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Chapter 1

Introduction

Classical physics is dominated by two fundamental con-

cepts. The first is the concept of a particle, a discrete

entity with definite position and momentum which moves

in accordance with Newton’s laws of motion. The second

is the concept of an electromagnetic wave, an extended

physical entity with a presence at every point in space

that is provided by electric and magnetic fields which

change in accordance with Maxwell’s laws of electromag-
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netism. The classical world picture is neat and tidy: the

laws of particle motion account for the material world

around us and the laws of electromagnetic fields account

for the light waves which illuminate this world.

This classical picture began to crumble in 1900 when Max

Planck published a theory of black-body radiation; i.e. a

theory of thermal radiation in equilibrium with a per-

fectly absorbing body. Planck provided an explanation

of the observed properties of black-body radiation by as-

suming that atoms emit and absorb discrete quanta of

radiation with energy ε = hν, where ν is the frequency

of the radiation and h is a fundamental constant of nature

with value

h = 6.626× 10−34Js
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This constant is now called Planck’s constant. In the fu-

ture parts of the course we will see that Planck’s constant

has a strange role of linking wave-like and particle-like

properties. In so doing it reveals that physics cannot be

based on two distinct, unrelated concepts, the concept

of a particle and the concept of a wave. These classical

concepts, it seems, are at best approximate descriptions

of reality.

1.1 Wave-particle duality

1.1.1 Compton effect and particle-like quanta

Photons are particle-like quanta of electromagnetic radi-

ation. They travel at the speed of light c with momentum



8 CHAPTER 1. INTRODUCTION

p and energy ε given by

p =
h

λ
; ε =

hc

λ

where λ is the wavelength of the electromagnetic radi-

ation. In comparison with macroscopic standards, the

momentum and energy of a photon are tiny. For exam-

ple, the momentum and energy of a visible photon with

wavelength λ = 663nm are

p = 10−27Js, ε = 3× 10−19j (1.1)

We note that an electronvolt, 1eV = 1.602 × 10−19J , is

a useful unit for the energy of a photon: visible photons

have energies of the order of an eV and X-ray photons

have energies of the order of 10keV .

Actually, the evidence for the existence of photons emerged
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Figure 1.1: A photon-electron collision in which a photon is scattered by a
stationary electron through an angle θ. Because the electron recoils with
momentum Pf , the magnitude of the photon momentum decreases from pi
to pf and the photon wavelength increases.

when A. H. Compton showed that the wavelength of an

X-ray increases when it is scattered by an atomic elec-

tron. This effect, which is now called the Compton ef-

fect, can be understood by assuming that the scattering

process is a photon-electron collision in which energy and

momentum are conserved. As illustrated in Fig. (1.1),

the incident photon transfers momentum to a stationary
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electron so that the scattered photon has a lower momen-

tum and hence a longer wave-length. In fact, when the

photon is scattered through an angle θ by a stationary

electron of mass me , the increase in wavelength is given

by

∆λ =
h

mec
(1− cos θ) (1.2)

We note that the magnitude of this increase in wavelength

is set by

h

mec
= 2.43× 1012m,

a fundamental length called the Compton wavelength of

the electron. Moreover, the concept of a photon pro-

vides a natural explanation of the Compton effect and

of other particle-like electromagnetic phenomena such as

the photo-electric effect.
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1.1.2 Diffraction by two slits wave-like quanta

When electromagnetic radiation passes through the two

slits it forms a pattern of interference fringes on a screen

(an interference experiment which was first used by Thomas

Young in 1801 to measure the wavelength of light), see

Fig.(1.2). These fringes arise because wave-like disturb-

Figure 1.2: A schematic illustration of a two-slit interference experiment
consisting of two slits with separation d and an observation screen at distance
D. Equally spaced bright and dark fringes are observed when wave-like
disturbances from the two slits interfere constructively and destructively on
the screen. Constructive interference occurs at the point P , at a distance x
from the centre of the screen, when the path difference R1−R2 is an integer
number of wavelengths. This path difference is equal to xd/D if d << D.
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ances from each slit interfere constructively or destruc-

tively when they arrive at the screen. But a close exam-

ination of the interference pattern reveals that it is the

result of innumerable photons which arrive at different

points on the screen, as illustrated in Fig.(1.3). In fact,

when the intensity of the light is very low, the interfer-

ence pattern builds up slowly as photons arrive, one by

one, at random points on the screen after seemingly pass-

ing through both slits in a wave-like way. These photons

are not behaving like classical particles with well-defined

trajectories. Instead, when presented with two possible

trajectories, one for each slit, they seem to pass along

both trajectories, arrive at a random point on the screen

and build up an interference pattern.
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Figure 1.3: A computer generated simulation of the build-up of a two-slit
interference pattern. Each dot records the detection of a quantum particle
on a screen positioned behind two slits.

1.2 Schrödinger Equation

The role of the Schrödinger equation in quantum me-

chanics is analogous to that of Newton’s Laws in classi-

cal mechanics. Both describe motion. Newton’s Second

Law is a differential equation which describes how a clas-

sical particle moves, whereas the Schrödinger equation

is a partial differential equation which describes how the

wave function representing a quantum particle ebbs and
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flows. In addition, both were postulated and then tested

by experiment.

1.2.1 Sinusoidal waves

The most elegant wave is a sinusoidal travelling wave

with definite wavelength λ and period τ , or equivalently

definite wave number, k = 2π/λ, and angular frequency,

ω = 2π/τ . Such a wave may be represented by the

mathematical function

ψ(x, t) = A cos(kx− ωt)

where A is a constant. At each point x, the function

ψ(x, t) oscillates with amplitude A and period 2π/ω. At

each time t, the function ψ(x, t) undulates with ampli-

tude A and wavelength 2π/k. Moreover, these undula-
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tions move like a Mexican wave, in the direction of in-

creasing x with velocity ω/k for example, the maximum

of ψ(x, t) corresponding to kx − ωt = 0 occurs at the

position x = ωt/k, and the minimum corresponding to

kx − ωt = π occurs at the position x = λ/2 + ωt/k in

both cases the position moves with velocity ω/k.

The function sin(kx − ωt), like cos(kx − ωt), also rep-

resents a sinusoidal travelling wave with wave number k

and angular frequency ω. Because

sin(kx− ωt) = cos(kx− ωt− π/2)

The most general sinusoidal travelling wave with wave

number k and angular frequency ω is the linear superpo-
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sition

ψ(x, t) = A cos(kx− ωt) + B sin(kx− ωt)

where A and B are arbitrary constants.

1.2.2 Linear superpositions of sinusoidal waves

Two sinusoidal waves moving in opposite directions may

be combined to form standing waves. For example, the

linear superposition

A cos(kx− ωt) + A cos(kx + ωt)

gives rise to the wave 2A cos kx cosωt. This wave os-

cillates with period 2π/ω and undulates with wavelength

2π/k, but these oscillations and undulations do not prop-

agate; it is a non-Mexican wave which merely stands and

waves.
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Alternatively, many sinusoidal waves may be combined

to form a wave packet. For example, the mathematical

form of a wave packet formed by a linear superposition

of sinusoidal waves with constant amplitude A and wave

numbers in the range k −∆k to k + ∆k is

ψ(x, t) =

∫ k+∆k

k−∆k

A cos(k′x− ω′t)dk′ (1.3)

If k is positive, this wave packet travels in the positive x

direction, and in the negative x direction if k is negative.

The initial shape of the wave packet, i.e. the shape at

t = 0, may be obtained by evaluating the integral

ψ(x, 0) =

∫ k+∆k

k−∆k

A cos k′xdk′

This gives

ψ(x, 0) = S(x) cos kx; S(x) = 2A∆k
sin ∆kx

∆kx
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If ∆k << k, we have a rapidly varying sinusoidal,

Figure 1.4: The initial shapes of the wave packets given by a linear superpo-
sition of sinusoidal waves with constant amplitude A and wave numbers in
the range k −∆k to k + ∆k. The three diagrams show how the length of a
wave packet increases as the range of wave numbers ∆k decreases. The value
of A∆k is constant, but ∆k equals k/8 in diagram (A), Deltak equals k/16
in diagram (B) and ∆k equals k/32 in diagram (C). In general, the length of
a wave packet is inversely proportional to ∆k and becomes infinite in extent
as ∆k → 0

cos kx, with an amplitude modulated by a slowly varying

function S(x) which has a maximum at x = 0 and zeros

when x is an integer multiple of π/∆k. The net result is
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a wave packet with an effective length of about 2π/∆k.

Three such wave packets, with different values for ∆k, are

illustrated in Fig.(1.4). We note that the wave packets

increase in length as the range of wave numbers decreases

and that they would become ”monochromatic” waves of

infinite extent as ∆k → 0. Similar behaviour is exhibited

by other types of wave packets.

The velocity of propagation of a wave packet, and the

possible change of shape as it propagates, depend cru-

cially on the relation between the angular frequency and

wave number. This relation, the function ω(k), is called

the dispersion relation because it determines whether the

waves are dispersive or non-dispersive.
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1.2.3 Dispersive and non-dispersive waves

The most familiar example of a non-dispersive wave is an

electromagnetic wave in the vacuum. A non-dispersive

wave has a dispersion relation of the form ω = ck, where

c is a constant so that the velocity of a sinusoidal wave,

ω/k = c is independent of the wave number k. A wave

packet formed from a linear superposition of such sinu-

soidal waves travels without change of shape because each

sinusoidal component has the same velocity.

Non-dispersive waves are governed by a partial differen-

tial equation called the classical wave equation. For waves

travelling in three dimensions, it has the form

∇2ψ − 1

c2

∂2ψ

∂t2
= 0
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where

∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

and for waves travelling in one dimension, the x direction

say, it has the form

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
= 0 (1.4)

The classical wave equation has an infinite number of so-

lutions corresponding to an infinite variety of wave forms.

For example, the sinusoidal waves,

A cos(kx− ωt), A sin(kx− ωt), Aei(kx−ωt)

are solutions provided ω2 = c2k2 , as may be shown by di-

rect substitution into Eq. (1.4); solutions with k = +ω/c

describe waves travelling in the positive x direction and

solutions with k = −ω/c describe waves travelling in the



22 CHAPTER 1. INTRODUCTION

negative x direction. Because each term in the classical

wave equation is linear in ψ, a linear superposition of

sinusoidal waves is also a solution. For example, a su-

perposition like Eq. (1.3) is a solution which describes a

wave packet which propagates without change of shape.

However, the majority of waves encountered in classical

and in quantum physics are dispersive waves. A disper-

sive wave is governed by a partial differential equation

which is more complicated than the classical wave equa-

tion, Eq. (1.4). The dispersion relation is more compli-

cated than ω = ck so that the velocity of propagation of

a sinusoidal wave, ω/k, depends upon the wave number

k. Hence a packet of dispersive waves will, in general,

change shape as it propagates. However, if the packet
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is composed of waves with a narrow range of wave num-

bers, it has a well-defined velocity of propagation. This

velocity is called the group velocity and it is given by

vgroup =
dω

dk
(1.5)

whereas the velocity of a simple sinusoidal wave, ω/k, is

called the phase velocity.

To understand Eq. (1.5), we note that the group veloc-

ity describes the motion of a localized disturbance due to

constructive interference of many sinusoidal waves. Let

us focus on the point of constructive interference of two

sinusoidal waves with wave numbers k1 and k2 and an-

gular frequencies ω1 and ω2 which is formed when the
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waves are in phase; i.e. when

k1x− ω1t = k2x− ω2t

By rearranging this equation, we find that the position

of this point of constructive interference is given by

x =

(
ω1 − ω2

k1 − k2

)
t

Thus our point of constructive interference is located at

x = 0 when t = 0 and it moves with a velocity given by(
ω1−ω2
k1−k2

)
, or by Eq. (1.5) if |k1 − k2| is small. Of course,

with two sinusoidal waves, there are an infinite number of

points of constructive interference, but many sinusoidal

waves can form a localized region of constructive inter-

ference which moves with a velocity given by Eq. (1.5).

To illustrate how a group velocity can be derived from
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Eq. (1.5), we consider the example of water waves of

long wavelength which obey the dispersion relation

ω =
√
gk

where g is the acceleration due to gravity. The velocity

of a sinusoidal water wave, the so-called phase velocity,

is

vphase =
ω

k
=

√
g

k

and the velocity of a packet of water waves with a narrow

range of wave numbers near k is

vgroup =
dω

dk
=

1

2

√
g

k

Thus, for water waves, the group velocity is exactly one-

half of the phase velocity. In other words, the sinusoidal

waves forming the packet, travel at twice the speed of the
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region of maximum disturbance formed by the interfer-

ence of these waves. However, the shape of the distur-

bance will change as it propagates; in general it will tend

to spread out.

1.3 Probability

Due to the importance of Probility in quantum measure-

ment, let’s briefly consider how discrete and continuous

random variables are governed by probability distribu-

tions.

1.3.1 Discrete random variables

Let us consider a process or experiment with possible

outcomes described by a discrete random variable which

can take on the values x0, x1, x2, . . . , with probabilities
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p0, p1, p2, . . . . The set of probabilities pn is called a prob-

ability distribution. Because the total probability of all

the possible outcomes is equal to one, the probability dis-

tribution pn must satisfy the normalization condition

∑
alln

pn = 1

The probability distribution pn can be used to evaluate

the expectation value for the random variable xn. This

is the average value of the many possible outcomes that

may occur when the process or experiment takes place

an infinite number of times. It is given by

〈x〉 =
∑
alln

xnpn

The likely spread in the outcomes about this expectation

value is given by the standard deviation or uncertainty
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in x. We shall denote this by ∆x. The square of the

standard deviation is called the variance and the variance

is given by

(∆x)2 =
∑
alln

(xn − 〈x〉)2pn (1.6)

In this expression (xn − 〈x〉) is the deviation of xn from

the expected value; this deviation may be positive or neg-

ative and its average value is zero. However, the variance

is the average of the square of this deviation; it is zero

when there is only one possible outcome and it is a pos-

itive number when there is more than one possible out-

come.

Rewrite Eq. (1.6) in the following way, using

(xn − 〈x〉)2 = x2
n − 2x〈x〉 + 〈x〉2
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and bearing in mind that 〈x〉 is a number that does not

depend on n, we find

(∆x)2 =
∑
alln

x2
npn − 2〈x〉

∑
alln

xnpn + 〈x〉2
∑
alln

pn

or in the form

(∆x)2 = 〈x2〉 − 〈x〉2

1.3.2 Continuous random variables

Consider a process or experiment in which the outcomes

are described by a continuous variable x. The probability

of an outcome between x and x + dx can be denoted by

ρ(x)dx. The function ρ(x) is called a probability density.

It satisfies the normalization condition∫
allx

ρ(x)dx = 1
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The expectation value of x is given by the integral

〈x〉 =

∫
allx

xρ(x)dx

Similarly, the expectation value of x2 is given by

〈x2〉 =

∫
allx

x2ρ(x)dx

From previous details, we can conclude that, the square

Figure 1.5: (a) Large uncertainty in x; (∆x)2 = 〈x2〉 − 〈x〉2

magnitude, |ψ|2, of the wave function ψ(x, y, z, t) can
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Figure 1.6: (a) Small uncertainty in x; (∆x)2 = 〈x2〉 − 〈x〉2

be shown in Fig.(1.7) as grey tones (darker where the

magnitude is larger). Now, the physical meaning of the

wave function is known as Borns statistical interpreta-

tion: darker regions are regions where the particle is more

likely to be found if the location is narrowed down. More
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Figure 1.7: A visualization of an arbitrary wave function.

precisely, if ~r = (x, y, z) is a given location, then

|ψ(~r, t)|2d3~r

is the probability of finding the particle within a small vol-

ume, of size d3~r = dxdydz, around that given location, if

such a measurement is attempted. And if such a po-

sition measurement is actually done, it affects
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the wave function: after the measurement, the

new wave function will be restricted to the vol-

ume to which the position was narrowed down.

But it will spread out again in time if allowed

to do so afterwards.

However, the particle must be somewhere. In quantum

mechanics, that is expressed by the fact that the total

probability to find the particle, integrated over all possi-

ble locations, must be 100% (certainty):∫
allr

|ψ(~r, t)|2d3~r = 1

1.4 The Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle is a way of express-

ing the qualitative properties of quantum mechanics in
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an easy to visualize way.

Fig. (1.8) is a combination plot of the position x of a par-

ticle and the corresponding linear momentum px = mu,

(with m the mass and u the velocity in the x-direction).

Fig.(1.9) shows what happens if we squeeze down on the

Figure 1.8: Combined plot of position and momentum components.

particle to try to restrict it to one position x: it stretches

out in the momentum direction: Heisenberg showed that
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Figure 1.9: Combined plot of position and momentum components.

according to quantum mechanics, the area of the blue

blob cannot be contracted to a point. When

we try to narrow down the position of a parti-

cle, we get into trouble with momentum. Con-

versely, if we try to pin down a precise momen-

tum, we lose all hold on the position.

or in other words: If a precise measurement of the
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position is made, the new wave packet describ-

ing the particle must be very short, a super-

position of sinusoidal waves with a very wide

range of wavelengths. Similarly, if a precise

measurement of the momentum is made, the

new wave packet is very long with a sharply

defined wavelength.

1.5 Diffraction by two slits

With our interpretation of |ψ(r)|2 as proportional to the

probability of find the particle at position r, we are now in

a position to calculate a simple electron diffraction prob-

lem, that of an electron wave being diffracted by a pair of

slits. We need some algebra and wave mechanics to set
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up this problem. This behavior is not only one we can

use relatively directly to see and verify the wave nature

of electrons; it is also a conceptually important ”thought

experiment” in understanding some of the most bizarre

aspects of quantum mechanics. We consider two open

Figure 1.10: A top view of diffraction from two slits, showing the form of the
brightness of the interference pattern on a phosphorescent screen.

slits, separated by a distance s, in an otherwise opaque
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screen, see Fig.(1.10 ). We are shining a monochromatic

electron beam of wavevector k at the screen, in the di-

rection normal to the screen. For simplicity, we presume

the slits to be very narrow compared to both the wave-

length λ = 2π/k and the separation s. We also presume

the screen is far away from the slits for simplicity, i.e.,

z0 >> s , where z0 is the position of the screen relative

to the slits.

For simplicity of analysis, we will regard the slits as es-

sentially point sources of expanding waves, in the spirit of

Huygens principle. We write could write these waves in

the form exp(ikr) , where r is the radius from the source

point. We have therefore one source (slit) at x = s/2,

and another at x = −s/2. The net wave should be the
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sum of the waves from these two sources. Remember-

ing that in the x − z plane the equation of a circle of

radius r centered about a point x = a and z = 0 is

r2 = (x− a)2 + z2, the net wave at the screen is

ψs(x) ∝ exp
[
ik
√

(x− s/2)2 + z2
0

]
+exp

[
ik
√

(x + s/2)2 + z2
0

]
where the first term corresponds to a wave expanding

from the upper slit, and the second corresponds simi-

larly with the wave from the lower slit. Note that we are

adding the wave amplitudes here. If we presume we are

only interested in the pattern on the screen for relatively

small angles, i.e., x << z0, then√
(x− s/2)2 + z2

0 = z0

√
1 + (x− s/2)2/z2

0

∼= z0 + (x− s/2)2/2z0
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∼= z0 + x2/2z0 + s2/8z0 − sx/2z0

and similarly for the other exponent (though with op-

posite sign for the term in s). Hence, using 2 cos(θ) =

exp(iθ) + exp(−iθ) , we obtain

ψs(x) ∝ exp(iφ) cos(ksx/2z0) = exp(iφ) cos(πsx/λz0)

where φ is a real number; φ = k(z0 + x2/2z0 + s2/8z0),

so exp(iφ) is simply a phase factor. Hence, on the screen,

|ψs(x)|2 ∝ cos2(πsx/λz0) =
1

2

[
1 + cos(2πsx/λz0)

]
So, if we shine a beam of monoenergetic electrons at the

slits, and put some phosphorescent screen (like our cath-

ode ray tube screen) some distance behind the slits, we

should expect to see a (co)sinusoidal interference pattern,

or fringes, on the screen, with the fringes separated by
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a distance ds = λz0/s. This simple fringe pattern is

somewhat idealized; with a more sophisticated diffraction

model, and with finite width for the slits, the intensity of

the fringes falls off for larger x, but the basic interference

fringes we predict here will be observed near the axis as

long as the slit separation is much larger than the slit

width.

The existence of these interference effects for the quantum

mechanical amplitudes has some bizarre consequences

that we simply cannot understand classically. For ex-

ample, suppose that we block one of the slits so the elec-

trons can only go through one slit. Then we would not

see the interference fringes. Near the axis we would see

a broad featureless band that is readily understood from
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wave diffraction from a single slit. Such a broad band is

already difficult to explain based on a classical model of

a particle; in a classical model, with the electron particles

all traveling from left to right in straight lines, we would

expect to see a relatively sharp spot on the screen. If we

were determined to explain this broad band classically

we might come up with some explanation, involving elec-

trons bouncing off the edges of the slit, that would at least

be qualitatively plausible (if ultimately incorrect). If we

now uncover the second slit, however, we see something

that cannot be explained by a classical particle picture

parts of the screen that were formerly bright now become

dark (the minima of the (co)sinusoidal interference pat-

tern described above). How can we explain that opening
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a second source of particles actually reduces the number

of particles arriving at some point in the screen?

We might try to argue that the particles from the sec-

ond slit were somehow bouncing off the ones from the

first slit, and hence avoiding some particular part of the

screen because of these collisions. If we repeat the exper-

iment with extremely low electron currents so that there

are never two electrons in the apparatus at a given time,

and take a time-exposure picture of the phosphorescent

screen, we will, however, see exactly the same interfer-

ence pattern emerge, and we cannot now invoke some

explanation that involves particles colliding with one an-

other. Hence we are forced even qualitatively to describe

the behavior of the electrons in terms of some process in-
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volving interference of amplitudes, and we also find that

the wave description postulated above does explain the

behavior quantitatively.

Though a two-slit diffraction experiment of exactly the

form described here might be quite difficult to perform

in practice with electrons, diffraction phenomena such

as this can be seen quite readily with electrons. Such

diffraction is routinely used as a diagnostic and mea-

surement tool. Electrons can be accelerated by electric

fields and, if necessary, focused using magnetic and elec-

tric techniques. The wavelength associated with such ac-

celerated electrons can be very small (e.g., an Ångstrom

(1Å), which is 0.1 nm). Diffractive effects are particularly

strong when the wavelength is comparable to the size of
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an object (e.g., comparable to the slit spacing, s, above).

Electrons can diffract quite strongly off crystal surfaces,

for example, where the spacings between the atoms are

on the order of ngstroms or fractions of a nanometer.

One diagnostic technique, reflection high-energy electron

diffraction (RHEED), for example, monitors the form of

a crystal surface during the growth of crystalline layers;

an electron beam incident at a shallow angle relative to

the surface (i.e., nearly parallel with the crystal surface)

is reflected and diffracted onto a phosphorescent screen

to give a diffraction pattern characteristic of the precise

form of the surface. Electron diffraction is also intrinsic

to the operation of some kinds of electron microscope.

In general, the fact that the electron wavelength can be
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so small means that electron microscopes can be used

to view very small objects; it is practically difficult to

image objects much smaller than a wavelength with any

optical or wave-based technique because of diffractive ef-

fects, but the small wavelength possible in electron beams

means that small objects or features can be seen.



Chapter 2

Motion of free particles in space

2.1 Confined particle in a box

As we see before that, for the wave function ψ(x) =

A exp(ikx), it integration
∫∞
∞ |ψ(x)|2dx will goes to in-

finity, i.e,
∫∞
∞ |ψ(x)|2dx → ∞, in this case it is tra-

dationally to study the state in a finite region (particle

confinment) such as a cubic region, see Fig.(2.1) of side l

with initial condition of periodicity of the wave function

(or the wave function equal to zero at these sides). The

47



48 CHAPTER 2. MOTION OF FREE PARTICLES IN SPACE

periodicity condition means that the wave fucntion has

the same values on every two opposite sides or mathe-

matically as

ψ(x, y, z) = ψ(x+l, y, z) = ψ(x, y+l, z) = ψ(x, y, z+l)

Applying the normalization condition, we have

Figure 2.1: Quantization cube.

∫ l/2

−l/2
ψ∗(x)ψ(x)dx =

∫ l/2

−l/2
|ψ(x)|2dx
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|A|2
∫ l/2

−l/2
dx = |A|2l = 1

which mena that A = 1√
l
, and the normalixed wave func-

tion becomes

ψ(x) =
1√
l

exp(ikx)

Applying the periodicity condition on the last function

we obtain

ψ(x) = ψ(x + l)

or

exp[ikx] = exp[ik(x + l)]→ exp(ikl) = 1

this implies that

kl = 2nπ → kn =
2nπ

l

where n are positive and negative integrs. In this case,

the change in k, ie, ∆k is the difference between any two
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consecutive values, or ∆k = 2π/l. Note, the periodicity

condition, that is equivalent to the condition of particle

confinment, implies that the wave vector ~k was taking a

series of separate values determined from the last equa-

tion.

In case of 3D, the wave function ψ takes the form

ψ(r) =
1

l3/2
exp[ikr] =

1√
V

exp[ikr]

where V is the cube volume. Now, it convienet to index

the wave function with label related to the wave number

k, i.e,

ψk(x) =
1√
V

exp[iknx]

or in terms of n

ψn(x) =
1√
V

exp[2inπx/l]
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Now all these normalized wave functions corresponding

to the possible values of the wave vector ~k constitute

among each other a set of orthogonal functions (or in

short orthonormal set), i.e,∫
V

ψ∗k(r)ψk′(r)dτ = δkk′

or ∫
V

ψ∗n(r)ψn′(r)dτ = δnn′

the last two equations known as the orthonormalization

condition, where

dτ = dxdydz, δkk′ = δk1k′1δk2k′2δk3k′3

and δkk′ is the kroniker-delta function

δkk′ =

{
1, k = k′

0, k 6= k′
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or in terms of the quantum number n as

δnn′ =

{
1, n = n′

0, n 6= n′

The case that k 6= k′ (n 6= n′) means the probability of

finding the particle in a two distinct states, that means

we cann’t find a particle of distinct values of the number

k(n) that be found in single state.

Let’s now prove the last relation begining from the inte-

gration∫
ψ∗k(x)ψk′(x)dx =

1

l

∫ l/2

−l/2
exp[−ikx] exp[ik′x]

=
1

l

∫ l/2

−l/2
exp[i(k′ − k)x]

in the case where k = k′ (n = n′), we have (k′ − k = 0,

that implies∫
ψ∗k(x)ψk(x)dx =

∫
|ψk(x)|2dx = 1
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but in the case where k 6= k′(n 6= n′), we have

∫
ψ∗k(x)ψk′(x)dx =

1

l

2i sin[ l2(k′ − k)]

i(k′ − k)

=
sin[ l2(k′ − k)]

l
2(k′ − k)

the last equation represents the general case of the pre-

vious integration where if we substitute about k = kn =

2nπ
l , k′ = kn′ = 2n′π

l , we find that

∫
ψ∗k(x)ψk′(x)dx =

sin[π(n′ − n)]

π(n′ − n)
= 0

that is the case where n 6= n′, but when n = n′, putting

such a quantity in the form sinx
x , with x = l

2(k′ − k) =

π(n′ − n), in this case

lim
x→0

sinx

x
= 1
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2.2 Examples

2.2.1 Example .1

Calculate ψ(x, 0) for the Gaussian wave packet φ(k) =

A exp[−a2(k − k0)2/4], where A is the normalization

constant. Calculate the normalization constant and the

probability of finding the particle in the region −a/2 ≤

x ≤ a/2, find also the function φ(k) for the quadratic

wave packet

ψ0(x) =

{
A exp(ik0x), |a| ≤ a

0, |a| > a

Also, find the the normalization constant

Solution

To find the normalization constant, we do

1 =

∫ ∞
−∞
|φ(k)|2dk =

∫ ∞
−∞

exp
[
− a2

2
(k − k0)2

]
dk
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put z = k − k0, and with aid of the rule∫ ∞
−∞

exp
[
− a2z2

2

]
dz =

√
2π/a

we find

A =

√
a/
√

2π = [a2/2π]1/4

in this case, the normalized wave packet becomes

φ(k) =

(
a2

2π

)1/4

exp
[
− a2

4
(k − k0)2

]
and the function ψ(x, 0) becomes

ψ(x, 0) =
1√
2π

∫ ∞
−∞

φ(k) exp(ikx)dk

=
1√
2π

(
a2

2π

)1/4 ∫ ∞
−∞

exp
[
− a2

4
(k − k0)2 + ikx

]
dk

to evaluate the integration, we should rearrange the power

part as

−a
2

4
(k− k0)2 + ikx = −

[a
2

(k− k0)− ix
a

]2

− x
2

a2
+ ik0x
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Now, put y = a
2(k−k0)− ix

a , hence dk = 2dy/a, and the

wave function takes the form

ψ(x, 0) =
1√
2π

(
a2

2π

)1/4 ∫ ∞
−∞

exp
(
− x2

a2

)
exp(ik0x)

× exp(−y2)
(2

a
dy
)

=
1√
π

(
2

πa2

)1/4

exp
(
−x

2

a2

)
exp(ik0x)

∫ ∞
−∞

exp(−y2)dy

but ∫ ∞
−∞

exp(−y2)dy =
√
π

hence, the wave function becomes

ψ(x, 0) =

(
2

πa2

)1/4

exp
(
− x2

a2

)
exp(ik0x)

where exp(ikx0) represents the phase function for the

wave function ψ(x, 0). Here we realize that ψ(x, 0) rep-

resents an oscillating wave of the modified wave number
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k0 by a Gaussian function centered around the origin.

Also, note that ψ(x, 0) like φ(k) a normalized function,

that means the forier transform for the Gaussian wave

packet is also Gaussian wave packet.

The probability of finding the particle in the region−a/2 ≤

x ≤ a/2 is given by

P =

∫ a/2

−a/2
|ψ(x, 0)|2dx =

(
2

πa2

)1/2 ∫ a/2

−a/2
exp
(
−2x2

a2

)
dx

=
1√
2π

∫ +1

−1

exp
(
− z2

2

)
dz

where we put z = 2x/a. To normalize the function

ψ0(x) =

{
A exp(ik0x), |a| ≤ a

0, |a| > a

as previous we do

1 =

∫ ∞
−∞
|ψ0(x)|2dx
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= |A|2
∫ a

−a
exp[−ik0x] exp[ik0x]dx = 2a|A|2

Or A = 1√
2a

, and the Fourier transform of the function

ψ0(x) becomes

φ(k) =
1√
2π

∫ ∞
−∞

ψ0(x) exp(−ikx)dx

=
1

2
√
πa

∫ a

−a
exp(−ik0x) exp(−ikx)dx

=
1√
πa

sin(k − k0)a

k − ko
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2.3 Excercises

1. Find the Fourier transform for the function

φ(k) =

{
A(a− |k|), |k| ≤ a

0, |k| > a

where a is a positive parameter and A is the normal-

ization constant that should be found also.

2. Consider the functions

ψ1 = A1 exp(−y2), ψ2 = A2 exp(−y2/2),

ψ3 = A3[exp(−y2) + y exp(−y2/2)],

where A1, A2, A3 are normalization constants.

i. find the normalization constants A1, A2, A3

ii. calculate the probability of finding each case in

the intervals −1 < y < 1, 0 < y < 1
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3. Finf Fourier transform for the following functions and

also calculate the normalization constant if found

ψ(x) =

{
1− |x|, |x| < 1

0, |x| ≥ 1

ψ(x) =
A

1 + x2
, φ(k) = A exp(−a|k| − ibk)

φ(p) =


0, p < −p0

A, −p0 < p < po

0, p0 < p



Chapter 3

Linear harmonic oscillator

In this chapter, we will discuss the wave function for a

moving particle in an harmonic oscillating potential. The

harmonic oscillating potential is considered as an impor-

tant example as a lot of physical phenomena like internal

molecules’ vibrations and atomic motion inside solid ob-

jects can be described using harmonic oscillating poten-

tial.

61
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3.1 Classical harmonic oscillator

It is well know in classical mechanics that the stored en-

ergy that proportional to distance from equilibrium point,

i, e, F = −Cx, implies a simple harmonic motion. Such

a force can be derived from the potential

V =
Cx2

2

using the relation between the force and potential

dV

dx
= −F

in this case, the 1D equation of motion for the classical

harmonic oscillator in the form

E =
Mv2

2
+
Cx2

2
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the solution of such an equation can be wrote in the form

x = A sin(ωt)

to determine the constants we do the following

E =
MA2

2
ω2 cos2(ωt) +

CA2

2
sin2(ωt)

or

2E

CA2
=
Mω2

C
cos2(ωt) + sin2(ωt)

this equality satisfied when

ω2 =
C

M
, A2 =

2E

C

in this case, the solution will be

x =

√
2E

C
sin
(√C

M
t
)

wihch means that the calssical harmonic oscillator can

has any amplitude, hence total energy, but with one fre-
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quency

ω =

√
C

M
,

3.2 Quantum harmonic oscillator

Now let’s examine how quantum mechanics works. The

begin with 1D Schrödinger equation for such an oscillator

− ~2

2M

d2u

dx2
+
ω2Mx2

2
u = Eu

Now, let’s simplify such equation by putting it in the form

− ~
Mω

d2u

dx2
+
ω2Mx2

~
u =

2Eu

~ω
= λu

with λ = 2E
~ω . Also, the last equation may be simpler if

we use the substitution x = y
√
~/Mω, then we have

−d
2u

dy2
+ y2u = λu
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or

d2u

dy2
+ (λ− y2)u = 0 (3.1)

To solve the last equation, we should make some ap-

proximations where for very big values of x we have

λu << y2u, then we obtain

d2u∞
dy2

= y2u∞

where we cancel the term λu, in this case, the solution

will be for very big values of x thay we can obtain as

follows: multiplying the last equation by the quantity

2du∞dy , we get

d

dy

(du∞
dy

)2

− y2du
2
∞

dy
= 0
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or

d

dy

[(du∞
dy

)2

− y2u2
∞

]
= −2yu2

∞

if we make the term −2yu2
∞ small enough, we could can-

cel it and have

d

dy

[(du∞
dy

)2

− y2u2
∞

]
= 0

implementing the integration, we obtain

du∞
dy

=
√
G + y2u2

∞

where G is the constant of integration. From previous,

u2
∞ and du∞

dy go to zero as y goes to infty, the we obtain

that G = 0, and finally have

du∞
dy

= ±yu∞

or

du∞
u∞

= ±ydy
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with solution

u∞ = A exp(−y2/2) + B exp(y2/2)

We shall cancel the term exp(y2/2) as it diverges as y →

∞, then we have

u∞ = A exp(−y2/2)

up to this stage, we implemented all needed approxima-

tions for suitable slution for equation of motion of the

oscillator, but the remaining step is the constant of in-

tegration A, that may be a function of y due to such

approximations, then we write

u(y) = f (y) exp(−y2/2)

To determine f (y), substituting in Eq.(3.1) as

d2u

dy
= exp(−y2/2)[−f (y)− 2yf ′(y) + f ′′(y) + y2f (y)]
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we have

exp(−y2/2)[−f (y)− 2yf ′(y) + f ′′(y) + y2f (y)]

+(λ− y2)f (y) exp(−y2/2) = 0

or

f ′′(y)− 2yf ′(y) + (λ− 1)f (y) = 0

if we put λ−1 = 2n or λ = 2n+1, n = 0, 1, 2, . . . , the so-

lution of the last equation will be the Hermit polynomial,

i. e, f (y) = Hn(y), hence

un(y) = Hn(y) exp(−y2/2)

3.3 Eigenvalues and eigenfunctions

Using the quantity λ = 2E
~ω as

2E

~ω
= 2n + 1
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this implies

E = En =
1

2
~ω(2n + 1) = ~ω(n +

1

2
)

which represents the allowed energy values that can the

oscillator take in a quantum form which correspond to

the energy eigen vlaues with the unnormalized eigen func-

tions

un(y) = QnHn(y) exp(−y2/2)

substituting with y =
√
Mω/~x, we have

un(x) = QnHn(
√
Mω/~ x) exp[−Mωx2/2~]

with Qn is the normalization constant. Here we recapu-

late some important remarks on the eigenvalues of the

harmonic oscillator:

1. Quantum oscillator energy levels are separated by
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Figure 3.1: Quantization cube.
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equal values, that is extinguish laboratory specrta

for some materials molecules and nucli. In this con-

text, we find that quantum harmonic oscillator rep-

resents a adquate and good model for describing such

specrta.

2. For every eigenvalue, there exist only one eigenfunc-

tion, that represents a common advantigue for 1D

bound potential that remain bound for bound values

of x.

3. For every n = 0, that is called ground state, the

oscillator energy is E0 = 1
2~ω that represents the

zero energy of the oscillator.

4. As Hermit polynomials correspond to the eigenval-
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ues of the quantum number n are function of order

n, it follows that the oscillator eigenfunctions have n

nodes. Note, the number of nodes is directly propor-

tional to energy value, namely, the higher number of

nodes the greater the value of energy, that could be

understood easily as the momentum is proportional

to the arc curvature or the wave function curvature

(d2u/dx2), that means the greater the curvature of

the arc, the greater the momentum(i. e, the greater

wave function curvature back and forth to reach zero,

the greater the energy).

5. Figures (3.2, 3.3) show a comparison between prob-

ability density of the particle at different distances

from the origin in case of classical and quantum sit-
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uations, respectively. We see easily the coincidence

between them developes gradually as the quantum

number increases. Finally, we conclude that, the

quantum systems, in general, their behaviours con-

verges the classical behaviour as we move towards

the greater values of the quantum number n.

3.3.1 Some Hermit polynomials properties

H0(y) = 1

H1(y) = 2y

H2(y) = −2 + 4y2

H3(y) = −12y + 8y3

H4(y) = 12− 48y2 + 16y4

H5(y) = 120y − 160y3 + 32y5
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Figure 3.2: Quantum wave function.
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Figure 3.3: Classical wave function
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Also, Hermit polynomials satisfy the integration form∫ ∞
∞

dyHn(y)Hm(y) exp[−y2] =
√
π2nn!δnm

3.3.2 Calculating the normalization constant Qn

Exploiting the last property of Hermit polynomials, we

can easily calculate the normalization constant Qn as fol-

lows: ∫ ∞
∞

dxu2
n(x) = Q2

n

√
~/Mω

√
π2nn! = 1

or

Qn =
(Mω/π~)1/4

√
2nn!

hence, the normalized wave functions take the form

un(x) =
(Mω/π~)1/4

√
2nn!

Hn(
√
Mω/~ x) exp[−Mωx2/2~]

(3.2)
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From the last form of the wave functions we can eas-

ily conclude that orthogonality of the wave functions for

different values of the quantum number n comes from

Hermit polynomials orthogonality.

3.3.3 The number operator

The following three recurrence relations of Hermit poly-

nomials are important in calculating the expectation (av-

erage) value for the quantum harmonic oscillator via the

aid of the eigenfunctions un(x). These three recurrence

relations area

dHn(y)

dy
= 2nHn−1(y) (3.3)

2yHn(y) = Hn+1(y) + 2nHn−1(y) (3.4)

yHn(y) = nHn−1(y) +
1

2
Hn+1(y) (3.5)
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Now, from Eq.(3.2), by putting µ =
√
Mω/~ x, and

γ = (Mω/π~)1/4 exp[−µ2/2]

we have

un(µ) =
γ√
2nn!

Hn(µ)

now,

un−1(µ) =
γ√

2n−1(n− 1)!
Hn−1(µ)

=
√

2n
γ√
2nn!

Hn−1(µ)

and

un+1(µ) =
γ√

2n+1(n + 1)!
Hn+1(µ)

=
1√

2(n + 1)

γ√
2nn!

Hn+1(µ)

or

γ Hn =
√

2nn! un (3.6)
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now,

γ Hn−1 =
1√
2n

√
2nn! un−1 (3.7)

and

γ Hn+1 =
√

2(n + 1)
√

2nn! un+1 (3.8)

Inserting Eqs. (3.3-3.5) into Eqs. (3.6-3.8) with replacing

the variable y by the variable µ, we obtain

µ un =
n√
2n

un−1 +
1

2

√
2(n + 1) un+1 (3.9)

µ un =
√
n/2 un−1 +

√
n + 1

2
un+1 (3.10)

Also, from Eq.(3.2), putting R = (Mω/π~)1/4√
2nn!

, we have

un(µ) = R Hn(µ) exp[−µ2/2]

by differentiating the last equation with respect to µ, we

obtain

u′n = R exp[−µ2/2][H ′n − µHn]
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orb br using Eq.(3.3)

u′n = R exp[−µ2/2][2nHn−1 − µHn]

and by using Eq.(3.5), we obtain

u′n = R exp[−µ2/2][2nHn−1 − nHn−1 −
1

2
Hn+1]

= R exp[−µ2/2][nHn−1 −
1

2
Hn+1]

=
γn√
2nn!

Hn−1 −
γ

2
√

2nn!
Hn+1

Using Eqs. (3.7,3.8), we have

u′n =
√
n/2 un−1 −

√
n + 1

2
un+1 (3.11)

From the last Eq.(3.11) and Eq.(3.10), we obtain

1√
2

(
µ +

∂

∂µ

)
un =

√
n un−1

1√
2

(
µ− ∂

∂µ

)
un =

√
n + 1 un+1



3.3. EIGENVALUES AND EIGENFUNCTIONS 81

Bu using the operator p̂µ = −i ∂∂µ that is related to the

momentum operator p̂x = −i~ ∂
∂x by the relation p̂x =

√
~Mω p̂µ, the last relations take the forms

â un =
√
n un−1 (3.12)

â† un =
√
n + 1 un+1 (3.13)

with the operators â and â† are given by

â =
1√
2

(
µ +

∂

∂µ

)
=

1√
2

(
µ + ipµ

)
â† =

1√
2

(
µ− ∂

∂µ

)
=

1√
2

(
µ− ipµ

)
From Eq.(3.13), with by operating n times with the op-

erator â† on the wave function u0, we obtain

un =
1√
n!

(
â†
)n

u0

Note that, the ground state wave function could be ob-

tained from the condition â† u0 = 0, i.e, by solving the
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equation (
µ +

∂

∂µ

)
u0 = 0

that has a solution given by

u0 = R0 exp[−µ2/2]

with R0 is the normalization constant and given by

R0 =
(Mω

π~

)1/4

also, using Eq.(3.12, 3.13), by the recurrence operating

with the operators â and â†, we obtain

ââ† un = (n + 1) un (3.14)

and

â†â un = n un (3.15)
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substituting the last two equations and using the unti-

commutator [â, â†] = ââ† − â†â, we obtain

(ââ† − â†â) un = [(n + 1)− n] un

or

[â, â†] un = un

that yields

[â, â†] = 1

also, adding the two equations we obtain

(ââ† + â†â) un = [(n + 1) + n] un

or

ââ† + â†â = 2n + 1

but we have from previous that

â =
1√
2

(
µ + ipµ

)
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â† =
1√
2

(
µ− ipµ

)
or

ââ† + â†â = µ2 + p2
µ = 2n + 1

in this case, the Hamiltonian (Hamilton function opera-

tor) is given by

Ĥ =
p̂2
x

2M
+
Mω2

2
x̂2 =

~ω
2

(µ2 + p2
µ)

or

Ĥ =
~ω
2

(ââ† + â†â)

It is abovious From Eqs. (3.14, 3.15) that the eigenvalues

of the operators â†â and ââ† equal, respectively, n and

n+1, hence, we can calculate the eigenvalues of Hamilton

operator for the harmonic oscillator as

Ĥ = En =
~ω
2

(ââ† + â†â) =
~ω
2

(2n + 1) = ~ω(n +
1

2
)


