is attracted to 𝑄2 . 

----------------------------------------------------------------------------------------------

---- 

(2) Tow point charges 𝑄1 = 50 𝜇𝐶 and 𝑄2 = 10 𝜇𝐶  are located at 

(−1,1,−3) 𝑚   and  (3,1,0) 𝑚    respectively .Find the force on the charge  

𝑄1  .  

The solution  

Referring to the figure  

𝑅21⃗⃗ ⃗⃗ ⃗⃗ ⃗ = −4𝑖 − 3𝑘     

 �⃗� =
𝑅21⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|𝑅21|
 =   

−4𝑖−3𝑘

5
     

Then    

𝐹21⃗⃗⃗⃗⃗⃗⃗ =  
Q1Q2

4πϵ|R⃗⃗⃗21|
2   �⃗� =

(50×10−6)(10×10−6)

4𝜋(10−9 36𝜋⁄ )(5)2
(
−4𝑖−3𝑘

5
)     
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       = (0.18)(−0.8𝑖 − 0.6𝑘) 𝑁    . 

The force magnitude is 0.18 𝑁  and its direction is given by the unit vector  

𝑄1is = −0.8𝑖 − 0.6𝑘    . 

=======================================================

== 

Exercises: 

(1) Find the force on      100 𝜇𝐶   charge at  (0,0,3) 𝑚   as a result of existence 

of four like charges of   20 𝜇𝐶   which located on  𝑥 𝑎𝑛𝑑 𝑦     at  ± 4 𝑚    .  

(2) A point charge  𝑄 = 300 𝜇𝐶  located at   (1,−1,−3) 𝑚  experiences a 

force  �⃗� = (8𝑖 − 8𝑗 + 4𝑘)𝑁  due to a point charge  𝑄2 at  (3,−3,−2) 𝑚  . 

Find  𝑄2 . (3) Find the force on  a point charge  of  50 𝜇𝐶   at  (0,0,5) 𝑚   due 

to a point charge of  500 𝜋 𝜇𝐶  that is uniformly 

distributed over the circular disk 𝑟 < 5 𝑚 ,  𝑧 =

0 𝑚   .  

In the region around an isolated point charge 

there is a spherically symmetrically force field. 

This is made evident when charge  𝑄 is fixed at 

The origin ,as in Fig. (1)   and a second charge 

𝑄𝑇  , is moved about in the region . At each location a force acts along the line 

joining  the tow charges directed away from the origin if the charges are of 

like sign. This can be expressed in spherical coordinates by  
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                    F⃗⃗ =  
Q1QT

4πϵ0r
2
ar               (4)    

It should be noted that unless      QT ≪ Q      

The symmetrically field at  Q   is disturbed  by QT . 

At location 1  in Fig (2),the force F1⃗⃗⃗⃗⃗ is seen to be the 

vector sum F1⃗⃗⃗⃗⃗ = FQ⃗⃗ ⃗⃗⃗ + FQT
⃗⃗ ⃗⃗ ⃗⃗ ⃗ 

This should come as no surprise , since if  Q   has a force field so also must 

QT . 

When the tow charges are in same region , the resulting field will of necessity  

be the point-by point vector sum of the two fields .This is the  superposition 

principle for coulomb forces , it extends to any number of charges . 

4-2 Electric Field Intensity: 

Suppose that ,in the above situation ,the test charge  QT  is sufficiently small 

as so not to disturb significantly the field of the fixed charge  Q.Then the 

electric field intensity  ,  E⃗⃗⃗  , due to  Q   is defined to be the force per unit 

charge on  QT  : 

                        E⃗⃗⃗ =
1

QT
FT⃗⃗⃗⃗⃗ =

Q

4πϵ0r
2
ar               (5)  
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expression for E⃗⃗⃗   is in spherical coordinates with The 

origin at the location of  Q    

(fig. (3 𝑎)) . It may be transformed to other coordinate system . In an arbitrary  

Cartesian coordinate system  

                                    E⃗⃗⃗ =
Q

4πϵ0R
2
aR               (6)  

Where the separation vector   R⃗⃗⃗   is as given in  (fig. (3 𝑏)) . 

The units of  E⃗⃗⃗   are Newton per coulomb  (  𝑁 𝐶⁄ ) of the equivalent Volts per 

meter    (  𝑉 𝑚⁄ ) . 

4-3 Charge Distributions: 

(1) Volume charge 

  When charge is distributed throughout a specified volume, each charge 

element contributes to the electric field at an external point . 

  A summation or integration is then required to 

 obtain the total electric field . 

  It is useful to consider continuous 
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 (in fact differentiable) charge distribution  

and to define charge density by        ρv =
dQ

dv
 (C m3⁄ )    ,  then      𝑑𝑄 = ρdv    

with reference to volume   v  in  Fig (4) , each differential charge   𝑑𝑄   

produces  

a differential electric field  : 

                                      𝑑 E⃗⃗⃗ =
dQ

4πϵ0R
2
aR          

  At the observation point  𝑃  . Assuming that the only charge in the region is  

contained within the volume, the total electric field at 𝑃is obtained by 

integration 

over the volume is : 

                                    E⃗⃗⃗ = ∫
v
  

ρv

4πϵ0R
2
 dv aR               (7)  

 

 

(2) Sheet charge 

  When charge is distributed over a specified 

 surface or sheet , each differential charge 

 element   𝑑𝑄  on the sheet results in a differential 

electric field  : 

                                      𝑑 E⃗⃗⃗ =
dQ

4πϵ0R
2
aR          
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at the point  𝑃  see the Fig (5) . If the charge density is      ρs (C m2⁄ )  and if 

no other charge is present in the region , then the total electric field  at  𝑃  is  

                                    E⃗⃗⃗ = ∫
s
  

ρs

4πϵ0R
2
 ds aR                 

  If charge is distributed with uniform density ρs (C m2⁄ ) over an  infinite 

plane ,  

Then the field is given by : 

                                    E⃗⃗⃗ =   
ρs

2ϵ0
  an               (8)  

  This field is of constant magnitude and has 

Mirror symmetry about the plane charge , and  

the derivation of last equation by use the cylindrical 

 coordinates system , with the charge in the  𝑧 = 0 plane as shown in Fig (7) 

                                      𝑑 E⃗⃗⃗ =
ρs rdr dφ

4πϵ0(r
2+z2)

(
−ar+ zaz 

√r2+z2
)          
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Symmetry about the  𝑧 − axis results in cancellation of redial components   

                                       E⃗⃗⃗ =

∫ ∫  
∞

0

2𝜋

0  
 

ρs rzdr dφ

4πϵ0(r
2+z2)3 2⁄

 az         E⃗⃗⃗ =

 
ρs z

2ϵ0
  [

−1

√r2+z2
]
0

∞
 az  =   

ρs z

2ϵ0
  az =   

ρs z

2ϵ0
  k  . 

  This result is for points above the  𝑥𝑦 plane . Below 

the  𝑥𝑦 plane the unit  

vector changes to  − az = −k . 

  The generalized form may be written using unit normal vector      an  as 

E⃗⃗⃗ =   
ρs
2ϵ0

  an               

  This eclectic field  is everywhere normal to the plane of the charge and its  

magnitude is independent of the distance from the plane . 

(3) Infinite line charge: 

  If charge is distributed with uniform density   

   ρl (C m⁄ )  along an infinite straight line –which 

 will be chosen as the𝑧 − axis , then the field is given by  

E⃗⃗⃗ =   
ρl
2ϵ0r

  ar 

This is in cylindrical coordinates  see Fig (8) This field has cylindrical 

symmetry  

and is inversely proportional to the first power of the distance from the line  
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charge . 

For derivation of this form of E⃗⃗⃗  , we will use cylindrical coordinates see Fig 

(9)    

At 𝑃                     𝑑 E⃗⃗⃗ =
dQ

4πϵ0R
2 (

rar− raz 

√r2+z2
)          

Since for every 𝑑𝑄  at  𝑧 , there is another charge𝑑𝑄 at −𝑧,then the 𝑧  

component      will canceled  .Thus   

E⃗⃗⃗ = ∫
ρl r dz

4πϵ0(r
2 + z2)3 2⁄

 ar

∞

−∞  

          

From Fig (9) we see that, 𝑡𝑎𝑛 𝜃 = 𝑧 𝑟   , ∴ 𝑧 = 𝑟 tan𝜃⁄  

,which tends to  

𝑑𝑧 = 𝑟  𝑠𝑒𝑐2𝜃 𝑑 𝜃 

Then  , the field   E⃗⃗⃗   will be  

E⃗⃗⃗ =
ρl
4πϵ0

∫
 r2 𝑠𝑒𝑐2𝜃 𝑑 𝜃

(r2 + r2𝑡𝑎𝑛2𝜃)3 2⁄
 ar

𝜋 2⁄

−𝜋 2⁄   

 

=   
ρl
4πϵ0

∫
 r2 𝑠𝑒𝑐2𝜃 𝑑 𝜃

r3(1 + 𝑡𝑎𝑛2𝜃)3 2⁄
 ar

𝜋 2⁄

−𝜋 2⁄   

    

   =
ρl

4πϵ0r
∫

  𝑠𝑒𝑐2𝜃 𝑑 𝜃

𝑠𝑒𝑐3𝜃
 ar

𝜋 2⁄

−𝜋 2⁄   

 =   
ρl

4πϵ0r
∫ cos θ dθ ar

𝜋 2⁄

−𝜋 2⁄   

    

   =
ρl

4πϵ0r
[sin  𝜃]−𝜋 2⁄

𝜋 2⁄  ar =  
ρl

4πϵ0r
[1 + 1] ar =

ρl

2πϵ0r
 ar   . 

Examples : 

(1) A plane 𝑦 = 3 𝑚 contains a uniform charge distribution of density 
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  ρs =
10−8

6𝜋
20 C m2⁄   , determine  E⃗⃗⃗   at all points . 

The solution  

For   𝑦 > 3 𝑚   :        

E⃗⃗⃗ =   
ρs
2ϵ0

  an =
(10−8 6π⁄ )

2(10−9 36π⁄ )
 j = 30 j   V m⁄             

----------------------------------------------------------------------------------------------

--- 

(2) Tow infinite uniform sheets of charge , each with density ρs  , are located 

at      x = ±a  , determine  E⃗⃗⃗   in all regions . 

The solution  

Only parts of the tow sheets results of  

charge are in the front figure .  

Both sheets result in   E⃗⃗⃗   fields that are  

directed along  𝑥 − axis , independent of the 

distance , then : 

E⃗⃗⃗ = E⃗⃗⃗1 + E⃗⃗⃗2

{
 
 

 
 

ρs

2ϵ0
 (−i) +

ρs

2ϵ0
 (−i) ∶ x < −𝑎

ρs

2ϵ0
 (i) +

ρs

2ϵ0
  (−i)      ∶ −a < x < 𝑎

ρs

2ϵ0
  (i) +

ρs

2ϵ0
  (i)  ∶ x > 𝑎

  =

{
 

 
−
ρs

ϵ0
 i      ∶ x < −𝑎

   0           ∶ |x| < 𝑎
ρs

ϵ0
  (i)   ∶ x > 𝑎

 

----------------------------------------------------------------------------------------------

--- 
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(3) Find E⃗⃗⃗    in example  (2)  in case of the sheet   -1- has a density  ρs  , while  

the sheet   -2- has a density  −ρs  .  

The solution 

 

E⃗⃗⃗ = {

  0              ∶ x < −𝑎

 
ρs
ϵ0
  (i)    ∶ |x| < 𝑎

0              ∶ x > 𝑎

 

----------------------------------------------------------------------------------------------

--- 

(4) A uniform sheet charge with  ρs =
1

3π
 NC m2⁄    is located at  𝑧 = 5𝑚  and 

a uniform line charge with ρl =
−25

9
 NC m⁄     which paths through the point    

(x, 3, −3) m    and parallel to  𝑥 − axis . Find E⃗⃗⃗    at the point (x, −1,0) m   .   

The solution 

The two charge configuration are parallel  

to 𝑥 − axis .Hence the view in the figure is 

taken looking at the 𝑦𝑧 plane from positive 𝑥. 

Due to the sheet charge   ρs =
1

3π
 NC =

1

3π
 10−6C     

(E⃗⃗⃗s)P =  
ρs
2ϵ0

  an =
(10−6 3π⁄ )

2((1 36π⁄ )10−6)
 (−k)  

                                        = (10−6 3π⁄ )(36π 2⁄ )(106)(−k)  = −6 kV m⁄             
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Due to the line charge   ρl =
−25

9
 NC m⁄     =

−25

9
 10−6 C m⁄      

(E⃗⃗⃗l)P =  
ρl

2πϵ0r
 ar =

(
−25
9
 10−6)

2π((10−6 36π⁄ )5)
 (
−4j + 3k

5
) 
36

9
 

                                        = 2(4j − 3k) = 8j − 6k      

Then the total electric field is   

E⃗⃗⃗ = (E⃗⃗⃗s)P + (E⃗⃗⃗l)P = −8j − 12k   V m⁄      . 

=======================================================

= 

 

Exercises: 

(1) Determine  E⃗⃗⃗  at (2,0,2) m  due to three standard charge distributions as 

follows :a uniform sheet at 𝑥 = 0 𝑚 with ρs1 =
1

3π
 NC m2⁄   ,   a uniform sheet 

at 𝑥 = 4 𝑚 with ρs2 =
−1

3π
 NC m2⁄   and a uniform line at 𝑥 = 6 𝑚, 𝑦 = 0 𝑚 

with ρl = −2 NC m⁄    .   

(2) Determine  E⃗⃗⃗  at (2,0,0) m  due to a charge  distributed along the 𝑧 − axis 

Between 𝑧 = ±5 𝑚 with a uniform density ρl = 20NC m⁄  in Cartesian  

coordinates, then in cylindrical coordinates .  

(3) Determine E⃗⃗⃗  at (2,0,0) m  due to a charge  distributed from 𝑧 = 5 𝑚  

along the 𝑧 − axis to ∞ and from −∞ to  𝑧 = −5 𝑚 with a uniform density 

ρl = 20NC m⁄  in both Cartesian coordinates, and cylindrical coordinates .  
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(4) What will happen if the charge configuration of problem  (2) & (3)  are  

superimposed .  

(5) Find the electric field intensity  E⃗⃗⃗  at (0,φ, h) m in cylindrical coordinates 

due  

to uniformly  charged disk    𝑟 ≤ 𝑎 𝑚 , 𝑧 = 0 𝑚  . what is result if  𝑎 ⟶ ∞  .  

 

 

 

 

 


