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Preface

Ten years have passed since the first Russian edition of this textbook 
was published. In this time solid state physics has developed rapidly 
as the scientific background of numerous front-line branches of 
technology, absorbing new discoveries and theories. This has been 
considered in preparing the new edition.

At the same time college curricula have been changed to improve 
the basic preparation of versatile engineers, especially in physics 
and mathematics. This too had to be reflected in this book.

Also, the years that have elapsed since the first edition have seen 
much comment, some critical, and many proposals from Soviet and 
foreign readers—from college teachers and students, teachers of 
vocational and secondary schools, engineers and scientists. The 
author is grateful for all the comment and proposals.

There was a need therefore to revise the book completely.
As in the first edition, the presentation of material has followed 

the aim of elucidating the physical nature of the phenomena dis­
cussed. But, where possible, the qualitative relations are also pre­
sented, often though without rigorous mathematics.

The manuscript was reviewed in detail by Prof. L. L. Dashkevich, 
Dr. of Technical Sciences, and Prof. I. G. Nekrashevich, Honored 
Scientist of the Belorussian Republic. It was perused by Prof. 
L. A. Gribov, Dr. of Mathematical and Physical Sciences, Assistant 
Prof. V. B. Zernov, and Z. S. Sazonova. The author extends sincere 
thanks for their efforts and criticism, which he took into account 
when revising the manuscript.

The author is also indebted to Senior Lecturer F. Zh. Vilf, Cand. 
of Technical Sciences, and Assistant Prof. Yu. A. Moma, Cand. of
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6 Preface

Technical Sciences, for manuals used in this textbook on supercon­
ductivity, Gunn effect, and principles of operation of impulse and 
high-frequency diodes, and to Z. I. Epifanova for all her work in 
preparing the manuscript.

The author will be most grateful for comment and proposals that 
might improve this book. They should be sent to the publishers.

G.I.E.
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1

Bonding.
The Internal Structure of Solids

Matter can exist in the solid state uiily because there are forces 
of interaction acting between the structural particles when the 
latter are brought sufficiently close together. For the solid to have 
a stable structure the forces of interaction between the particles 
should be of two types: of attraction, to prevent the particles from 
moving away from each other, and of repulsion, to prevent the 
particles from merging.

Let us discuss briefly the nature of these forces.

§ 1 The van der Waals forces
The most general type of bond existing between any two atoms, 
or molecules, is due to van der Waals forces. Those forces were 
first introduced to explain the equation of state of real gases, the 

• van der Waals equation:

(p+ -^){V -b )  =  RT (1.1)

where the correction terms a/V2 and b account, respectively, for 
the effect of the forces of attraction and repulsion acting between 
the molecules of a real gas. These forces manifest themselves in an 
almost ideal form in the interaction between the molecules with 
saturated chemical bonds (02, H2, N2, CH4, etc.), as well as between 
the atoms of inert gases, making possible their existence in the 
liquid and solid states.

As a general case, the van der Waals bond is made up of the disper­
sion, orientational and induction interactions. Let’s consider them 
separately.

Dispersion interaction. Consider the simplest example of two 
interacting helium atoms shown in Figure 1.1. The electron density 
distribution in a helium atom is spherically symmetrical and for

11



12 Solid State Physics

this reason its electric moment is zero. But this means only that 
the average electric moment of the atom is zero. At every moment 
of time the electrons occupy particular points in space, thereby 
creating instantaneous rapidly changing electric dipoles. When two 
helium atoms are brought together, the motion of their electrons

Figure 1.1 Dispersion interaction. The interaction between helium atoms 
is due to the correlation in the motion of electrons resulting in the 
appearance of instantaneous dipoles: (a) — correlation resulting 
in attraction; (b) — correlation resulting in repulsion.

Attraction Repulsion

«  W R> CO
Helium atoms Helium atoms

Instantaneous dipoles Instantaneous dipoles

(a) (b)

becomes correlated and this leads to the forces of interaction. The 
forces can be of two types. If the motion of the electrons is correlated, 
as shown in Figure 1.1(a), the instantaneous dipoles attract each 
other; if the correlation is as shown in Figure 1.1(b), the resulting 
interaction is repulsion. Since the realization of the arrangement 
of Figure 1.1(a) leads to a reduction in the energy of the system, 
this arrangement is more probable and is realized more frequently. 
This is in effect the cause of the constantly existing force of attraction 
between helium atoms.

The bonds discussed above that owe their existence to a correla­
tion in motion of the electrons in adjacent atoms are termed disper­
sion forces. They were first calculated by F. London in 1930. The 
calculation was based on the following model: the instantaneous 
electric dipole of one atom causes the other atom to be polarized 
and it becomes an induced dipole leading to the realization of the 
arrangement in Figure 1.1(a), which corresponds to attraction. The 
calculation had as its final result the following expression for the 
energy of the dispersion interaction of two particles:

t t 3 a 2E exc
U* = - T — ~ (1.2)
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.where a is the polarizability of the particles1, i?exc their energy 
of excitation, and r the distance between them.

Orientational interaction. Should the molecules possess a constant 
dipole moment Af, that is, should they be polar molecules, an 
electrostatic interaction would be established between them tending

Figure 1.2 Orientational interaction of polar molecules.

0 . 0  0o  o  o
to arrange the molecules in a strict order (Figure 1.2), since that 
order corresponds to the minimum energy of the system. The correct 
orientation of the molecules is disturbed by thermal motion. There­
fore the energy of the system due to the mutual orientation of the 
molecules is strongly dependent on temperature. At low tempera­
tures, when the orientation of the molecules is perfect, the interac­
tion energy is determined from the expression

M2
2jie0r3 (1.3)

where r is the distance between the molecules, and e0 the permittivity 
of free space.

In the high temperature range the energy of interaction of polar 
molecules, as had been demonstrated by W. H. Keesom, is of the 
following form:

Uor —
M*

24ji26§/cb̂ ^6 (1.4)
The type of interaction discussed above is termed orientational 

interaction.
Induction interaction. Lastly, in case of polar molecules of high 

polarizability an induced moment due to the action of the field 
of constant dipoles may be established (Figure 1.3; the induced 
dipoles are shown by dotted lines). The energy of mutual attraction 
due to the interaction of the rigid dipole of the first molecule and 
the induced dipole of the second molecule, as has been shown by 
Debye, is independent of temperature and is given by the expression

am  1
8jtejj r6 (1.5)

1 Let us recall the physical meaning of a. The charges in the molecule are 
displaced under the action of an external field of intensity %. This leads to 
a dipole moment M proportional to %: M =  a%, the proportionality factor a 
being the polarizability of the molecule.



where, as before, M is the constant dipole moment of the molecule^ 
and a its polarizability.

Such interaction is termed induction, or dejormation, interaction. 
In general, when two molecules are brought close together all 

three types of interaction may be established, the interaction pnergy 
being the sum of the energies of the dispersion (t/d), orientational 
(U0r), and induction (t/ln) types of interaction:

U =  Ud+ U 0T +  Uin

14 Solid State Physics

Figure 1.3 Induction interaction of molecules (dotted lines show 
the induced dipoles).

Table 1.1 shows the relative magnitude (in percent) of each of 
those components of the total bonding energy for water, ammonia, 
hydrogen chloride and carbon monoxide. The data presented in 
Table 1.1 show the induction interaction for all the substances 
to be weak. Three quarters or a half of the bond energy in substances 
made up of polar molecules is due to the energy of orientational 
interaction; while in materials made up of nonpolar molecules almost 
all of the bond energy is due to the dispersion interaction.
Table 1.1

Type of interaction
Substance — ---- :------- :—:--:-------— -----:--- :Dispersion Induction Orientational

Water 19 4 77
Ammonia 50 5 45
Hydrogen chloride 81 4 15
Carbon monoxide 100

Table 1.2 shows the values of the bond energy for some molecular 
crystals held together by van der Waals forces.
Table 1.2

Substance u b(103 J/mole) Substance u b(103 J/mole)

Neon (Ne) 1.9 Argon (Ar) 8.4
Nitrogen (N.2) 6.6 Carbon monoxide (CO) 8.4
Oxygen (02) 8.2 Methane (CH4) 10.8
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§ 2 The ionic bond
Atoms that occupy places in the Mendeleev periodic table next 
to inert gases tend to assume the electronic configuration of these 
gases either by giving away or accepting electrons. The valence 
electron of alkali metals, which immediately follow the inert gases, 
moves outside the closed shell and is only weakly connected with 
the nucleus. The halides, which immediately precede the inert

U Figure 1.4 Dependence of energy 
of interacting ions on the distance 
between them: 1 — energy of 
attraction, 2 — energy of repulsion, 
3 — total energy of interaction.

gases, lack one electron to complete a stable shell characteristic of 
an inert gas. Therefore they exhibit high affinity to an excess elec­
tron.

Such atoms, that is, typical metals and halides, are bonded in the 
following way. First a recharging of the atoms takes place. The 
electron from the metal moves over to the halide. This turns the 
metal atom into a positively charged ion and the haloid atom into 
a negatively charged one. These ions interact according to the Cou­
lomb law as two opposite charges. Such a bond became known as 
an ionic bond.

The energy of attraction of two ions separated by the distance r is

U a t t- q2
4 ne0r ( 1.6)

where q is the charge of the ions.
The curve 1 in Figure 1.4 shows the dependence of C/att on r. 

As r decreases the absolute value of the energy increases monotoni- 
cally, tending to infinity as r->0. The force of attraction tends 
to bring the ions together as close as possible. This, however, is 
prevented by the forces of repulsion, which begin to make themselves 
felt at small distances and rise very rapidly with the decrease in 
distance. The repulsion energy C/rep is shown in Figure 1.4 by the



1 6 Solid State Physics

curve 2. Max Born and other scientists expressed the repulsion 
energy in the form

^rep— rn (1*7)
where B and n are constants.

The resulting interaction energy of two ions is
B g
rn Ajieq] (1.8)

This energy is shown in Figure 1.4 by the curve 3 which has a 
minimum at r =  r0; the depth of this minimum determines the 
bond energy C/b, and r0 determines the distance between the ions 
in the molecule. Making use of the fact that in equilibrium (at r =  r0) 
the force of attraction, Fatt =  — (df/att/(ir)r==ro, equals the force 
of repulsion, Frep =  — (dUTev/dr)r = ro, we can easily express (1.8) as

The energy of the lattice made up of N such molecules is

<110>
where A is the Madelung constant, which takes account of the energy 
of interaction of the given molecule with all its neighbouring mole­
cules in the crystal.

Table 1.3 shows by way of an example the experimental values 
of the bond energy of some ionic crystals and its values calculated 
with the aid of (1.10). The discrepancies do not exceed 1-2 percent, 
which is proof of good agreement between theory and experiment.
Table 1.3

C/b (103 J/mole)
wysiai experiment theory

Sodium chloride (NaCl) 752 754
Potassium iodine (KI) 650 630
Rubidium bromide (RbBr) 635 645
Caesium iodine (Csl) 595 585

§ 3 The covalent bond
The ionic and van der Waals bonds are unable to account for the 
existence of such compounds as H2, 02, N2, etc., as well as for bonds 
in atomic crystals of the diamond type. Evidently, atoms of one 
kind cannot form oppositely charged ions by changing the distribu-
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tion of valence electrons, as was the case in the metal-halide interac­
tion. On the other hand, the bond in the H2, 02, and N2 molecules 
is much stronger than that which could be attributed to the van der 
Waals forces. For such compounds the role of the van der Waals 
forces is that of a small correction to the bond mainly responsible 
for the strength of the compounds. This bond became known as the 
covalent bond.

Let us consider the nature of this type of bond using the hydrogen 
molecule as an example.

Figure 1.5 Calculating covalent bond between hydrogen atoms:
A, B — hydrogen atoms; a, b — their nuclei; 1 — electron of atom A;
2 — electron of atom B; ral, rb2 — distances of electrons from their 
nuclei; ri2 — distance between electrons; ra2 — distance of electron 2 
from nucleus a; rbl — distance of electron 1 from nucleus b; r — distance 
between nuclei.

Suppose that two hydrogen atoms are at a rather great distance r 
from one another. The atom A consists of the nucleus a and the 
electron 1 and the atom B consists of the nucleus b and the electron 2 
(Figure 1.5). Since the density of the electron cloud which describes 
the electron state in an atom falls off very rapidly as the distance 
from the nucleus increases, the probabilities to discover electron 1 
near nucleus b and electron 2 near nucleus a are very small. Calcula­
tion shows that for r ^  50 A each electron can visit the other nucleus 
on the average only once in 1012 years. Because of that atoms A and B 
may be regarded as isolated atoms and the energy of the system 
made up of such atoms may be taken to be equal to 22?0, where F0 
is the energy of the isolated atom in the ground state.

When the atoms are brought closer together, the probability of 
the electrons going over to nuclei other than their own increases. 
For r« 2  A the electron clouds begin to overlap noticeably and the 
transition frequency rises up to 1014 s“l. If the atoms are brought 
still1 closer together, the frequency of the electron exchange rises 
so that it becomes meaningless to speak of electron 1 as belonging 
to the atom A and of electron 2 as belonging to atom B. This corres-
1!— 0885



18 Solid State Physics

ponds to a new state that is not characteristic for a system made 
up of two isolated atoms. A remarkable property of this new state 
is that the electrons in it belong simultaneously to both nuclei, 
in other words, aje collectivized.

The collectivization of the electrons is accompanied by a change 
in electron density distribution | i|; |2 and in the energy of the system 
as compared to the total energy 2E0 of the isolated atoms. The dotted 
lines 1 in Figure 1.6 show the electron cloud density of the isolated 
atoms, the thin solid line 2 shows the total density obtained by simple 
superposition of the electron clouds of isolated atoms, and the thick

Figure 1.6 Electron density distribution in a system of two hydrogen 
atoms: 1 — electron density distribution in isolated hydrogen atoms,
2 — electron density resulting from simple overlapping of electron clouds 
of isolated atoms brought together to within a distance of r, 3 — actual 
electron density distribution in a hydrogen molecule.

solid line 3 the actual density distribution along the axis joining 
the nuclei a and b brought about by the collectivization of the 
electrons. The figure shows that the collectivization of the electrons 
results in the electron clouds being drawn into the space between 
the two nuclei: at a small distance from the nucleus outside this 
space the density of the clouds falls off, as compared with the density 
in isolated atoms, at the same time rising in the space between the 
nuclei above the sum of the densities of isolated atoms. The appear­
ance of a state with an electron cloud of increased density that fills 
the space between the nuclei always results in a decrease in the 
system’s energy and in the appearance of forces of attraction between 
the atoms. Speaking figuratively, we may say that the electron 
cloud formed in the space between the nuclei by a collectivized 
pair of electrons draws the nuclei together, striving to bring them 
as close together as possible.

Such is the qualitative picture of the origin of the covalent bond.
Quantitative calculations of the hydrogen molecule were first
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performed by W. H. Iieitler and F. London in 1927. Those calcula­
tions have shown that a system consisting of two closely spaced 
atoms of hydrogen can have two energy values depending on the 
direction of the electron spins in the atoms:

Us =  2E0 +  £±£ (1.11)
when the spins are antip^arallel, and

Ua =  2E0 +  ̂ £  (1.12)
when the spins are parallel. Here 2E0 is the total energy of the two 
isolated atoms, K is the energy of the electrostatic interaction of the 
electrons with the nuclei, of the electrons with one another, and of 
the nuclei. Another name for it is Coulomb energy. Its sign is nega­
tive. By A we denote the energy of exchange interaction due to the 
atoms exchanging electrons. This is the additional energy that ap­
pears as the result of the change in the electron density distribution 
in the process of the formation of the molecule. Its sign is negative 
and its absolute value is much larger than K (| A | >  | K |); 5 is 
the overlap integral whose value lies within the limits 0 ^  S ^  1.

The state with the energy Us is termed symmetric and with Ua 
antisymmetric. Since both K and A are negative and 5 ^ 1 ,  the 
energy of the system in the symmetric state is less than the energy 
of two isolated atoms

U5 < 2 E0 (1.13)
This corresponds to the appearance of forces of attraction. Since 
the absolute value of the exchange energy A is considerably greater 
than that of the Coulomb energy K the decrease in the system’s 
energy is mainly due to A. For this reason the force of attraction 
that appears between the atoms is termed the exchange force. 
For the same reason, that is, because | A | | K |, the formation
of the antisymmetric state leads to an increase in the system’s ener­
gy. This corresponds to the appearance of repulsive forces.

Figure 1.7 shows the dependence of Us and t/a on r/a, where r is 
the distance between the atoms, and a =  0.529 A is the radius of 
the first Bohr orbit (the Bohr radius). The zeroth energy level has 
been fixed at 2E0. Figure 1.7 shows that in the antisymmetric state 
the system’s energy rises steadily as the atoms are brought closer 
together (curve 7), this corresponding to the mutual repulsion of 
the atoms. Therefore a hydrogen molecule cannot be formed in such 
a state. In the symmetric state (curve 2) the system’s energy at first 
falls as the distance r between the atoms decreases, attaining its 
minimum value at r =  r0. As the distance r decreases still further, 
the energy begins to rise because of the appearance of strong repulsive
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forces. The existence of a minimum on the potential energy curve 
makes the existence of a stable system of two hydrogen atoms, that 
is, a hydrogen molecule, possible. To destroy this system work must 
be performed equal to the depth of the potential well, Uh.

Calculation provides the following values of t/b and r0: Z7b =  
=  4.37 eV, r0 =  0.735 A; the experimental values are C/b =  
=  4.38 eV, r0 =  0.753 A. The agreement between theory and ex­
periment is quite good.

Table 1.4 shows the values of the bond energy for some covalent 
compounds—the molecules of H2, N2, 02, CO—and for diamond, 
silicon and germanium crystals in which the bonding is due to 
covalent forces.

Figure 1.7 Interaction energy 
of two hydrogen atoms:
1 — antisymmetric state,
2 — symmetric state.

The data show the covalent bond to be a very powerful one, its 
energy being as high as 10ft-106 J/mole.
Table 1.4

Gas u \>(10B J/mole) Crystal Ub(106 J/mole)

Carbon monoxide (CO) 10.8 Diamond (C) 6.8
Nitrogen (N2) 9.5 Silicon (Si) 4.4
Oxygen (0?) 5.0 Germanium (Ge) 3.5
Hydrogen (H2) 4.4

Characteristic properties of the covalent bond, which distinguish 
it] from the bonds of other types, are its saturability and direc­
tionality.

Saturability means that each atom can form covalent bonds 
only with a limited number of its neighbours. This means that each 
hydrogen atom can form covalent bonds only with one of its neigh­
bours. The electron pair constituting such a bond has antiparallel
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spins and occupies one quantum cell. A third atom in this case 
instead of being attracted will be repelled.

The valence bond is formed in the direction of the greatest density 
of the electron cloud corresponding to the valence electrons. In this 
case there is maximum overlapping of the electron clouds of the 
bonding electrons, which implies that the valence bond is directional.

§ 4 The metallic bond
There is a special group of substances, called metals, that occupy 
places at the beginning of every period of the Mendeleev table. 
The formation of the metallic bond cannot be explained by the 
presence of the ionic or the covalent bond. Indeed, the ionic bond

Figure 1.8 Electron density 
distribution in the aluminium 
lattice obtained by X-ray 
photography.

appears only between atoms having different affinities to the addi­
tional electron, for instance, between the atoms of a metal and a 
halide. Evidently, such bond between kindred atoms of a metal 
having identical affinity to the electron is impossible. On the other 
hand, metallic atoms do not have enough valence electrons to form 
valence bonds with their nearest neighbours. For instance, the copper 
atom has one valence electron and can form a valence bond only 
with a single atom. But in the copper lattice every atom is surround­
ed by twelve neighbours with which it must be connected by lines 
of force. This points to the fact that in metals there is a special type 
of bonding known as the metallic bond. Let us consider the nature 
of this bond.

In metallic atoms the external valence electrons are rather weakly 
coupled to the nucleus. In the liquid and solid states the atoms come 
so close together that the valence electrons are able to leave their 
respective atoms and wander throughout the lattice. This leads to 
an extremely homogeneous distribution of the negative charge in the 
crystal lattice. This conclusion is supported by direct experiments. 
Figure 1.8 shows an experimental curve of the electron density
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distribution between the sites of the aluminium lattice obtained 
by means of X-ray photography. Most part of the distance between 
the sites the electron concentration remains constant. Only quite 
close to the sites it rises sharply because of the presence of internal 
shells of the aluminium atoms.

In the lattice of a metal the bond is due to the interaction of the 
positive ions with the electron gas. The electrons moving between 
the ions compensate the forces of repulsion existing between the 
positively charged ions and draw them closer together. As the distance 
between the ions becomes smaller the density of the electron gas 
rises and this leads to an increase in the force drawing the ions to­
gether. On the other hand, in this case the repulsive forces acting 
between the ions tend to move them away from each other. When 
the distance between the ions becomes such that the forces of attrac­
tion are compensated by the forces of repulsion, a stable lattice is 
formed.

It appears that the metallic bond is somewhat similar to the 
valence bond, since they are both based on the collectivization of 
external valence electrons. However, in case of the valence bond 
only atoms that form pairs of nearest neighbours take part in the 
collectivization of electrons, and the respective electrons always 
remain between the atoms. In case of the metallic bond all atoms of 
the crystal take part in the collectivization of electrons, and the 
collectivized electrons are no longer localized near their respective 
atoms but move freely inside the lattice.

§ 5 The hydrogen bond
The hydrogen bond is formed between an atom of hydrqgen and an 
extremely electronegative atom, for instance, an atom of oxygen, 
fluorine, nitrogen, chlorine. Such an atom attracts the bonding 
electrons and becomes negatively charged; the hydrogen atom after 
losing the bonding electron assumes a positive charge. The hydrogen 
bond is a result of electrostatic attraction of those charges.

As a typical example we may cite the hydrogen bond between 
molecules of water (Figure 1.9). The 0—H bond between an oxygen 
atom of one molecule and a hydrogen atom of another behaves as 
a tiny dipole with a —8 charge on the oxygen atom and a +8 charge 
on the hydrogen atom. The force of attraction between those charges 
is the cause of the hydrogen bond shown by dots in Figure 1.9. The 
attraction is enhanced by the small dimensions of the hydrogen atom 
that enable it to come close to the electronegative atom. Still, 
this distance r0n = 2.76 A is much greater than the radius of the 
covalent bond H—0, r0, in the water molecule itself, which is equal 
to 0.96 A. This is quite natural since the energy of the covalent
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bond is about an order of magnitude higher than that of the hydrogen 
bond. Its value for water is (21-25) X 10* J/mole.

The hydrogen bond is the cause of association of molecules of 
liquids (water, acids, spirits, etc.), which results in greater viscosity, 
higher boiling point, abnormal thermal expansion, etc. Water may 
serve best to illustrate this. Should there be no hydrogen bonds 
between the molecules of water, its boiling point at atmospheric

Figure 1.9 Hydrogen bond between water molecules.

pressure would be not -f-100 °C but —80 °C and its viscosity would 
be lower by almost an order of magnitude. When water is heated 
above 0 °C, the hydrogen bond is destroyed. Since the hydrogen 
bond is responsible for the loose structure of associated complexes, 
in which the water molecules are rather far apart (2.76 A), the 
destruction of such a loose structure should result in an increase 
in the density of water. On the other hand, an increase in the temper­
ature of water and a corresponding increase in the intensity of 
thermal motion of its molecules should lead to thermal expansion 
and a decrease in its density. Experiment shows that in the tempera­
ture range 0-4 °C the first factor—the increase in density due to the 
disruption of the hydrogen bonds—is the prevalent one. Because 
of that within this range the density of water rises upon heating. 
Above 4 °C the other factor—thermal expansion—prevails. This is 
why when water is heated above 4 °C its density decreases, as is the 
case with other (normal) liquids.

§ 6 Comparison between bonds 
of various kinds

The van der Waals bond is the most universal one. It exists in all 
cases without exception. At the same time this is the weakest, 
having an energy of the order of 104 J/mole. Ideally, it operates 
between neutral atoms, or molecules, with closed inner electron 
shells. Specifically, the van der Waals forces are responsible for the

H'
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existence of the liquid and solid states of inert gases, hydrogen, 
oxygen, nitrogen and many other organic and inorganic compounds. 
They also, as we will see later, form bonds in many of the molecular 
valence crystals. Because of low energy values of the van der Waals 
bond all structures based on it are unstable, volatile and have low 
melting points.

The ionic bond is a typical chemical bond very * frequent among 
the inorganic compounds such as metal-halide compounds, metallic 
oxides, sulfides and other polar compounds. The ionic bond is also 
a feature of numerous intermetallic compounds (carbides, nitrides, 
selenides, etc.). The energy of the ionic bond is much higher than 
that of the van der Waals bond and may be as high as 10° 3 /mole. 
Because of that solids based on the ionic bond have high sublima­
tion heat values and high melting points.

The covalent bond is extremely widespread among organic com­
pounds, but is also present in inorganic compounds, in some metals 
and in numerous intermetallic compounds. This bond is responsible 
for the existence of valence crystals of the diamond, germanium and 
other types, as will be discussed below. The energy of the covalent 
bond is also high (^ lO 15 J/mole), which stems from the fact that 
the solids with this type of bond have high melting points and high 
heats of sublimation.

The metallic bond formed as a result of the collectivization of 
the valence electrons is characteristic of typical metals and numerous 
intermetallic compounds. The order of magnitude of the energy of 
this type of bond is comparable to that of the energy of covalent 
bond.

Lastly, the hydrogen bond, although relatively weak, still plays 
an important part in nature.

It should be pointed out that in real solids no types of bonds 
discussed above ever exist purely by themselves. Practically, there 
is always a superposition of two types of bonds or more. One of them, 
as a rule, plays a dominant part in determining the structure and 
the properties of the solid.

§ 7 Forces of repulsion
For the formation of a stable system of interacting atoms or mole­
cules, together with forces of attraction there should be forces of re­
pulsion, which would prevent the complete merging of the particles.

The origin of the forces of repulsion is first of all the interaction 
of the nuclei each of which carries a considerable positive charge. 
The energy of this interaction, £^ep> depends on the distance be­
tween the nuclei and on the degree of screening by their internal 
electron shells.
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The following expression for Urep may be obtained from quantum 
mechanical calculations:

ff«p-OCe“r/a (i-14)
where r is the distance between the nuclei, and a =  0.529 A the 
Bohr radius.

This dependence of t/̂ ep on r determines the nature of the forces 
of repulsion: they attain enormous values at short distances and 
fall off abruptly as r increases. For instance, when the distance 
between a proton and a hydrogen atom decreases from r =  2a to 
r =  a!2 (4 times), the repulsive energy increases almost 300-fold.

The repulsive forces due to the interaction of the nuclei play 
a dominant role when light atoms, whose nuclei are rather poorly 
screened by the electron shells, are brought together. In all other 
cases the dominant part is played by repulsion due to the overlapping 
of closed electron shells of the atoms being brought together. Consid­
er by way of an example the interaction between a chlorine ion 
with a closed 3p shell and a sodium ion with a closed 2p shell. When 
the ions are brought together to a distance at which the 3p and 2p 
shells overlap, the number of electrons in each of them begins to 
exceed that which is compatible with the Pauli exclusion principle. 
Because of that some of the electrons are forced to go to higher 
energy levels (for instance, 3d or 4s). This results in an increase 
in the system’s energy and, consequently, in the appearance of 
forces of repulsion. Quantum mechanical calculations show the 
energy of such repulsion to have an exponential dependence on the 
distance, as well:

Uf;9 pOCe-'/e (1.15)
where p is a constant usually obtained experimentally.

Often the repulsion energy is expressed in the form (1.7). This 
expression gives a less steep decline of C/rep with the increase in r 
and is less consistent with experiment than (1.14) or (1.15) but is 
nevertheless widely used by researchers.

§ 8 Crystal lattice
No matter what the origin of forces appearing when particles are 
brought together is, their general nature is the same (Figure 1.10(a)): 
at comparatively large distances forces of attraction Fatt increase 
rapidly as the distance between the particles decreases (curve 1); 
at small distances forces of repulsion Frê  come into being and with 
a further decrease in r they increase much more rapidly than Fatt 
(curve 2). At the distance r =  r0 the repulsive forces counterbalance 
the forces of attraction, the resultant force ofAinteraction F vanishes
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Figure 1.10 Interaction between 
approaching particles:
(a) — interaction forces, 1 — force of 
attraction, 2 — repulsive force,
3 — resultant force; (b) — interaction 
energy.

(curve 5), and the energy attains 
its minimum value Uh (Fig­
ure 1.10(b)). Because of this the 
particles brought together to a 
distance r0 are in a state of 
stable equilibrium. By the same 
reason the free particles should 
arrange themselves in a strict 
order at a distance r0 from one 
another thus forming a body. 
with a regular internal struc­
ture—a crystal. Such a structure 
will remain stable until the abso­
lute value of the bond energy 
remains greater than the energy 
of thermal motion of the parti­
cles. The particles constituting 
the crystal cannot freeely leave 
their equilibrium sites because 
this involves an increase in their 

energy and leads to the appearance of forces tending to 
return them to their equilibrium sites. One may say that the particles 
are fixed in their equilibrium sites. The only form of motion allowed 
to them are random vibrations around their equilibrium sites.

To describe the regular internal structure of crystals one may conve­
niently use the concept of the crystal lattice. There are lattices of two 
types —the translational Bravais lattice and the lattice with a basis.

Bravais lattice. From the geometrical point of view a regular 
periodic arrangement of particles may be described with the aid of 
a translation. Figure 1.11(a) shows a lattice obtained with the aid 
of translation of a particle along the three axes: OX over the sec­
tions a, 2a, 3a, . . ., ma, . . .; OY over the sections b, 2ft, 3b, . . .
. . ., nb, . . .; OZ over the sections c, 2c, 3c, . . ., pc, . . . (m, n, p 
are integers). The position of any particle in this lattice is described 
by the vector

(b)

r = ma rib +  pc (1.16)
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The vectors a, b, c are termed the translation vectors and their nume­
rical values the translation periods.

A lattice built with the aid of translation of any site along the 
three directions is termed a Bravais lattice. The smallest parallelepi­
ped built on the vectors a, b, c is termed the unit cell of the crystal 
(Figure 1.11(b)). The shape and the volume of all the unit cells

Figure 1.11 Crystal lattice: (a) — Bravais lattice, (b) — unit cell 
of Bravais lattice.

comprising the lattice are identical. All cell apexes are occupied by 
identical atoms or groups of atoms and are therefore equivalent. 
They are termed lattice sites.

To discribe a unit cell, six quantities should generally be stated: 
three edges of the cell (a, 6, c) and three angles between them (a, 
P, y). Those quantities are termed the parameters of the unit cell. 
Often the sections a, b, c are used as units of length in lattices 
instead of the metre. They are termed axial units.

Unit cells with particles only at the vertices are known as primi­
tive cells. There is only one particle to each such cell.

In some cases to express the lattice symmetry more fully the unit 
cells are built so that they contain particles not only in their apexes 
but at other points as well. Such cells are termed complex cells. 
The most widespread types of such cells are (Figure 1.12) the body- 
centered (BC), the face-centered (FC), and the base-centered (BaseC) 
cells. It may be shown that such cells may easily be reduced to prim­
itive cells. Because of that they are Bravais-type cells.

A lattice with a basis. Not every type of lattice may be obtained 
by translation of a single site. Figure 1.13 shows a two-dimensional 
lattice with a general-type basis. It may easily be seen that it is 
impossible to describe the unit cell of such a lattice in terms of
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a single-site unit cell. Such a lattice may be imagined as consisting 
of two Bravais lattices, 1 and 2, each determined by the basis vec­
tors a and b and inserted into each other. The relative displacement 
of the lattices is described by an additional basis vector A. The 
number of such basis vectors may be arbitrary.

/rFigure 1.12 Typical crystal structures: (a) — base-centered (BaseC); 
(b) — body-centered (BC); (c) — face-centered (FC).

The lattice of this type is termed the lattice with a basis. It may 
be built with the aid of the same translations as can be used to build. 
any of the Bravais lattices that make it up. However, in this case 
we shall have to translate not one site but several sites—the basis,
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Figure 1.13 Two-dimensional 
lattice with a basis: A — basis 
vector.

defined by the totality of the basis vectors. Thus, the two-dimen­
sional lattice shown in Figure 1.13 may be obtained by a translation 
of the basis made up of two sites: 0 and O'. An example of a three- 
dimensional lattice with a basis is the diamond lattice shown in 
Figure 1.14(a). It maybe obtained by inserting one FCC (face-centered 
cubic) lattice into another FCC lattice displaced along the space 
diagonal by one-fourth of its length. Figure 1.14(h) shows a tetra­
hedron designated by a dotted line in Figure 1.14(a). It may be
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Figure 1.14 Diamond lattice: (a) — spatial arrangement of atoms in the 
lattice; (b) tetrahedral pattern of atoms in the lattice.

seen from Figure 1.14(b) that in the diamond lattice every atom is 
surrounded by four nearest neighbours in the apexes of the tetra­
hedron whose edge is a/2.

§ 9 Notation used to describe sites, 
directions, and planes in a crystal

Let us mention briefly the notation conventionally used to describe 
sites, directions and planes in a lattice, the Miller indices.

Site indices. The position of any lattice site relative to the chosen 
origin of coordinates is defined by three of its coordinates (Figure

Z Figure 1.15 Indices of a crystal lattice 
site.

1.15): x, y, z. These coordinates may be expressed in the following 
form:

x =  ma, y =  nb, z =  pc 
where a, 6, c are the lattice parameters, and m, n, p are integers.
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Should we use lattice parameters as units of length along the 
respective axes we would obtain the lattice coordinates simply in 
the form of numbers m, n, p. These numbers are termed site indices 
and are written in the form [[mnp]]. For a negative index the minus 
sign is written above the index. For instance, for a site with coordi­
nates x_= —2a, y =  — lb, z =  3c the indices are written in the 
form [213].

Indices of direction. To describe a direction in a crystal a straight 
line passing through the origin is chosen. The position of this is 
uniquely defined by the indices of the first site through which it 
passes (Figure 1.15). Therefore the indices of the site are at the 
same time the indices of the direction. The usual notation for a di­
rection is [mnp]. The indices of direction are, by definition, the 
three smallest integers that describe the position of the site nearest 
to the origin which lies on the given direction. For instance, the 
indices of the direction that passes through the origin and the site 
[[435]] are [435]. Figure 1.16 shows the principal directions (crystal­
lographic orientations) in a cubic crystal and their notation.

Plane indices. The position of a plane is defined by the choice of 
three sections A, B, C it cuts off when it intersects with the three 
coordinate axes. The procedure of finding the indices of such a plane 
is as follows.

The sections ABC are expressed in axial units and the reciprocal 
quantities are written as 11 A, 1 IB, IIC. A common denominator is 
found for all the three fractions. Suppose it is D. Then the integers 
h =  DIA, k =  DIB, I =  DIC will be the plane indices. They are 
written in the form (hkl).

Determine, for example, the indices of a plane that cuts off the 
sections A =  1/2, B =  2, C =  1/3 on the X, Y, Z axes respectively. 
The ratios 1 /A -f- 1 IB -- l/C =  l/(l/2) -  1/2 -  l/(l/3) =  2 -  

1/2 -f- 3. The common denominator is D =  2. The indices of the 
plane are h =  2/(l/2) =  4, k =  2/2 =  1, I =  3/(l/2) =  6. The plane 
is denoted (416). Figure 1.17 shows the principal planes of the cubic 
lattice.

It may easily be shown that in a cubic crystal the distances be­
tween the planes belonging to a given family may be expressed with 
the aid of the indices of these planes in the following way:

y&2+fc2+z2 '
where a is the lattice parameter. This formula shows that the greater 
are the plane indices the shorter is the distance between the planes.

To denote the planes in a hexagonal crystal a four-axis coordinate 
system is used (Figure 1.18): three axes (ax, a2, a3) make angles 
of 120° with one another and lie in the base of a hexagonal prism, 
the fourth axis, c, being perpendicular to the base plane. Every
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Figure 1.16 Indices of principal directions in a cubic crystal.

Figure 1.17 Indices of principal planes in a cubic crystal.
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plane is denoted by four indices: hkil. The additional label i occupies 
the third place and is calculated with the aid of h and k: i\= 
=  — (h +  k). The base plane parallel to the axes au a2, a3 has

Figure 1.18 Indices of principal 
planes in a hexagonal crystal.

the indices (0001). The planes parallel to the lateral faces of the 
prism have indices of the (1010) type. There are three such planes 
(not parallel to one another). They are termed first-order planes.

§ 10 Classification of solids based 
on the nature of bonds

The nature of the crystal structure is primarily dictated by the 
nature of bonding forces acting between the structural particles 
(atoms, ions, molecules) which make up the solid. In accordance 
with the five existing types of bonds there are five principal types 
of crystal lattices: ionic, or coordination, lattices, with the ionic bond 
playing the main part; molecular lattices, with the van der Waals 
forces mainly responsible for the bonding; atomic lattices, with bonds 
of a distinctly covalent type; metallic lattices, with characteristic 
metallic bonds; and lattices with the hydrogen bond.

Let us analyze from this viewpoint the crystal structure of chemi­
cal elements and of typical chemical compounds (see Appendix IV, 
Table 1).

The chemical elements may be roughly divided into four classes 
according to the type of crystal structure. The analysis may best 
be started with Class IV.

Class IV. This class includes all the inert gases. In the process 
of compression and crystallization of these gases only comparatively 
weak van der Waals forces act between the atoms, which have spher­
ically symmetrical electron shells. Acted upon by these forces the 
symmetrical atoms draw together to form a most tightly packed
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face-centered cubic lattice. Every atom is surrounded by 12 nearest 
neighbours. The number of nearest neighbours is usually termed 
the coordination number of the lattice.

Class III. The Class III includes silicon and carbon from the short 
periods of the Mendeleev periodic table, germanium and tin from 
Group IVB, and all the elements from Groups VB, VIB, VIIB.

Figure 1.19 Crystal structure of shemical elements crystallizing 
in accordance with the (8—N)-rule: (a) — elements of Group IVB;
(b) — elements of Group VB; (c) — elements of Group VIB, (d) — elements 
of Group VIIB.

(a) (b) (c) (d)

The crystallization of the elements of those classes proceeds in con­
formity with the (8 — V)-rule: every atom in the lattice is surround­
ed by 8 — N nearest neighbours, N being the number of the group 
to which the element belongs. Thus diamond, silicon, germanium 
and gray tin are elements of Group IV of the Periodic Table. There­
fore the coordination number of their lattices should be 8 — 4 =  4. 
They all do have a tetrahedral lattice in which every atom is sur­
rounded by 4 nearest neighbours, as is shown in Figure 1.19 (a). 
Phosphorus, arsenic, antimony and bismuth belong to Groug V. 
Their coordination number is 8 — 5 =  3. Every atom has 3 nearest 
neighbours lying in a plane, as shown in Figure 1.19(b). Their lattice 
has a laminate structure, with the atomic layers bonded by van der 
Waals forces.

Selenium and tellurium belong to Group VI and have a coordina­
tion number 2. Their atoms form long spiral-shaped chains with 
each atom having two nearest neighbours (Figure 1.19(c)). The chains 
are bonded by van der Waals forces. Lastly, iodine belongs to 
Group VII (Figure 1.19(d)) and has a coordination number 1. The 
atoms in the iodine lattice are arranged in pairs bonded by van der 
Waals forces. This explains the high volatility of iodine.
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Such nature of the crystal structure of chemical elements whose 
crystallization conforms to the (8— AQ-rule is quite understandable. 
The atoms of Group IV elements have 4 electrons in their outer 
shell. They lack 4 additional electrons to make up a stable 8-electron 
configuration. They make up the deficit by exchanging electrons 
with 4 nearest neighbours, as shown in Figure 1.19(a), forming 
a strong covalent bond with each of them. Accordingly, every atom 
in the crystal lattice of those elements has 4 nearest neighbours. 
In the same way the electron shells of Groups V, VI, VII are complet­
ed to contain 8 electrons. *

Many chemical compounds crystallize in crystals with covalent 
bonds. Quartz Si02 may serve as a typical example. In the quartz

Figure 1.20 Structure of quartz Si02 crystal.

crystal every silicon atom is surrounded by a tetrahedron of oxygen 
atoms (Figure 1.20) bonded to the silicon atom by covalent bonds. 
Every oxygen atom is bonded to two silicon atoms thereby joining 
two tetrahedrons. In this way a three-dimensional net of Si—0—Si 
bonds is formed, and the hardness and the melting point of the 
resulting crystal are high.

It may be of interest to note that the Si—0—Si bonds may be 
arranged into a one-dimensional chain. Such compounds described 
by the common formula

R R R
I I I... _ 0 —Si —0 —Si —O - S i - O -  ...
I I I
R R R-----------,-------- '

n
where R is an arbitrary organic group, are termed silicones. The 
number n in a chain may be as high as several million. The chains 
may be joined together with the aid of the lateral groups R. In this 
way new materials, silicone resins, are formed. Because of the high 
strength of the Si—0—Si bonds and of the high flexibility of silicone
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chains such resins retain their properties at much lower and much 
higher temperatures than natural rubbers. This fact enables them 
to be used for thermal shielding of space ships and aircraft, as well 
as in extreme arctic conditions.

Class I. This is the most populated class which contains metals. 
Since metallic lattices are made up not of atoms but of ions, having 
the spherical symmetry of the atoms of inert gases, it is to be expected 
that metals too should crystallize into the same tightly packed 
lattices as the inert gases. Indeed, the following three types of crystal 
lattices are characteristic for metals: the face-centered cubic lattice 
with the coordination number 12 (see Figure 1.12), the hexagonal 
close-packed (HCP) lattice with the coordination number 12 (see 
Figure 1.18) and the body-centered cubic lattice with the coordination 
number 8 (see Figure 1.12). The latter is the least closely packed 
metal lattice.

Class II. The chemical elements belonging to Class II are in a sense 
intermediate between metals and the Class III elements, which 
crystallize in conformity with the (8 — JV)-rule. For instance, the 
Group IIB elements Zn, Cd and Hg are metals and one would expect 
them to have a typically metallic lattice with a high coordination 
number. Actually, Zn and Cd crystals are a special modification 
of the compact hexagonal lattice in which every atom has 6 nearest 
neighbours instead of 12, as required by the (8 — A)-rule. These 
atoms occupy the base plane. In the case of mercury the (8 — Ar)-rule 
is observed even more strictly: its crystal structure is a simple 
rhombohedral in which every atom is surrounded by 6 nearest 
neighbours. Boron—an element of Group IIIB—has a lattice that 
may be described as a deformed lattice with 5 nearest neighbours. 
This too agrees with the (8 — 7V)-rule.

The ionic bond, as was stated above, plays one of the main parts 
in the world of inorganic compounds, in particular, in numerous 
ionic crystals typically represented by the rock salt crystal NaGl 
(Figure 1.21). In such crystals it is impossible to pick out single 
molecules. The crystal should be regarded as a closely packed system 
of positive and negative ions whose positions alternate so that the 
electrostatic attraction between the nearest neighbours wTould be at 
its maximum. With the most favourable relation between the radii 
of the positive {M+) and the negative (X") ions which exists in the 
NaCl crystal the ions “touch” one another (Figure 1.22(a)) and the 
closest possible packing is achieved, in which every ion is surrounded 
by 6 nearest neighbours of the opposite charge. When the ratio of the 
radii of the ions M + and is less favourable (Figures 1.22(b, c)) crys­
tal structures with other coordination numbers, 4 or 8, are formed.

Ionic compounds of the MX2 type, such as CaCl2 and Na20, have 
still more complex lattices. But the principle upon which they are 
built remains the same: the ions are packed so as to be surrounded
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by ions of the opposite sign in accordance with the formula of the 
compound and the ratio of their radii.

Finally, let us consider crystals featuring the hydrogen bond. 
A typical representative of such crystals is ice. Figure 1.23(a) shows 
a two-dimensional diagram of the arrangement of water molecules 
in an ice crystal: each molecule is surrounded by four nearest neigh­
bours a distance r0h =  2.76 A away from it with whom it forms 
hydrogen bonds. In space the molecules occupy the vertices of a

Figure 1.21 Structure of rock salt NaCl crystal.

regular tetrahedron (Figure 1.23(b)). The combination of such tetra- 
hedra forms the regular crystal structure of ice (Figure 1.23(c)). 
The structure is very loose and this is the cause of the abnormally 
low density of ice. Upon melting, some ( ~15 percent) of the hydro­
gen bonds are disrupted and the packing density of the water mole­
cules rises somewhat with the resultant rise in the density of water: 
the density of ice at 0 °G is 916.8 kg/m3, and the density of water 
at this temperature is 999.87 kg/m3.

It may be of interest to note that if there was no hydrogen bond 
the melting point of ice would be —100 °C instead of 0 °C.

It should finally be stressed again that the hydrogen bond plays 
an extremely important part in vital biological compounds: protein 
molecules owe their helical shape exclusively to the hydrogen bond; 
the same type of bonds holds together the double helixes in the DNA. 
“It is no exaggeration to claim that life on our planet would have 
assumed radically different forms—if any at all—were hydrogen 
bonding not present in water and in the proteins and nucleic acids 
that compose living cells and that transmit hereditary traits.”2

2 G. C. Pimentel and R. D. Spratley, Chemical Bonding Clarified Through 
Quantum Mechanics, Holden-Day, San Francisco (1969), p. 261
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Figure 1.22 Effect of relative dimensions of ions on their[ packing in 
the lattice.

(a) o -M + (b' (c) (d)
• -x-

Figure 1.23 Crystals with hydrogen bond: (a) — plane diagram of 
arrangement of water molecules in an ice crystal; (b) — spatial arrangement 
of water molecules in an ice crystal; (c) — crystal structure of ice,



3 8 Solid State Physics

Table 2 of Appendix IV shows the general classification of solids. 
The upper left corner contains typical metals with collectivized 
electrons (silver, copper) and the upper right corner typical valence 
crystals with distinctly localized electron bonds. The extreme right- 
hand part contains crystals with van der Waals bonds. Such elements 
as silicon and germanium occupy an intermediate position between 
the metals and the valence crystals. At absolute zero they are typical 
valence crystals; however, as temperature rises the valence bond is 
gradually disrupted and they begin to exhibit metallic properties. 
Such solids as sulphur, phosphorus, and selenium occupy an inter­
mediate position between the valence crystals and crystals with 
the van der Waals bond.

The lower left corner of the diagram contains alloys of the NiCu 
type with the characteristic metallic bond and the lower right corner 
—ionic crystals (sodium chloride). Intermediate positions between 
them are occupied by numerous intermetallic compounds of the 
Mg3Sb2 type featuring the ionic bond (Mg3Sb2 corresponds to a 
a Mg+2-Sb~3 compound). Intermediate position between the ionic 
and the valence crystals is occupied by such compounds as Si02 
and SiC, with bonds of partially ionic nature made possible because 
of electron displacement. Compounds of the FeS and the T i02 (tita­
nium dioxide) type occupy an intermediate position between ionic 
crystals and crystals with the van der Waals bond.

There’are a great many crystals in which ionic or covalent bonds 
act in atomic planes while the bonds between the planes are of the 
van der Waals type.

§11 Polymorphism
Some solids have two or more crystal structures each of which is 
stable in an appropriate range of temperatures and pressures. Such 
structures are termed polymorphic modifications, or polymorphs, 
and the transition from one modification to another, polymorphic 
transformation.

It is the practice to denote polymorphic modifications by Greek 
letters: the modification stable at normal and lower temperatures 
is denoted by a; modifications stable at higher temperatures are 
denoted by the letters p, y, 6, etc. The polymorphism of tin may 
serve as a classical example. Below 13.3 °C the stable modification 
of tin is a-Sn, which has a tetragonal cubic lattice of the diamond 
type. This is the so-called gray tin. It is brittle and may easily be 
ground to powder. Above 13.3 °C a-Sn transforms into p-Sn, which 
has a body-centered tetragonal lattice. This is the familiar white 
metallic tin, a rather ductile metal. The transformation from p~Sn 
to a-Sn is accompanied by a considerable increase in specific volume
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(by about 25 percent). Long ago when many things were made 
of tin, the perplexing phenomenon of growing bulges on them and 
their subsequent destruction following excessive cooling was attri­
buted to a mysterious metal disease, the “tin plague”.

Many other chemical elements also exhibit polymorphism: carbon, 
iron, nickel, cobalt, tungsten, titanium, boron, berillium, and others, 
as well as many chemical compounds and alloys.

An interesting and a practically important case of polymorphism 
is that of carbon, which exists in the forms of diamond and graphite.

Figure 1.24 Crystal structure of graphite.

This case deserves a more detailed study. In the diamond lattice 
every atom is surrounded by 4 nearest neighbours occupying the 
vertices of a tetrahedron (see Figure 1.14) with whom it is bonded 
by strong covalent forces. The length of the bond is 1.544 A and 
the energy per bond is about 3.5 X 105 J/mole.

The graphite lattice is of the pattern characteristic of the Group VB 
element lattices: the carbon atoms form two-dimensional layers in 
which every atom is surrounded by 3 nearest neighbours with whom 
it is bonded by covalent bonds (Figure 1.24). The length of the 
bond is r01 =  1.42 A, that is, less than in the diamond lattice, 
therefore the former is stronger. The distance between the layers is 
much greater than the length of the C—C bond, being equal to 
r02 =  3.6 A. Only weak van der Waals forces can act at such great 
distances and the layers are held together by them. The energy of 
this bond is (4-8) X 103 J/mole.

Such a great difference in the nature of the bonding forces in the 
diamond and graphite structures should evidently manifest itself 
in a great difference in their properties, which is actually the case.
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Diamond is extremely hard and strong and is an ideal abrasive. 
Graphite slides easily along the planes held together by weak van 
der Waals forces. Therefore it is used to advantage in making “lead” 
pencils and as dry lubricant. The electrons in diamond are held 
securely between the atoms forming bonds. Light of the visible 
part of the spectrum is unable to knock out such electrons and there­
fore is not absorbed in diamond. Because of this diamond is an ideal 
transparent crystal unable to conduct electric current (a dielectric). 
In graphite one of the four valence electrons of the carbon atom 
is actually collectivized by the atoms forming the layer. Such elec­
trons can easily be moved by the action of an external electric field, 
making graphite a two-dimensional conductor. The presence of 
mobile electrons explains light absorption (the gray colour of 
graphite) and its characteristic metallic glitter.

In normal conditions graphite is a somewhat more stable modifi­
cation than diamond, although the difference in the energies of 
those modifications is quite small— of the order of 2 x 103 J/mole:

C (diamond)-> C (graphite). At/ =  —1.88 X 103 J/mole
Still, such a difference is enough to bring about a sufficiently 

rapid transformation of diamond into graphite when heated above 
1000 °C in the absence of air.

The density of diamond is greater than that of graphite (3500 
and 2250 kg/m3 respectively), which is due to a loose packing of the 
atomic layers in graphite. Therefore at greater pressures diamond 
becomes more stable and graphite less stable. At sufficiently high 
pressures diamond becomes more stable than graphite. In such condi­
tions by raising the temperature to increase the mobility of the 
carbon atoms we may bring about the transformation of graphite 
into diamond.

The conditions for such transformation to proceed at a practical 
rate were calculated by the Soviet physicist O. I. Leipunskii. He 
writes: “Firstly, graphite should be heated to at least 2000 °C for 
the carbon atoms to be able to move from place to place. Secondly, 
it must be subjected to very high pressure, not less than 60 000 at­
mospheres.”3 These conditions were first achieved by the scientists 
of the General Electric Research and Development Center, who in 
1954 succeeded in producing the first synthetic diamonds in the form 
of dark unsightly crystals, the largest being 1.5 mm long. Subse­
quently the synthesis of diamonds was mastered in Sweden, the 
Netherlands, and Japan.

In the Soviet Union the production of synthetic diamonds on 
a comercial scale began in 1961. The pressure in the process is of

3 Leipunskii, O. I.: Quoted from I. I. Shafranovskii, Diamonds, “Nauka”, 
Moscow (1964).
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the order of 100 000 atm and the temperature about 2000 °C. Synthet­
ic diamonds produced by this process are harder and stronger than 
natural diamonds and their industrial use is about 40 percent more 
efficient than that of natural ones.

Another material of extreme hardness had been synthesized in 
a process similar to that of the diamond—the cubic boron nitride 
BN, which became known as borazon. It is harder than diamond and 
may be heated up to 2000 °C in atmospheric conditions. In its hexago­
nal modification boron nitride is similar to graphite—a white powder 
oily to the touch.

From the theoretical point of view all solids should exhibit poly­
morphism provided the range of their stability is not limited by 
the processes of melting and sublimation. The existence of polymor­
phism is a direct consequence of the variation of the strength and 
the nature of the bonds in the crystal lattice caused by the changes 
in intensity of atomic motion and in the distance between them as 
a result of heating or of application of external pressure to the 
crystal. Close to absolute zero the stable structure should be that 
with the strongest bonds possible for the given atomic ensemble. 
In the case of tin, which belongs to Group IV of the Mendeleev 
periodic table, such structure is the diamond structure, in which 
every atom is bonded to 4 nearest neighbours by strong colvalent 
bonds. However, as the temperature is raised, those bonds, because 
of their strict directionality and rigidity, are easily destroyed by 
thermal motion, and already above 13.3 °C the flexible metallic 
structure formed with the aid of collectivized electrons becomes 
more favourable. This bond has its own stable crystal structure, 
the tetragonal body-centred lattice.

The transition from one modification to another is accompanied 
by the liberation or absorption of latent heat of transformation 
and is therefore a phase transition of the first kind. Such a transition 
involves the transformation of the crystal lattice and this fact togeth­
er with a low mobility of atoms in solids makes possible a practi­
cally infinitely long existence of a modification thermodynamically 
unstable in particular conditions. Diamond which can exist ages 
without turning into graphite—the stable modification in normal 
conditions—is a striking example of this point.

Polymorphism is very important for practical purposes. Heat 
treatment of steels to obtain various properties, the production 
of stainless steels, the treatment of various alloys to obtain the 
necessary properties are all to a large extent based on the use of 
polymorphism.
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§ 12 Imperfections and defects 
of the crystal lattice

Mosaic structure. Numerous data obtained in the study of the struc­
ture of real crystals point to the fact that their internal structure is 
essentially not the same as that of an ideal crystal. To begin with, 
real crystals have a mosaic structure: they are made up of regular 
blocks which are only approximately parallel to one another. The 
dimensions of the blocks vary from 10~6 to 10“8 m and the angles 
between them from several seconds to tens of minutes. Because of 
the different orientation of adjacent blocks there is a transition 
layer between them in which the lattice changes its orientation

Figure 1.25 Crystal lattice defects: (a) — Frenkel defects;
<b), (c) — Schottky defects.
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gradually from that of the first block to that of the second. Therefore 
in this layer the lattice is deformed as compared with that of an 
ideal crystal.

Lattice deformations are even greater near the grain boundaries 
in a polycrystal, since the orientation of adjacent grains may differ 
by as much as tens of degrees. The grain and block boundaries carry 
excess free energy, which increases the rate of chemical reactions, 
of polymorphic transformations, of diffusion, etc. They also serve 
as effective carrier scattering centres responsible for a considerable 
part of the solid’s (metal or semiconductor) electrical resistance.

Frenkel defects. The distribution of energy among the atoms of 
a solid is very nonuniform, as is the case with the molecules of a gas 
or liquid. At any temperature there are atoms in the crystal whose 
energy is many times greater or less than the average energy corre­
sponding to the law of equipartition of energy. The atoms that at 
a given instant of time have enough energy can not only move a 
considerable distance away from their position of equilibrium, but 
can also surmount the potential barrier set up by the neighbouring 
atoms and move over to new neighbours, to a new cell. Such atoms 
acquire the capability, so to say, to “evaporate” from their lattice 
sites and to “condense” in its internal cavities, or interstitials (Fig­
ure 1.25(a)). This process results in the creation of a vacant site (a va-
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cancy) and of an atom in the interstitial position (a displaced atom). 
Such lattice defects are termed Frenkel defects.

Calculation shows the equilibrium concentration of interstitial 
atoms 72p at a given temperature to be

nF =  ANe~EF/hBT (1.18)
where Ef is the formation energy of the interstitial whose order of 
magnitude is several electron volts, N is the number of sites in the 
given volume, and A is an integer (usually about 1) indicating the 
number of identical interstitial positions per one lattice atom.

Both the interstitial atoms and the vacancies do not remain 
localized in one place but diffuse through the lattice. The diffusion 
of a displaced atom proceeds by the motion of this atom from one 
interstitial position to another, and the diffusion of a vacancy by 
a relay process in which the vacancy is filled by neighbouring atoms 
(Figure 1.25(a)): when atom 2 moves into vacancy 1 the vacancy 
moves over to site 2, when atom 3 moves to the now vacant site 2 
the vacancy moves to site 3, etc.

Schottky defects. In addition to internal evaporation there is also 
a possibility of a partial or even complete evaporation of an atom 
from the surface of a crystal. Complete evaporation means that the 
atom leaves the crystal surface and joins the vapour phase (Fig­
ure 1.25(b)). Partial evaporation means that the atom leaves the 
surface layer and arranges itself on top of it (Figure 1.25(c)). In 
both cases a vacancy is produced in the surface layer. But when an 
atom from the interior of a crystal occupies a vacancy, the latter 
is pulled into the crystal and diffuses there. Here there are no dis­
placed atoms to correspond to the vacancies, since the latter are pro­
duced without the simultaneous transition of atoms to interstitial 
positions. Such vacancies are termed Schottky defects. Calculations 
show the equilibrium number of vacancies rcscn in a crystal of N 
sites to be

nSch =  Ne~E Sch^B7 (1.19)
where i?scb is the energy of formation of a single vacancy. It is 
somewhat lower than Ef. For instance, for aluminium it is equal 
to 0.75 eV. Substituting this value into (1.19), we obtain rcsch ^  
^  1018 m”3 at T — 300 K; at T =  923 K, that is, close to the melting 
point of aluminium (Tm =  933 K), rcsch ~  1025 m~3. Such values 
are characteristic of all metals at temperatures close to their melting 
points.

The energy of formation of the Frenkel defects is approximately 
equal to the sum of formation energies of the vacancy and the inter­
stitial atom.

The Frenkel and Schottky defects play an important part in many 
processes in crystals. They act as carrier scattering centres reducing
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their mobility. They can also act as sources of carrier production, 
that is, play the role of donors and acceptors (usually the latter). 
They can also appreciably affect optical, magnetic, mechanical, 
and thermodynamic properties of crystals, expecially of thin semi­
conducting films and fine crystalline specimens (because defect 
concentration in them is usually much greater than in bulk speci­
mens).

Impurities. Impurities are one of the most important and most 
common type of detects in the structure of real crystals. Contempo­
rary refining methods are unable to guarantee absolute purity of 
materials. Even the most pure materials contain up to 10 ~9 percent

Figure 1.26 Deformations of crystal lattice of solid solutions: 
(a)— interstitial; (b) — substitution.

of impurities, which corresponds to a concentration of about 1017 im­
purity atoms per cubic metre of the material. To illustrate this 
degree of purity we would like to cite an equivalent example of one 
grain of rye contained in about 10 tons of wheat.

The impurities contained in the crystal may, depending on their 
nature, be in the form of dissolved atoms or in the form of inclusions 
of various dimensions. In the process of dissolution the impurity 
atoms enter the interstitial positions between the atoms of the crystal 
or substitute some of them in their sites. The solid solution of the 
first type is termed the interstitial solution (Figure 1.26(a)) and that 
of the second the substitution solution (Figure 1.26(b)). Because of 
a difference in the physical nature and the dimensions of the impu­
rity atoms from the atoms of the crystal, their presence results in the 
deformation of the crystal lattice.

Impurities may appreciably affect chemical, optical, magnetic, 
and mechanical properties of solids. They are effective carrier scatter­
ing centres, being the cause of electrical resistance that does not 
vanish at absolute zero temperature. In semiconductor crystals the 
impurities create new energy levels leading to the appearance of 
impurity conductivity. Calculations show that a perfectly pure 
silicon should have a specific resistance of the order of 2000 ohm-m.
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Active impurities contained in it in a concentration of 10“9 percent 
reduce the resistivity to several units. Technically pure germanium 
was for a long time regarded as a metal because its resistivity was 
of the same order as that of metals. Only perfect refining methods 
that brought impurity concentration in germanium down to 10“7- 
10"8 percent made it a typical semiconductor.

Interesting results were obtained in the course of investigations 
into the properties of extremely pure metals. Thus thoroughly 
purified iron turned out to be chemically inert and immune to corro­
sion even in conditions of tropical humidity. Titanium, chronium, 
bismuth, tungsten, molybdenum, which had a reputation for brittle­
ness, turned out to be ductile even in conditions of extreme cooling; 
tin purified to contain no more than 5 X 10"6 percent impurities 
is so soft that it bends under its own weight like dough.

Some striking results were obtained in dehydration experiments: 
materials dried so as to contain negligible amounts of residual 
moisture change their properties in a marked degree. Thus dried 
oxyhydrogen gas does not explode at high temperatures; carbon 
monoxide does not burn in oxygen; sulphuric acid does not react 
with alkali metals, etc. The English chemist H. B. Baker sealed 
11 thoroughly purified individual chemical compounds in glass tubes 
together with phosphoric anhydride (a powerful absorber of water). 
The tubes were opened 9 years later in conditions that precluded 
the admission of moisture. The results were startling: the boiling 
point of all the compounds rose appreciably. For instance, the boiling 
point of benzol turned out to be 26 °C higher than that specified 
in tables, that of ethyl alcohol was 60 °C higher, that of bromine 
was 59 °C higher, and that of mercury was almost 100 °C higher. 
Subsequent experiments carried out by other investigators substan­
tiated those results. More than that, it was established that very 
dry materials not only change their boiling point but melting point 
and other properties as well.

Despite substantial progress in the field of production of ultrapure 
materials there is a growing demand for better purification methods 
and presently there will be a need for materials with impurity con­
centrations of no more than 10~10-10"12 percent. This applies in the 
first instance to materials used for thermonuclear fusion apparatus, 
to microelectronics materials, as well as to materials used in other 
branches of industry. Such materials are not only difficult to produce 
but also difficult to keep pure, especially if they have to be processed 
before use. To illustrate how easy it is to make a mistake while 
working with such materials we would like to cite a case told by 
the well-known German physicist Werner Heisenberg. When a target 
was irradiated with a flux of neutrons in a mass spectrometer, gold 
nuclei were detected. This effect vanished after the experimenter 
took off and put away his gold-rimmed eyeglasses.



2
Mechanical Properties of Solids

The mechanical properties — strength, hardness, ductility, wear-re­
sistance—are the most characteristic of the properties of solids. 
Thanks to those properties the practical use of solids as construction­
al, building, electrotechnical, magnetic and other materials without 
which the growth of economy is impossible has become so widespread. 
The very names of the periods of human culture reflect the names 
of the solids whose mechanical properties made a qualitative leap 
in the process of development of human society possible—the Stone 
Age, the Bronze Age, the Iron Age.

This chapter deals briefly with modern physical concepts concern­
ing the mechanical properties of solids, the laws of their plastic flow 
and destruction, the physical nature of strength, and prospects for 
the development of materials with unique mechanical properties.

§ 13 Elastic and plastic deformations.
Hooke's law

When a crystal is subjected to an external extension load, the dis­
tances between the atoms become greater and the atoms are displaced 
from their equilibrium positions in the crystal. This destroys the 
equilibrium between the forces of repulsion and attraction character­
istic of the equilibrium state of the atoms in the lattice and results 
in the appearance of internal forces tending to return the atoms to 
their initial equilibrium positions. The value of those forces per 
unit cross-sectional area of the crystal is termed stress. Let us 
calculate it.

It was shown in Chapter 1 that the energy of interaction of parti­
cles 1 and 2 in a solid is a function of the distance r between them. 
This can be described by the curve U(r) schematically shown in 
Figure 2.1(a). When particle 2 is displaced from its equilibrium 
position to a distance x, that is, when the distance between the 
particles is increased to r =  r0 +  x, the particle’s energy grows
46
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and becomes U (r). The change in energy U (x) =  U (r) — U (r0> 
can be found if we expand U (r) into a Taylor series in powers of x:

u & = (t f -), * + t  (t £). *!+ t  (■!£),*•+ • • • <2-‘)
Leaving only the quadratic term of the series and taking into 

account the fact that (dU!dr)0 at point O' is zero, we obtain

£,W»T(-|S-),a:2= T ^  <2-2>'
where P is the rigidity of the bond.

We obtained an approximate expression for the change in energy 
of a particle brought about by its displacement from its equilibrium

Figure 2.1 Variation of (a) interaction energy and (b) interaction force with 
the displacement of a particle from equilibrium position jjby a distance x.

position to a distance x. This expression is an approximation because- 
we left only the quadratic term in the expansion (2.1), neglecting 
higher-order terms. Graphically this dependence is expressed by 
a parabola shown in Figure 2.1(a) by a dotted line.

The force which appears between particles 1 and 2 when the dis­
tance between them is changed by x is equal to

(2-3)
It follows from (2.3) that the force is linearly dependent on x 

and is directed towards the position of equilibrium, as indicated 
by the minus sign. It is well known that a body acted upon by such:
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a force oscillates harmonically. Therefore such force is termed harmon­
ic, the same term being applied to the approximation (2.2) {harmon­
ic approximation). Figure 2.1(b) is a schematic diagram of the f (x) 
dependence for small values of x. It is a straight line.

Now let us imagine that a tensile load F is applied to a rod with' 
a cross-sectional area S and a length L. This load changes the distance 
between the neighbouring atomic planes 1 and 2 by the amount x

Figure 2.2 Uniaxial extension of a rod by an external force F:
1 and 2 are the schematic representation of adjacent atomic planes.
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causing thereby an extension of the rod by AL (Figure 2.2). It will 
be counterbalanced by the internal force equal numerically to

Fini =  fN =  N$x (2.4)
where N is the number of particles in the atomic layer of area S. 

The stresses a which appear in the extended rod will be
( T = ^ i  =  I p x  =  CT (2.5)

where c =  N$/S. Multiplying and dividing the right-hand side 
of (2.5) by the distance between the atomic planes, r0, we obtain

o = cr0-?- =  EE (2.6)

where
£ = Cr0 =  |-pr0 (2.7)

is termed the elasticity modulus, or Young's modulus, and
e =  x/r0 (2.8)

is the relative change in the lattice parameter in the direction of the 
external force F.

Multiplying the numerator and the denominator of (2.8) by the 
number of atomic layers N* contained in the sample of length L,
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wo obtain
xN' _  M  
r0N' ~  L (2.9)

Hence e is the relative elongation of the sample under the action 
of the external tensile load.

It follows from formula (2.6) that as long as the harmonic approxi­
mation remains valid, that is, as long as the forces acting between 
the particles displaced in relation to each other as a result of the 
deformation of the body remain linear functions of the displacement, 
the stresses or which appear in the body will remain proportional 
to the relative deformation of the body:

or =  Ee
The elasticity modulus E serves as the proportionality factor.

Formula (2.6) expresses the well-known Hooke's law. It is valid 
only as long as the harmonic approximation is valid, that is, only 
for very small relative deformations e.

The physical meaning of the elasticity modulus is quite evident 
from formula (2.6). Putting e =  1, we find that o =  E. Hence the 
elasticity modulus is numerically equal to the stress which is capable 
of causing an elongation AL =  L of the sample, provided Hooke’s 
law remains valid and the sample is not destroyed. No real material 
except rubber can stand such deformations.

Table 2.1 shows the values of the elasticity modulus of some 
metallic crystals.
Table 2.1

E (GPa) G (GPa)
Substance maximum minimum maximum minimum

Aluminium 77 64 29 25
Copper 194 68 77 31
Iron 290 135 118 60
Magnesium 514 437 184 171
Tungsten 400 400 155 155
Zinc 126 65 497 278

It follows from data presented in Table 2.1 that the elasticity 
modulus of solids is very large (of the order of 1010-10n Pa), which 
is an indication that the bonding forces in those bodies are very 
strong.

For some crystals the value of the elasticity modulus depends 
appreciably on the direction in which the lattice is deformed. 
Table 2.1 shows the values of E for directions in which it is at its
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minimum and at its maximum. For some crystals the ratio i?max /^min 
may be as high as 3, pointing to a high degree of anisotropy of such 
crystals.

The elasticity modulus depends only on the nature of the atoms 
(molecules) making up the body and on their mutual arrangement. 
It can be changed only by a substantial change in composition or 
internal structure of the solid. However, even in such cases the 
changes in E are relatively small. Thus, high concentration alloying, 
heat treatment, cold rolling, etc. of steel result in great improvement 
in its hardness and in other mechanical properties but only in negli­
gible (up to 10 percent) changes in its elasticity modulus; alloying 
copper with zinc up to 40 per cent leaves the elasticity modulus

a Figure 2.3 Typical extension curve 
of a ductile metal: <jy — yield 
stress, eres — residual (plastic) 
deformation, OA—elastic deformation 
region, AB — plastic deformation 
region.

practically unchanged, although other properties experience a*pro- 
found change.

We have discussed the tensile stress. However, all the considera­
tions and the results obtained remain valid for other types of defor­
mation—compression and shear—as well. In the latter case one 
should make use of the shear modulus G, whose values are also pre­
sented in Table 2.1.

When the external load is steadily increased, stress a and defor­
mation s increase steadily too (Figure 2.3). At some stress oy, char- 
acteristic of the specific crystal, the crystal is either destroyed or 
the direct proportionality between a and e ceases and a residual 
(plastic) deformation eres sets in which remains after the external 
load has been removed. The first case is that of a brittle material 
and the second of a ductile one. The stress cry at which a noticeable 
plastic flow in the body sets in is termed the yield stress and OA 
and AB are the regions of the elastic and plastic deformations re­
spectively.

In brittle materials the elastic limit coincides with the tensile 
strength, and their destruction begins before a noticeable plastic 
flow sets in. In ductile metals, on the other hand, the elastic limit
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and the yield stress are, as a rule, much lower'than the tensile strength, 
and these materials are destroyed only after a substantial plastic 
deformation has taken place.

§14 Principal laws governing plastic flow 
in crystals

Residual deformations occur in all cases when the stress in ductile 
crystals tested for extension and compression exceeds the yield 
stress. However, neither extension nor compression can by them­
selves be the causes of such deformations. An increase in the length

Figure 2.4 Crystal deformation by a shear force F: (a) — initial 
unstressed crystal; (b) — elastic deformation caused*by shearing stress 
not exceeding elastic limit; (c) — early stages of plastic shear (slip) 
in the S plane caused by stress exceeding elastic limit; (d) — external 
force is removed, residual deformation (residual shift of one part 
of the lattice in relation to another) remains.

F F

of the crystal can only result in an increase in the distance between 
the atomic planes perpendicular to the acting force. When these 
planes are drawn far enough apart, it may be that the forces of 
attraction shall no longer be able to compensate for the external 
load and the crystal will break. Compression can only draw the 
atomic planes closer together until the repulsive forces appearing 
between the atoms are able to counterbalance the external load. 
Deformation in this case is ideally elastic and cannot lead to irre­
versible displacement of parts of the lattice.

Plastic deformation may only be the result of shearing stresses, 
which are able to shift some parts of the crystal in relation to the 
others without destroying the bonds between them. Such displace­
ment is termed slipping. It lies at the basis of the plastic flow process 
in crystalline materials. Figure 2.4 shows how residual deformations 
originate and develop in crystals (Figure 2.4(a)) acted upon by 
a shearing force F. As long as the elastic limit is not reached the 
crystal experiences elastic deformations (Figure 2.4(b)) with the
4*
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tangential stresses growing in proportion to the relative shearing 
deformation y (Hooke's law):

t =  Gy (2.10)
where G is the shear modulus. After the crystal is relieved from exter­
nal load the atoms return to their initial positions. When the elastic 
limit is exceeded, one part of the crystal shifts in relation to another 
(Figure 2.4(c)) by one or more atomic distances along definite planes 
S termed slip planes. When the external load is withdrawn, the 
elastic stresses in the lattice vanish. However, one part of the crystal 
remains displaced in relation to another (Figure 2.4(d)). Such small 
irreversible displacements that proceed along numerous slip planes 
sum up to produce the residual deformation of the crystal as a whole.

The degree to which a crystal can be subjected to plastic deforma­
tions is determined, first of all, by the nature of the bonding forces 
acting between its structural elements.

The covalent bond with its rigorous directionality is appreciably 
weakened already by small relative displacements of the atoms. 
Shear destroys such bonds even before the atoms are able to establish 
them with other neighbouring atoms. On account of this the valence 
type crystals (such as diamond, silicon, germanium, antimony, 
bismuth, and arsenic) are incapable of plastic deformation. Outside 
the elastic deformation range they experience brittle destruction.

The metallic bond, which does not exhibit any directionality, 
on the other hand, remains practically unchanged as a result of 
relative tangential displacements of the atoms. This makes very 
great (some thousand atomic distances) relative displacements of 
some parts of the lattice possible, resulting in a high degree of duc­
tility of crystals of this type.

The ionic bond occupies an intermediate position between the 
metallic and covalent bonds. It is less directional than the covalent 
bond but not so flexible as the metallic bond. Typical ionic crystals 
such as NaCl, CaF2, and KC1 are almost as brittle as the valence- 
type crystals. At the same time silver chloride crystals are rather 
ductile.

Slipping takes place in crystals along definite crystallographic 
planes and directions, usually along the closest-packed planes and 
directions. This is because the closest-packed planes and directions 
are the strongest since the interatomic distances in them are the 
shortest and bonding is at its maximum. On the other hand, the 
distance between such planes is the greatest (see (1.17)); on account 
of this the bonding between them is at its minimum. Slipping along 
such planes and directions results in the minimum disarrangement 
in atomic order and is therefore the easiest to accomplish.

The combination of the slip plane and the slip direction, which 
lies in it, forms the slip system. In the face-centered cubic lattice the



Mechanical Properties of Solids 53

slip plane coincides with the octahedral plane (HI) and the slip 
direction with the direction of the body diagonal [111]. In hexagonal 
crystals the SS slip plane coincides with the base plane (0001) and 
the X slip direction with one of the three axes lying in the base 
plane (see Figure 2.5, where P is the external deforming load).

Numerous experiments have shown that the crystal begins to 
“slip” in the given slip system only after the shearing stress r acting

Figure 2.5 Slip planes and directions in a crystal.

Slip planes

Crystal before deformation Crystal after deformation

in this system reaches the critical value xcr termed the critical shear­
ing stress. Table 2.2 shows the values of critical shearing stresses 
for some pure metallic single crystals.

Table 2.2

Metal Impurity 
content (10~4)

Slip
plane

Slip
direction ter(107 Pa)

Cadmium 0.4 (0001) 1100] 0.058
Copper 10 (111) [101] 0.1
Magnesium 5 (0001) [100] 0.083
Nickel 20 (111) [101] 0.58
Silver 1 (111) [101] 0.06
Zinc 4 (0001) [100] 0.094

It follows from the data of Table 2.2 that for the most ductile 
single crystals the critical shearing stress does not exceed 106 Pa.

The critical shearing stress depends to a large extent on the prior 
deformation of the crystal rising with the increase in the latter



6 4 Solid State Physics

This phenomenon became known as strengthening, or cold working. 
Thus a 350 percent preliminary deformation of the magnesium single 
crystal increases Tcr nearly 25 times. Even greater is the effect of 
cold working on the cubic crystals—aluminium, copper, nickel, 
etc.

The strengthening of crystals is a witness to the fact that irrevers­
ible processes involving the relative displacement of atoms * and 
of parts ot the crystal take place. This results in changes of the 
internal energy of the crystals. Experimental study of this phenome­
non has proved that the changes in the internal energy of solids 
in the process of their plastic deformation do, indeed, take place. 
Table 2.3 shows the maximum amounts of energy that are accumulat­
ed by various metals in the process of their plastic deformation.

Table 2.3

Melal Q (J/kg)

Aluminium 4400
Brass 2000
Copper 2000
Iron 4800
Nickel 3120

Should this energy be transformed into heat it would suffice to 
heat the metal by several degrees.

Since the accumulation of energy in the crystal in the process of 
its plastic deformation involves irreversible displacements of the 
atoms and of parts of the crystal, this energy is, in effect, the energy 
of residual stresses remaining in elastically deformed parts of the 
crystal lattice.

Because of a higher value of internal energy in a cold worked 
crystal it is less thermodynamically stable than the annealed crystal. 
This gives rise to processes that tend to bring the crystal to the 
equilibrium state. Relaxation and recrystallization are two such 
processes.

Relaxation consists in the dissipation of internal stresses, with 
the atoms of the deformed parts of the lattice returning to their 
regular positions. This process does not involve visible changes in 
the crystal structure and results in a partial or complete removal 
of the strengthening obtained as a result of plastic deformation. 
Being a diffusion-controlled process relaxation proceeds at a rate 
that strongly depends on temperature and on the latent heat of 
defect formation. Metals with a low melting point (such as tin, 
lead, cadmium, zinc) have comparatively high self-diffusion rates
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already at room temperatures. Accordingly, their relaxation rates 
at room temperatures are quite noticeable. At the same time there 
is practically no relaxation at room temperature in the metals with 
a high melting point; but the relaxation rate rises sharply as the 
temperature is increased (the relaxation process goes as far in 1 min­
ute at 315°C as it would in a hundred years at room temperature).

Another process that also results in the disappearance of the 
hardening in a cold worked crystal—the recrystallization process— 
proceeds intensely at temperatures of the order of one quarter of the 
melting temperature of the metal (on the absolute scale). In contrast 
to relaxation, which produces no visible changes in the crystal 
structure, recrystallization involves nucleation and growth of new 
crystals free from internal stresses. The nucleation of such crystals 
takes place in the first instance in the most deformed parts of the 
lattice, where much of the excess free energy is concentrated. In this 
way a complete change in the microscopic structure of the crystal 
takes place with the crystal generally going over from the single 
state tojthe polycrystalline one. In the process of recrystallization 
the latent heat accumulated in the deformed crystal is given off in 
the form of heat.

§15 Mechanical twinning
Plastic deformation may also take the form of twinning, which is 
a process of step-by-step relative displacement of atomic planes 
parallel to the twinning plane by a fixed distance equal to a fraction 
of the lattice parameter. Figure 2.6 shows the diagram of twinning 
of the crystal AECDA. The area ABCDA is the undeformed part 
of the crystal, BECB is the part where twinning has taken place, 
and BC is the twinning axis. The positions of atoms before twinning 
are denoted by crosses. The plane passing through the twinning 
axis and separating the region of twinning from the undeformed 
part of the crystal is termed twinning plane.

Figure 2.6 shows that twinning results in the displacement of the 
atoms of the plane 11 relative to the twinning plane BC by a fraction 
of interatomic distance in the twinning direction. The plane 22 is 
displaced relative to the plane 11 by the same fraction of interatomic 
distance, the displacement relative to the twinning plane being twice 
as great. In other words, every atomic plane parallel to the twinning 
plane is displaced in itself by a distance proportional to its distance 
from the twinning plane. As a result, the atoms in the twinned re­
gion assume positions that are mirror reflexions of the positions in 
the undeformed part of the crystal in the twinning plane.

Twinning, in the same way as slipping, may take place only along 
specific crystallographic planes. In case of a face-centered cubic
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crystal this is the (112) plane, in case of a hexagonal close-packed 
crystal this is the (1012) plane, etc. For twinning to take place the 
tangential stresses should exceed some critical value. The process 
is a very rapid one and is usually accompanied by a characteristic 
crackle.

Because only negligible relative displacements of the neighbouring 
atomic planes are involved in the process of twinning it cannot 
result in a great residual deformation. For instance, a complete

Figure 2.6 Twinning in a crystal: 
sign “+ ” denotes initial atomic 
positions in the twinning region.

transition of a zinc crystal to the twinned form brings about only 
a 7.39 percent elongation. For this reason in crystals capable of 
plastic flow by means of slipping, twinning is responsible only for 
a negligible fraction of the total plastic deformation. In contrast 
to that, negligible deformation that precedes destruction of the 
valence crystals, in which slipping cannot take place, is due to 
twinning. In hexagonal crystals unfavourably oriented in relation 
to the external force twinning and subsequent reorientation of the 
crystal may result in appreciable residual deformations produced 
by the normal slipping process.

§ 16 Theoretical and real shear strengths 
of crystals

Shear is the principle mechanism of plastic flow in crystals. For 
a long time it was presumed that such shear takes place by means 
of a rigid displacement of one part of the crystal in relation to another 
simultaneously along the entire slip plane SS (Figure 2.7).

Let us make a rough estimate of the tangential stress needed to 
produce such shear.

The atoms of two adjacent parallel planes in an undeformed lattice 
occupy equilibrium sites corresponding to the minimum of the
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Figure 2.7 Diagram of rigid shear: 
(a) — equilibrium position of atoms 
in atomic planes adjoining the slip 
plane; (b) — gradual shift of one 
plane in relation to another caused 
by external stress r; (c) — lower 
atomic plane as a whole displaced 
by one interatomic distance 
in relation to the upper plane.

(c)

Figure 2.8 Variation of resistance to shear in'the process of displacement 
of one part of the lattice in relation to another.

T

potential energy (Figure 2.7(a)). The forces acting between them 
are zero. As one atomic plane is displaced relative to the other tan­
gential stresses % appear. They resist the shear and tend to bring 
back the original equilibrium state (Figure 2.7(b)). If we assume 
the dependence of those stresses on the displacement to be sinusoidal 
(Figure 2.8), we shall be able to express the resistance to shear in 
the form

i  =  4sin—  (2.11)
where x is the displacement of the atoms from their equilibrium 
positions, b =  a the interatomic distance in the slip plane, and A 
is a constant. For small displacements sin 2nxlb ^  2nxlb and there­
fore I

t =  A2nxlb (2.12)
On the other hand, for small displacements Hooke’s law is valid:

t =  Gxld (2.13)
where G is the shear modulus, and d the distance between the planes. 
From (2.12) and (2.13) we obtain A =  (bid) G!(2n). Therefore

T G_
2n

2nx
b (2.14)
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The maximum Value Tcr of the tangential stress t  is attained for 
x =  6/4 and this is assumed to be the theoretical strength:

x« = T - | r  <2-15)
Setting 6 =  dy we obtain

’ . . “ ■ S T  < 2 ' 1 6 '

Hence the critical shearing stress should be equal to about one 
tenth of the shear modulus. A more rigorous consideration of the 
nature of the bonding forces acting between the atoms leads to 
a*negligible correction factor. The minimum value that was obtained 
for Tcr is 6730. Table 2.4 shows experimental and theoretical values 
of Tcr for several metals.
Table 2.4

Metal xcr (10’ Pa) 
experiment G (107 Pa)

xcr (107 Pa) theory
G/2n G! 30

Cadmium 0.06 2640 420 88
Copper 0.10 4620 735 154
Iron 2.90 6900 1100 230
Magnesium 0.08 1770 280 59
Nickel 0.58 7800 1240 260
Silver 0.06 2910 459 97
Zinc 0.09 3780 600 126

A comparison of these figures shows that the real shear strength 
of crystals is some 3-4 orders of magnitude less than the theoretical 
value. This points to the fact that shear in crystals does not take 
place by means of a rigid relative displacement of atomic planes 
but by means of a mechanism involving the displacement of a com­
paratively small number of atoms at a time. The understanding 
of this fact led to the evolution of the dislocation theory of plastic 
flow of crystals.

§17 The dislocation concept.
Principal types of dislocations

The dislocation theory oflplastic flow assumes that the slipping 
process starts ̂ always at imperfections in the crystal structure and 
develops along'the shear plane by means of a gradual motion of this 
imperfection which at a time involves only a limited number of 
atoms. Such imperfections are termed dislocations.
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Edge dislocations. Suppose gliding took place in the crystal K 
in the plane ABCD in the direction of the vector b involving the 
area AHED (Figure 2.9). The atomic planes on both sides from the

Figure 2.9 Shear that creates an edge dislocation. Shear took place 
only in region AHED of slip plane ABCD. Boundary HE is the edge 
dislocation.

Direction of dislocation 
motion

slip plane AHED are displaced in relation to one another by the 
distance b in the slip direction. The boundary HE separating the 
area AHED, where .slipping took place, from the area HBCE, where

Figure 2.10 Arrangement of atoms in the plane perpendicular to dislocation 
line HE (see Figure 2.9). Dislocation occupies the region in which lattice 
atoms are displaced from their equilibrium sites (bounded by a circle):
O — dislocation centre; (a) — positive dislocation; (b) negative 
dislocation.

slipping has not yet taken place, constitutes an edge dislocation 
and the vector b is termed the Burgers vector. It describes how far 
slipping has proceeded in the area AHED.

Figure 2.10 shows the arrangement of atoms in a plane perpendicu­
lar to the dislocation line. As a result of the shift which took place
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over the area AH ED the upper part of the lattice contains one atomic 
plane (plane OM) more than the lower. Because of that the atomic 
row 1 lying above the shear plane contains one atom more than the 
row 2 below this plane. The interatomic distances in the upper row 
near the point O (the dislocation centre) will accordingly be shorter 
than the normal value (the lattice is contracted), while the interatom­
ic distances in the lower row near the point 0 will be longer (the 
lattice is extended). As the distance to the left or to the right, and 
up or down, from the dislocation centre 0 increases, the deformation

Figure 2.11 Formation of a screw dislocation: (a) — shear which 
produces the screw dislocation. It took place in the ABCD plane.
Boundary AD is a screw dislocation; (b) — arrangement of atoms around the 
screw dislocation. Plane of drawing is parallel to slip plane. White 
circles denote atoms of the plane lying immediately above the slip 
plane, black circles denote atoms 
of the plane lying under the slip plane.

of the lattice gradually subsides and at an appropriate distance 
from O in the crystal normal disposition of atoms is restored. How­
ever, in the direction perpendicular to the plane of the diagram the 
dislocation passes through the entire crystal or through a consid­
erable part of it.

Thus a feature of the edge dislocation is the existence of an “excess” 
atomic plane OM in some part of the crystal. Therefore the process 
of formation of such a dislocation may be imagined as that of pulling 
the lattice apart and inserting an additional atomic plane in it. 
Such plane is termed extra plane. If the plane is inserted into the 
upper part of the lattice, the edge dislocation is assumed to be posi­
tive (Figure 2.10(a)). But if the extra plane is inserted into the 
lower part of the lattice, the dislocation is assumed to be negative 
(Figure 2.10(b)). A dislocation whose Burgers vector is equal to the
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Figure 2.12 Explaining the origin of the “screw dislocation”:
(a) — arrangement of atoms in a screw dislocation; (b) — atom a moves 
towards atoms b, c, d, e, etc. constituting the screw dislocation 
along a spiral.

b

(a) (b)
lattice parameter is called the unit dislocation. When a unit disloca­
tion passes through a cross section of the crystal, one part of it 
shifts in relation to the other by a distance b. The motion of a posi­
tive dislocation to the left causes the same shift of parts of the lattice 
as a motion of a negative dislocation to the right (Figures 2.10(a, b)).

Screw dislocations. Suppose an incomplete unit shift is made in 
the crystal K in the direction of the vector b over the area A BCD, 
as shown in Figure 2.11(a); AD is the boundary of the area that 
experienced the shift. In Figure 2.11(b) the white circles denote 
the atoms of the plane immediately above the slip plane and black 
circles the atoms of the plane below the slip plane. In the undeformed 
part of the crystal to the left of AD the atoms of those planes are 
arranged one on top of the other; therefore the black circles coincide 
with the white (this is shown by white circles with a black point 
in the centre). In the right-hand part of the crystal, where the shift 
has covered one interatomic distance, that is, to the right of EH, 
the atoms of the planes discussed above are also arranged one on 
top of the other. However, in the narrow strip ADEH the atoms of 
the upper plane are displaced in relation to those of the lower plane 
the more the farther away they are from the boundary AD. This 
displacement results in a local deformation of the lattice, which 
became known as the screw dislocation; the boundary AD is termed 
dislocation axis. The origin of the term screw dislocation may be 
easily understood from Figure 2.12: the motion of the atom a to­
wards the atoms b, c, d, e, etc. (Figure 2.12(a)) lying in the plane 
of the screw dislocation proceeds, as may be seen from Figure 2.12(b), 
along a spiral. A distinction is made between right and left screw 
dislocations (Figure 2.13); the motion of both in opposite directions 
results in a shift in one direction.

Comparing Figures 2.9 and 2.11(a), we see that in contrast to the 
edge dislocation, which is perpendicular to the Burgers vector, b, 
the screw dislocation is parallel to it. The motion of the edge dislo-
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cation is in the direction of the Burgers vector b, and the motion of 
the screw dislocation is in the direction perpendicular to it.

Recently experimental methods for direct observation of disloca­
tions have been developed. Figure 2.14(a) shows a schematic diagram 
of an electron micrograph of a thin film of platinum phthalocyanine 
and Figures 2.14(b, c) an electron micrograph of a copper sulphide 
crystal obtained with the aid of a special procedure. Dark stripes 
on the micrographs are the traces of the atomic planes, which in 
platinum phthalocyanine are arranged at a distance of 12 A from

Figure 2.13 Right and left screw dislocations.

one another and in copper sulphide at a distance of 1.88 A. The 
micrographs distinctly show the extra planes which terminate inside 
the crystal and form edge dislocations.

Figure 2.14(d) shows an optical micrograph of a decorated screw 
dislocation in a CaF2 crystal. The method of decoration as used for 
transparent crystals consists in the precipitation along their disloca­
tion cores of impurity atoms, which make the dislocation visible in 
an optical microscope. The striking agreement between those pictures 
and the theoretical concepts as set out in Figures 2.10 and 2.12 is 
worthy of admiration. Points of exit of dislocations on the crystal 
surface may be detected with the aid of etching. When a crystal 
is etched in a specially selected etch, the parts of the crystal where 
the lattice is most deformed dissolve more readily because the atoms 
in those parts possess an excess energy and are chemically more ac­
tive. The places of exit of dislocations on the crystal surface are just 
such parts. Figure 2.15 shows a photograph of an etched germanium 
surface. The dark patches are the points of exit of dislocations.
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Figure 2.14 Observation of " 
dislocations in an electron microscope: 
(a) — schematic diagram of an 
electron micrograph of a thin 
platinum phthalocyanine film (dark 
lines are atomic traces); (b), (c) — 
electron micrograph of a copper 
sulfide crystal (dark lines are traces 
of atomic planes); (d) — screw 
dislocation in a CaF2 crystal 
obtained by decoration method.

Figure 2.15 Etch pits on germanium surface. Dark points along the grain 
boundary are points of exit of dislocations.
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§18 Forces needed to move dislocations
Suppose there is a positive dislocation with the centre at 0, bounded 
at points a and A\ and lying in the plane S in which slipping is 
possible (Figure 2.16(a)). In equilibrium the force with which the 
lattice acts on the dislocation is zero. This may easily be seen from 
the roller model shown in Figure 2.17. The structure of the upper 
row of rollers which normally occupy recesses between the rollers

Figure 2.16 Calculating the force needed to move a dislocation:
(a) — region of positive dislocation in crystal; 0 is dislocation 
centre, a and k are dislocation boundaries, S is the slip plane;
(b) — forces needed to move an atom in the dislocation region (forces 
applied to atoms equidistant from the dislocation centre are equal
in magnitude and opposite in direction).

a b c d e 0 ° h i } k 

1 2 3 4 5 6 7 8 9 10

(a)

of the lower row' was deformed so that the section AB which pre­
viously contained 6 rollers now contains only 5. Such deformation 
gives rise to forces which tend to return the rollers 7, 2, 7, 5 to 
their stable equilibrium positions (the forces Fl7 F2, F3, F4, F5). 
The forces applied to rollers 7, 5 and 2, 4 are equal in magnitude 
and opposite in direction. Therefore, if the rollers of the upper row 
are interconnected by means of an elastic spring acting as a bond 
between them, the forces Ft and F5, F2 and F4 will be mutually 
compensated and the system will be in a state of equilibrium.

The same situation occurs in the case of a dislocation schematically 
shown in Figure 2.16(b); the forces acting on atoms of the upper row 
occupying positions symmetrical with respect of the dislocation 
centre 0 are equal in magnitude but opposite in direction (the forces 
Fb =  Fj, Fc =  Fi, Fd =  Fh, Fe =  F„ ). Therefore the resultant force 
is zero and the dislocation is in a state of equilibrium. If, however, 
the dislocation moves a little in the slip plane the symmetrical 
arrangement of the atoms in respect of the dislocation centre will 
be disturbed giving rise to a force which resists the motion of the
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dislocation. It is evident from Figure 2.17 that this force cannot be 
great since the movement of the rollers 1 and 2 to their new equi­
librium position is to a large extent the result of the action of the 
forces excercised on them by the rollers 4 and 5, which also strive

Figure 2.17 Roller model of an edge dislocation. Forces applied 
to “atoms” i, 5 and 2, 4 are equal in magnitude and opposite 
in direction.

T
F l F 2 F 4 F ,

to occupy positions of stable equilibrium. Calculations show the 
tangential stress needed to move the dislocation to be equal to

2G I 2jib \  /o A n\T° = T^V exP ( iT(l—v7) <2-17>
where G is the shear modulus, v the Poisson ratio, b the interatomic 
distance, and d the distance between adjacent slip planes. The stress

Figure 2.18 Dislocation mechanism of motion of (a) an earth-worm 
and (b) a snake.

r0 is the theoretical value of the critical shearing stress. Setting 
b — d and v =  0.3, we obtain t 0 =  3 x  10”4 G. Within an order 
of magnitude this coincides with the experimental values of Tc r . 
Thus the theory of dislocations resolves the contradiction between 
the theoretical and the experimental values of shear strength of 
crystals.

The mechanism of motion by means of dislocations is quite fre­
quent in nature. Snakes, worms, and shellfish move, because they 
generate dislocations. The motion of an earth-worm begins with
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the formation of an “extension” dislocation near the neck. The 
dislocation subsequently spreads along the body to the tail (Fig­
ure 2.18(a)). In contrast, the motion of most snakes involves the for­
mation of a “contraction” dislocation near the tail and its motion 
towards the head (Figure 2.18(b)).

§ 19 Sources of dislocations.
Strengthening of crystals

The dislocations in a real crystal are formed in the process of its 
growth from the melt or from a solution. Figure 2.19(a) shows the 
boundaries of two blocks growing towards each other. The blocks

Figure 2.19 Formation 
of dislocations at block boundaries:
(a) — twojblocks growing towards 
each other at an angle q>;
(b) — dislocations appearing when 
the blocks fuse together.

make a small angle (p between themselves. As the blocks fuse to­
gether, some of the atomic planes do not spread through the entire 
crystal but terminate at block boundaries. Those are the places 
where dislocations are formed (Figure 2.19(b)). The same situation 
occurs in the process of fusion of differently oriented grains in a poly­
crystalline sample. Since the block and grain boundaries in real 
solids are very extensive, the number of dislocations in them is 
enormous—as many as 1012 dislocations per square metre can be 
counted in well annealed metals. After cold working (rolling, draw­
ing, etc.) dislocation densities rise to 1015-1016 m"2. Those disloca­
tions accumulate almost the entire energy absorbed by the metal in 
the process of plastic deformation.

Vacancy clusters may also serve as sources of dislocations in an 
undeformed crystal. Figure 2.20 shows an example of the formation 
of a positive and a negative dislocation from a cluster of vacancies.
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The shear process in a crystal in response to an applied external 
force is, in effect, the motion of dislocations in the slip planes and 
their emergence through the crystal surface. Should only the dislo­
cations already present in the crystal be responsible for this process, 
plastic deformation would lead to their exhaustion and to the per­
fection of the crystal. This is in contradiction with experience, 
which demonstrates that as deformation grows the lattice does not 
become more perfect. In fact, just the opposite is true: the density 
of dislocations grows in the process. It is an established fact that 
dislocations responsible for plastic deformation are generated in the 
shear process itself by the action of the external force applied to the 
crystal. One such generation mechanism was discovered in 1950 
by F. C. Frank and W. T. Read. For the purpose of better understand-

Figure 2.20 Dislocations formed from vacancy clusters:
(a) — vacancy cluster in crystal; (b) — positive and negative dislocations 
formed from this cluster.

(a) (b)

ing this mechanism let us consider soap bubble formation with the 
aid of a tube (Figure 2.21). After the end of the tube has been immersed 
in a soap solution a flat film remains that closes the tube’s orifice. 
As the air pressure in the tube is increased, the film swells and passes 
through the stages 2, 2, 5, 2, etc. Until it assumes the shape of 
a hemisphere (stage 3) its state is unstable: as pressure falls the film 
contracts striving to return to the original state 1. After the bubble 
has passed stage 3 the state of the bubble changes: it is now capable 
of evolution not only at a constant but also at a gradually decreasing 
pressure until it leaves the end of the tube. After the first bubble the 
second begins to be formed, followed by the third, etc.

Now let us discuss the operation of the Frank-Read source. Figure 
2.22(a) shows an edge dislocation DD' in a slip plane; points D 
and D' are fixed and do not take part in the motion of the disloca­
tion. Dislocations may be anchored at the points of intersection 
with other dislocations, at impurity atoms, etc. Under the action
5*
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of an external stress t the dislocation starts bending in the same 
way as was the case with the soap film and at some time assumes 
the shape of a semicircle (Figure 2.22(b)). Just like the soap film 
the dislocation can continue to bend only if t grows steadily until 
it assumes the shape of a semicircle. Its subsequent evolution takes 
place by itself and results in the formation of two loops (Figure 
2.22(c)), which after meeting at point C (Figure 2.22(d)) divide the

Figure 2.21 Process of formation 
of a soap bubble.

dislocation in two: an external one, which closes forming an external 
circle (Figure 2.22(e)), and an internal one, which returns to the 
original position DD'. The external dislocation grows until it reaches 
the surface of the crystal and results in an elementary shift; the 
internal dislocation having returned to the initial position DD' 
begins again to bend under the action of the applied force and to 
grow in the manner described above. Such process may be repeated

Figure 2.22 Operating sequence of a Frank-Read source:
(a) — initial position of dislocation DDf, (b) — acted upon by external 
force the dislocation bends and assumes the shape of a semicircle;
(c), (d) — further symmetric development of the dislocation loop;
(e) — formation of external closed dislocation loop spreading across 
the crystal and of internal dislocation DD' returning to the original 
position.
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any number of times eventually leading to a noticeable shift of one 
part of the crystal in relation to another in a particular slip plane.

Low shear strength of crystals is due to the presence of innate 
dislocations and to the generation of others in the process of Shear. On 
the other hand, it is an established fact that the crystal is strength­
ened in the process of plastic deformation accompanied by the 
growth in the number of defects. The essence of such strengthening

A I
I

B
Figure 2.23 Schematic 
representation of an edge dislocation 
surmounting an obstacle: AB — shape 
of edge dislocation away from 
the obstacle D; 1, 2, 3 — gradual 
bending of the dislocation as it 
approaches D and closing of 
the newly formed loop behind the 
obstacle; A'B' — straightening 
of the dislocation far away from 
the obstacle.

is the interaction of dislocations with each other and with other 
types of lattice defects causing their motion in the lattice to be 
obstructed.

Interaction of dislocations. Every dislocation, being the cause of 
elastic stresses of the lattice, creates a force field around itself which 
may be described by the values of the tangential t and normal a 
stresses at every point. When another dislocation enters this field, 
forces begin to act which strive to bring the dislocations together 
or to move them apart. Dislocations of like signs lying in one plane 
are repelled, while those of opposite signs are attracted. This is the 
reason why, as dislocations are accumulated in a definite plane, 
the crystal’s resistance to shear is increased and the crystal is strength­
ened.

Surmounting of obstacles. Suppose a dislocation when moving 
in a slip plane under the action of tangential stresses t runs into 
a stationary obstacle D, for instance, an intersection with some 
other dislocation, an impurity atom, or some other type of defect. 
Figure 2.23 shows the method by means of which dislocation AB 
could, theoretically, surmount obstacle D : as the dislocation ap­
proaches/) (positions Z, 2, 3) it gradually bends forming a loop that 
envelops the obstacle. Behind the obstacle the loop closes and the 
dislocation A'B' again becomes a straight line. Figure 2.24 shows 
a photograph illustrating a case when a dislocation runs into a sta­
tionary obstacle (dark lines represent dislocations decorated by
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etching). The similarity in the pictures leaves not a trace of doubt 
as to the validity of the theoretical pattern shown in Figure 2.23.

In passing around the obstacle, the length of the dislocation and 
the deformation of the lattice are increased, which requires addi­
tional work to be performed. Therefore the resistance to the motion 
of the dislocation in the interval where it has to surmount a defect 
is much greater than in other parts of the lattice. This is the essence 
of the fact that defects strengthen a crystal. The growth in the number 
of dislocations in the crystal with greater plastic deformation in-

Figure 2.24 Microphotographs of 
a chromium grain. Dark lines are 
etched dislocations (x2000).

creases the number of obstacles at points of their intersection, which 
is the cause of strengthening brought about by plastic deformation. 
Impurity atoms have a similar effect: they create local lattice imper­
fections and thereby hinder the motion of the dislocations, with 
the result that the crystal’s resistance to shear is increased. Block 
and grain boundaries and foreign inclusions in the lattice are espe­
cially effective in hindering the motion of the dislocations. They 
sharply increase the resistance to the motion of dislocations and 
greater stresses are required to overcome their effect. The phenome­
non of strengthening in the process of cold working, in the process 
of introducing impurity atoms (doping), and in the process of forma­
tion of inclusions (tempering, aging, etc.) is widely used in practice 
to improve mechanical properties of engineering materials. This 
method enabled the strength of the materials to be increased from 6 
to 8 times in the last 40 years.
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§ 20 Brittle strength of solids
The destruction of solids may be of one of two principal types: of the 
brittle and of the plastic, or viscous, types.

Brittle destruction takes place if the tensile strength of the ma­
terial is below the elastic limit. Such a material experiences only 
elastic deformation prior to destruction. No irreversible changes 
take place in such a material before it breaks down.

In the ductile materials the elastic limit is not only below the 
tensile strength but also below the yield stress. Because of that the

Figure 2.25 Calculating theoretical 
strength of solids after Polanyi 
(explanation in text).

destruction process is preceded by an appreciable plastic deforma­
tion, which prepares the subsequent destruction process. In this 
case strength, being a typical kinetic parameter, is strongly depen­
dent on the time the destructive stress is applied.

To begin with, let us discuss brittle strength of solids.
Theoretical strength of solids. There have been numerous at­

tempts to calculate the strength of solids on the basis of molecular 
interaction in them. The strength o0 thus calculated is termed 
theoretical strength.

Here is a glance at some of the methods of estimating o0.
Polanyi s method. The simplest method of estimating the strength 

of solids theoretically is due to M. Polanyi. Its essence is as follows.
Suppose a tensile stress a is applied to a rod of a cross-sectional 

area of 1 m2 (Figure 2.25). This stress increases the distance between 
the atomic planes. It is assumed that for destruction to take place 
a stress o0 able to increase the distance between the atomic planes 
by a value of the order of the lattice parameter a should be applied. 
The work needed to move an atomic plane a distance a away from 
the neighbouring plane is assumed to be equal to o0a. It is further 
assumed that this work is transformed into the free energy of two
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new surfaces with a total area of 2 m2 formed as a result of the break­
up, the free energy being equal to 2a, where a is the surface energy 
(“surface tension,,) of the solid. Hence

o0a =  2a
and the theoretical strength is

cr0 =  2a !a (2.18)
For copper a « 1.7 J/m2, a =  3.6 X 10"10 m, and o0 & I X 1010 Pa, 
for silver a « 1.14 J/m2, a =  4 X 10~10 m, and a0 =  0.6 X 1010 Pa.

Determination of a0 from the heat of sublimation. The energy equal 
to the heat of sublimation Q8 is required for the evaporation of 
a mole of a solid. For the evaporation of one molecular layer of the 
area of 1 m2 the required energy W is a fraction ol Qs equal to the 
ratio of the mass of this layer m to the molar mass M :

W =  Qsm/M
But

m — Ns (lx, M =  Na\i
where \i is the molecular weight, NA =  6.023 X 1023 mole-1 the 
Avogadro number, and N s the number of molecules per square metre 
of the solid’s surface.

For an intermolecular distance of a the area per molecule is appro­
ximately equal to a2 and the number of molecules per square metre 
N s & a~2. Therefore

W — 0 -Ns &” Na ~  Nao*
Should the assumption be made that the evaporating molecules 

loose contact with the solid’s surface when they are a distance of 
the order of the lattice parameter a away from it, we would obtain 
for the force needed to tear away an entire surface layer as a whole

<*o i L _ _ 2§_JLa ~  NA a* (2.19)
o0 is assumed to be the theoretical strength of the solid.

For copper Qs =  3 X 105 J/mole, a =  3.6 X 10“10 m, and o0 ^  
« 1010 Pa. Similar calculations lead to the following results: for 
iron g0 & 2.3 X 1010 Pa, for aluminium o0 » 0.6 X 1010 Pa, and 
for silver or0 ^  0.6 X 1010 Pa.

Calculating a0 from the forces of molecular interaction. Finally, 
let us discuss the method of calculating theoretical strength of 
solids from the forces of molecular interaction. Figure 2.26 shows 
the dependence of the potential energy U (x) and the force of inter­
action between the particles / (x) on the distance x between them. 
Since it is not easy to determine the exact law governing / {x), the
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practice is to approximate this dependence by various functions. 
For instance, M. Polanyi and E. Orowan used the approximation 
in the form of a half of a sinusoid:

/ (*) =  /max Sin 2zix (2.20)

When a body of cross-sectional area of 1 m2 is slowly torn in twor 
the required force is a =  fN s, where N s is the number of particles

Figure 2.26 Calculating theoretical 
strength from forces of molecular 
interaction (explanation in text).

per square metre of the cross section. Substituting / from (2.20) 
we obtain

a = o0sin-^- (2.21)
where a0 =  /max N s is the theoretical strength of the body.

For small displacements relation (2.21) may be rewritten in the* 
form

o  =  o^nx/c
On the other hand, for small displacements Hooke’s law is valid::

a =  Exlc
Equating the right-hand sides of these equations, we obtain

o0 « E!(2n) « OAE (2.22)
Calculations show that a more accurate estimate of the nature 

of the bonding in solids results only in a negligible correction to (2.22).
Comparing the values of theoretical strength cr6 calculated with 

the aid of various methods we see that all of them yield nearly tho 
same result whose order of magnitude is OAE. Therefore it may be
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legitimately assumed that
a0 « 0.1Z? (2.23)

This is an enormous figure of the order of 109-1010 Pa.
Real (technical) strength of solids. The strength of real crystals 

and solids used for technical purposes is termed real, or technical, 
strength a r. Table 2.5 shows the values of the elasticity modulus E, 
of theoretical strength o0 « 0.1 E, of technical strength orr, and of 
the ratio cr0/crr for some industrial materials.
Table 2.5

Substance
Elasticity
modulus
E(lO’ Pa)

Theoretical 
strength 
a0 ̂  0AE 
(107 Pa)

Technical
strength
or
(107 Pa)

O0/Ot

Aluminium 6000 600 9.0 65
Copper 12000 1200 23 50
•Glass 8000 800 8.0 100
Iron 21000 2100 30 70
Rock salt 4000 400 0.5 800
Silver 8000 800 18 45

It follows from the data of Table 2.5 that the technical strength 
of solids is from 2 to 3 orders of magnitude less than their theoretical 
strength.

At present there is a general agreement that such discrepancy 
between a0 and ar is due to the presence of defects in real solids of 
various types, in particular of microscopic cracks which reduce the 
strength of solids. This is accounted for by the so-called Griffith 
theory. Let us calculate the technical strength using this theory.

We take a sample in the form of a thin plate and apply a tensile 
stress a to it (Figure 2.27(a)). The density of elastic energy in such 
an elastically extended sample is a?/(22?).4

Now let us imagine that a transverse microscopic crack of the 
length I running through the entire thickness 8 of the sample has 
developed in it. The appearance of the crack is accompanied by the 
formation of a free surface S ^  2Z6 inside the sample and by an 
increase in the sample’s energy by the amount A ^  2Z6a (a is

4 Indeed, the relative deformation in a sample under stress a is e =  o/E, 
the absolute deformation AL =  sL (L being the length of the sample). The 
work performed by the stress a to extend the sample by AL is (l/2)oSAL = 
=  o2SL/(2E) =  o2Vl2E (5 is the cross-sectional area and V the volume of 
the sample). This work is transformed into the elastic energy of the sample 
-of volume V. Therefore the specific volume density of the elastic energy is o2!(2E).
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the free surface energy of the sample per unit area). On the other 
hand, the formation of a crack relieves the elastic stress from the 
volume V « l28 of the sample, whereby its elastic energy is reduced 
by the amount A Z72 « l28o2/(2E). The total change in the energy 
of the sample W(l) brought about by the appearance of a crack in 
it is

W7(Z) =  2Z8a-Z2fiJj. (2.24)

Figure 2.27(b) shows the dependence of W on the length I of the 
crack. It has a maximum where its derivative vanishes: dWIdl =

Figure 2.27 The Griffith theory of calculating the real strength 
of solids (explanation in text).

=  25a — l8o2/E =  0. Denote the length of the crack corresponding 
to the maximum energy by Zcr. We obtain from the last relation

lcr =  2aE/o2 (2.25)
It may be seen from Figure 2.27(b) that as long as the length I 

of the crack remains below the critical value lCT energy is needed for 
it to develop. On the other hand, starting with I =  lCT further exten­
sion of the sample results in a reduction in its energy. Therefore it 
takes place spontaneously with the brittle destruction of the sample 
as the final result.

Hence the technical strength of solids having microscopic cracks 
should be calculated according to the Griffith theory from relation
(2.25):

(Tr fist V 2 am  « P VaETl (2.26)
This result was subsequently verified by many investigators for var­
ious quite different methods of applying loads to the sample. A neg-
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ligible difference was observed only in case of the numerical coef­
ficient |3.

Should we substitute the values of a, E , crr for copper (a » 
« 1.7 J/m2, E =  1.2 X 1011 Pa, and aT =  1.8 X 108 Pa) into
(2.26), we would obtain 1«8 X 10~6 m. Approximately the same 
values of I may be obtained for other solids.

It follows that for the strength of the solids to be reduced from the 
theoretical value to the value of the technical strength microscopic 
cracks of the order of several micrometers in length should develop 
in them up to the moment preceding their destruction. Many factors 
may be the cause of such cracks.

The cracks may be produced in the course of the production of the 
solid, especially in the course of its mechanical processing. A proof

Figure 2.28 Formation of a crack near a dislocation pile-up.

Obstacle

_J___ -L_±_J.± £

Slip plane S S £V
Crack /

\ Plane of maximum 
'tensile stresses

of this is, in particular, a significant dependence of the strength of 
the sample on its dimensions, especially in the small dimensions 
range. Thus the strength of a glass filament of 2.5 p,m in diameter is 
almost 100 times that of a massive sample. The explanation is that 
as the dimensions of the sample are reduced so too is the probability 
of a large crack responsible for low strength appearing in it. Such 
dependence of the strength on the dimensions of the sample became 
known as the scale factor. The cracks may be the result of a large num­
ber of vacancies merging together.

Figure 2.28 shows a dislocation mechanism of crack production. 
Dislocations of a similar sign move in slip plane SS and meeting 
obstacle B begin to accumulate in its vicinity. Large stresses able to 
produce cracks I may develop at the head of this dislocation 
pile-up.



Mechanical Properties of Solids 77

§ 21 Time dependence of fhe strength 
of solids

The^theory of strength based on the condition (2.26) and discussed 
above describes actually the final stage of the destructive process 
when the body already contains cracks able to cause brittle rupture.

However, the initial stages of the destructive process during which 
the cracks originate and grow to attain critical dimensions Zcr are 
also important. This process is a gradual one and takes time t to 
be completed. The time t that it takes for the destructive process to 
develop from the moment the load is applied to the body to the mo­
ment of rupture is termed the durability of the material.

Figure 2.29 Durability versus stress for aluminium (7), Plexiglas (2)> 
and silver chloride (3).
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The first experiments aimed at investigating durability were car­
ried out by S. N. Zhurkov and G. M. Bartenev with coworkers. They 
also developed modern notions about the physical nature of dura­
bility.

It was established by experiments that the durability t , the ten­
sile stress a , and the absolute temperature T are related by the ex­
pression:

T =  V ,0- ^ V (2.27)
where t 0, £/0, and y are constants dependent on the nature and struc­
ture of the body.

For T =  constant, formula (2.27) may be rewritten in the form
t =  Ae~P° (2.28)

where A =  T0euo/bBr, and p =  y!(k^T).
Formulae (2.27) and (2.28) were tested on a great number of differ­

ent materials (metals, polymers, haloid compounds, etc.) in an 8

Figure 2.30 Activation energy 
of rupture of viscose fibre at 
different temperatures 
(A —76 °C, 0+20  °C, +  +80 °C> 
versus stress.

to 10 order of magnitude range of the values of t and in a wide range 
of the values of T.

Figure 2.29 shows the dependence of the durabilities t of alumi­
nium (i), Plexiglas (2), and silver chloride (3) on the applied stress 
a at various temperatures expressed in the log t versus or coordinate 
system. It may be seen from Figure 2.29 that the dependence t (or) 
in semilogarithmic coordinates is well represented by a straight line. 
A family of such straight lines obtained for a given material at differ­
ent temperatures resembles a fan with the apex at some point called 
pole. It follows from equation (2.27) that t will be independent of 
T and that the straight lines log t(ot) at different temperatures will 
intersect at one point (at the pole) only if U0 — ya =  0; but in that 
case log t =  log t 0. Hence the pole should be at a distance log t 0 
below the cr-axis.

It is evident from Figure 2.29 that the poles for all the materials 
tested lie practically on the same straight line parallel to the cr-axis.
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This means that t0 is approximately the same for all the materials. 
Experiments show it to be of the order of 10“12-10“13 s, that is* 
close to the period of oscillations of atoms in solids.

Let us take the logarithm of (2.27):

log T = log To +  U°k~ ^a =  log T0 + -— r (2.29)
u  =  U0- y o  (2.29')

Measuring the dependence of log t on 1 IT for constant values of a, 
we can determine U for various values of the stress^o experimentally; 
the dimensions of U are that of energy and because of this it is termed 
activation energy of the destructive process. Figure 2.30 shows the de- 
pendence of the activation energy of rupture of viscose fibre on stress 
for various temperatures. It may be seen that V is independent of 
T and is determined solely by a; for a =  0 the maximum value of 
U is U0 &  40 kcal/mole; for a stress a « 107 X 107 Pa we see that

Figure 2.31 Durability of 
viscose fibre at different 
temperatures versus stress.

0 40 80 120
o, 107 Pa

U =  0. Figure 2.31 shows that for a « 107 X 107 Pa a practically 
instantaneous rupture of viscous fibre takes place (during the time 
t 0) , no matter what its temperature is.

Meticulous experiments carried out by S. N. Zhurkov with cowork­
ers and by other investigators on a variety of materials demonstrat­
ed that for metals U0 is quite close to the sublimation energy Qs and 
for polymers to the thermal destruction energy Qd. Table 2.6 shows 
the values of Z70, Qs, and Qd for some materials. It may be seen that 
U0 coincides either with Qs or with Qd with a high degree of accuracy.

Universal val;dity of the dependence thus obtained merits the 
conclusion that the process of destruction of a solid is one of a kinet­
ic nature (that is, develops in time) and its origin is the same for all 
solids. Modern notions of the physical mechanism of this process 
are set out below.

The atoms in a solid take part in thermal oscillations with a pe­
riod of t0 » 10~12-10"13 s. Thermal fluctuations from time to tim e,
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Table 2.6

Substance
Activation energy 
of destruction 
U0 (105 J/mole)

Sublimation 
energy Qs 
(105 J/mole)

Thermal destruc­
tion energy Q& 
(105 J/mole)

Aluminium 2.16 2.2
Nickel 3.48 3.4
Nylon 1.8 1.72
Platinum 4.8 5.1
Polymethyl meth­

acrylate 2.16 2.1-2.2
Polyvinyl chloride 1.4 1.28
Silver 2.56 2.72
Teflon 3.0 3.0-3.1
Zinc 1.0 1.08

result in the rupture of chemical bonds. The probability of this proc­
ess depends on the height of the potential barrier of destruction U 
and on the temperature T. This probability increases with the rise 
in T and the decrease in U. In the absence of external stress cr the 
energy required to break a bond is equal to the energy of the bond 
itself. This is the reason why the height of the potential barrier U0 
obtained from experiments in mechanical destruction of solids 
turned out to be equal to the sublimation heat of metals and to the 
thermal destruction energy of polymers.

The stresses induced in a body reduce the height of the potential 
barrier from U0 to U0 — yo and thus increase the probability of rup­
ture of the bonds and, consequently, the number of ruptured bonds 
per unit volume.

The formation of submicroscopic volumes in which the bonds have 
been broken and their merging results eventually in the nucleation 
and development of cracks. When the length of the cracks attains 
a critical value, the body breaks up under the applied stress. The 
higher is the stress a the lower the activation barrier U0 — ya and 
the greater the rate of bond rupture; therefore it takes less time for 
the destructive process to develop, that is the less should be the du­
rability of the body. This is exactly what is observed in practice.

From the above point of view the destruction of solids should take 
place at any stresses provided the time they act is long enough. But 
in that case it is not easy to understand why bridges and other in­
stallations built many centuries ago and carrying loads all that time 
still remain intact.

To explain this fact we again turn to Figure 2.29. We see that the 
lower the temperature the weaker the load dependence of durability 
is. This dependence is practically nill at sufficiently low tempera­
tures. For glasses and metals with a high melting point already room 
temperatures are low enough. Because of that their strength is actual-
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ly a unique characteristic of the material. In all other conditions it 
is not justified to speak of strength without mentioning the time dur­
ing which the material is to work under load. Thus industrial prod­
ucts made of Plexiglas during a year’s service can endure loads not 
exceeding 30% of their short-time strength; steam turbine blades 
working at high temperatures are calculated for strength always with 
account taken of their durability.

§ 22 Methods of increasing the strength 
of solids

The nucleation mechanism of breaks in continuity and the mechanism 
of crack growth are both greatly influenced by the atomic structure of 
solids. Therefore strength is a structure-sensitive characteristic of 
such bodies.

Stresses in crystals occasion the production of dislocations and 
their motion in slip planes. In this way plastic shifts resulting in 
plastic deformations are realized. Meeting impurities, grain and 
block boundaries, interceptions of slip planes, etc., the dislocations 
lose their mobility and the crystal is hardened. As was mentioned 
above, stresses may develop at the head of a dislocation pile-up ca­
pable of causing cracks.

To increase the strength of such bodies it is necessary to retard the 
production of dislocations and the nucleation and growth of cracks. 
This can be done by two methods.

(1) By producing imperfection-free crystals free from internal 
stress sources, which in the long run cause the nucleation of cracks.

This method has up to the present been realized only in the fila­
ment type crystals known by the name of “whiskers”. They are sin­
gle crystals grown under special conditions using the method of decom­
position or reduction of appropriate chemical compounds, the meth­
od of condensation of vapours of pure metals at an appropriate 
temperature in hydrogen or in an inert gas, and the method of elec­
troplating metals from a solution onto electrodes of extremely small 
dimensions. The filament-type crystals are usually 2 to 10 mm long 
and 5 to 50 \im thick.

A striking property of such crystals is that their mechanical para­
meters are extremely high. Their strength turned out to be close to 
the theoretical strength of solids. Thus, the strength of iron whiskers 
is about 1.34 X 1010 Pa, of copper whiskers about 3 X 10®  Pa, and 
of zinc whiskers 2.3 X 10®  Pa, while the strength of normal samples 
made from those metals is 3 X 108, 2 X 108, and 1.8 X 108 Pa re­
spectively.

Filament-type crystals of iron experience only elastic deformation 
reaching an enormous figure of the order of 5-6 percent, after which
6-0885
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brittle destruction occurs. Note that in normal iron noticeable plas­
tic flow starts already at a deformation of e « 0.01 percent.

The unusually high mechanical parameters of the filament crystals 
are due to their ideal internal structure. Such crystals contain prac­
tically no dislocations, are exceptionally pure and their surface is 
so perfect that even a magnification of 40000 times fails to reveal any 
traces of roughness. Such perfection is mainly due to the condition 
of growth of small-size crystals, in which the freezing-in of lattice 
imperfections is less probable because it is easier for them to leave 
the crystal through a nearby surface.

Because of the absence of dislocations and of other defects in fila­
ment crystals a shift in a slip plane can only take the form of a rig­
id shift, in which the bonds of all the atoms in the slip plane are 
simultaneously broken. Stresses close to the theoretical stress limit 
of the crystals are needed to effect such a shift and this is what is 
observed in practice.

An unnaturally great elastic deformation of the whiskers is due to 
the absence of mobile dislocations, which in normal crystals are 
responsible for the plastic deformations occurring already at very 
low stresses.

Hence the first method, the method of producing imperfection- 
free (in particular, dislocation-free) crystals, holds out a promise of 
producing materials of extreme strength close to the theoretical 
strength of solids.

(2) The second method is a direct opposite of the first. It consists 
in the maximum deformation of the internal structure of a crystal 
through the introduction of impurities, precipitation of dispersed 
phases, great plastic deformation, etc. Such defects hinder the motion 
of the dislocations and the growth of cracks and thus increase the 
strength of the material, as was already discussed in detail above. 
Science and industry have up to now made use only of this method and 
succeeded in attaining with it a strength of the order of 4 X 10®  Pa. 
The effect this had on technology may be inferred from the following 
example. The specific weight of a modern aircraft engine is about 
1 kgf per hp; at the turn of the century it was about 250 kgf per hp.

The recent times have witnessed the appearance of composite ma­
terials consisting of a matrix filled with filament crystals. Stainless 
steel, nickel, titanium and other materials are used for the matrix. 
The matrices are filled with tungsten, aluminium oxide, etc. fila­
ments. The results obtained so far hold out a promise of obtaining 
by this method in the near future materials of 5 to 10 times the 
strength (especially at elevated temperatures) of the best steels and 
of 1.5-2 times lighter weight.

The strength of amorphous bodies and glass polymers is no less 
sensitive to internal structure. The strength of glass and quartz 
filaments newly extruded at a high temperature and practically free
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from defects5 * * is 100 times as high as that of normal specimens and 
quite close to the theoretical value.

The room temperature strength of unoriented glass polymers is 
of the order of 108 Pa. Films and fibres made of them having an orient­
ed structure have a strength of the order of 10®  Pa comparable to 
that of high quality steels. With a perfect orientation of the polymer 
molecule chain the strength of the needlelike crystals of the polymer 
may be as high as 3 X 10 Pa. If one takes into account that the den­
sity of the polymers is close to unity, one can imagine how great 
their value for technology may be.

There is a rapidly growing demand on the quality of the materials 
for modern science and technology. Already now there is a need for 
materials able to withstand temperatures of several thousand degrees 
with the necessary strength characteristics at such temperatures 
and without any noticeable plastic deformation at normal loads.

What are the prospects for such materials?
One of the feasible methods for producing such extra strong and 

extra heat-resistant materials was proposed by the Soviet physicist 
A. V. Stepanov who pointed to a particular property of such molecu­
lar crystals as sulfur. The crystal of sulfur is constructed of mole­
cules bonded by relatively weak molecular forces. Because of that 
the strength of the crystal and its melting point are low (115 °C). 
The atoms in the sulfur molecule itself, on the other hand, are held 
together by powerful chemical bonds. If one would be able to con­
struct a sulfur lattice with the atoms retaining the same bonds that 
act in the molecule, the result would be an extremely strong crystal 
with the melting point of about 34 700 °C. Similar modifications 
could be introduced into other molecular crystals as well. Are there 
any real grounds for such projects? The fact that we were able to 
transform soft graphite and hexagonal boron nitride into extra strong, 
hard, and high melting point diamond and borazon crystals by sub­
stituting powerful covalent bonds for weak van der Waals forces 
lends ground to such hopes. The prospects that will be opened by 
such materials are so enormous that any work, no matter how great, 
put into their production shall be generously rewarded.

5 Since the atomic structure of amorphous bodies is irregular, the term
defect may apply only to inclusions (clusters of foreign atoms, cracks, inhomo­
geneities) large if compared with atomic dimensions.
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Elements of Physical Statistics

Every solid is a system, or an ensemble, consisting of an enormous 
number of microscopic particles. Such systems obey specific statistical 
laws, which are the subject of statistical physics, or physical statis­
tics.

The present chapter deals briefly with the principal elements of 
physical statistics needed to describe the properties of solids.

§ 23 Methods used to describe the state 
of a macroscopic system

There are two methods of describing the state of a system consisting 
of a great number of microscopic particles, the thermodynamic and the 
statistical method. Let us discuss them.

Thermodynamic description of a system. In the thermodynamic 
approach to the description of the state of a system consisting of an 
enormous number of particles the latter is regarded as a macroscopic 
system, it being of no interest of what type of particles it consists. 
Such a system is termed a thermodynamic system.

A thermodynamic system may be either closed or open. A closed 
system does not interact in any way with the surroundings, and an 
open system can exchange heat and/or work with the surround­
ings.

The state of a system in which it can remain infinitely long is 
termed the equilibrium state. It is uniquely determined by a set of 
independent physical parameters, the state parameters. The principal 
state parameters are the volume of the system V, the pressure p, and 
the temperature T. However, often those parameters are inadequate 
for a complete characteristic of the system. For a system made up of 
several substances one has also to know their concentrations; for 
a system in an electric or a magnetic field the intensities of these 
fields should be specified; etc.
84
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Any change in a thermodynamic system involving the variation 
of at least one state parameter is termed a thermodynamic process.

The sum of all types of energy of a closed system is termed the in­
ternal energy (E) of the system. It is made up of the kinetic energy 
of the particles constituting the system, of the potential energy of the 
interaction between the particles, and of the internal energy of the 
particles themselves (which shall not be considered here since it is 
not subject to change in usual processes).

The internal energy is a function of state of the system. This means 
that there is one and only one definite value of internal energy that 
corresponds to each state no matter how the system arrived at this 
state.

Interacting with the surroundings a thermodynamic system may 
receive or reject some amounts AQ of heat, may perform work A A 
or have work performed on it. In all cases the variation in internal 
energy of the system, dE, should be equal to the difference in the 
amount of heat received from outside, A@, and the work A A per­
formed by the system against external forces:

dE =  AQ -  A A (3.1)
This is the first law of thermodynamics.

It should be pointed out that in contrast to the internal energy the 
work A A and the amount of heat A@ depend not only on the initial 
and the final states of the system but on the way the state is changed 
as well. Since

A A = p d V  (3.2)
where dV is the variation of the volume of the system the pressure in 
which is p, we may write (3.1) in the form

dE =  AQ — p dV (3.3)
The second law of thermodynamics maintains that the amount of 

heat AQ received by the system in a reversible process results in the 
increase of the entropy of the system by

(3.4)
where T is the temperature at which the heat is received. Substitut­
ing AQ from (3.4) into (3.3), we obtain

dE =  T dS - p  dV (3.5)
It follows from (3.5) that the system’s internal energy can be changed 
at the expense of work performed or heat exchanged.

However, the system’s energy may also change with the change in 
the number of particles it contains, for every particle leaving the 
system takes away a definite amount of energy with it. Therefore the
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general expression for the law of conservation of energy (3.5) should 
be written in the form

dE =  T dS — p dV +  p dN  (3.6)
where dN is the variation of the number of particles in the system. 
Parameter |x is termed the chemical potential of the system. Its phys­
ical meaning is as follows. For an isolated system of constant volume 
which neither receives nor gives away heat, dS — AQ/T =  0 and 
dV =  0. For such a system

dE =  \idN (3.7)
Whence

*=%■  <3-8>
Hence the chemical potential expresses the variation of the energy 

of an isolated system of a constant volume brought about by a unit 
variation in the number of particles it contains.

Let us consider the conditions of equilibrium of a system whose 
total number of particles remains constant but the particles can go 
over from one body belonging to the system to another. Two electron 
conductors, for instance, two metals, in contact with each other at a 
constant temperature may serve as an example of such a system. De­
note the chemical potential of the electron gas in the first metal by 
Pi and in the second by p2* Suppose dN electrons flow from one metal 
to another. According to (3.7) this will reduce the energy of the first 
metal by dE± =  \ixdN and increase the energy of the second by dE2 =  
— \i2dN. For the metals to be in a state of equilibrium the necessary 
condition is

dEx =  dE or \ixdN =  \x2dN 
Hence the condition of equilibrium is

Hi =  Ha (3.9)
This condition is valid not only in the case of two electron conductors 
in contact with each other but for any phases in contact with each 
other: the solid and the liquid, the liquid and the gaseous, etc. In all 
cases the condition of equilibrium is the equality of the chemical 
potentials.

Statistical method of describing a system. To describe the state 
of every particle one should specify its three coordinates and three 
components of the momentum. Apparently, if one was to write the 
equations of motions of the particles and solve them, he would be 
able to obtain complete information on the behaviour of the system 
and to predict its state at any moment of time. Such calculations, 
however, are not only extremely tedious but, in fact, useless. The 
complexity of the problem stems from the fact that to describe the 
behaviour of the gas molecules normally contained in 1 m3 one would
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have to solve about 1026 interconnected equations of motion and also 
take into account the initial conditions, which is practically impos­
sible. Should such calculations be carried out, they would be of no 
value since the properties of a system in the state of equilibrium not 
only are independent of the initial values of the coordinates and of 
the momentum components but generally remain constant in time, 
although the coordinates and the momenta of the particles do change. 
It follows from here that there is a qualitative distinction between 
the system and the individual particles and that the behaviour of 
the former is governed by laws different from those that govern the 
behaviour of individual particles. These laws are the statistical laws. 
The following examples are proof of their existence.

The velocity of an individual gas molecule is a random quantity, 
which is impossible to predict. Despite this fact, in a gas with a 
very large number of particles, on the average a distinct velocity 
distribution of its molecules may be observed. In other words, on the 
average a quite definite fraction of the molecules has a speed of, say, 
from 100 to 200 m/s, from 400 to 500 m/s, etc.

It is a matter of chance whether or not a given molecule shall enter 
a specified volume of the gas. Despite this fact there is a definite reg­
ularity in the distribution of the molecules over the volume: equal 
elements of volume contain, on the average, equal numbers of mole­
cules.

The situation here is similar to that when a coin is tossed. The 
landing of the coin heads or tails up is a random event. Nevertheless, 
when the number of times the coin is tossed is very great, a quite 
definite regularity may be observed: on the average, the coin lands 
heads up half the number of times.

Such regularities are termed statistical. The principal feature of 
statistical laws is that they deal with probabilities. They enable pre­
dictions to be made only as to the probability of some event occur­
ring or some result being realized. In the example with the coin the 
predicted probability of the coin landing one or the other side up is 
1/2. The results of individual tests may, and undoubtedly shall, de­
viate from those values the more the less the number of tests is. If 
we toss a coin five times, the head may fall out any number of times 
from 0 to 5. But the greater the number of tosses, that is, the more 
numerous the ensemble, the more accurate the statistical predictions 
are. Calculations show the relative deviation of an observed physical 
quantity (for instance, of the number of particles per unit volume) 
from the average value M in a system of N noninteracting particles 
to be

V(KMf l 
m a  v~n

or inversely proportional to YN.
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As N is increased, the ratio A Ml M — 0. For very great N we have 
M/M & 1. Thus 1 m3 of air normally contains on the average 
2.7 x 1025 molecules. The relative deviation from this number is 
on the average equal to

^ - « 2 x  10-“%Vn
This deviation is so negligible that there are no instruments capable 
of detecting it. Therefore when dealing with large volumes it is al­
ways reasonable to assume that the distribution of molecules over 
the volume is uniform.

It should, however, be pointed out that deviations from the av­
erage values are not a possibility but a necessity. Such deviations are 
termed fluctuations.

§ 24 Degenerate and nondegenerate 
ensembles

Microscopic particles and the ensemble. All microscopic particles 
making up an ensemble may be subdivided into two classes accord­
ing to their behaviour: fermions and bosons.

Fermions include electrons, protons, neutrons and other particles 
with a half-odd integral values of spin: h!2, 3ft/2, .... Bosons include 
photons, phonons and other particles with integral values of spin: 
0, h, 2h, ... .

The fermions in an ensemble exhibit marked “individualistic” 
tendencies. If some quantum state is already occupied by a fermion, 
no other fermion shall settle in it. This is the essence of the well- 
known Pauli exclusion principle, which governs the behaviour of 
fermions. Bosons, on the other hand, strive for “unification”. They 
can settle in the same state in any numbers and do it the more readily 
the more populated the state already is.

Degenerate and nondegenerate ensembles. Let us discuss the pos­
sible effects of the nature of the particles (their fermionic or bosonic 
character) on the properties of the ensemble as a whole.

For the nature to be felt the particles must “meet” often enough. 
This means that they must occupy the same state or at least suf­
ficiently closely-spaced states.

Suppose that there are G different states which any one of N simi­
lar particles can occupy. The ratio NIG may serve as a measure of 
the “meeting” frequency. The meetings will be rare if

NIG <  1 (3.10)
In this case the number of different vacant states is much larger than 
the number of particles: G^> N. Evidently, in such circumstances
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the specific nature of fermions and bosons shall not be felt, since every 
particle has at its disposal a large number of different free states and 
the problem of several particles occupying the same state actually 
does not arise. Therefore the properties of the ensemble as a whole 
shall not depend on the nature of the particles that make it up. Such 
ensembles are termed nondegenerate, and condition (3.10) is the 
condition of nondegeneracy.

If, however, the number of states G is of the same order of magni­
tude as the number of particles iV, that is if

NIG « 1 (3.11)
then the problem of how the states should be occupied, whether 
individually or collectively, indeed assumes much importance. In 
this case the nature of the microscopic particle is fully revealed in 
its effect on the properties of the ensemble as a whole. Such ensembles 
are termed degenerate.

Degenerate ensembles are a unique property of quantum objects, 
since the parameters of state of such objects only change discretely 
with the result that the number of possible states G can be finite. 
The number of states for classical objects whose parameters change 
continuously is always infinite and they can form only nondegenerate 
ensembles.

It should be pointed out that quantum mechanical objects too 
may form nondegenerate ensembles provided condition (3.10) is 
fulfilled (see Table 3.1).
Table 3.1

Object
Ensembles 

degenerate nondegenerate

Classical No Yes
Quantum Yes Yes

Classical and quantum statistics. Physical statistics that studies 
nondegenerate ensembles is termed classical statistics. It owes much 
to J. C. Maxwell and L. E. Boltzmann (the Maxwell-Boltzmann sta­
tistics).

Physical statistics that studies degenerate ensembles is termed 
quantum statistics. Owing to the effect of the particles’ nature on the 
properties of a degenerate ensemble, degenerate ensembles of fer­
mions and bosons behave in essentially different ways. On this ground 
a distinction is made between two quantum statistics.

Quantum statistics of fermions owes much to E. Fermi and P.A.M. 
Dirac (this, by the way, explains the origin of the term “fermion”). 
It is termed the Fermi-Dirac statistics.



9 0 Solid State Physics

Quantum statistics of bosons owes much to S. N. Bose and A. Ein­
stein (hence the term “boson”). It is termed the Bose-Einstein sta­
tistics.

It follows then that quantum statistics deals only with quantum 
objects while classical statistics may deal both with the classical 
and the quantum objects. If we reduce the number of particles in an 
ensemble or increase the number of states, we shall eventually turn 
a degenerate ensemble into a nondegenerate one. In that case the 
ensemble shall be described by the Maxwell-Boltzmann statistics 
no matter whether it contains fermions or bosons.

Distribution function. What is the connection between the distri­
bution of the particles over particular states and the state of the en­
semble as a whole? To specify the state of an ensemble, for instance, 
of a gas of particles, one should specify its state parameters. To spec­
ify the state of each particle one should specify its coordinates and 
momentum components or its energy, which is a function of coordi­
nates and momentum.

The two types of quantities are connected by the statistical distri­
bution function

N ^T{E)dE (3.12)
which specifies the number of particles having an energy from E to 
E +  dE in the system described by the state parameters pi and T. 
This function is termed complete statistical distribution function. To 
simplify notation the indices denoting the state parameters are usual­
ly omitted.

The complete distribution function may be represented by the prod­
uct of the number of states g (E) dE per energy interval dE and the 
probability of occupation of those states by the particles. Let us de­
note the latter by / (E). Then

N(E) dE =  f(E) g(E) dE (3.13)
The function f(E) is termed simply the distribution function. As 

was stated before it signifies the probability of the occupation of the 
respective states by the particles. If, for instance, 10 of 100 closely 
spaced states are occupied by particles (the total number of parti­
cles in the system being much greater than 100), the probability of 
occupation of such states will be equal to 0.1. Since on the average 
there is 0.1 of a particle per each state, we may take f(E) to be the 
average number of particles in a given state.

Hence the problem of finding the complete distribution function 
of particles over the states is reduced to that of finding the function 
g(E) dE, which describes the energy distribution of the states, and 
the function f(E) which determines the probability of their occupa­
tion.

We start by determining the function g(E) dE.
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§ 25 The number of states for microscopic 
particles

Concept of phase space of a microscopic particle and quantization.
In classical mechanics the state of a particle is determined if its 
three coordinates (x, y, z) and three components of its momentum 
(px, Pyi Px) are specified. Let us imagine a six-dimensional space 
with the coordinate axes x, y, z, p x, p y, p z. The state of the particle 
at every moment of time will be described by a point (x, y, z, px, 
py, Pz)- Such space is termed phase space and the points (x, y, z, px, 
py, p z) are termed phase points. The quantity

AT =  ATyATp =  dx dy dz dpx dpy dpz (3.14)

is termed an element of the phase space. Here ATv =  dx dy dz is 
an element of volume in coordinate space and ATp =  dpxdpydpz an 
element of volume in momentum space.

Since the coordinates and the momentum components of a classical 
particle may change continuously, the elements ATv, ATp and with 
them the element AT as well can be chosen as small as desired.

The potential energy of a system of noninteracting particles not 
acted upon by an external field is zero. Such particles are termed 
free. For such particles it is convenient to use a three-dimensional 
momentum space instead of the six-dimensional phase space. In 
this case the element ATv is simply equal to the volume V in which 
the particles move, because no additional restrictions are placed on 
them.

The division of the phase space into elements of volume is not quite 
so simple if the particle in question is an electron or some other mi­
croscopic object possessing wave properties. The wave properties of 
such particles make it impossible, in accordance with the uncertainty 
principle, to distinguish between two states, (x, y, z, p x, p y, p z) and 
(x +  dx, y +  dy, z +  dz, px +  dpx, py +  dpy, p z +  dpz), if the 
product dx dy dz dpx dpy dpz is less than hs. Since this product rep­
resents an element of volume in six-dimensional phase space, it 
follows from the above that different quantum states shall corre­
spond to different elements of volume in this space only if the size of 
those elements is no less than h3. Therefore quantum statistics makes 
use of an elementary cell in the six-dimensional space with the 
volume

AT =  ATv ATp =  h3 (3.15)
The element of the three-dimensional momentum space for free par­
ticles for which ATv =  V is

ATp =  h3IV (3.16)
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Each element of this kind has corresponding to it a definite quantum 
state.

The process of dividing the phase space into cells of finite size 
(ft3 or ft3/F) is termed quantization of phase space.

Density of states. We wish to calculate the number of states of 
a free particle in the energy interval from E to E +  dE. To this end 
draw two spheres of the radii p and p dp in the momentum space

Figure 3.1 Calculating the number of states o f a m icroscop ic particle.

(Figure 3.1). There is a spherical layer with the volume of 4np*dp 
contained between the spheres. The number of phase cells contained 
in this layer is

Since there is one particle state to correspond to every cell the 
number of states in the interval dp between p and p +  dp is

h i

E
E + d E

Px

(3.17)

g{p)dp =  —  PUp 

For free (noninteracting) particles

(3.18)

Using these relations to express p and dp and substituting the results 
into (3.18), we obtain

g (E) dE =  ̂ ~  (2m)3'2 VE  dE (3.19)
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This is the number of states of a free particle in the energy interval 
(E, E -f dE). Dividing the right- and the left-hand sides of (3.19) 
by dE, we obtain the density of states, g(E), which specifies the num­
ber of states of a microscopic particle per unit energy interval:

g(E) =  ̂ - (2 m )m V E  (3.20)

It follows from (3.20) that as E increases the density of states rises 
in proportion to Y E  (Figure 3.2). The density of states depends, 
besides, on the particle’s mass and increases with m.

Figure 3.2 Energy dependence of density o f states.

In case of the electrons each phase cell corresponds, to be exact, 
not to one but to two states, each distinguished by its spin. They are 
termed spin states. Therefore in case of the electrons the number of 
states (3.18) and (3.19) and the density (3.20) should be doubled:

g(p)dp =  2%Pp>dp (3.21)

g (E) d E = ^ - (2 m )312 V E dE  (3.22)

g(E) =  ̂ - ( 2 m f 2V E  (3.23)

Condition of nondegeneracy for an ideal gas. Integrating (3.20) 
with respect to energy from 0 to E, we obtain the number of particle 
states contained within the energy interval (0, E):

G =  ̂ - ( 2 m f l2~ E 312 

Setting E  =  (3/2) kBT, we obtain

G **y (  2nmh**T y n



94 Solid State Physics

Substituting this expression into (3.10), we obtain the condition for 
nondegeneracy:

where n =  NIV is the number of particles per unit volume.
Consider some molecular gas, for instance, nitrogen in normal con­

ditions. For it n & 1026 m“3, m =  4.5 X 10~26 kg, and kBT =  4 X 
X 10~21 J. Substituting the figures into the left-hand side of (3.24), 
we obtain nh3(2nmkBT)~3/2 » 10“6, which is much less than unity. 
Accordingly, the molecular gases are normally nondegenerate and 
must be described with the aid of the Maxwell-Boltzmann classical 
statistics.

Consider now the electron gas in metals. For it n « 5 X 1028 m“3, 
m =  9 X 10~31 kg. For such values of n and m the electron gas turns 
out to be nondegenerate only at temperatures above 105 K; the left- 
hand side of (3.24) for such temperatures diminishes to less than unity 
(at T =  105 K it is approximately 0.5). Therefore in practice the 
electron gas in metals is always degenerate and on account of this 
should be described with the aid of the Fermi-Dirac statistics.

It follows from (3.24) that a nondegenerate state of a gas can be 
realized not only by raising its temperature but by reducing its con­
centration n as well. For n « 1022 m~3 the left-hand side of (3.24) 
for electrons at normal temperatures is approximately 10~3 and the 
electron gas becomes nondegenerate. Such (and smaller) concentra­
tions of the electron gas are found in some semiconductors. In such 
semiconductors termed nondegenerate, the electron gas is nondegen­
erate and is described by the classical Maxwell-Boltzmann statistics.

Let us try now to find the distribution function f{E). The form of 
this function depends in the first instance on whether the gas is de­
generate or nondegenerate. In the case of a degenerate gas the impor­
tant point is whether the gas consists of fermions or bosons.

Let us start with a nondegenerate gas whose distribution function 
f(E) is independent of the particles’ nature.

§ 26 Distribution function
for a nondegenerate gas

Appendix I contains an elementary derivation of the distribution 
function for a nondegenerate gas. It is of the following form:

f(E) =  eiv- E)lhKT (3.25)
where kB is Boltzmann’s constant, and fx the chemical potential. 
Calculations give the following expression for |li of a nondegenerate
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gas:

P-26)
Substituting it into (3 25) we obtain:

< 3 - 2 7 >

We would like to remind again that /M(i?) dE expresses the proba­
bility of occupation of the states in the energy interval (E , E +  dE); 
the term for it is the Maxwell-Boltzmann distribution function.

Figure 3.3 Distribution functions 
for nondegenerate gas:
(a)—the Maxwell-Boltzmann 
distribution function expressing the 
average density of state occupation 
by particles; (b)—the complete 
Maxwell-Boltzmann distribution 
function.

Figure 3.3(a) shows a graph of the function It has a maxi­
mum at E == 0 and asymptotically approaches zero as E oo. This 
means that the lower energy states have the greatest probability of 
occupation. As the energy of a state increases its probability of oc­
cupation diminishes steadily.

Multiplying /M(i?) by the number of states g(E) dE [see (3.22)], 
we obtain the complete distribution function of particles over the 
energy

N (E) dE =  ̂ j-  (2m)3/Y /fta V E/ABT y j ?  dE (3.28)
or

N ( E ) d E =  —  2.N —  j> -E/hBT V W d E  (3.28')
V ’  1f  n ( k BT)* V



96 Solid Stafe Physics

It is termed the complete Maxwell-Boltzmann distribution function• 
Figure 3.3(b) shows the graph of this function. Because of the factor 
]/ E its maximum is displaced to the right of the origin.

Knowing the distribution function /m(̂ )> we may easily find 
the laws of distribution of the particles over the momentum, 
N(p) dp, and over its components, N(px, py, p z) dpxdpydpz, over 
velocity, N(v) dv, and over its components N(vx, vy, vz) dvxdvuduZf 
over one of the components of velocity, say N(ux) dvx, etc. Those 
distributions are shown below

n ( P)=  M  . - w ^ v y
(2n mkBT )3/2

(3.29)

(3.30)

N(Px, p„  Pz)= N e- ^ +pl +pVl(2mhBT> 
v ' (2n mkBT )m

(3.31)

N ( v „ Vy, VZ) =  N T)3/\ - m̂ +Pl +v?n2hBr> (3.32)

(3.33)

The reader is requested to obtain those results himself.

§ 27 Distribution function
for a degenerate fermion gas

The distribution function for a degenerate fermion gas was first ob­
tained by Fermi and Dirac. It is of the following form:

fr {E) =  (eE~m  bt +1)-» (3.34)
An elementary derivation of this expression is presented in Appen­

dix II. Here, as before, p, denotes the chemical potential, which in 
the case of a degenerate fermion gas is termed the Fermi level.

Formula (3.34) shows that for E =  p, the distribution function 
h{E) =  1/2 at any temperature T =£ 0. Therefore from the statis­
tical point of view the Fermi level is a state whose probability of 
occupation is 1/2.

The function (3.34) is termed the Fermi-Dirac function. To obtain 
a clear picture of the nature of this function one should consider the 
degenerate electron gas in metals at absolute zero.

Electron distribution in a metal at absolute zero. Fermi energy. 
The metal is a sort of a potential trough for free electrons. To leave 
it the electron should have work performed on it against the forces 
retaining it in the metal. Figure 3.4 shows the diagram of such a
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potential trough. The horizontal lines denote energy levels which the 
electrons may occupy. In compliance with the Pauli exclusion prin­
ciple there may be two electrons with opposite spins on each such 
level. For an electron gas of N electrons the last occupied level will 
be the A72 level. This level is termed the Fermi level for a degenerate

Figure 3.4 Schematic representation 
of a metal as a potential trough 
for free electrons.

electron gas. It corresponds to the maximum kinetic energy' EF an 
electron in a metal may possess at absolute zero. This energy is 
termed the Fermi energy.

Thus at absolute zero all states with the energy E <  EF are oc­
cupied by electrons and all states with the energy E >  EF are 
free. In other words, the probability of occupation of a state with 
the energy E <  EF at T =  0 K is unity and the probability of oc-cu- 

, pation of a state with the energy E >  EF is zero:
/F (E) =  1 for E <c Ef

=  0 for E > E f (3.35)
To obtain this result from (3.34) one should assume that at 

T =  0 K the chemical potential of the electron gas measured from 
the bottom of the potential trough is equal to the Fermi energy EF:

P-0 =  (3.36)
Indeed, setting in (3.34) p,=Z?Ft we obtain

/P(£) =  (e(E" EF>/ftBT+ i)-i (3.37)
If E < E f , then e(E-EF)/ftBr o at f  =  0K and /F =  1; if 
E >  Z?F, then e(E~EF)/kBT oo at T =  OK and /F =  0.

Figure 3.5(a) shows the graph of the Fermi-Dirac distribution func­
tion at absolute zero. It has the shape of a step terminating at 
E =  Ef ,
7-0885
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Multiplying (3.35) by the number of states g(E) dE [see (3.22)], 
we obtain the complete Fermi-Dirac distribution function at absolute 
zero:

N {E)dE=^f(2m)*i*V~EdE (3.38)
because/F =  1 in the energy interval (0, EF). The graph of the func­
tion is presented in Figure 3.5(b), where the area of the occupied states 
is shaded.

Figure 3.5 The distribution function for degenerate fermion gas:
(a) —the Fermi-Dirac distribution function for T =  0 K,
(b) —the complete Fermi-Dirac distribution function for T =  0 K.

Integrating expression (3.38) from 0 to EF, we obtain 
N =  ̂ E \ ' 2 (2i»)s/2 

whence the Fermi energy EF may be easily obtained

(»■«»
where n =  N/V is the concentration of electron gas in the metal.

Knowing the energy distribution function of the electrons, we may 
easily calculate the average energy of the electrons at absolute zero, 
E0: 3 in 3h? / 3n \ 2/3 /q /rk\* 0=5-£F= io^(& r) (3-40)

Lastly, knowing EF and E0, we can calculate the maximum velocity 
vF and the effective velocity i;eff (corresponding to average energy) 
of free electrons in a metal at absolute zero:

/ 2Ef i/ *  2 Eq
I T '  v*tt=V  -IT (3.41)
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Table 3.2 shows the Fermi energy EF, the average energy E0r 
the maximum and effective velocities of free electrons at absolute 
zero for some metals. The last column contains the Fermi temperature 
determined from the relation

T F =  EF!kB (3.42)
This is the temperature at which a molecule in a normal nondegen­
erate gas would have the energy of thermal motion (3/2) kBT equal 
to the Fermi energy EF multiplied by 3/2.

Table 3.2

Metal E F  
(eV) *0(eV)

vF
(106 m/s)

y e f f
(106 m/s) T p (104

Copper 7.1 4.3 1.6 1.25 8.2
Lithium 4.72 2.8 1.3 1 5.5
Silver 5.5 3.3 1.4 1.1 6.4
Sodium 3.12 1.9 1.1 0.85 3.7

It may be seen from Table 3.2 that Fermi temperatures are so high 
that no metal can exist in a condensed state.

It should be stressed that although the Fermi energy represents 
the kinetic energy of translational motion of free electrons it is not 
the energy of their thermal motion. Its nature is purely quantum me­
chanical and is due to the fact that electrons are fermions satisfying 
the Pauli exclusion principle.

Temperature dependence of the Fermi-Dirac distribution. When 
the temperature is raised, the electrons become thermally excited and 
go over to higher energy levels. This causes a change in their distri­
bution over the states. However, in the range of temperatures in 
which the energy of their thermal motion, kBT, remains much less 
than EF only the electrons in a narrow band about approximately 
kBT wide adjoining the Fermi level may be thermally excited (Fig­
ure 3.6(a); the excited states are shaded). The electrons of the lower 
levels remain practically unaffected because the energy of thermal 
excitation kBT is not enough to excite them (to transfer them to 
levels above the Fermi level).

As a result of thermal excitation some of the electrons with an ener­
gy less than EF are transferred to the levels with energies greater 
than EF and a new distribution of electrons over the states is estab­
lished. Figure 3.6(b) shows the curves of the electron distribution over 
the states for T — 0 K (curve 1) and for T >  0 K (curve 2). It can 
be seen that the rise in temperature causes the original distribution 
to smear to a depth of kBT with a “tail” BC appearing to the right 
of EF. The higher the temperature the greater the change in the dis-
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tribution function. The tail BC itself is described by the Maxwellian 
distribution function.

The shaded areas in Figure 3.6(b) are proportional to the number of 
electrons transferred from the states with E < i ? F (the area ADB) 
to the states with E >  EF (the area EFBC). Those areas are equal 
since they represent the same number of electrons.

Let us make an approximate estimate of this number, AN. There 
are N/2 energy levels inside the interval (0, EF), where N is the num­
ber of free electrons in the metal. To simplify the problem we may

Figure 3.6 Temperature dependence of the Fermi-Dirac distribution 
function: (a)—thermal excitation of electrons; (b)—the Fermi-Dirac 
distribution function for T >  0 K.

N

assume that these levels are equidistant, the separation being Ac =  
=  EFI(NI2) =  2EF/N. Only the electrons in the band kBT wide 
just below Ef (Figure 3.6(a)) are thermally excited. There are 
kBT/ Ae =  kBTNl{2EF) levels inside this band occupied by 
2JsBTNI(2EF) =  kBTN!EF electrons. Assuming that not more than 
a half of those electrons go over the Fermi level, we obtain the fol­
lowing approximate relation for AA:

AN~ - m N <3-«>
At room temperature kBT « 0.025 eV, EF = 3-10 eV, therefore 
AN/N <  1 percent; at T =  1000 K we find that AN/N « 1-2 per­
cent.

Hence in all the temperature range in which the electron gas in a 
metal is degenerate its distribution is close to that at absolute zero. 
Accordingly, only a negligible fraction of the electrons close to the 
Fermi level are thermally excited. At room temperature this fraction 
is less than 1 percent of the total number of conduction electrons. 
The laws governing the distribution of the electrons in metals dis­
cussed above remain valid practically in all cases, because in all the
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temperature range in which the existence of metals in the con­
densed state is possible the electron gas remains degenerate.

Consider the temperature dependence of the chemical poten­
tial. Integrating the complete Fermi-Dirac distribution function 
f?(E) g(E) dE over energy, we obtain the total number N of free 
electrons in a metal:

OO OO

N =  ( fF(E)g(E)dE^ —  (2m)^2 j  E'l'-dE (e<E- ^ /ftBr +  i)-i 
0 0

Generally, there is no analytic expression for this integral. Approx­
imate calculation in the temperature range in which the electron 
gas remains strongly degenerate yields the following temperature 
dependence of \i:

< 3 - 4 4 >

As k#T remains much less than EF up to the melting point of a 
metal, the decrease in \i with the rise in T turns out to be so small that 
it can often be neglected and the Fermi level can be assumed to coin­
cide with Ef at any temperature. _

One can also calculate the average energy of the [electrons E 
in a degenerate electron gas dividing its total energy, E t =  
=  EfF(E) g (E)dE, by the number of the electrons, N:

p _ E t _  7 E 3/2dE (7 E i/2dE \~ l
N ~  J e(E-|i)/feBT + 1  [) e(E-n)/ABT+ 1]

0 1 0
An approximate calculation of these integrals yields

( M ) !] (3.45)
At T =  0 (3.45) turns into (3.40).

Lifting of degeneracy. Nondegenerate electron gas. When the 
condition for nondegeneracy (3.10) is fulfilled, every gas including 
the electron gas must become nondegenerate. Let us discuss this in 
more detail.

According to (3.10) the gas is nondegenerate if the average occu­
pancy of the states by the particles is much less than unity. Since 
the distribution function f(E) represents the occupancy of the states, 
the condition of nondegeneracy (3.10) may be written in the form

f(E) <  1 (3.46)
The Fermi-Dirac function (3.34) will be much less than unity if 

the term ê E~^/hBT will be much greater than unity:
e(E-n)/ftBr y  i (3.43
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This inequality should hold for all the states including that with 
E = 0:

>  1 (3.47)
It follows from (3.47) that for a nondegenerate electron gas in which 
condition (3.46) is satisfied — p should be a positive quantity con­
siderably greater than kBT:

-\i >  kBT (3.48)
The chemical potential p should be negative and greater than kBT 
in absolute value.

If the condition (3.46') is fulfilled, unity in the denominator of 
the Fermi-Dirac function can be neglected and the following expres-

Figure 3.7 Temperature dependence of energy, pressure, and the square 
of effective velocity of electrons in a metal.

h p .-eff

Region of 
degenerate state

0 7p r

sion for the distribution function of a nondegenerate electron gas may 
be obtained:

f (E) =  e'llk^Te~E/kbt (3.49)
Comparing (3.49) with (3.25), we see that a nondegenerate electron 
gas like every other nondegenerate gas is described by the Maxwell- 
Boltzmann distribution function.

The electron gas in metals, where the free electron concentration 
is always very high («1028 m“3), is always in a degenerate state de­
scribed by the Fermi-Dirac distribution function.

A nondegenerate electron gas is a feature of the intrinsic {pure) and 
weakly doped semiconductors, which are the mainstay of modern 
semiconductor electronics. The concentration of free electrons in 
such semiconductors is substantially less than in metals, varying from 
1016-10lfJ to 1023-1024 m~3 depending upon the concentration of elec­
trically active impurities. The nondegeneracy condition (3.10) re­
mains valid for such concentrations and the electron gas is nonde­
generate.

In conclusion, to illustrate the drastic difference in the behaviour 
of the ideal nondegenerate gas obeying the Maxwell-Boltzmann sta-

Region of 
nondegencrate state
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tistics and of the degenerate electron gas described by the Fermi-Di- 
rac statistics, we would like to cite some of their properties 
(Table 3.3).
Table 3.3

Parameters
Gas

nondegenerate degenerate

E

"eft

P

OK 0
co |uo

IIo1^
T K E ^ k BT ~  3 F* T hr
0 K 0 ye f t=  *  106 m ''s

T K _  , /" 3JcbT 
v m vcH » «&r

OK 0 p° =  -|-£0 » 1010 Pao

T K Ik
aspII p » p°

It follows that average energy E, effective velocity vCff and pres­
sure p of a nondegenerate ideal gas are functions of temperature that 
vanish at absolute zero. At the same time E, i?eff, and p of a degen­
erate electron gas are very large already at absolute zero and are prac­
tically independent of temperature (Figure 3.7). This points to the 
fact that, as noted above, E, yeff, and p of a degenerate electron gas 
are for the most part not of thermal origin, the contribution of the 
thermal electron motion to these quantities being negligible.

§ 28 Distribution function
for a degenerate boson gas

In contrast to the electrons, which satisfy the Pauli exclusion prin­
ciple, the bosons can occupy both the free states and the states already 
occupied by other bosons the more readily the greater the occupancy 
of the latter.

The distribution function of bosons over the states was first ob­
tained by Bose and Einstein. It is of the following form:

/Bose(^) =  (e(B" ll)/ftBT- l )-1 (3.50)
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(An elementary derivation of this expression is given in Appendix III). 
It is termed the Bose-Einstein distribution function. Let us use it to 
describe the state of a photon gas.

Suppose that a cavity inside a black body at a temperature T is 
filled with equilibrium thermal radiation. From the quantum mechan­
ical point of view this radiation may be regarded as consisting of 
an enormous number of photons constituting a photon gas. The 
photon’s spin is s — 1. Therefore photons are bosons, which implies 
that the photon gas should satisfy the Bose-Einstein distribution.

The photons have some peculiarities as compared w7ith other bo­
sons, for instance, the helium nucleus, vHe.

(1) The rest mass of a photon is zero.
(2) All photons move with the same speed equal to that of light, 

c, but can have different energy E and momentum p ; E and p depend 
on the photon’s frequency:

E =  hv =  ho), p =  hv/c =  hw/c (3.51)
where ft =  hl2n and (o =  2jtv. It follows from (3.51) that

E =  pc (3.52)
(3) The photons do not collide with one another. Therefore an 

equilibrium distribution in a photon gas can be established only in 
the presence of a body capable of absorbing and emitting photons. 
The walls of the cavity in which the radiation is contained may serve 
as an example of such a body. The transformation of a photon of one 
frequency into a photon of another frequency takes place in the pro­
cesses of absorption and subsequent emission.

(4) The photons may be generated (in the act of emission) and an­
nihilated (in the act of absorption) in any numbers. Therefore the 
number of photons in a photon gas does not remain fixed but depends 
on the state of the gas. For specified values of V and T the photon gas 
in a state of equilibrium contains so many photons N0 as are needed 
for the energy of the gas to be at its minimum. This makes it possible 
to express the condition for the equilibrium of the photon gas in the 
form:

(w),.r=° (3-M>
Since according to (3.8) (dE/dN)v,r =  p the equilibrium condition 
(3.53) means that p =  0. Hence the chemical potential of an equi­
librium photon gas is zero.

For a nondegenerate gas the chemical potential is negative and 
has a relatively great absolute value. The fact that for the photon gas 
p =  0 means that such gas is always degenerate.

Setting p =  0 in (3.50), we obtain the distribution function for the 
photon gas:

fp (E) =  (eE/ftBT — l)-i =  (eha/hBT — l)-i (3.54)



Elements of Physical Statistics 105

This formula was first obtained by Max Planck and is termed the 
Planck formula. It represents the average fraction of photons having 
the energy E == So>. Using this formula, we may easily formulate the 
law for the energy distribution in the spectrum of a black body. The 
following expression can be obtained for the energy density of 
the radiation of such a body:

2h CO3 / Q  r r \“ JtC3 etM/kBr _ { (3.5d)

The readers are requested to derive this formula themselves mak­
ing use of (3.54) and (3.18).

§ 29 Rules for statistical averaging
As was already stated, to specify the state of an ensemble one should 
specify its state parameters. To specify the state of a particle one 
should specify the values of its coordinates and momentum compo­
nents.

The problem of going over from the parameters of the individual 
particles to the state parameters characterizing the ensemble involves 
the problem of transition from the dynamical laws describing the 
behaviour of the individual particles to the statistical laws describ­
ing the behaviour of the ensemble. To effect such a transition it is 
necessary to perform the averaging of the characteristics of motion 
of the individual particles assuming the chances of all the particles 
belonging to the ensemble to be identical. The state parameters of 
the ensemble are expressed in terms of the averaged parameters of 
the individual particles belonging to the ensemble.

To make the rules of averaging apparent let us consider an ensemble 
of N identical particles each of which is capable of assuming one 
of the discrete set of energy values: Et, E2, . . ., Em. Choose an 
arbitrary moment of time and note the energy every particle has at 
that moment. We obtain as a result a set of numbers N(Ei) express­
ing the number of particles having the energy E t. To determine the 
average energy E of the particles we add up the energies of all of them 
and divide the sum by the number of particles. The total number of 
particles is N =  y\T= iM ) ,  and the sum of their energies is 

N{Et) E t. Therefore

2 EiN (Ei)
i = 1________________m
2  N (El)
i= l

(3.56)
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The average value E obtained in this fashion is termed an ensemble 
average.

If the particle’s energy assumes a continuous set of values, the 
practice is to count the number of particles having an energy lying 
within an interval (E , E +  dE) instead of the number of particles 
having an exact value of energy. The average energy will then be

oo
$ EN(E) dE

1 =  4 -------- (3.57)
J N(E) dE
6

Such averaging may be performed for any physical quantity M 
that is a function of the coordinates and the momenta of the parti­
cles making up the ensemble. If M is continuous,

oo
$ MN(M) dM 

¥  =  4 ----------  (3.58)
$ N(M) dM
b

Let us determine the average energy of the particles of an ideal 
nondegenerate gas. According to (3.57) and (3.28), we have

oo
$ EN(E) dE 

E =  - ---------OO
$ N(E)dE
6

The results of the calculations of the average values of the velocity, 
of a velocity component, of the effective velocity, and of its compo­
nent for the particles of an ideal gas are presented thus:

— - ( ¥ ) “*
The reader may for the sake of practice perform these calculations 

himself.

-— - f e-E/ftBr£.V2 dE = 3 ig T (3.59)
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§ 30 Normal modes of a lattice
The atoms of a solid take part in thermal vibrations around their 
equilibrium positions. Because of a strong interaction between them, 
the nature of those vibrations turns out to be extremely complex 
and an accurate description of it presents enormous difficulties. There­
fore approximate methods and various simplifications are used to 
solve this problem.

Instead of describing the individual vibrations of the particles 
the practice is to consider their collective motion in the crystal, 
which is a spatially ordered structure. This simplification is based on 
the fact that powerful bonds immediately transmit the vibrations of 
one particle to other particles and a collective motion in the form of 
an elastic wave involving all the particles of the crystal is excited 
in it. Such collective motion is called the normal mode of a lattice. 
The number of normal modes coincides with the number of degrees 
of freedom, which is 37V if TV is the number of particles constituting 
the crystal.

Figure 4.1(a) represents a one-dimensional model of a solid—a 
linear chain of atoms separated by a distance a and able to vibrate 
in the direction perpendicular to the chain. Such a chain may be re­
garded as a string. If the ends of the chain are fixed, the fundamental 
mode corresponding to the lowest frequency co]nin is represented by 
the standing wave with a node at each end (Figure 4.1(b), curve 1). 
The second mode is represented by the standing wave with an addi­
tional node in the centre of the chain (curve 2). The third mode, or 
third harmonic, is represented by the standing wave with two addi­
tional nodes that divide the chain in three equal parts (curve 5), etc. 
The length of the shortest wave in such a chain is evidently equal to 
twice the distance between the atoms of the chain (Figure 4.1(c)):

^min =  2a (4.1)
The corresponding maximum freguency (omax is

wmax — 2 jtl?/A/min =  zivl a (4.2)
where v is the velocity of wave propagation (of sound) along the chain.
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This maximum frequency is a parameter of the chain’s material 
and is determined by the interatomic distance and the velocity of 
wave propagation. Should we set a =  3.6 X 10“10 m (the lattice 
parameter of copper) and v =  3550 m/s (the velocity of sound in 
copper) we would obtain comax «3 X 1013 s-1, which corresponds to 
the frequency of atomic vibrations in a solid.

J±t Figure 4.1 Normal modes of a linear
chain made up of identical atoms: 
(a)—linear chain; (b)—normal 
modes of the chain; (c)—normal 
modes of the chain corresponding 
to shortest wavelength (to highest 
frequency); (d)—dispersion curves 
expressing dependence of normal 
mode frequency on wave vector.

To describe wave processes one usually uses the wave vector q 
whose direction coincides with that of wave propagation and whose 
absolute value is

q =  2n/K (4.3)
It follows from (4.2) that 2n/k =  co/v. Therefore* 6

q =  (o/y, or co =  qu (4.4)

6 The phase velocity v, which enters (4.4), is itself a function of the wave 
vector q and for a linear chain of atoms bonded by elastic forces is expressed 
by the following relation:

v =  v0sin (qa/2) 
qa/2 (4.4')

where u0 is the velocity of wave propagation in a continuous string for which 
a = 0. It follows from (4.4') that for a constant a the velocity v is practically 
independent of q and is approximately v0 only in the range of small q's, where 
[sin (qa/2)]/(qa/2) « 1. In this range co increases approximately in proportion 
to q (Figure 4.1(d)). As q increases the value of [sin (qa/2)]/(qa/2) steadily dimin­
ishes and for q = n/a tends to 2/n. This causes the dispersion curve co(q) 
to flatten out, so that for q =  n/a it runs parallel to q.
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Figure 4.1(d) shows the dependence on wave vector q of the fre­
quency of normal modes in a linear chain made up of atoms of one 
kind. As q increases from 0 to nla the frequency of the normal modes 
rises, reaching the maximum value comax = nvla for q =  nla, that 
is, for X = 2a. Curves of this type expressing the dependence of the 
vibration frequency on the wave vector (the wavelength) are termed 
dispersion curves.

Figure 4.2 Normal modes of a chain made up of atoms of two kinds: 
(a)—arrangement of atoms in the chain; (b)—acoustic modes;
(c)—optical modes; (d)—dispersion curves for acoustic
and optical modes; (e) —linear lattice with a basis in which optical
and acoustic modes are present.
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Consider now a chain made up of atoms of two kinds placed in 
a regular sequence one after another (Figure 4.2(a)). Denote the mass 
of the heavier atoms by M and that of the lighter atoms by m. Two 
types of normal modes can be present in such a chain, as is shown in 
Figure 4.2(b, c). The modes 4.2(b) are quite identical to the modes of 
a uniform chain: the phases of the neighbouring atoms are practically 
the same. Such vibrations are termed acoustic modes, since they in­
clude the entire spectrum of the acoustic modes of the chain. For 
them coac =  0 for q =  0. They play a decisive part in determining 
the thermal properties of the crystals such as heat capacity, heat 
conductivity, thermal expansion, etc.

In case of normal modes shown in Figure 4.2(c) the phases of the 
neighbouring vibrating atoms are opposite. Such modes can be treat-
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ed as the relative vibrations of two interpenetrating sublattices, each 
made up of atoms of one kind. They are termed optical modes, since 
they play a decisive part in the processes of interaction of light with 
crystals.

Figure 4.2(d) shows the dispersion curves for the acoustic (1) and 
optical (2) normal modes of a chain made up of atoms of two kinds. 
In contrast to an acoustic mode, whose frequency rises with the wave 
vector reaching the maximum value at qmax =  jt/(2a), the maximum 
frequency of an optical mode corresponds to q =  0; with the increase 
in q the frequency of an optical mode falls off to its minimum at
*7max = Jt/(2fl).

The optical vibrations are possible not only in a chain made up 
of atoms of different kinds, but in a complex chain made up of two, 
or more, interpenetrating chains containing atoms of one kind, 
as shown in Figure 4.2(e). Unit cell of such a complex chain contains 
two atoms. The optical modes are the result of the relative vibrations 
of two sublattices.

§ 31 Normal modes spectrum of a lattice
One of the principal problems of the theory of lattice vibrations is 
the problem of the frequency distribution of normal modes. Consider 
now the simplest case of the normal modes in a linear atomic chain 
(see Figure 4.1).

The wavelengths of the normal modes in such a chain are
Xn =  2L!n (n =  1, 2, 3, . . ., N) (4.5)

where L is the length of the chain, and N the number of atoms in it.
The number of normal modes z having the wavelength [equal to 

or greater than Xn will evidently be n:
z — n — 2 L/Xn

In the same way the number of standing waves in a three-dimen­
sional crystal of volume V (for instance, in a cube with edge L and 
volume L3) having the wavelength equal to or greater than X should 
be

z = (2 u x y  = 8m3
A more accurate calculation yields

z =  4nV/X3 (4.6)
Since X =  2ju;/(d, it follows that

Z “ 2n2v3 00 (4.7)
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Differentiating this expression, we obtain
dz =  g (w) d© = — 5 ©2cZg) (4.8)

Formula (4.8) expresses the number of normal modes per frequency 
interval (co, co +  dco). The function

(4-9>
determines the density of the normal vibrations in do of the spectrum, 
that is their spectrum. The function g(o) is termed spectral distri­
bution function of normal modes.

Since the number of normal vibrations in a lattice is 3N, the func­
tion g(o) should satisfy the following normalization condition:

"d
 ̂ g (co) dco == 37V (4.10)
o
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where o D is the maximum frequency limiting the spectrum of nor­
mal modes from above.

Substituting (4.9) into (4.10) and integrating, we obtain

,°3 -37VZn*v3 (4.11)
Hence

l a  2 N \1/3(0D =  u f 6ji2 -pr j (4.12)

The frequency 
ture

coD is termed the Debye frequency and the tempera-

0 =  ton  
kB (4.13)

the Debye temperature. Table 4.1 shows the Debye temperatures of 
some chemical elements and compounds.

At the Debye temperature the entire vibration spectrum is ex­
cited in the solid, including the one with the maximum frequency 
g)d- Accordingly, any further rise in temperature (above 0) shall 
not be accompanied by the appearance of new normal modes. In 
this case the role of the temperature is to increase the intensity of 
each of the normal modes with a resultant increase in their average 
energy.

Temperatures T >  © are usually referred to as high temperatures* 
Substituting v3 from (4.11) into (4.9), we obtain

g(o) =  9 N % (4.14)
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Table 4.1

Element e (K) Element 0 (K) Element 0 (K)

A1 418 Fe 467 Pb 94.5
Ag 225 Ge 366 Pd 275Au 165 Hg (60-90) Pt 229Be 1160 In 109 Si 658Bi 117 KBr 174 Sn (gray) 212C (diamond) 1910 KC1 227 Sri (white) 189
Ca 219 La 132 Ta 231
CaF2 474 Mg 406 Ti 278
Cd 300 Mo 425 T1 89
Co 445 NaCl 320 V 273
Cr 402 Nb 252 W (379)
Cu 339 Ni 456 Zn 308

§ 32 Phonons
Each normal mode carries with it some energy and momentum. 
Oscillation theory contains the proof of the fact that the energy of 
a normal mode is equal to the energy of an oscillator with a mass 
equal to the mass of the vibrating atoms and the frequency of the 
normal mode. Such oscillators are termed normal.

Denote the energy of the ith mode characterized by the frequency 
co j by E tn.m. It is equal to the energy E tn.0 of a normal oscillator of 
the same frequency co*: E tn.m = E tn.0. The total energy of the crys­
tal in which all the 3N normal modes have been excited is

3 N
E  =  E{ n.o 

1

Hence the total energy of the crystal made up of N atoms taking 
part in coupled vibrations is equal to the energy of 3N independent 
normal harmonic linear oscillators. In this sense a system of N atoms 
whose vibrations are interconnected is equivalent to a set of 3N nor­
mal oscillators and the problem of calculating the average energy of 
such a system is reduced to a simpler problem of calculating the av­
erage energy of normal oscillators.

It should be pointed out that normal oscillators have nothing in 
common with real atoms except the mass. Every oscillator represents 
one of the normal modes of the lattice in which all the atoms of the 
crystal take part vibrating with the same frequency co.

The energy of a quantum oscillator is, as is well known, expressed 
by the relation

En =  (n +  1/2) heo (n =  0, 1, 2, . . .) (4.15)
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where od is the oscillator’s vibration frequency, and n the quantum 
number.

Figure 4.3 shows the energy spectrum of a linear harmonic oscil­
lator. It consists of a set of discrete levels spaced at an interval of 
/ko.

Since i?n.m =  n̂.o» the expression for the energy of the normal 
modes of a lattice should be (4.15) and the energy spectrum should 
coincide with that shown in Figure 4.3.

The minimum portion of energy that can be absorbed or emitted 
by the lattice in the process of thermal vibrations corresponds to

Figure 4.3 Energy spectrum of linear 
harmonic oscillator.

the transition of the normal mode being excited from the given energy 
level to the adjacent level and is equal to

eph =  /ko (4.16)
This portion, or quantum, of energy of thermal vibrations of the 
lattice is termed a phonon.

The following analogy may help to clear up the point. The space 
inside a black body is filled with equilibrium thermal radiation. 
From the quantum mechanical point of view such radiation is treat­
ed as a gas made up of the light quanta, or photons, whose energy 
is e =  ftco =  hv and whose momentum is p =  hca/c =  h/Xy where c 
is the velocity of light, and X its wavelength.

The field of elastic waves in the crystal may be treated similarly 
as a gas made up of quanta of the normal modes of the lattice, or of 
phonons having the energy eph =  h®  =  hv and momentum

pvh =  fico/v =  h/X =  Kq (4.17)
where v is the velocity of sound, and X the length of the elastic wave.
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From this point of view a heated crystal may be likened to a box 
filled with phonon gas. The analogy may be extended.

Phonons are described by the same Bose-Einstein distribution 
function (3.54) as photons:

/ v f eW*BT_!  eh(*/kBT- 1

Depending on the intensity of excitation of the normal mode it can 
“emit” a definite number of phonons. Thus, if some normal mode

Figure 4.4 (a)—phonon energy-distribution function; (b)—illustration
of the fact that normal modes excited in the lattice at temperature T 
are mainly those with energy^quanta hm < k BT.

E 
- 1

-1

(D-P © /  C D c

(b)

was excited to the third level (Figure 4.3), its energy became E 3 =  
=  (3 +  1/2) ft©; this means that the particular normal mode has 
“generated” three identical phonons each with an energy of ft©.

Figure 4.4(a) shows the graph of the phonon energy (frequency) 
distribution function f{E). We see that for a given temperature T 
all normal modes in a lattice up to those with the energy ft© « kBT 
are excited; practically no quanta of higher frequencies with the 
energy ft© >  kBT are excited. This is quite evident from Figure 
4.4(b). Horizontal strokes here denote energy spectra of normal modes 
with the frequencies ©x =  kBT/(8h), ©2 =  kBT/(4h), cd3 =
=  kBT/(2h), ©4 =  kBT/H, and ©5 =  2kBT/h; the level correspond­
ing to kBT is shown by a dotted line. It follows that for a given tem­
perature T the mode with the frequency ©x is excited approximately 
to the 8th level. As was stated before, this means that this normal 
mode “generates” eight identical phonons with the energy S©x =
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= kBT!& each. The normal mode with the frequency co2 is excited 
approximately to the 4th level, that with the frequency cog to the 
second, and that with the frequency o)4 (whose quantum of energy is 
^o)4 =  kBT) to the first. At the same time the vibration co5 is rarely 
excited at T because its excitation energy ftco5 is too high. The exci­
tation of still higher frequencies is a much more rare event. Therefore 
we can say that approximately only the vibrations with frequencies 
not greater than 00 corresponding to the energy hco « kBT are excit­
ed in a solid at temperatures T <C 0.

By definition, the distribution function f(E) expresses the aver­
age number of phonons having the energy eph =  ftco. Therefore to 
obtain the average energy of an excited normal mode, E ^my °f the 
frequency (0 one has to multiply (3.54) by /ko:

E n.m =  Tico (efi<0/*BT — I)-* (4.18)

§ 33 Heat capacity of solids
The thermal energy of a solid lattice is the sum of the energies of 
its normal modes. The number of normal modes per spectral interval 
dco is g{to) do (see (4.8)). Multiplying this number by the average 
energy £n<m of the normal mode, (4.18), we obtain the total energy 
of the normal modes in the interval do

^  ̂ " l a t t i c e  = =  ^ n . m ? ( ® )

Integrating this expression over the entire spectrum of the normal 
modes, that is, from 0 to o D, we obtain the energy of the thermal 
vibrations of the lattice of a solid:

(0D
^lattice =  [ En.mg(a)da> (4.19)

o
The heat capacity at constant volume of a solid, CVy is the change 

in the thermal energy of a solid brought about by a one degree change 
in its temperature. To find it one should differentiate lattice with 
respect to T:

Cy =  d^jattice^ dT (4.20)
The fundamental problem in the theory of heat capacity is the 

temperature dependence of Cv. Let us first consider it from a quali­
tative point of view for two temperature ranges: for the range of 
temperatures much below the Debye temperature

T <  0 (4.21)
8*
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which is termed the low temperature range% and for the range of tem­
peratures above the Debye temperature

T >  0  (4.22)

the term for which is the high temperature range.
Low temperature range. In this range mainly the low frequency 

normal modes, with the energy quanta ftco <C kBT, are excited. The 
approximate value of the average energy of normal vibrations may 
in this case be calculated with the aid of the following method. Ex­
pand the denominator of expression (4.18) into a series leaving only 
two terms:

En.m =  hii> (eh“/ftBT— 1)-1« ha> ( 1 +  ... -1 )  ■* « kBT

Hence in the low temperature range the average energy of every nor­
mal mode increases in proportion to the absolute temperature T:

En.mOCT (4.23)
This law is due to the increase in the probability of excitation of 
every normal mode with the rise in temperature resulting in an in­
crease in its average energy.

In addition to this the rise in temperature in the low temperature 
range causes new higher frequency normal modes to be excited. 
The approximate number of the latter, z, may be calculated with the 
aid of (4.8). If we assume that at a temperature T all normal modes 
up to the frequency co « kBTlh are excited, we get

kBT/h hBT/h

z =  j  g (co) C?CD « j  (D2 did OC T3 
0 0

It follows that with the rise in temperature the number of normal 
modes increases in proportion to the cube of the absolute tempera­
ture:

z « P  (4.24)
To sum up, the crystal’s energy in the low temperature range in­

creases with the rise in temperature by means of two mechanisms: 
(1) the increase in the average energy of every normal mode, i?n.m, 
due to the rise in the probability of its excitation, and (2) the increase 
in the number of the normal modes of the lattice.

The first mechanism is responsible for the increase in energy pro­
portional to T and the second for the one proportional to T3.

Therefore the total effect is an increase in the energy of the lattice 
proportional to 714:

l a t t i c e  a  r *  (4.25)
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and a rise in heat capacity proportional to T3:
CVCCT3 (4.26)

Formula (4.26) is the Debye T3 law, which agrees well with experi­
ment in the low temperature range.

High temperature range. As has been already stated, all normal 
modes of a lattice are excited at the Debye temperature, so that 
a further rise in temperature cannot increase their number. Therefore 
the variation in energy of a solid in the high temperature range may 
only be due to the rise in intensity of the normal modes, resulting 
in an increase in their average energy Z?n.m- Since En>m OC T the 
variation of the energy of the body as a whole, too, should be pro­
portional to T:

^lattice OC T (4.27)
and the heat capacity must be independent of T :

CY — dExmteddT =  constant (4.28)
Relation (4.28) is the expression of the Dulong and Petit law, 

which is quite well substantiated by experiment.
A rather wide range of temperatures, the so-called medium temper- 

ature range, lies between the high and low temperature ranges. 
In this medium temperature range gradual transition from the 
Debye T3 law to the Dulong and Petit law takes place. Calculations 
in this range are the most difficult.

To sum up, the following physical picture of the variation of the 
temperature dependence of energy and of heat capacity of a solid 
with the rise in temperature may be presented.

In the low temperature range (T 0) the solid’s energy increases 
with the rise in temperature firstly because of the increase in the pro­
bability of excitation of every normal mode, that is because of the 
increase in its average energy, £n<m, which is proportional to T, 
and secondly because new normal modes are drawn into the process 
causing the body’s energy to increase in proportion to T3. The energy 
of the lattice, as a whole, rises in proportion to J 4 and the specific 
heat in proportion to T3.

As the temperature approaches the Debye temperature the second 
mechanism gradually becomes inoperative and l a t t i c e  becomes less 
dependent on T, causing a deviation from the Debye T3 law.

At the Debye temperature the entire spectrum of normal modes is 
excited. Therefore the second mechanism has no part to play; only 
the first mechanism operates here causing the energy to rise in pro­
portion to T and the heat capacity Cv to remain independent of T 
(the Dulong and Petit law).

The qualitative laws of the variation of Cv with T obtained from 
the study of physical processes in solids may be substantiated by
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more rigorous quantitative calculations. To this end let us turn to 
(4.19) and try to calculate the lattice energy as a function of tem­
perature more accurately.

Substituting g (o) from (4.14) and i?n.m from (4.18) into (4.19), 
we obtain

lattice = - f -  ( foo3d(0 (en*fll*T -  I )'1 
D J0

(4.29)

One can introduce the dimensionless quantity x =  h($/kBT and 
rewrite (4.29) in the form

e / T

£lattlce =  9M:B0 (-§-)4 j
0

x3 dx 
e* — 1 (4.30)

where 0 is the Debye temperature.
We will consider the high and the low temperature ranges separa­

tely.
Low temperature range (T <C® )* In this range we can substitute 

infinity for the limit of integration in (4.30). Taking into account

that [ -t— 7  =  j ? , we obtain J ex — 1 150
lattice = ~ M c B©(-|-)4 OCT4 (4.31)

Differentiating (4.31) with respect to temperature, we obtain

Cv =  ̂ L NkB^ Y < X T 3 (4.32)

We have arrived at the Debye Tz law in accordance with which the 
heat capacity of a lattice varies in the low temperature range as the 
cube of the temperature.

High temperature range. For such temperatures the values of x 
are small and hence it is possible to drop all but the first two terms 
of the expansion ex =  1 +  x +  . . . . Then

e/T
lattice =  9Mcb© (-§-)4 j  xHx =  3NkBT <X T (4.33)

0
The heat capacity of the crystal is

Cv =  i ^ i c e .  =  37VA.B==constant (4.34)

For a mole of a monatomic substance N =  NA — 6.023 X 10-23 
mole-1 (Avogadro’s number), NAkB = R « 8.31 J/(mole-K) (the
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gas constant) and
Cv « 3R « 25 J/(mole-K) (4.35)

Formula (4.35) expresses the Dulong and Petit law, which was 
formulated by them in 1819.

The solid line in Figure 4.5 shows the theoretical temperature 
dependence of the heat capacity of solids, the points being experi­
mental values for silver, diamond, aluminium, copper, and rock

Figure 4.5 Temperature dependence of heat capacity of solids. The solid 
line is the theoretical Debye curve.

salt. The agreement between theory and experiment is quite satis­
factory not only from the qualitative but also from the quantitative 
point of view.

Knowing the temperature dependence of the energy of a lattice, 
we can easily find at least the qualitative dependence of the concen­
tration of the phonon gas on temperature, that is, the number of 
phonons excited in a unit of volume of the crystal.

The concentration of the phonon gas in the low temperature range, 
in which lattice OC T4 and the phonon energy hay kBT (X T, must 
be proportional to T3:

rcphocr3 (4.36)
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In the high temperature range, where lattice OC T and the phonon 
energy attains the maximum value of ScoD « independent of T, 
the concentration7 of the phonon gas should be proportional to T:

nphOC T (4.37)

§ 34 Heat capacity of electron gas
The metals, in addition to ions which constitute the lattice and vi­
brate around their equilibrium positions, contain also free electrons 
the number of which per unit volume is approximately the same as 
that of the ions. For this reason the specific heat of a metal should be 
the sum of the heats] capacity of the lattice Clattice calculated in the 
previous paragraph and of the electron gas Ce:

C v  — ^ la t t ice  ~b
If the electron gas was a normal classical (nondegenerate) gas, 

every electron would have an average energy 3kBTI2 and the energy 
of the electron gas per mole of the metal would be

E{eci) =  NA- ^ k B = ± RT  

and its heat capacity would be

c<oi)=-|- N^ =  4~R (4-40>
The total heat capacity of the metal in the high temperature range 

would in this case be
Cv =  lattice +  R » 37 J/(mole-K)

Actually, the heat capacity of metals, as well as that of dielectrics, 
in the high temperature range, where the Dulong and Petit law is 
valid, is equal to Cv « 25 J/(mole-K), a proof that the contribution 
of the electron gas is negligible.

7 To be exact, to calculate the concentration of the phonon gas one must 
know the average energy of the phonons ePh both in the low and the high tem­
perature ranges since the lattice energy is equal to the product of the average 
phonon energy and their concentration. The calculation of ePh yields

eph =  Jis*B375 (4.38)
for the low temperature range, and

ePh =  2fcB0/3 (4.39)
for the high temperature range.

This justifies the temperature dependence of rcph expressed by formulae 
(4.36) and (4.37) and obtained by qualitative methods.
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This situation incomprehensible from the point of view of clas­
sical physics found its natural explanation in quantum theory.

Indeed, as was demonstrated in Chapter 3, the electron gas in 
metals is a degenerate gas described by the Fermi-Dirac quantum 
statistics. As the temperature is raised, not all the electrons are 
thermally excited; only a negligible fraction of them, AN, occupying 
states close to the Fermi level (see Figure 3.6) are thermally excited. 
The number of such electrons is approximately expressed by the re­
lation (3.43).

AN ^ N kBT 
2 EF

where EF is the Fermi energy. For copper at T 300 K and EF ^  
« 7 eV we have ANIN & 0.002, that is, less than one percent.

Every thermally excited electron absorbs an energy of the order 
of kBT just as a particle of a normal gas does. The energy absorbed 
by the electron gas as a whole is the product of kBT and the number 
of thermally excited electrons AN:

Ee« kBT AN « NkBT (4.41>
The heat capacity of the electron gas is

<4.42>
A more accurate calculation yields the following expression:

(4.43>
Comparing (4.40) with (4.43), we obtain

Ce ^  n kBT 
' C<cl> ~ n EF (4.44)

It follows from (4.44) that the ratio of the heat capacity of a degen­
erate electron gas to that of a nondegenerate monatomic gas is ap­
proximately equal to the ratio of kBT to EF. At normal tempera­
tures the ratio nkBT/EF <  1%. Therefore

Ce <  0.01C<cl) (4.44'>
Hence, because of the degeneracy of the electron gas in metals 

even in the high temperature range only a small portion of the free 
electrons (usually less than one percent) is thermally excited; the 
rest do not absorb heat. This is why the heat capacity of the electron 
gas is negligible as compared to that of the lattice, and the heat ca­
pacity of a metal as a whole is practically equal to the latter.

The situation is different in the low temperature range close to 
absolute zero. Here the heat capacity decreases in proportion to T3,
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with the fall in temperature and close to absolute zero may prove 
to be so small that the contribution of the heat capacity of the elec­
tron gas, Ce, which decreases much more slowly than C^mce 
OC 71), may become predominant. Figure 4.6 shows the temperature 
dependence of the lattice and electron components of specific heat 
of an alloy (20 percent vanadium and 80 percent chromium) whose 
Debye temperature is © =  500 K. It may be seen from Figure 4.6 
that close to absolute zero the heat capacity of the electron gas is

Figure 4.6 Temperature dependence of lattice and °f an alloy 
consisting of 20 percent vanadium and 80 percent chromium.

C, caI/(mole-K)

much greater than that of the lattice (Clause < iC e), the sign of the 
inequality remaining the same up to T « 8.5 K. At T >  8.5 K 
the sign is reversed, the inequality becoming stronger with the rise 
in T. Already at T « 25 K the heat capacity of the alloy is mainly 
due to that of its lattice (at T =  25 K the heat capacity is Clattice ~  
^  10 Ce).

§ 35 Thermal expansion of solids
To explain the elastic properties of solids, in Chapter 2 we have 
introduced the harmonic approximation according to which the 
elastic force acting on a particle displaced from its equilibrium posi­
tion is proportional to the displacement [see (2.3)] and its potential 
energy is proportional to the square of the displacement [see (2.2)1; 
this fact is represented by a parabola (the dotted line in Figure 2.1).

The immediate result of the harmonic approximation was the 
Hooke’s law, which describes the elastic deformation of solids. The
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same approximation was used in Chapter 3 as a basis for calculating 
the thermal vibrations of a lattice and constructing the theory of 
heat capacity of a lattice, which is in fair agreement with experiment.

However, the harmonic approximation was unable to explain 
such well known phenomena as, for instance, the thermal expansion 
of solids, their heat conductivity, etc.

Indeed, let us turn to the dependence of the potential energy of 
interaction of the particles of a solid on the distance between them

Figure 4.7 The origin of thermal 
expansion of solids (explanation 
in text).

(Figure 4.7). At absolute zero the particles occupy positions r0 cor­
responding to the minimum interaction energy U0 (at the bottom 
of the potential trough abc). Those distances determine the dimensions 
of the body at absolute zero. As the temperature rises the particles 
begin to vibrate around their equilibrium positions 0 . For the sake 
of simplicity let us assume that particle 1 is fixed and only particle 2 
is vibrating. The kinetic energy of the vibrating particle is at its 
maximum Ek when the particle passes its equilibrium position O. 
In Figure 4.7 the energy Ek is measured upwards from the bottom of 
the potential trough. When particle 2 moves to the left, its kinetic 
energy is used to overcome the repulsive forces acting from particle 1 
and is transformed into the potential energy of the particles’ inter­
action. The displacement to the left stops when all the kinetic ener­
gy Ek is transformed into the potential energy. In the extreme left 
position of particle 2 displaced by the distance xx the potential ener­
gy’s increment is U (x̂ ) =  Ek and its value — (t/0 — U (#i)). When 
particle 2 moves to the right, its kinetic energy is spent to overcome 
the forces of attraction to particle 1 and is, as in the previous case, 
transformed into the potential energy of the particles’ interaction. 
At point B displaced from the equilibrium position by the distance x2 
the entire kinetic energy Ex is transformed into the potential energy, 
the latter increasing by U (x2) =  Ek to become —(U0 — U (x2)).

If the vibrations of particle 2 were purely harmonic, the force / (x) 
caused by its displacement from the equilibrium position by a dis-
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tance x would be strictly proportional to this displacement and 
directed towards the equilibrium position:

/ =  -P *  (4.45)
The change in the particle’s potential energy U (a:) would in this- 

case be described by the parabola a'bc' (Figure 4.7) whose equation is
U (x) =  P*2/2 (4.46)

This parabola is symmetric about the straight line bd passing paral­
lel to the axis of ordinates at a distance of r0 from it. Therefore the 
displacements x1 and z2 w^ould be equal in magnitude and the centre 
of AB would coincide with the equilibrium position 0. In this case 
heating a body would not bring about its expansion, for a rise in 
temperature would result only in an increase in the particles’ am­
plitude of vibrations, the average distances between them remaining 
unchanged.

Actually, the potential curve abc is, as may be seen from Figure 4.7r 
not symmetric about the straight line bd, its left branch ba rising 
much more steeply than the right branch be. This means that the vibra­
tions of the particles in a solid are anharmonic (not harmonic). To 
account for the asymmetry of the potential curve an additional term 
—got?/3 expressing this asymmetry (g is a proportionality factor) 
should be introduced. Then (4.45) and (4.46) will assume the fol­
lowing form:

U (x) =  pr72 -  ga*/3 (4.45')
/ (#) =  —dU/dx =  —p;z +  gx2 (4.46')

When the particle 2 is displaced to the right (x >  0), the term gx3/3 
is subtracted from p#2/2 and the slope of the branch be is less than 
that of the branch be'; when the displacement is to the left (x < 0)r 
the term gx3/3 is added to P̂ 2/2 and the slope of ba is greater than 
that of ba'.

Because of the asymmetric nature of the potential curve the right 
and left displacements of particle 2 turn out to be different, the former 
being greater than the latter (Figure 4.7). As a result, the central 
position of particle 2 (point Ox) no longer coincides with its equi­
librium position 0 but is displaced to the right. This corresponds to 
an increase in the average distance between the particles by x.

Hence heating a body should result in an increase in the average 
distances between particles and the body should expand. The cause 
of this is the anharmonic nature of the vibrations of particles making 
up the solid due to the asymmetry of the dependence of the parti­
cles’ interaction energy on the distance between them.

Let us estimate the value of the thermal expansion coefficient.



Thermal Properties of Solids 125

The average value of the force caused by the displacement of 
particle 2 from its equilibrium position is

7 =  — p x +  gx2
When the particle vibrates freely, / =  0; therefore gx2 =  §x. Hence 
we obtain

x =  gx2!§ (4*47)
The expression for the potential energy of a vibrating particle 

correct to the second order of magnitude is (4.45) and its average 
value is U (x) « P;z2/2. Hence

a?«2£/(3)/p
Substituting this into (4.47), we obtain

x =  2gUjx)/^2
In addition to potential energy U (x) a vibrating particle has 

kinetic energy Ek such that U (x) =  Eh. The total average energy 
of the particle is E =  Z?k +  U (x) =  2U (x). This fact makes it 
possible to rewrite the expression for x in the following form:

x =  gEI p2
The relative linear expansion, that is, the ratio of the variation of 
the average distance between the particles, x, to the equilibrium 
distance between them, r0, is equal to

X g
p % E

and the linear expansion coefficient is

where
a 1 dx

~^~dl
g dE

dT (4.48)

% =  g/(P2r0) (4.49)
and cv is heat capacity per particle.

Thus the thermal expansion coefficient proves to be proportional 
to temperature. Figure 4.8 shows the temperature dependence of cv 
and a. It can be easily seen that both are interrelated.

In the high temperature range the energy of a particle engaged in 
linear vibrations is kBT and its heat capacity is cv =  kB. Therefore 
the thermal expansion coefficient of a linear atomic chain will be

gkB 
v =  -p%-a =  Xc
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Substituting the values for g , kB, P, and r0 for various solids, we 
obtain a value of the order of 10“4-10”5 for a, which is in fair agree­
ment with experiment. Experiment also supports the conclusion that 
in the high temperature range a is practically independent of tem­
perature (Figure 4.8).

In the low temperature range a behaves in a way similar to that 
of cv : it decreases with the fall in temperature and tends to zero as 
absolute zero is approached.

Figure 4.8 Temperature dependence of linear expansion coefficient a 
and of heat capacity cv of copper.

In conclusion we would like to remark that for metals a formula 
similar to (4.48) was first proposed by E. Griineisen in the form

«= (4.50)
where x is the metal’s compressibility, V the atomic volume, and y 
the Griineisen constant equal to 1.5-2.5 depending on the metal.

§ 36 Heat conductivity of solids
Heat conductivity of dielectrics (lattice heat conductivity). The sec­
ond effect caused by the anharmonic nature of atomic vibrations 
is the thermal resistance of solids. There could be no such resistance 
should the atomic vibrations be strictly harmonic propagating 
through the lattice in the form of noninteracting elastic waves. In 
the absence of interaction the waves would be able to travel without 
scattering, that is, without meeting any resistance, like light in 
vacuum.

If we were to set up a temperature difference in such a crystal, 
the atoms of the hot end vibrating with large amplitudes would trans-
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mit their energy to the neighbouring atoms and the front of the heat 
wave would travel along the crystal with the velocity of sound. 
Because the wave would meet no resistance there would be a consid­
erable heat flux even for an infinitesimally small temperature differ­
ence and the heat conductivity of the crystal would be infinitely 
great.

The nature of atomic vibrations in real crystals at temperatures 
not too low is anharmonic, as indicated by the second term in (4.45'). 
The anharmonicity destroys the independence of the normal modes 
of the lattice and causes them to interact, exchanging energy and 
changing the direction of their propagation (through mutual scatter­
ing). It is just those processes of interaction between the elastic 
waves that make possible the transfer of energy from the modes of 
one frequency to the modes of another and the establishment of 
thermal equilibrium in the crystal.

The process of mutual scattering of normal modes is conveniently 
described in terms of phonons, the thermally excited crystal being 
regarded as a box containing phonons. In the harmonic approxima­
tion, in which the normal modes are presumed to be independent^ 
the phonons make up an ideal gas (a gas of noninteracting phonons). 
The transition to the anharmonic modes is equivalent to the intro­
duction of an interaction between phonons, which may result in 
the splitting of a phonon into two or more phonons and in the for­
mation of a phonon from two other phonons. Such processes are termed 
phonon-phonon scattering. Their probability, as is the case of all 
scattering processes, is characterized by the effective scattering cros& 
section oph. Should the phonon be, from the point of view of the 
scattering processes, represented by a sphere of the radius rph then 
Oph =  Jtrph. The phonon-phonon scattering may take place only 
if the phonons approach to within a distance at which their effective 
cross sections begin to overlap. Since the scattering is due to the anhar­
monicity of the atomic vibrations, numerically described by the 
coefficient of anharmonicity g, it would be natural to assume that 
the phonon effective cross section radius is proportional to g and
CTphOC g2.

Knowing the effective scattering cross section oph, we can calculate 
the mean free path Xpil of the phonons, that is, the average distance 
the phonons travel between two consecutive scattering acts. Calcu­
lations show that

^ph 1
w p h a p h

a i
"ph£2 (4.51)

where raph is the phonon concentration.
In the kinetic theory of gases it is proved that for gases the heat 

conductivity is
SK =  toCyl 3 (4.52>
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where k is the mean free path of the molecules, v their thermal ve­
locity, and Cv the heat capacity of the gas.

Let us apply this formula to the phonon gas substituting for Cv 
the specific heat of the crystal (the phonon gas), for % =  Xvh the 
mean free path of the phonons, and for u the velocity of sound (the 
phonon velocity). We obtain the following expression for the lattice 
heat conductivity:

^lattice =  vk^CylS (4.53)
Substituting k ^  into (4.53) from (4.51), we obtain

^lattice OC :,2- (4.54)“pne
In the high temperature range, in accordance with (4.37), nph OC T; 

hence
^lattice a  - p -  (4.55)

Since Cv in this range is practically independent of T, the lattice 
thermal conductivity should be inversely proportional to the absolute 
temperature, which is in qualitative agreement with experiment. 
Formula (4.55) also includes the anharmonicity factor g and the 
sound velocity v, which depend substantially on the rigidity of the 
bonds between the particles of the solid. Bonds of lesser rigidity 
correspond to lower v's and to greater g's, since the weakening of the 
bonds makes for greater thermal vibration amplitudes (for a specified 
temperature) and for greater anharmonicity. Both those factors 
should, according to (4.55), bring about a reduction in lattice- 
This conclusion is supported by experiment. Table 4.2 presents the 
values of sublimation heat (?s, which is a measure of bonding energy, 
and of the lattice heat conductivity la ttice  for some covalent crystals 
with the diamond lattice: diamond, silicon, and germanium.
Table 4.2

Substance Qs (105 J/mole) c)riattice (W/(m-K))

Diamond 71.23 550
Silicon 46.09 137
Germanium 37 54

We see that the decrease in the bond energy from the value of 
diamond to that of silicon and, finally, germanium is accompanied 
by a noticeable decrease in the lattice heat conductivity. A more 
detailed analysis shows that la tt ice  is also strongly dependent of 
the mass M of the particles, being less for greater M ’s. This to a large 
extent accounts for the fact that the lattice heat conductivity of the
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lighter elements occupying the upper part of the Mendeleev periodic 
table (B, Ct Si) is of the order of tens or even hundreds of watts per 
metre per kelvin, the corresponding values for the elements of the 
middle part of the Mendeleev table being several watts per metre per 
kelvin, and that for the heavier elements occupying the lower part 
of the Table even to several tenths of a watt per metre per kelvin.

A striking feature is that the lattice heat conductivity of crystals 
with light particles and rigid bonds may be very high. Thus at room

l at t i c e’ '» 8
Figure 4.9 Temperature dependence 
of heat conductivity of synthetic 
sapphire.

temperature la ttice  of diamond is greater than the total heat con­
ductivity of the best heat conductive metal, silver: SPAg =  407 
W/(m-K).

At temperatures below the Debye temperature there is a sharp 
drop in phonon concentration with a fall in temperature leading to 
a sharp increase in their mean free path, so that at f  ^  0/20 
it becomes comparable with the dimensions of the crystal. Since the 
crystal surface usually is a poor reflector of phonons, any further 
decrease in temperature does not lead to an increase in A,ph, for the 
latter is determined by the crystal’s dimensions only. The tempera­
ture dependence of the lattice heat conductivity within this range 
of temperatures is determined by the temperature dependence of the 
heat capacity Cv . Since Cv CC Ts in the low temperature range, 
^lattice too should be proportional to Tz:

^ l a t t i c e  o c r 3 (4.56)
This result is also in qualitative agreement with experiment. Fi­
gure 4.9 shows the temperature dependence of thermal conductivity 
of synthetic sapphire. In the low temperature range la tt ice  is 
indeed approximately proportional to T3.
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As the temperature rises so does the concentration of phonons nphr 
and this should per se cause la tt ic e  to rise. However, an increase in 
nph is accompanied by an increase in the phonon-phonon scattering 
and a consequent decrease in the mean free path of phonons Xph, 
which should result in a decrease in SKlattice* For low nph the first 
factor should be the predominant one and l a t t i c e  should rise with T. 
However, starting with a definite concentration wph the second factor 
should assume primary importance and l a t t i c e  after passing through 
a maximum should fall with the rise in T. This decrease in the high 
temperature range is approximately of the 1 IT type.

Amorphous dielectrics in which the size of regions with a regular 
structure is of the order of interatomic distances should present a 
similar picture. Phonon scattering on the boundaries of such regions 
should be the dominant factor at all T's and therefore A,ph should be 
independent of T. Because of that the heat conductivity of such di­
electrics should be proportional to T3 in the low temperature range 
and independent of T in the high temperature range. This is just 
what is observed in experiment.

However, at present the theory is unable to predict not only the 
exact values of lattice heat conductivity, lattice? but even its 
order of magnitude.

Heat conductivity of metals. In metals, in contrast to dielectrics, 
heat is transported not only by phonons but by electrons ^s well. 
Therefore generally the heat conductivity of metals is the sum of the 
lattice heat conductivity la ttice  (conductivity due to phonons) 
and the heat conductivity <2Te of the free electrons:

/if/*__/*f/* i /*f/*if l — qA  lattice T ^ e

The heat conductivity of the electron gas, can be calculated 
with the aid of (4.52). Substituting into this formula the heat capac­
ity of the electron gas, Ce, the electron velocity, vF, and their mean 
free path, Xe> we obtain

<2%*e =  (4.57)
Substituting Ce from (4.43) into (4.57), we have

s*r/*aJt e v? Nk% 
3 mnv p

(4.58)

Let us make a qualitative estimate of the temperature dependence 
of heat conductivity of pure metals.

High temperature range. Practically, of all the quantities contained 
in the right-hand side of (4.58) only Xe depends on T. For pure metals 
at temperatures not too low, Xe is determined by electron-phonon 
scattering and, all other conditions being equal, is inversely propor­
tional to phonon concentration: A-ph OC l/rcph. In the high temper­
ature range, according to (4.37), nph OC T. Substituting this into
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■■ constant (4.59)
Hence the heat conductivity of pure metals in the high temperature 
range should be independent of temperature. This is an experimental 
fact. Figure 4.10 shows the experimental curve depicting the tem-

Flgure 4.10 Temperature dependence of heat conductivity of copper.

'^lattice, 10̂  W/(m-K)

perature dependence ST for copper. It follows that above 80-100 K 
the heat conductivity of copper is practically independent of tem­
perature.

Low temperature range. The phonon concentration in this range 
is wph OC T therefore Ae OC 1 IT3. Substituting into (4.58), we 
obtain

W.CC (4.60)
Consequently, in the low temperature range where the Debye 13 

law is true, the heat conductivity of metals should be inversely propor­
tional to the square of the absolute temperature. This conclusion too 
is in general supported by experiment (Figure 4.10).

Very low temperature range. Close to absolute zero the phonon 
concentration in a metal becomes so small that the main part ip 
electron scattering processes is taken over by the impurity atoms, 
which are always present in a metal no matter how pure it is. In this case 
the mean free path of an electron, Ke OC 1 /N{ (N{ is the concentra­
tion of impurity atoms), is no longer dependent on temperature and
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the heat conductivity of a metal becomes proportional to T:
We (XT (4.61)

which is an experimental fact.
Let us estimate the magnitude of We for metals, making use of 

(4.57). For typical metals Ce » 0.01CV «3 X 104 J/(m3-K), 
vF & 10®  m/s, and Xe « 10~8 m. Substituting into (4.57), we obtain 
We « 102 W/(m-K). Thus We for metals may be as high as hun­
dreds of watts per metre per kelvin. This is substantiated by experi­
ment. Table 4.3 shows the room temperature heat conductivities for 
some typical metals and for one alloy, constantan, which consists 
of 60 percent copper and 40 percent nickel.
Table 4 i

Metal ^(W/m-K)) Metal <PP(W/(m-K))

Silver 403 Aluminium 210
a r 384 Nickel 60

296 Constantan 23
It follows that for pure metals W can indeed be as high as hundreds 

of watts per metre per kelvin.
Let us also estimate the contribution of the lattice heat conductivity 

of a metal, making use of (4.53) and (4.57):
^ la t t i c e    CV ^ph

We CeV-pke
v being the phonon (sound) velocity. For pure metals CJCV & 
& 0.01, v =  5 X 103 m/s, « 10~9 m, vF & 10®  m/s, and « 
« 10~8 m. Hence ^Piattice/^e ~  5 X 10’2.

It follows then that the heat conductivity of typical metals is 
almost entirely due to the heat conductivity of their electron gas, 
the contribution of lattice heat conductivity being a few percent.

This picture may, however, totally change when we go over to 
metallic alloys, in which impurity scattering is the principal electron 
scattering mechanism. The electron mean free path for which such 
scattering is responsible, ^e, is inversely proportional to the impurity 
concentration N{ (ke OC i/N{) and for high N{'s may become com­
parable with the phonon mean free path (Xph « A,e). Naturally, in 
such a case the electron contribution to heat conductivity may be­
come of the same order of magnitude as that of the phonon contribu­
tion: We « ^lattice- This too is supported by experiment. Table 4.3 
gives the heat conductivity of constantan. It is much less than that 
of nickel or copper. This proves the fact that electron scattering in 
constantan is mainly due to lattice defects caused by impurity atoms. 
We also note that We and W lattice measured by R. Berman in con­
stantan proved to be of the same order of magnitude.
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The Band Theory of Solids

The theory of free electrons was the first successful attempt to ex­
plain the electric and magnetic properties of solids (primarily of 
metals). It was based on the assumption that metals contain free 
electrons capable of moving around the metal like gas molecules in a 
vessel. The theory of free electrons was successful in explaining such 
phenomena as the electric and the heat conductivities, thermionic 
emission, thermoelectric and galvanomagnetic effects, etc. However, 
this theory proved incapable of dealing with such properties of solids 
as are determined^By theiFTnternal structure. It could not even ex­
plain why some bodies are conductors and some—insulators.

The next stage in the progress of the electron theory has been the 
band theory of solids, which is outlined in this chapter.

§ 37 Electron energy levels of a free atom
The state of an electron in an atom is determined by four quantum 
numbers: the principal n, the orbital Z, the magnetic mx, and the 
spin a numbers. In a hydrogen atom the principal quantum number, ny 
describes the steady-state energy of the electron:

E(n) =  - R/n2 (5.1)

where R =  13.6 eV is a universal constant, called a rydberg.
The orbital quantum number, Z, describes the orbital angular mo­

mentum of the electron, pz:
pi =  n V i ( i + \ )  (5.2)

(h =  A/2jt, with h the Planck constant). The quantum number Z 
may assume only the following integral values:

Z =  0, 1,2, . . ., ( , i- l)
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n values in all.
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The magnetic quantum number, mt, describes the orientation of 
the orbital angular momentum with respect to some specified direc­
tion H (Figure 5.1(a)): the orientation of p* with respect to H may 
only be such that its projection onto this direction is a multiple of h:

P i h  =  (5.3)
The number mt may assume the following set of integral values:

mx =  — I, —(Z — 1), . . 0, 1, 2, . . .# I (5.3')
21 +  1 values in all.

Lastly, the spin quantum number, o, describes the orientation of 
the intrinsic angular momentum (the spin ps) of the electron with

Figure 5.1 Orientations of orbital](a) and spin (b) angular momenta 
with respect to H.

respect to specified direction H (Figure 5.1(b)): the vector pa may only 
be oriented with respect to H so that its projection onto H is equal to

P*h =  (Jh (5.4)
only the values 1/2 and —1/2 being allowed for a.

The states with orbital quantum number Z =  0 (the values of 
other quantum numbers being irrelevant) are termed s states; those 
With Z =  1, are termed p states; with I =  2, d states; Z =  3, / states; 
etc. Electrons in those states are termed s-, p-, d~, /-, etc. electrons.

In contrast to the hydrogen atom the energy of an electron in many- 
electron atoms depends not only on n but on Z as well: E =  E (n, Z). 
Only discrete values of n and Z being allowed, the energy spectrum 
of electrons in atoms may assume only discrete values too; the spec-
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Table 5.1
Atomic energy Total number of Splitting of levels into
levels and g = (2Z +  l) electrons on a g =  (2Z +  l) sublevels
their notation level: ti =  2(2Z +  1) when degeneracy is lifted

2
■1

*(3, 2) 3d 5 10 3d 0
1

------2
1

E{ 3, 1) 3 p 3 6 3 P 0
1

E(3, 0) 3s 1 2 3s ----0
1

E( 2, 1) 2 P 3 6 2 P---- 0
1

E(2, 0) 2s 1 2 2s ----0
E( 1, 0) is 1 2 Is---- 0

trum consists of a set of allowed levels E (n, I) separated by forbid­
den energy intervals. Table 5.1 shows a diagram (not to scale) of 
the first three groups of such levels.

Figure 5.2 Electron clouds #f the 2p state.

\z

•I-+1

All the s levels are nondegenerate. This means that everyone of 
them corresponds to a single electron state in the atom. In compli­
ance with the Pauli exclusion principle there may be two electrons 
with opposite spins in such a state.

The p levels are three-fold degenerate: there is not one but three 
states with different magnetic quantum numbers mx to correspond 
to each of them. For I =  1 those values are mx — —1, 0, +1. Fig­
ure 5.2 shows the shape of electron clouds corresponding to those
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states. Since there may be two electrons per state, the total number 
of electrons in the p state is six.

The degeneracy of the d levels is five-fold, since the allowed values 
of the magnetic quantum number for 1 =  2 are mx =  —2, —1, 0, 
+1, +2. This level can accommodate 10 electrons.

Generally, a level with the orbital quantum number I is a (21 +  1)- 
fold degenerate one and can accommodate 2(2Z -f 1) electrons.

When a free atom is placed in a strong external field, the degener­
acy vanishes and every level splits into (21 +  1) closely spaced sub- 
levels, as shown in the last column of Table 5.1.

The effect of an external field on different atomic levels is not the 
same. The splitting of the levels of inner electrons, whose interac­
tion with the nucleus is strong, is so small that it may be neglected. 
As the shell radius is increased the energy of interaction of the re­
spective electrons with the nucleus becomes smaller and the effect 
of the external field becomes more noticeable. The effect of an external 
field is most pronounced for the energy levels of outer electrons, 
whose bonds with the nucleus are relatively weak.

§ 38 Collectivization of electrons 
in a crystal

The interatomic distances in solids are so small that every atom 
finds itself in a strong field of the neighbouring atoms. To gain in­
sight into the effect this field exercises on the energy levels, consider 
the following idealized example.

Arrange N sodium atoms in the pattern of a three-dimensional 
lattice having the shape of a sodium crystal but with interatomic 
distances so great that the interaction between the atoms can be 
neglected. In this case one can legitimately assume the energy states 
in every atom to be the same as in an individual sodium atom. Fi­
gure 5.3(a) shows the energy diagram of two such atoms. Each of 
them has the appearance of a spindle-shaped potential trough inside 
of which the levels Is, 2s, 2p, 3s, . . .  are shown. The Is, 2s, and 2p 
levels in a sodium atom are fully occupied, the 3s is occupied to one 
half, and the levels above 3s are empty.

As shown in Figure 5.3(a) the individual atoms are separated by 
potential barriers of the width r a, where a is the lattice constant. 
The height of the potential barrier U is not the same for electrons 
occupying different levels. It is equal to the height measured from 
those levels to the zero level 00. The potential barrier prevents the 
electrons from moving freely from one atom to another. Calcula­
tions show that for r « 30 A the average transition rate of a 3s- 
eecltron from one atom to another is once in every 1020 years.
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Figure 5.3 Variation o f electron ic states in approaching atoms:
(a) energy diagram of sodium  atom s placed at a distance much greater 
than the sodium  lattice parameter; (b)—energy diagram o f sodium  atoms 
brought together to a distance o f the order o f the la ttice parameter.
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The upper part of Figure 5.3(a) shows a qualitative picture of the 
space distribution of the density p =  ^ r 2̂ *  of the probability of 
detecting electrons at a distance r from the nucleus. The maxima of 
those curves correspond approximately to the radii of Bohr orbits 
of such electrons.

Now make the lattice contract uniformly so that its symmetry 
remains unaffected. As the atoms are brought closer the interaction 
between them increases and for an interatomic distance equal to the 
lattice constant a it turns into one characteristic of the crystal. Fig- 

« ure 5.3(b) depicts that situation. We see that the walls of the poten­
tial troughs separating neighbouring atoms (they are shown in the 
figure by dotted lines) partly overlap to create new walls shown by 
solid lines that are lower than the zero level 00.

Namely, the effect of the reduction of the interatomic distances is 
two-fold: to reduce the height and the width of the barrier, the latter 
to the value of the order of a. The height of the reduced barrier is U\ 
for Is-, U'2 for 2s-, and U'3 for 2p-electrons, the original 3s levels of 
the sodium atoms lying above it. This fact makes it possible for the 
valenfce electrons of this level to mdve practically unhindered from 
one atom to another. The nature of the electron clouds of valence 
electrons fshown in the upper part of the figure also points to the 
same conclusion: their overlapping is so complete that the density 
of the resulting cloud is practically uniform (Figure 5.3(b)). This 
corresponds to their complete collectivization in the lattice. Such 
collectivized electrons are usually termed free electrons and the to­
tality of them, the electron gas.

A drastic reduction in the width and the height of the potential 
barrier brought about by the decrease in interatomic distances makes 
it possible for the electrons occupying other atomic levels besides 
the valence levels to move inside the crystal. Their motion takes place 
by means of tunneling through the barriers that separate neighbour­
ing atoms. The narrower and the lower those barriers are, the more 
complete is the collectivization of the electrons and the greater is 
their freedom.

§ 39 Energy spectrum of electrons 
in a crystal

In the same way as the main goal of the theory of atoms is to describe 
the electron states in an atom and calculate the allowed energy levels, 
one of the main problems of the theory of the solid state is to deter­
mine the energy spectrum of the electrons in a crystal. One may ob­
tain a qualitative idea about this spectrum using the following 
approximate ^method to treat the* behaviour of electrons in a 
crystal.
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To approximately describe the motion of an electron in a crystal 
we, may use the following Schrodinger equation:

' v 2̂  +-|£- (£—£/) 1|> =  0 (5.5)

where U is the potential energy, E the total energy, and m the mass 
o f :the electron.

For electrons sufficiently strongly bound to the atoms the poten­
tial energy may be written in the form

U =  Ua +  8U (5.0)
where Ua is the electron’s energy in an isolated atom. In a crystal 
it is a periodic function with a period equal to the lattice parameter, 
since there is a recurrence in the value of energy as the electron moves

nrn
U,

Figure 5.4 Period ic variation 
o f electron poten tia l energy 
in crystal.

tfrotn one atom to another (Figure 5.4); 8Z7 represents a correction 
tfiatitakes account of the effect of neighbouring atoms on this energy.

If one neglects the correction 8U in (5.6), that is, considers only 
the zero approximation, one should take the wave function and 
the energy EJji, I) of the electron in an isolated atom as the wave 
function and the energy of the electron in a crystal: ^  =  \|)a, E =  
=  E a{n, Z), where n and Z are the principal and orbital quantum 
numbers, which determine the energy of the electron in an atom.

In this case the difference between a crystal and an isolated atom 
is that in an isolated atom a specified energy level E J ji, Z) is unique, 
but in a crystal consisting of N atoms there are N Such levels 
(Figure 5.5). In other words, every energy level of an isolated atom 
is TV-fold degenerate in a crystal. Such degeneracy is termed trans­
positional.
. Now let us estimate the correction 8U in the potential energy (5.6). 

As the isolated atoms are brought together to form a lattice each 
atom increasingly feels the field of its neighbours with whom it inter­
acts. As we have already seen, such interaction results in the lifting 
of degeneracy including transpositional degeneracy. Because of 
that each level nondegenerate in an individual atom splits up into N 
closely ̂ spaced sublevels to form an energy band.
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If every level in an isolated atom was (21 +  1) times degenerate,, 
the corresponding band shall contain N (21 +  1) sublevels. Accord- 

the s level produces the s band consisting of N sublevels and 
capable of carrying 2N electrons; the p level produces the p band 
consisting of 3N sublevels and capable of carrying 6A electrons; etc.

The separation between the sublevels in an energy band of an ordi­
nary crystal is very small. A crystal of a volume of one cubic metre- 
contains 1028 atoms. For a band of the order of 1 eV wide the sepa­
ration between the sublevels is about 10“28 eV. This separation is so

Figure 5.5 Each atom ic energy 
level E a in a system  consisting, 
o f TV atom s is repeated TV tim es 
(is TV-fold degenerate).

negligible that the band may be considered to be practically contin­
uous. However, the fact that the number of levels in a band is 
finite is very important for the determination of the distribution 
of electrons over states.

The maximum effect of the lattice field is on the external valence 
electrons. Because of that the state of such electrons in a crystal 
experiences the greatest change and the energy bands formed by 
their energy levels are the widest. The internal electrons, which 
are strongly bound to their nuclei, are only slightly perturbed by 
the presence of neighbouring atoms and accordingly their energy 
bands in the crystal are almost as narrow as the levels of isolated 
atoms. Figure 5.6 shows a schematic diagram of energy band forma­
tion from discrete atomic levels.

Thus in a crystal there is an allowed energy band to correspond 
to each energy level of an isolated atom: the 1 s band to correspond 
to the 1 s level, the 2p band to the 2p level, etc. The allowed energy 
bands are separated by forbidden energy bands E g. As the energy of 
an electron in an atom is increased so is the width of the respective- 
energy band, the width of the forbidden band being reduced.

Figure 5.7 shows the energy band structure of lithium, beryllium, 
and elements having the diamond lattice (diamond, silicon, ger-
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manium). In the lithium crystal (Fig. 5.7(a)) the splitting of the is 
level is a narrow one, the splitting of the 2s level being wider so that a 
sufficiently wide 2s energy band is formed. In the beryllium crystal 
V<Fig. 5.7(b)) the 2s and the 2p bands overlap to form a mixed, or 
the so-called hybrid, band. The situation is quite similar in case of 
the other elements of the main subgroup of Group II of the Mendeleev 
periodic table.

The pattern of band formation in crystals with the diamond lat­
tice (Figure 5.7(c)) is somewhat different. In this case the bands 
formed from the s and the p levels overlap and split into two bands, so

Figure 5.6 Schematic representation 
of energy band formation 
in a crystal from discrete atomic 
levels.

figure 5.7 Formation of bands from atomic levels: (a)—in lithium 
crystal (band 2s is only half-filled); (b)—in beryllium crystal 
(filled 2s band and free 2p band overlap to form a partially filled 
hybrid band); (c)—in diamond-lattice elements of Group IV (the arrows 
denote the spin of the electrons).

E E  E E E E
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that each of them contains four states per atom: one s state and three 
p states. Those bands are separated by a forbidden band. The lower 
band is termed the valence band and the upper the conduction band-

§ 40 Dependence of electron energy 
on the wave vector

It was demonstrated in the preceding section that the pattern of 
the electron energy spectrum in a crystal is of a band type. Consider 
now the dependence of the electron energy E on its momentum p 
inside each band, that is, the shape of the E (p) curves. The momen­
tum dependence of E is termed the dispersion law, or dispersion rela­
tion.

Turn now to the simplest case of a free electron moving along the x 
axis and described by the following Schrodinger equation:

where

d2xp 
dx°~

E =

II O (5.7)

P2
2m (5.8)

since a free electron has only kinetic energy.
Formula (5.8) is the dispersion relation for free electrons, which 

expresses the momentum dependence of E. It may be rewritten in 
the following form. According to the de Broglie formula

P
_h_ h
X ~~ X/(2n)

where X is the wavelength of the electron, and
k =  2n/X

(5.9)

(5.10)
The vector k coinciding in direction with the direction of the electron 
wave propagation and equal in magnitude to 2n/X is termed wave 
vector of the electron. Substituting p from (5.9) into (5.8), we obtain

* — £-** <5-H>
Formula (5.11), which expresses the dependence of the energy of 

a free electron on its wave vector, is just another form of writing 
the dispersion relation (the dispersion law) for such electrons^

It follows from (5.8) and (5.11) that the dispersion law for free 
electrons is quadratic and for one-dimensional motion of the electron 
takes the form of a quadratic parabola shown in Figure 5.8(a).
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The solution of equation (5.7) is a travelling planejvave
y =  Ceihx (5.12>

where C is the wave’s amplitude.
As is well known, the square of the modulus of the wave function is 

proportional to the probability of detecting the electron in a specie

Figure 5.8 Motion of a free electron: (a)—dependence of energy on wave 
vector (dispersion curve); (b)—square modulus of wave function 
proportional to the probability of the electron being at point x.

E

C 2( c o s2 kx + sin2 kx) = C2

0 *
( a )  ( k )

fied region of space. As may be seen from (5.12), for a free electron} 
this probability is independent of the electron’ŝ  position£since

|\|) |a =  C2 (5.13>
which means that for a free electron every point in space is equivalent 
and the probability of detecting it is everywhere the same (Fig- 
ure 5.8(b)).

The case of an electron moving in a periodic field of a crystal 
formed by regularly arranged ions is different (Figure 5.9). The proba­
bility of detecting it in a specified point of the crystal should be a 
periodic function in x, since positions displaced from one another 
by a multiple of the lattice constant a (for instance, the positions D, 
D\ and B in Figure 5.9) are equiprobable for the electron. The posi­
tions inside a period a (for example, inside DFDf) are, however, all 
different. This means that the amplitude of the wave function ^(x) 
of an electron moving in a periodic field does not, as in the case of 
a free electron, stay constant but changes periodically, or it may be 
said to be modulated with a period equal to the lattice parame­
ter a. Denote this amplitude u (x). Then the wave function of the- 
electron moving in a periodic field of a crystal in the direction of the x 
axis may be expressed in the following form:

ip (x) =  u (x) eihx (5.14)
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where u (x +  no) =  u (#), where n is an arbitrary integer. Relation 
(5.14) is termed the Bloch function. The specific form of this function 
is determined by the potential energy U (x), which enters into the 
Schrodinger equation (5.5).

There should be a corresponding change in the dispersion relation 
for electrons moving inside a crystal as compared with that for free 
electrons. Firstly, as we have already seen, the energy spectrum of 
such electrons assumes a band pattern: allowed energy bands formed 
from corresponding atomic levels Ea are separated by forbidden energy 
bands. Secondly, calculations show the electron energy inside each

Figure 5.9 Motion of an electron in periodic field. The square modulus 
of the wave function that describes tne probability of the electron 
being at point x ofjthe horizontal axis is a periodic function 
•of coordinate x, the period being equal to the lattice parameter a.

hand to be a function of the wave vector k, which for a one-dimen­
sional crystal (an atomic chain) with the parameter a is of the form

E (k) =  Ea +  C +  2A cos ka (5.15)
where Ea is the energy of the atomic level from which the band was 
formed; C is the displacement of this level due to the effect of the 
field of neighbouring atoms; A is the so-called exchange integral, 
which takes into account the newly created probability for an elec­
tron to move from one atom to another owing to the overlapping of 
the atomic wave functions (see Figure 5.3(b)). The exchange integral 
is the greater the greater the overlapping of the wave functions, 
that is, the greater is the exchange rate of the electrons of neigh­
bouring atoms. For s states A s <Z 0, for p states Ap >  0, therefore 
it is reasonable to write out relation (5.15) individually for the s 
and the p bands. For the s bands

E8 (k) =  E's —2A8 co s  ka (5.16)
and for the p bands

Ep (k) =  Ep +2AP cos ka (5.17)
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where E's =  Eas +  Cs, E’v =  Eap +  Cp, and A s and Ap are the ab­
solute values of the exchange integrals for the respective states.

Figure 5.10 shows dispersion curves E (k) for the s and p bands 
drawn to satisfy equations (5.16) and (5.17). For the s states Es 
at k =  0 assumes its minimum value E s r,ln =  E's — 2A s. As k 
increases, cos ka decreases and the value of E s (k) rises reaching its

Figure 5.10 Dispersion curves for an electron moving in a periodic 
field: the lower curve corresponds to the s band, the upper curve 
to the p band; dotted lines are parabolas expressing the E(k) dependence 
in the centre and on the boundaries of the Brillouin zone.

Bi

< 3.

Z=W'
E v

maximum E s max =  E's +  2AS at k =  n/a. In the interval of values 
of k from 0 to —jt/a, E s (k) changes in a similar fashion. The width 
of the allowed s band from E s mln to E s max is

A2?a =  Z?amax E8m\n = AAs (5.18)
As may be seen, it is determined by the absolute value of the exchange 
integral, which, in its turn, depends on the overlapping of wave func­
tions of neighbouring atoms. The shape of the curve E s (k) is that of 
an overturned bell.

For the p states Ep mln =  Ep — 2Ap corresponds to k =  ±nla, 
and Ep max =  Ep -f- 2Ap to k =  0. The width of the p band

A£p =  £p max Ep min — 4^4p (5.19)

as in the previous case, is determined by the absolute value of the 
exchange integral Ap. As a rule, the higher the atomic level the 
greater the overlapping of the corresponding wave functions in the 
crystal, the greater the value of the exchange integral, and the wider 
the energy band formed from this level. For this reason high atomic 
levels are the origin of wide energy bands separated by narrow for­
bidden bands (see Figure 5.6).
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The intervals of k inside which the electron energy E (k) as a period­
ic function of k completes its full cycle are termed Brillouin zones. 
For a one-dimensional crystal (an atomic chain) the first Brillouin 
zone lies between k =  — nla and k =  jx/a and is 2n/a wide (Fig­
ure 5.10). In the vicinity of a dispersion curve’s extremum, that is, 
in the vicinity of k =  0 and k =  ±jc/a (the centre and the boundary 
of the first Brillouin zone), cos ka can be expanded into a power series 
in ka (k is measured from 0 if the extremum is in the centre of the 
Brillouin zone and from ±nla if it is on its boundary) leaving only 
two terms of the expansion

cos ka =  1 — (ka)2/2 +  .
Substituting this into (5.16) and (5.17), we obtain E s (k) =  E $wXn -f- 
+  A s (ka)2, Ep (k) =  Ep max — Ap (ka)2. The minimum of the 
dispersion curve E (k) is termed the bottom of the energy band and 
the maximum the top of the band. Therefore we may rewrite the sought 
for relations in a more general form:

^bottom (&) =  ̂ min +  A (ka)2 (5.20)
for the bottom of the band, and

Ei0V(k) =  Emax~A'(ka)2 (5.21)
for the top of the band.

Hence close to the top and the bottom of an energy band the por­
tion of the electron energy that depends on the wave vector is pro­
portional to the square of the wave vector, measured in the way indi­
cated above, and to the exchange integral that determines the width 
of the band. The parabolas corresponding to equations (5.20) and
(5.21) are shown in Figure 5.10 by dotted lines.

The E(k) dependence for real crystals is, as a rule, much more 
complex than that expressed by formula (5.15).

Figure 5.11(a) shows the dispersion curves for the bottom of the 
conduction band (curve 1) and the top of the valence band (curve 2) 
of silicon. We see that the bottom of the conduction band, D , of 
silicon is not in the centre of the Brillouin zone but near its boundary 
in the direction [100]. The valence band is bounded by a curve in the 
shape of a parabola with its apex at B in the centre of the Brillouin 
zone. However, despite such complexity of the dispersion curves, 
the quadratic dependence of E (k) expressed by formulae (5.20) and
(5.21) remains valid for both band-edges in this case.

The width of the forbidden band, or energy gap, is determined by 
the minimum gap between the valence and the conduction bands; 
in Figure 5.11(a) this is denoted by E g.

Frequently, when making a simplified analysis of the energy-band 
structure of semiconductors, instead of the actual dispersion curves, 
which bound the valence and the conduction band, use is made of
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two parallel lines, one drawn tangentially to the bottom of the con­
duction band and the other to the top of the valence band (Fig­
ure 5.11(b)). The first line is taken to represent the lower boundary

Figure 5.11 Band pattern of silicon: (a)—dispersion curves E(k) bounding 
the conduction band (curve 1) and the valence band (curve 2); the energy 
minimum of the conduction band is at point D in the [100] direction, 
energy maximum of the valence band is in the Brillouin zone centre B; 
the distance between minimum D and maximum B is the forbidden band 
width Eg\ (b)—schematic representation of energy band pattern of silicon.

Conduction

(the bottom) of the conduction band and the second the upper bound­
ary (the top) of the valence band. The separation between the lines 
is equal to the forbidden band width E g.

§ 41 Effective mass of the electron
The de Broglie formula establishes the following relation between 
the momentum of a free electron and its wave vector:

p =  hk

The velocity of the electron’s translational motion is
v =  p/m =  (him) k (5.22)

Differentiating (5.11) with respect to k, we obtain
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Substituting this into (5.9) and (5.22) we obtain
j-  7 Ttl dE  j 1 dE  / r  r\ Q  \

p = hk= j r n r '  V= ^ k = — ^F  <5-23>
Expressions for the momentum and for the velocity of translational 

motion written in this form turn out to be valid not only for free 
electrons but for electrons moving in a periodic crystal field as well. 
Momentum p is in the latter case termed quasimomentum of the elec­
tron.

Set up an external field S  in the crystal. This field acts on the elec­
tron with a force

F =  —qS
imparting to it an acceleration

. _du_  _  _j__d_ ( dE \ _  1 d2E dk 
 ̂ dt Ti dt \ dk ) h dk2 dt

The work performed by the force F during the interval dt is

dW  =  Fvd t  =  ̂ - ^ - d th dk
This work is spent on increasing the electron’s energy by an amount 
dE =  (Flh) (dE/dk) dt. Hence F/h =  (dkldt). Substituting into the 
right-hand side of the expression for /, we obtain

F d2E _  q% d2E _ q%
1 ~  h2 dk2 h2 dk2 ~  meff (5.24)

Formula (5.24) establishes the relation between the electron’s 
acceleration j and the external force F with which an external field % 
acts on it. Hence it is an expression of Newton’s second law. It fol­
lows then that the electron acted upon by an external force moves in 
a periodic crystal field on the average in the same way as a free elec­
tron would move if its mass were

m°tt= h2l ( i ^ )  <5-25>
The mass metf is called the effective mass of the electron. Having attri­
buted to the electron in a periodic crystal field a mass me we may 
now regard it as being free and describe its motion in an external 
field in the same way as we would describe the motion of an ordinary 
free electron.

However, the effective mass, which embraces all the details of 
electron motion in a periodic crystal field, is a very particular quan­
tity. To begin with, it may be positive or negative, many times 
larger or many times smaller in magnitude than the electron’s rest 
mass m. Let us make a more detailed study of the problem.
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For electrons close to the bottom of a band the energy is ^bottom =  
=  Emin +  A (&a)2, the second derivative with respect to k being 
cPEIdk2 =  2.4a2. Substituting into (5.25), we obtain the following 
expression for the effective mass of the electron, which we shall de­
note mn:

mn h2
2Aa2 (5.26)

Since A >  0, we see that mn >  0. Hence electrons close to the bottom 
of an energy band have a positive effective mass. For this reason they 
behave normally in an external field, accelerating in the direction 
of the acting force. The difference between such electrons and free 
electrons is that their mass may be quite different from the rest mass. 
It may be seen from (5.26) that the greater A is, that is, the wider 
the allowed band, the less the effective mass of the electrons occupying 
states close to the bottom of the band is.

For electrons close to the top of the band the energy is E top =  
=  -S'max — A' (ka)2, the second derivative of E with respect to k 
being cPEIdk2, =  —2A 'a2, and the effective mass, which we denote m’n t 
is

m'n =
h2 

2 A'a2 (5.27)

It is a negative quantity. Such electrons behave abnormally in an 
external field set up in a crystal: they are accelerated in the direc­
tion opposite to the acting force. The absolute value is, as before, 
determined by the width of the energy band: mn is the smaller the 
wider the band is.

Let us now find what is responsible for such a “strange” behaviour 
of the electron in a crystal.

In case of a free electron all the work W performed by an external 
force F is spent to increase the kinetic energy of the electron’s trans­
lational motion:

W =  Ek mv2 h2
2m

Differentiating 2?k twice with respect to k, we obtain d2EJdk2 =  h2lm. 
Substituting into (5.25), we find that 7neff =  m. Hence the effective 
mass of a free electron is simply its rest mass.

The situation may be quite different in a crystal where the electron 
has not only kinetic energy but potential energy as well. When the 
electron moves under the action of an external force F, some of the 
work performed by this force may be transformed into kinetic ener­
gy 2?k, the rest being transformed into potential energy £/, and W =  
=  +  U- In this case the result will be a smaller increase in kinet­
ic energy and, consequently, in electron velocity than in the case
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of a free electron. The electron, figuratively speaking, gains weight 
and moves under the action of the force F with a smaller acceleration 
than a free electron would.

Should the entire work of the external force be transformed into 
potential energy U, that is W =  U, there would be no increase in 
the kinetic energy and in the velocity of the electron and it would 
behave as a particle of infinite effective mass.

Finally, if in the course of the electron’s motion not only the entire 
work of the external force F but some of the kinetic energy E£ that 
the electron had initially too shall be transformed'into the potential 
energy, so that U =  W 4- E£, then as the electron moves along the 
crystal its velocity shall diminish, it shall be accelerated, behaving 
as a particle with a negative effective mass. Just such is the behaviour 
of electrons occupying states close to the top of the conduction band.

However, a situation is possible in a crystal when in the course 
of the electron’s motion under the action of an external force F 
not only the entire work of this force but some of the electron’s poten­
tial energy, say U', shall be transformed into its kinetic energy so 
that 2?£ =  W 4- U*, The E£ and the velocity v of such an electron

Figure 5.12 fDependence of electron energy E , group velocity v, 
and effective electron mass mett on k.

E

i me ff
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shall rise quicker than those of a free electron. It looses weight as 
compared with the free electron, so that its effective mass met{ <c m.

The aforesaid is illustrated in Figure 5.12, which shows the nature 
of the variation of the total energy of the electron E (A:), of its trans­
lational velocity v (k), and of its effective mass mv with the rise in k 
from 0 to dzJta.

Close to the bottom of the band (k =  0), as long as the electron’s 
energy E (k) rises approximately in proportion to /c2, the velocity 
of the electron’s translational motion v OC dEldk increases in pro­
portion to /c, the acceleration remains positive, and the effective mass 
meff OC (d2E/dk2)~l retains its constant positive value mn. At the 
point of inflection C of the curve E(k) the second derivative d2E!dk2 
vanishes and the first derivative reaches its maximum value. There­
fore, as this point is approached, me oo and v —̂ v w3lX. After 
the point of inflection dEldk starts to decrease causing a decrease in v; 
hence acceleration becomes negative, which, for the direction of 
the external force F remaining unchanged, is equivalent to a change 
in the sign of the effective mass from the positive to the negative. 
If the curvature of the curve E(k), which is proportional to d2Eldk2, 
also changes, this would lead to a change in the absolute value of 
meff OC (d2E/dk2)~1. Near the top of the band E(k) again becomes 
a quadratic function of k, and the effective mass assumes a constant 
negative value m'n.

§ 42 Occupation of bands by electrons.
Conductors, dielectrics, 
and semiconductors

Each energy band contains a limited number of energy levels. Iu 
compliance with the Pauli exclusion principle each level may be occu­
pied by no more than two electrons. With the limited number of 
electrons in a solid only the lower energy bands will be filled.

According to the nature of band occupation by electrons all solids 
can be classified into two large groups.

The ;first group includes bodies in which there is a partially filled 
band above the completely filled lower bands (Figure 5.13(a)). Such 
bands are formed from partially filled atomic levels as, for instance, 
in the case of alkali metals. A partially filled band may also be the 
result of overlapping of filled and empty or partially filled bands, as 
is the case with beryllium and alkali-earth metals (Figure 5.13(b)). 
A partially filled band is a feature of metals.

The second group includes bodies with empty bands above complete­
ly filled ones (Figures 5.13(c, d)). Typical examples of such bodies 
are the elements of Group IV of the Mendeleev periodic table—car­
bon in the diamond modification, silicon, germanium and gray tin,
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which has the structure of diamond. This group also includes many 
chemical compounds—metal oxides, nitrides, carbides, halides of 
alkali metals, etc.

According to the band theory of solids, the electrons of the outer­
most energy bands have practically the same freedom of movement, 
no matter whether the solid is a metal or a dielectric. The motion 
takes place by means of tunneling from atom to atom. Despite this 
fact, there is a difference of many orders of magnitude in the electric

Figure 5.13 Occupation of bands by electrons: (a, b)—there is 
a partially filled band above the filled band; (c, d)—there is an empty 
band above the filled band.

properties, in particular in the electrical conductivity, of the bodies 
of both types: in metals a « 107 (ohm-m)"1, and in good dielectrics 
a <c 10-11 (ohm-m)-1.

To gain insight into the mechanism of electrical conductivity of 
solids let us discuss the behaviour of the electrons of partially and 
completely filled energy bands in an external field.

Set up an external field S  in the crystal. This field acts on every 
electron with a force F — —q$ that tends to distort the symmetry 
in the velocity distribution of the electrons so that those moving 
against the force are decelerated and those moving in the direction of 
the force are accelerated. Since such acceleration and deceleration 
inevitably entail a change in the electron’s energy, this is equivalent 
to the electron’s transition to states with higher or lower energies. 
Such transitions may, evidently, take place only if there are unoccu­
pied states inside the band to which the electrons belong, that is, if 
the band is not completely filled. In this case even a weak electric 
field is capable of imparting to the electrons the necessary additional 
momentum that will take them to nearby free levels. A prevailing 
motion of the electrons in the direction opposite to that of the field 
will be set up in the solid resulting in an electric current. Such solids 
should be good conductors, which is actually the case.
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Now let us imagine that the valence band of the crystal is com­
pletely filled and is separated from the nearby empty band by a wide 
energy gap E g (Figure 5.13(c)). An external field applied to such 
a crystal is incapable of changing the nature of electron motion in the 
valence band because it is unable to lift the electrons to the empty 
band lying above it. Inside the valence band, which has no free lev­
els, the field may only cause the electrons to change places and this 
does not distort the symmetry of the electron distribution over veloc­
ities. Therefore in such solids an external field is incapable of induc­
ing directional motion of the electrons, that is, an electric current, and 
the electrical conductivity of such solids should be practically zero.

Hence for a body to have high electrical conductivity it must have' 
in its energy spectrum some energy bands only partially filled with 
electrons, as is the case with the typical metals (Figure 5.13(a, b)). 
The absence of such bands in solids belonging to the second group- 
makes them nonconductors despite the fact that they contain electrons 
weakly bonded to individual atoms.

The solids of the second group are conventionally subdivided into- 
dielectrics and semiconductors according to the width of the forbid­
den band. Dielectrics include solids with a relatively wide forbidden 
band. For typical dielectrics E g 3 eV. For diamond E g — 5.2 eV;: 
for boron nitride E g =  4.6 eV; for Al2Oo, E g =  7 eV; etc.

Semiconductors include solids with a relatively narrow forbidden 
band (Figure 5.13(d)). For typical semiconductors E g ^  1 eV. Thus 
for germanium E g =  0.66 eV; for silicon E g =  1.08 eV; for indium 
antimonide E a =  0.17 eV; for gallium arsenide E g =  1.43 eV; etc..

Let us consider this class of solids in more detail.

§ 43 Intrinsic semiconductors.
The concept of a hole

Intrinsic semiconductors. Semiconductors containing a negligible* 
amount of electro-active defects (chemical and crystallographic) 
are termed intrinsic semiconductors. They include some pure chemical 
elements (germanium, silicon, selenium, tellurium, etc.) and numer­
ous chemical compounds such as gallium arsenide (GaAs), indium 
arsenide (InAs), indium antimonide (InSb), silicon carbide (SiC), 
etc.

Figure 5.14(a) shows a simplified schematic diagram of an intrinsic 
semiconductor. At absolute zero its valence band is completely filled 
and the conduction band, which is a distance Eg above the valence 
band, is empty. For this reason at absolute zero the intrinsic semicon­
ductor, same as a dielectric, has zero conductivity.

However, as the temperature increases the electrons of the valence 
band become excited and some of them receive enough energy to sur-
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mount the forbidden band and go over to the conduction band (Fig­
ure 5.14(b)). This results in free conduction electrons appearing in 
the conduction band and in free electron levels capable of accepting 
valence band electrons appearing in the valence band. When an ex­
ternal field is applied to such a crystal, a directional motion of the 
electrons of the conduction and the valence bands is established, 
resulting in the appearance of an electric current. The crystal be­
comes conducting.

Figure 5.14 Intrinsic semiconductor: (a)—at absolute zero the 
valence band is completely filled by electrons and the conduction band 
is completely empty; (b)—at temperatures above absolute zero part 
of the electrons from the valence band are excited to the conduction band; 
holes appear in the valence band and free electrons in the conduction 
band (white circles denote holes and black circles denote electrons);
£c is the bottom of conduction band and Ev is the top of valence band.

(a) (b)

The narrower the forbidden band and the higher the crystal’s 
temperature the greater the number of electrons going over to the 
conduction band and, correspondingly, the greater the crystal’s 
electrical conductivity. For instance, for germanium with Eg =  
=  0.66 eV the concentration of the electron gas in the conduction 
band already at room temperature is as high as « 1019 m~3 and 
specific resistance is as low as pt « 0.48 ohm-m. At the same time 
for diamond with Eg =  5.2 eV n{ at room temperature is only about 
104 m~3 and « 108 ohm-m. However, already at T =  600 K the 
electron gas concentration in diamond increases by many orders of 
magnitude and its specific resistance becomes as low as that of ger­
manium at room temperature.

Two important conclusions may be drawn from the above.
(1) The electrical conductivity of an intrinsic semiconductor is 

an excited conductivity: it appears only as a result of the action of 
some external factor capable of imparting sufficient energy to the
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•electrons of the valence band to move them over to the conduction 
band. Such factors may be heating of the semiconductor and irradia­
tion with light or with ionizing radiation.

(2) The division of materials into semiconductors and dielectrics 
is essentially a matter of convention. Diamond—a dielectric at room 
temperature—exhibits a noticeable conductivity at higher tempera­
tures and may also be considered to be a semiconductor. Materials 
with ever increasing forbidden band widths are now being used as 
semiconductors, gradually making the division into semiconductors 
and dielectrics irrelevant.

The concept of a hole. Let us now discuss in more detail the be­
haviour of the electrons in the valence band in which as a result of 
transition of some of the electrons to the conduction band some free 
levels have appeared (Figure 5.14(b)).

Now the electrons of the valence band acted upon by an external 
field can go over to the free levels and establish an electric current 
in the crystal. Let us find the instantaneous value of this current.

The current established by one electron moving with a velocity 
x t is

li =  -  Tti
The total instantaneous current established by all the electrons of 
the valence band is

it = — q 2 v«
i

where the sum is over all the states occupied by electrons.
For a band completely filled with electrons It = 0, since there is 

an electron with the velocity x t to correspond to every electron with 
the velocity —v*.

Now let us imagine that all the states in the valence band except 
one with the velocity v s are filled. The total current in such a band 
will be

1= — q 2  Vi= — q S  V i+?vs
i=^s i

Since the first term in the right-hand side is zero,
I =  q\s (5.28)

Hence the total current of all the electrons in a valence band with 
one vacant state is equivalent to a current set up by the motion of 
one particle with a positive charge q occupying the respective state. 
Such a fictitious particle is called a hole. If we attribute to the hole 
a positive charge -\-q numerically equal to the electron charge, we 
should also attribute to it a positive effective mass mv numerically 
equal to the negative effective mass of the electron m'n, which ini­
tially occupied that state close to the top of the valence band,since
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only in this case will the current established by holes coincide both 
in magnitude and in direction with the current established by the 
electrons of the almost completely filled valence band.

Table 5.2 presents the room temperature electrophysical proper­
ties and characteristics of the band pattern of three typical intrinsic 
semiconductors—silicon, germanium, and indium antimonide.

Table 5.2
Effective mass

Semiconductor Eg(QV) n\(m~3) pi(ohm-m)
mn nip

Silicon 1.12 -  1016 2 X 103 1.08m 0.37m
Germanium 0.66 3 X 1019 0.48 0.56m 0.59m
Indium antimonide 0.17 1.4 X l O 22 6 X 10”5 0.015m 0.18m

We see that a reduction in the forbidden band width is followed by 
a drastic rise in the concentration of free charge carriers in the semi­
conductor and a drop in its specific resistance. It may be seen from 
the two last columns of the table that the effective mass of the charge 
carriers may be much smaller than the electron rest mass.

§ 44 Impurity semiconductors
Semiconductors no matter how pure they are always contain some 
impurity atoms, which create their own energy levels termed impuri­
ty levels. Those levels may occupy positions both inside the allowed 
and the forbidden bands of the semiconductor at various distances 
from the top of the valence band and from the bottom of the conduc­
tion band. Frequently the impurities are introduced intentionally 
to impart specific properties to the semiconductor. Let us consider 
the main types of impurity levels.

Donor levels. Suppose that some germanium atoms in a germa­
nium crystal are replaced by pentavalent arsenic atoms. Germanium 
has a diamond type lattice in which every atom is surrounded by 
four nearest neighbours bound to it by valence forces (Figure 5.15(a)). 
To establish bonds with those neighbours the arsenic atom uses four 
valence electrons; the fifth electron takes no part in the bonding. It 
continues to move in the field of the arsenic ion, where the field is 
reduced in germanium by a factor of e =  16 (e is the relative permit­
tivity of germanium). Because of a weaker field the radius of the 
electron’s orbit increases 16-fold (as compared with that in an isolat­
ed atom) and its bond energy with the arsenic atom decreases about 
e2 ^  256 times, becoming equal to Ed » 0.01 eV. When this energy
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is imparted to the electron, the electron leaves the atom and is now 
free to move in the germanium lattice thereby becoming a conduction 
•electron (Figure 5.15(b)).

In terms of band theory this process may be described as follows. 
The energy levels of the fifth electron of the arsenic atom occupy 
positions between the valence band and the conduction band (Fig­
ure 5.15(c)). Those positions are directly under the bottom of the con­
duction band at a distance of Ed & 0.01 eV from it. When an elec­
tron occupying such an impurity level receives additional energy 
greater than Edy it goes over to the conduction band (Figure 5.15(d))

Figure 5.15 Charge carrier excitation in an rc-type semiconductor: 
■(a)—at T =  0 K the atoms of pentavalent arsenic in the germanium 
lattice are in a nonionized state; (b)—ionization of arsenic atoms 
and generation of conduction electrons at T >  0 K; (c)—energy levels 
•of one of the five electrons of every arsenic atom are donor levels; 
'(d)—electron transition from a donor level to the conduction band 
at T >  0 K.

Fifth electron
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The remaining positive charge (a “hole”) is localized on the immobile 
arsenic atom and does not take part in electrical conductivity.

The impurities which supply electrons are termed donors and the 
energy levels of those impurities donor levels. The semiconductors 
doped with donor impurities are termed n-type semiconductors.

Acceptor levels. Let us suppose now that some of the germanium 
atoms in the germanium lattice are replaced by trivalent indium 
atoms (Figure 5.16(a)). The indium atom lacks one electron to estab­
lish bonds with all the four nearest neighbours. It can “borrow” this

Figure 5.16 Charge carrier excitation in a p-type semiconductor:
(a)—atoms of trivalent indium in the germanium lattice at T =  0 K 
(the fourth bond of the indium atom is unpaired); (b)—at T >  0 K 
the electrons can go over to unpaired bonds of impurity atoms creating 
an indium ion and a vacant level (hole) in the valence band of germanium;
(c) —energy levels of unpaired bonds of indium atoms are acceptor levels;
(d) —electron transition from the valence band to an acceptor level 
at T >  0 K result in the generation of holes in this band.

Conduction band 
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Acceptor levels

6K >eeo-e-
73------o “o ------5 “

Valence band
K

(b) (d)



The Band Theory of Solids T59>

electron from a germanium atom. Calculations show that the neces­
sary energy is of the order of E a » 0.01 eV. The ruptured bond cor­
responds to a hole (Figure 5.16(b)) since it results in the formation 
of a vacant state in the valence band of germanium.

Figure 5.16(c) shows the band pattern of germanium doped with 
indium. Directly above the valence band at a distance of E a » 
« 0.01 eV away from it there are some empty levels of the indium 
atoms. Those levels are so close to the valence band that already at 
relatively low temperatures some electrons from the valence band go 
over to the impurity levels (Figure 5.16(d)). They establish bonds 
with the indium atoms and loose their ability to move in the germa­
nium lattice playing no part in the conductivity. Only the holes 
created in the valence band act as charge carriers.

The impurities that trap electrons from the valence band are termed 
acceptors and the energy levels of such impurities acceptor levels. 
The semiconductors doped with such impurities are termed p-type 
semiconductors.

§ 45 Position of the Fermi level 
and free carrier concentration 
in semiconductors

Dependence of free carrier concentration on the position of the Fermi 
level. One of the main parameters of the gas of free carriers in a 
semiconductor is its chemical potential, p. As applied to the electron 
and hole gases the usual term for it is the Fermi level.

As we have ascertained in Chapter 3, the Fermi level in metals is 
the last occupied level in the conduction band (see Figure 3.4): at 
absolute zero all levels below the Fermi level are occupied by elec­
trons and all levels above the Fermi level are empty. The concen­
tration of the electron gas in metals is comparable, as regards its 
order of magnitude, to the number of states in the conduction band; 
because of this the gas is degenerate and the distribution of the elec­
trons over the states is described by the Fermi-Dirac quantum sta­
tistics. The electron concentration of such a gas is practically inde­
pendent of temperature.

In the intrinsic and low-doped impurity semiconductors the elec­
tron (the hole) gas is nondegenerate and the distribution of electrons 
over the states is described by the Maxwell-Boltzmann classical 
statistics. For such semiconductors the free carrier concentration is 
dependent on the position of the Fermi level and on temperature. 
Let us find this dependence.

Figure 5.17 shows the band pattern of a nondegenerate semicon­
ductor. At some temperature T other than absolute zero, there are 
some electrons in the conduction band of such a semiconductor and
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some holes in its valence band. Denote their concentrations by n 
and p respectively. Take as the zero energy level the bottom of the 
conduction band. Choose a small energy interval dE lying between 
E and E +  dE close to the bottom of the conduction band. Since 
the electron gas in a semiconductor is a nondegenerate gas, the num­
ber of electrons dn in the energy interval dE (per unit volume of 
semiconductor) may be calculated with the aid of (3.28):

dn =  ij-  (2 mnf n e*lk*T e~m vT E l/2 dE (5.29)
In nondegenerate semiconductors p is negative [see (3.48)]. This 

sraeans that the Fermi level in such semiconductors is below the
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Figure 5.17 Band pattern of 
a nondegenerate semiconductor:
Ec is the bottom of conduction band, 
Ey the top of valence band, 
jn .the Fermi level, and Eg 
the forbidden band width.

'bottom of the conduction band, as shown in Figure 5.17. Denote the 
distance from the bottom of the conduction band to the Fermi level 
and from the Fermi level to the top of the valence band by p and 
p' respectively. Evidently

p +  p' =  — Eg, or p' = — {Eg +  p) (5.30)
where Eg is the width of the forbidden band of the semiconductor.

To obtain the total number of electrons in the conduction band at 
temperature T we integrate (5.29) over the energy values correspond­
ing to the conduction band, that is, from 0 to EXov:

Etov
„  =  4 n ( - ^ ) 3/V /ABT [ e-E/h*TE l/2dE

o
The function e~E/hBT decreases very rapidly as E grows; therefore 
it is permissible to substitute infinity for the upper limit to obtain

n =  4n j e~E/kBT EU2 dE
o
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Evaluation of this integral yields
n =  2 ( ig f f i p r j 3/2 en/ftBr (5.31)

A similar calculation carried out for holes generated in the valence 
band yields the expression

p =  2 ( )3/2 e =  2 ( 2nmj>**T. )3/2 gt*V>Br (5.32)

where is the effective mass of the hole.
It follows from (5.31) and (5.32) that the concentration of free 

charge carriers in a band is determined by the distance from the boun­
dary of this band to the Fermi level: the greater this distance the 
smaller the carrier concentration (since (x C  0 and p' <  0).

According to (5.31) and (5.32) the product of n and p for any non- 
degenerate semiconductor is

np =  4 (mnmp f /2e~Eg/h&T (5.33)
Formula (5.33) shows that for a definite temperature the product 

of the electron and hole concentrations is a constant for the respec­
tive semiconductor. This is an expression of the law of mass action 
as applied to the free carrier gas in semiconductors.

Let us now discuss separately the position of the Fermi level and 
the free carrier concentration in intrinsic and impurity semiconduc­
tors.

Position of Fermi level and carrier concentration in intrinsic 
semiconductors. In intrinsic semiconductors the concentration of 
electrons in the conduction band, n{, is equal to that of holes in the 
valence band, p{:

ni =  Pi (5.34)
since every electron that goes over to the conduction band leaves 
behind a hole in the valence band. Equating right-hand sides of 
(5.31) and (5.32), we obtain

2  ̂2nmnkBT y/2 glx/ftRr =  p  ̂2nmpkBT j 3/2 c ~(Ea+\i)JknT 

Solving this equation for p, we obtain

H = - T L +  T V ’1n ~  (5-35)
This relation determines the position of the Fermi level in intrin­

sic semiconductors. At absolute zero (T =  0)
(i =  — Eg/2 (5.36)
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that is, the position of the Fermi level is exactly the middle of the 
forbidden band (Figure 5.18). As the temperature rises the Fermi 
level shifts upwards towards the bottom of the conduction band if 
mp >  mn, and downwards towards the top of the valence band it 
mv <Cmn. In many cases, however, the shift is so small that the Fer­
mi level in intrinsic semiconductors can be considered to be always 
in the middle of the forbidden band.

Substituting [x from (5.35) into (5.31) and (5.32), we obtain

», =  Pl =  2 ( 2" Vm£ lp k*T )3/2 »-V <2*b^ (5.37)
It follows from (5.37) that the equilibrium carrier concentration 

in an intrinsic semiconductor is determined by the width of the for-
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Figure 5.18 Position  o f Fermi level 
in an intrinsic sem iconductor at 
various temperatures: at T  =  0 K 
the Fermi level is in the m iddle 
of the forb idden band; [as temperature 
rises the Fermi level does n ot change 
its posit ion  if mn = m p (straight 
line i), sh ifts upwards if mn< m p 
(straight line 2), and sh ifts 
downwards if mn >  mp (straight 
line 3).

bidden band and the temperature of the semiconductor, and the de­
pendence on T and Eg is very strong. For instance, at room tempera­
ture a decrease in Eg from 1.12 eV (silicon) to 0.08 eV (gray tin) 
results in an increase in nine orders of magnitude of n. An increase 
in the temperature of germanium from 100 K to 600 K increases n 
by 17 orders of magnitude.

Using (5.37), we may rewrite the law of mass action (5.33) as
np =  n\ (5.38)

Position of Fermi level and carrier concentration in impurity 
semiconductors. Figure 5.19 shows the change in the Fermi level 
position with the increase in temperature for (a) n- and (b) p-type 
semiconductors.

The low temperature range. At low temperatures the average energy 
of lattice thermal vibrations, kBT, is much less than the width of 
the forbidden band, Eg, and because of that the vibrations are inca­
pable of providing sufficient excitation of the electrons of the valence 
band to shift them to the conduction band. But this energy is enough
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Figure 5.19 Variation of Fermi level position with temperature: 
(a)—in rc-type semiconductors; (b)—in p-type semiconductors (Ta is 
the saturation temperature of impurity levels and Tx the temperature 
of transition to intrinsic conductivity).

Figure 5.20 Excitation of 
the electrons occupying a donor 
level and their transition to 
the conduction band.

Figure 5.21 Excitation of 
the electrons occupying the valence 
band and their transition to an 
acceptor level.

------------------- Ei
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to excite and shift to the conduction band the electrons occupying 
the donor levels Ed (Figure 5.20) and to the valence band the holes 
occupying the acceptor levels E a (Figure 5.21), since this requires an 
energy 100 times less than Eg. Therefore at low temperatures prac­
tically only the “impurity” charge carriers—electrons in the rc-type 
semiconductors and holes in the p-type—are excited in impurity 
semiconductors.

Calculations show that the position of the Fermi level inside this 
temperature range is

. _  Ed kBT , r A'd;*3 1 QQ.
^  2 ^ 2  n L 2 (2nmnkBT)3/2 J (5.39)

for the rc-type semiconductors, and
, Fa , kBT , f  -I

P ■ 2 2 ln  L 2 (2nmpkBT)3/z J
for the p-type semiconductors, Nd and Na being the concentrations 
of the donors and acceptors. Graphs of the temperature dependence 
of [p corresponding to those functions are presented in Fig­
ure 5.19 (a, b).

Substituting p and p' from (5.39) and (5. 40) into (5.31) and (5.32), 
respectively, we obtain the following expressions for the concentra­
tions:

n =  y w d ( 2nm"*°r ')3/2 <rEd/(2ftBr)

of electrons in the rc-type semiconductors and
p = v w i  ( 2nm̂ ? T. y /2 e-za/c-kBT)

of holes in the p-type semiconductors.
The impurity exhaustion range (extrinsic range). As temperature 

rises, the electron concentration in the conduction band increases 
and that on the donor levels decreases—the donor levels become ex­
hausted. The behaviour of acceptor levels in p-type semiconductors 
is similar.

In case of complete exhaustion the electron concentration in the 
conduction band of an rc-type semiconductor becomes practically 
equal to the concentration of donor impurity, Nd:

n & Nd (5.43)
and the hole concentration in a p-type semiconductor, to that of ac­
ceptor impurity, Na:

(5.41)

(5.42)

a (5.43')
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The exhaustion, or saturation, temperature of the impurity levels, 
Ts, is the higher the higher the im purity’s activation energy, Ed 
or 2?a, and its concentration. For instance, for germanium with JVd =  
= 1022 m~3 and Ed =  0.01 eV the saturation temperature is ap­
proximately 30 K.

The high temperature range. As the temperature is raised still higher 
the excitation of intrinsic carriers becomes more intense, the semi­
conductor increasingly approaching the state of an intrinsic semicon­
ductor with the Fermi level approaching the position of that in an

Figure 5.22 Temperature dependence 
of electron concentration in rc-type 
semiconductors:
1— impurity conductivity range,
2— impurity exhaustion range,
3— intrinsic conductivity range.

intrinsic semiconductor. Until the concentration of intrinsic car­
riers remains much less than Nd (n{ <^Nd), the total concentration 
n =  n{ +  Nd remains practically constant and equal approximately 
to Nd.

However, at sufficiently high temperatures the intrinsic carrier 
concentration may not only become equal to Nd but may substan­
tially exceed it (n{ Nd). In this case n =  n{ +  Nd is approximate­
ly n\ and marks the transition to intrinsic conductivity. The tem­
perature Tt of such transition is the higher the greater is the width 
of the forbidden band and the impurity concentration. For germanium 
with Nd =  1022 mr3 this temperature is 450 K.

Above the Fermi level in an impurity semiconductor coincides 
with the Fermi level in an intrinsic semiconductor and is expressed 
by formula (5.35), its carrier concentration being identical to that 
of an intrinsic semiconductor at that temperature, as described by 
formula (5.37). Figure 5.22 shows schematically the dependence of 
the natural logarithm of the electron concentration in the conduction 
band of an ?z-type semiconductor on the reciprocal temperature. 
Three sections may be marked on the curve: 1, corresponding to 
impurity conduction; 2, corresponding to the impurity exhaustion 
range; and 3, corresponding to intrinsic conductivity.

Finally, it should be pointed out that in contrast to intrinsic 
semiconductors, in which both electrons and holes simultaneously
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take part in electrical conductivity, in impurity semiconductors the 
conductivity is mainly due to charge carriers of one sign: to electrons 
in the rc-type semiconductors and to holes in the p-type. Such car­
riers are termed majority carriers.

Apart from them a semiconductor always contains minority car­
riers as well: rc-type semiconductors contain holes and p-type semi­
conductors, electrons. Equilibrium carrier concentrations may be 
conveniently denoted as follows: nn0 and pn0 are the concentrations 
of electrons (majority carriers) and holes (minority carriers) in rc-type 
semiconductors, pp0 and np0 are the concentrations of holes (majority 
carriers) and electrons (minority carriers) in p-type semiconductors.

Using this notation, we may write the law of mass action (5.38) 
in the following form:

nnoPno =  ni  PponPo = n* (5.44)
It follows from (5.44) that doping a semiconductor by an electrically 
active impurity, while increasing the majority carrier concentra­
tion, should inevitably decrease the minority carrier concentration 
so as to keep the product of those concentrations constant.;

§ 46 Nonequilibrium carriers
As we already know at all temperatures other than absolute zero a 
process of free carrier excitation, or generation, takes place in the semi­
conductor. Should this be the only process taking place, the carrier 
concentration would continuously grow with time. However, there 
is a simultaneous process of free carrier recombination. The essence 
of this process is that when a free electron meets a hole it may occupy 
it, the result being annihilation of a pair of carriers.

At any temperature an equilibrium is established between the 
processes of thermal carrier generation and recombination character­
ized by appropriate equilibrium carrier concentrations. Such carriers 
are termed equilibrium carriers. The law of mass action discussed in 
the previous section is applicable only to them.

Besides thermal excitation there are other methods of free carrier 
generation in semiconductors: by light, by ionizing particles, by 
injection through a contact, and others. Such factors result in the 
appearance of additional free carriers, excess carriers, as compared 
with the equilibrium carrier concentration. Another term for them 
is nonequilibrium carriers. Denote the concentrations of such carriers 
by An and Ap respectively. Then the total carrier concentration will 
be

n =  n0 +  An, p =  p0 +  Ap 
where n0 and p0 are the equilibrium carrier concentrations.

(5.45)
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Every nonequilibrium carrier having been born in the semiconduc­
tor “lives” a limited time before recombining, the time being differ­
ent for different carriers. For this reason an average carrier lifetime 
t is introduced, with the notation xn for electrons and tp for holes.

The carrier generation process is characterized by the generation 
rate g , which expresses the number of carriers (or carrier pairs) gene­
rated in a unit volume of the semiconductor per second.

The recombination process is characterized by the recombination 
rate R y which is equal to the number of carriers (carrier pairs) recom­
bining in a unit volume of the semiconductor per second. For elec­
trons

and for holes
dn   d (An)
dt dt (5.46)

dp   d (Ap)
dt dt (5.47)

where n and p are the total concentrations of electrons and holes, 
respectively, at a given moment of time; An and Ap are the respec­
tive excess concentrations at the same moment; and the minus signs 
point to the fact that recombination results in a decrease in carrier 
concentrations.

Suppose that light generates excess carriers in a semiconductor 
whose concentrations are Ara0 =  Ap0. After the light is turned off 
those carriers will recombine and their concentrations shall gradually 
diminish. Since every excess carrier, for instance, an electron, lives 
on the average rn, their recombination rate will be An/x per second, 
where Arc is the excess carrier concentration at the moment. There­
fore the recombination rate is

D d (An) AnRn — “   ~ZL71dt
A similar relation holds for holes:

d __ d(Ap) __ Ap 
p dt Tp

Integrating the two equations, we obtain

(5.48)

(5.49)

An =  An0e (/T", Ap — Ap0e 1/tp (5.50)
It follows from (5.50) that An =  An0le and Ap =  Ap0le for t =  x. 
Hence the average excess carrier lifetime is a time interval during 
which the carrier concentration due to recombination decreases e =  
*= 2.73 times.

Free charge carriers diffuse in the volume of the semiconductor 
and during their lifetime t cover an average distance L termed car­
rier diffusion length. Calculations show that L depends on t in the 
following manner:

L  —  V D x (5.51)
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where D is the carrier diffusion coefficient, related to their mobility 
u by the Einstein relation

D =  kBTu/q (5.52)
where q is the electron charge.

The transition of the electron from the conduction to the valence 
band may take place directly across the whole forbidden band Egy 
as shown by arrow 1 in Figure 5.23, or indirectly, first to the impurity 
level E lm (arrow 2) and then from this level to the valence band 
(arrow 3). Recombination of the first type is termed direct recombina­
tion and of the second type recombination via an impurity level.

Figure 5.23 Excess charge carrier 
recombination in semiconductors:
1—direct recombination, 2 and 
3—recombination via impurity level.

In both types of recombination the same energy Eg is liberated. 
The only difference is that in the first case this energy is liberated in 
one act and in the second in two acts corresponding to the transitions 
2 and 3.

The energy may be liberated in the form of a light quantum hv or 
in the form of heat (phonons). In the first instance the recombina­
tion is termed radiative and in the second nonradiative. Calculation and 
experiment show that direct recombination plays an essential part in 
semiconductors with a narrow forbidden band at relatively high 
temperatures (room temperature and above). The principal recom­
bination mechanism in wide forbidden band semiconductors is non­
radiative recombination via impurity, or defect, levels. However, 
under appropriate conditions a relatively high level of radiative 
recombination may be attained even in such semiconductors. 
A favourable factor is, for instance, the increase in excess carrier con­
centration and in some cases higher doping. A remarkable material 
in this respect is gallium arsenide (GaAs) in which, given favourable 
conditions, radiative recombination may constitute as high as 50 per 
cent or higher of the total. For this reason gallium arsenide is at 
present the principal material for making luminescent diodes and 
semiconductor lasers, which find wide practical use.
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Electrical Conductivity of Solids

§ 47 Equilibrium state of electron gas 
in a conductor in the absence 
of an electric field

In the absence of an electric field the electron gas in a conductor is 
in an equilibrium state described by equilibrium distribution func­
tions. For a degenerate gas the appropriate function is the Fermi- 
Dirac distribution function (Figure 6.1(a)) and for a nondegenerate 
gas the Maxwell-Boltzmann distribution function (Figure 6.1(b)).

Figure 6.1 The Fermi-Dirac (a) and Maxwell-Boltzmann (b) distribution 
functions.

It may be seen from Figure 6.1 that the graphs of those functions are 
symmetric about the axis of ordinates. This points to the fact that 
the number of electrons in a conductor moving in the opposite di­
rections is always the same and their average velocity in any direc­
tion is zero. This explains the fact that there is no electric current in 
a conductor (in the absence of a field) no matter how many free elec­
trons it contains.

The equilibrium of the electron gas is established as a result of 
the interaction of the electrons with the lattice defects, this interac­
tion being accompanied by energy and momentum exchanges. Such 
defects include thermal vibrations of the lattice (phonons), lattice 
imperfections, and impurity atoms. The interaction results in elec­
tron scattering and their random motion in the conductor. ^

169
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§ 48 Electron drift in an electric field
When an electric field is applied to a conductor, an electric current 
is established in it whose density according to Ohm’s law is

i  =  a g  (6.1)

The proportionality factor a is termed the specific conductance of the 
conductor. Its dimensions are ohm^cm "1 or ohm ^m ”1. Good con­
ductors have a « 107-108 ohm^m "1; good dielectrics 10“12-10"14 
ohm-Vm"1. Often it is more convenient to use specific resistance

P-1 to (6.2)
instead of specific conductance.

The specific resistance is measured in ohm-m. For metals p « 
» 10~7-10“8 ohm-m; for dielectrics p « 1012-1014 ohm-m.

Figure 6.2 Forces acting on a free 
6 electron in a conductor in which

^  an electric field <g has been
Fr_________ g F-~-qS established.

Electron
vd

A current flowing in the conductor is an indication* of the fact that 
electrons acted upon by the field begin to move in a specificfdirec­
tion and that their distribution function experiences a change. Such 
directional motion is termed drift and the average velocity of this 
motion—drift velocity Vd- Let us calculate it.

The force with which the field % acts on an electron is F =  — q<£ 
(Figure 6.2). Acted upon by this field the electron should be accel­
erated .and its velocity should grow continuously. But in its motion 
the electron collides with the lattice defects and as a result of scat­
tering looses the velocity it gained in the field. The effect of the lat­
tice may be formally reduced to the action of a resistance force Fr, 
which hinders the electron in its motion through the lattice. This 
force is proportional to vd and is directed against it:

Fr= — (6.3)
with 1/t a proportionality factor whose physical meaning will be 
made clear subsequently, and mn the electron’s effective mass.

Using (6.3), we may write the equation of the directional motion 
of the electron in the lattice in the following form:

mn dy*t(t) =  —q$— y  mnvd (t) (6.3')
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We see from (6.3') that after the field had been applied the veloci­
ty of the directional motion of the electrons shall rise and the elec­
trons shall be accelerated until the resistance force Fr, which is pro­
portional to vd (t), shall become equal to the force F with which the 
field acts on the electron. When those forces become equal, the re­
sultant force acting on the electron and, accordingly, its accelera­
tion, shall vanish.

From this moment the directional motion of the electron shall 
proceed at a constant velocity

v„  - f imn (6.4)

Since the electron charge is negative, its drift is in the direction op­
posite to <g.

The ratio of the drift velocity to the field intensity is termed car­
rier mobility:

% rin (6.5)
For electrons un <  0, and for holes u]} >  0.

According to (6.4), the drift velocity in a field of constant inten­
sity remains constant. This is possible only if the force F =  — q% 
with which the field acts on the electron is compensated by the force 
Fr. Would the opposite be the case the drift velocity would grow 
continuously and could become infinitely high even in weak fields. 
In this case electrical conductance would be infinite and the electri­
cal resistance would vanish.

This would be the case if free electrons moved in an ideal regular 
lattice with a strictly periodic potential. The electron wave that 
describes the behaviour of the electron in such a lattice would pro­
pagate in it practically without attenuation similar to a light wave 
propagating in an optically transparent medium.

The causes of a finite electrical resistance are various lattice imper­
fections, which result in the deformation of the lattice periodic po­
tential and which serve as scattering centres for the electron waves 
and attenuate the directional flux of the electrons in the same way 
as light waves are scattered and a ray of light is attenuated in an 
opaque medium.

§ 49 Relaxation time and mean free path
Let us now find the physical meaning of the factor t.

Suppose that as soon as the velocity of the directional motion of 
the electrons attains its stationary value vd the field % is turned off. 
Because of the collisions of the electrons with the lattice defects 
this velocity will start to diminish and the electron gas will return
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to the state of equilibrium. Such processes leading to the establish­
ment of equilibrium in a system that was previously put out of it 
are termed relaxation processes.

Setting qW =  0 in (6.3') yields an equation describing the return 
of the electron gas to the equilibrium state, that is, the relaxation 
process

dl'd (0 _ 1 . /y\
dt T V* W (6.6)

Integrating (6.6), we obtain
va(t) =  vi e-t!x (6.7)

where ud(t) is the velocity of the directional motion of the electrons, 
(t is the time after the field had been turned off).

It follows from (6.7) that t characterizes the rate at which the equi­
librium state of the system is established: the less t  is the sooner the 
excited system will return to the state of equilibrium. The velocity 
of directional motion of the electrons during the time t =  t decreases 
e « 2.7 times. The time t is termed relaxation time. For pure 
metals t  ^  10“14 s.

The motion of the electrons in a crystal may conveniently be de­
scribed with the aid of the concept of mean free path. By analogy with 
the kinetic theory of gases one may presume that an electron in a 
crystal moves along a straight line until it meets a lattice defect 
and is scattered. The average distance X that the electron travels 
between two consecutive scattering acts is taken as the mean free 
path of the electron.

Should the electron loose its directional velocity completely al­
ready after a single scattering act returning to Jhe former state of 
random motion, its mean free path would simply be the product of 
its average velocity and the relaxation time t, which in this case 
would simply be the free transit time of the electron:

X =  v% (6.8)
However, often it is not one but on the average v collisions with 

scattering centres that are required to nullify the directional velocity 
completely. Only after v collisions do all traces of correlation 
between the initial and the final velocities of the electron disappear. 
The time during which the directional motion of the electron 
becomes randomized will in this case too be termed relaxation 
time. However, the mean path the electron travels during this 
time is no longer X but

I =  Xv =  v t (6.9)
The quantity I is termed transport mean free path.

It follows from (6.9) that
x =  vX!v (6.10)
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The appearance of the drift of free charge carriers resulting in an 
electric current is an indication of the fact that the field % changes 
the distribution of free electrons over the states, that is, the form of 
the distribution function /(/?), since the equilibrium distribution 
function f0(E) can not be the cause of the current. The dotted lines 
in Figures 6.1(a, b) show the graphs of the electron distribution 
functions after a constant drift velocity had been established. It 
may be seen from Figure 6.1 that the effect of the field % on the elec­
tron distribution function over the states is to shift the whole distri­
bution by an amount vd =  q%xlmn in the direction opposite to %. 
Because of that shift the distribution functions are no longer sym­
metric about the axis of ordinates and the average velocity of the 
electrons in the direction of the x axis is no longer zero (in the absence 
of the field this velocity was zero). It may be easily demonstrat­
ed that the average velocity will in this case be equal to the drift 
velocity vd.

§ 50 Specific conductance of a conductor
Knowing the drift velocity of the electrons yd, we can easily calcu­
late the current density and the specific conductance of a conductor. 
To this end imagine a cylinder with a unit base built inside a

Figure 6.3 Calculating current density in a conductor.

conductor with a side equal to ud and directed along the direction 
of drift (Figure 6.3). All the electrons inside this cylinder will in 
one second pass through the base establishing a current with a density

i =  — qn\d =  qnu % 
Comparing (6.11) with (6.1), we obtain

a =  qnu
Substituting u from (6.5) and r from (6.10), we obtain

g,  nq2 __ nq2 A,vnq2 nq2
mn mn

(6.11)

(6.12)

V
(6.13)
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§51 Electrical conductivity of nondegenerafe 
and degenerate gases

Up to now we did not distinguish between the nondegenerate and 
degenerate electron gases. Let us now try and find how the state of 
an electron gas affects its electrical conductivity. To this end we 
shall discuss in more detail the conductivity mechanism of the non­
degenerate and the degenerate gases in more detail.

Nongenerate gas. In the case of a nondegenerate gas the occupancy 
of the conduction band by electrons is so small that they practically 
never come so close together that their behaviour is limited by the 
Pauli exclusion principle. The electrons are perfectly free in the sense 
that the motion of any one of them is not noticeably affected by 
the others. Therefore all the conduction electrons of a nondegenerate 
gas play an independent part in the electric current and in the elec­
trical conductivity of the conductor. For this reason formulae (6.13) 
and (6.5) for the electrical conductivity of the nondegenerate gas and 
for the electron mobility should include the mean free path X, the 
average number of collisions v, the average velocity of motion v, 
and the average relaxation time r of all the free electrons obtained by 
averaging over the ensemble as a whole.

Taking this into account, we can write the expressions for the 
electron mobility and for the specific conductance of a nondegenerate 
gas in the following form:

qx   q X v
mn mn v

(6.5')

g _ nq2 - _ nq2 Xv
171 tl mn v

(6.13')

Degenerate gas. The case of a degenerate gas is different. It may 
be seen from Figure 6.1(a) that for a degenerate gas all quantum 
states to the left of vF are occupied by electrons. Because of that the 
external field can act only on the electrons close to the Fermi level, 
lifting them to higher vacant levels by moving them from the left- 
hand region of the distribution to the right-hand region, as shown by 
the arrow 11'. This means that in a degenerate gas only the electrons 
in the immediate vicinity of the Fermi level can take part in elec­
trical conductivity. Therefore one should take for the relaxation 
time in expressions (6.5) and (6.13) the relaxation time of the elec­
trons whose energy is practically equal to the Fermi energy. Let us 
denote it|by t f .

Substituting Tp for t in (6.5) and (6.13), we obtain the following 
expressions for the electron mobility and the specific conductance
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of a degenerate gas:
qTY _
mn ~  v¥
q2n _ q2n XpVp
wJT TF _  yF

(6.5">

(6.13v'>
where XF is the mean free path of the electrons with Fermi energy, 
Vy their velocity, and vF the number of collisions after which the 
directional velocity of such electrons becomes randomized.

Figure 6.4 Mechanical model of the behaviour in an electric held of (a) a nondegenerate and (b) a degenerate electron gas; arrows denote 
the drift velocity in the electric held*

Here is a rough mechanical analogy to explain the different behav­
iour of a nondegenerate and a degenerate electron gas in an electric 
held.

Imagine small charged balls (“particles”) floating on the surface 
of water in a flat horizontal vessel A and moving at random with 
different velocities in the absence of an external held (Figure 6.4(a)).

Now let us place this vessel in an external held <g. The resulting 
effect of the held on the ensemble of the balls, as a whole, will sub­
stantially depend on how closely the balls are packed on the surface 
of water. If the number of balls is small, so that the distances be­
tween them are large, every one of them will move freely, practically 
speaking, and will not interfere with the motion of its neighbours 
(Figure 6.4(a)). In this instance the motion of the ensemble, as a 
whole, shall be determined by the average parameters of motion^of 
the individual “particles”:[by the average velocity v, by the average 
elaxation time r, by the mean free path X, etc.
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If the balls are packed as closely as possible, so that there is no 
place for any more balls on the water’s surface, then the motion of 
the ensemble as a whole under the action of the field % will be deter­
mined by the motion of the lower layer of the “particles”, CC, 
which separates the “occupied” states from the “vacant” states 
(Figure 6.4(b)), namely, by the velocity of those particles vc , by 
the relaxation time t c, by the mean free path Xc , etc. In a degener­
ate electron gas the part of this layer is played by electrons close to 
the Fermi level, which separates occupied states from the vacant ones.

§ 52 Wiedemann-Franz-Lorenz law
The transport of electric charge in an electric field is not the only 
result of the presence of the electron gas in a solid—another is heat 
transport in the presence of a temperature gradient. For this reason 
it would be natural to expect that the electric and the heat conducti­
vities of a solid are interrelated. This interrelation was first experi­
mentally established by G. Wiedemann and P. Franz and theoreti­
cally explained by L. Lorenz for the case of metals. They showed the 
ratio of the heat conductivity &C of a metal to its specific conductance 
a to be proportional to the absolute temperature T:

SK/a =  LT (6.14)
Expression (6.14) is the essence of the Wiedemann-Franz-Lorenz 

law; the proportionality factor L is called the Lorenz number.
The Wiedemann-Franz-Lorenz law can easily be obtained if one 

makes use of the expressions for &C and a derived in the electron theo­
ry of metals. Dividing expression (4.58) for the heat conductivity of 
a metal (which is practically equal to its electron component) by 
{6.13"), we obtain

<•■«>
Comparing (6.15) with (6.14), we find thq theoretical value of the 
Lorenz number

L =  —  (j ) 2 =  2.45 x 10-8 W-ohm-K”2 (6.16)
Table 6.1 shows the experimental values of L for some pure metals 

at 0 °C. We see that the theoretical value of L agrees well with ex­
periment.
Table 6.1

Ag Au Cd Cu Ir Mo Pb

L (IQ®  W-ohm-K-2) 2.31 2.35 2.42 2.23 2.49 2.61 2.47



Electrical Conductivity of Solids 177

In semiconductors with a nondegenerate electron gas the heat 
conductivity is not entirely due to the electrons. A substantial part 
of it is usually due to lattice conductivity. However, in this case too 
the electron component of the semiconductor’s heat conductivity 
obeys the Wiedemann-Franz-Lorenz law, the only difference being 
that its Lorenz number is not determined by (6.16) but is

§ 53 Temperature dependence 
of carrier mobility

Let us discuss now one of the principal problems of the theory of 
electrical conductivity of solids—the temperature dependence of 
carrier mobility. We shall discuss separately the high and the low 
temperature range.

High temperature range. In the high temperature range the do­
minant part is played by electron scattering on lattice vibrations

(phonons). Every lattice atom vibrates at random around its equi­
librium position (Figure 6.5) remaining inside a sphere with a radius 
equal to the vibration amplitude a. The cross section of this sphere 
S =  jia2 may be taken as the scattering cross section of a vibrating 
atom: an electron moving in a conductor can run into one of such 
disks and be scattered.

Other conditions being equal, the probability for an electron to run 
into such a disk will, evidently, be proportional to its cross section, 
and the mean free path of the electron will be inversely proportional 
to that cross section:

The energy of a vibrating atom is proportional to the square of 
the amplitude: E OC a2. On the other hand, the average energy of

(6.17)

Figure 6.5 Thermal vibrations of 
lattice atoms (a is the amplitude 
of vibrations, and the shaded circle 
is effective scattering cross 
section).

12-0885
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atoms vibrating in a solid is proportional to the absolute tempera­
ture of the solid, T, that is, E OC T. Therefore in the high tempera­
ture range the mean free path of the electrons due to the thermal 
lattice vibrations should be inversely proportional to the absolute 
temperature of the body:

KCCUT (6.18)
This result could have been obtained immediately with the aid 

of formula (4.37). According to this formula the phonon concentra­
tion in a conductor in the high temperature range is proportional to 
T, that is, nph OC T. For electron-phonon scattering the electron 
mean free path should evidently be proportional to the phonon con­
centration and, consequently, inversely proportional to the absolute 
temperature T, that is, % OC 1 lnvh OC 1 IT. On the other hand, the 
average momentum of a phonon at high temperatures is so great that 
a single collision of the electron with a phonon (that is, at v » 1) 
already results in a practically total loss of the electron’s initial ve­
locity.

Substituting (6.18) into (6.5') and (6.5*) and setting v =  1, we 
obtain the following expressions for the electron mobility:

nondegenerate gas

u a i a 4 S r = r3 /2vs T1/2 (6.19)
degenerate gas

u OC OC T~ ' t o c r -1v-p constant (6.20)
Hence, in the high temperature range, where the dominant effect 

is scattering by phonons (by the lattice vibrations), the carrier mobil­
ity (of electrons or holes) in a nondegenerate gas is inversely pro­
portional to T73/2 and in a degenerate gas to T. We see that in this 
instance too the difference in the behaviour of the nondegenerate and 
the degenerate gases makes itself felt.

Low temperature range. In the low temperature range the domi­
nant effect is scattering by ionized impurity atoms. The mechanism 
of the scattering process is such that the impurity ions deflect elec­
trons passing close to them and thus reduce their velocities in the 
original directions. As is shown in Figure 6.6, the velocity of the 
electron in the direction of the field was v0 before it was deflected by 
the positively charged ion. After the deflection it fell to v'.

The problem of charged centres deflecting charged particles was 
first solved by E. Rutherford who investigated the scattering of 
a-particles by the nuclei of chemical elements. Applied to our case the 
formula for v obtained by Rutherford assumes the following form:

v O C p * ( ^ ) 2«„  (6.21)
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where v is the electron velocity, e the dielectric constant of the crys­
tal, and Zq the charge of the scattering ion.

This result is quite understandable from qualitative considera­
tions. The higher the electron velocity, their effective mass mn and 
the field intensity reduction factor in the crystal (the greater e is), 
the less the electrons will be deflected from their original path and

Figure 6.6 Electron q scattered 
by an ionized impurity atom 
(v0 is electron velocity before 
scattering, and v after scattering).

the greater will be the number of collisions needed to randomize 
electron motion. Evidently, v should decrease with the increase in 
the charge of the scattering ion.

On the other hand, the mean free path of electrons being scattered 
by ionized impurity atoms is inversely proportional to their concen­
tration and independent of temperature.

Taking this into account and substituting v from (6.21) into (6.5') 
and (6.5"), we obtain the following: 

for a nondegenerate gas

u < X ^ < X v 3<XT312 (6.22)
V

for a degenerate gas
u ̂  OC vf =  constant (6.23)

Hence in the low temperature range the carrier mobility due to 
scattering by ionized impurity atoms is proportional to T73/2 for 
conductors with a nondegenerate gas and independent of T for con­
ductors with a degenerate gas.

Figure 6.7(a) shows the temperature dependence of u for a nonde­
generate gas, and Figure 6.7(b) an experimental u(T) curve for si­
licon. It follows from Figure 6.7 that experiment, on the whole, 
supports the conclusions of the theory as to the nature of the tempe­
rature dependence of carrier mobility in nondegenerate conductors.

We have discussed the case when in the low temperature range 
the main effect is due to scattering by ionized impurity atoms. How­
ever, for very pure and very perfect metals, containing negligible 
amounts of impurities and lattice imperfections, phonon scattering
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may turn out to be the principal charge-carrier scattering mechanism 
in the low temperature range. Let us find the temperature dependence 
of u for this case.

For electron-phonon scattering the electron mean free path X is 
inversely proportional to the phonon concentration 7zph. Since in the 
low temperature range nph OC T3 according to (4.36),

XOC— OCT7-3 (6.24)
«ph v

Now let us determine v—the average number of collisions the 
electron should take part in to loose its original directional velocity.

At high temperatures at which the average phonon momentum 
Pph is equal, in order of magnitude, to the electron momentum pe, 
v « 1. At low temperatures /?ph pe and as a result v can be much 
greater than unity, being substantially dependent on temperature 
since pph rises with the rise in T.'

Figure 6.7 Temperature dependence of carrier mobility in semiconductors: 
(a)—theoretical curves; (b)— experimental curves for silicon doped 
with different amounts of phosphorus.
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Figure 6.8 shows the variation of the momentum of an electron 
that took part in an elastic collision with a phonon. The collision 
took place at point A . Before the collision the electron’s momentum 
was Pe and after the collision it became pe. Since the collision was 
an elastic one, the absolute value of the momentum has not changed: 
Pe =  pe- Only the direction has changed so that

Pe =  Pe 4 Pph
The change in the direction of the electron’s momentum brought 

about by the collision entails a reduction in its value in the original

B Figure 6.8 Calculating the number 
of collisions needed to nullify the 
electron’s momentum in a given 
direction.

direction by A pe (Figure 6.8). It follows from A BCD that
Ape =  PphSin-y

where <p is the electron scattering angle. From AAEC it follows that 
sin (cp/2) =  Pph/(2pe). Therefore

A pe Pph

It is by this quantity that the electron momentum in the original 
direction is reduced as a result of a single collision with a phonon. 
To eliminate the electron momentum in the original direction alto­
gether the following number of collisions is needed:

Pe 
A pe

In the low temperature range the energy of thermal lattice vibra­
tions (the phonon gas energy) is, according to (4.30) and (4.36), 
^lattice OC T4 and the phonon gas concentration is nph OC T3. There­
fore the average phonon energy

e p h
• ^ l a t t i c e

wph
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increases in proportion to T. Since the phonon momentum is

(;v is the velocity of sound in the crystal), the phonon momentum in 
this temperature range is also proportional to T:

PphOCr (6.25)
Therefore

v O C p ^ a r -2 (6.26)

Substituting A, from (6.24) and v from (6.26) into (6.5"), we obtain 
the following expression for free carrier mobility in pure metals in 
the low temperature range:

(6.27)

Figure 6.9 shows the qualitative curve of the temperature depend­
ence of u for pure metals. In the high temperature range (above the

Figure 6.9 Temperature dependence 
of free electron mobility in pure 
metals.

Debye temperature 0 ) the carrier mobility u OC 27"1, in the low tem­
perature range (much below 0 ) u OC T~b. In the intermediate tem­
perature range a gradual transition from the T~xto the T~b dependence 
takes place. Finally, close to absolute zero the thermal vibrations 
become so weak that carrief scattering by impurity atoms and lat­
tice defects, which are always present in a metal no matter how pure 
and perfect it is, becomes of primary importance. In this case the 
carrier mobility ceases to depend on temperature [see (6.23)] and the 
u versus T curve follows a line parallel to the temperature axis.
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§ 54 Electrical conductivity of pure metals
Electrical conductivity of pure metals is due to the drift of free 
charge carriers of one sign. In the absolute majority of pure metals 
the charge carriers are free electrons. However, in some metals, such 
as beryllium and zinc, the charge is carried by holes.

The conductivity, or specific conductance, of electron metals is 
•described by formula (6.12):

or =  qnu
Since the metals are degenerate conductors, the electron concentra­
tion in them is practically independent of temperature. Because of

Figure 6.10 Schematic plot of the
temperature dependence of specific 
resistance of pure metals.

that temperature dependence of specific conductance is determined 
-entirely by the temperature dependence of the mobility of the elec­
trons in a degenerate electron gas, as discussed in the previous sec­
tion.

Substituting u from (6.20) and (6.27) into (6.12), we obtain the 
following expression for a and the specific resistance p of pure me­
tals:

in the high temperature range
a =  AIT, p =  aT (6.28)

in the low temperature range
a =  BIT6, p =  bT5 (6.29)

Here A, B, a, and b are proportionality factors.
Figure 6.10 shows schematically the dependence of specific resis­

tance of pure metals on temperature. In the high temperature range 
this dependence is represented by a straight line and in the low tem­
perature range by a parabola of the fifth degree and in the vicinity 
of absolute zero by a straight line parallel to the temperature axis.

A more rigorous quantum mechanical calculation enables the coef-
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ficients A, B, a, b in formulae (6.28) and (6.29) to be found. Table 6.2 
shows the specific conductance of some pure metals at room tempera­
ture, calculated (atheory) an(* measured experimentally (^experiment) (in 
units of 106 olim ^nr1).

Table 6.2

Na K Rb Cu A g Au

atheory 22 19

^experiment 23 15
20 100 90 107
8 64 67 68

It follows that for Na and K, in which the conducting electrons 
are almost in a free state, the agreement between theory and experi­
ment is satisfactory. As the atomic mass increases so does the lattice 
potential and the interaction of the conducting electrons with the 
lattice. This means that the free electron approximation becomes 
less valid. The result is a discrepancy between a theory and 
experiment which grows.
Table 6.3 shows the ratios of the specific conductivity of gold 

o0 at 273 K to a at low temperatures, calculated and measured.
Table 6.3

273 K 87.4K 57.8K 20.4K 11.1 K 4.2K

(<V°) theory 1 0.2645 0.1356 0.0060 0.0003 3 X 10~6
(^ ex p er im en t 1 0.2551 0.1314 °-0058 0-0003 3 X 10”6

The agreement between theory and experiment seems to be quite 
satisfactory.

§ 55 Electrical conductivity 
of metal alloys

In metal alloys too the carrier concentration is independent of tem­
perature. Therefore the temperature dependence of specific conduc­
tance in alloys is determined entirely by the temperature dependence 
of the carrier mobility. Let us discuss this problem in more detail.

Suppose that some sites of an ideal*metal lattice, for instance, of 
a copper lattice, with a strictly periodic potential (Figure 6.11(a)) 
are at random replaced by atoms of some other element, say, gold. 
Since the potential of the field of an impurity atom is not the same 
as that of the matrix atom, the lattice potential will cease to be strict-
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ly periodic (Figure 6.11(b)). It will be distorted by the disordered im­
purity atoms. Naturally, such distortion will lead to carrier scatter­
ing and to the appearance of additional electrical resistance.

It was L. Nordheim who demonstrated that in the simplest case 
of binary alloys of the solid solution type the carrier mobility due to- 
scattering on lattice imperfections is described by the following 
approximate relation:

u&\ OC co (1 — cd) (6.30)
where co and (1 — co) are the fractional parts of the metals consti­
tuting the alloy.

Figure 6.11 Violation of lattice potential’s periodicity by?impurity 
atoms: (a)—strictly periodic potential of ideal lattice built of atoms 
of one kind; (b)—violation of potential’s periodicity by impurity atoms 
substituting matrix atoms at random.

vwwwvvw
6— o--•— o r

(a)wvvwwvw
6— 0----O--- O--- O----O--- #— 0— 0----•— o--- *-

fb)

Substituting ua\ from (6.30) into (6.12) and keeping in mind that 
p =  l/o, we obtain the following expression for the specific resistance 
of a binary alloy:

Pal =  P M l — ® )1 (6.31)>
where P is a proportionality factor.

The function co (1 — co) has a maximum at © =  1/2, that is when 
the concentrations of both components are equal. Figure 6.12(a) 
shows the dependence of the specific resistance of copper-gold alloys 
on the gold, contents. The curve passes through a maximum corre­
sponding to a 50 percent contents of copper (or gold) in the alloy.

It also follows from Figure 6.12(a) that pal is much greater than 
that of the pure components. For instance, at room temperature* 
Pcu =  1.7 X 10"8 ohm-m and pAll =  1.56 X 10”8 ohm-m, whereas 
P50% cu + 5 0 % a u  =  15 X 10“8 ohm-m. This is quite natural since?
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the disorder in the lattice has a much more detrimental effect on 
the lattice periodicity than the thermal vibrations. If, however, the 
alloyed metals taken in appropriate proportions form ordered alloys, 
or metallic compounds, with an ordered structure, the lattice pe­
riodicity is recovered (Figure 6.12(b)) and the resistance due to 
impurity scattering vanishes practically altogether. For the copper- 
gold alloys the appropriate concentrations are those which corre­
spond to the stoichiometric composition of Cu3Au and CuAu (Fig­
ure 6.12(a), solid curves). This may serve as a proof of the validity

figure 6.12 (a)—dependence of specific resistance of solid solutions 
of gold and copper on composition, (b)—lattice potential’s periodicity 
.recovered in the ordering of the structure.

•of the quantum theory of electrical conductivity, which maintains 
that the cause of the electrical resistance of solids is not the colli­
sion of the free electrons with the lattice atoms but their scattering 
by the lattice defects which distort the periodic lattice potential. 
An ideal regular imperfection-free lattice with a strictly periodic 
potential is incapable of scattering free charge carriers and must 
therefore have zero resistance. This conclusion is supported by nu­
merous experiments carried out with extremely pure metals in the 
low temperature range, the relevant data being presented in Table 6.3: 
as the degree of purity of a metal is increased its specific resistance 
near absolute zero diminishes, continuously tending to zero. We 
would like to stress that this is not the phenomenon of superconduc­
tivity which we shall discuss later but the natural behaviour of abso­
lutely all pure metals in the extreme low temperature range, which 
is a consequence of the quantum mechanical nature of electrical re­
sistance.

For small impurity contents one may set in (6.31) (1 — co) « 1. 
Then pal OC to. This specific resistance is independent of temperature
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and does not vanish at absolute zero. It is termed residual resistivity 
Pres (see Figure 6.10).

At temperatures other than absolute zero a resistivity pr due to 
electron scattering by the lattice vibrations is added to the residual 
resistivity and the total resistivity becomes

P =  Pres +  Pt (6.32)
This relation expresses Matthiessen's rule, which speaks of the addi­
tivity of specific resistance.

Let us discuss now the temperature coefficient of resistivity a. As 
is well known, it expresses the relative variation of the specific re­
sistance of a conductor whose temperature is raised by 1 K. For 
pure metals p =  pT and therefore

a 1 dpj*
Pt* dT (6.33)

Experiment shows a roughly to be

a « 0.004 K-«

[see Table (6.4)1. For alloys p =  p res -+• Pt ! therefore
^  1 dp   1 dpj<
aal =  7 1 T _  Pres +  Pr dT

since pres is independent of temperature. This expression may be 
transformed into

1 1 (ipj* ^  cc </» o  /  \

al 1+Pres/Pr Pr dT1 1 +  Pres/Pr
where a is the temperature coefficient of resistivity of pure metals.

It follows from (6.34) that a al should be less than a of a pure 
metal, the less the greater pres is in comparison with pT. Usually 
pres is an order of magnitude or more greater than pr . Therefore 
a al may be an order of magnitude or less than a of a pure metal, and 
this is on the whole supported by experiment (Table 6.4; the data 
are for room temperature).
Table 6.4

Cu Sn Ni
Bronze 
(88% Cu, 
18% Sn, 
1% Pb)

Nichrome 
(80% Ni, 
20% Cr)

Constantan 
(54% Cu, 
46% Ni)

a (103 K"1) 4.1 4.2 6.2 0.5 0.13 -0.004
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However, in many cases the temperature dependence of an alloy’s 
resistance is much more complex than that which follows from the 
simple additive rule (6.32), and the temperature coefficient of resis­
tivity of some alloys may be much less than one could expect from 
(6.34). More than that, it does not remain constant in a wide tempera­
ture interval but may in some cases even become negative as is, for 
instance, the case with constantan (Table 6.4) and with some other 
alloys.

A high specific resistance together with a low temperature coeffi­
cient of resistivity made alloys valuable materials for the production 
of various wire and film resistors and variable resistors (rheostats) 
widely used in different fields of science and technology.

§ 56 Intrinsic conductivity 
of semiconductors

The electrical conductivity of very pure and perfect single crystal 
semiconductors in the not very low temperature range is due to in­
trinsic charge carriers, that is, to electrons and holes. Such conductiv­
ity is termed intrinsic.

Since there are two types of carriers in the intrinsic semiconductor, 
electrons and holes, its specific conductance is the sum of the conduc­
tivity an =  qn{un due to free electrons, with the concentration nx 
and the mobility un, and of the conductivity ap =  qp{up due to 
the presence of holes, with the concentration p{ and the mobility up. 
Since n{ =  p{, the total specific conductance of an intrinsic semicon­
ductor is

<*i =  On +  O p  =  q n t (un +  U p) (6.35)
According to (5.37) the hole (or electron) concentration in an in­

trinsic semiconductor is
o  I  2n V mnmpkBT  \ 3 /2  ^ E J ( 2 h X)T) 

ni - Z \ Jjz ) e 8
The carrier mobility in the intrinsic conductivity range is given 
by (6.19). Substituting (5.37) and (6.19) into (6.35) we obtain

ol =*o(fi-Ea!i2k*n (6.36)
where a0 denotes the preexponential expression.

It follows from (6.36) that g{ cx0 as T ->■ o o .  We thus conclude 
that, if the rule (6.36) remains valid for infinitely high temperatures, 
cf0 would be the specific conductance of the semiconductor as T ->■ o o .

The temperature dependence of aj can be conveniently represented 
in the semilogarithmic coordinates. Taking the logarithm of (6.36),
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we obtain
In a, =  In a0 (6.37)

If we plot UT along the x axis and In a along the y axis, we will 
obtain a straight line that cuts off a section In cr0 (Figure 6.13(a)) 
on the y axis. The tangent of a of this straight line to the x axis is

Figure 6.13 Temperature dependence of intrinsic conductivity 
of a semiconductor: (a)—theoretical curve; (b)—experimental plots 
for germanium and silicon.

1000 500 333 250 K

equal to E gl{2k&). Plotting this dependence, we can find the constant 
<j0 and the width of the forbidden band E g. Figure 6.13(b) shows the 
experimental In at versus l/T dependence for pure germanium and 
silicon. The forbidden bands as determined from the inclination 
angles of the curves turned out to be 0.72 eV and 1.2 eV wide.

Comparing the results of this section with those of the previous one, 
we see that there is the following principal difference between metals 
and semiconductors. In metals, where the electron gas is in a degen­
erate state, the carrier concentration is practically independent of 
temperature and the temperature dependence of conductivity is 
determined entirely by the temperature dependence of carrier mobi­
lity. In the semiconductors, on the other hand, the carrier gas is 
nondegenerate and its concentration depends strongly on temperature 
[see (5.37)]. Because of that their conductivity is entirely determined 
by the temperature dependence of carrier concentration [see (6.36)].
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For a specific temperature the carrier concentration and the conduc­
tivity of a semiconductor are determined by the width of its forbid­
den band. This may be seen quite clearly from the data of Table 6.5 
which contains the widths of the forbidden bands and the specific 
resistances of the elements of Group IV of the Mendeleev periodic 
table, the elements having the diamond-type lattice. As the width 
of the forbidden band decreases from 5.2 eV (diamond) to 0.08 eV 
(gray tin), the room temperature specific resistance diminishes by 
16 orders of magnitude.
Table 6.5

Diamond Silicon Germanium Gray tin

Eg (eV) 5.2 1.12 0.66 0.08
p (ohm-m) 1010 3 X 103 0.47 2X10-*

§ 57 Impurity (extrinsic) conductivity 
of semiconductors

The temperature dependence of specific conductance of nondegenerate 
impurity semiconductors, as that of intrinsic semiconductors, is 
for the most part determined by the temperature dependence of 
carrier concentration. Because of this, the curve representing the 
temperature dependence of a must at least qualitatively be analogous 
to the n versus T curve, where the latter is shown in Figure 5.22.

The temperature dependence of In a for an impurity semiconductor 
is represented qualitatively in Figure 6.14(a). There are three dis­
tinct regions on this curve ab, be, and cd.

The region ab lies between absolute zero and the impurity satu­
ration temperature Ts. The carrier concentration in this region is 
described by formula (5.41):

n  =  V m  ^_2rcmnfcBr  j 3/2e - E d/(^By

The mobility is determined mainly by impurity and imperfection 
scattering and according to (6.22) is proportional to T3/2. Substituting 
(5.41) and (6.22) into (6.12) we obtain

olm =  a?me-E*/(2ft bT) (6.38)
where Oim is a factor that depends weakly on temperature (as com­
pared with the exponential^.

Taking the logarithm of (6.38), we obtain
In alm =  In a?m — (6.39)
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In the In alm versus 1 IT coordinate system we get a straight line* 
which makes an angle cclm with the 1 IT axissuch that tan a lm == 
=  Ed/(2kB) is' proportional to the impurity ionization energy Ed. 
Hence region ab corresponds to impurity, or extrinsic, conductivityf. 
which is due to impurity carriers freed as the result of the ioniza­
tion of impurity atoms.

The region be lies between the impurity saturation temperature Ta 
and the temperature of intrinsic conductivity Tx. In this range all

Figure 6.14 Temperature dependence of specific conductance of impurity: 
semiconductors: (a)—theoretical curve; (b)—experimental plots 
for silicon containing different amounts of phosphorus.
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the impurity atoms are ionized but no noticeable excitation of in­
trinsic carriers takes place. Because of that the carrier concentration 
remains approximately constant and equal to the impurity concen­
tration n ^  Nd. Therefore in this region the temperature dependence 
of the conductivity is determined by the temperature dependence 
of carrier mobility. If the principal carrier scattering mechanism 
inside this region is the scattering on thermal lattice vibrations, 
which causes the mobility to fall with temperature, then specific 
conductance will also diminish with the rise in temperature. This 
is just the case shown in Figure 6.14(a). But if the principal mechanism 
is impurity or imperfection scattering, then specific conductance in 
the region be will increase with temperature.

The region cd corresponds to the transition to intrinsic conducti­
vity. Inside this region the carrier concentration is equal to the 
intrinsic carrier concentration. Therefore the conductivity of the 
semiconductor in this region is

a » (Xj =  o 0 Ed/(2ftBT)

In semilogarithmic coordinates In a versus 1 IT this dependence is 
represented by a straight line cd making an angle a{ with the 1 IT 
axis, its tangent being proportional to the width of the forbidden 
band: tan a f =  E g/(2kB)-

Figure 6.14(b) shows the temperature dependence of the conduc­
tivity of phosphorus-doped silicon. A comparison with Figure 6.14(a) 
shows that in the simplest cases the theory ensures a qualitative agree­
ment with experiment.

Thermistors. The strong dependence of the resistance of semicon­
ductors on the temperature is utilized in a wide class of semiconduc­
tor devices, the thermistors. They are bulk semiconductor resistors 
with a large temperature coefficient of resistivity and a nonlinear cur­
rent-voltage characteristic.

Thermistors are used in measuring temperature and power of 
ultrahigh frequency radiation, for temperature compensation in va­
rious electric circuits, for timing relays, etc. Microthermistors, which 
have small dimensions and low thermal inertia, are being used in 
the study of heat exchange processes in plants and living organisms 
including early diagnosis of human illnesses. The use of a thin semi­
conducting film in a bolometer made it possible to increase its sen­
sitivity to 10“10 W. Such bolometers placed in the focus of a para­
bolic mirror are capable of detecting aircraft, tanks, ships and other 
bodies that radiate heat at a distance of the order of several kilome­
ters. A highly sensitive semiconductor bolometer detected infra­
red radiation reflected by the paoon’s surface.
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§ 58 Deviation from Ohm's law.
The effect of a strong field

The proportionality between the current density i and the field 
intensity <£ demanded by the Ohm’s law (6.1) remains as long as a, 
which enters this law as a proportionality factor, remains indepen­
dent of <g.

Let us find what are the conditions in which this requirement is 
fulfilled.

According to (6.5') the carrier mobility in nondegenerate semi­
conductors u OC k/v, where v is the resultant velocity of carrier mo­
tion. It is the sum of the thermal u0 and drift vd velocities:

v =  v0 +  vd
For weak fields

vd <  v0 (6.40)
the resultant carrier velocity is v0 and is independent of g. 
Therefore both the carrier mobility u and their concentration and, 
consequently, the specific conductance a =  qnu are independent of 
g. Such fields are termed weak.

Hence Ohm’s law, which requires a linear dependence of i on <g, 
is valid only in the case of weak fields complying with the condition 
(6.40).

As the field <g increases the drift velocity vd rises and in fields of 
high intensity may become comparable in order of magnitude with v0. 
In this case the resultant velocity begins to be dependent on % and 
because of that mobility u and specific conductance cr too become 
dependent on <£. Naturally, the result is a distortion of the linear 
dependence of i on <g, that is, a deviation from Ohm’s law. Fields 
in which such phenomena take place are termed strong.

Calculations show that when scattering by thermal lattice vibra­
tions is the principal scattering mechanism in strong fields

OCg-1/2, <3 =  qnu<XM~m , i =  ag OCg1/2 (6.41)
In still stronger fields the drift velocity vd ceases to be dependent 

on the so-called drift velocity saturation effect sets in (Figure 6.15). 
Since i OC vdy such fields are also characterized by current saturation. 
The current-voltage characteristic of a semiconductor becomes dis­
tinctly nonlinear.

The rise in the resultant electron velocity in an external field is 
equivalent to the rise in the temperature of the electron gas. There­
fore this effect is known as electron gas heating and the electrons whose
13-0885
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average kinetic energy exceeds that of the lattice atoms are termed 
hot electrons.

Strong fields can bring about not only changes in carrier mobility 
but in their concentration as well. There are several mechanisms 
leading to that result.

Thermoelectron ionization. In strong fields not only free electrons 
become heated but to a lesser extent bound electrons too. Therefore 
the probability of their transition to thL* conduction band increases 
in the same way as it would increase if the temperature of the semi-

Figure 6.15 Nonlinear carrier drift velocity in semiconductors: I oc % (Ohm’s 
law) in region OA, i oc j/ % in region AB, and i 
is independent of % in region BC (saturation of "drift velocity).

0 6. V/m

conductor as a whole would be raised by an appropriate amount. 
This results in an increase in free carrier concentration and in the 
specific conductance of the semiconductor, a. Such phenomenon be­
came known by the name of thermoelectron ionization. Its theory was 
developed by Ya. I. Frenkel.

Impact ionization. If conduction electrons of a heated electron 
gas receive enough energy to ionize neutral atoms lifting their elec­
trons to the conduction band and themselves remaining in the conduc­
tion band, then there will be an avalanche-type increase in the free 
carrier concentration, until the process is counterbalanced by recom­
bination. This mechanism of free carrier breeding is termed impact 
ionization.

Electrostatic ionization. In high-intensity fields the transition 
of the electrons from the valence band to the conduction band by 
means of tunnelling through the forbidden band becomes possible. 
This effect is known as the Zener effect, or electrostatic ionization. 
The probability of tunnelling and, consequently, the tunnel current 
density increase drastically with the increase in the field intensity 
and decrease with' the increase in the width of the forbidden 
band.
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Figure 6.16 shows a qualitative curve of the variation of specific 
conductance of germanium with field intensity (in semilogarithmic

approximate limits within whichcoordinates). Also shown are

In G Figure 6.16 Qualitative dependence 
of specific conductance 
of germanium on electric field 
intensity:
1— ohmic region, 2—Frenkel region,
3— electrostatic ionization region,
4— breakdown region.

those mechanisms of carrier generation resulting in the increase in 
electric conductivity operate (7, 2—the ohmic and the Frenkel re­
gions; 3> 4~ th e  regions of electrostatic ionization and breakdown).

§ 59 The Gunn effect
It was demonstrated in the previous section that in strong fields there 
is a phenomenon of nonlinear drift velocity: the drift velocity changes 
not in direct proportion to the field intensity the result being a 
deviation from Ohm’s law.

An interesting effect of nonlinear drift velocity in gallium arsenide 
was discovered by J. B. Gunn. It became known as the Gunn effect. 
Figure 6.17(a) shows the pattern of the conduction band of gallium 
arsenide. It has two minimums in the [100] direction: one at k =  0 
and the other at k — 0.8k0 (k0 is the wave vector corresponding to 
the Brillouin zone boundary). The second minimum is E =  0.36 eV 
above the first. In normal conditions the electrons of the conduction 
band occupy the first minimum, where their effective mass is m'n =  
=  0.072 m and the mobility u± =  0.5 V/(m2s). When an external 
field is applied to the crystal, the electrons’ drift velocity becomes 
Va =  which increases in proportion to % (the straight line OA, 
Fig. 6.17(b)). This goes on until the heated electrons accumulate 
sufficient energy to go over to the upper minimum, where their effec­
tive mass is much greater (mn — 1.2 m) and the mobility much lower 
(u2 =  0.01 V/(m2s)). Such a transition results in a drastic reduction 
in the drift velocity (because of a lower electron mobility) and the 
current density, that is, in the appearance of the region AB with a
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negative differential conductivity ((Tdlf=  di/dV). After most of the 
electrons move over to the upper minimum any further increase in % 
will be accompanied by an increase in drift velocity v& =  u2% and 
by a proportional increase in the current density i (region BC).

The presence of a negative differential conductivity region on the 
current-voltage characteristic of a gallium arsenide crystal makes it 
possible to devise on the basis of the Gunn effect ultra-high frequency 
UHF) oscillators known as Gunn diodes.

Figure 6.17 The Gunn effect: (a)—structure of conduction band 
in allium arsenide in [100] direction; (b)—variation of drift velocity 
and current density with the increase in electric field intensity.

The Gunn effect was first discovered in 1963. In 1966 a first com­
mercial type of an UHF generator working at a frequency of 2-3 GHz 
with a power output of approximately « 100 W in pulsed operation 
was produced. At an electronic instrumentation and automatics 
exhibition which took place in the United States in 1968, radars 
using Gunn generators to measure the speed of moving objects were 
displayed. Those radars were so small that they could be carried by 
hand.

§ 60 Photoconductivity of semiconductors
Let us turn a ray of light of intensity I 0 on the semiconductor (Fig­
ure 6.18(a)). Passing through the semiconductor the light is gradually 
absorbed and its intensity is diminished. Cut out an infinitely thin 
layer dx at a distance x from the semiconductor’s surface. The amount 
of luminous energy dJ absorbed in the layer dx is proportional to the 
intensity J of the light passing through this layer and to its thick­
ness dx:

dJ =  —kJ dx (6.42)
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The minus sign shows that the energy diminishes; the term for the 
proportionality factor k is absorption coefficient. For dx =  1, k =  
■= —dJIJ. Thus the absorption coefficient is numerically equal to 
the relative variation of the intensity of light passing through an 
absorbing medium of unit thickness. Its dimensions are reciprocal 
to length (m~1).

Integrating (6.42), we obtain
j  =  j 0e~hx (6.43)

The light absorbed in a semiconductor may be the cause of generation 
of excess carriers, which increase the total free carrier concentration. 
The arrows 1 in Figure 6.18(b) show the process of excitation of the 
conduction electrons and holes in the course of intrinsic absorption 
of light by a semiconductor. A photon with an energy hv equal or 
greater than the forbidden band width E g transports an electron 
from the valence band into the conduction band. The generated elec-

Flgure 6.18 Generation of free charge carriers by light (internalJihotoeffect): (a)—absorption of light by a semiconducting specimen; 
b)—excitation of free charge carriers from valence band, 1 (intrinsic 
absorption), and from impurity levels, 2 and 3 (impurity absorption); 
(c)—dependence of absorption coefficient on wavelength (i—intrinsic 
absorption band, 2 and 3—impurity absorption bands, X0—threshold 
of photoeffect, A,im x and 2—thresholds of impurity 
photoconductivity).

i i i i t i i n
-st j *!

(a)
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tron-hole pairs are free and can take part in the sem iconductor’s 
conductivity.

To excite electrons from the levels of impurity atoms the photon 
energy should be hv ^  Elm, where Eim is the ionization energy of 
those atoms. Such impurity levels in Figure 6.18(b) are E± and i?2; 
the process of electron excitation from these levels is shown by ar­
rows 2 and 3.

Thus if
hv ^  E g in case of intrinsic semiconductors and
hv ^  E im in case of impurity semiconductors (6.44)

then excess charge carriers are generated in the semiconductor and 
its conductivity increases.

The process of internal liberation of electrons due to the action of 
light is termed the internal photoeffect. The additional conductivity 
of a semiconductor irradiated with light is termed photoconductivity. 
The name for initial conductivity due to the thermal carrier excita­
tion is termed dark conductivity, for it is the conductivity of the semi­
conductor kept in darkness. Light can excite excess carriers both 
from the intrinsic and from the impurity levels and accordingly two 
types of conductivity can be distinguished: the intrinsic and the 
impurity. Using (6.44), we can find the threshold of this process, that 
is, the maximum wavelength of light that is still photoelectrically 
active:

X0 =  ch!Eg for the intrinsic semiconductors 
Xim =  ch/Eim for the impurity semiconductors (6.45)

where c is the velocity of light.
The ionization energy for photoconductivity in pure semiconduc­

tors Eg lies in the range of 0.1-5 eV, the majority having E g « 1-3 eV. 
The threshold for the latter lies in the visible part of the spectrum. 
Many impurity semiconductors have Eim of the order of decimal frac­
tions of an electron volt and even lower. For them the threshold lies 
in the infra-red part of the spectrum.

Figure 6.18(c) shows a schematic dependence of the absorption 
coefficient k on the wavelength X for a semiconductor with two impu­
rity levels Ex and E2 (Figure 6.18(b)). The absorption spectrum of 
such a semiconductor consists of three absorption bands: the intrin­
sic absorption band 1 corresponding to the electron transition from 
the valence to the conduction band, and two impurity bands (2 
and 3). They correspond to electron transitions from the impurity 
levels Ex and Ez to the conduction band (Figure 6.18(b)). Light with 
X <  X0 =  he!Eg is practically completely absorbed near the surface 
in a layer x « 10“6 m thick; its absorption coefficient is k » 106 m "1. 
The impurity absorption coefficient depends on the concentration
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of impurities but seldom exceeds k =  103 m”1. The less the impurity 
ionization energy E g the greater the maximum wavelength of pho­
toconductivity is according to (6.45).

The impurity photoeffect is only possible if the impurity levels 
Ex and E2 are occupied by electrons, that is, if the semiconductor’s 
temperature is below the temperature of impurity exhaustion, Ts. 
For this reason one usually has to cool the semiconductor to be able 
to observe photoconductivity, the necessary cooling temperatures 
being the lower the greater the maximum wavelength. For instance, 
gold-doped germanium has Xim =  9 pm and must have liquid nitro­
gen cooling (T =  78 K); germanium doped with the elements of 
Groups III or V of the Mendeleev periodic table has Xlm =  100 pm 
and needs liquid helium cooling (T =  4.2 K).

If the intensity of light entering the semiconductor is /, the amount 
of luminous energy (the number of photons) absorbed in a unit vol­
ume of the semiconductor per unit time will be kJ and the rate of 
carrier generation will be

g =  Jkfi (6.46)
where p is the quantum yield, which shows the number of free carriers 
generated by an absorbed photon.

In the absence of recombination the number of excess carriers 
would grow continuously with time. The effect of recombination, 
whose rate rises with the concentration of excess carriers is to estab­
lish a stationary state in the semiconductor when the generation rate 
is equal to the recombination rate [see (5.49)]:

g =  R =  Arc0/r (6.47)
This state is characterized by a constant (stationary) excess carrier 
concentration An0 equal to

A n0 =  gxn =  Jk$xn (6.48)
Since the excess carriers have practically the same mobility as the 
equilibrium carriers, the stationary (steady-state) photoconductivity 
will be

Om =  <$ kJunXn (6.49)
It follows from (6.49) that the stationary photoconductivity of 

a semiconductor and, consequently, the photosensitivity of semi­
conductor radiation detectors is proportional to the excess carrier 
lifetime xn. From this point of view it is advantageous to use mate­
rials with the highest possible rn. However, this may substantially 
increase the time lag of the photodetector.

Indeed, consider* the pattern of photoconductivity decay after 
the light source had been turned off (Figure 6.19). The recombination 
process reduces the number of excess carriers in compliance with
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the law [see (5.50)]
An =  A n0e i/Tn

The same will be true for the semiconductor’s photoconductivity 
decay (curve BC):

<7ph =  < W  ,'/X"I
(6.50)

It follows from (6.50) that the greater the excess carrier lifetime xn 
the slower the photoconductivity decay rate and, consequently, 
the greater will be the radiation detector’s time lag.

Figure 6.19 Rise in photoconductivity of a semiconductor illuminated 
by light and photoconductivity decay after illumination has ceased.

It may easily be demonstrated that the tangent drawn to the pho­
toconductivity decay curve aPh (t) at point t0 cuts off a section numer­
ically, equal to Tn , the excess carrier lifetime. This method is often 
used for determining xn.

Figure 6.19 also shows the pattern of the rise in photoconductivity 
after the semiconductor had been illuminated by a light pulse (curve 
OB). The photoconductivity rises gradually and reaches the “pla­
teau” only after a lapse of some time. In this case too a tangent to 
the curve crph (£) drawn at the origin cuts off a section of the straight 
line AB equal to xn.

Excitons. In the act of photoconductivity the electrons from the 
valence band are transported to the conduction band and become 
free electrons. However, the process may take another course when 
the excited electron does not tear its connections with its counter­
part hole in the valence band but forms an integral system with it. 
Ya. I. Frenkel proposed the term exciton for such a system. The exci- 
ton is similar to an excited hydrogen atom—in both cases there is 
an electron moving about a unit positive charge and the energy spec­
trum is a discrete one (Fig. 6.20). The exciton levels are near the 
bottom of the conduction band. Since the excitons are electrically
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neutral, their appearance does not result in the generation of addi­
tional charge carriers. Because of that, the absorption of light is not 
accompanied by photoconductivity. The present point of view is that 
the formation of excitons can in some cases result in photoconduc­
tivity. The generated excitons for some time wander through the 
crystal. Colliding with phonons, impurity centres, or other lattice 
imperfections, the excitons may either recombine or “decompose”. 
In the first case the ground state is restored, the excitation energy 
being transmitted to the lattice or emitted in the form of light quan­
ta (luminescence). In the second case a pair of free carriers, an elec-

Conduction band Figure 6.20 Exciton states in 
semiconductor.

Valence band

tron and a hole, is created. They are responsible for the photoconduc­
tivity.

Temperature greatly affects the photoconductivity of semiconduc­
tors. As the temperature decreases the number of dark carriers drops. 
The result is, firstly, an increase in the ratio of photoconductivity to 
the total conductivity and, secondly, an absolute increase in photo­
conductivity due to the decrease in the photocarrier recombination 
rate brought about by the decrease in the dark carrier concentra­
tion (the latter effect is observed only in semiconductors with pre­
vailing direct recombination).

Photoresistors. The photoconductivity effect in some semiconduc­
tors is widely utilized in photoresistors. Figure 6.21 shows schemat­
ically one of the types of photoresistors. It consists of a thin semi­
conducting film 2 deposited on an insulating substrate 1, of metal 
electrodes 3, by means of which the photoresistor is connected into 
a circuit, and of a protective organic film 4. The most sensitive pho­
toresistors are made of cadmium sulfide (CdS) the photoconductivity 
of which is 105-106 times higher than the dark conductivity. Also 
in wide use are photoresistors made of lead sulfide (PbS), which are 
sensitive to the far infra-red radiation. Other semiconducting mate­
rials are also being used.
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The main advantage of the photoresistors over the vacuum photo­
cells is their high light sensitivity. For instance, the sensitivity of 
selenium-cadmium photoresistors is 105 times higher than that of 
vacuum photocells. A disadvantage of the photoresistors is their 
time lag.

Electrophotography. The internal photoeffect in semiconductors 
is widely used in so-called electrophotography or xerography. The 
essence of this process is as follows. V 

A thin film of high resistivity semiconductor (usually ZnO) is 
deposited on a sheet of paper. Before the photographic process the

Figure 6.21 Schematic representation of a photoresistor:
1—insulating substrate, 2—semiconducting film, 3—metal electrodes,
4—-protective coating.

film is negatively charged by a gas discharge. When an image to be 
photographed is projected onto such paper, the surface charge from 
the illuminated parts leaks through the film much more readily 
than from the nonilluminated parts and accordingly an electric 
image of the object remains on paper after the exposition. To devel­
op the electrical image the paper is sprayed by a weak spray of spe­
cial dry paint, or “toner”. The particles of toner are deposited on the 
negatively charged parts of the paper thus developing the image. 
The image is fixed by heating the paper to the temperature at which 
the toner particles melt and adhere firmly to the paper.

The main advantage of electrophotography over normal photo­
graphy is the exclusion of chemical development and fixation pro­
cesses. This makes it possible to increase the speed of the photograph­
ic process drastically, reducing the necessary time down to about 
ten seconds. However, as yet electrography is inferior to normal pho­
tography in accuracy and fineness of reproduction and because of 
that its application is limited to cases when great accuracy is not 
needed (for instance, for multiplying printed texts, cards, etc.). 
The well known Soviet-made duplicator “Era“ operates on this prin­
ciple.

.3 A 3

1
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Semiconductor counters. Apart from light the internal photoeSect 
can be excited by irradiating the semiconductor with particles— 
with electrons, ions, a-particles, etc. Such particles passing through 
the semiconductor generate free charge carriers and thus increase 
its conductivity or the current in a closed constant-voltage circuit. 
Since the number of generated carriers is proportional to the num­
ber of particles which enter the semiconductor, that number can 
be determined from the changes in the current. This fact enables 
semiconductor counters to be devised. Such counters are usually 
graduated not in units of current but directly in the number of par­
ticles. To enhance the sensitivity of the counter the variations of 
current flowing through the semiconductor are amplified with the 
aid of special electronic devices.

Semiconductor counters are now in a state of high perfection. 
They are widely used in nuclear research, in space technology, in 
medicine, in dosimetry, etc. They will probably play the leading 
role in radiation detection and spectrometry.

§61 Luminescence
A heated body radiates energy the power and the spectral composi­
tion of which depend on the temperature of the body. This radiation 
is termed thermal. Its main feature is that it is an equilibrium process. 
If we place a heated body into a cavity with walls of ideal reflectivity, 
a dynamical equilibrium is established between the atoms radiating 
energy and the radiation filling the cavity such that the number of 
atoms radiating energy and returning to the nonexcited state per 
unit time would be equal to the number of atoms absorbing radia­
tion and going over to the excited state. This equilibrium can be 
maintained any length of time. Practically the same equilibrium 
radiation will be radiated by a heated body which is not surrounded 
by reflecting walls of a cavity if its temperature is held constant at 
the expense of energy supplied to it.

Bodies can be made to emit light not only by means of heating. 
Some materials emit light after they have been irradiated with visible 
or ultraviolet light, with X rays, y-rays, electrons, or other parti­
cles, when placed in an electric field, etc. The emitted light may 
be in the visible part of the spectrum, although the temperature of 
the emitting body is low (room temperature and below). Such cold 
emission of light is termed luminescence and the bodies exhibiting it 
are termed luminophors; the luminescence excited by light is termed 
photoluminescence. In contrast to thermal radiation luminescent 
radiation is a nonequilibrium process. Should a luminescent body 
be placed in a cavity with reflecting walls it would loose energy by 
radiation because the radiated energy reflected by the walls would



2 0 4 Solid State Physics

Figure 6.22 Illustration of Stoke’s law.
Absorption 
of exciting 

radiation
Luminescence

Anti-Stokes region

Figure 6.23 Illustration 
of Vavilov’s law.

be absorbed by the body and entirely transformed into the energy of 
thermal vibrations of its atoms. Therefore luminescence would even­
tually cease and the entire energy accumulated in the excited lumi- 
nophor would be transformed into heat.

The second important feature of luminescence is its long duration 
in comparison with the period of optic oscillations equal to 
10“13-10“1B s. The emission of light in the process of luminescence 
continues at least 10“10 s after the excitation has ceased. In some 
instances the emission .of light may continue for seconds, minutes, 
hours and even months after the excitation has ceased. In accordance 
with the duration of light emission, photoluminescence is divided 
into phosphorescence and fluorescence. Luminescence with a dura­
tion of under 10“6 s is usually termed fluorescence and that with 
duration of over 10"5-10”6 s is termed phosphorescence.

The first quantitative investigation of luminescence was under­
taken some 100 years ago by Sir George Gabriel Stokes. He succeeded 
in formulating the following rule which bears his name: the wave­
length of light emitted in luminescence is longer than the wavelength 
of the absorbed light (Figure 6.22). Subsequent experiments have 
proved that anti-Stokes luminescence is also possible when the wave­
length of luminescence is shorter than that of the excitation.

An important characteristic of luminescence is its efficiency (t)), 
first introduced by S. I. Vavilov. Efficiency is the ratio of the total
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energy emitted by a body in the process of luminescence to the energy 
absorbed by the body in the process of excitation. Figure 6.23 shows 
the dependence of rj on the wavelength of excitation. Inside some 
wavelength interval the efficiency of luminescence rises in propor­
tion to the wavelength but then drops drastically to zero. This rule 
was established by S. I. Vavilov and is known as Vavilov's law. The 
absolute value of the efficiency may be as high as 80 percent or more.

Figure 6.24 Energy diagram 
of fluorescent luminophor.

/

Let us now discuss the mechanism of luminescence of solid crystals. 
Experiment shows that crystals with perfect lattice are practically 
incapable of luminescence. To make them exhibit luminescent pro­
perties defects should be created in their structure. The most effective 
defects are impurity atoms. Such impurities are termed activators. 
Their contents in the matrix material hardly exceeds 10“4. Materials 
widely used at present are the so-called phosphor crystals—complex 
synthetic crystals with a defect structure possessing high lumines­
cent properties. A phosphor crystal usually, contains three compo­
nents: the matrix, the activator and, the solvent. The materials fre­
quently used as matrix materials are ZnS, CdS, CaS, etc.; as activa­
tors, the heavy metals Ag, Cu, Bi, Mn, etc., and as solvents, the 
low-melting salts. The spectral composition and the efficiency of 
luminescence depend both on the matrix material and the activator.

Figure 6.24 shows the energy band pattern of a fluorescent lumi­
nophor. There are impurity levels of the activator, A, between the 
filled band I  and the vacant band II. When the activator atom absorbs 
a photon &v, an electron from the impurity level A is transported to 
the conduction band II. As a free electron it wanders freely in the 
volume of the crystal until it meets an activator ion and recombines 
with it returning to the impurity level A . The recombination is ac­
companied by the emission of a quantum of fluorescent light. The 
decay time of luminescence of a luminophor is determined by the 
lifetime of the excited state of the activator atoms, which seldom
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exceeds 10 “9 s. Therefore fluorescence is a short-lived process and 
terminates almost immediately after the irradiation of the body has 
ceased.

For durable luminescence characteristic of phosphorescence the 
luminophor must contain not only the activator atoms A but also 
electron traps L near the bottom of the conduction band (Figure 6.25). 
Such traps may be formed by impurity atoms, interstitial atoms, 
vacancies, etc. The light absorbed by t£ie luminophor excited the 
activator atoms: the electrons from the impurity level A go over to

Figure 6.25 Diagram of electronic 
transitions in the act 
of phosphorescence.

the band I I  and become free electrons. Trapped by traps they loose 
their mobility together with the ability to recombine with the acti­
vator ions. To liberate an electron from the trap the energy EL should 
be expended. This energy the electron can obtain from the lattice 
vibrations. The time t spent by the electron in a trapped state is 
proportional to eEL/hBT • it may be quite large if EL is great enough.

The electron that left the trap wanders through the crystal until 
it is again trapped or recombines with an activator ion. In the latter 
case a quantum of luminescent light is emitted. Hence the traps 
serve as centres where the energy of absorbed photons is accumulated 
so as to be subsequently emitted in the form of luminescent light. 
The duration of this emission is determined by the time the electrons 
spend in the traps.

Experiments show that not in all cases is the transition of the 
electron from an excited state to the ground state accompanied by 
the emission of a light quantum. A much more frequent result is the 
generation of a phonon. For this reason the purity of the phosphor 
crystals must satisfy the most severe requirements. Often a negli­
gible impurity concentration (less than 10"4 percent) completely 
extinguishes the luminescence.

The quantum theory presents a simple explanation of the funda­
mental laws of luminescence including Stokes’ and V avilov’s laws.
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Smokes’ law. When a luminophor is irradiated by light quanta, 
the energy of the quanta is partly spent on the excitation of the acti­
vator atoms and partly is transformed into energy of other types 
(mainly heat). Denote the fraction of the quantum’s energy spent on 
exciting the activator atom by e. When the atom returns from an ex­
cited to the ground state, a quantum of luminescent light will be 
emitted with its energy equal, evidently, to e. The corresponding 
frequency is v =  e/h and the wavelength is X =  ch!e. Since the 
energy of the incident quantum e0 >  e, the wavelength X of the 
luminescent light should be longer than that of the light which 
initiates luminescence (X >  X0) and this is what Stokes’ law states.

When the incident quantum collides with an excited atom, its 
energy e0 =  hv0 may be added to the excitation energy e causing 
the generation of a quantum with energy exceeding the energy of 
the one which initiates luminescence. This is the origin of anti- 
Stokes luminescence.

Vavilov’s law. Consider the simplest case of every incident pho­
ton e0 =  hv0 generating a luminescent photon e =  hv (quantum ef­
ficiency unity). Then the efficiency of the luminescence will evi­
dently be equal to the ratio of the energies of those photons: r\ =  
=  e/e0. Since e =  hv =  hctX, it follows that

n =  v/v0 =  XJX (6.51)
From (6.51) we see that the luminescence efficiency should grow 

in proportion to the wavelength of the excitation, as required by 
Vavilov’s law. When X0 attains a value for which the energy of the 
incident quanta is not enough to initiate luminescence, the effi­
ciency drops abruptly to zero.

§ 62 Fundamentals of superconductivity
Phenomenon of superconductivity. Investigating the role played by 
impurities in residual resistance, H. Kamerlingh Onnes in 1911 
carried out experiments with ultrapure mercury. The results of those 
experiments were startling: at a temperature Tct =  4.2 K the spe­
cific resistance p of mercury fell to zero (Figure 6.26). This phenome­
non became known as superconductivity. The temperature T& at 
which the transition to the superconducting state takes place is termed 
critical, or transition, temperature. For thallium, tin and lead it 
is equal to 2.35 K, 3.73 K and 7.19 K, respectively (Figure 6.26).

Since according to Ohm’s law p =  %!i, the condition p =  0 
means that for a finite current density i the intensity of the electric 
field % at any point of the conductor is zero: & =  0.

Experiments carried out at M.I.T. showed that a current of 
several hundred amperes once induced in a superconducting ring 
continued to flow without attenuation for a whole year.
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Up to now over 20 pure chemical elements and several hundred 
alloys and chemical compounds have been found to be superconduc­
tive. They have transition temperatures ranging from 0.01 to 20 K.

In 1933 W. Meissner and R. Ochsenfeld found that the phenomenon 
of superconductivity consists not only in ideal conductivity, that 
is, zero specific resistance. The magnetic field is pushed out of the 
bulk of a superconductor no matter how this field was established— 
by an external magnet or by a current flowing in the superconductor 
itself. This means that the magnetic induction B t inside the super­
conductor is always zero as long as it/ is in the superconducting state.

Figure 6.26 Abrupt change in specific resistance of mercury, tin,jlead 
and thallium in the course of transition to superconducting state.

p, K)'* ohm-m

In other words, the superconductor is an ideal diamagnetic whose 
magnetic susceptibility % =  —1. It will be shown in the following 
chapter that normal diamagnetics have |%| 1.

Hence superconductivity is a combination of two simultaneous 
phenomena—that of ideal conductivity and of ideal diamagnetism.

The superconductive state can be destroyed by a magnetic field. 
The necessary magnetic field Hcr is termed critical. The value of HCT 
depends on the temperature: at T =  Tct the critical field intensity 
is zero. With the decrease in temperature Hcr rises and is maximal 
at absolute zero. The temperature dependence of HCT for lead and 
tin is shown in Figure 6.27.

Fundamentals of theory of superconductivity. Despite the fact 
that over 60 years have gone by since superconductivity was first 
discovered, the microscopic theory of this phenomenon is a quite 
recent development due mainly to Bardeen, Cooper, Schrieffer. The 
abbreviation for it is the BCS theory. Let us discuss this theory in 
general terms.

Gap in the energy spectrum of conduction electrons in a supercon­
ductor. We again recall the causes of a finite electrical resistance of 
normal conductors, for instance, of metals in a normal state. If we 
neglect the periodic nature of the m etal’s lattice potential (the Som-
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merfeld model), we can regard it as a potential trough for the electrons, 
having a flat bottom and filled by electrons up to the Fermi level EF 
(see Figure 3.4). The kinetic energy of such electrons is given by (5.11)

F _  p2 _ n 2k2
2m 2/7i

Figure 6.28(a) shows once again the E versus k dependence corres­
ponding to (5.11): thin horizontal lines denote the occupied levels, 
the solid line denotes the Fermi level EF, and kF and —kF are wave 
vectors corresponding to this level.

Figure 6.27 Temperature dependence of critical field intensity Hcr 
in superconductor.

Figure 6.28 Dependence of free electron energy in conduction band 
of a metal on wave vector: (a)—in the absence of external field;
(b)—external field <g imparts additional momentum to electrons, 
increasing their wave vector by Ak.
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The application of an electric field % causes a change in the elec­
tron distribution over the states (see Figure 6.1(a)); the electrons are 
transported from the left-hand side to the right-hand side. In Fig­
ure 6.28(b) this corresponds to the transition of the electrons from the 
region of negative k's to the region of positive k's. Such transitions 
are possible since there is a practically unlimited number of unoc­
cupied states above the Fermi level which the electrons can occupy-

Should there be no limiting factors, the momentum of the conduc­
tion electron would in time At grow8 under the influence of the field % 
by an amount p<g =  ftAk =  q% At and a current of a density i =
=  qnv<$= qnl{q%im)At =  (q2nlm)f_>At would be established in the 
conductor, its magnitude growing infinitely with time. This would 
correspond to infinite specific conductance of the conductor, since

lim cr= lim —  A ^  oo (6.52)
A<-*°° &t-*oo m

However, should it even be possible to realize condition (6.52), 
this would still not amount to ideal conductivity, which is charac­
terized, as we have seen, by the condition that the current density 
for % =  0 is finite: i ^  0. But the condition (6.52) cannot be real­
ized in any case. The factors that prevent this are the processes of 
electron scattering by lattice defects and, primarily, by thermal lat­
tice vibrations—phonons—which are present down to absolute zero. 
Here the main part is played by elastic scattering processes which 
change the electron’s momentum to one directly opposite so that 
they move over from the right-hand side of the distribution curve 
to the left-hand side. The corresponding transitions in Figure 6.28(b) 
are those from the region of positive Zc’s to the region of negative k’s. 
The rate of the scattering processes is the greater the greater the field 
disturbs the equilibrium distribution of the electrons over the states, 
that is, the greater the displacement to the right of the distribution 
curve shown in Figure 6.1(a) by a dotted line. Those processes bring 
the electron drift velocity down to thevalue vd =  q%TF!m, the current 
density to i =  q2n%TF/m, and the specific conductance to a =  
=  q2nTF/m, where rF is the relaxation time of the electrons occupying 
levels close to the Fermi level.

Let us make the following point important for the future. At least 
two conditions should be fulfilled to make elastic transitions, which 
are responsible for finite electrical resistance of a normal metal, pos­
sible: (a) there should be states the scattered electrons can occupy (in 
other words, the corresponding energy levels should lie in the allowed 
energy band); (b) the states the scattered electrons are to occupy must 
not already be occupied.

8 The product q% =  F is the force with which field % acts on the electron. 
If At is a time interval, FA* is the impulse of force.
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For a normal metal with an energy spectrum of conduction elec­
trons as shown in Figure 6.28 both those conditions are fulfilled 
making the scattering processes possible.

Can a model of the energy spectrum of conduction electrons be 
built which wrould make scattering processes (at least under certain 
conditions) impossible even in the presence of scattering centres— 
phonons, impurity atoms, etc.?

Figure 6.29 Energy spectrum of conduction electrons in metal with 
a mobile energy gap (explanation in text).
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Apparently, yes. Such a spectrum is shown in Figure 6.29(a). 
The difference between it and the spectrum shown in Figure 6.28 
is that in it there is an energy gap 2?e.g with the Fermi level EF 
in the middle. The lower part of the conduction band is completely 
occupied by electrons; the upper part above the gap is completely 
free. The band pattern looks like that of an intrinsic semiconductor 
at T =  0 K whose specific conductance in case of such occupation of 
the bands is zero. Since the metal retains its high specific conductance 
at T « 0 K, it should be presumed that in contrast to a semiconduc­
tor whose energy gap (the forbidden band) does not change its position 
in an external field, the Z?e.g in the conduction band of the metal 
moves in the electric field together with the electron distribution, as 
shown in Figure 6.29(b). During a finite time interval At the field %
14*
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exists in the superconductor the electron’s wave vector increases by 
an amount Ak =  p<$lh =  q'iktlti and the energy gap E^g shifts to 
the right together with the electron distribution by a distance Ak.

Now let us consider the possibility for the electron q occupying 
the upper level of the right-hand subband to be scattered. The arrows 
1, 2, 3 in Figure 6.29(b) show the possible scattering processes: 1 is 
elastic scattering resulting in the change from k to —k; 2 are tran­
sitions to the levels of the lower left-hand subband; 3 are transitions 
to the levels of the upper left-hand subband. It may easily be seen 
that transitions 1 are forbidden since they terminate in the forbid­
den part of the energy spectrum, namely J?e.g- Transitions 2 are for­
bidden by the Pauli .exclusion principle since the corresponding lev­
els are already occupied b^ electrons. Transitions 3, although allowed, 
require an ionization energy equal to Ee.g- If the m etal’s temperature 
is low enough so that the mean phonon energy /koPh <  E^g, those 
transitions are impossible.9

Hence there are conditions in which even in the presence of such 
scattering centres as phonons the scattering processes limiting 
the conductivity in a metal whose electron energy spectrum has 
a “mobile gap” (Figure 6.29) cannot take place. Accordingly, such 
a metal may become an ideal conductor, just like a superconductor.

Let us look again at Figure 6.29(a). The tangent to the curve E (k) 
near the top of the lower, filled, part of the conduction band runs 
horizontally (dEldk =  0) and accordingly the translational velocity 
of the electrons occupying these levels u =  h~1 (dE/dk) =  0 although 
their momentum p1 and wave vector kL =  pJK are quite large. 
We encountered a similar model when we discussed semiconductors 
(see Figure 5.12); this property of the electrons will prove to be es­
sential in constructing the model of superconductivity.

9 To be exact, there are phonons with an energy ^(oPh >  Ee,g capable of 
exciting electrons from the lower subband to the states of the upper subband 
even at the lowest temperature. This should cause the appearance of vacant 
levels in the lower subband and of “normal” electrons in the upper subband. 
One would think that the appearajice of vacant levels in the lower subband 
would bring about the scattering of electrons responsible for ideal conductivity; 
in other words, that it would in effect destroy superconductivity. Actually, 
as a more detailed consideration shows, a rise in temperature is accompanied 
by a narrowing of the energy gap (Figure 6.29(c)) so that no vacant level capable 
of scattering the electrons of the lower subband remains in it. In other words, 
phonons with an energy /zoiph >  Ee,g not only transform a superconducting 
electron A into a normal one B' but destroy the superconducting state of this 
electron and of the electron A', which was paired with A, by exciting it to the 
normal state (Figure 6.29(d)). As temperature rises the number of “energetic” 
phonons decreases, the width of the energy gap decreases together with the 
number of superconducting electrons. On the contrary, the number of normal 
electrons rises. At T =  Tcr the width of the gap vanishes (Figure 6.34), all 
electrons go over to the normal state, and superconductivity is destroyed.
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Figure 6.30(a) shows the dependence of the density of states in the 
conduction band of a normal metal on energy for I’= 0 K  and Fig­
ure 6.30(b) the pattern of this dependence in the presence of a gap 
/?e.g in the conduction band. Near the edges of the gap the density 
of the states is higher and because of that the band made shorter by 
/?e.g/2 still has enough states to accept all the electrons of the conduc­
tion band.

Hence if we were to prove that metals can actually have an electron 
onergy spectrum with a “gap” and if the causes of its appearance could

Figure 6.30 Variation of density of states of free electrons in metal 
with the appearance of an energy gap in the conduction band:
(a) —density of states versus energy plot for a normal metal;
(b) —ditto for a metal with a gap in its conduction band.

be established, the miracle of the ideal conductivity of superconduc­
tors would generally be unveiled. For this reason the efforts of inves­
tigators in superconductivity were concentrated on the experimen­
tal verification of the presence of such a gap in the energy spectrum 
of superconducting metals.

At present a number of methods have been devised capable not 
only of detecting the gap but also of measuring its width. One of 
them is based on the study of far infrared radiation absorption by 
metals. The idea of the method is as follows. Should a superconduc­
tor be irradiated with electromagnetic radiation of continuously vary­
ing frequency co, it would not be absorbed as long as the energy of 
its quantum remained less than the width of the gap E6mS (of course, 
if there is such a gap). Intense absorption should start at a frequency 
(ocr for which ha)CT =  Ee „ increasing with the frequency to values 
common to a normal metal. Measuring (DCr> one can determine E6tg.

The experiments convincingly proved that there is a gap in the 
electron energy spectrum of superconductors. Table 6.6 shows the 
values of the gap width at T =  0 K for some metals together with
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the transition temperature. We see that the gap Eeg is very narrow, 
approximately 10-3-10“2 eV wide, and that there is a direct connec­
tion between the gap’s width and the transition temperature TCr; 
the higher the Tct the greater the Ee.g is.
Table 6.6

A1 Sn Hg V Pb Nb

E„ .g (0) (103 eV) 3.26 11.0 16.4 14.3 21.4 22.4
Tct (K) 1.2 3.73 4.15 4.9 7.19 9.22£e.g =  3.5fcBrcr(103 eV) 3.6 11.2 12.5 14.8 21.7 27.7

After the presence of a gap in the energy spectrum of conduction 
electrons in superconductors was proved experimentally, attention 
turned to the problem of the origin of this gap.

Figure 6.31 Moving electron 
polarizes the lattice and pulls 
positive ions a little away from 
their equilibrium sites, thereby 
creating an excess positive charge 
which attracts another electron so 
that it forms an electron pair 
with the first electron.

Electron pair formation. As we already know, the formation of 
forbidden bands in the energy spectrum of semiconductors is due to 
the interaction of the electrons with the periodic field of the crystal 
lattice.

It would be natural to suppose that the energy gap in the conduction 
band of a metal in the superconducting state is also due to some addi­
tional electronic interaction that appears when the metal enters that 
state. Its origin is as follows.

A free electron moving through the lattice interacts with the ions, 
“pulling” them from their equilibrium sites (Figure 6.31) and creating 
an excess positive charge that may attract another electron. For 
this reason apart from the usual Coulomb repulsion a force of attrac­
tion can arise between the electrons owing to the presence of the 
positive ion lattice. If this force of attraction exceeds the force of
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repulsion, it will be advantageous from the viewpoint of energy for 
the electrons to associate into couples. These became known as Cooper 
pairs.

The formation of a Cooper pair results in the reduction in the energy 
of the two electrons by the amount equal to the binding energy of 
the elections in the pair, Eh. This means that a conduction electron, 
which in a normal metal had a maximum energy EF at T =  0 K 
(see Figure 6.28(a)), in the superconducting state has an energy Ehl2

less (the energy per pair being Eh less) since this is the energy that 
must be spent to break up the pair and move the electrons to the 
normal state. Therefore in the one-electron spectrum there must be 
a gap of Ee g =  2Eb between the upper level of a coupled electron 
and the lower level corresponding to the normal state, which is re­
quired for superconductivity. It may easily be seen that this gap is 
mobile, that is, it can shift in an external field together with the 
electron distribution curve over the states.

Figure 6.32 is a schematic representation of a Cooper pair. It con­
sists of two electrons oscillating about the induced positive charge, 
which in some ways resembles a helium atom. Each electron of the 
pair may have a large momentum pF and a large wave vector kF\ 
the pair as a whole (its centre of masses), on the other hand, can re­
main stationary having zero translational velocity. This explains a 
paradoxical property of the electrons occupying the upper levels of 
the filled part of the conduction band in the presence of a gap (see 
Figure 6.29(a)). Such electrons have very large p’s and k's (p ^  pF 
and k & kF) and a translational velocity v OC dEldk — 0. Since the 
central positive charge is induced by the moving electrons themselves, 
the Cooper pair acted upon by an external field can freely drift in the 
crystal, the energy gap moving with the electron distribution, as 
shown in Figure 6.29(b). Hence the conditions for superconductivity 
are fulfilled from this point of view as well.

Figure 6.32 Schematic model 
of a Cooper pair.
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However, not all the conduction electrons can form Cooper pairs. 
Since this process involves a change in energy, only electrons that 
can change their energy can form pairs. Only the electrons in a nar­
row strip close to the Fermi level (the Fermi electrons) are free from 
this limitation. A rough estimate gives the fraction of such electrons 
as being approximately 10”4 of the total number of electrons and the 
width of the strip of the order of 10"4pF.

Figure 6.33 shows a Fermi sphere of a radius pF in momentum space. 
Rings dl wide make angles (p̂  <p2, (p3 with the p lt axis. The electrons

Figure 6.33 Estimating the number 
of electrons capable of forming 
Cooper pairs.

the ends of whose momentum vectors pF lie within the area of a given 
ring make up a group every member of which has the same absolute 
value of momentum pF. The number of electrons in each group is pro­
portional to the area of the respective ring. Since the area of the 
ring rises with cp so does the number of electrons in the band. Electrons 
of any group may form pairs, but the maximum number of pairs 
will be formed by the electrons of the more numerous group. The 
latter is made up of electrons whose momenta are equal in magnitude 
and opposite in direction. The ends of the vectors pF of such elec­
trons are not limited to a narrow band but spread over the entire 
Fermi surface. Those electrons are so numerous in comparison with 
any other electrons that practically only one group of Cooper pairs 
is formed—that made up of electrons whose momenta are equal in 
magnitude and opposite in direction.

A remarkable peculiarity of such pairs is the ordering of their 
momenta: the centres of masses of all the pairs have identical mo­
menta, being zero when the pairs are at rest and nonzero when the 
pairs move in the crystal. The result is a rather rigid correlation be­
tween the motion of every single electron and the motion of all the 
other electrons bound into pairs.

The electrons “move like mountain-climbers tied together by a 
rope: should one of them leave the ranks due to the irregularities
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of the terrain (caused by the thermal vibrations of the lattice atoms) 
his neighbours would pull him back”.10 This property makes tho 
ensemble of Cooper pairs little susceptible to scattering. Accordingly, 
should the pairs acted upon by some external force be set in motion, 
the current established by them would continue to flow in the super­
conductor indefinitely even after the factor that brought it to life 
ceased to operate. Since only the electric field % can play the role 
of such a factor, this means that in a metal in which Fermi electrons 
are bonded into Cooper pairs a once excited electric current i can 
remain unaltered even after the field has vanished: i =  constant at 
% — 0. This proves that the metal is actually in the superconducting 
state and that its conductivity is ideal. Such state of the electrons 
may be roughly compared with the state of a body moving without 
friction: the body having received a momentum can move inde­
finitely and its momentum remains constant.

In the above we compared a Cooper pair to a helium atom. How­
ever, such a comparison should be treated very cautiously. As was 
already stated, the positive charge is not exactly constant and sta­
tionary, as in the case of a helium atom, but is induced by the moving 
electrons themselves and moves with them. Moreover, the binding 
energy of the electrons in a pair is many orders of magnitude less 
than their binding energy in the helium atom. According to Ta­
ble 6.6 the binding energy of Cooper pairs Eh =  10“3-10~2 eV, the 
corresponding value for the helium atom being E h =  24.6 eV. Be­
cause of that the dimensions of the Cooper pair are many orders of 
magnitude larger than that of the helium atom. Calculations show 
the effective diameter of a pair to be L « (10"7-10~6) m; another 
term for it is coherence length. There are about 106 centres of masses 
of Cooper pairs inside the effective volume I 3 of one such pair. For this 
reason such pairs cannot be regarded as separately existing “quasi- 
molecules”. On the other hand, the accompanying colossal overlap­
ping of the wave functions of numerous pairs enhances the electron 
pairing effect so that it manifests itself in macroscopic proportions.11

10 Ya. I. Frenkel: Introduction to the Theory of Metals, GITTL, Moscow 
(1950) (in Russian).

11 There is another analogy, a very profound one at that, between a Cooper 
pair and a helium atom. The essence of it is that an electron pair constitutes 
a system with integral spin, the same as the helium atom |He does. It is a known 
fact that the superfluidity of helium may be considered as the result of a peculiar 
effect of bosons condensing on the lowest energy level. From this point of view 
superconductivity may be regarded as superfluidity of the Cooper electron 
pairs. The analogy is a still more far-reaching one. Another helium isotope IHe, 
whose nucleus has a half-integral spin, does not exhibit superfluidity. But a most 
striking new discovery is that in the lowest temperature range the atoms of 
iHe can form pairs quite like the Cooper pairs and the liquid becomes superfluid. 
One is justified in saying that the superfluidity of |He is a sort of superconduc­
tivity of its atomic pairs.
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Hence electron pairing is a typical collective effect. There are no 
forces of attraction acting between two isolated electrons to make 
their coupling possible. In effect, the entire ensemble of the Fermi 
electrons together with the lattice atoms takes part in the formation 
of a pair. Because of that the binding energy (the gap width Ee,g) 
too depends on the state of the electron-atom ensemble as a whole. 
At absolute zero when all the Fermi electrons are in pairs the width 
of the gap is at its maximum, Ee,g(0). The rise in temperature is ac­
companied by the generation of phonons capable in the act of scat­
tering of transmitting energy to the electrons sufficient to break up

Figure 6.34 Variation of the energy gap E e,g(T).

the pair. At low temperatures the concentration of such phonons 
is not large and the breaking up of a pair is a rare event. The disap­
pearance of some pairs cannot, naturally, lead to the disappearance 
of the gap for the remaining pairs but makes it somewhat narrower, 
with the edges of the gap drawing closer to the Fermi level (see 
Figure 6.29(c)). With a further rise in temperature the phonon 
concentration grows very rapidly, their mean energy growing as 
well. The result is a steep rise in the bear-up rate of the pairs and, 
accordingly, a drastic decrease in the gap width for the remaining 
pairs. At some temperature Tcr the gap disappears altogether (Fig­
ure 6.34), its edges merging with the Fermi level and the metal return­
ing to the normal state. The temperature Tct is just the critical 
transition temperature that was mentioned at the beginning of the 
section.

It follows then that the critical temperature for the transition of 
a metal to the superconductive state should be the greater the great­
er the gap width at absolute zero, Eetg(0), is. The BGS theory gives 
the following approximate dependence of 2?e.g(0) on Tct:

Ee.g (0) =  3.5 k^TCT (6.53)
which is in good agreement with experiment (see the last line in 
Table 6.6).
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Behaviour in an external electric field. Connect a long cylindrical 
superconducting specimen into an electric circuit, as shown in Fig­
ure 6.35(a). As the circuit is closed, a homogeneous electric field is 
established in the specimen, % =  V/l, where V is the voltage across 
the specimen and I is its length. Acted upon by the field % all Cooper

Figure 6.35 Behaviour of superconductor connected into an electric 
circuit (explanation in text).

pairs contained in the specimen will start to move against the field 
with the same acceleration

__ 2q% [t) _  q% (t)
2m 2m

where 2q is the pair’s charge, and 2m its mass.
The current density in the superconductor will start to grow:

where vd is the drift velocity of the pairs, nJ2 their number, and 
ns is the concentration of “superconducting” electrons.

The current i generates a solenoidal magnetic field H in the super­
conductor (Figure 6.35(b)). Since i grows with time so does the 
magnetic field H. This results in the appearance of an induced elec­
tric field g in directed against % and of an induced current iln directed
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against i (Figure 6.35(c)). The current iln generates a magnetic 
field H ln directed against H (Figure 6.35(d)). The result is the com­
pensation of the field % inside the superconductor by the field &ln 
and of the field If by the field H ln so that the resulting electric field 
in the specimen % =  0 (Figure 6.35(f)) together with the resulting 
magnetic field H lnt =  0- For such compensation to continue it is 
necessary, firstly, that the current of Cooper pairs, i, be maintained 
in the specimen indefinitely after the end of transient processes. 
To this end the specim en’s resistance should be zero and this is so 
if the specimen is in the superconducting state. Secondly, this 
current should be localized in a thin surface layer X of the supercon­
ductor (Figures 6.35(e, f)), for in this case it does not generate a mag­
netic field inside the specimen but generates an external field If 
in the surrounding space just as a normal current does.

Hence after transient processes come to an end the following sta­
tionary state is established in the specimen:

The first two conditions correspond to ideal conductivity and the 
third to ideal diamagnetism.

In the stationary state Cooper pairs move without acceleration 
(free motion) with the s^rne drift velocity yd =  p<$hn, where p<g 
is the momentum accumulated by the pair during the time the 
circuit was closed. The current set up by them is

As has already been stated before, this current is localized in a thin 
surface layer % of the sample, the magnetic field of the current being 
concentrated in this layer (Figures 6.35(e, f)). The parameter X is 
termed the penetration depth. Theory gives the following expression 
for this parameter:

where p,0 is the permeability of free space. For different superconduc­
tors X lies in the range from 4.10“8 to 10“7 m.

It follows from (6.54) that at T =  Tct when the concentration of 
“superconducting” electrons vanishes X becomes infinite. Physically 
this means that as the metal returns to the normal state the layer 
X in which the magnetic field is localized spreads across the entire 
cross section of the sample and ideal diamagnetism vanishes.

Behaviour of superconductor in magnetic field. Now let us suppose 
that a magnetic field Hext is set up in space containing a cylindrical 
superconducting sample (Figure 6.36(a)). The field induces a solenoi- 
dal electric field in the sample which sets up a solenoidal electric

% =  0, i =  constant, H lnt =  0

i=2« (-r)Pd=

(6.54)
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current iln. The current iin creates a magnetic field H ln (Figure 
6.36(b)) directed against the external field and compensates it. 
The field H in in its turn generates the current i'in which compen­
sates the current iln (Figure 6.36(c)). The overall effect is the compensa­
tion of the external field Hexi by the field H ln and of the current 
hn by *in (Figure 6.36(d)). The total induced current flows in a thin 
surface layer % in which its magnetic field that compensates the

Figure 6.36 Behaviour of superconductor in magnetic field (explanation 
in text).

external field is localized. After the termination of transient proc­
esses the same steady state is established in the sample as was the 
case when an emf was applied to it:

$ =  0, i =  constant, H lnt =  0
Naturally, this state can be established only if the current iln in­
duced during the time the magnetic field was switched on continues 
indefinitely, that is, if the sample is in the superconducting state.

Destruction of superconducting state by fields. Before the field 
is switched on, the momenta of the electrons making up a pair are 
equal in magnitude and opposite in direction, the momentum of 
the centre of masses of the pair is zero. Acted upon by the field % 
every pair as a whole attains some drift velocity z;d and increases 
its energy by the amount

( mvl \
~ r )

If this energy exceeds the binding energy of the pair Eh =  Ee%g/2, 
the pairs start to break up and the superconducting state would 
start to vanish. For this reason the condition for the transition of a 
metal from the superconducting to the normal state may be written 
as follows:
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From here we can easily find the drift velocity

*>d =
and the current density

1  /~  gicr =  qnsvd =  qn8 \ (6.55)
for the case when superconductivity in a metal begins to vanish. 
Setting EB'g =  5 X 10~4eV,g =  1.6 X 10~19C, and ws =  10~18cm-3, 
we obtain vd =  1.8 X 104 m/s and iCT =  2.5 X 105 A/cm2.

With account taken of the fact that the current i sets up a mag­
netic field on the surface of the sample of intensity

H =  Xi (6.56)
(X is the penetration depth of the magnetic field into the supercon­
ductor) condition (6.55) may be formulated as follows: the super­
conducting state of the sample will be destroyed when the intensity 
of the magnetic field on its surface will attain the following critical 
value:

HCT = XiCT (6.57)
Substituting X from (6.54) and iCT from (6.55) we obtain

=  (6.58)
For Ee g =  5 X 10“4 eV and ns =  1018 cm3, HCT « 104 A/m (or 
100 Oe).

Thus when the magnetic field on a superconductor’s surface attains 
the critical value HCT determined by condition (6.58) the supercon­
ductivity is destroyed. Since the gap width substantially depends 
on temperature [see (6.53)], icr and H cr should also depend on tem­
perature, their values decreasing with the rise in temperature. The 
BCS theory gives the following dependence of Hcr and I CT on absolute 
temperature:

Hcr — H cr (0) [1 (T/Tcr)2] (6.59)
I CT = n dHcr for (6.60)

where H cr(0) is the critical magnetic field intensity at T — 0 K, 
and d the diameter of the specimen. There is a satisfactory agree­
ment between those relations and experiment.

Practical uses of superconductivity. The field of practical applica­
tion of superconductivity widens from year to year. First, it serves 
as a basis for superconducting magnets. Such magnets are solenoids 
or electromagnets with a ferromagnetic core with the winding made
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of a superconducting material. Calculations show that to establish 
a magnetic field intensity of 8.106 A/m ( » 10B Oe) in a solenoid 
of a diameter of one metre a superconducting magnet requires 104 
times less power than an ordinary electromagnet. Recently super­
conducting magnets using Nb3Sn have been fabricated which enable 
magnetic fields up to 6.106 A/m (« 7 X 104 Oe) to be produced.

Superconductivity is also being utilized to design modulators 
(converters of weak constant current into an audio-frequency current), 
rectifiers for the detection of modulated high frequency oscillations 
in which the use is made of the nonlinearity of the superconductor’s 
resistance in the transitional region, commutators (noncontact 
switches utilizing the phenomenon of superconductivity), cryotrons 
(superconducting four-poles in which the magnetic field at the input 
controls the output resistance), persistors and persistrons (super­
conducting memory elements for memory devices), etc.

Of highest practical importance is the problem of high temperature 
superconductivity. Of all the known materials the highest transition 
temperature is that of the alloy (Nb3Al)4 +  Nb3Ge whose Tcv ^  
« 20 K. To obtain such a temperature liquid helium is needed. 
What are the prospects for developing materials with higher critical' 
temperatures?

The BCS theory demonstrates that Tcv is directly related to the 
force of attraction between the electrons in the superconductor 
and is determined from the following approximate expression:

r cr =  0 e-i/* (6.61)
where 0 is the Debye temperature, and g is a constant (not exceeding 
1/2 and usually less) dependent on the attraction force between the 
electrons. For g =  1/3 the maximum critical temperature obtainable 
with a material with 0 =  500 K would be Tcr =  @e~3 =;0.05© =  
= 25 K. Naturally, this estimate is a very rough one but still 
it makes it clear that it is impossible to obtain high temperature 
superconductivity (Tct >  100 K) with the electron pairing mecha­
nism discussed above.

Simultaneously with the development of superconducting materials 
with increased Tcr utilizing the electron pairing effect via positively 
charged lattice ions, an intensive search for other mechanisms of 
electronic interaction capable of more efficient attraction and, con­
sequently, of providing superconductive materials with substantial­
ly greater transition temperatures Tct goes on in the laboratories 
throughout the world. Should this search be successful and should 
such materials be produced, the importance of this discovery would 
prove to be comparable to the development of controlled thermo­
nuclear fusion.
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Magnetic Properties of Solids

§ 63 Magnetic field in magnetic materials
Let us place a homogeneous body of volume V into a uniform mag­
netic field of intensity H and induction B0 =  p0H. Acted upon by 
the field the body becomes magnetized obtaining a magnetic mo­
ment M. The ratio of the magnetic moment to the volume of the 
body is termed magnetization Jm:

J m =  MtV (7.1)
and when magnetization is not uniform it is equal to

Jm =  dM/dV (7.2)
Magnetization is a vector; in uniform magnetic bodies Jm is 

either directed parallel or antiparallel to H. The unit of magnetic 
moment in the SI system is A-m2 and that of magnetization A/m.

The ratio of magnetization Jm to the magnetic field intensity 
H  is termed the magnetic susceptibility %:

X =  J J H  (7.3)
It may easily be seen that % is a dimensionless quantity. From 
(7.3) we get

Jm =  %H (7.4)
A magnetized body placed in an external field establishes its 

own field which in isotropic magnetic materials away from its 
external boundaries is directed either parallel or antiparallel to 
the external field. Denote the external field induction by B0, the 
proper field induction by B{ and the resultant induction by B. For 
uniform magnetic materials B is an algebraic sum of B0 and B{:

B =  B0 +  Bl (7.5)
Experiments show that

2 2 4

Bx =  [i0Jm =  X B0 (7.6)
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wherefore
B =  (1 +  x) B0 (7-7)

The quantity
H =  1 +  X (7-8)

is termed magnetic permeability. It follows from (7.8) that
X =  M- — 1 (7.9)

Substituting (7.8) into (7.7), we obtain
B =  ii B0 =  woH (7.10)

The unit of field intensity H in the SI system is A/m and that of 
induction B the tesla (T).

§ 64 Magnetic properties of solids
All materials may be divided into three large groups according to 
the absolute value and the sign of their magnetic susceptibility 
(Table 7.1): diamagnetics, paramagnetics and ferromagnetics
Table 7.1

Diamagnetics % =  \i — 1 Paramagnetics X =  B —1 Ferromagnetics X = B —1

Bi - 1 8 x l0 -6 CaO 580 X 10-5 Fe 1000
Cu -0.9X10-5 FeCl2 360 X 10-5 Co 240
Ge -0.8X10-5 NiS04 120 X 10-5 Ni 150
Si -0.3x10-5 Pt 26 X 10-5

Diamagnetics and paramagnetics. For diamagnetics (| % | <  1) 
X is negative and independent of the intensity of the external 
magnetic field and of temperature. Such materials are magnetized 
in the direction opposite to the direction of the external field and 
because of that they are pushed out of the regions of the highest 
field intensity.

Paramagnetics also have |%| <  1, but contrary to diamagnetics 
X is positive. Such bodies are magnetized in the direction of the 
external field and are drawn into the regions of maximum H .

Figure 7.1(a) shows the dependence of Jm on the field intensity 
for diamagnetics, 7, and for paramagnetics, 2. In both cases «7n, is 
proportional to H , this being an indication of the independence 
of x of H. However, for paramagnetics this is observed only in rela­
tively weak fields at high temperatures; in strong fields and at low 
temperatures the plot (77) asymptotically approaches the limit
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value / s, which corresponds to magnetic “saturation” of the para­
magnetic (Figure 7.1(b)). Besides, % of paramagnetic bodies is depen­
dent on temperature. This dependence was first studied by Pierre 
Curie. He demonstrated that

X =  C/T (7.11)
where T is the absolute temperature of the paramagnetic, and C is 
a constant dependent on its nature. The term for it is the Curie 
constant and for expression (7.11) the Curie law.

Figure 7.1 Magnetization /m versus the magnetic field intensity H: (a)—dia- 
magnetics (i) and paramagnetics (2) in weak and medium fields 
at normal and high temperatures; (b)—paramagnetics at low temperatures 
(or in very strong fields).

•*«

Ferromagnetics. % of ferromagnetic materials, a typical represen­
tative of which is iron, is also positive but immeasurably greater 
than that of paramagnetics. Besides, % depends on H . Apart from 
iron this group includes also nickel, cobalt, gadolinium, dysprosium, 
holmium, erbium and some alloys

The rules governing the magnetization \Vere first investigated by 
the Russian physicist A. G. Stoletov. Figure 7.2 shows the depen­
dence of B (a), of magnetization Jm (b), and of susceptibility 
X (c) on H for soft iron. Z? and Jm at first rise quickly with the magne­
tizing field but then the rise slows down and at some H6 a close 
to the maximum value of J s is attained; any further slow increase 
in induction is due solely to the increase in H. This state corresponds 
to technical saturation of the ferromagnetic: as this state is ap­
proached, x—̂ 0.

A careful study of the magnetization curve shows that as H in­
creases Jm rises not continuously but stepwise. This is especially ap­
parent in the region of the steep rise of the magnetization curve. Fig­
ure 7.2(b) shows a magnified section of the magnetization curve (en-
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Figure 7.2 Magnetization of ferromagnetics: (a)—induction B versus 
field intensity H; (b)—magnetization /m versus field intensity H 
(the right-hand side shows a magnified section of the magnetization curve); 
(c)—magnetic susceptibility versus field intensity H.

closed in a circle). This section consists of a large number of steps cor­
responding to individual jumps accompanying the variation of Jm 
with a continuous rise in H . The stepwise nature of the magnetiza­
tion process was discovered by Heinrich Barkhausen and became 
known as the Barkhausen effect.

Figure 7.3 shows the plot of a complete remagnetizing cycle of a 
ferromagnetic. It may be seen from Figure 7.3 that during the remag­
netization the variation of B lags behind the variation of H and 
when H =  0 is not equal to zero but to Bres. This lagging of B 
behind H has been named magnetic hysteresis and the induction 
Bres residual magnetic induction, or remanence. To remove it a demag­
netizing field Hc termed coersive force should be applied. The closed 
curve ABresHcAfB'TesH'c A, which describes the remagnetizing cycle, 
is termed the hysteresis loop. The area of this loop is proportional to 
the work that should be expended to remagnetize a ferromagnetic of
15*
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unit yolume. In the course of remagnetization this work is completely 
transformed into heat. Therefore when the ferromagnetic is remag­
netized many times in succession its temperature rises, the effect 
being the greater the greater the area of the hysteresis loop.

Ferromagnetic materials are classified as “soft” and “hard”, 
or having a high coersive force. Soft magnetic materials used for 
manufacturing cores of electric motors and instruments have a 
low coersive force and high permeability. The best alloys of this type 
(Supermalloy, for instance) have jx’s as high as 106, saturation induc­
tion Bq & 1 T and a coersive force H c of only 0.32 A/m. Their hyster- 
esis-loop area is so small that their remagnetization losses are some 
500 times less than those of soft iron. Hard magnetic materials are 
characterized by a high coersive force and by high residual magneti­
zation. For instance, Magnico used for manufacturing permanent 
magnets has Hc & 5 X 105 A/m and 5 res =  1.35 T.

When ferromagnetic materials are heated their magnetic proper­
ties become less pronounced: there is a drop in the values of %,
/m, etc. There is a temperature 0G for every ferromagnetic at which 
it looses its ferromagnetic properties. This is known as the ferro­
magnetic Curie point. By way of an example we shall show the Curie 
points of some ferromagnetics.

Cobalt Iron Nickel 30% Permalloy 
0G (°C) . . . 1150 770 360 70

Above 0G ferromagnetics turn into paramagnetics with their charac­
teristic linear dependence of l/% on T (Figure 7.4), which is quite 
well represented by the following relation known as the Curie- 
Weiss law:

X =  C/(T -  0) (7.12)
with C the Curie constant and 0 the paramagnetic Curie point (it 
is somewhat higher than 0 G).

Figure 7.5 shows the temperature dependence of maximum magneti­
zation of iron, nickel, and cobalt. The ratio 776G is plotted along 
the x axis and the ratio JS{T)!Js (0) along the y axis. In such rela 
tive coordinates the dependence of magnetization on temperature 
is described by the same curve for all ferromagnetics. As tempera­
ture rises magnetization drops becoming practically zero at the 
Curie point.

Ferromagnetic single crystals are characterized by anisotropic 
magnetization. Figure 7.6 shows the magnetization curves of iron 
(a) and nickel (b) crystals in the [111], [110], and [100] directions. 
It follows fr m Figure 7.6 that there are directions in the single 
crystal in which it is easier to magnetize the crystal and obtain 
magnetic saturation at relatively small values of magnetic field 
intensity. Those directions are termed directions of easy magnetic
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17* Figure 7.4 Temperature dependence 
of magnetic susceptibility 
of ferromagnetics:
0C the ferromagnetic Curie point; 
and 0 the paramagnetic Curie point.

J5(r)/Js(o)

r/Gc

Figure 7.5 Temperature dependence 
of maximum magnetization of iron, 
nickel and cobalt.

Figure 7.6 Magnetization plots of iron (a) and nickel (b) single 
crystals in directions [100], [110] and [111].



2 3 0 Solid State Physics

zation. For iran this direction is the [100] and for nickel the 
[111] direction. It is much more difficult to magnetize iron in the 
[100] and [111] directions and nickel in the [110] and [100] direc­
tions, substantially greater values of magnetic field intensity being" 
needed to attain magnetic saturation. Those directions are termed 
difficult magnetization directions. The integral

Js
^  J PoHdJm (7.13)

0
taken along the magnetization curve expresses the work spent on 
magnetizing the crystal in the given direction. This work is trans-

dl/l x i<>6 Figure 7.7 Variation of length 
of ferromagnetic samples with 
magnetization (magnetostriction).

formed into free energy of the magnetized crystal. It may be seen 
from Figure 7.6 that the least free energy is that of the crystal magne­
tized in the easy direction and the greatest is that of the crystal 
magnetized in the difficult direction.

Magnetization of ferromagnetics is accompanied by a change in 
their dimensions and shape. This phenomenon became known as 
magnetostriction. Figure 7.7 shows the relative change in the length 
of rods made of nickel, of annealed and of cast cobalt, of iron, and 
of steel magnetized in fields of gradually increasing intensity. The 
greatest relative contraction is that of nickel (almost 0.004 per­
cent); iron and steel rods increase their length a little in weak fields 
and contract in strong fields. On the contrary, cast cobalt rods 
contract in weak fields and increase their length in strong fields.

In compliance with the Le Chatelier principle to the effect that 
a system resists the influence of external factors striving to change 
its state, the mechanical deformation of ferromagnetic bodies result­
ing in the change in their shape an d dimensions should influence
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the magnetization of such bodies. Specifically, if the body being 
magnetized contracts in the given direction, then application of a 
compressive stress in this direction should favour magnetization and 
application of an extending stress should make magnetization more 
difficult. The variation of magnetic properties of strained ferromagnet­
ic bodies is termed the magnetoelastic effect. Some ferromagnetic 
materials are so sensitive to internal stresses caused by deformations 
that this property is utilized for the purposes of strain measurements.

When a ferromagnetic is magnetized in an alternating magnetic 
field, its dimensions change with a frequency double that of the 
field. This property is used in magnetostrictive oscillator capable of 
generating powerful ultrasonic vibrations with a frequency up to

Figure 7.8 Dependence of linear expansion coefficient of iron-nickel (a) 
and of iron-platinum (b) alloys on composition.

% Mi ---------------------------- % Pt

several megahertz. Such oscillators are employed in ultrasonic 
devices for the machining and cleaning of solid objects, in sonars 
used to measure depth of waterways, and in numerous other devices 
and instruments.

An interesting problem is that of thermal expansion of ferromagnet­
ic bodies. Thermal expansion of solids is, as we know, due to the 
anharmonicity of vibrations of particles around their equilibrium 
sites. For diamagnetic and paramagnetic solids anharmonicity is 
the only cause of the change in their dimensions upon heating. By 
force of this such bodies always expand with the rise in temperature. 
Let us denote the linear expansion coefficient due to anharmonicity 
of atomic vibrations by ax. The situation in ferromagnetic materials 
is not so simple. A change in their temperature is accompanied by 
a change in their magnetization and, consequently, in dimensions. 
N. S. Akulov has proposed the term thermostriction for this pheno-
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menon. Denote the linear expansion coefficient due to thermostric- 
tion by a 2. The total thermal expansion coefficient of a ferromagnet­
ic will be a =  a x +  o^. The coefficient is always positive while 
a2 may be either positive or negative. Therefore the total thermal 
expansion coefficient of a ferromagnetic material may be positive, 
zero, or negative. For instance, the group of ferromagnetic materials 
with a negative “ferromagnetic” component of the thermal linear 
expansion coefficient includes Invar alloys. Figure 7.8 shows the 
dependence of the thermal expansion coefficient of iron-nickel (a) 
and iron-platinum (b) alloys on their composition. The a of alloys 
containing about 36 % nickel is about 10 times less than that of pure 
nickel or iron: a of alloy containing 56 % platinum is negative 
such an alloy does not expand upon heating but, on the contrary, 
contracts.

Invar alloys are widely used in instrument manufacture, metro­
logy, aviation, and manufacture of electric lamps and radio valves. 
Depending on practical purposes, alloys with very small, zero, or 
even negative thermal expansion coefficients can be used.

§ 65 Magnetic properties of atoms
The orbital magnetic moment of an atom. The atom of every element 
is made up of a positively charged nucleus and an electron shell. 
Many magnetic phenomena can be adequately explained with the 
aid of Bohr’s theory in which it is assumed that the electrons of the 
shell move in definite orbits. Eac> such electron will establish a 
closed current equal to I  =  — qv (v is the frequency of rotation of the 
electron in the orbit, and q its charge). The magnetic moment of 
the current is M =  IS  =  —qvS (S is the area of the orbit). Since 
S =  nr2 and v =  u/(2nr) (u is the linear velocity of the electron 
in the orbit), it follows that

The magnetic moment of the electron which is due to its motion 
around the nucleus is termed orbital magnetic moment. We shall 
denote it by pz. This moment is perpendicular to the plane of the 
orbit as is required by the right-hand screw rule (Figure 7.9).

The orbital angular momentum of the electron is

where m is the electron mass. It is opposite to p*. Comparing (7.14) 
and (7.15), we find

M =  pi =  —vqrl 2 (7.14)

P i  =  mvr (7.15)

t o = — £ rP‘ (7.16)
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The ratio

<7-17)
is termed the gyromagnetic ratio.

As required by quantum mechanics, pz and its projection p iH on

Figure 7.9 Orbital magnetic 
moment p, and orbital angular 
momentum px of an electron.

the direction of the magnetic field H can assume^only discrete 
values, namely

Pi =  h V l( l +  1) (7.18)
P l H  =  mfi (7-19)

where I is the orbital quantum number, which can assume only the 
following values:

1 =  0,1, 2, ..., n (7.18')
n values in all (n is the principal quantum number);

mx is the magnetic quantum number, which can assume only the 
following values:

mx =  —I, — (I — 1), ..., 0, ..., +  I (7.19')
21 -f 1 values in all.

Because of that the magnetic moment |iz and its projection \ilH 
on the direction of H may assume only the following'discrete values:

b VW +T) (7.20)
Hih= — (7.21)

Hb= - ^ -  =  9.27 x 10-24A-m*
where

(7.22)



2 3 4 Solid Sfate Physics

is the Bohr magneton. It is the “quantum” of the magnetic moment 
and is accepted as a unit for measuring magnetic moments of atomic 
systems.

In a complex atom whose electron shell is made up of many elect­
rons, the total orbital magnetic moment is found by adding up the 
moments of individual electrons in compliance with the rules of 
space quantization. The moment of closed electron shells is zero 
By force of this only the atoms with partially filled shells can have 
a nonzero orbital magnetic moment. But even in the latter case 
should the partially filled shell lie close to the external shell and 
should the interaction of the atoms in the solid state be strong, the 
magnetic moments of the partially filled shell would be “frozen in”: 
their orientation in an external field would be so impaired that they 
would take practically no part in the magnetization of the body. 
For instance, such is the behaviour of orbital magnetic moments of 
the electrons of the partially filled 3d shell of the elements belonging 
to the iron group.

The spin magnetic moment of an atom. Apart from the orbital 
angular momentum the electron has an intrinsic angular momentum 
p s termed spin. It is known from quantum mechanics that

Pt =  ymn (7.23)
and that the projection of the spin on the direction of the field H may 
assume only the following values:

Psh=± ^/2  (7.24)
There is an intrinsic magnetic moment \is connected with the 

intrinsic electron angular momentum whose value was first experi­
mentally determined by Otto Stern and Walther Gerlach. Their 
experiments demonstrated that the projection \isH is numerically 
equal to the Bohr magneton:

(**» =  ±Hb= =  PsH (7.25)
(the minus sign reflects the negative nature of the electron charge). 
The gyromagnetic ratio for the intrinsic moments of the electron is

yi VsH
Psffi

JL
m (7.26)

It is twice as large as yt for the orbital moments.
In atoms containing a large number of electrons p s should be added 

up like vectors with account taken of the rules of space quantization. 
The total spin moment of closed shells is zero, the same as the orbit­
al moment. Table 7.2 shows by way of an example the data on the 
spin configuration of the 3d shell of free atoms of the elements of 
the iron group.
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Table 7.2

Sc Ti V Cr Mn Fe Co Ni

Total 1 2 3 5  5 4 3 2
■pi" i it ju mu tiiti ituw itmu ittutu

The spins are least compensated in the chromium and manganese 
atoms and, correspondingly, they have the maximum total spin 
moment. However, such orientation of the spins is not usually re­
tained in the solid state and because of that the total atomic spin 
moment in the solid is different. For instance, in the iron lattice 
the average number of Bohr magnetons per atom is not 4 but only 
2.3; in chromium it is 0.4, and in a-manganese it is 0.5.

Magnetic moments of nucleus. Atomic nuclei too have a spin and 
a magnetic moment connected with it. The order of magnitude of 
the nuclear spin is the same as that of the electron. Since the nuclear 
mass is some 103 times greater than the electron mass the nuclear 
magnetic moment, in compliance with (7.25), is three orders of mag­
nitude less than the electron magnetic moment. Therefore, as a first 
approximation, the effect [of nuclear magnetic moments on the 
magnetic properties of bodies can be neglected. This does not 
mean that those moments do not play any role at all. In some 
phenomena not discussed in this book that role may be quite 
important.

The total magnetic moment of an atom. The total magnetic mo­
ment of the electron shell of the atom is determined as follows. 
Using the rules of space quantization, one finds the total orbital 
angular momentum: PL =  SiPn* where p ti is the orbital angular 
momentum of the iih electron. The numerical value of PL is deter­
mined by the quantum number L

PL =  hVL(L +  i) (7.27)
The number L may be any integer between the maximum and the 
minimum values of the algebraic sum of the orbital quantum 
numbers lt of individual electrons. Next one finds the total atomic 
spin: P s =  where p si is the spin of the ith electron. The
numerical value of P s is determined by the quantum number S:

P s =  %V S{S +T) (7.28)
The number S may assume values lying in the interval between the 
maximum and the minimum values of the algebraic sum 2  isi °f 
spin quantum numbers of the individual electrons, the difference 
between successive values of S being unity.
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Finally, one finds the total atomic momentum Pj  equal to the 
vector sum of PB and Ps, that is P j =  Pj, +  Ps. The numerical 
value of Pj is determined by the intrinsic quantum number /.

P j =  hY J{J +  1) (7.29)
which may assume the following set of values:

J =  L -j- 5, L S — 1, L — 5, if L 5
J =  S + L ,  S + L  -  1, 5 -  L, if 5 >  L (7.30)

The only allowed orientations of Pj  in an external field are such 
that its projections on the direction of the field are multiples of h:

P jh  =  (7.31)
where rrij is the magnetic quantum number equal to

m j =  - J , - (J  -  1), 0, 1, 2, J (7.32)
?/ +  1 values in all.

The atomic magnetic moment corresponding to the total momen­
tum P j  is

M j =  +  (7.33)
with projections on the direction of an external field H equal to

M jh =  — (7.34)
where

, J  (J +  l) +  iS (tS +  1) — L (L-j-'l) 
8 ^  2 / ( /+ l) (7.35)

is the Lande factor, or magnetic splitting factor which takes account 
of the difference in gyromagnetic ratios of the orbital and the spin 
moments making up the total atomic magnetic moment. For L = 0, 
that is in the case of a purely spin magnetism, g =  2; for 5 =  0, 
that is, in the case of a purely orbital magnetism, g =  1.

Often the term atomic magnetic moment is taken to mean not 
(7.33) but the maximum value of the projection MJH. For instance, 
the magnetic moment of a hydrogen atom in the ground state (L =  
= 0, 5 =  1/2, g =  2) characterized by J =  1/2 is taken to be equal 
to p,B; for a free iron atom with a “frozen in” orbital magnetic moment 
J =  S =  2, g =  2, and Ma = 4|iB-

All atoms and ions with closed shells have 5 =  0, L =  0, and J =  0. 
Therefore the magnetic moments of such atoms and ions are zero. 
Paramagnetism owes its existence to the presence in an atom of 
partially filled shells. According to the Pauli exclusion principle 
there may not be more than two electrons with opposite spins in one 
state. The total spin moment of those electrons is zero. Such electrons 
are termed paired. If an atom or an ion contains an odd [number
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of electrons, one of them will be unpaired and the atom will have 
a permanent magnetic moment. If the atom contains an even num­
ber of electrons, two cases are possible: either all electrons are 
paired and the total spin moment is zero or two or more electrons are 
unpaired and the atom has a permanent magnetic moment. For 
instance, H, K, Na, Ag have odd numbers of electrons, one of them

Figure 7.10 Schematic representation 
of atomic magnetic moments in 
paramagnetic (a), ferromagnetic (b), 
antiferromagnetic (c), 
and ferrimagnetic (d) materials.

unpaired; Be, C, He, Mg contain even numbers of electrons, all of 
them paired. Oxygen also contains an even number of electrons, but 
two of them are unpaired.

Magnetic moments of many molecules are zero because only some 
of them contain unpaired electrons. First of all these are the free 
radicals, which play an exceptionally important part in many 
chemical reactions. As examples of such radicals are free hydroxyl 
(OH), free methyl (CH3), and free ethyl (C.:H5). The presence #of 
unpaired electrons in molecules and in free radicals makes them 
magnetic.

Classification of magnetic materials. When the orbital and the 
spin moments are added up, a complete compensation may take 
place and then the total atomic moment will be zero. If such a com­
pensation does not take place, the atom will have a permanent mag­
netic moment. Accordingly, the magnetic properties of bodies will 
be different.

Materials whose atoms have no permanent magnetic moments are 
diamagnetic. Materials whose atoms have a permanent magnetic 
moment may be either paramagnetic ferromagnetic antiferromag­
netic, or ferrimagnetic. Namely, if the interaction between the at­
omic magnetic moments is zero or very weak, the material will be

/ \ ^ /  
M i l  

I 1

<a)

(b)

(c)

J ( d )
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paramagnetic (Figure 7.10(a)); if the neighbouring magnetic moments 
tend to align themselves parallel to one another, the material will 
be ferromagnetic (Figure 7.10(b)); if the neighbouring magnetic 
moments tend to align themselves antiparallel to one another, the 
material will be antiferromagnetic (Figure 7.10(c)); finally, if the 
neighbouring magnetic moments tend to align themselves antiparal­
lel to one another but their magnitude is not the same, then the 
material will be ferrimagnetic (Figure 7.10(d)).

§ 66 Origin of diamagnetism
The cause of diamagnetism is a change in the orbital motion-of-the 
electrons acted. uj3on__by am~external magnetic field. It is common to air materials but is often overshadowed by strong para- and ferro­
magnetism. In its pure form diamagnetism is displayed by materials 
whose total atomic magnetic moment is zero.

Figure 7.11 Effect of magnetic field on orbital motion of an electron: 
(a)—field H is perpendicular to orbit plane; (b)—orbit precession 
in magnetic field.

(a)

Precession of electron "orbits” in a magnetic field. Consider the 
motion of an electron in an orbit of radius r (Figure 7.11(a)). In the 
absence of field H the centripetal force applied to the electron is 
^cp — rrwl/r =  (v0 is the linear and co0 the angular velocity
of the electron’s motion). When external field H perpendicular to 
the plane of the orbit is applied, the electron is acted upon by the 
Lorentz force =  qv0B$ directed along the radius of the orbit
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(B0 is the field’s induction). The resultant centripetal force will be 
F =  ̂  cp +  F Lorentz 0r =  m(alr +  9“orS0

It follows that
mr (co2 — coj) =  mr (to — (o0) (co +  co0) » 2mra)0(oL = <7co0rZ?0 (7.36)

where
coL =  o>— 0̂)0 =  ̂ - 50 =  i ( i o f f  (7.37)

is called the Larmor angular frequency.
Thus, a magnetic field changes the angular frequency of an orbit- 

ing electron. It may be seen from (7.37) that this change is the same 
for all electrons no matter what the radius of their orbits and the 
linear velocity of their motion are. The direction of col coincides 
with that of B0.

Generally, when H is not perpendicular to the plane of the orbit> 
its effect is to excite precession of the orbit around the direction of 
the field (Figure 7.11(b)): the perpendicular pt to the plane of the 
orbit describes a cone around H. Calculations show that the angular 
velocity of such a precession is expressed by formula (7.37).

Induced magnetic moment of an atom. Magnetic susceptibility of 
diamagnetics. The precession of the electron orbit results in an 
additional motion of the electron around field H. This motion is 
superimposed on its orbital motion. The magnetic action of this 
additional motion is equivalent to that of a closed current

A ,----(7.38)

where vl is the precession frequency related to the angular frequency 
by the expression col =  2kvl . The minus appears because of the 
negative charge of the electron.

The magnetic moment of the elementary current AI is
4^ =  4 I S = - £ L b , (7.39,

where S is the area bounded by the path of the electron precessing 
around field H. Calculations show that S =  2jir2/3, where r2 is 
the mean square of the electron’s distance from the nucleus. There­
fore

A|i = q*r2 
6m B0 = q2r2

6m \i0H (7.40)

It follows from formula (7.40) that in a magnetic field every elect­
ron acquires an additional so-called induced magnetic moment direct­
ed against //. The appearance of this moment is the cause of the
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magnetization of the body in the direction opposite to that of the 
magnetic field, which is characteristic of diamagnetics.

The magnetic moment of an atom containing Z electrons is found 
by adding up the moments of individual electrons:

z
AM=- S S F?i

where r2 is the mean square distance of the ith electron from the 
nucleus. The sum of r\ may be replaced by the product Za2, where 
a2 is the mean square distance of all the electrons from the nucleus. 
Then

AM = Za2q2 D ‘“6̂ * o (7.42)

Multiplying (7.42) by the number of atoms per unit volume, n, 
we obtain the magnetization Jm:

Jw = nAM = Zq2na2 D _
1

Zq2na2
6m H0H (7.43)

The magnetic susceptibility is
X =  ̂  =  (7.44)H 6m v '

Assuming that a « 10~10 m and n & 5 X 10~28 m~3, we obtain 
10”6Z. This is in good agreement with the data of Table 7.1. 

Moreover, from (7.44) it follows that magnetic susceptibility of 
diamagnetics is independent both of temperature and of magnetic 
field intensity H and rises in proportion to the atomic number of 
the element, Z, which is in full agreement with experiment.

§ 67 Origin of paramagnetism
Langevin’s classical theory of paramagnetism. The classical theory 
of paramagnetism developed by Paul Langevin is based on the 
idea that the atoms of paramagnetic materials have a permanent 
magnetic moment M, that is, they constitute permanent magnetic 
dipoles and that the interaction between these dipoles is negligible. 
The energy of such a dipole in a magnetic field H is

Um =  — M|no/7cos0 (7.45)
where 0 is the angle between M and H (Figure 7.12(a)),

The minimum of Um corresponds to 0 =  0. Therefore all the 
dipoles tend to orient themselves in the direction of the external
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field, this being hampered by thermal motion. The total magnetic 
moment of the material is made up of the projections of the magnetic 
moments of the individual atoms on the direction of H. Since the 
magnitude of those projections is MH = M cos 0, the problem of 
the quantitative calculation of the magnetization of the material 
is reduced to the calculation of the average value of MH that corre­
sponds to the state of equilibrium between the orientational effect 
of the field and the disorientational effect of thermal motion. Just

Figure 7.12 Explaining classical theory of paramagnetism: (a)—magnetic 
moment M and its projection MH on magnetic field H; (b)—calculating 
total magnetic moment of a paramagnetic; (c)—plot of the Langevin 
function.

H

this problem was solved by Langevin with the aid of methods of clas­
sical statistics. He supposed that the orientation of M with respect 
to H can be arbitrary and that accordingly the angle 0 can assume 
all values.

The probability for a dipole to align itself at an angle in the 
interval (0, 0 +  d0) to H (that is inside the solid angle see Fig­
ure 7.12(b)) is determined by the Boltzmann distribution function:

W =  C1e~Vto,hBTdSi = Ci exp (u°M̂ os6) dQ

where 6\ is a normalization constant.
It may be seen from Figure 7.12(b) that dQ =  4ji sin 0 d0; there­

fore
ty = Cexp(^ rcos9) Sin9d9

where C is a new constant.
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The average value of Mn is
n
J cos 0 exp c o s  Q/kBT) sin 0 dQ

M H =  M c o s Q  =  M ± - li--------------------------- (7.46)
J exp (ii0MH cos Q/kBT) sin 0 dQ 
o

If those integrals are evaluated, the result is

j) = M ( c o th P j ) (7.47)

where
a __M \ i0H
P kBT (7.48)

The magnetization is
/m =  nMH =  nM  ̂coth p — j- j (7.49)

where n is the number of atoms per unit volume, and the magnetic 
susceptibility is

X =  -^L =  ̂ -  (cothp —y )  (7.50)

Since the atomic dipoles acted upon by a field align themselves 
in its direction, such will be the direction of the magnetization of 
the body as a whole, which is characteristic of paramagnetics.

Let us expand coth p in a power series: coth p =  P-1 -f p/3 — 
— p2/45 +  .... For p 1 we can limit ourselves with the first
two terms of the expansion. Then

nM$ _ nM2 rj A \i0nM2
~ F “ ’Sk^T^0" '  ^ =  3 kBT (7-51)

In full agreement with experiment Jm is directly proportional 
to H and inversely proportional to T. The second of the formulae 
(7.51) expresses the Curie law: % = C/T. The Curie constant C =  
=  nM2\i0/(3kB).

For atoms M « \iB; then for H « 106 A/m we see that MH\i0 « 
« 10~23 J and for T =  300 K we see that kBT »3 X 10~21 J. 
Hence the condition p 1 is almost always satisfied. Only in very 
strong fields and at very low temperatures is p 1 and the direct 
proportionality between Jm and H is no longer maintained. In 
the limiting process, as p ->■ oo, coth p~> 1 and the magnetization 
becomes saturated, the corresponding maximum value being

/ s =  nM (7.52)
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Magnetic saturation involves the alignment of magnetic moments 
of all atoms in the direction of the field.

The function L (P) =  coth p — 1/p is termed the Langevin junc­
tion. Its plot is shown in Figure 7.12(c). For small P’s a good approx­
imation for the plot is the segment of the straight line OA; as p oo 
the function L(P) 1.

Fundamentals of quantum theory of paramagnetism. The classical 
theory is incapable of providing a consistent explanation of the 
magnetic phenomena as the result of the motion of electric charges. 
The existence of molecular currents necessarily involves the acknowl­
edgment of the fact of the stability of electronic motion in atoms, 
a fact unacceptable for classical physics. The assumption that all 
orientations of magnetic moments with respect to H are possible, 
which is the basis of Langevin’s classical theory, is also wrong. Those 
difficulties have, on the whole, been overcome by the quantum theory 
of paramagnetism. Let’s consider briefly the essence of this theory.

There are 2J +  1 ways in which the atomic magnetic moment 
M j may align itself in a magnetic field (J is the intrinsic quantum 
number). The probability of each such orientation is determined 
by the Boltzmann distribution W =  (M JH is
the projection of M j on H). The average value of M JH will be*

■y I P-0M jhH \__ 2j MJH exp [ k^T j
---------------  (7.53>

Vi { NMjhH \
Z exP \ - k ^ - )-J

The difference between (7.53) and the classical expression (7.46) 
is that integration is replaced by summation over the discrete direc­
tions in which the vector Mj may be aligned. Evaluation !of the sums 
in (7.53) yields the following result:

M jH — g J MnB j (P)
where

R_/gpB ^o 
p kBT

Bj (P) =  ̂  coth P — £r coth ~2J
Function B j (P) is termed the Brillouin function.

The magnetization and the magnetic susceptibility are equal to
Jm =  MJHn =  ngJ\iBBj(f>) (7.57)
% =  P) (7.58)

(7.54)

(7.55)

(7.56)

16*
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For p <  1, jBj(P) « P(/ +  l)/(3J) and
T n g ^ J  (J+i) fXo/7 ______ (•/■ 4-1) M'bH'O tn
Jm~  3 kBT ' 3 kBT (<.0*)

It follows from (7.59) that for |3 1 the quantum theory results
in a linear dependence of Jm on H and in an inverse dependence of 
Jm and % on T7, which agrees with experiment. In strong fields and 
at very low temperatures |3 oo,

c° th  P “*■ 1 > c o t h ^ - * l ,
and the magnetization attains the saturation value

Js =  ngJ\iB (7.60)
Materials used for experimental tests of the theory of paramagne­

tism are the solutions and crystalline hydrates of salts, which con­
tain ions with nonzero magnetic moment. Such are, for instance, the

Figure 7.13 Calculating paramagnetism of free electrons.

(a) (b) (C)

ions of the elements of the groups of iron and rare earths. 
In solutions and in crystalline hydrates the ions are so far apart that 
their interaction may be neglected, which is a necessary condition 
for paramagnetism. Experimental investigations of such compounds 
have produced results in good agreement with the theory.

Paramagnetism of electron gas. According to (7.51) and (7.59), 
paramagnetic susceptibility is inversely proportional to temperature. 
However, some metals have been discovered to exhibit paramag­
netism independent of temperature. It was Wolfgang Pauli who 
demonstrated that this is due to the paramagnetism of free electrons 
that constitute the electron gas.

Figure 7.13(a) shows the conduction band of a metal. It is schemat­
ically represented in the form of two half-bands containing electrons 
with opposite spin moments \is =  |ulb- When H =  0, the number of 
electrons in both half-bands is equal and the total magnetic moment
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of the electron gas is zero. When the field H is applied, every electron 
of the left half-band acquires an additional energy U'm =  — p-oM'B# 
and every electron of the right half-band an energy U”m =  |x0|iBH. 
The result is the appearance of a difference between the quasi-Fermi 
levels E F — Ef =  2[i0pB#  (Figure 7.13(b)) for the electrons of the 
right and the left half-bands which is equalized by means of spin- 
flip of some of the electrons of the right half-band and their transi­
tion to the left half-band (Figure 7.13(c)). Since all the internal 
levels in the half-bands are occupied, the only electrons whose spins 
can be reversed are those occupying levels in the zone where the 
Fermi distribution is fuzzy (see Figure 5.6(b)) and where there are 
vacant levels. The number of such electrons, according to (3.43)), is

(7.61)

where n is the electron gas concentration.
Of this number An' =  C exp (|lio^b#/&b^) electrons will have 

their magnetic moments oriented in the direction of H and An" =  
=  C exp (—(lio^b^/AbT1) against H (C is a constant). The magnetic 
moment per unit volume of a metal due to spin-flip is

Jme = (An' — An") p,B = C>B (ep — e“p)
where

P =  \jLQ\iBHtkBT
Since An =  An' -f An" =  C (e$ +  e~V), it follows that C =  

=  An (e$ +  ^“P)-1. Substituting this into the expression for /me, we 
find

J  me =  -p- =  t a n h  p

For P <  1, tanh P ^  P and Jme =  An\i%\\0H/kBT. Substituting 
An from (7.61), we obtain

Jmet t n ^ i i 0H (7.62)

The paramagnetic susceptibility of the electron gas is

Xe~n Ef
A more accurate calculation yields

Ej?

(7.63)

(7.64)
It may be seen from (7.64) that the magnetic susceptibility of the 

electron gas should be independent of temperature, which is what 
is observed in practice.
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Production of low temperatures using the method of adiabatic 
demagnetization of paramagnetic samples. The atoms of paramagnet­
ic materials possess a permanent magnetic moment. In the absence 
of an external field as a result of thermal motion of the atoms the 
orientation of their magnetic moments is almost completely random. 
The quantitative measure of this disorder is the entropy S , which 
in this case is termed magnetic entropy Sm. In compliance with the 
Boltzmann principle

SM =  kBln Wm (7.65)
where Wm is the thermodynamic probability, which in this case 
is equal to the number of ways the n atoms of the paramagnetic 
sample can be distributed among the 2/ +  1 sublevels into which 
every atomic level splits in a magnetic field. Its value may be obtai­
ned from the expression

Wu =  {2J +  \ r  (7.66)
Substituting (7.66) into (7.65) we obtain

Su =  kBn In (2J +  1) (7.67)
When the magnetic field is applied and its intensity increased, 

an ever increasing number of magnetic moments is oriented in the 
direction of the field, the result being a reduction in the magnetic 
entropy. When the state of magnetic saturation is reached, the grea­
test possible order in the arrangement of magnetic moments is 
established and SM vanishes.

Hence the process of magnetization of a paramagnetic sample up 
to saturation is accompanied by the decrease in its entropy by the 
amount

AS = Sm =  kBn In (2J +  1) (7.68)
If the magnetization is performed at a constant temperature T7, 
the decrease in S by the amount AS results in the generation of an 
amount of heat equal to AQ = TAS. This heat is transmitted from 
the sample to the surroundings, usually to liquid helium. After 
equilibrium has been established the helium is removed and the 
sample is left thermally insulated. In such conditions it is slowly 
adiabatically demagnetized with the result that its entropy again 
rises by AS. The rise in entropy requires heat, which can be supplied 
only by the thermal vibrations of the lattice since the sample is 
thermally insulated from the surroundings. Because of that its tem­
perature drops. Using this method it was possible to obtain tempera­
tures below 0.001 K. The possibility of obtaining still lower tempera­
tures is limited mainly by the fact that already at H =  0 the atomic 
energy levels are to some extent split into sublevels because of the 
interaction of the magnetic moments with each other and with the 
nucleus.
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§ 68 Origin of ferromagnetism
Elementary carriers of ferromagnetism. A magnetized body acquires 
a magnetic moment M made up of regularly oriented atomic magnet­
ic moments and' an angular momentum P made up of regularly 
oriented atomic angular momenta. According to (7.17) and (7.26) 
the ratio MIP must be equal to q!2m if the magnetization is due to 
orbital magnetic moments of the atoms and to qlm if it is due to 
spin moments.

The appearance of a magnetic moment in the course of magnetiza­
tion was first established in experiments of A. Einstein and W. J.

Figure 7.14 Experiments on the nature of ferromagnetism:
(a)—the experiment of Einstein and de Haas; (b)—experiment of Barnett; 
(c)—experiment of Ioffe and Kapitza.

de Haas and became known as the Einstein-de Haas effect. In those 
experiments a small iron rod 1 suspended on a thin elastic thread 
2 was placed inside a solenoid 3 (Figure 7.14(a)). In the course of 
magnetization the rod turned and twisted the thread. The direction 
of rotation of the rod changed with the change in the direction of 
magnetization. The angle of rotation was measured with the aid of 
mirror 4 fixed on the rod which reflected a beam of light on scale 
5. The experiment made it possible to determine M and P and to 
find the gyromagnetic ratio y =  MIP.

S. J. Barnett made an experiment which was the reverse of the 
Einstein-de Haas experiment: he observed the magnetization of a 
quickly rotating iron rod. Such magnetization is caused by the 
tendency of electrons—thought of as tops possessing angular mo-
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menta—to arrange their axes of rotation (spins) in the direction of 
the rotation axis of the body (Figure 7.14(b)). In another experiment 
the Soviet physicists A. F. Ioffe and P. L. Kapitza quickly heated 
a magnetized rod to a temperature above the Curie point. Before 
heating the orientation of the “electron tops” was ordered (Fig. 7.14(c)) 
and their total angular momentum was nonzero. When heated 
to a temperature above the Curie point the “tops” changed their 
orientation to chaotic (Figure 7.14(d)) and their total angular momen­
tum became zero. Because of that the demagnetized rod as a whole 
acquired a rotational momentum that could be measured in the 
experiment. Measuring in addition the magnetic moment of the 
magnetized rod one could find the gyromagnetic ratio y =  MIP.

The experiments demonstrated that the gyromagnetic ratio for 
ferromagnetic materials is MIP — — qlm, that is, equal to the 
gyromagnetic ratio for the intrinsic moments of the electron. This 
proved that ferromagnetism is due not to orbital but to spin magnetic 
moments of electrons, which is consistent with the electronic structu­
re of the atoms of elements that exhibit ferromagnetism. Since the 
magnetic moments of closed shells are zero and since the outer valen­
ce electrons are collectivized in the process of formation of the metal­
lic state, ferromagnetism must be a property solely of the transitio­
nal elements, which have incomplete inner shells. Those elements 
include the transitional metals of the iron group, which have an imcom- 
plete 3d shell, and rare earth elements with an incomplete 4/ shell. 
Since, on the other hand, the orbital magnetic moments of the 
electrons of the 3d shell are “frozen in” and their contribution to the 
magnetic properties is negligible, ferromagnetism of the elements 
belonging to those groups can be due only to the atomic spin moments, 
which in this case are quite large (Table 7.2). This hypothesis was 
first expressed by the Russian scientist B. Rozing in 1892 and was 
exploited later by the French physicist Pierre Weiss. The latter 
assumed that there is an intense molecular field H in a ferromagnetic 
proportional to the saturation magnetization J s:

H =  XJ8 (7.69)
where X is termed the molecular field constant. This field is responsible 
for the spontaneous magnetization of a ferromagnetic.

The introduction of a molecular field made it possible to explain 
a wide range of phenomena observed in ferromagnetism. However, 
the nature of the field itself remained a mystery for a long time. 
At first it was supposed that the origin of forces which orient the 
spin moments is purely magnetic, that they appear as a result of an 
ordinary interaction of spin magnetic moments (spin-spin interaction). 
The energy of this interaction is of the order of t/m ~  |xB/a3, where 
a is the interatomic distance in the lattice of the ferromagnetic. 
Substituting p,B =  9.27 X 10~24 A-m2 and a « 10“10 m, we obtain
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Um » 10“23 J. This is about two^ orders of magnitude less than 
the room temperature thermal energy of a lattice atom which disturbs 
the orderly spin arrangement. It follows then that the magnetic 
spin interaction is incapable of effecting their parallel orientation 
characteristic of the ferromagnetics at temperatures below the Curie 
point and that the origin of the molecular field which effects such 
parallel spin orientation should be nonmagnetic. Subsequently this 
conclusion was proved by direct experiments of Ya. Dorfman.

The role of exchange interaction in ferromagnetism. In 1928 Frenkel 
made the assumption that the origin of the forces which are respon­
sible for the definite mutual orientation of atomic magnetic moments 
is electrostatic. They are the result of exchange interaction of the 
electrons of inner incomplete atomic shells. We have already discussed 
this type of interaction in dealing with the nature of the covalent 
bond (see Section 3). The exchange interaction involves a change 
in the energy of the system. This is easily seen from the example 
of the simplest system of two hydrogen atoms (see Figure 1.5). 
According to (1.11) and (1.12) the energy of such a system is

U =  2Eo +  % 0 2 (7.70)
whereto is the energy of two noninteracting hydrogen atoms, ifyis 
the energy of Coulomb interaction of electric charges making up 
the atoms, S is the overlap integral whose value lies in the range 
0 ^ 5  ̂ 1 , and A is the exchange energy (in Chapter 5 we called 
it the exchange integral).

Calculation shows that A can be expressed by the following relation
A = - J ( 3 r Sj) (7.71)

where S* and S7- are the total spins of the interacting atoms, and 
J  is the exchange integral (it is a measure of the probability of 
electron 1 going over to atom B and of electron 2 going over to 
atom A), In the case of two interacting hydrogen atoms

J  =  j  1)50 (1> ̂  (2> (2) *6 (!) d v i dV>
(7.72)

Here q2lr and q2/r12 are the interaction energies of the nuclei between 
themselves and of the electrons between themselves, respectively; 
—Q2/rbi and —g2/ra2 are the energies of attraction of electron 1 to 
nucleus b and of electron 2 to nucleus a; \|;a(l) and x|)b(2) are the 
wave functions that describe the motion of electrons 1 and 2 around 
nuclei a and fo, respectively; \|)a(2) and ^( l)  are the wave functions 
that describe the probabilities for electrons 2 and 1 to he close to 
nuclei a and b, respectively, that is, the probabilities of the atoms 
A and B exchanging electrons; and d,V1 and dV2 are volume ele­
ments.
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It follows from (7.72) that both positive and negative terms enter 
the exchange integral. Therefore the sign of the exchange integral 
may be either positive or negative. This is determined by the part 
played by the positive and negative terms of the exchange integral, 
which in its turn depends on the relation of the dimensions of the 
electron shells taking part in the formation of the exchange bond 
and on the interatomic distance.

The sign of the exchange integral determines what orientation 
of the spins of electrons taking part in the exchange bond is advanta-

Figure 7.15 Spontaneous 
magnetization of a ferromagnetic. 
Exchange forces cause parallel 
orientation of the spins of electrons 
belonging to inner partially filled 
shells.

geous—the parallel or the antiparallel. It follows from (7.71) that 
when the sign of the exchange integral is negative (J <0), the 
exchange energy A will be negative and, consequently, the system’s 
energy U will be less than the energy 2E0 of the individual atoms 
[see (7.70)] if the spins S* and S7- of the electrons taking part in the 
exchange bond are antiparallel: S* Sj. As has been mentioned
in Chapter 1 this case corresponds to the formation of a chemical 
bond between the atoms and the creation of a molecule [the sym­
metrical state described by (1.11)]; below we shall see that this is 
also a necessary condition for antiferromagnetism.

When the sign of the exchange integral is positive (/ >  0), the 
exchange energy A will be negative and the energy of the system as 
a whole will be less than the energy of the individual atoms if the 
spins S,- and S;- of the electrons taking part in the exchange bond are 
parallel: S* || Sj

Hence the parallel orientation of the spins of neighbouring atoms 
may too be advantageous from the energy point of view if their 
exchange integral is negative. This is the necessary condition for 
ferromagnetism since the parallel arrangement of spins and, conse­
quently, of spin magnetic moments results in spontaneous magneti­
zation, which is characteristic of ferromagnetics (see Figure 7.15).
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Figure 7.16 shows the dependence of the exchange integral J 
on the ratio of the lattice constant a to the diameter d of the 3d 
shell of atoms of the iron group transition metals. It may be seen 
from Figure 7.16 that at aid >  1.5 the exchange integral is positive; 
at aid <1.5 it turns negative, its absolute value increasing with 
the decrease in a!d. It follows then that of all the transition metals 
only iron, cobalt, and nickel should be ferromagnetic, which is 
indeed the case. Manganese and other elements of the group, for 
which a!d <1.5, are not ferromagnetics. Should it, however, be 
possible to increase somewhat the lattice constant of manganese

Figure 7.16 Dependence of exchange 
integral on the ratio of the lattice 
parameter to the diameter of the 
inner partially filled 3d shell 
in transition elements of the iron 
group.

so that the ratio aid would approach 1.5, one could expect manganese 
to become a ferromagnetic.

Experiments support this view. For instance, inclusion of small 
amounts of nitrogen into the manganese lattice increases its lattice 
parameter and results in the appearance of ferromagnetism. Ferro­
magnetic properties are also exhibited by the Mn-Cu-Al alloys 
(Heusler alloys) and by the compounds like MnSb and MnBi in 
which the distances between the manganese atoms are greater than 
in pure manganese crystals.

Hence the necessary and adequate conditions for ferromagnetism 
are the existence of incomplete internal atomic shells and the posi­
tive sign of the exchange integral which cause the parallel orienta­
tion of the spins.

Domain structure of ferromagnetic substances. Let us isolate 
a region A inside a ferromagnetic crystal (Figure 7.17(a)). Suppose 
that exchange forces establish a parallel orientation of spins of all 
the electrons of incomplete atomic shells, as shown in Figure 7.15. 
Region A will be magnetized to saturation. What will be the equi­
librium spin orientation in the region B below region .4? If the spins 
in region B are oriented as in A, there are two magnets with like 
poles in contact with each other (Figure 7.17(b)). Such a state is 
unstable since it is characterized by the maximum energy of magnet­
ic interaction. The stable state will be that in which the magnetic 
fields of the contacting regions are joined together, that is, a state 
in which the magnetization of the neighbouring regions of the crys-
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Figure 7.17 Ferromagnetic divided into domains (regions of spontaneous 
magnetization).

(a) lb) ( c )

Figure 7.18 Structure of boundary 
layer separating two domains 
(“Bloch walls”); N denotes poles 
on the sample’s surface.

tal is opposite (Figure 7.17(c)). Calculations show that as long as 
the width of region A does not exceed several interatomic distances, 
the dominant factor is the first—the orientation action of the exchange 
forces—whose effect is to magnetize the layers of region B in con­
tact with region A in the same direction as that of region A . As the 
area of A widens, the importance of the second factor (the increase 
in the energy of magnetic interaction) grows and finally it becomes 
predominant: the width of region A reaches a critical value and 
the magnetization of the neighbouring region B from now on pro­
ceeds in the opposite direction. The critical width of the region of 
spontaneous magnetization is dependent on many factors, but usual­
ly it does not exceed several micrometers.

Thus in the absence of an external field a ferromagnetic crystal 
should consist of a great number of separate and rather small regions 
magnetized to saturation. Those regions have received the name of 
regions of spontaneous magnetization, or domains. Domains are sepa­
rated by layers in which the orientation of the spins changes from 
that of one domain to that of the other (Figure 7.18). Such transition­
al layers between domains became known as Bloch walls. In iron 
their thickness is about 300 lattice constants (some 1000 A). Figure 
7.19 shows the domain pattern of a ferromagnetic predicted theoret­
ically (a) and a photograph of the domain structure of an edge of 
a ferrosilicon crystal (b); arrows indicate the directions of spontaneous 
magnetization in the neighbouring domains.
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Qualitative analysis of the magnetization curve. Spontaneous 

magnetization takes place in directions of easy magnetization. In the 
absence of an external field the mutual orientation of the domains 
is such that the total magnetic moment of the ferromagnetic as a 
whole is zero (Figure 7.20(a)) since this corresponds to the minimum 
of the system’s free energy. When an external field H is applied, the 
ferromagnetic is magnetized acquiring a nonzero magnetic moment. 
'The nature of the physical phenomena which take place during the 
magnetization of a ferromagnetic is such that the process may be 
subdivided into three stages.

(1) Displacement of domain boundaries. Place the crystal shown 
in Figure 7.20(a) in a magnetic field H. The orientation of the magneti­
zation vector Jm of different domains with respect to H is not the 
same: Jm of the first domain makes the smallest angle with H and 
that of the third domain the largest. When H is increased it becomes 
advantageous from the viewpoint of energy for the most favourably 
oriented domain 1 to grow at the expense of domains 2, 3, and 4 
(Figure 7.20(b)). The mechanism of this growth is the displacement 
of the domain boundaries. For this reason the first magnetization 
stage became known as the displacement process.

The displacement of the boundaries continues until the first domain 
spreads over the entire crystal. Figure 7.21 shows the magnetization 
curve of a single crystal. The displacement process is represented 
on this curve by the section OA. In small H 's magnetization proceeds 
smoothly and is reversible; in strong fields it is a jumpy and an ir­
reversible process leading to the Barkhausen effect.

(2) Rotation. When H is further increased, the spontaneous magne­
tization Jm begins to rotate towards the field (Figure 7.20(c)). The 
magnetization proceeds now at a much slower rate than in the first

Figure 7.19 Domain structure of ferromagnetics: (a)—theoretically 
predicted pattern of a ferromagnetic’s division into domains;
(b)—photograph of an edge of ferrosilicon with decorated domain 
boundaries.
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Figure 7.20 Processes involved in magnetization of a crystal:
(a)—boundaries of four domains into which the crystal has been divided 
(the arrows indicate the direction of vector Jm ); (b)—displacement 
of boundaries and growth of the most favourably oriented domain 1 with 
the increase in the magnetizing field H; (c)—rotation of magnetization 
vector Jm in the direction of H.

Figure 7.21 Magnetization plot of 
a ferromagnetic: OA— section 
corresponding to the process 
of displacement of domain boundaries, 
AB—section corresponding to 
rotation of magnetization vector, 
and BC—section corresponding 
to the paraprocess.

stage and ends when vector Jm concides with H. At this stage the 
magnetization reaches technical saturation (Figure 7.21; section 
AB).

(3) Paraprocess. After technical saturation is reached the magneti­
zation continues to grow with the increase in H although at a drasti­
cally reduced rate. The explanation is that at any temperature other 
than absolute zero not all the spins in the regions of spontaneous 
magnetization are oriented parallel to each other. Because of the 
thermal motion of atoms the orientation of some of the spins is anti­
parallel. The application of a strong magnetic field can effect the 
reorientation of these spins. The spin reorientation corresponding 
to the paraprocess is represented by the section BC.

§ 69 Antiferromagnetism
As was established in the preceding section, when the exchange 
integral is negative, the preferential orientation of the spins of 
neighbouring lattice sites is the antiparallel one. In this case the 
spin arrangement can be also an ordered one, but there will be no
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spontaneous magnetization because the spin moments of the neigh­
bouring lattice sites are antiparallel and compensate one another. 
Figure 7.22(a) shows the magnetic structure of MnO determined 
with the aid of neutron spectroscopy (only the magnetically active 
Mn atoms are shown in the figure). The structure may be regarded 
as a complex one consisting of two sublattices magnetized in oppo-

Figure 7.22 Magnetic structure of antiferromagnetic (a) 
and the temperature dependence of its magnetic susceptibility (b); 
the lattice of an antiferromagnetic (MnO) can be considered as consisting 
of two sublattices whose magnetic moments are antiparallel.

site directions. Such structure can exist only below a certain tempera­
ture termed the anti ferromagnetic Curie point, or the Neel point.

At absolute zero the magnetic moments of the sublattices are mutu­
ally compensated and the total magnetic moment of the antiferro­
magnetic is zero. As the temperature is raised the antiparallel 
arrangement of the spins is gradually disturbed and the magnetiza­
tion of the antiferromagnetic rises; it reaches its maximum at the 
Neel point at which the orderly spin arrangement vanishes altogether 
and the antiferromagnetic turns into a paramagnetic. As the tempera­
ture is raised still higher the magnetization decreases in the same 
way as that of every paramagnetic. Figure 7.22(b) shows the temper­
ature dependence of the magnetic susceptibility of MnO whose Neel 
point is Tn ~  120 K in a field H « 4 X 104 A/m.

§ 70 Ferrimagnetism. Ferrites
The magnetic moments of the sublattices in antiferromagnetics are 
equal in magnitude and opposite in direction with the result that 
they completely compensate one another. However, there are cases
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when the magnitude of the magnetic moments of the sublattices is 
not the same owing, for instance, to the difference in the number or 
in the nature of atoms that make up the sublattices (Figure 7.23(a)). 
This leads to the appearance of a finite difference in magnetic moments 
of the sublattices and to an appropriate spontaneous magnetization 
of the crystal. Such an uncompensated antiferromagnetism is termed 
ferrimagnetism.

The external behaviour of a ferrimagnetic is similar to that of a fer­
romagnetic, but because of the difference in their internal structure 
the temperature dependence of their spontaneous magnetization may 
be quite different. For instance, the magnetization of a ferrimagnetic 
does not necessarily decrease monotonously with the rise in tempera-

Figure 7.23 Schematic diagram of magnetic moments in a ferrimagnetic 
lattice in general (a) and specifically in magnetite Fe0«Fe203 (b).
One of the sublattices is made up of the half of trivalent iron ions, 
the second sublattice being made up of the other half of trivalent iron 
ions and of bivalent ions of iron or of a substitute metal.

ture but can pass through zero even before the Neel point is reached. 
Magnetite Fe0-Fe203 can serve as an example of a ferrimagnetic. 
The negative oxygen ions form a face-centered cubic lattice in which 
there are one bivalent (Fe2+) and two trivalent (Fe3+) iron ions to 
every FeO -Fe203 molecule. The bivalent iron ions may be replaced 
by bivalent ions of other metals, for instance, Mg, Ni, Co, Mn, Cu, 
etc., so that the general formula of materials of this class known as 
ferrites assumes the form MeO *Fe203, where Me stands for a bivalent 
metal. One of the sublattices of the complex ferrite lattice is made 
up of one half of the trivalent iron ions and the other of the other 
half of trivalent iron ions and of bivalent ions of iron or the substitute 
metal. The magnetic moments of the sublattices are antiparallel. 
Therefore the magnetic moments of the trivalent iron ions are mutual-
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ly compensated and the magnetization is due to the magnetic moments 
of the bivalent metal ions (Figure 7.23(b)).

A remarkable property of ferrites is the combination of excellent 
magnetic parameters (high magnetic permeability, small coersive 
force, high saturation magnetization, etc.) with a high electrical 
resistance (of the order of 103 ohm-m). This particular property enabled 
ferrites to revolutionize the field of high and ultra-high frequency 
electronics. It is well known that ordinary low resistivity 
(« 10~3 ohm-m) ferromagnetic materials cannot be used at such 
frequencies because of the extremely high eddy current losses. This was 
the reason why ferrites have occupied a unique position in this field.

Lately ferrites with a high coersive force have been developed. 
They are used to construct permanent magnets capable of competing 
with electromagnets. Ferrites with a rectangular hysteresis loop 
are now widely used as digital storage elements in computers.

§71 Magnetic resonance
The magnetic moment of atoms, ions, and radicals with unpaired 
electrons is determined by relation (7.33). There are 2J +  1 ways 
in which this moment may be aligned in a magnetic field H0, there

Figure 7.24 Splitting of a level 
of an atom with /=3/2 in a magnetic 
field.

being correspondingly 2J +  1 different projections of the moment 
on the direction of the field. The energy corresponding to each such 
projection is

um =  H0MjhH o =  mjg\iQ\iBH 0 (7.73)
Therefore an atomic energy level splits in a magnetic field into 2/ +  
+  1 sublevels (Figure 7.24) the separations between which are

=  gpoHB#o (7.74)
In the state of thermal equilibrium the atoms are distributed 

over those sublevels in accordance with the Boltzmann law:
ni =  C exp ( — g °) , n2 =  C exp ( -  (/~  )

Initial level / -

•3/2
«»*oV*o
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where nx is the number of atoms occupying the level with rrij == J, 
and n2 the level with rrij — J — 1.

To effect transitions of the atoms from the lower to the higher 
sublevels an external electromagnetic field can be used. Spectro­
scopic selection rules allow only of such transitions which result 
in a unit change in the magnetic quantum number:

A rrij =  ± 1 (7.75)
that is, only transitions between adjacent sublevels the energy differ­
ence between which is g (lofisf/o. Such transitions can be excited by 
an electromagnetic field whose energy quanta are

ft© =  (7.76)
Since transitions from the lower to the higher levels require a sup­

ply of energy, an intense absorption of electromagnetic energy will 
set in if condition (7.76) is fulfilled.

Condition (7.76) is the condition for electron paramagnetic reso­
nance (EPR). The resonance frequency, as implied by (7.76), is 
a function of the constant magnetic field intensity //0. At H0 & 
« 5.6 X 105 A/m, vres «2 x 104 MHz, which corresponds to the 
wavelength X « 0.016 m.

A similar phenomenon is the nuclear magnetic resonance (NMR) 
due to the nuclear magnetic moment. For instance, in the case of 
protons the nuclear resonance for H0 =  5.6 X 104 A/m occurs at 
a frequency of vres ^  30 MHz corresponding to a wavelength of 
electromagnetic radiation X ^  10 m.

The first successful experiments on electron paramagnetic reso­
nance were carried out by E. K. Zavoisky in 1944. He measured the 
losses of electromagnetic energy in an electrical circuit caused by 
paramagnetic absorption. In 1945 H. C. Torrey and R. V. Pound 
used Zavoisky’s method for the first successful experiments on the 
nuclear resonance of protons in solid paraffin. That moment marked 
the start of a rapid development of microwave spectroscopy—a formi­
dable branch of physics dealing with the interaction of radiowaves 
with matter.

The magnetic resonance is extremely widely used in different 
fields of science and technology.

The nuclear magnetic resonance is the main and the most accurate 
method for measuring the magnetic moments of atomic nuclei. 
NMR has been helpful in collecting the data on the structure of 
liquids, dielectric crystals, metals, semiconductors, and polymers. 
The first investigations of population inversion of energy levels 
utilized in lasers were carried out with its aid.

The electron paramagnetic resonance makes it possible to study 
particles possessing upnaired electrons and processes in which such 
particles take part. Those particles include the conduction electrons.
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the free and bonded radicals, many atoms and ions. EPR is success­
fully applied in the study of the mechanisms of chemical reactions, 
the radiation effects in matter and in live tissues, the electronic 
state of solids (metals, dielectrics, and semiconductors), and in many 
other important fields of science and technology.

§ 72 Fundamentals of quantum electronics
Stimulated radiation. “Negative” absolute temperatures. The develop­
ment of microwave spectroscopy in recent years led to one of the 
most momentous technical discoveries—the discovery of the field 
quantum electronics based on the ideas first put forward by Soviet

Figure 7.25 Two-level quantum system.

physicists V. A. Fabrikant, N. G. Basov, and A. M. Prokhorov. 
Let us take a look at those ideas.

An external radiation directed at a quantum system causes not 
only the transitions from the lower to the upper levels in which 
the energy is absorbed but also the transitions from the higher to 
the lower levels in which energy is liberated. Such radiation is 
termed stimulated.

Consider the simplest quantum system with only two levels (Fig­
ure 7.25). When N radiation quanta pass through a system, the differ­
ence A in the number of transitions from the lower levels to the 
higher levels and from the higher levels to the lower levels will be 
proportional to the transition probability w identical for both the 
direct and the reverse processes, to the number of quanta N, and 
to the difference in the population of the levels (n2 — fti):

A =  wN(n2 — nx) (7.77)
In conditions of thermal equilibrium the distribution of the 

particles over the levels is described by the Boltzmann law:

nt =  Ce-B'/**T, n2 =  Ce~E'/kBT, J±=exp ( ( 7 . 7 8 )
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Since E2 >  Ex, it follows that n2 <  and because of that reso­
nance absorption exceeds stimulated radiation and the system absorbs 
incident electromagnetic energy eventually transforming it into 
heat.

For stimulated radiation to exceed resonance absorption the ther­
mal equilibrium of the system must be disrupted by raising the 
population of the higher levels above that of the lower levels, that 
is, to make n2 >  nx. Such population is termed population inversion.

Figure 7.26 Level population at various temperatures.
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Quantum states with population inversion may conveniently be 
described with the aid of the concept of negative absolute temperature. 
From (7.78) we have

£2~£i 
&B ln (n2/nl) (7.79)

In equilibrium n2 E2 — E1 >  0, and T >  0. In case of
population inversion n2 >  E2 — Ex >  0, and consequently 
T < 0 . Figure 7.26 shows the occupancy of states at various tempera­
tures. At T =  0 K all the particles occupy the lowest level12 and 
the system’s energy is at its minimum (Emin =  nE^. As the tempera­
ture rises some of the particles go over to the higher level and the 
energy of the system increases. At T =  oo the population of the 
levels is equilized and the system’s energy reaches the maximum 
value it can have in equilibrium [^max =  n {Ex +  E2)!2\. At 
T <  0 K the population of the higher level exceeds that of the 
lower level and because of that the energy of the systems turns out 
to be greater than Z?max. Hence the energy region corresponding to 
negative temperatures lies not below the absolute zero, as would 
appear at the first glance, but above infinite temperature. Should 
such a system be brought in contact with a body whose temperature 
is positive, the heat would be transported from the system to the 
body until a state of thermal equilibrium would be reached.

It should be pointed out that negative temperature is a purely 
quantum effect and may be observed only in systems with a limited 
set of levels.

12 To avoid contradiction with the Pauli exclusion principle E1 and E2 
must be taken to mean narrow energy bands: from Ex to Ex -f dE and from 
E2 to E2 dE.
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One may realize the population inversion in practice, for instance, 
by quickly reversing the direction of a constant magnetic field 
so that the time of reversal would be less than the relaxation time. 
With the field H0 in the initial direction the population of the lower 
level is greater than that of the upper one; when the field is reversed

Figure 7.27 Population inversion in 
a two-level quantum system.

quickly the initial population of the levels remains unchanged but 
with respect to the new field H0 direction it will be populated in­
versely (Figure 7.27).

Principles of operation of masers. Suppose that an external signal 
with the resonant frequency co =  (E2 — Ex)!h is applied to a two- 
level system with a population inversion. This signal will induce

Figure 7.28 Excitation of paramagnetic amplifier (a) and radiation 
of amplified signal (b).

the transitions of the particles: E2-> Ex and E1-+ E2. Since in the 
case of population inversion the number of particles on the higher 
level exceeds that on the lower level and since the transition pro­
babilities w12 and w21 are equal, the stimulated radiation E2-> Ex 
will exceed resonance absorption Ex->- E2 and the signal will be 
amplified. Therefore such a system will do the job of an amplifier 
of electromagnetic radiation. The term for it is paramagnetic ampli­
fier (usually maser).
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In practice not two-level but three-level quantum systems are 
used for paramagnetic amplifiers. The active materials in them are 
diamagnetically diluted crystals of paramagnetic salts; in wide 
use are ruby crystals (A1203) doped with chromium and germanium 
ions. Figure 7.28(a) shows a quantum system with three levels: 
E±, E2, E3. The dotted line represents the dependence of the number 
of particles n on the energy E in thermal equilibrium. Such a system 
is placed in a magnetic field H 0 and irradiated with high-frequency 
electromagnetic radiation with a frequency co13 =  (E3 — Ex)lh. 
This process is termed pumping. In pumping fields of high intensity 
(Figure 7.28(b)) saturation is achieved, when the numbers of particles 
on the levels Ex and E3 are equal (n3 =  nx) and less than that on the 
level E2: nx < ln 2, n3 < ra2. Should a signal with a frequency co2i =  
=  (E2 — EJ/h be applied to such a system, it would be amplified 
by the stimulated transitions of the particles from the level E2 
to the level Ex. The system will work as an amplifier.

For a high amplification factor the difference in the population 
of the levels must be as great as possible. The way to do it is to cool 
the system to liquid helium temperatures. The concentration of the 
magnetic atoms should be low to exclude interaction of magnetic 
moments, which results in the widening of the absorption line and 
in the decrease in the amplification factor. One solution is to use 
diamagnetically diluted crystals of paramagnetic salts, of which 
the ruby crystal doped with chromium or germanium ions may 
serve as an example.

The main advantage of the paramagnetic microwave frequency 
amplifiers is their ability to work at very low temperatures and, 
consequently, at low noise levels. This makes it possible to receive 
signals too weak for amplifiers of conventional types. The frequency 
tuning of the amplifier is done by changing the intensity of the 
field Hq which in its turn changes the resonance absorption frequen­
cy-

Principles of operation of quantum generators. To devise a laser 
on the basis of the negative temperature quantum system a positive 
feedback should be provided to make sustained oscillations possible. 
To this end the system is placed inside a cavity with reflecting walls. 
In conditions in which each spontaneously generated quantum /xco 
stimulates the generation of, on the average, more than one quantum, 
the amplitude of the electromagnetic oscillations of the appropriate 
frequency co will grow continuously. The system will become self- 
excited. The radiative energy contained in the cavity is removed via 
a wave guide. Such cavities are termed cavity resonators. They are 
constructed from highly conductive materials and their dimensions 
are close to the wavelength radiated by the laser. The feedback signal 
in provided by radiation reflected by the cavity walls, a careful 
choice of the dimensions and shape of the resonator being necessary
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to obtain the right phase relationship (the reflected radiation must be 
in phase with the generated one at the point of generation).

The first quantum generators were designed by N. G. Basov and 
A. M. Prokhorov. They used two-level oscillators and the generator 
operated on beams of ammonia molecules. The ammonia molecule 
NH3 is made up of three hydrogen atoms arranged in the base of a 
triangular pyramid and a nitrogen atom in the pyramid’s vertex

Figure 7.29 Ammonia molecule (a) and its energy levels (b).

(Figure 7.29(a)). This is the ground state of the molecule Ex. The 
molecule has an excited state E2 (Figure 7.29(b)) in which the nitro­
gen atom is forced into the base plane. The normal NH3 molecule 
is asymmetric and by force of this has a nonzero dipole moment. The 
dipole moment of an excited molecule because of its symmetry is 
zero. This fact makes it possible to separate the normal and excited 
molecules by passing the molecular beam through a nonuniform 
electric field. Such a field deflects normal polar molecules; the excited 
nonpolar molecules are not deflected.

Figure 7.30(a) represents a schematic view of a molecular generator. 
It is made up of three parts: the beam source A , the separation 
system B, and the cavity resonator C.

The source of the molecular beam is a small space 1 closed on one 
side by a fine mesh 2. A gas pressure of one mm Hg is maintained 
inside the space. The mqlecules forming the beam pass through the 
mesh into a vacuum chamber practically without collisions. A quad- 
rupole condenser B (Figure 7.30(b)) is placed in the way of the 
beam setting up a nonuniform field (Figure 7.30(c)) that sorts out 
the molecules. The excited molecules (on the higher level) are con­
centrated close to the condenser axis and the normal molecules are 
deflected to the walls. In this way the beam close to the condenser
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axis is made to contain mainly the excited molecules and thus a 
quantum system with population inversion, or with negative tempe­
rature, is created.

From the separator B the molecular beam enters the resonator C 
turned to the frequency of the radiative transitions from the upper 
to the lower level [to the frequency o> =  (E2 — Ex)lh\ and induces 
in it electromagnetic oscillations with this frequency. The electro­
magnetic energy is transported via the wave guide 5. The molecules

Figure 7.30 Schematic representation of a quantum generator operating 
on a beam of ammonia molecules: (a)-lay-out of amplifier (A is the source of 
beam of ammonia molecules,
B the separation system,
C the cavity resonator); (b)—quadrupole condenser of separating system;
(c) electric field in condenser.

Output signal

in the beam practically do not interact and because of that the spec­
tral line of the oscillations is very narrow (1 kHz at v =  24 MHz). 
Another advantage of the molecular generator is its long-term fre­
quency stability. The oscillation frequency is determined solely by 
the structure of the ammonia molecule (that is, by E2 — E±) and 
is therefore independent of other generator circuit parameters. This 
made it possible to use the ammonia oscillator as a frequency stan­
dard. The error of a clock using such a frequency standard for its 
“pendulum” does not exceed one second in 300 years of continuous 
operation.

In recent years quantum generators for the infrared and the optical 
spectral intervals (lasers) have been developed. Their use opens up 
wide possibilities for the development of communication, in loca­
tors, etc. For instance, an optical communication channel would be 
capable of carrying up to 10 000 TV programmes. Quantum gen­
erators nowadays are widely used for the machining of tough mate­
rials, in medicine, and in other fields of science and technology.
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Contact Phenomena

§ 73 Work function
The work function concept. The positive ions that make up the metal 
lattice establish in it an electric field with a positive potential that 
changes periodically along a straight line passing through the lattice 
sites (Figure 8.1(a)). As a rough approximation, this variation may 
be neglected and the potential be considered constant and equal to

Figure 8.1 Metal as a potential 
through: (a)—internal potential 
of metal; (b)—potential energy 
of electron in metal

V0 at every point of the metal. A free electron has a negative poten­
tial energy U0= —qV0 in this field (q is the electron charge).

Figure 8.1(b) depicts the change in the potential energy of the 
electron as it passes from the vacuum into the metal: in vacuum U = 
= 0, in the metal U =  U0 =  —qV0. Although such a change 
has the nature of a jump, it takes place over a distance 8 equal approx­
imately to the lattice parameter. It may be seen from Figure 8.1(b) 
that the metal is a potential trough for the electron and that work 
should be performed to get the electron out of it. This work is termed 
the work function.

265
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Should the electrons have no kinetic energy, the work needed to 
liberate them would be equal to the depth of the potential trough t/0. 
However, electrons possess kinetic energy of translational motion 
even at absolute zero since they occupy all the lower energy levels 
of the potential trough up to the Fermi level p. Therefore the energy 
needed to make them leave the metal is less than £/0. The least work 
must be performed to liberate the electrons occupying levels close to 
the Fermi level. It is equal to the separation % of the Fermi level from 
the zero level and the term for it is thermodynamic work function.

The problem of estimating the electron work function of a semicon­
ductor is somewhat more complicated. As may be seen from Figure 8.2

Figure 8.2 Electron work function 
of semiconductor.

the electrons may leave the semiconductor from the levels of the con- 
duction band at the expense of work from the impurity levels at 
the expense of work %l7 and from the levels of the valence band at the 
expense of work %2 and %3. The least work Xo is required to liberate 
the electrons from the conduction band. However, emission of only 
the conduction electrons would upset the equilibrium of the electron 
gas to reestablish which the electrons should go over to the conduction 
band from the impurity levels and from the valence band. Such tran­
sitions require work to be performed and in adiabatic conditions this 
work is performed at the expense of the internal energy of the crys­
tal, that is, as the state of thermal equilibrium is restored the crys­
tal is cooled. If the electrons leave the semiconductor from the va­
lence band, to restore equilibrium some electrons must go over from 
the conduction band to the valence band, which results in liberation 
of energy and the crystal being heated. The equilibrium will be main­
tained and the temperature will remain constant only if the electrons 
leave the semiconductor from the levels both below and above the 
Fermi level in appropriate numbers. Theory shows that to maintain 
equilibrium the average energy of the electrons leaving the semicon-
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ductor should be equal to the Fermi energy, and this is the work func­
tion although there may be no electrons on the Fermi level itself.

The work function is measured in electron volts. The ratio of the 
work function to the electron charge is the voltage equivalent of the 
work function. The work function measured in electron volts is nu­
merically equal to its voltage equivalent.

Effect of adsorbed layers on work function. Molecular layers ad­
sorbed by the surface of the solid, in particular monomolecular layers, 
greatly affect the work function. Figure 8.3(a) shows a monatomic 
caesium layer on the surface of tungsten. Caesium is an alkali metal. 
Its outer valence electron is bonded to the nucleus much more weakly

, Oxygen ions 

( ^  © ©  ©

Tungsten ions 
(b)

Figure 8.3 Formation of electric 
double layer in the course 
of adsorption of caesium (a) and 
of oxygen (b) on tungsten surface.

than the valence electrons of the tungsten atom. Therefore in the 
process of adsorption caesium donates its valence electron to tungsten 
and turns into a positively charged ion inducing a neegative chage of 
equal magnitude in the metal’s surface layer. When tungsten is cov­
ered by a monatomic caesium layer, an electric double layer is 
puilt up at the surface with its outer side charged positively. The 
potential difference in this double layer aids electron emission out 
of tungsten. Therefore the electron work function, as determined 
from experiment, drops in the presence of the caesium layer from 
4.52 eV for pure tungsten to 1.36 eV. The same is the effect of mon­
atomic layers of other electropositive metals: barium, cerium, tho­
rium, etc.

The reduction of the work function by the adsorption of electro­
positive metals is widely used for manufacturing vacuum tube cath­
odes, photocathodes, etc.

Quite different is the effect of oxygen adsorbed on the metal’s 
surface. The valence electrons in the oxygen atom are bonded much
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more strongly than in metals. Therefore in the process of adsorption 
the oxygen atom instead of donating electrons accepts two electrons 
from the metal and turns it into a negatively charged ion. As 
a result the outer side of the electric double layer becomes negatively 
charged (Figure 8.3(b)) and the resulting electric field prevents the 
electrons from leaving the metal, thereby increasing the work func­
tion.

§ 74 Contact of two metals
Contact potential difference. Consider the process which takes place 
when two metals (Figure 8.4(a)) whose energy diagrams are shown in 
Figure 8.4(b) are brought together.

The electron gas in the individual metals 1 and 2 is characterized 
by the respective chemical potentials \i± and p2, the thermodynamic

Figure 8.4 Origin of contact potential difference betweeiTrc-type 
conductors.

7 d
(a)
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work functions being %i and %2- Let us bring the metals closer to­
gether to within such a distance d that an effective electron exchange 
by means of thermionic emission or by direct transition from one 
metal to another is possible. At the initial moment after the contact 
has been established there will be no equilibrium between the elec­
tron gas in the first and second metals since the chemical potential 
(the Fermi level) p,2 is above \i±. The difference in the Fermi levels,
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p2 — Pi> results in the prevailing transition of the electrons from the 
second metal to the first in the course of which the first metal is 
charged negatively and the second positively. The appearance of the 
charges causes a shift in the energy levels of the metals: all the levels 
in the negatively charged metal 1 rise and in the positively charged 
metal 2 sink as compared with their positions in uncharged metals. 
This may easily be understood from the following simple consider­
ations. To move an electron from, for instance, the zero level of 
an uncharged metal to the zero level of a metal charged negatively 
to a potential Fx work should be performed numerically equal to 
q\\. This-work is transformed into the potential energy of the elec­
tron. Therefore the potential energy of an electron occupying the 
zero level of the negatively charged metal will be higher by the 
amount qVx than the potential energy of an electron occupying the 
zero level of the uncharged metal. The zero level of a positively 
charged metal sinks below the zero level of an uncharged metal the 
reason for this being the same. A similar shift occurs in the position 
of other energy levels of the metals 1 and 2 including that of the 
Fermi level.

As soon as the continuously rising chemical potential of the metal
1 (jii) and the continuously sinking chemical potential of the metal
2 (p2) level out (Figure 8.4(c)), the cause for the predominant flow 
of the electrons from the first metal to the second disappears and a 
dynamic equilibrium is established between the metals resulting in 
the corresponding constant potential difference between the zero 
levels of both metals (Figure 8.4(c)) equal to

Pc =  (Xi -  X.)/? (8.1)
This potential difference is termed the external contact potential 
difference. It follows from (8.1) that it owes its existence to the differ­
ence in electron work functions of the contacting metals: the elec­
trons leave the metal with the smaller work function and settle in 
the metal with the greater work function.

After the chemical potentials have been equalized the kinetic ener­
gy of electrons occupying levels close to the Fermi levels of both met­
als is not the same: that of electrons in metal 1 is equal to E¥l 
and that of electrons in metal 2 to EF2 (EF2 >  EFl). When a direct 
contact is established between the two metals, a predominant diffu­
sion process of the electrons from the second metal to the first sets 
in and continues until the so-called internal contact potential difference

V[ = (EF2 EF[)/q (8.2)

is established.
Thickness of the electric double layer at the contact of two metals.

A double layer (Figure 8.5(a)) is established at the contact of two 
metals across which the potential changes abruptly by the amount
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V1 (Figure 8.5(b)). Let us estimate the thickness of this layer. Sup­
pose that it is a plane condenser with the distance between the plates 
equal to the double layer thickness d. Denote the charge on each plate 
by Q and the potential difference by Vx. The capacitance of a plane 
condenser with the plate area of 1 m2 and a dielectric with relative 
permittivity e =  1 is C =  z jd  (e0 is the permittivity of free space). 
Using the relation C =  Q/V{, we can rewrite this formula in the form 
Q/Vj =  e0/d. Hence we obtain

d =  e0t y  Q
The thickness of the double layer cannot be less than the lattice 

parameter a & 3A. At Vi » 1 eV such a layer can be established if

Figure 8.5 External (Vc) and internal (Fj) contact potential 
differences appearing at the instant two different metals are brought 
in contact.

M
(b) I

a charge Q » V\e0/a « 3 X 10“2 C is transported from every square 
metre of the contact surface of the first metal to the second. This 
corresponds to An =  Qiq « 2 X 1017 m~2 electrons. There are ap­
proximately 1019 atoms on every square metre of a metal. If we as­
sume that each of them donates to the electron gas one valence elec­
tron, we will obtain for the surface density of the electron gas the 
value ns « 1019 m“2. Comparing An withrcs, we see that even for the 
narrowest possible double layer (a « 3A) only two percent of free 
electrons need be transported from the contact surface of one metal 
to another.

Because of a small change in the electron concentration in the con­
tact layer and because of the small thickness of this layer in compa­
rison with the electron mean free path the conductivity of the layer 
cannot be much less than that of the bulk metal. The current passes 
through the contact of two metals just as easily as through the metals 
themselves.
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§ 75 The metal-semiconductor contact
Barrier layer. Consider a metal-semiconductor contact. Suppose 
that a metal M with its work function equal to %m is brought in con­
tact with an n-type semiconductor S whose work function is y* 
(Figure 8.6).

If Xm >  %s> the electrons will flow out of the semiconductor into 
the metal until the chemical potentials pm and jns are equalized and 
a state of equilibrium is established. A contact potential difference 
Fc will be established between the metal and the semiconductor 
whose order of magnitude will be the same as that in the metal- 
metal contact (several volts). To establish such a contact potential

Figure 8.6 Formation of barrier layer in metal-semiconductor contact.

difference approximately the same number of electrons should be 
transported from the semiconductor to the metal as in the case of 
the contact of two metals. For a lattice parameter of the semiconduc­
tor A (germanium) and an electron gas concentration in it
n & 1021 m~3 there will be ns & 1014 electrons on 1 m2 of the semi­
conductor’s surface. Therefore the transport of An « 1017 electrons 
entails the “depletion” of about 103 atomic layers of the semiconduc­
tor.

Hence the equalization of the chemical potentials of a metal and 
a semiconductor in contact with one another necessarily involves 
the transport of electrons to the metal surface from a boundary 
layer of appreciable width d of the semiconductor (Figure 8.6). 
The ionized impurity atoms remaining in this layer establish a 
static positive space charge. Since there are practically no free charge 
carriers inside this layer and since its width greatly exceeds the 
electron mean free path, its specific resistance is very great and be­
cause of that it is termed barrier layer.

Effect of contact field on semiconductor energy levels. The contact 
potential difference Vc between the metal and the semiconductor is 
built up over the entire width d of the barrier layer (Figure 8.6). 
Assuming that 5 A,we obtain for the number of depleted atomic 
layers AAr ^  103 and for the thickness of the barrier layer d ^  
«5 X 103 A «5 X 10"7 m. For Vc « 1 V the field intensity will 
be g c « VJd « 2 X 106 V/m. This is at least three orders of mag-
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nitude less than the intensity of the internal crystal field, which is 
responsible for the energy band pattern of the semiconductor. There­
fore the contact field cannot appreciably affect the band spectrum 
(the forbidden band width, the impurity ionization energy, etc.). 
Its action is limited to the deflection of the semiconductor’s energy 
bands. Let us dwell on this.

Figure 8.7(a) shows the energy band diagrams of the metal M and 
the semiconductor S before they have been brought in contact. When

F igu re 8.7 Effect of contact field on semiconductor’s energy levels: 
{a)—-band patterns of metal M and semiconductor S\ (b)—deflection 
of semiconductor’s energy bands by contact field.

contact has been achieved and equilibrium has been established, a 
positive space charge throughout the barrier layer width d is built up 
(Figure 8.7(b)). In the absence of the contact field the energy levels in 
the metal and in the semiconductor are represented by horizontal 
straight lines. This expresses the fact that the energy of an electron 
occupying this level, for instance, the lower level of the conduction 
band, is the same everywhere in the semiconductor and does not 
depend on the position of the electrons. In the presence of a contact 
potential difference the picture is changed: inside the layer in which 
the contact field is concentrated a force acts on the electron pushing 
it out of the layer. To overcome this force work should be performed, 
this work being equal to the potential energy of the electron in the 
contact field. Therefore as the electron moves inside the space charge 
layer its potential energy cp (x) increases reaching its maximum cp0 =
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=  qVc at the semiconductor’s surface. Quantum mechanical calcu­
lations lead to the conclusion that the application of an external 
field to the semiconductor results in an inclination of its energy 
bands in relation to the horizontal Fermi level. The contact field 
acts in the same way causing a deflection of the energy bands. The 
quantity cp0 is termed the equilibrium potential barrier for electrons 
going over from the semiconductor to the metal.

To estimate the function (x) we apply the Poisson equation 
known from electrostatics. This equation relates the field potential 
V (x) to the density p (x) of the static space charge responsible for 
this field. The equation is of the form

d2V   p (x)
dx2 e0e (8.3)

where e is the relative permittivity of the semiconductor.
It is expedient to go over from the potential V (#) to the potential 

energy of the electron cp (x) =  — qV (x) and to write the Poisson 
equation for <p (x) as

-p(x)dx2 (8.4)
In calculating the space charge density p (x) we shall assume all 

the donor atoms Nd to be ionized and their electrons to be transferred 
to the metal. Then p (#) =  qNd. Substituting this into the Poisson 
equation, we obtain

<Pcp 
dx2 (8.5)

If we assume that there is no contact field at a distance xZ^d inside 
the semiconductor, we will be able to write the boundary conditions 
for this equation in the form

cp (d) =  0, / <ftp (x) \
\ dx )x—d =  0 (8.6)

Solution of equation (8.5) with the boundary conditions (8.6) 
yields:

(p(x) = w (d" a:)2 (8-7)
It follows from (8.7) that the potential of the contact field diminishes 
parabolically with the increase in x in the semiconductor.

For x =  0 we find that cp0 =  %m — %s* Substituting this into (8.7), 
we obtain the width of the barrier layer:

j _i  /* 2e0eq)0 __-| / “ 2e08Ve /c? ox
d - V  (8-8)

where nn0 =  7Vd is the concentration of electrons (majority carriers) 
in the rc-type semiconductor.
18—0385
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It follows from (8.8) that the thickness of the barrier layer d in­
creases with the contact potential difference Vc determined by the 
difference in work functions and decreases with the concentration of 
majority carriers in the semiconductor. Table 8.1 shows the values 
of d calculated with the aid of (8.8) assuming that Vc =  1 V and 
e = 10.
Table 8.1

nno (m-3) d (m)

1024 3 X lO"7
1022 3 X 10"6
1020 3 X 10-5

It follows from the table that for the electron gas concentrations 
typical of semiconductors (1020-1024 m”3) the thickness of the sur­
face layer containing practically no free carriers may attain values

Figure 8.8 Formation of antibarrier 
layer in metal-semiconductor contact.

from one to three orders of magnitude greater than the electron mean 
free path. This is the reason why the resistance of the barrier layer 
is enormous.

If the work function of an ra-type semiconductor exceeds that of 
a metal, the electrons shall be transported from the metal to the 
semiconductor setting up a negative charge in its contact layer (Fig­
ure 8.8). In this case the energy of the electron cp (x) as it approaches 
the surface does not increase but, on the contrary, decreases with the 
result that the bands are deflected in the opposite direction. This 
leads to an increase in the free charge carrier concentration inside 
the contact layer of the semiconductor and to a consequent increase 
in its conductivity. For this reason such a layer is termed aniibarrier.

Rectification at a metal-semiconductor contact. A remarkable 
feature of the barrier layer is a drastic dependence of its resistance 
on the direction of external voltage applied to the contact. This
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zero it follows that is.m =  
sponding to the equilibrium ci

Figure 8.9 Rectification 
in metal-semiconductor contact:(a) —equilibrium state of contact;(b) —external voltage applied in reverse direction;
(c) —external voltage applied in forward direction.

dependence is so strong that it 
results in practically a unidirec­
tional conductivity of the con­
tact: a current passes easily 
through the contact in the forward 
direction and much worse in the 
reverse direction. This is the 
essence of the rectifying property 
of a metal-semiconductor con­
tact. Let us discuss this point in 
detail.

Figure 8.9(a) shows the energy 
band pattern of an rc-type metal- 
semiconductor contact in the 
state of equilibrium. The poten­
tial barrier for the electrons 
going over from the metal to the 
semiconductor is equal to the 
difference in work functions 
Xm — %s: f°r the electrons pas­
sing from the semiconductor to 
the metal it is q)0 =  qVc. Denote 
the electron flux from the metal 
to the semiconductor by leS 
and the flux from the semicon­
ductor to the metal by ttm.s- The 
corresponding current densities 
flowing through the contact are 
is.m and im,8. Since in the state 
of equilibrium the total current 
flowing through the contact is 

Denote the current density corre­
c t s  i lm and ^ . s by ieq:
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Apply an external potential difference V to the contact in the di­
rection of the contact potential difference Vc imparting a positive 
charge to the semiconductor with respect to the metal (Figure 8.9(b)); 
such direction of V is termed reverse. The resistance of the barrier 
layer is usually some orders of magnitude greater than the resistance 
of the other parts of the circuit and because of that practically the 
entire applied voltage is built up across the barrier layer. The energy 
levels in the positively charged semiconductor are deflected down­
wards by qV from their initial positions. The same will be the dis­
placement of the Fermi level p,n . The deflection takes place along the 
entire barrier layer thickness d across which the potential rises by 
V. The bottom of the conduction band Ec and the top of the valence 
band Ev in Figure 8.9(b) have been drawn so as to take account of 
the new position of the Fermi level. It may be seen from this drawing 
that the external voltage V applied in the reverse direction raises the 
potential barrier for the electrons going over from the semiconductor 
to the metal to

<p (0) =  <p0 +  gV (8.10)
According to (8.8) the thickness of this barrier layer will be

d =  i /  2e°e(Fc + y) (8.11)
V 9*n o

Hence the external field applied to the contact in the reverse di­
rection raises the potential barrier for the electrons flowing from the 
semiconductor to the metal and increases the barrier layer width.

The picture will be different if a forward voltage is applied to the 
contact (Figure 8.9(c)). In this case all the levels of the negatively 
charged semiconductor including the Fermi level |in are deflected up­
wards by the amount qV lowering the potential barrier for the 
electrons flowing from the semiconductor to the metal by the amount 
qV. The barrier height becomes

q> (0) =  cp0 - q V  (8.12)
The width of the space charge layer decreases accordingly and be­

comes equal to
d =  i/ "  —°s {I Gr z v\ (8.13)

Y 9"no
The change in the potential barrier height disturbs the equilibrium 

between the electron fluxes flowing through the contact in both di­
rections. When the external voltage V is applied to the contact in 
the reverse direction, the current density im.s corresponding to the 
electron flux n3,m decreases eqVlh*T times since according to the 
Boltzmann law the number of electrons flowing from the semicon­
ductor to the metal capable of surmounting the barrier q>0 +  qV is
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eQV/kBT t]*mes jess than the number flowing through the equilib­
rium barrier cp0, that is, ns.m =  n^me~qV/ĥ T. Therefore the cur­
rent jm.s becomes equal to

i - i  e-*V'hBT *'m. s — 6eq e
The current density is.m corresponding to the electron flux nm,s 

will remain equal to ieq since the external field does not change the 
height of the barrier for electrons flowing from the metal to the semi­
conductor: its height remains equal to the difference in work func­
tions, Xm — Xs-

The total current density in the reverse direction is (Figure 8.9(b))
ir =  hq e~qV/k*T -  ieq =  *,q (e'9V/kBT -  1) (8.14)

The current flows from the semiconductor to the metal. As the re­
verse voltage V is increased the exponential e~qV/hBT tends rapidly 
to zero and the reverse current density to its limit value ieq. The 
current density ieq is termed saturation current density and /eq =  
=  Sieq saturation current (S is the cross-sectional area of the metal- 
semiconductor contact).

When a forward external voltage V is applied (Figure 8.9(c)), 
the potential barrier for the electrons flowing from the semiconduc­
tor to the metal is lowered by the amount qV and because of that 
the current density of those electrons increases eqV/hB̂  times in 
comparison with ieq becoming

i -  t e^/hBTi l,m. s — ‘'eq c
The current density i8.m remains equal to ieq* Therefore the densi­

ty of the forward current (from the metal to the semiconductor) 
will be

=  =  (8.15)
and it grows exponentially with V. Combining (8.14) with (8.15), 
we obtain

i =  ieq(e±qV/k bt _ 1 )  (8.16)
(V =  | V | for forward bias and V =  — | V | for the reverse).

Formula (8.16) is the equation of the current-voltage characteristic 
(CVC) of a rectifying metal-semiconductor contact. Figure 8.10 
depicts the CVC of such a contact.

The ratio of the forward current to the reverse current for the 
same absolute value of applied voltage is termed rectification ratio. 
Its value for good rectifying contacts may be as high as tens and 
even hundreds of thousands.

The potential barrier at the metal-semiconductor interface is 
often termed Schottky barrier. Presently Schottky barrier diodes
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with extremely short switching times are being developed. The 
diodes have switching times as short as 10" 11 s. This makes it pos­
sible to use them effectively in radioelectronic pulse circuits, in 
computer and automation circuits where there is a need for high

i Figure 8.10 Current-voltage 
characteristic of metal-semiconductor 
contact.

operational speeds, that is, where extremely short and quickly 
recurring electrical pulses have to be processed.

The nonrectifying (a'ntibarrier) metal-semiconductor contact is 
used to provide ohmic contacts by means of which the semiconduc­
tor device is connected into the electrical circuit.

§ 76 Contact between two semiconductors 
of different types of conductivity

The progress in semiconductor electronics is based mainly on the 
use of contacts of two impurity semiconductors of different conduc­
tivity types. Such a contact is termed a p-n junction. Let us briefly 
discuss its properties.

Preparation of p-n junctions. It is impossible to obtain a true 
p-n junction by means of a mechanical contact of the n- and p-types 
of semiconductors because the lattice discontinuity at the interface 
contains more defects than there are impurity atoms on each of the 
contacting surfaces. Therefore the p-n junction was successfully 
prepared only when the art of making it in the form of an internal 
boundary in the bulk of a single crystal semiconductor was mastered.

One of the more widely used methods of preparing p-n junctions 
is the method of alloying, an example of which is discussed below. 
An rc-type germanium wafer with a piece of indium placed on it 
(Figure 8.11(a)) is held in a furnace at a temperature 500-600 °C 
in a hydrogen or argon atmosphere. The indium melts and dissolves 
some germanium (Figure 8.11(b)). As the wafer is slowly cooled 
germanium saturated with indium precipitates from the melt
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It crystallizes as a continuation of the single crystal of the wafer. 
Since the germanium doped with indium has a p-type conductivity, 
there will be a p-n junction at the boundary between the n-type 
single crystal that had not been dissolved and the recrystallized 
region (Figure 8.11(c)). The indium drop alloyed to the germanium 
surface is used as an ohmic contact.

The p-n junction can be prepared by diffusing acceptor impurities 
into an /i-type semiconductor or donor impurities into a p-type

Figure 8.11 Fabrication of alloyed p-n junction: (a)—room temperature; ( b)—temperature T « 500 °C; (c)—room temperature.

Molten In 
saturated with Ge

(b)

-Tn-Ge eutectic 
p-type Ge 

single crystal

n-type Ge
single crystal

(c)

semiconductor. The diffusion process may be carried out from the 
gaseous, liquid, or solid phases. The penetration of the impurity 
and the depth of the p-n junction is determined by the temperature 
and the time of the diffusion process. The p-n junction itself is the 
boundary that separates the regions of different conductivity types.

A widely used method is the epitaxial method of preparing p-n 
junctions which consists in the deposition via chemical reactions 
on, for instance, an ra-type silicon wafer of a p-type single crystal­
line silicon film in the gaseous phase or recrystallization from the 
liquid phase being used for the process.

A method growing in popularity in recent years is the ion implan­
tation method, in which energetic ions of specific impurities (energy 
in the range of 50-300 keV) are directed at the semiconductor surface 
and penetrate into the bulk of it (to a depth of the order of 0.1-0.5 (xm, 
depending on the energy and the type of impurity).

Equilibrium state of a p-n  junction. Let the plane MM be the 
internal boundary between two semiconductor regions of different 
conductivity type (Figure 8.12(a)): to the left is the p-type semi­
conductor, for instance, p-germanium, with an acceptor concentra­
tion Aa, and to the right an rc-type semiconductor (ra-germanium) 
with a donor concentration A d. For the sake of simplicity we shall 
assume Na =  Ad to be equal to 1022 m~3. Figure 8.12(b) depicts 
the change in the acceptor and donor concentrations along the x
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axis perpendicular to the plane MM. At point 0 lying in this plane 
the acceptor concentration abruptly vanishes and the donor con­
centration increases abruptly from zero to Nd.

The majority carriers in the rc-type region are electrons, and 
in the p-type region holes. The majority carriers are due almost 
entirely to ionized donor and acceptor impurity atoms. At temper­
atures outside the extreme low temperature range practically all 
of those impurity atoms are ionized and because of that the electron 
concentration in the rc-region (rcn0) can be assumed to be equal to 
the donor concentration Nd (nn0 & Ad), and the hole concentration

Figure 8.12 Equilibrium state of p-n junction: (a)—internal boundary MM 
between p- and n-regions; (b)—impurity distribution in p- and ^-regions;
(c)—distribution of immobile charges in p-n junction; (d)—position 
of Fermi levels at the time of imaginary contact of p- and ^-regions;
(e)—deflection of energy bands in the course of p-n junction formation 
and formation of a space charge layer.

W Zero level
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in the p-region (pp0) can be assumed to be equal to the concentra­
tion of the acceptor atoms (pp0 « Na).

Besides majority carriers those regions contain also minority 
carriers: the re-region contains holes (pn0) and the p-region elect­
rons (repo). Their concentrations may be found from the law of mass 
action (5.44)

2
n noPnO — PpOn pO — ni

where nt is the concentration of carriers of one sign in the intrinsic 
semiconductor (germanium). At ren0 =  pp0 =  1022 m“3 and ret =  
=  1019 m~3 we get pn0 =  np0 =  1016 m~3.

We see that the hole concentration in the p-region is six orders 
of magnitude higher than in the re-region. Such a difference in the 
concentrations of carriers of one type is the cause of diffusion fluxes 
of electrons from the re-region to the p-region (nn̂ p) and of holes 
from the p-region to the re-region (pp^n)- The diffusion flux of the 
electrons out of the re-region imparts a positive charge to this region, 
and the hole flux from the p-region imparts a negative charge to 
the p-region. Such charges raise the position of all the energy levels 
including the Fermi level in the p-region and sink it in the re-region. 
The electrons continue to flow from the right to the left and the 
holes from the left to the right until the gradually rising Fermi 
level of the p-region (|ip) reaches the level of the gradually sinking 
Fermi level of the re-region (pn). As soon as those levels are equal­
ized a state of equilibrium is established between the re- and p-regions 
when the electron flux from the re- to the p-region (ren_*p) is compen­
sated by the electron flux from the p- to the re-region (rep_*n) and 
the hole flux from the p- to the re-region (pp-*n) is compensated by 
the hole flux from the re- to the p-region (pn-+v):

nn^p =  Wp-n, p ^ n =  pn^p (8.17)
As the electrons leave the contact layer of the re-region a static 

positive space charge of ionized donor atoms is left in it (Fig­
ure 8.12(c)). Denote the width of this layer by dn. As the holes leave 
the contact layer of the p-region a static negative space charge of 
the ionized acceptor atoms is left there. Denote the width of this 
layer by dp. A contact potential difference Vc is built up across 
those layers, which constitutes a potential barrier <p0 localized 
in the p-re junction; cp0 prevents the electrons from going over from 
the re- to the p-region and the holes from the p- to the re-region. 
Calculations show that

<Po =  kBT In =  kBT In (8.18)
npo Pno

It follows from (8.18) that cp0 is the greater the greater the ratia 
of the majority carrier concentration in one region of the p-re junc-
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tion to the concentration of the carriers of the same type in another 
region where they are minority carriers. At nn0 =  1022 m“3, np0 =  
=  1016 m"3, and T =  300 K we see that cp0 « 0.45 eV.

Figure 8.12(d) shows the energy band pattern of the p- and zz-re- 
gions at the instant of their imaginary contact, that is, before equi­
librium between them has been established. It may be seen from 
Figure 8.12(d) that p,n lies above pp.

Figure 8.12(e) shows the energy band pattern of those regions 
after equilibrium has been established. The Fermi levels pn and (lip 
coincide and there is a space charge layer between the p- and zz-re­
gions that spreads into the zz-region to a depth dn and into the p-region 
to a depth dr forming a potential barrier with the height (p0 =  qVc. 
Comparing Figures 8.12(d) and (e), one may easily see that

Vo Hn — Hj> (8.19)
The width of the space charge layer d =  dn +  dpy as in the case 
of the metal-semiconductor contact, is determined by the height 
of the potential barrier cp0 and by the concentrations of majority 
carriers in both regions of the p-zz junction zzn0 and pp0:

Y
2ee0cpo (^no~hPpo) 

92 nnoPpo
2ee0F c (rcn0-|-pP0) 

<7 nnoPpo
(8.20)

It may, however, be demonstrated that in the p-n junction the 
barrier width d depends eventually only on the majority carrier 
concentrations nn0 and pp0. Indeed, substituting (5.38) into (8.18) 
and the result into (8.20), we obtain

dm.-]/ig g .  (”"o + Ppo> kBT In (-^-°-f po )V Q2 nnoPpo V n\ I
It follows from (8.20) that the space charge layer width is the great­
er the less the majority carrier concentration in the n- and p-regions 
of the semiconductor.

If one of the regions, for instance the zz-region, is substantially 
less doped than the p-region, so that nn0 pp0, we will obtain 
from (8.20) the following:

d ttdn -i /  2ee0cpo 
V a*rr n n0 (8.21)

In this case almost the entire space charge is concentrated in the 
low-doped (high resistivity) rc-region, the same as in the case of 
a metal-semiconductor contact.

Rectifying properties of p-n  junctions. A remarkable property of 
the p-n junction on which the operation of most semiconductor 
devices is based is its ability to rectify alternating current. Let us 
discuss this property in more detail.
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Currents flowing through p-n  junction in equilibrium. In the state 
of equilibrium fluxes of majority and minority carriers flow through 
the p-n junction (Figure 8.12(c)). These fluxes are such that the 
flux of electrons—majority carriers—flowing from the n- to the 
p-region (nn^p) is, according to (8.17), equal to the flux of elect­
rons—minority carriers—flowing from the p- to the rc-region (np^n). 
In the same way the flux of holes—majority carriers—flowing from 
the p- to the n-region (pp-+n) is equal to the flux of holes—minority

- £c +

p - r e g i o n / / - r e g i o n

I J'H ~n ̂ Lp/Xp
F„ = -Q&cC X

___________________ Z —~Z----© \ ___________________

V

dK

q&c \

Figure 8.13 Calculating minority 
carrier currents flowing through 
equilibrium p-n junction.

carriers—flowing from the n- to the p-region (pn_p). Denote the 
current densities corresponding to those fluxes as follows: the flux 
rcn-p corresponds to i n , n p ^ n to i p and p n ^ P to ip_eq. In accordance 
with (8.17) we can write

in == ̂ n-eqi i p =  ip-e q (8.22)
Adding the right- and left-hand sides of those equations, we obtain

in~\~ i p  =  in-eq ip-eq
The left-hand side of the relation expresses the component of the 
full current due to the majority carriers, and the right hand side 
the component due to the minority carriers. The full current flowing 
through the p-n junction will evidently be zero:

i =  (in H~ ip ) — (bt-eq ip-eq) =  0 (8.23)
Let us calculate in_eq and ip_eq. To this end cut out a unit area 

S of the left boundary 1 of the p-n junction (Figure 8.13). Using 
it as a base, build a cylinder with the side LJxn, where Ln is the 
diffusion length of the electrons in the p-region and xn their average 
lifetime. Since the diffusion length is the average distance the car­
rier passes during its lifetime, the ratio LJxn evidently expresses 
the average speed of electrons diffusing from the bulk of the p-region 
where their concentration is np0 to the boundary 1 where they are 
drawn into the contact field and transported to the ra-region.



2 8 4 Solid State Physics

in
*n-eq

Figure 8.14 Rectifying action 
of p-n junction: (a)—equilibrium 
state of p-n junction; (b)—forward 
voltage applied to p-n junction; 
(c)—reverse voltage applied 
to p-n junction.

The number of electrons con­
tained in the cylinder is equal to 
its volume LJxn multiplied by 
the electron ^concentration np0y 
that is LnnpJxn. All those elec­
trons will pass through the unit 
area S in one second and [will 
be transported to the ^-region 
establishing a current with a 
density

in-e q =  qLnnp0/xn (8.24)
One may similarly calculate 

ip-eq by building a cylinder of 
unit base with the side equal to 
Lplxp at the boundary 2 of the 
p-n junction:

ip-eq = qLpPno/Xp (8.25)
Hence in the state of equilib­

rium in the p-n junction
in — in-eq “ qL nn pJ'^n’> 

ip — ip-eq — qLjjPno/'tp (8.26)
Forward current. Apply a for­

ward voltage V to a p-n junction 
in a state of equilibrium (Figure (8.14(a)) by connecting the positive 
terminal of the power supply to the p-region and the negative termi­
nal to the ^-region (Figure 8.14(b)). This voltage brings the poten­
tial barrier for the majority carriers down to cp0 — qV. Therefore 
the electron flux from the n- to the p-region (rcn_p) and the hole 
flux from the p- to the ^-region will increase egV/hsT times with 
the resulting similar increase in the majority carriers current densi­
ties i n and i v :

in =  qLnnp0eqV/hBT/x i p =  ^ p P n o e qV/hBTiTp
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At the same time the current densities of minority carriers in-eq 
and ip_eq whose magnitude is independent of the p-n junction’s 
barrier height shall remain the same as expressed by formulae (8.26). 
Therefore the total current flowing through the p-n junction to which 
a forward voltage V has been applied and termed forward current if 
will now be not zero but

it = (in +  ip) — (in-eq +  ip-eq) =  <1 ( np0 +  ~ ~  PnO ) ( ^  / ^  1)
(8.27)

Reverse current. Apply now a reverse voltage — V to the p-n 
junction by connecting the negative terminal of the power supply 
to the p-region and the positive one to the rc-region (Figure 8.14(c)). 
This voltage raises the potential barrier of the p-n junction to cp0 +  
+  qV with the result that the fluxes of the majority carriers nn^p 
and Pp^n decrease eqV/ĥ T times together with their currents in 
and ip. The latter will be equal to:

in =  qLrJipo e~qV/h*T lxn, ip =  qLppn0 e~qVlk*nl%p
The total current flowing in the p-n junction termed reverse current 

iT will be
ir= (inJrip)—(̂ n-eq +  ̂p-eg) =  ̂ ('^-^pO +  ~Pno)(^ ^  bT —1) (8.28)

Current-voltage characteristic (CVC). Combining (8.27) and (8.28), 
we obtain the equation for the current-voltage characteristic of the 
p-n junction:

i =  q ( ^ n p0 +  ̂ p n0)(e±qV!k*T -1) (8.29)
where V >  0 is the forward and V <  0 the reverse voltages.

Let us analyse this formula. With the increase in the reverse 
voltage —V the exponent e-qVlhnT 0 and the expression 
{ ^ v/hBT — 1) — —1. Accordingly, the current density iT tends 
to its limit

ieq =  — Q +  Pnoj (8.30)
termed saturation current density. Practically this value is reached 
already at qV « 4 &Br, that is for V « 0.1 V. It follows from (8.30) 
that ieq is determined by the minority carrier fluxes through the 
p-n junction. Since their concentrations are not large, igq is a small 
quantity. For germanium p-n junctions of the type discussed here 
(nno « Ppo « 1022 m”3) at room temperature it is of the order of 
10“2 A/m2; for silicon p-n junctions it is much less.
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When a forward voltage V is applied to the p-n junction, the 
current density through it increases exponentially and reaches big 
values already at small voltages. Substituting (8.30) into (8.29) 
we obtain:

i =  ieq (e±qV,hBT — l) (8.31)
Figure 8.15 shows the plot of a current-voltage characteristic 

of a p-n junction which corresponds to equations (8.29) and (8.31).

I Figure 8.15 Current-voltage 
characteristic of p-n junction.

It is drawn to different scales for the forward and reverse branches 
since should the same scale be used for the reverse current as for 
the forward current the reverse branch would coincide with the 
x axis. Indeed, for VT =  —0.5 V the reverse current density is 
iT « ieq and for Vf =  0.5 V the forward current density it ^  
~  z’eqtf0'570 025 =  *eq£20 ~  *eq 109, since at T =  300 K (room temper­
ature) kBT « 0.025 eV. As we see the rectification coefficient at 
such a voltage is it/iT & 109 and this proves that a p-n junction 
exhibits a practically unidirectional conductivity.

Deterioration of rectifying properties at high temperatures. Accord­
ing to (5.44)

PnO =  MpO —  Mi/PpO
where

o f 2* V m n™>p T  ̂3/2 /1_E J(2 ku T) 
nl — Z \ h2 / 6

It may easily be seen that nY will rise rapidly with the increase in 
temperature while nn0 « iVd and pp0 « A awill remain practically 
constant. Therefore at some temperature n{ may become as high 
as nn0 or pp0. Then the concentrations of the minority carriers will 
be as high as the concentrations of the majority carriers: 
Pno =  n\/nno « nl0/nn0 =  nn0 and np0 =  n\/pp0 « p2Po/pPo = P po. 
The potential barrier in the p-n junction which is responsible for
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its rectifying properties will then cease to exist:
<Po =  In -̂ £2- » kBT In 1 » 0

Ppo
together with the ability of the junction to rectify alternating cur­
rent. It follows from (5.37) that the corresponding temperature 
will be the higher the higher the forbidden band width E g of the 
semiconductor. For germanium p-n junctions (E g =  0.62 eV) the

Figure 8.16 p-n junction breakdown: 
1—thermal, 2—avalanche; 3—tunnel.

highest operational temperature is 75-90 °C; for silicon p-n junctions 
(Eg =  1.12 eV) it can be as high as 150 °C.

Breakdown in p-n  junctions. If the reverse voltage is continuously 
increased, a voltage Fb>d will be reached at which the resistance 
of the barrier layer drops drastically and the reverse current jumps 
up. This phenomenon became known as the p-n junction breakdown 
(Figure 8.16).

There are different types of breakdown: thermal, tunnel (or Zener), 
and the avalanche breakdown in accordance with the nature of the 
physical processes that cause the reverse current to grow abruptly.

Thermal breakdown occurs when the heat generated by the reverse 
current flowing through the p-n junction is not completely removed 
from it and raises its temperature. A rising temperature leads to an 
increase in the reverse current and this, in its turn, raises the temper­
ature still further, etc. This progressive process results eventually 
in thermal breakdown. The character of the increase in current 
during such a breakdown is depicted in Figure 8.16, curve 1.

When the electric field intensity in the p-n junction is high enough, 
impact ionization of the atoms of the semiconductor may take place. 
This will result in an avalanche-type increase in the carrier con­
centration and in the avalanche breakdown; the character of the 
increase in current is shown in Figure 8.16, curve 2.

In a narrow p-n junction already at comparatively low reverse 
voltages an electric field may be established high enough for the 
tunnelling of the electrons through the p-n barrier to take place. 
The resulting breakdown is termed tunnel, or Zener, breakdown
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and the character of current increase iT (V) for this case is shown 
in Figure 8.16, curve 3.

In most cases the p-n junction breakdown is a harmful effect 
that limits the practical use of the junction. At the same time the 
effect was utilized to develop a wide range of semiconductor devices 
known as Zener diode voltage regulators, which will be discussed 
in the following section.

§ 77 Physical principles of semiconductor p -n  
junction devices

As had already been stated before, the rapid progress in semiconduc­
tor electronics was the direct result of the development of the p-n 
junction technology on which the design of various semiconductor 
devices is based. Let us discuss the general principles of such devices.

Figure 8.17 Schematic representation of a rectifier diode: 
1—p-n junction, 2 and 3—passive regions, 4—ohmic contacts.

Rectifier diodes. The nonlinear current-voltage characteristic of 
the p-n junction (Figure 8.15) enables it to be used to rectify alter­
nating current. A two-terminal semiconductor device fulfilling such 
function is termed semiconductor rectifier diode. Figure 8.17 shows 
the principal schematic diagram of such a diode. It consists of a p-n 
junction i, passive n- and p-regions 2 and 5, and ohmic contacts 4. 
The high-resistivity region of the crystal is termed base of the diode. 
In our case it is the ^-region 3 of the width W.

Nowadays p-n junction rectifier diodes are made almost exclusive­
ly of silicon. The efficiency of such diodes is almost 100 percent 
and in combination with their low weight, small dimensions, ease 
of servicing, etc. this made them a very widely used device for such 
applications. Various diode types are designed to rectify currents 
from several milliamperes to several hundred or thousand amperes. 
For greater currents the diodes are connected in parallel. The maxi­
mum reverse voltage for various types lies in the range from 50 to 
600 V. It may be much higher for special diode types. For use in 
high-voltage rectifiers the diodes are assembled in-series in stacks. 
The reverse currents of various rectifier types lie in the range from 
fractions of a microampere to tens of milliamperes.
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Impulse and high-frequency diodes. The second very important 

field of application of the semiconductor diodes is the field of impulse 
electronics, computer electronics, automation, VHF electronics, etc. 
In such applications the diode is required to process pulses of mini­
mum duration and of maximum repetition rate. Therefore one of the 
main requirements of diodes designed for such circuits is the speed 
of operation, that is, switching speed from the direct to the reverse

F igure 8.18 Transient processes in diode: (a)—majority and m inority 
carrier distributions; (b)—m inority carrier in jection by forward voltage 
and their diffusion into the bulk o f sem iconductor; (c, d)—variations 
of forward and reverse voltages and currents in a diode sw itched 
on in the forward direction and resw itched to reverse direction.

state. To find what lies at the origin of this speed let us discuss the 
physical processes that take place when a p-n junction is switched.

Figure 8.18(a) shows the distribution of the majority and minority 
carriers in the p- and n-regions of an equilibrium p-n junction. 
When a direct voltage V is applied to the diode, the potential barrier 
of its p-n junction sinks by qV and the majority carrier flux through 
the junction increases e^v/hBT times with the result that the hole 
concentration at boundary 1 and the electron concentration at boun­
dary 2 rise to the values of pn (0) pn0 and np (0) np0J respec­
tively (Figure 8.18(b)). For the direct current to flow it is necessary 
for those carriers to be drawn into the bulk of the semiconductor: 
the holes should be drawn into the ra-region and the electrons into 
the p-region. The recombination of those minority carriers takes 
place inside the regions, or on the contacts if the width of the regions 
is small in comparison with their diffusion length. The removal 
of the minority carriers proceeds either by means of diffusion whose 
rate is the higher the greater the concentration gradient of holes
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(idp/dx) at boundary 2 and that of electrons (<dnldx) at boundary 1 
or in special diode types by means of drift in built-in electric fields. 
At the initial moment after the forward voltage had been applied 
(Figure 8.18(c)) this gradient is extremely high since the holes trans­
ported to the ^-region and the electrons transported to the p-region 
are concentrated in narrow layers close to boundaries 2 and 1. There­
fore the initial forward current in the diode is high, being limited 
practically only by the resistance of its passive regions (plateau 1 
in Figure 8.18(d)). As the holes enter the rc-region and the electrons

Figure 8.19 Equ iva len t circu it o f diode: R -non- lin ear resistance 
o f p -n  junction, C — capacitance o f p -n  junction; R ohm —ohm ic resistance
of passive regions and contacts.

R

the p-region their concentration gradient drops and so does the 
forward current (Figure 8.18(e)). After a time equal to the minority 
carrier lifetime t (or to the transit time of the minority carriers 
from the boundaries 1 and 2 to the contacts 4, which is even shorter) 
a steady-state (independent in time) distribution of the holes in 
the ^-region and of the electrons in the p-region is established 
(Figure 8.18(b)) and the forward current assumes its normal value 
(Figure 8.18(d)).

When the diode is switched from the forward to the reverse state 
(Figure 8.18(c)), the initial reverse current is very high since the 
minority carrier concentrations at boundaries 2 and 2, which are 
responsible for this current, are high: the magnitude of the current 
is actually limited by the resistance of the passive regions of the 
diode (plateau 2 in Figure 8.18(d)). In the course of time the excess 
carriers at the boundaries gradually dissolve, their concentrations 
drop to equilibrium values (pn0 and 72p0)» and the reverse current 
assumes its normal value (Figure 8.18(d)). This process lasts about 
the same time as the first (lifetime or transit time).

Thus, when the diode is switched, transient processes (of carfcier 
accumulation in the forward biased diode and of carrier dissipation 
in the reverse biased diode) take place in it, limiting its switching 
speed. Since the duration of those processes is approximately equal 
to the minority carrier lifetime t and since a reduction in t increases 
the switching speed, the tendency is to make t as short as possible. 
Another method is to reduce the transit time of carriers by making 
the diodes as thin as possible (several microns or less).
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On the basis of the aforesaid we can draw the conclusion that 
a p-n junction behaves with respect to a short alternating signal as 
a resistance R located in the barrier layer shunted by the capacit­
ance C of the p-n junction (Figure 8.19). When a forward bias is ap­
plied, the initial current through the diode is mainly the current 
which charges the capacitor C. This current can be quite high. When 
the diode is switched to the reverse bias, the initial reverse current 
is mainly the discharge current of the capacitor C and it too can be

Figure 8.20 Circuit diagram of the sim plest voltage regulator using 
a silicon  Zener diode Z.

Rv

quite high. To improve the speed of the diode and its high-frequency 
performance it is evidently necessary to reduce the p-n junction 
capacitance C. This is done by reducing the area of the p-n junction 
to the minimum. This measure together with other measures enabled 
the switching speeds of modern diodes to be reduced to approximate­
ly 10~9 s and the operating frequencies to be raised to 109 Hz.

Voltage regulators. A small increase in the reverse voltage in the 
prebreakdown range causes a substantial increase in the reverse 
current (see Figure 8.16). This effect is being used to stabilize voltage 
and the device is called the Zener diode regulator.

Figure 8.20 depicts the simplest circuit diagram of a dc voltage 
stabilizer utilizing a Zener diode. When the input voltage Fin is 
increased, the diode’s resistance drops drastically and the current 
in the circuit of the voltage drop resistor Ry increases causing the 
voltage drop across it to increase; the voltage across the load resis­
tance R\ (the output voltage Vout) may remain practically constant. 
Power supplies using Zener diodes are now quite a match for normal 
cells.

Tunnel diodes. There is another very interesting and practically 
important type of semiconductor devices, the so-called tunnel diode 
which utilizes the quantum mechanical effect of electrons tunnelling 
through a narrow potential barrier. The diodes are constructed from 
heavily doped degenerate semiconductor material in which the 
Fermi level lies not in the forbidden band but just like in metals 
in the conduction band of an n-type semiconductor or in the valence 
band of a p-type semiconductor. Figure 8.21(a) shows the energy- 
band diagram of a tunnel diode in the state of equilibrium. We see
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that there is a partial overlapping of the valence band of the p-region 
and the conduction band of the ^-region. This makes possible the 
tunnelling of electrons from the ra-region to the p-region (flux 1) 
and from the p-region to the w-region (flux 2). Flux 1 constitutes 
the reverse tunnelling current and flux 2 the direct current. In the 
absence of an external field those currents are equal and the total 
current through the junction is zero.

When a direct voltage is applied to the junction, the overlapping 
of the bands becomes smaller (Figure 8.21(b)) and because of this 
flux 2 exceeds flux 1 and a direct current passes through the junction

Figure 8.21 Princip le of operation and current-voltage characteristic 
o f the tunnel diode.

t) rt b n  h r t

increasing with the direct voltage V until a maximum is reached 
corresponding to a voltage at which the bottom of the conduction 
band of the ra-region coincides with the Fermi level of the p-region 
(Figure 8.21(c)). When V is increased still further, the direct current 
diminishes because of the decrease in the number of occupied states 
of the ra-region lying opposite the free states of the p-region (Figure 
8.21(d)). When at a voltage V the bottom of the conduction band 
of the ^-region coincides with the top of the valence band of the 
p-region, the overlapping of the bands ceases (Figure 8.21(e)) and 
the tunnel current turns zero, but a small direct current appears 
as in a usual diode. It rises rapidly with a further increase in V in 
accordance with (8.27) (Figure 8.21(f)).

A remarkable property of the tunnel diodes is the negative dif­
ferential resistance region 1-2 on the current-voltage characteristic 
similar to that of the Gunn diode. This makes it possible to use
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those diodes for the generation of VHF oscillations up to frequencies 
of about 1011 Hz. The tunnel diode was one of the first devices with 
a switching time of a fraction of a nanosecond (10“10s) and this 
enabled it to be used in impulse circuits of digital computers and 
in various automation circuits. Only the majority carriers work 
in the tunnel diodes and this makes them much less sensitive to 
ionizing radiation than the bipolar semiconductor devices, this 
fact being of special importance for space explorations.

The development of the tunnel diodes is an excellent illustration 
of the fact that the quantum mechanics, formerly an exotic science,

Figure 8.22 Schematic representation of n-p-n junction transistor 
and its connection into circuit.

became for the modern engineer a powerful tool which he must 
master in order to be able to take an active part in the progress 
of modern technology.

Transistors. Rapid progress in semiconductor electronics became 
possible only after the invention in 1948-1949 by J. Bardeen, 
W. H. Brattain, and W. Shockley of the semiconductor amplifier— 
the transistor—whose characteristics and whose designation were 
similar to those of the vacuum tube but which had some substantial 
advantages over the latter.

Figure 8.22(a) shows the schematic representation of an n-p-n 
junction transistor. The transistor is made of three regions: the left 
ra-region E termed emitter, the middle p-region B termed base, and 
the right rc-region C termed collector. Those regions are separated 
by two p-n junctions: the emitter and collector junctions. By means 
of ohmic contacts the transistor is connected into the circuit: one 
of the possible connections (the common base connection) is shown 
in Figure 8.22(a), where R [n is the equivalent input resistance of 
the transistor and i?0ut its equivalent output resistance. It may 
be seen that the emitter p-n junction is biased in the forward and 
the collector in the reverse direction.



294 S o lid  State Physics

To understand the physical principles of transistor operation let 
us turn again to Figure 8.18(b). When a forward bias is applied to 
the emitter p-n junction, the concentrations of the majority carriers— 
of electrons in the p-region and of holes in the ^-region—increase 
drastically as compared with their equilibrium concentrations. 
This phenomenon is termed minority carrier injection and serves 
as the basis for transistor operation.

The electrons injected from the emitter E into the base B (Fig­
ure 8.22(a)) diffuse to the collector C\ with a base that is narrow 
in comparison with the minority carrier diffusion length practically 
all the injected electrons will reach the collector junction and will 
be drawn in by its field into the collector circuit of the transistor. 
Therefore the collector current I c will be approximately equal 
to the emitter current I e: I c =  a/e, where a « 1 is the common 
base current amplification factor.

Now imagine that an external signal Fin small in comparison 
with the bias voltage V is applied to the input resistance i?in. The 
input current—the emitter signal current—will be I e =  Fm/^in 
and the output voltage—the signal voltage across the collector 
junction (or the equivalent collector resistance Rout)—will be Fout =  
=  I CRout =  a7ci?ouf Therefore the voltage amplification factor 
a v of the transistor in the common base connection will be

(%V =  V \tJ V out == -^in ^  ^ou t/-^ in
Since i?in is a small differential resistance of a forward-biased 

p-n junction and R0ut is an enormous resistance of a reverse-biased 
junction (R0ut >  R[n), a v 1 and may be as high as 105 (for dc 
current). Since in this connection only the voltage is amplified, 
the same will be the power amplification factor aP =  Pout^m « 
» a v. The source of the additional signal power dissipated in the 
collector circuit is the collector power supply Fc.

Figure 8.22(b) shows the transistor connected into a common emit­
ter circuit. In this case the signal from the source S is applied 
between the emitter and the base, the output signal being taken off 
the emitter and the collector. The input signal affects the emitter 
/e, the collector 7C, and the base /b currents, the latter being the 
difference of the former two (/b =  I e — /c). Since /c =  a/e, it follows 
that the common emitter current amplification factor

R =   ̂° _  a
p 7b 7e/c l- a

can be made very high ( ~ 104), but from considerations of stability 
and of frequency response it is usually held in modern transistors 
in the range from 40 to 100.

Transistors have found universal application in electronics: 
in low- and high-frequency amplifier and oscillator circuits, in



Contact Phenomena 295

switching circuits, in triggers and multivibrators, in low- and high- 
frequency detector circuits, etc. Almost the whole of modern com­
mercial and special-purpose electronics is based on semiconductor 
devices the most important of which is the transistor.

Photoelectric devices; p-n junction photocells. When a p-n junction 
is illuminated an emf is established in it. This phenomenon is uti­
lized in barrier layer photocells which may serve as indicators of

Figure 8.23 Semiconductor barrier layer photocell: (a)—schematic 
representation; (b)—energy band pattern of p-n junction.

radiative energy independent of external power sources and as con­
verters of radiative energy into electrical energy.

Figure 8.23(a) shows the schematic representation of a photocell. 
A narrow diffused zz-layer is fabricated on the surface of a p-type 
semiconductor wafer so that a p-n junction is formed. In the absence 
of illumination the p-n junction is in the state of equilibrium and 
an equilibrium potential barrier qVc (Figure 8.23(b)) is established 
in it. When the junction is illuminated, electron-hole pairs are 
generated mostly in the p-region because light passes through the 
narrow zz-layer without absorption. The electrons generated in the 
p-region diffuse to the p-n junction and are drawn in by the contact 
field and transported to the zz-region. The holes are unable to sur­
mount the barrier qVc and remain in the p-region. Because of that 
the p-region acquires a positive charge and the zz-region a negative 
one and an additional forward voltage FPh is established across 
the junction. The term for it is photo-emf, or photovoltage.

At present the most efficient converters of solar energy are silicon 
photocells (solar batteries). They are used as power supplies for 
receivers and transmitters installed on satellites and even on the
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ground. Calculations show the maximum efficiency (theoretical) 
of the silicon energy converters to be as high as 22-23 percent. The* 
efficiency of the best modern types is about 15 percent. Germanium, 
copper oxide, selenium, silver sulfide, sulfurous thallium and other 
semiconductor photodiodes are widely used as indicators of radiative 
energy. Their integral (in the entire spectrum) sensitivity is much 
higher (102-103 times) than that of the external photoeffect cells. 
Their main disadvantage is their great inertiality.

Photodiodes. The photodiode is a photocell connected into a circuit 
in-series with an external power supply (Figure 8.24(a)). In the

Figure 8.24 Photodiode: circuit diagram (a) and current-voltage 
characteristic (b).
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absence of illumination I  a negligible so-called dark current 
flows through the junction (Figure 8.24(b)). When the p-n junction 
is illuminated, excess carriers are generated and the current rises 
in proportion to I  causing a voltage drop across the load resistor R\. 
Substantial advantages of the photodiodes over the external photoef­
fect elements are smaller dimensions and lower weight, high integral 
sensitivity and low operating voltage.

Luminescent dipdes. The passage of a forward current through 
the p-n junction involves, as we know, minority carrier injection: 
of electrons into the p-region and of holes into the ^-region. The 
injected carriers recombine with the majority carriers of the respec­
tive region, their intensity decreasing with the distance from the 
p-n junction (Figure 8.18(b)). In many semiconductors the recom­
bination is nonradiative: the energy liberated in the recombination 
process is absorbed by the crystal lattice, that is, turns eventually 
into heat. However, in such semiconductors as SiC, GaAs, InAs, 
GaP, and InSb the recombination is radiative: the energy of recom­
bination is liberated in the form of radiation quanta, photons.
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Because of that a forward current flowing through the p-n junction 
made of such materials is accompanied by the emission of light 
from the junction region.

This phenomenon is utilized in the luminescent diodes. Such 
diodes are used in displays, they may be used in computers for data 
input and output and in other applications requiring reliable lumi­
nous indicators. Low operating voltages, low power consumption 
and a long service life are the advantages of the light emission diodes- 
over other electroluminescent light sources.

Semiconductor lasers. In recent years intensive work has been in 
progress on the semiconductor sources of coherent radiation—semi­
conductor lasers—which open up possibilities for the direct conver­
sion of electric energy into the energy of coherent radiation.

In Figure 8.25(a) the solid line shows the electron distribution 
corresponding to the equilibrium state and the dotted line the distri­
bution corresponding to the nonequilibrium state, in which the- 
concentrations of electrons in the conduction band and of the holes 
in the valence band are above the equilibrium values. Such band 
occupancy corresponding to population inversion is shown in Fig­
ure 8.25(b). The peculiar point about it is that the light quanta with 
the energy Hco =  E g (Eg is the forbidden band width) cannot be- 
absorbed by the system. Indeed, such an absorption involves the 
transfer of an electron from the top level of the valence band to the 
lowest level of the conduction band. Since there are practically 
no electrons on the top levels of the valence band and no vacant 
states at the bottom of the conduction band the probability of such 
a process is extremely small. This creates favourable conditions 
for the stimulated emission and for an avalanche of photons. Tim 
light quantum 1 (Figure 8.25(b)) stimulates the recombination of 
the electron and the hole (a-transition), which results in the emis­
sion of an identical quantum 2. Since the quanta are not absorbed;

Figure 8.25 (a)—electron distribution plots for equilibrium (solid line) 
and inverse (dotted line) states of semiconductor; (b)—development 
of photon avalanche caused by induced radiation of a quantum system 
with population inversion; (c)—in a quantum generator only the radiation 
which propagates along the 00' axis is amplified.

(c)(a) (b)
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by the system, they subsequently stimulate the emission of two 
new quanta, etc. To make one photon take part in many stimulated 
emission acts, two strictly parallel mirrors 1 and 2 (Figure 8.25(c)) 
are arranged on the opposite sides of the laser crystal to reflect the 
incident photons and return them into the crystal. Only those pho­
tons are amplified which move strictly along the 00' axis, for only 
such photons are repeatedly reflected by mirrors 1 and 2. All other 
photons leave the active laser space immediately or after a limited 
number of reflections (in Figure 8.25(c) such photons are shown by

Figure 8.26 Schematic representation 
of semiconductor laser:
1— active region of laser;
2— reflecting faces (mirrors)w

dotted lines). The result is a highly directional and highly monochro­
matic beam of radiation along the 00' axis.

There are various methods of creating a population inversion 
of the semiconductor energy bands. The best prospects offers the 
minority carrier injection through a forward biased p-n junction 
made in a degenerate semiconductor. Figure 8.26 shows the structure 
of a semiconductor laser in which such method of pumping is used. 
The laser is a diode with a p-n junction 1 made in the form of a bar. 
Highly polished faces 2 of this bar made strictly parallel to each 
other play the part • of mirrors that reflect the photons.

The interest for the semiconductor lasers is due to some of their 
remarkable properties.

First of all, they have a high efficiency which may in principle 
reach 100 percent. This is due, on the one hand, to the quantum 
mechanical nature of the laser as a system in which only the “working” 
energy levels are excited, and on the other, to the fact that in a semi­
conductor laser the electric energy is directly converted into coherent 
radiation without any intermediate steps as in all the other laser 
types.

Another remarkable property of the semiconductor laser is that 
it is possible to modulate the coherent radiation directly by changing 
the current through the p-n junction. This enables them to be used 
in communications and in television as well as in ultra-high-speed 
computers for which their miniature dimensions are of special impor­
tance.
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§ 78 Fundamentals of integrated circuit 
electronics (microelectronics)

The progress of modern science and technology requires electronics 
to provide for it efficient complex electronic equipment. Such equip­
ment often contains hundreds of thousands of elements connected 
into a circuit by means of a similar number of connections.

Electronic equipment is responsible for the main part of costs 
of production of modern military equipment and aircraft. Accord­
ing to Western sources, the cost of electronic equipment makes 
up over 70 percent of the cost of a modern guided missile and over 
50 percent of the cost of a modern bomber.

To produce such highly sophisticated equipment some difficult 
problems had to be solved, including the problems of drastic reduc­
tion in weight, dimensions, power consumption, and in price and 
of increasing the reliability of electronic devices.

Should modern electronic apparatus be assembled from compo­
nents manufactured by the industry several decades ago, its weight 
would have been tons, its dimensions cubic metres, and its power 
consumption hundreds of kilowatts. The latter fact would have 
sufficed to make it impractical for many fields of the 
economy.

But those are not the only drawbacks. As the complexity of the 
electronic equipment increases its reliability—a factor of primary 
importance especially in military, computer and automatic produc­
tion line applications—diminishes.

Finally, the problem of bringing down the costs of electronic 
equipment is also not devoid of importance and this problem can 
only be solved by far-reaching automation of the technological 
processes, which in turn requires the development of appropriate 
technology.

The efforts to solve those problems lead to the creation of minia­
ture electronic elements and blocks based on solid-state technology 
and to the microminiaturization of electronic equipment resulting 
finally in the birth of a new field of modern electronics—microelec­
tronics—whose main objective is the production of highly reliable and 
economical microminiature electronic circuits and apparatus.

The modern way to solve this problem is to devise new principles 
of constructing electronic circuitry which would make possible the 
formation of a circuit as a whole on a miniature semiconductor 
crystal instead of assembling it from separate components. Such 
solid electronic circuits designed for specific applications are termed 
integrated circuits (IC). The integrated circuit, like an ordinary 
electronic circuit, is made up of active elements (transistors, diodes) 
and of passive elements (capacitors and resistors).
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A semiconductor IC is fabricated on a single-crystal wafer (usually 
silicon) with the aid of methods of local doping with appropriate 
impurities to produce on it transistors, diodes, capacitors, and 
resistors and to connect them into a circuit. The dimensions of the 
wafer are typically (10~2) X (5 X 10~3) X (2 X 10“4) m3, the area 
of the active elements, for instance of a transistor, being under 
10~9 m2.

The integrated circuits are usually characterized by packing 
density and by degree of integration. The packing density is the 
number of elements per unit volume of the IG, and the degree of 
integration, the number of elements making up the IC. Table 8.2 
presents data on the packing density and on failure rate of circuits 
of different generations.

It follows then that the changeover from the circuits assembled 
from pre-1941 components to modern IC increased the packing 
density some 105 times. There are reports of packing densities of IC 
of up to 1015 m“3.

The degree of integration of an IC may vary in a wide range— 
from tens to hundreds or thousands of elements on each wafer. IC of 
over 100 elements are termed big integrated circuits (BIC).

The power consumption of IC, depending on the type, lies in the 
range of hundreds of milliwatts to several microwatts.

Thus, the changeover to electronic equipment designed around IC 
practically solved the problems of dimensions, weight, and power 
consumption. Electronic computers are an impressive example of 
this. The first Soviet computers which were assembled from vacuum 
tubes and radio components (Minsk, Ural, etc.) occupied whole 
buildings, weighed tons, and cosumed tens of kilowatts of power.

Electronic blocks assembled from IC have dimensions of the order 
of 10“2 m3 and consume only hundreds of watts while special comput­
ers used, for instance, for launching and controlling missiles and 
spacecraft have dimensions of the order of 10“3 m3, weigh tens of 
kilograms and consume power of the order of tens of watts.

Presently BIC are being used in single wafer electronic calculators. 
The computer wafer (called “chip”) of such a device is (5 X 5)10“6 m2 
and contains about 5 thousand transistors. BIC for electronic time-

Table 8.2

Circuits using

Pre-1941 elements 
Miniature elements 
Semiconductor IC

3.5 X104 
1.8x105 
3.0x10®

10-5
5X1(T6Negligible
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pieces including wrist watches have been developed as well. In such 
watches two wafers containing about 2 thousand transistors are used.

A substantial advantage of IG is that because mass-produced IC 
are much cheaper than equivalent circuits assembled from compo­
nents. Modern technology makes it possible to arrange about a thou­
sand IG on one single-crystal wafer of 5 X 10"2 m in diameter; 
if a hundred such wafers are processed at a time, about a million 
IC can be produced in one technological cycle.

The progress in microelectronics is a very rapid one. During the 
last decade a distance was covered from the simplest IC to BIC. 
In the nearest future it is expected that most electronic equipment 
shall be based on integrated circuitry with the degree of integration 
increasing 100 to 1000-fold and a much greater reliability being 
attained. However, there are obstacles on this road, namely the 
so-called “tyranny of numbers” of microelements which already 
today crowd complex equipment in tens or hundreds of millions. 
To overcome this obstacle it will, probably, be necessary to change 
over from the conventional IC to functional circuits, that is, to devices 
designed for specific functions and operating on some specific prin­
ciple of solid state physics as a whole and not as a sum of individual 
elements (transistors, diodes, etc.).

As the simplest example of a functional device one may cite the 
ac-dc converter. The conventional circuit of such a converter consists 
of a transformer, rectifiers (semiconductor or vacuum diodes), and 
a filter. The functional converter consists of a resistance region in 
which the ac energy is transformed into heat, of the central low 
electric but high heat conductivity region, and of a thermoelectric 
region in which heat is converted into dc power. In such a device 
it is impossible to separate regions equivalent to the components 
of a conventional circuit. Here the crystal as a whole fulfills the 
complex function of an ac-dc converter.

The transition to functional circuits should result in a drastic 
decrease in the number of components and therefore in the 
decrease in the cost and in dimensions and in the improvement of 
reliability.

The process of creation of new scientific and technological trends 
in electronics and of devising devices and equipment based on new 
principles is a continuous one, the foundation for it being the utili­
zation of the top-ranking achievements in the fundamental and 
applied sciences, first of all, in physics. Here the leading role belongs 
to solid state physics which determines the mainstream of progress 
in modern electronics.
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Thermoelectric and Galvanomagnetic 
Phenomena

The thermoelectric effects include the Seebeck, the Peltier, and the 
Thomson effects, and the galvanomagnetic the Hall, the Ettingshau- 
sen, and the Nernst effects. Some of those phenomena have found 
wide application in practice; therefore a look at them is not only 
of educational but of practical interest as well.

Let us discuss briefly the physical background of those phenomena.

§ 79 The Seebeck effect
In 1822 T. J. Seebeck discovered that an electromotive force VT 
is established in a circuit consisting of two conductors 1 and 2 made 
of different materials if the junctions of these conductors, A and B y 
are kept at different temperatures, Tx and T2 (Figure 9.1(a)). This 
emf is termed thermal emf. Experiments show it to be—in a narrow 
temperature interval—proportional to the difference in the tem­
perature of the junctions A and B:

VT =  a (T2 -  Tx) (9.1)
The proportionality factor

a =  dVt ldT (9.2)
is called differential, or specific, thermoelectric power. It is deter­
mined by the material of the conductors and the temperature.

There are three sources of thermal emf: the directional current 
of the carriers in the conductor due to the presence of a temperature 
gradient (the volumetric component V\), the change in the position 
of the Fermi level (the junction component V]), and the drag of the 
electrons by the phonons (the so-called phonon drag effect).

Let us discuss the physical nature of each of those sources.
Volumetric component of thermal emf. Suppose that a temperature 

difference (T2 — Tx) is maintained at the terminals of a uniform 
conductor AB (Figure 9.1(b)) so that there is a temperature gradient
302
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dT/dx in the direction from B to A . The current carriers in the hot 
end have greater kinetic energy and greater speeds of motion than 
the carriers in the cold end. Therefore a current will flow in the 
conductor from the hot end to the cold; this current will charge 
the conductor. In cases when the current is carried by electrons, the 
cold end will accumulate a negative charge and the hot end a posi­
tive charge, and a potential difference Fv will be established between

Figure 9.1 The Seebeck effect: (a)—thermoelectric circuit;
(b)—origin of volumetric and junction components of thermal emf.

them. This is the volumetric component of thermal emf. The differen 
tial thermoelectric power corresponding to this component is

(9 -3 >

av may be estimated as follows. The pressure of the electron gas 
in the conductor is

p =  ~ nE  (9.4)

where E is the average energy of electrons in the conductor, and n 
their concentration.

The temperature gradient occasions a pressure gradient to com­
pensate which a field % should be established in the conductor such 
that

dp
dx

dp dT 
dT dx

From here av may easily be found:
dVy c£ / dT \ - i  1 dp /n Kv

a V— 5f=*(-te) <9-5>
As a rule, in an n-type conductor av is directed from the hot end 

to the cold. However, there are exceptions to this rule which we will 
discuss below.
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The junction component of thermal emf. The change in temperature 
occasions a change in the position of the Fermi level. In rc-type 
conductors the Fermi level sinks on the energy diagram as the temper­
ature is raised (see Figure 5.19(a)). By force of this it should be 
higher on the cold end of an ra-type conductor than on its hot end. 
The difference in the Fermi level positions is equivalent to a poten­
tial difference

dv> = - \ w dT (9-6)
And this is just the junction component of the thermal emf. The dif­
ferential thermoelectric power corresponding to this component is

a = __ I dpi
I t (9.7)

The resultant differential thermoelectric power
1 dp 1 djit
nq dT q dT (9.8)

We apply the relation (9.8) to conductors of various kinds.
Thermoelectric power of metals. Substituting the average energy 

of electrons of a degenerate electron gas from (3.45) into (9.4), 
we obtain the following expression for the pressure of the electron 
gas in a metal:

p - t " b = t ”£' + w ( w
differentiating this expression with respect to T and multiplying 
it by ilnq, we obtain

__/cB ji2 kBT
a v ~  q 3 E¥ (9.9)

The temperature dependence of the Fermi level in metals is given 
by relation (3.44):

Differentiating it with respect to T and multiplying by 1 !q% we 
obtain

3T2A;b k-̂ T
6 q Ey (9.10)

Substituting (9.9) and (9.10) into (9.8), we obtain

a" “T r ( 1+4 -) - ir  (9,1)
A more accurate calculation for metals with a quadratic depen­

dence of the electron energy on the wave vector produces the fol-
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lowing result:
o . - ^ d + r ) # (9.12)

where r is the exponent in the relation ,
r o c  e t (9.13)

which expresses the dependence of the electron mean free path on 
energy E. %

Table 9.1 presents the values of r for various mechanisms of elec­
tron scattering on atomic-and ionic lattices.
Table 9.1

Scattering on thermal vibrations

Atomic
lattice

Ionic lattice
r < e  r > e

Scattering on 
impurity atoms

r A ~ 0 1/2 1 2

It follows from (9.12) that for metals am a  T, in full agreement 
with experiment. Since kB T EF the thermoelectric power of 
metals is quite small. For instance, for silver EF = 5.5 eV and 
kB T =  0.025 eV at T — 300 K; substituting this into (9.12) we 
obtain am « 8  X 10~6.V/K, which is quite close to the experimen­
tal value am » 5  X 10~6 V/K.

It follows from (9.13) that when r <  0 the more energetic elec­
trons have a shorter mean free path X. Since the diffusion current 
in this case is directed from the hot end to the cold end, the sign 
of the volumetric component of the thermal emf will be reversed. 
This may cause the reversal of the sign of the m etal’s thermal emf 
as a whole. Such effects are observed, for example, in some transition 
metals and in some alloys.

As was already stated before formula (9.12) is valid for metals 
with a quadratic E (k) dependence. In metals and in alloys with 
a complex Fermi surface the contribution of the various regions 
of this surface may differ not only in absolute value but in sign 
as well, with the result that the thermoelectric power may be zero 
or close to zero. For instance, lead has a zero thermoelectric power. 
For this reason thermoelectric power is usually measured in relation 
to lead. ~ .

The current direction in the hot junction of a thermocouple made 
of an ra-type conductor and of lead will be determined by the polarity 
of the conductor’s charge. For a normal conductor whose hot junction 
acquires a positive charge the current in it will be directed from
20-0885
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conductor to lead (Figure 9.2(a)). In this case the conductor’s ther­
moelectric power is assumed to be negative.

In case of an ra-type conductor acquiring an anomalous charge* 
(Figure 9.2(b)) the current in the hot junction will flow from lead 
to conductor and a will be positive; X will be positive for a normal

n-type conductor
+ Pb I a Hot junction

ype con due to r 
Pb TflHot junction
7bTp -type conductor
Pb / Hot junction
(c)

Figure 9.2 Magnitude and sign 
of thermoelectric power determined 
in relation to lead (explanation 
in text).

jo-type conductor too, whose hot end acquires a negative charge 
(Figure 9.2(c)).

Thermoelectric power of semiconductors. The pressure of electron 
gas in a nondegenerate semiconductor is

p = nE =  nkBT
Differentiating this expression with respect to T and multiplying
by l/nq, we obtain

[ i + r ^ ]Oy —— (9.14)
A more rigorous calculation yields

a c= kB V Q
r> 1 1 , rp d\nn 
l r +  2 + T dT ■] (9.15)

The chemical potential in a nondegenerate n-type semiconductor 
is given by relation (3.26):

Kn — kB T  In 2 (2nmnkBT)3/3

Differentiating pn with respect to T and multiplying by ilq, we 
obtain

r - )  <9-16>
Substituting (9.15) and (9.16) into (9.8), we obtain

a n Q (r +  2 M'n \ _ I"- | o | l— ^ (2nmnkBT)3/2
kBT ) ~  q [ + “+ n  nh3

(9.17)
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The minus sign in front of the right-hand side jis in accordance with 
the conventional polarity of the thermoelectric power.

For a rc-type semiconductor
+  2 +  (9.18,

Let us estimate the value of a of an extrinsic semiconductor, for 
instance, for rc-type germanium with n =  1023 m~3 at T =  300 K. 
Substituting those values into (9.17), we obtain a « 10"3 V/K. 
Hence the thermoelectric power of semiconductors is three orders 
of magnitude greater than that of metals.

For semiconductors with bipolar conductivity, in which the 
electric current is carried both by electrons and holes, the expression 
for the thermoelectric power is:

an,p &pPup — &nnun
pup +  nun (9.19)

It follows from this relation that if the electron and hole concentra­
tions and their mobilities turn out to be equal, the thermoelectric 
power may be quite small or even zero.

Phonon drag of electrons. The phonon drag effect, discovered by 
L. E. Gurevich in 1945, consists in the following. With a temperature 
gradient in the conductor the phonons drift from its hot end to the 
cold end at an average velocity i;Ph. In the presence of such drift 
the electrons scattered by the drifting phonons are themselves in­
volved in the directional motion from the hot end to the cold end, their 
velocity being about equal to z;Ph. The accumulation of the electrons 
on the cold end of the conductor and their depletion on the hot 
end results in the appearance of a thermal emf FPh.

G. E. Pikus in 1956 calculated the differential thermoelectric 
power due to the phonon drag and obtained the following result:

Arp mnvph Tph
aph *3? (9.20)

Here i?Ph is the phonon drift velocity,, and Tph and x e are the phonon 
and electron relaxation times.

In the low temperature range this component of thermoelectric 
power can be tens or hundreds of times greater than the volumetric 
and junction components.

§80 The Peltier effect
Let a current I  flow in a circuit consisting of two conductors 1 
and 2 (Figure 9.3) made of different materials. The Joule heat Q =  
=  PRt will be liberated in the junctions A and B (R is the junc-
20*
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tion’s resistance, and t is the time the current flows). At junctions 
of identical conductors only this heat will be liberated and from this 
point of view there is no difference between the junction and the* 
rest of the circuit. At the same time at points of junction of different 
materials an additional heat apart from the Joule heat will be liber­
ated or absorbed, heating the contact in the former case or cooling 
it in the latter. This phenomenon was discovered in 1834 by

Figure 9.3 Diagram of circuit used 
to observe the Peltier effect.

J. C. A. Peltier and is termed the Peltier effect; the additional heat 
liberated or absorbed in the junction is termed Peltier heat, Qp. 
Experiments show it to be proportional to the current I  and the 
time the current passes through the contact t:

QP =  n It (9.21)
The proportionality factor II is termed the Peltier coefficient. Its 
value is determined by the materials and by temperature.

There is a direct connection between the Peltier and Seebeck 
effects: the temperature difference causes a current to flow in a cir­
cuit consisting of- different materials and a current flowing through 
such a circuit sets up a temperature difference. The expression for 
this relation is due to W. Thomson (Lord Kelvin), who is the author 
of the thermodynamic theory of thermoelectric phenomena. He 
demonstrated that:

a =  U/T (9.22)
The Peltier effect is due to the difference in the average energies 

of the conduction electrons in unlike materials. By way of an exam­
ple, let’s consider the junction of a metal with a nondegenerate 
ra-type semiconductor (Figure 9.4). After equilibrium had been estab­
lished their Fermi levels will coincide. Only the electrons close to 
the Fermi level whose average energy are practically equal to the 
Fermi energy take part in the conductivity in the metal.

Denote the average energy of the conduction electrons in the 
semiconductor by En. This energy is not equal to the thermal energy 
of the electrons 3kBT/2 since the relative part played by fast elec­
trons in the electric current is greater than that of slow electrons. 
A calculation made for the case of a nondegenerate electron gas
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yields
En =  (r +  2)kBT (9.23)

where r is the exponent in (9.13).
Suppose that the electric current flowing through the junction 

is such that the electrons flow from the semiconductor to the metal.

Metal n-type
semiconductor

Figure 9.4 Energy band pattern 
of metal-semiconductor junction 
illustrating mechanism 
of the Peltier effect.

It may be seen from Figure 9.4 that each electron that goes over from 
the semiconductor to the metal carries with it an additional energy 
equal to

AE =  En +  ( - i in) (9.24)
This energy is the Peltier heat and it is liberated near the junction. 
When the direction of the current is changed, the electrons going 
over from the metal to the semiconductor absorb heat and cool the 
junction.

Dividing AE by the electron charge, we obtain the Peltier coef­
ficient:

nmn —- A E ---- (£ n ~ * 0 (9.25)

Substituting u from (3.26) and En from (9.23) into (9.25), we obtain 

nmn =  —  [(r +  2) +  In 2 W /2 ] (9.26)

A similar relation may be obtained for the junction of a metal 
with a p-type semiconductor

nm p * [ (r + 2)+ln 2 (2nmpkftT)3/2 
ph* (9.27)
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For a junction of two metals the Peltier coefficient may be found 
from (9.22):

IIi,2 =  (a4 — a2) T (9.28)
Substituting a from (9.12), we obtain

Hi,2 n2k2BT2 
3 q <1 +  r)(^7 (9.29)

§81 The Thomson effect
Imagine a homogeneous conductor AB with a temperature gradient 
dTIdx along its length and carrying a current I  (see Figure 9.1(b)). 
W. Thomson predicted theoretically that in such a conductor apart 
from the Joule heat an additional amount of heat Qx proportional 
to the current /, the temperature difference (T2 — 7\), and the 
time t should be liberated or absorbed depending on the direction 
of the current:

Qx =  tI  (Tt - T J t  (9.30)
The heat Qx is termed the Thomson heat and the proportionality 
factor t the Thomson coefficient. It is determined by the material 
of the conductor and by temperature. According to Thomson’s theory 
the difference in Thomson coefficients of two conductors is related 
to their differential thermoelectric power by the expression:

daU2 __ —t8
dT T (9.31)

The Thomson effect is due to the fact that in a conductor in which 
a temperature gradient exists the carrier flux carries not only the 
electric charge but heat as well. Suppose the current in the conductor 
AB (Figure 9.1(b)) flows in the direction corresponding to the elec­
tron flow from the hot end B to the cold end A. The “hot” electrons 
as they arrive in the cold regions give up their extra energy and 
heat the conductor. When the direction of the current is changed, 
the conductor is cooled.

In quantitative calculations of the Thomson effect one should 
take into account the thermal emf set up in the conductor, which 
in the former case will retard the electrons and in the latter accele­
rate them. This thermal emf can change not only the magnitude 
of the Thomson coefficient but even its sign.

§ 82 Galvanomagnetic phenomena
The Hall effect. Suppose a current of density i flows in a conducting 
bar of width a and thickness b (Figure 9.5). Choose points C and D 
on the side faces of the bar such that the potential difference between



Thermoelectric and Galvanomagnetic Phenomena 311

them is zero. Should this bar be placed into a magnetic field with 
induction B, potential difference VH termed Hall emf would appear 
between points C and D . It follows from experiments that in mag­
netic fields not too strong

VH =  RHBia (9.32)
The proportionality factor Rn is termed the Hall coefficient. Its 
dimensions are LZ!Q (L is length and Q electric charge) and it is

Figure 9.5 Layout used to observe the Hall effect.

measured in cubic metres per coulomb (m3/C). Let us consider the 
physical origin of the Hall effect.

The Lorentz force FLorentz acting on an electron moving from 
right to left at a speed v (Figure 9.5) is

FLorentz =  QV X B 
If v i  B, the force will be equal to

^  L o ren tz  =  QvB
The Lorentz force deflects the electrons to the outer face of the 

bar (dotted line in Figure 9.5), and the bar receives a negative charge. 
Uncompensated positive changes accumulate on the opposite side. 
This results in an electric field directed from C to D:

where VH is the potential difference between points C and D (the 
Hall emf).

The field exerts a force F =  q on the electrons, this force 
being directed against the Lorentz force. When F =  FLorentz, the 
transverse electric field compensates the Lorentz force and no more 
electric charges are accumulated on the side faces of the bar. From



312 Solid State Physics

the conditions of equilibrium
qvB =  q% H

we obtain
=  vB

(9.33)

Multiplying this relation by the distance a between points C and D r 
we obtain

Vjj === — vB cl
Taking into account that i =  qnv and consequently v =  i!{qn)r 
we obtain

Fh =  — -Bia (9.34)
Thus theory produces an expression for Vn that coincides with 

the relation (9.32) obtained from experiment. The Hall constant 
turns out to be equal to

R (9.35)
It follows from (9.35) that knowing the absolute value and the sign 
of the Hall constant we can find the concentration and sign of the 
charge carriers in a conductor; i?H of rc-type conductors is negative 
and of p-type conductors positive.

If we measure in addition the specific conductance a =  qnu of the 
conductor, we will be able to find the carrier mobility u since

i?Ha =  it# (9.36)
Mobility un determined from (9.36) is the Hall mobility and 

it may hot coincide with the drift mobility defined by (6.5).
In the derivation of (9.35) it was assumed that all carriers in the 

conductor have the same speed v. Such an assumption is valid in 
case of metals and degenerate semiconductors but it is totally unac­
ceptable for nondegenerate semiconductors, in which the carrier 
velocities are distributed in accordance with the Boltzmann law. 
A more rigorous derivation, which accounts for this fact, yields 
the following expression for i?H:

Rh =  A/(qn) (9.37)
where A is a constant dependent on the scattering mechanism of 
carriers in the crystal. The typical values of A are given in Table 9.2 
below.

In bipolar semiconductors the current is carried simultaneously 
by electrons and holes. Since their charges are opposite and they 
move in opposite directions in an electric field, the Lorentz force 
TTorentz =  ?v X B deflects them in the same direction. Because
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Table 9.2
Scattering by thermal vibrations

Ionic lattice Scattering by im
Atomic -------------------------  purity ions
lattice t <  0 T >  0

A 1.17 0.99 1.11 1.93

of this, other conditions equal, their Hall emf and Hall coefficients 
will be smaller than in unipolar semiconductors. Calculation yields 
the following expression for i?H of bipolar semiconductors:

A upp —unn 
q (upp+ unn)2 (9.38)

where n and p are electron and hole concentrations, and un and up 
their mobilities. Depending on which of the two terms in the nu­
merator is greater, the sign of the Hall coefficient may either be posi­
tive, or negative.

For intrinsic semiconductors, in which n — rii formula (9.38)> 
assumes the form:

A UP un 
n\q «p+«n (9.39)

It follows from (9.39) that in the intrinsic range the sign of the Hall 
coefficient is determined by that of the carriers with greater mobili­
ty. As a rule such carriers are electrons. Therefore when an extrin­
sic jo-type semiconductor goes over to the intrinsic range, the sign 
of the Hall coefficients changes. Hall coefficient (at room tempera­
ture) for some metals and intrinsic semiconductors is presented 
below in Table 9.3.
Table 9.3

Cu Zn Bi Ge Si

i?H(10"11 m3/C) 5.5 3.3 103 1010 1013

As indicated, the Hall coefficient of semiconductors is many 
orders of magnitude greater than that of metals. The explanation 
is that the carrier concentration in semiconductors is much less 
but the mobility, on the other hand, is much greater than in metals.

Ettingshausen effect. The thermal velocities of electrons in non­
degenerate semiconductors lie in a wide range. In such conditions 
equation (9.33) may be valid not for all the electrons but only for 
some of them whose average velocity is v0. For electrons whose-
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■velocity is v >  v0 we have quB >  q(SH and they will be deflected 
to the right-hand face of the plate (Figure 9.6(a)). The electrons 
whose velocity is u <  v0y so that qvB <C , will be deflected to 
the left-hand face of the plate.

Fast electrons reaching the right-hand face give up their extra 
energy to it and thereby heat it. The slow electrons, which accumu­
late on the left-hand face, replenish their energy deficit at the ex­
pense of the thermal energy of the crystal and thereby cool it. Thus

Figure 9.6 Diagram explaining the origin of the Ettingshausen 
and Nernst effects (a) and of specific resistance variations 
in magnetic field (b).

a transverse temperature difference T =  TD — Tc is established. 
This phenomenon is termed Ettingshausen effect.

Nernst effect. The electrons entering a homogeneous magnetic 
field B perpendicular to their velocity v start moving in a circle 
with a radius

mnv
qB (9.40)

It follows from (9.40) that the fast electrons are rotated by the mag­
netic field less than the slow electrons (Figure 9.6(a)). Therefore 
the front face of the plate will be richer in hot electrons and will 
be heated while the back face will be richer in slow electrons and 
will be cooled. A longitudinal temperature difference TB— TA 
will be established. This is the Nernst effect.

Variation of conductor’s resistance in magnetic fields (magneto­
resistance). The trajectories of electrons moving in a magnetic field 
with velocities other than v0 are curved (Figure 9.6(a)) and this 
^results in a reduction of their effective mean free path in the direc­
tion of the electric current. If the mean free path in the direction
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of the current in the absence of a magnetic field is A0, in the magnet­
ic field it is equal to the projection of the arc AD on the direction 
of the current /, that is A =  A0 — AA (Figure 9.6(b)).

Since the carrier mobility u is proportional to the mean free path, 
the decrease in the mean free path by AA should bring about a 
decrease in mobility by Au and in the semiconductor’s conductivity 
by Act so that

Acr/a =  A u/u =  A A/A0
The theory provides the following expression for the relative 

increase in specific resistance of extrinsic unipolar semiconductors:
-^- =  cu2B2 (9.41)

where B is the magnetic field induction, and c a coefficient dependent 
on the carrier scattering mechanism.

The ratio Ap/p is termed magnetoresistivity. It follows from (9.41) 
that by measuring magnetoresistivity one can directly find the 
carrier mobility.

§ 83 Practical applications of thermoelectric 
and galvanomagnetic phenomena

Thermoelectric phenomena. For a long time the only application of 
the Seebeck effect was in measurements. Placing one junction of 
a thermocouple in a thermostat held at a known constant tempera­
ture and the other junction into the object the temperature of which 
is to be measured, one can determine this temperature from the 
thermal emf established in the couple. Such measurements are 
quite simple, reliable and sufficiently accurate and can be carried 
out in a wide temperature range.

However, after semiconductors were discovered it became pos­
sible to use the Seebeck effect for the direct conversion of thermal 
energy into electric energy. The devices used to this end are termed 
thermoelectric generators and the elements of which they are assem­
bled thermoelements. The man mainly responsible for their develop­
ment and wide publicity was the Soviet physicist A. F. Ioffe.

The first thermoelectric generators were produced before World 
War II and were used in the war to power radio equipment. The 
thermoelectric generators were mounted in the bottom of a special 
kettle and heated in the process of boiling water.

In 1953 a commercial type of thermoelectric generator of 3-W 
power for battery receivers was produced; later thermoelectric 
generators of 1-kW power and more were produced. Presently gen­
erators designed for hundreds of kilowatts are being developed.
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The midseventies saw the appearance of thermoelectric generators 
utilizing the heat of radioactive decay of chemical elements. An 
example of such a generator is the generator Beta-1 with a power 
of 150-200 W, which operates on the radioactive cerium isotope 
Ce-144. It was designed to power electronic equipment of automatic 
radiometeorologic stations, earth satellites, etc.

In 1964 an experimental atomic reactor-energy converter Romash- 
ka (Camomile) with a power of 500 W for direct conversion of heat 
energy into electric energy was built.

Work is in progress on thermoelectric generators that would 
utilize the thermal energy of the sun’s radiation.

It is a regretful fact, but the efficiency of even the best modern 
experimental thermoelements does not rise above 8 percent.

The Peltier effect is beginning to be widely used in practice mainly 
for various cooling devices: home refrigerators, devices for cooling 
aircraft electronic equipment, microcoolers for biological applica­
tions, various thermoelectric thermostats, temperature-controlled 
microscope supports, etc. Quite possible, the Peltier effect will 
in the near future be used for heating dwellings in winter and for 
cooling them in summer.

Galvanomagnetic phenomena. The most widely used galvano- 
magnetic phenomenon is the Hall effect. Apart from applications 
in the study of electric properties of materials it served as a basis 
for the design of a wide class of instruments: magnetometers, dc-ac 
and ac-dc converters, signal generators, phase meters, microphones, 
etc.

In recent years attempts are made to use the Ettingshausen effect 
in cooling devices. With the right choice of materials and with the 
optimal geometry of the cooling crystal it is possible to obtain tem­
peratures of the cold face of the crystal of over 100 °C below that 
of the surroundings.
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Appendix I
Derivation of the Maxwell-Boltzmann distribution function. To ob­
tain expression (3.25) consider a collision of two particles one of 
which is in a state with the energy Ex and the other in a state with 
the energy E2. After the collision the particles will go over to states 
with energies E 3 and Ek respectively. Let us define the term reverse 
collision as a collision that returns the particles to the initial states 
with the energies E± and E2. Thus we shall consider collisions of 
two types:

(Eu E2) (£3, Ek) (direct)
(£3, £4) (El 9 E2) (reverse)

The rate of direct collisions Qd is proportional to the average 
number of particles in the initial state, that is f(Ex) and f(E2), 
and is independent of the number of particles in the final state be­
cause the gas is nondegenerate:

Cd =  cf(EJ f(E2) (1.1)
where c is a proportionality factor.

The number of reverse collisions is proportional to / (E3) / (E4):
Qr =  cf(E3) f(E4) (1.2)

In the state of thermodynamic equilibrium Qd should be equal to ()r:
f(E1)f(E2) =  f(E3)f(Ei) (1.3)

Making use of the energy conservation law, E± +  E 2 = E 3 +  E4f 
we may rewrite the expression in the form:

m  i(Et) =  nE a) m  +  e 2-  e 3) (i.4)
Note that Ex, E2, E 3 must be regarded as independent quantities. 
Taking the logarithm of both sides of (1.4), we obtain

In f(Ex) +  In f(E2) =  In f(E3) +  In f{Ex +  E2-  E3) (1.5)
317
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Differentiate this sum with respect to E±. Since E2 and E3 are 
independent of E 1 they may be assumed to be constant. Then

1 dfjEJ _  1 df (E1-{-E2 — E3) d(E,+E2- E 3)
f(Et) dE1 f{Ex +  E2- E 3) +  dE1 K

Since d (E1 +  E 2 — E 3)/dE1 =  1, it follows that 
1 df(Er) _  1 df(E, +  E2- E 3) , t 7 v

f (Ei) dEi f(E1-{~E2 E3) d{Ei~\-E2 E3)

Differentiate (1.5) with respect to E2:
1 df(E2) _  1 df(E, +  E2- E 3)

f (E2) dE2 / (^1 +  ̂ 2  — ̂ 3) d{Ei-\-E2 — ̂ 3)
Comparing (1.7) with (1.8), we obtain

1 df(Ex) 1 d/(ff2)
/ (^1) / (^2) ^ ^ 2

(I.8>

(1.9)

The left-hand side of (1.9) is independent of E2, the right-hand 
side is independent of Ex; therefore each of them is equal to some 
constant independent of the particles’ energy. Denote it by p. Then 
we may rewrite (1.9) as follows:

1 if(E) q
/ {E) dE P (i.io>

Integrating (1.10), we obtain
/ (E) =  Ae$E (I.ll)

where A is the integration constant. Experiment shows that
p=  —(kBT)-\ A =  e'l/h bt (1.12)

Substituting (1.12) into (I.ll), we obtain
U E) =  e ^ e-Elk̂  (1.13)

Appendix II
Derivation of the Fermi-Dirac distribution function. Consider, as we 
did in Appendix I, the direct and reverse particle collisions. Recall 
that in the case of a nondegenerate gas the rate of collisions was 
independent of the number of particles in the final stages and was 
entirely determined by the number of particles in the initial stages. 
The situation in the case of a degenerate fermion gas is a different 
one: if a state is already occupied, it cannot accept another fermion 
and the collision will not take place. For this reason in the case 
of a degenerate fermion gas the rate of collisions is proportional not 
only to the average number of particles in the initial states but
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to the average number of vacant states with the energies E 3 and 
as well.

Since /F (E) expresses the probability for the state with the ener­
gy E to be occupied, 1 — /F (E) expresses the probability for it 
to be vacant. Therefore the average numbers of vacant states with 
the energies E3 and Ek are 1 — /F (E3) and 1 — /F (£4), respective­
ly. Accordingly, the rates of direct and reverse collisions are:

<?d =  efr (Ed h  (EJ (I -  /F (£3)] [1 -  /f (^*)1 (H.l)
Qt =  ch (Ed h  (Ed [1 -  /f (£1)] [1 -  /f (Et)] (II.2>

In the state of thermal equilibrium
fr (Ed h  (Ed [1 -  h  {E*)\ [1 -  h  (EJl

=  h  (Ea) h  (Ed [1 -  U (Ed] [1 -  h  (E,)) (H.3>
Dividing both sides of (II 3) by /F (Ed fF (Ed /f (Ed h  (Ed> we 
obtain

[/f(E3 1J[77(^j 1 ] = [ /f (̂ 3) 1J *] (IL4)
Comparing this equation with (1.4), one may easily see that the- 
function 1 lfF(E) — 1 for a degenerate fermion gas satisfies the 
same condition as is satisfied by the function / (E) in the case of 
a nondegenerate gas. This makes it possible to use the result (1.10), 
which in this case takes the form

[ 1
fv (E)

where y is a constant. Integrating (II.5), we obtain
1

h(E) 1 =  BeyE

(II.5>

(II.6)
where B is the integration constant.

The following considerations may be of use to estimate the cons­
tants y and B. When the condition /F (E) 1 is satisfied, the fer­
mion gas becomes nondegenerate. For such a gas we can neglect 
unity in the left-hand side of (II.6) and rewrite the expression in 
the form

fF(E) =  B~ie-yE (II.7)
Comparing (II.7) with (I.II) and keeping in mind (1.12), we obtain:

B =  A~l =  e-m  b t , y = - p  =  l  /kBT
Substituting into (II.6), we obtain

/P (E) =  E-n/hBTe a +1

(II.8>

(II.9>
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Appendix III
Derivation of the Bose-Einstein distribution function. In contrast to 
fermions bosons can occupy both vacant states and states already 
occupied by other bosons and they do it the more readily the greater 
is the occupancy of the states. Therefore the rate of direct colli­
sions E1 ->■ E3, E2 ->■ 2?4 will be the greater, the greater the numbers 
of particles in the initial states /Bose( î) and fBose(E2) and the 
higher the occupancy of the final states /Bose (E3) and /Bose(^4):

Qd = c/b ose (^l) /b ose (^2) [1 +/b ose (^3)] [1 + /b ose (£4)] (HU)
The units in the brackets take account of the bosons’ ability to go 
over not only to occupied states but to vacant states, for which 
fB o s e ( E 3) = /Bose(#4) = 0, as well. For fBose(E) <  1 (the condi­
tion of nondegeneracy) the expression in the brackets in (III.l) 
becomes unity and Qd becomes equal to the rate of direct collisions 
for the particles of a nondegenerate gas. For the rate of reverse colli­
sions E3 ->■ Ely E4 E2 we obtain

Q r —c/Bose (^3)/Bose (^4) [1 /Bose (^1)] [1 /Bose (^2)] (HI-2)
In the state of equilibrium Qd =  QT:

/Bose ( l̂) /Bose (E%) [1 + /Bose (^3)] [1 +  /Bose (^4)]
= /Bose (E3) /b ose {Ed [1 +/b ose (̂ l)] [1 +/b ose (E2)\ (III.3)

Dividing this expression by fB0Se(Ej) fBose(E-i) fBOse(E3) /Bose^), 
we obtain

f  /Bose(£i) + 1 J [ /Bose («.) +  1J =  [ /Bose (£3) +  4 ] [ /Bose (£4) +  1]
(III.4)

A comparison between (III.4) and (1.3) shows that the function 
l//Bose(£) +  1 for bosons satisfies the same equation as the func­
tion f (E) for a nondegenerate gas. Therefore we may make use of 
the result (1.10) writing it for bosons in the form

1
(/Bose(£)+ 1 )f^ose(E)+i dE \ f Bose(E) 1 * ;  r ( IIL 5 )

Integrating (III.5), we obtain
l _ _  +  l =  BevE (III.6)/Bose

The values of the constants y and B that enter this expression are 
the same as in the case of the degenerate fermion gas:

y — l/kBT, B =  e~'l,k bt (III.7)
Therefore

1/ Bose — e a —1
(III-8)
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Appendix IV
Table 1
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Glossary of Symbols and Notations

A la t t ic e  basis; M adelung con stan t; en ergy o f ex ch ange in tera ction
a la t t ic e  con stan t, B ohr rad iu s
B m a gn e t ic  field in du ct ion
C y  con stan t v o lum e heat ca p a c ity
C e heat ca p a c ity  o f e le c tron  ga s
C ca pa c itan ce ; Curie con stan t; C ou lom b  in tera ction  en ergy
c v e lo c it y  o f ligh t
D d iffu sion  coeffic ien t
Dn e le c tron  d iffu sion  coeffic ien t
Dp h o le  d iffu sion  coeffic ien t
d barrier w idth ; space charge layer w id th
E energy ; Y ou n g’s m odu lu s
Ea a ccep to r  e x c ita t io n  en ergy
Eft b on d  en ergy
Ec b o ttom  o f con du ct ion  band
Eft d on or ex c ita t io n  energy
Ee e le c tron  ga s en ergy
Eexc e x c ita t io n  energy
Ee.g en ergy  gap
Ey Ferm i en ergy
Eg fo rb id d en  band w id th
l̂attice lattice energy

En.m en ergy  o f norm a l m ode
Ev; top  o f va len ce band
% e le c tr ic  fie ld  in ten sity
%c c on ta c t fie ld  in ten sity
F  free energy ; force
f in tera ction  force
/ (E) d is tr ib u t ion  fun ction
/ B o s e  ( £ )  B ose-E in ste in  d is tr ib u t ion  fun ction
/p (E) F erm i-D irac d is tr ib u t ion  fun ction
/m (E) M axw ell-B o ltzm ann  d is tr ib u t ion  fun ction
G num ber o f states; shear m odu lu s
g gen era tion  rate; an h a rm on ic ity  coeffic ien t; Lande fa ctor
g (E) d en sity  o f sta tes
g (co) frequ en cy  d is tr ib u t ion  fu n ction  o f n orm a l m od es
H  m a gn e t ic  field in ten sity
I  l ig h t  flux; cu rren t
/b base cu rren t
I c c o l le c to r  curren t

3 2 2
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/ e em itter current
i curren t d en sity
if forw ard curren t d en sity
ir reverse curren t d en sity
i s sa tu ra tion  current d en sity
J lig h t in ten sity ; ex ch ange in tegra l; in tr in s ic  quantum  num ber
/m m a gn e tiza tion
J s sa tu ra tion  m agn e tiza tion
k w ave v ecto r o f e le ctron
k a b so rp tion  coe ffic ien t
&b  B o ltzm ann  con stan t
$C heat c o n d u c t iv ity
^ l a t t i c e  la tt ic e  heat c o n d u c t iv ity

e le c tron  ga s heat c o n d u c t iv ity  
L lin ea r d im en sion ; d iffu sion  length ; L oren tz num ber
Ln d iffu sion  len gth  o f e le c tron s
Lp d iffu sion  len gth  o f h o le s
I o rb ita l quantum  num ber; tran sport m ean free path
M m ass; e le c tr ic  d ip o le  m om en t, m a gn e tic  m om en t
M j to ta l m a gn e tic  m om en t o f a tom
m e le c tron  rest m ass; p a r t ic le  m ass
meff e ffect iv e m ass
mj m a gn e t ic  quantum  num ber o f a tom
mt m a gn e t ic  quantum  num ber o f e le c tron
mn e le c tron  effe ct iv e m ass
mp h ole e ffe c t iv e m ass
N n um ber o f pa r t ic le s
N\ A v o ga d r o’s num ber
N (E) to ta l d is tr ib u t ion  fu n ction
JVa a ccep to r  con cen tra tion
Nft d on or con cen tra tion
Nfm con cen tra tion  o f im pu r it ie s
n con cen tra tion  o f pa rtic le s; e le c tron  con cen tra t ion  in  con du ct ion

band
wj e q u ilib r ium  e lectron  con cen tra tion  in in tr in s ic  sem icon du cto r
nn0 eq u ilib r ium  m a jo r ity  carrier con cen tra tion  in rc-type sem icon du cto r
Tiph ph on on  con cen tra tion
npo e q u ilib r ium  m in o r ity  ca rrie r con cen tra tion  in p- typ e sem icon du cto r
P j a tom ic  an gu la r m om en tum
p m om en tum ; pressure; h o le  con cen tra tion
pe e le c tron  m om en tum
PY F erm i en ergy e le ctron  m om en tum
P j h o le con cen tra tion  in in tr in s ic  sem icon du cto r
pi o rb ita l an gu la r m om en tum
Pno e q u il ib r ium  m in o r ity  carrier con cen tra tion  in n-type sem icon d u c to r
pp jj ph on on  m om en tum
pp0 e q u ilib r ium  m a jo r ity  ca rrie r con cen tra tion  in p-type sem icon d u c to r
ps e le c tron  sp in
Q q u an t ity  o f heat; e le c tr ic  charge
()d d estru ction  en ergy
()p P e lt ie r  heat
Qs su b lim a tion  en ergy
q e le c tron  charge; ph on on  w ave num ber
R r e com b in a t ion  rate; ga s con stan t
i?H H a ll coe ffic ien t
Rn e le c tron  r e com b in a tion  rate
Rp h o le  re com b in a tion  rate
r d is tan ce betw een  pa r t ic le s
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r0S
T
TC
T cr Tf
h
y
a
un

V
"o
v&
ve

xa

r
ve

l pb
x c
^ph
V
PB
Vi
VnM'P
Vsv
n
pa
a
adif
aim
aph
a phoar

equilibrium interparticle distance
entropy; slip plane
temperature
Curie temperature
critical or transition temperature
Fermi temperature
intrinsic conductivity transition temperature
impurity exhaustion temperature
potential energy
bond energy
magnetic energy
mobility
electron mobility 
hole mobility
potential; voltage; tension; volume
contact potential difference; collector voltage
photo-emf
thermal emf
velocity
thermal velocity
drift velocity
electron velocity
Fermi energy electron velocity
work
particle’s displacement from equilibrium position 
polarizability of molecules; free surface energy; linear thermal ex­
pansion coefficient; temperature coefficient of resistance; differential, 
or specific, thermoelectric power 
bond rigidity coefficient; quantum efficiency (yield) 
phase volume
relative shear deformation, gyromagnetic ratio 
relative permittivity; quantum energy; relative extension deforma­
tion
phonon energy
Debye temperature; paramagnetic Curie point 
ferromagnetic Curie point
wavelength; mean free path; magnetic field penetration depth in 
conductor
phonon mean free path
chemical potential (Fermi level); molecular mass; magnetic suscepti­
bility; magnetic moment 
Bohr magneton
electron orbital magnetic moment
Fermi level in rc-type semiconductor
Fermi level in p-type semiconductor
electron intrinsic magnetic moment
frequency; number of collisions; Poisson’s coefficient
Peltier coefficient
specific resistance; space charge density
specific conductance; normal stress
theoretical strength
differential conductivity
intrinsic specific conductance
impurity (extrinsic) specific conductance
photoconductivity, phonon effective cross section
stationary photoconductivity
real (technical) strength
lifetime; relaxation time; tangential (shear) stress; durability



S-S
-

Glossary of Symbols and Notations 325

xcr critical shear stress
xn electron “lifetime”
Tp hole lifetime
<p electron potential energy; angle
<p0 equilibrium potential barrier in p-n junction
% thermodynamic work function; magnetic

susceptibility 
wave function 
angular frequency 

<dd Debye frequency
©l Larmor frequency
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Index

Acceptors, 159 
Activators, 205 
Akulov N. S., 231 
Amplifier, parametric, 261 
Anisotropy, crystal, 50 
Antibarrier layer, 274 
Approximation, harmonic, 48

Breakdown, p-n junction, 287 
avalanche, 287 
thermal, 287 
tunnel, 287 
Zener, 287 

Brillouin zone, 146 
Burgers vector, 59

Band, allowed energy, 140 
conduction, 142 
energy, 139 
forbidden energy, 140 
hybrid, 141 
valence, 142 

Bardeen J., 208, 293 
Bartenev G. M., 78 
Barkhausen H., 227 
Barrier layer, 271 
Basov N. G., 253 
Boltzmann L. E., 89 
Bond, covalent, 16 

hydrogen, 22 
ionic, 15 
metallic, 21 
van der Waals, 14 

Borazon, 41 
Bose S. N., 90 
Boson, 88
Brattain W. H., 293

Carriers, equilibrium, 166 
majority, 166, 280 
minority, 166, 283 
nonequilibrium, 166 

Chemical potential, 86 
Coefficient, absorption, 197 

linear expansion, 125 
Coherence length, 217 
Contact potential difference, exter­

nal, 269 
internal, 269 

Cooper L., 208 
Cooper pairs, 215 
Coordination number, 33 
Counters, semiconductor, 203 
Curie P., 226
Curie point, antiferromagnetic, 255 

ferromagnetic, 228 
paramagnetic, 228 

Current, forward, 284 
reverse, 285
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Current (cont.)
saturation, 285 

Current-voltage characteristic, 285

Dark conductivity, 198 
Debye frequency, 111 

temperature, 111 
Defects, Frenkel, 42 

Schottky, 43 
Destruction of solids, brittle, 71 

plastic, 71 
viscous, 71 

Diamagnetism, 223 
Dielectrics, 153 
Diffusion length, carrier, 167 

coefficient, carrier, 168 
Diodes, Gunn, 196 

high frequency, 289 
impulse, 289 
rectifier, 288 
tunnel, 291 
Zener, 291 

Dirac P. A. M., 89 '
Dislocations, edge, 59 

screw, 61 
Dispersion curves, 109 
Domains, ferromagnetic, 251 
Donors, 158 
Dorfman Ya., 248 
Drift, carrier, 170 

velocity, 170 
velocity saturation, 193 

Durability, 77

Effect, Barkhausen, 227 
Einstein-de Haas, 247 
Ettingshausen, 313 
Gunn, 195 
Hall, 310
magnetoelastic, 231 
Nernst, 314 
Peltier, 307 
Seebeck, 302 
Thomson, 310 
Zener, 194

Einstein, A., 90 
Electrophotography, 202 
Electron pairs, 214 
Energy, internal, 85 
Entropy, 246 

magnetic, 246 
Epitaxial method, 279 
Equation, current-voltage characte­

ristic, 277 
van der Waals, 11 

Exchange force, 19 
interaction, 19 

Excitons, 200

Fabrikant V. A., 259 
Fermi E., 89 
Fermi level, 96 

energy, 97 
Fermions, 88 
Ferrites, 256 
Ferromagnetics, 226 
Fields, strong, 193 

weak, 193 
Fluorescence, 204 
Frank, F. C., 67 
Frank-Read source, 67 
Frenkel Ya. I., 249 
Function, Bloch, 144 

Bose-Einstein, 320 
Brillouin, 243 
distribution, 90 
Fermi-Dirac, 318 
Langevin, 243 
Maxwell-Boltzmann, 317

Gap, energy, 146
in superconductors, 211 

Gas, degenerate, 174 
electron, 138 
nondegenerate, 174 

Generation, carrier, 167, 197 
rate, 167 

Griineisen constant, 126 
Gurevich L. E., 307 
Gyromagnetic ratio, 233
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Heat conductivity, 127 
of electron gas, 130 
lattice, 128 
of metals, 130 

Heisenberg W., 45 
Heitler W. H., 19 
Holes, 155 
Hysteresis, 227

Impurities, 44 
Indices, site, 29 

of direction, 30 
plane, 30 

Injection, minority carrier, 294 
Integrated circuits, 299 
Interaction, deformation, 14 

dispersion, 11 
induction, 14 
orientational, 13 

Interstitals, 42 
Ioffe A. F., 248 
Ionization, electrostatic, 194 

impact, 194 
thermoelectron, 194

Kapitza P. L., 248 
Keesom W. H., 13

Langevin P., 240 
Larmor frequency, 239 
Lasers, semiconductor, 297 
Lattice, body-centered cubic, 35 

Bravais, 26 
coordination, 32 
face-centered cubic, 35 
hexagonal close-packed, 35 
hydrogen, 32 
ionic, 32 
metallic, 32 
molecular, 32 
with a basis, 27 

Law, dispersion, 142 
Dulong and Petit, 117

Hooke’s, 46 
Stokes’, 207 
Vavilov’s, 205 

Leipunskii O. I., 40 
Life-time, average carrier, 187 
London F., 12, 19 
Lorentz number, 176 
Luminescence, 203, 296 
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