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Chapter (1)

Different Coordinate Systems
1. Introduction

Coordinate systems is an artificial mathematical tool that used to describe the
position of an object in space.. There are three coordinate systems:

1. One dimension coordinate system (1D).

2. Two dimension coordinate system (2D).

3. Three dimension coordinate system (3D).

In physics basic laws are first introduced for a point partile and then laws are extended to
system of particles or continuous bodies. Therefore, we also begin the discussion with

point particle and later on we will study collection of particles or rigid body.
To write equations governing the dynamics of a aprticle we need its position vectors,
velocity, acceleration etc. Thereforewefirst introduce these elementatyconcepts.

1-1: (1D) Coordinate system
The easiest coordinate system use to describe the location of objects in one
dimensional space. For example, to describe the location of a train along a straight

section of track that runs in the East-West direction. {Figure (1)}.

N

0

Position (km)

Figure (1): A 1D coordinate system describing the position of a train.
** In order to fully specify a one-dimensional coordinate system we need to choose:

1- The location of the origin.
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2- The direction in which the coordinate, x, increases.

3- The units in which we wish to express x.
In one dimension, it is common to use the variable x to define the position along the

“x-axis”. The x-axis is our coordinate system in one dimension.

1-2 : 2D Coordinate systems

To describe the position of an object in two dimensions, we need to specify two
numbers. The easiest way to do this is to define two axes, x and y. Figure (2) shows
an example of such a coordinate system. The axes are perpendicular in “Cartesian”

coordinate system.

lOll.l..x .U

X

B
0 p x

Figure(2): Example of Cartesian coordinate system and a point P

with coordinates (xp, yp).

Another common choice is a “polar” coordinate system, where the position of an
object is specified by a distance to the origin, r, and an anglel, relative to a
specified direction, as shown in Figure (3). Often, a polar coordinate system is
defined alongside a Cartesian system, so that r is the distance to the origin of the
Cartesian system and [ is the angle with respect to the axis.
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od

X

Figure (3): Example of a polar coordinate system and a point P with coordinates (r,e) .

One can easily convert between the two Cartesian coordinates, x and y, and the
two corresponding polar coordinates, r and e:

x = rcos(0)

y = rsin(6)

tan(6) = ¥
T

Polar coordinates are often used to describe the motion of an object moving
around a circle, as this means that only one of the coordinates (&) changes with

time.

1-3 : 3D Coordinate systems

In three dimensions, we need to specify three numbers to describe the position of an
object. In a three dimensional Cartesian coordinate system, we simply add a third axis,
z, that is mutually perpendicular to both x and y. The position of an object can then be
specified by using the three coordinates x, y, and z. Two additional coordinate
systems are common in three dimensions: “cylindrical” and “spherical” coordinates.

All three systems are illustrated in Figure (4) superimposed onto the Cartesian system.
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Figure (4): Cartesian (left), cylindrical (center) and spherical (right)
coordinate systems used in three dimensions.

x
h)

5
.nnoq prosecinnne
‘o

Cylindrical coordinates can be thought of as an extension of the polar coordinates. We

keep the same Cartesian coordinate z to indicate the height above the x-y plane,
however, we use the azimuthal angle,® , and the radius, r, to describe the position of

the projection of a point onto the x-y plane. @ is the angle between the x axis and

the line from the origin to the projection of the point in the x-y plane and p is the
distance between the point and the z axis.

**The cylindrical coordinates are related to the Cartesian coordinates by:

p = 2% +y?
tan(¢) — =

a

zZ =22
In spherical coordinates, a point P is described by the radius, r, the polar angle e , and
the azimuthal angle ®. The radius is the distance between the point and the origin.
The polar angle is the angle with the z axis that is made by the line from the origin to
the point. The azimuthal angle is defined in the same way as in polar coordinates.

**The spherical coordinates are related to the Cartesian coordinates by:
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In rectangilar coordinates a point P 1s specified by x,

v, and =, where these values are all measured from the e e
origin (see figure at right). A wvector at the point P i1s .
specified in ferms of three mumally perpendicular !
components with unit vectors i, j, andk (also called

%, v, andz). The unit vectors i, j, andk form a right-

handed set: that is. if yvou push 1mto ) with vour right

hand. your right thumb will point along k direction.

In cviindrical coordinates a point P 1s specified by
g, . where @ is measured from the x axis (or x-z
plane) (see figure at right). A vector at the point P
15 specified m terms of three mutually perpendicular
components with unit vectors r perpendicular to
the cylinder of radius . ¢ perpendicular to the
plane throngh the = axis at angle ¢, and =z
perpendicular to the x-v plane at distance =. The |
unit vectors r. ¢, Z form a right-handed set. ' S —

ronabsrt @

In spherical coordinates a point P is specified by

. .. . P(r.8,0)
7, 8, ¢ . where ris measured from the origin, € is \

measured from the = axis, and ¢ is measured from

o ] . .
the x axis (or x-z plane) (see figure at right). With Coneot /g Sphere of
- axis up, @ is sometimes called the zenith angle constent /| \ constant r

. \ \ |
and ¢ the azimuth angle. A vector at the point P L\ J
F . —

1s specified 1 terms of three mutually
perpendicular components with unit vectors r

perpendicular to the sphere of radius », 6
perpendicular to the cone of angle . and ¢

perpendicular to the plane through the - axis at

- _—
angle ¢. The unit vectors r, 0, ¢ form a right- - Plane of

constant ¢

handed set.
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Infinitesimal lenoths and volumes

An infinitesimal length in the rectangular system 1s given by

dL = Ja’x: +dy*+dz?

and an infinitesimal volume by
dv =dxdyd:z

In the cv/indrical system the corresponding quantities are

dL = \Jdr* +r*d¢* + dz*
and dv =drrd¢d:z

In the spherical system we have

dL = \Jdr® +r>d6> + ¥’ sin’ 6 d§’

dv=drrd@ rsmé dg
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Direction cosines and coordinate-system transformation

As shown in the figure on the right, the
projection x of the scalar distance 7 on the x axis
is given by 7 cosa where « is the angle
between » and the x axis. The projection of r on
the v axis 1s given by rcos £, and the
projection on the z axis by 7 cos y. Note that

y =6 so cosy=cos .

The quantities cos & , cos [, and cos y are

called the direction cosines. From the theorem
of Pythagoras,

cos’ a +cos® f+cos” y =1

e

The scalar distance r of a spherical coordinate
system transforms into rectangular coordinate
distance

X = rcosa = rsiné cos @ (8)
v=rcosf =rsmésing 9)
z=rcosy =rcosé (10)
from which
cos o = sin & cos @ (11)
cos f=smBsing Sdirection cosines (12)
cos ¥ = cos & (13)

As the converse of (8), (9). and (10), the spherical coordinate values (7, &, ¢ ) may be
expressed in terms of rectangular coordinate distances as follows:

(14)

(15)

(16)
v

From these and similar coordinate transformations of spherical to rectangular and
rectangular to spherical coordinates, we may express a vector A at some point P with
spherical components A4,. 4,. 4, as the rectangular components 4 . 4 .and 4 , where
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A4, =4, sm6 smp+ 4, cos6 sing+ 4, cosg (18)
A, =4 cosf@—4,smnb (19)

A4, =4,sm6 cosg+ 4, cosf cosgp— A, smg (17)

Note that the direction cosines are simply the dot products of the spherical unit vector r
with the rectangular unit vectors X, v, and z:

= sin @ cos ¢= cos o (20)
-y = sin@sin¢=cos B 2D
= cos@=cos Y (22)

These and other dot product combinations are listed 1n the following table:

Rectangular Cylindrical Spherical

v z ‘ ¢ ‘ i 0 ¢
0 —sing smécos¢ cosfcosg —smg

1 cos ¢ sinfsing cosdsing  cosg

A
5
3
32
20
£
E
=
U
[

0 0 cos @ —sm & 0

Cylindrical

sinfcos¢  sinBsing cos 6

cosfcosg  cos@sing —sin &

Sphevical

—sing cos ¢ 0

Note that the unit vectors r in the cylindrical and spherical systems are not the same.
For example.

Spherical Cvlindrical
r-X = sin&cos ¢ r'X = cos¢
-y = sin@sin ¢ 'y = sing

~

r-z = cosé r-z=0

The fundamental parameters of the rectangular, cylindrical. and spherical coordinate
systems are summarized in the following table:




VY
Lecs in<: Quantum Mechanics-111 By Dr. Badry Abdalla— South Valley Unis-Faculty of science - Phys Dept

Coordinate . . Unit Length Coordinate
Coordinates Range
system vectors elements surfaces

—wto+w xori ax Plane x=constant

Rectangular § i N
e — 0o+ yorj dy Plane y=constant

—0to+0 7ork dz Plane ~=constant

0 tow dr Cylinder r=constant
Cylindrical Oto2x rdg Plane ¢ =constant
—oto+ o0 d= Plane z=constant

0 to w dr Sphere  r=constant

Spherical 2} Otorx rdf Cone f=constant
@ Oto2r rsind d¢  Plane ¢ =constant

The following two tables give the unit vector dot products in rectangular coordinates for
both rectangular-cylindrical and rectangular-spherical coordinates.

z

o]

f 2 2 2
S o L -

4 X

X<

% . A

» » I
Jx2+ i xt 47+ 22
¥

3

2 2 2 2
\II X + ¥ AV X+ ¥

Rectangular-spherical product in rectangular coordinates
x

Example: X-r = siné cos ¢ =

o 5

A\,'.T' + vy + :J
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Here are the transformations of vector components between coordinate systems:

Rectangular to cvlindrical Cvylindrical to rectangular

=A,———+ A, —

Vx24+y2 Y Jx2 +y2

v
=—A4 ——+ Ay=Arsin @ + Ay cos @
NESES «,h* + 7

A, =A,cosp —A,sing

Rectangular to spherical

A=A * ny Y Yy

N N R I s

Ay

+ 4, =
R P b S £ ST
J y \/ Va4 )
=

Spherical to rectangular

A

= 4, sinfcosgp+ A, cosfcosgp — A,sing
= A, smésmng + 4;cos@simng + 4;,cosg
= A4 cosf — A4,sinéb

And here are expressions for the gradient, divergence, and curl 1n all three coordinate
systems:

Rectangular coordinates

N, 6 .0
Vf = ,\f +y i+ ,\f
CxX C_'l oz
04 d4d, o4
T ° :’1. — X 4 V z
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Cvlindrical coordinates

- cf .1of .of
Vi=r—+¢——+ T
or r og oz

1 & 104, 064
VeA=——r4 +——L 4+ =
ror rogp oz

‘104, 04, (o4, o4
VxA=r—=— _\‘a +Q| ———
o oz .0z or

Spherical coordinates

.Of ~18 .1 @
or r oo rsiné og
614
- . —(A sinéd) + . d
rsing ée rsinég é¢

%)
-

{—(_-1 siné) — 4, ]+B£{ _l C—A"—;J*A{ﬂ]+¢£(— ’
r )

rsing\ o6 &l siné é¢p or r\ or

Velocity and acceleration in a different cooredinates systems({

First : Position vector:

It is a vector directed from some point to location of
particle. In the figure shown r is position vector of
particle ‘P’ with respect to point ‘O’. If wespecify the

coordinate of particle then position vector can be

expressed in terms of coordinates and unit vectors

used in that coordinate system.
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In cartesian coordinate system:

Coordinates of particle are written as (x, y, z) and unit vectors along x, y, z axes are

X,y, and Z respectively.

Therefoer, from figure,

OA=x AB=y, BP==Z
and OP=O0OB+BP
7 =0A+AB+BP =xv+ 0+ =2

F=XX+ VY + Iz

Unit vectors aretakeninthedirectionsin which coordinatesincrease.

In cylindrical system

coordinates of particle are written as (s, ¢, z) and unit vectors along the

increasing direction of coordinates are (5, 9, Z ). s is perpendicular distance of

particle from z-axis, ¢ is its angular position with respect to x-axis and z is its
distance above x-y plane.
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Therefore, from figure OB = 5, ZAOB =, BP = - and OP = OB + BP

F=ss+I2

relation with cartesian coordmates

x=s5c0s¢, y=ssing, ===z | and §:cos¢£+sin¢‘f~.¢3:—si11¢ﬁ?+cos¢'_{::

In spherical polar coordinates system,

coordinates of particle are written as (r, ¢, ¢ ) and unit vector in increasing direction of

coordinates are ( r’, % and ¢ ), r is the distance of particle from origin, ¢ and ¢ are
angular position with respect to z and x axes respectively.

From figure OP =7, Z/COP =6, ZAOB = ¢ and OP = 7

rF=rr

OB=CP =rsiné, BP =rcos@

AB=0Bsin¢ =rsiné.sin¢g and

0OA=0Bcos¢=rsinfcosg
Relation with cartesian coordinate,

Z=cosf Y=rsinf sing- X=rsinécos¢

And 7 =sinf(cos¢@x +singy )+ cosH:z

-

0 =cosO(cospx+singy )—sinf :

¢ = —sin ¢x + cos 7

If motionofa particle is confined in one plane then only two coordinates are required
to describeits position.

We can either use cartesian coordinates (x, y) or plane polar coordinates ( s , ¢). Thus
if a particleis moving on a plane thenits position vector canbe written as :
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F=xx+ v
Or, 7 = ss m(plane polar coordinate)
Plane polar coordinates (s , ¢) are the same coordinates which are used in cylindrical
coordinates system.
Notice that, x, y and 7 have a fixed direction as they are along the x, y and z axes,
whereas 7, $, §, ¢ etc do not have fixed directions. Therefore, X, y, 7 are constant unit
vectors but 7, $,§,p are not constant unit vectors.

i d o dE di o ds L, d0  dp

Tl =0, v =0, 0 and #0.— =0, =0,
mis, - — - = = a1l — — —
dt dt dt dt dt dt dr

Derivative of unit vectors (F,ﬁ, SA,tpA) can easily be found by using their relation with (x,y,Z7).

For example: In plane polar or cylmdrical coordinates,
s =cos¢x +singy and ¢ = —sin g3 +cos @y
Then:

% :—Sillgtf'%?}‘kcos‘?ﬁ{:;—f‘{‘ =(—singx+cosgy }if

and a¢ _ _ cos ¢ ﬁf — sin ¢ a9 7 =—(cos ¢x +sin gsﬁj"-')ﬁ
dt 7 dt dr

E_ G s _

= @@, s sP
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Second : Velocity (Average velocityis defined as) :

total displacement change in posiion vector , _p

U= : :
= total bme taken tofal time talen Iz =5
Insantane ous velocity (velocityatamy mstant of ime ) 1z defined as ime derivative of posibonve clor.
g

Instantansous velocity, v =——
ot

By expersing ( v ) in different coordinate systems :

1- In Cartesian coordinate system :

VX +V, V+Y. D

_ o . = S - :
= X = —— 1s component of velocity m x duection.

dr

) dv . L : )
v =~ iscomponent ofvelocity in y direction

__d=z . . : :
= —— 1s component of velocity m z direction

- dr

2- In plane coordinate system:

Therefore, v =
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s =8 = o 1s component velocity m ¢ direction and it is called radial velocity

d (,35 ;
Ve = = s¢ = s—— is component velocity in ¢ direction and it is called transverse velocity.

3- Incylindrical coordinate system:

$$ + ==

Therefore F_E—i{5{+——] ”F_'Egd-,é-d_"’ d= E
‘ dr dr de  dr dt

V =85 +s¢p+ =2 | where: { ii - pp

Third : acceleration : Average acceleration is defined as

{T;F e 1

ot >~ h

Instantaneous accelerationis defined as time derivative of velocityvector.
dv

a=—

At

By expressing v indifferent coordinatgesystem. We can writge accelerationofa particlein
different coordi-nate system.

1- In cartesian coordinate:

V=XX+ V422
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n’v d
Theretfore. = a’r —( IX 4 3P+ 2

o is component of acceleration along x-direction.

y - . : .
— 15 component of acceleration along y-direction.
t

X 1s component of acceleration along z-direction.

Since, d, = 7: , therefore, if velocity along x-direction 1s constant then acceleration along x-direction must

be zero.
2- In Plane polar coordinate :

vV = 55 + s¢h

av

Therefore. a=—=
dt

—S‘?—SL-F sqﬁqﬁ—!— sgégb—:.qﬁ Q‘ﬁ‘
= 55 + &(g&qﬁ_)+ sdp + s + Sgﬁ (\—gﬁs})

ﬁz(ﬁ—sgﬁz].§+(2égﬁ+3¢5)¢;
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a, =5 —s¢” 1s component ofacceleration along § and its called radial acceleration. Clearly, it is not equal to

time derivative of radial component of velocity (v, = ).
Therefore, if vs = constant, then as may not be zero.

fT(r;} — :.5(;' T -'5'(,75 is component of acceleration in § direction. It is called transverse
acceleration. Clearlv it is also not equal to time derivative of radial component of velocity

("}& =s¢)

d (v,
ag-"} & E(wﬂ:")

Therefore, if v,= constant then a, may not be zero.

3-Incylindrical coordinate system:
Y =558 +.3¢5g35 +5Z

First two terms are sameas in plane polar coordinate

Therefore, = EZ (S' —s¢? ]§ + (23’@5 + sqﬁ?) qf) + 2z

ko o o S o o o o S o o o o o o o o o o S o o o o o o o o o o o o R o

Solved Problems

Example [1]: A body moves in a spiral path in such a way that the radial distance

decreases at a constant rate r = b — ct while the angular speed increases at a constant

rate, , Find the speed as a function of time. By using equation of velocity

v=re, +rée9

We have # =~cand # =0.
v = —ce, + (b — ct)kteg

o = [c® + (B — ct)ZKZ2)1 =
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which is valid for t < b/c. Note that v =c both fort =0, r=b and fort =b/c, r=0

Example [2]: A particle is moving along a spiral path with its polar coordinate position r

= bt2 and B = ct where b and c is constant find the velocity and acceleration as a

function of time. By using equation of velocity :

v=re, +rfe,

e oA
—_ 2
e, p (bt2) 4+ eo(bit2) . (ct)
= (Zb e, |+ (bcet2)es

By using the equation of acceleration
a=(F-r6%e, +(r6+210)e,

= e,(2b — bi2c®) + €50 + 2(2bt)c]

= b(2 — e, 4+ 4bctes
6. Velocity and Acceleration in Cylindrical Coordinates
In the case of three-dimensional motion, the position of a particle can be described in
cylindrical coordinates R, B, z. The position vector is then written as :

r = Rez + ze,

Where ey is a unit radial vector in the x-y plane and ez is the unit vector in the z

direction. A third unit vector eg is needed so that the three vectors eg eg €z

constitute a right-handed triad,
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The velocity and acceleration vectors are:
v=Re; +Roe, +ze,

a=(R-R¢"Je; + (ZR9+Ro)e, +ie,

Example [3]: A bead slides on a wire bent into the form of a helix, the motion of the
bead being given in cylindrical coordinates by R = b, @ = wt, z = ct. Find the velocity
and acceleration vectors as functions of time.

we find R=R =0, §=0, $=0, i=c, £=0.

v=bwe,+ce,

Fourth : Velocity and Acceleration in Spherical Coordinates

When spherical coordinates r,e, ® are employed
to describe the position of a particle, the position
vector is written as the product of the radial
distance r and the unit radial vector er, as with

plane polar coordinates. Thus,
The velocity vector in terms of its components
in the rotated triad.

v=e, f+e,rfsing+ero

The acceleration vector in terms of its components in the triad "
a=(7-r?sin®0-r6%)e, +(r6+270 - rp” sin@cosb)e,
+(rsin @ + 2isin @ + 2r69 cos O)e,
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Chapter (2)

Operators in Quantum Mechanics
1-POSTULATES OF QUANTUM MECHANICS
Postulate 1.

The state of a quantum mechanical system is completely specified by a
function Y¥(r, t) that depends on the coordinates of the particle(s) and on time. This
function, called the wave function or state function, has the important property

that ‘P*(r, t) W(r, t) dt is the probability that the particle lies in dt the volume
element located at at I time t . The wavefunction must satisfy certain

mathematical conditions because of this probabilistic interpretation. For the case of
a single particle, the probability of finding it 3Tsomewhere3T is 1, so that we have

the normalization condition :

f_m O (r, ) U(r, ) dr = 1

It is customary to also normalize many-particle wavefunctions to 1.0T20T The
wavefunction must also be single-valued, continuous, and finite.

Postulate 2.
To every observable in classical mechanics there corresponds a linear, Hermitian
operator in quantum mechanics.
This postulate comes about because of the considerations raised in section
073.1.50T: if we require that the expectation value of an operator is real, then
must be a Hermitian operator. Some common operators occuring in quantum
mechanics are collected in Table 0T10T.
2TTable 1:2T Physical observables and their corresponding quantum
operators (single particle)
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Table 1: Physical observables and their corresponding quantum
operators (single particle)

o Obs. Operator
Observation Sympol

Sympol Operator
Position I . Multiply by

Momentum:

Kinetic energy

Hamiltonian

Total energy

Angular momentum

(25 -v2)

Postulate 3. In any measurement of the observable associated with
operator A, the only values that will ever be observed are the eigenvalues
2, which satisfy the eigenvalue equation

AT = ol
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This postulate captures the central point of quantum mechanics--the
values of dynamical variables can be quantized (although it is still
possible to have a continuum of eigenvalues in the case of unbound
states). If the system is in an eigenstate of Awith eigenvalue 2, then any
measurement of the quantity Awill yield <.

Although measurements must always yield an eigenvalue, the state does

not have to be an eigenstate of Ainitially. An arbitrary state can be
AT, = a7,

expanded in the complete set of eigenvectors of A( as

ID = ici‘yi

where zmay go to infinity. In this case we only know that the
measurement of Awill yield one of the values ai, but we don't know which

one. However, we do know the probability that eigenvalue aiwill occur--it

e

is the absolute value squared of the coefficient, (cf. section 3.1.4),
leading to the fourth postulate below.
An important second half of the third postulate is that, after measurement

i . . .
of Tyields some eigenvalue , the wavefunction immediately

“collapses” into the corresponding eigenstate kIra'(in the case that alis
degenerate, then wbecomes the projection of Tonto the degenerate
subspace). Thus, measurement affects the state of the system. This fact
is used in many elaborate experimental tests of quantum mechanics.

Postulate 4. If a system is in a state described by a normalized wave
function ¥, then the average value of the observable corresponding to
Ais given by




YA
Lecs in<: Quantum Mechanics-111 By Dr. Badry Abdalla— South Valley Unis-Faculty of science - Phys Dept

c A= fm U AUdr

Postulate 5. The wavefunction or state function of a system evolves in
time according to the time-dependent Schrédinger equation

HU( t}—-'ﬁaIII
BE= G

The central equation of quantum mechanics must be accepted as a
postulate, as discussed in section 2.2.

Postulate 6. The total wavefunction must be antisymmetric with respect
to the interchange of all coordinates of one fermion with those of another.
Electronic spin must be included in this set of coordinates.

The Pauli exclusion principle is a direct result of this antisymmetry
principle. We will later see that Slater determinants provide a convenient
means of enforcing this property on electronic wavefunctions.

Operators in Quantum Mechanics

Basic Concepts

e Operators are the principal components of quantum mechanics.

e Notationally, operators will be distinguished by hats on top of symbols.

e Every observable physical quantity, there exists a corresponding operator with real
eigenvalues.

¢ |n a finite number of dimensions, a matrix A can transform any arbitrary vector v into

different vector AV
. Matrix A .
v —s o = Av

Similarly, an operator transforms a function into another function:
operator A

f(x) —— g(x) = Af (x)

Some simple examples of operators




Y4
Lecs in<: Quantum Mechanics-111 By Dr. Badry Abdalla— South Valley Unis-Faculty of science - Phys Dept

f) —— 9() =xf(x)

fO) —F— g(x) = xf(x)
e we say that the operator A 1s linear. If the action of an operator on a function @ (x)
1s to multiply that function by some constant:
Ad(x) = B d(x)
we say that the constant B is an eigenvalue of the operator A. and we call ®(x)an
eigenfunction of A.
e In classical mechanics we work with the position X. the momentum P. the total energy E.
etc. These quantities are called dynamical variables.
e [n quantum mechanics the dynamical variables are no longer variables but operators.
e In physics or specially in quantum mechanics, to every observable quantity is associated a
corresponding operator.
» The position operator
fo(ij YV, Z, t) = Xf(x, Y.z, t)!
j}f(x! Y, Z, t) = }?f(:x, Y, Z, f),
2f(x,,y,z,t) =zf (x,y, 2, t)
» The momentum operator
P = —inv.

. Y N Iy
Py = —ihs—= P, = —ih 3y Pz ih—
-2 ) h? 82

. . . . 7 P oy — _ h° 97 }
» The Hamiltonian operato1 H= o + V(%) T + V' (x)

The Hamiltonian operator of a quantum mechanical system determines the evolutions of the
system.

» The energy operator

~» The kinetic energy operator

» The angular momentum operator

These operators are derived as the same. such as in the case of the classic mechanics for the
particle and from the relation following

i  k
L=rx p=|X ] A
Pr Dy Dz

An operator is a symbol which defines the mathematical operation to be carried

out on a function
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Examples of operators:

d/dx = first derivative with respect to X & v = take the square root of & 3 = multiply by 3
Physical observables and their corresponding quantum operators (single particle)

Isfand) el 3 palls Laals ; JEa3(dSaalinll Y gatallcdls il ppalEall) A8 5udl) Siaalial 481
;ﬂ_):uirﬂ %}&m_’.al'l ;.L..a&iwsﬁd,:,s'__-ﬂ'%:.lq Y g Ell‘;.hil . laa s 5\.}5'._"14’1

Table 1 : First, Operators in space of position

operator .
Sympol |sympol Operator in

Observation ]
of Obs. Quantum Mechanics

Position I tr | Multiply by £

, - ] * 8 "q 5
Momentum p |—th (ZE +I5 T ka)

T 2m

I

Kinetic energy ,\ 52 (izz+§u—zz+aazz)

Potential energy Vr) V(r)

Multiply by

Hamiltonian 3 7 aa ] 2
g | (et aE) V)

Total energy

x2
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Table 2: Second In Space Of Momentum

operator .
Sym pol Sympol Operator in

Observation _
of Obs. Quantum Mechanics

Position; op.

Momentums

Total energy

X2

2- Basic Properties of Operators

eSum and subtract of two operators :
(A+B)f = Af+ Bf

(A B)f Af—Bf

eMultiple of two operators :
ABf = A[Bf]
eFortwo equal operators :
Af = Bf
e Multiple of unit operator equal unity:
f=7f
e Mix law of operators :
A(BC) = (AB)C
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e Distribution law of operators

ﬁ(ﬁ +é)=ﬁ§ +AC

AB # BA
3- Linear Operators

The linear operators only are studied in quantum mechanicsand have
the following properties

A(f +9) Af + Ag

Ac _ CAf
Alef) (3-1)

Where c is a constant value and both f& g are functions .
We apply the previous operators as: d/dxv, {]1, \ we find :
(d/dz)[cf(z)] = c(d/dz)f(z)
linear operator
(f(z) +9(2))* # (F(2))* + (9(2))?

Jo. + v, 2 o, + (3-3)

Two perators non linear

(3-2)

4- Eigenfunction /Eigenvalue Relationship -
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When an operator operating on a function results m a
constant times the function, the function 1s called an
eigenfunction of the operator & the constant 1s called the
eigenvalue

A 1(x) =k f(x)

f(x) 1s the eigenfunction & k 1s the eigenvalue

Examples:-

Problem -1 : Prove that the following is eigenfunction,
vy — A e 7 for the following operator

- 2 e
5 bed _ 2 N 2ex
> — X X X

Solusion
where A , a are constant

—- 7 2 S 2 = — 2 —erx
F!fff _(;1—_‘(;4 =4 )—f—l—-'(:;_l- (AE? )—|— ::-:z (;4&’ )
Iy ; TN = ( —xA e ) - 2
AT AT

(/1 e )

ff;tjf - -+ 2 ]A e
x X

Fyr ex Ae
I*:uf s
Then .~ is an eigenfunction and ° is an eigenvalue

Problem-2 Find the eigenfunction for the following operator

- oo
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Problem (3) : Did the following function is an eigenfunction for the hamltonian operator
w =A cos(kx — o)
Solution

et Vi +U (x )y =i h%(//
2m ot

~2

C

N

X

Vig = w(x.1)=—Ky(x.1)

-

(—'/’(—" Jg)=—wA sin(kx —aor ) — h”
or 2m

—K "1//(_\' J)+U (x )y (x.1)

=—i hwA sin(kx — o) L v x,r)+U X))y (x,r)=—i hwA sin(kx — ot )

WK?

+U (x) | (x.t)=—FEid sin(kx —ar )
2m

Ey(x,t)=—FEidsin(kx —ox )= w(x.1)=—idsin(kx —ar )# A cos(ks —ar)
da pll) 3aan Y 4adial)

dz2 d d d
blem (4) : — (sin =, —(—sinax) = (—a
Problem (4) : — (sinax) =, — (- —sinax) = (-acosax)

= —azZsinax therefore

sinax is Eigen function and —a® is Eigen value

d2 d _d d .
Problem (5) : — = —(— = (—
(3) - (cosax) =, — (dx cosax) (dx asinax)

= —a2sinax therefore

SiNax is Eigen function and —a’ is Eigen value

Problem (6) : explain if that's function §in2x is Eigen function for the following mathematical operator

By and (Er2) whatiseigenal
cosx —
dx3) ,and (tanx dx3)' ,what is eigen values
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if it's found. :
Solution,
dz da d

ds d ;
x—sin2x) = x—(—si ; 2c08x — (——sinxcosx
cosx — (sin2x) cosx — (dx sin2x) e ('dx )

= 2cosx e (—sinx.sinx + cosx.cosx ) = 2€0Sx T (cos2x — sin2x )
X J

— 2cosx(—2cosxsinx — 2cosx (2sinxcosx )

— —4dcos2xsinx — 4cosZ2xsinx = —8co0s2x.Ssinx

the function SIN2X is not eigen function for this mathematical operator.

Problem(7) :

d3 : daZ a .
tanx—(sinZ2x) = [anx (— sin2x)
dx3 dxZ “dax

d d

= 2L
BRRESS dx (dx

Sinxcosx )

— Z2ELn%E v {(—Sinx. sinx 4+ cosx.cosx )
- s

d

2tanx — (cos2x — sin2x
ax ( )

2tanx (—2cosxsinx — 2tanx (2sinxcosx )

sinx _ sinx _
—4 .COSX. SInx — 4 LCOSX.SINX
COSX COSX

= —8SIn2X thefunction SIN2X is eigen function for this mathematical

operator and the eigen value is -8.
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Home work:-

dz2

1—— fore™
dx2

d3
2-Co0Sx.—— for cosx
dx3

3- V2 for cosax . cosby .coscz

4-—h2/4n2(§+ cotxi)for 3cos2x — 1.

: Commutators in Quantum Mechanics<¥ilalls Jaudl) il 8.5

If we have two operators A ' B have the same eigenfuction, then in
this case we will have two eigenvalues a and b according to the two
following equations :

5 jpaall Al 2o ) @ Cauade (Aalall)s juaad) Al i lagd B | A 5ise Lual (i i

roillall el 339 @l g b g hrae Odiad Lual ) Sas i gall B el Al

Ayf = ays
éyf = by (5-1)

If we multply the first equation by B and the second equation by A , we find :
BAvyvw = aB vy

AByw =bAyw (5>-2)
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Because 1.~ is an eigenfunction for the two operators A , 5 , then we find
B Ay — By — cibHyr

APy — Aby — bcenypr (5-3)
By Substracting Equation two from equation one , we find :
BA yw = abyr
AB vw — bayr
ééw—éﬁw = bH yw —abh yr
4B —BA |y = |pa —ab |y
A8 —BA |y = [O]yw

Pz —BF\A‘_UIZO

Because the wave function v~ not equals zero, then the bracket equals zero, then:

[}fBﬂ — B‘[&] =0 (5-5) then the two operators are comutators

and the bracket is called the comutator bracket, antitis one of the important relation
in quantum mechanics. To measure or observe any two physical quantities at same
time, its enough to brove the bracket of the two operators equals zero, or to prove the

two operators are comutator , and if the comutator bracket ont equals zero | it means

we can not able to measure the two physical quantities at the same time (uncertainty
principale). Generally, the comutator bracket can be write as follow :

|4.B |=4B - B4 56
The following relations are important for comutations :
[A,B]+[B,Aj =0 & [A,A]=0& [A,B+C]=[A B]+[AC]

[A+B,0) = [A,C)+(B,¢] & [A BC)|=[A,BIC + B[A,C]
B

[AB,G] = [A,C1B+ AlB, 0] & [Ad,.BB,]=B,[4,4,.8,]+[4,4,.B,]B, (5-7)
A, [B,0)] + (O, [A, B + [B,[C,A] =0 & [A B"]=nB""[AB]

[A", B] = nA™"Y[A, B)




YA
Lecs in<: Quantum Mechanics-111 By Dr. Badry Abdalla— South Valley Unis-Faculty of science - Phys Dept

Exampls 1
[z, p°] = [z, plp + plz.p] = ihp + ihp = 2ihp

If you prefer to do it the long way around, you'll get the same answer:

,r’]r'r . :ull”r“f |”| ‘Illr :
[fy]HI——haK-HJ E“f = -h*: I+F_r('fﬁ+"f)

i~ . 3 Hl'r
BT NS B L Y

r’]rf' I,"‘ HJJ Hrﬂ ifln'

—ifh T) — f.rﬁplf (7]

ilT
:i11+| Ihi'l't‘fi e

[z, p"] = 2ihp

" .
l...l' 'II. :.EIJ' ':“.

(If vou don't believe me you can leave it in, but vou'll get the same answer.) If

function f(z), we get
flr) = 2| —iha®— + ih—
[ o, pJix) ( |.',| .:I_I J )

—9 (—.-T,-_,u':jl:,—;r + iha J; + 3 ?:.")

we let this commutator act on a test

and so, if we lose the test function, we find
(9.3 s 2
&l ~|!'-'| = b

f)=px"fx)-x"p fx),

x " |f(x)= —fﬁix "f(x)+ihx" 9f (x)
dx dx

f (I ) =—i hn .{_lf {_,‘(' )—jhx m _df {X ) +iftix” df (x )
dx dx

f(x)=—ihn %'f (x)
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we can solve the previous example by using the foolowing relations :
[A™, B] = nA™" [ A, B]

[A, B"] = nB"![A, B

We find that :
I:_f 7 :l = pnp" ! [_f . ;3] = ihnp” !

Lﬁ,f”Jz rx " [ pLX | = —i a7

-
[ r.pl=inZ—r )

COC

First , we must prove that :

[1%1%]: 0

where V (x)=0
Second : we must prove that :

Py = py = hky
. 52 2 B2
H vy = r W= — i ¢ -
2m 2m dx -

/74
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Angular momentum Comutation operators
Comutation relations :

e Note : Angular momentum operators on different coordinates are not commutating :
- (0 9 )
Ly=-1l y——z—
o oy,
. ( 0 9 )
L,=—1hlz——x—
’ | dx 0z

L, = —in] xi - }i
. dy ~ox

Dol Jiall
L =L =LL =L, +L + L] oo (1-2)

2

.2 Y . |2 .
o =[o 5]+

~2 __ "2 ~2 ~2
L =L, + L +L;

~ h? 1 o . o 1 o°
L™ =— > | — sin @& +— >
47| sin@ o0 oo sin“ @ o¢

I: Vp. —Zp, . Zp xXp. |

|vp..zp,. | —|vp. .xp. | Ij zp, —zp, I + Ij =P, LXp. _II
ihvp, +ihxp,

ih | P,

ihl .

i hf.‘_

:f:f.‘_

While the total angular momentum operator commutating with all components of angular

momentum on a coordinates, given the following relations :
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Prove that:

Simmalry ;

PO Sl
= Li=t] ]+ 1]

We begin to find commutating relations of angular momentum operators, and
understand the role of commutation angular momentum operators in deriving these
relations. .These operators gives the abslute values of these relations. Suppose a
function f(x,y,z) and we need to prove that it is has a good behavioer (eigenfunction).

First : we need to determine the comutator[L,, L] :
£,f=—in[ 290 - x9T ) (1-3)
’ . dx dz )

Multiply the last equationfrom lhe left side by the operator I;x

L, 5350l Jlaal) e 3 a1 Albleall Jalas
Iy oF _of
e — Moo — s ——
oz dy L 9Ix oz )

or,  BF __dF ~d'f _af} iy

o

—+yz 2 ——Zz = + ZX —
ox 9zIx oz Jyox Jdyoz

Simelary, if we start by the operator L _
ol Ly 5%l Gl 13) (Jialls g
L f = —i| - |

- 5)
| ~ o= v $ ‘

J
F

* dz !

+X—+XZ (‘-6)

xdy oz Oy 020y
Using Eqs (1-5) & (1-6) , we get the comutation barcket [L_\,.L},]
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(L 9f _Of)

V— —X—

7 dx dy )
[ty ]—int O- 7

<f=—nh

We follow the same method to determine
the comutators |L_ T |. |L,.T.]
Eqs (1-1), show the periodic comutators operation. This means that replace y instead of

x, and z nstead by y, and z instead by x. This means that, if we carried out the periodic
commutator on L we get I:y and simmlary the periodic commutator on I:y to get L, and

from L, \vacan get L, using the periodic commutating of cartezien coordinates , If we
carried out the circular comutation on equation (1-7) .

Now we will find the commutation relations

between L and the three components 1 _ ., I:.‘,, L
[0 o P S S I | M S S | S S BN | A SN
S L1508 N B | 54
Dol () - A) A Gulis (Vs (O - T) AW il Eua
|Jil‘tI:'XJ:[]i'}"]i'X]]:}'+]:_'Y|:I:'}"]:_"§i|+[]iz]i'X]]:‘—Z—’—iZ[]iZI:'X]
=—inL,L, —inL L, +inlL L, +ifL,L =g

S

.0

Exampe : Prove that ( L‘ )T

Solution
tO) A L Ssall (33 5l 38U

L

(L,) =(»p. -2p,)
=(8.) —(2p,) =5B."
= .‘:};: - :p_\ = l:A‘.
We have use the relations :

(LeBY =4 2BV (48 ~5a
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Example: Prove That :
(£, L, |=L.L, ~L,L =inL.

Solution :& aad Gloaadl G S5l Clis ad aladdiuls @ Jad
By using the defintion of the operators , we get :
[£.2, =05, —2p, 2Py - 5. ]
[Z£. £, |=(58. — 28, ) (25, —%B.)— (3B, —%p. ) (¥P. — 3P, )
= 3p.Zp. — YPP. — ZpyEB. +2P, 5P
—Zp VP. + ZpEP, + XpAP. —Xp.Zp,
YP.ZPx +ZP,XP. —ZD.¥YP. —XP.ZPp,
YPy (P2 —2p. )+ P, X (7P. —P.7)
ih(—yp. +P,x)
i hL. (&.h. )
Another method using comutation laws, we get :
[fx _L:_ ] = [,1:}3: —Zp, .L‘ﬁ_ ]
=y |:p_ ,L‘_,_]:f[_'.:,i_, :|p_ -z [ﬁj__i_,_jﬂr[:‘_ﬁ_‘ ]}3\
. ~— -

I =

Where;
- {}}: *"{?." ] - [}3: ‘[:}jx —J.:}:‘__ }:l

= [p. .25 1-[p. -%P.]
=[P B )+ [P .15 —¥ [B.-5. ]+ [p. ¥ 5. =

=0 =—i =0 =0

—i hp .
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And .
7 =|=.L,
= [:_ L=
il S Rl CRE P CRP oS el CEE Fg
— in o
Finally, we find :

(L. L, |=5 (—inp,)—(—inx)p,

= 7 h[-‘:f}_«. — V5. )
=ihL. (&b o)
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Orthogonality and Normalization conditions

6-Orthogonality and Normalization (Orthonormalization) condition 2eladly (5 ptealanbish b %

The probapility of finding a particle in any place in volume dv as a
wave function, given by the following relation :

dp =|yf{_r,r)|:dv =y (r, )y (r.,r)dv (6-1)

T

?5_92‘_]'_»::1:&5__'_11_51'1& »@@hjlagjdvgl_ﬁ&jﬂ‘jlJ:gljSJ'_nS:hl_rEu_dp%:..
:u ;..E._i'_._-h AE ™t ‘_1.5153 ___1.'.:._)5_.:. \_'w...-_s_)‘_al'l elo=all ‘_B.-a"i __‘j i::\..dln.i'l

p=|dp= ..--|'f”'(”'1")|:d" =1 (6-2)

This relation gives the probapility of finding the particle in all space
equals 100 % = 1 , and the relation which varifay this condition is
called the normalization condition.

TAEDAAll (38 5 Lilamy celadll g aslawill  Jla 5 Gl (3 ulae)delaie Allall 598 s 84

_[ w, oy, dv =0

Frrn

when n=n1:>J.l// v dv

r I

(6-3)

when n =m = _[ W,y dv

rs) Bdlaall da 3 (B8a Caay e i JalSEl o i B plaad) da pd (3835 ade s B

7 Ferre

AZJ.y/”/ dv =06

Fermn

when n=m —= A 2jy/” w,dv =0, =1

¥ m Frrn

n¢n1:>A2J.y/ v odv =06, =0

yr (7)) = Zb,r{, (7))
where b; is the distributer factor, and we can get it from multiblying the above Eqs from
both sides in the conjegate of the eigenfunction Up and then by integration, we get

5 _paal) ANAN 381 s bl e AL AEMAY o pain e Adde Jpeaa) SSayy St Jalaa by s
SRl ARSI 38 5 AlelSa)) W3y,
J.u,: (O ()dv = Zh, I”;”; (r)dv = Zh, S, =b, (6-7)
The probabiblity, to get the eigenvalues @yn for the studied operator

:iﬁ:&aﬁl+ ‘,Jaaj -).,_;;dji Jﬂ:’du an dalall 4£§h hrﬁz \jj__naJI Jlatial ol

2(a,) = [, Gy v ’ =’be [2e 320, Gy h =|Zh,-o;,- =b; (6-8)
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B ogglae el e 1 e Alsiiad) AJEN Adial 4l g ass = ey 2 i Al et A L5

ywi(x)=.2A4 sin i
a

Find the normalized constant A , where :
ey S 1 ~os 26
sin- & = 1 cos26 and, cos” & = = L:i’
2 =

Solution

Using the normalization condition, we find
Jadl Al (3 _plaall)asdanll ol aladsuls

-

Frar s

J-ny(.\ }l dx = J-| 4 sin a ) e

a al 1
A "J‘Sil‘l: ;i-:? x dx = A;I

Example-3 : A particle exisiting in space and it is limited by (.00 x < -00 ), and it
is descriped by the wave function :

l//(x g'r ) — A e_.\': e}:(i‘—"‘_&*)

1- Normalized constant (A)
2- Probapility of finding the particle in any position between ( , ), If we know that

[ | |7
Ie “dy ==, |—
1 2\«
First, A is a normlized constant. and we can aet the normlization condition bv integrating

the square function, and  4ie s 2a) 3 (5 sy A1 0 30 JalS55 plaall o i AB plaall S
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Fix,t)= A= gt lx=wt)

- 2
2 i(kx—wt
J.lAe‘e'(‘“)dx:l

5
xzei(kx “'l)| i =1

2
—x {ef(k_\ \‘t}}| dx —1

2A° er:*z"2 |<[e"k"“'”}|ﬁdx =1

(8]

j_'_-{_ 2 IR T : I
> A7 J- e 2x {‘3 7l lkx \‘t}.eznf]{_.\ “t)}};f_l‘ =1
o

—1 —1
cAar| L [ a1 4 = [ 4 — .
>\ 2 > >

Second, The probability of finding the particle in the separation (X, x+dx)

dp = |l//(l‘,f )lz dv =w (r,t) )y (., t)dv

1
T —x2  i(kx—w 2
dp = ,|= |e eI dx
2
1
7T
dp =, |— e
£ =N72

Third : Total probability :

esze I ({kx—wt) Ci_,\'

-~

xzel (kx—-wt) (j,\'

2x? ) Fi(kx—wt)
e 7 X—W ’(//.\‘
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-1 4 -1
p = \/E 2j e Mdx = \/E 2l\/£ =1
2 7 2 T2V\2

Example :
Particle move in a potential field -2 £ x £a Find the normalized constant

for the following its wave function :

w(x)=A cosix
2a

In most cases, we go and useing which is called prpbability density , given by
| G- 7)|”

(1) = —
J‘ yr (Lt Yy (L AT v

T oGty =1

7- The expectation value 428 gial) dagdl)

In quantum mechanics , all information about the studied particle

are exists in its wavefuction , and from it we get the probability of
finding the particle in any place through any time. The expectation
values for the physical quantity is the title of this statment.

Classically, to' calculate the expectation vale for any observation
such as the position , we suppose that the studied case contains
N number of particles . There are IN; particle exsist at =, .

The mean value for the particle position given by :
N O dilge dn g jnall dlaadl i e Sk acia gall 0S5 g Le 3aallal dal giall daudll lal LSS
FALIEN Al Jaat apcal) a8 gal duda o)l Aadllde X a8 gall A 3 g 50 pna N i azea

X
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In quantum mechanics , for one particle , then for finding a particle at
X, and probability P, and the expectation for the particle position is :

4ad giall Al 5 Py Jeials O3S X e sl 8 prad) 220 5 06 22l g ared Ja) G el

Db sl A gl
- - = Zl)ixl
f:pl’\l+p2’\2+""+pm’\m == d

l)l+l)1+“"+1)m Zl)i
The probability given by : '

2
P = |'//,-| dx (7-3)

_ jx |t//2dx

X

~(x)

[l ax (7-4)

When the wave function is normalized and eigenfunction for
the operator .4 ., then expectation value equation for the
physical quantity as before given by :

_J'Iii.a'l_‘: 2..__\'.'15-;“ ,;rﬂl FAE P Ry Maie ‘.'i_ _}.I“_,.A.U IR E.ill:._, 5 _plaa :1__1,.‘.“ aliah C1555 Ladie g
;PN ey B LaS 3 Sl
Ay (r)=ay(r) (7-5)

s lgali) Sy i Allad  dadgial) dadl) 4 daiile b Sgall 2 daldd) dadidl) o
raad eladll LlS e LSl o5 A pall QNN B8 pay Sl e g S el (e AR 45D

J.w*(r}An yw (r)dv =jl,’f* (ryay(r)dv =a
then (A > = Il,,f/*(r)x'f w(r)dv =a (7-6)

Poa gl ANl 558 T A e gotall (AU il Glaiell o gl dadll 5l 4ad gial) daidll 483l a5
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It is like a linear strcture for many eigenfunction , so we write the
general expression for the expectation value for physical quantity

as follow : i AL A ks é*gi_,j};‘,ll ol Adlall 3 jlaal) K5 B A0S |l g2 5] ks 5 e ke

-

I v Avyrdv
() == 7-7)
I w ydv

—an

If the wavefunction is normalized, then the integration in
the the domeator of the relation equals unity

Expectation value and Eigenvalue of Operators

e The expectation value of a random variable 1s a concept from probability. In quantum
mechanics. a measurable quantity or an observable in the real world is a random variable.
For each observable in the real world. there 1s a corresponding operator in the quantum
world.

e The relation between the classical value of an observable and its quantum mechanical
counterpart, the operator, is via the expectation relation, viz.,

, % -+ y -
(A= J__ " (r)AY(r) dr
The above reduces to a scalar number. It is also the bridge between classical quantities and

quantum mechanical entities.
o This is expectation value or mean of an operator 4 with respect to the wave function (7).
¢ The mean value of an operator 1s not necessarily a value that can actually be measured. So
it may not turn out to be equal to one of the eigenvalues of 4.
¢ The expectation value of an operator for a quantum system in state f is defined to be:
(A) =(f|A|f)

e This expectation value can be written in term of the eigenstate and eigenvalues of A as:

W= 3" Wl A ) i

When 1), 1s the eigenstate of A with eigenvalue 4,,, the above can be written as:

@ =) ) Cbld [ fifi = ). Al

where |f,,|? is the probability of finding the state in eigenstate n. Hence, the above is the
statistical average or the expectation value of the eigenvalue A, . The eigenvalue A,, can be
thought of as a random variable.
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8 _.combination of eigenstateso¥Ylal) as) S5 laaa

If the wave function is a linear constrction of several eigenfunction for any
operator, then the expectation mean value of the studied physical quantityis
given by following wavefunction
Al oyl Jgadly Lo el dala J) g0 el s o€ S8 dn sl Al ) € dllss ) 25

ARSIl Alad) o2a B Aua gl Al laati g el lamal] Aad gl

(8-1)
for calculating the expectation value for physical quantity is given by the

expectation values relation, then the wave function consider, normalized :
B lae AlAll yias g Aad giall adlll ABMe (e (Al loka) Saslis J padial dad giall Al canal

(A > = J. A yrdy

N _*,-. N
ary=f[ e || e v |
7 —1 J =1

N N

A)=2> 7> <, _- v Ay dv

i =1 7 =1

N N
A)=2> e, > <, J' sy, Yy v

i =1 J =1

(A )
(A )

wlhlierz

()
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Note : the expectation valuefor each staterelated by the probability
as given by :

B ARl ol jo A Jlaa Wl Y1 das 5 dlls JST Aad giall Al ) JaaY

#

p((?“)Zlvl‘H; (r ) (r)dv |: = Zb,.‘l.n;n,. (r)dv - = Zb}. o, - =b" (8-3)

The propability for geting the absolute a must be the propability given by
square C
LG () s st Jinls 055 @ Aalll e geanll Jlainl G

Example

If we have eigen function for any operator given by:

:;'_"15'.11.1 Tﬂj:‘Lt_'i'._l'. # La _)_"_9.4:.1 AalA ;'113._9.;; 4ala ._’leﬂ

W =, o3y

Example -1: Find the expectation value for the following :

Genarally, the expectation value given by the following relation:
N

C,d;

i 7 > . 2
< > ¢ —1 ClC’l -+ C 3(’3
A — ~ ——

2 2
> <, +C'3

e;
7 =1
2 2
cra cia.
o— 1 1 3 3
<A>_ > >+ == ~2
e; +e; c, +c;

> >
where P = E c; =cC; +C;
4

(A)=cla, +c3ia,

as=Ea Vs a1=Eq leacal dila o sieee Wyl 5 S0 A8l o 128l SIS Gl
3ok gl gl Jladial 555 ale S5 €37 Jlataly 0l y €47 Jladaly & sShe oW1 Aad i) dagalt
Al Jasma

X IC'I
Py, ==
C’-
7
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Example-2 :
Particle in a rigd wall box move in one dimension -x, and a is the width
of the box . if the wavefunction of the moving particle at the time t=10 is:

yr(x .0y = 2L 3%

V25

Find the following :

1- Did the wave function of the moving particle is normalized 2.

2-Find the gian energy values , and the probability of finding these
energy values : Tadll s2a e JS 2as Jlalial g5 lede Jsand) 050 Al AL a8 2a 5t

Solusion
1- The first request :

e e G

I wiywdx = I—c() ﬁ:;b: Ix + J‘——(l 2;;¢” Ix + _.. 1209, 2:(;;(/}: - I—l Cto

25
. 9 16 25
fr// ywdx = 55 e =

2- The second request :

c, =0 except i =29#0&c,=
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Expectation values of energy :

(E)=ciE, +cjE,

(E)——E 255

o %36 = 25\9 Jladalsy SO Slall o geadl 3 Ll 2al @l SV LSS aal asead) 134 )
leie JS Gtia 25 Ll S 41 AT Linars «%6B4=25\16  Jiaialyy anelal LBl 5 sasall
amix 16 56 SN Sl 5 gincall Jadin Slasa 9 U Lalad ALl Ja g 58l uis (3 s (5 930

Gl g ghnall Jidins

Example-3 :
Find the expectation value of the moving particle
momentum on Xx-axses

+-o

<pv>= I w' p_ydx = T l',ff*[—.fh

—_—

} yrdx
ox

<p >— —ih I v yxdx

ox

<px>=—fﬁ+f w o Ao Fax—

ox

(p.)y=—ihik, _[ w ywdx = hik

Example-4 : Find the expectation values of the energy ?

|

<E}— ryf ngch — [l,.-:-' (Eﬁ:—;]wc;’x
s
<E>=fﬁ_[f;f*§yfch‘

<E> =ih [ yr” % Ae" TN g
S !

<E> =ih. — r'rr)_j yr yrdx = heo
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Example-5 : Find the expectation value for both pe.H ?.

The uncertenaty principal of the positon and momentum for

particle are conected directily by the expectation values according

to the absolute measuring error in experiments, the gian error in

any measuring given by the foolowing relations

L8 58 5 plle 4ad 5idll MF (Apyx ) 480> 4S5 (AX) ameadl A 5o (A(22a3301) fuadll a2e Lo
Al Bl 5 aay e B SO ) Uadd) ol el 8 a1l Uadld) il

b LS 2ny B s A el b Ll

= A = (A7)~ (4)
‘= AB = [(B*)-(BY

Then , the certanity in measuring two values given by :
(AA)(AB) > 5| < C > |

18 pall Aua g auia gal) Jab po LB oKy g f i el gl 2N e Ao 0 o2 g
h

Ax = —
Ap 5

xample-5: If the wave function of the particle :

’_l‘h__x _T: e "fi".-

w=Ae

1- Prove that the uncertienty in particle posion equal infinity ¢o *

(p. )=tk =(p,) =h%]

we find,
The solution as we see in previous example

Also . we find :
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il kv —ear )
—Ae"""" T dx

o~ I wiwdy =hk’

By applving the uncerteinty principal for measuring
the momentum., we find :

AP :\/<p\3>—<px>3 \/ﬁ S —htk: =0

7
Ap . Ax = 51 = Ax =

2 .&g?x

9 Hermitian Operatorsasiua ¢l o Sl

All physical observations are represented by the expectation values, and
the value of physical observation must be real (Energy, Momentum,
Density, ) , this means the following relation must be varified :

() =C4)
ny "Aydx = J-(ff yf)*y/dx = [I(ﬁy/)yf*dx ]* (9-1)

The operator which varify this condition is called hermitian operator, it
must varify the following relation :
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Example-5 :
If the wavefunction of the paricle given by :

{A > = J.l,rf”;i wdv = _I-(Aﬁ yr )-yffh' = {:A >3
(A > - jl,rf “aydv = _[(.-:‘u;r ) wdv = ja*yf”yﬂh' - (;‘1 >“
<A > == {f‘l.yfsf;!{f‘-‘ = na_l.yf*yfch' = (A }x (9-2)

(A > =a=a = <A y
In Case of two wave functions have the same operator .,
then we have two cases varifying :

First : Orthegonal condition :

J-!,.-'/fj s v = J-(f—f s, )‘UIE(ETL’

j-t,.-r/fu_._.y/:(fv = I(c:lyf] )+t,f/2(f1'

car, _r vy ddv —cr [ J. yr Ty v = O

— cu, )J- s s ol =|.‘(.r.."2 — <z, ) S, =0

wihrer? P = j —= S,, =0 (9-3)
rthr 1 e (a: —a] )= (c, —c, )= O

— J-t;/;i;f:cfv = >,, = 0 dise ¢l da 3 e dckasil da b ga

Second : Normalization condition

I Ay dyv = J. (/f e )*ljfzd“l)
Ig/l*azy/z(iv = J’ (ayr,) ywadv
az_'- s, yr S dv —al*_[yfl*yfzdv = 0

(a> —a )nyfyfzci =A(a, —a; ) o,
whier I = j = o, =1

thh n e (az —af:) —(a>, —a,)=0

(9-4)

— a, = d, =
— _ryfl*yfzdv = ), = ) = 1 A el byl e aalamll oyl sag
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&

© Chapter (3)

Shrodenger's Equations
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3-1: Introduction to wavefunction

During 1925 three different but equivalent versions of quantum theory were
proposed. Schrodinger-proposed wave mechanics; Heisenberg-developed matrix
mechanics and Dirac introduced operator theory.

Considering the de Broglie’s matter waves Erwin Schrodinger, an Austrian
physicist, argued that if a particle like an electron behaves as a wave then the equation
of wave motion could be successfully applied to it. He postulated a function varying in
both space and time in a wavelike manner (hence called wave function and denoted it
as Y). This function is generally complex and assumed to contain information about a
system.

Schrodinger set up a linear and time-dependent wave-like equation, called

Schrodinger wave equation, to describe the wave aspect of a particle taking account of

de Broglie’s relation for wavelength. Physically, |[y(X, t)|?, where Y(X, t) is the

solution of the Schrodinger equation, is interpreted as position probability density.
That is, |Y(X, t)|* is the probability density of observing a particle at position X at time
t. 1 does not give exact outcomes of observations but helps us to know all possible
events and their probabilities. Further, the probability interpretation allows us to find

the average or expected result of a set of measurements on a quantum system.
3-2: The wavefunction

In classical mechanics : Determination of the position for any microscopic
particle at any time (i.e. x(t)) leads to find any other interested dynamical variables
velocity (v = dx / dt ), the momentum (p = mv),the kinetic energy [KE = (1/2) mv?],
etc.

In Quantum Mechanics : The information about the state of a particle is
described by a wavefunction, which is usually denoted by (r,t) and can be used to
describe all dynamical variables (i.e. velocity (v), the momentum (p),the kinetic energy
(KE).
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This wavefunction can take various formula, the sinusoidal wave is the simplest
example of a periodic continuous wave and can be used to build more complex waves.

Y(r.t) = t,{J sm(k r—wt + gb)
rl
This sinusoidal wave can be written with exponentlal form as:

(7. 1) =Y, - p—i(kT-wt+d)
Exponential foml & sin/cos form
i’,[) SHI(k T'+OJ3.L) L;'J [E:J[;\i cuﬂ —j[ f—cui!‘ll}

pocos(k -7 F (ut)ZJ
Wave Travelling (1D)

There are several interesting features of the wave function .
e The probability interpretation of |1|2 imposes certain conditions on meaningful 1.
Further, the |1/)|2 satisfies a conservation law, an equation analogous to the continuity

equation of flow in hydrodynamics.

* To set the total probability unity the  must satisfy the normalization condition

Knowing 1 we can compute expectation values of variables such as position,
momentum, etc.

e In gquantum mechanics the experimentally measurable variables are no longer
dynamical variables but they become operators. The outcomes of experiments are the
eigenvalues of the operators of the observables.

e A valid wavefunction must be “well behaved,” with specific properties

> Single valued of the parameters of the system.

> Continuous and finite.

> Differentiable.

> Square integrable.

> Space coordinate and time.
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Q1:-Wave Function
: N ) . ~
If »(x) = ——. calculate the normalization constant V.
) X a

Solution:-
Normalization condition is

+oo
[ wrdx=1

— 0

+ oo
sz (x? +a?)%dx =1

— o0

Putx = atan 8. dx = sec28 df
2N? m/2
( )f cos?0d0 = N?mt/2a® =1
0

03
Therefore,
oy 1/2
2a=\"
F\J - (_>
T

Q2.Wave Function

Let (x) = Ae ¥l/2¢p1x=%0) Find the constant A by normalizing the wavefunction.

Solution:-
v ( — Ap—lxl/2a,—i(x—x,
Y (x) = Ae~l¥l/2a, )
P (x) Y (x) =| AlZeIxl/2ap=i(x=xo) p—Ix|/2a pi(x—Xo)
| A |29 —|x|/a e —i(x—x,) e i(x—=xg)

— | A |2€ —|x|/a

4o 0 | . |
f [ (x, )] dx |A|2f ex/a 4 f’“zf ,~x/a
y - 0

o co

Letu = x/a,thendu = dx/a.

]

i} i
f e/ dy = uf edu = ae®/?|Y =aqle®—e "] =a[l1—-0] =a

Application of the same technique to the second term also gives a
=

f lP(x, )% dx = | Al J e ¥ 4+ | A|? J’ e X% = A%q + A%a = 2A%a

Using the normalization condition:

f [r(x, )2 dx = 1
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We obtain
1

A= —
v 2a
The normalized wavefunction 1s then:
YP(x) = ——e”
v 2a
Q3:-Wave Function
Find the flux of particles represented by the wave function
LD(X) — Ae tkx + Be—zk.x'

Solution:-
The flux 1s

Jo = (2:111) [E’b | % —Y (i;{i}

§ . . . .
Jr.&.' — (21-;1) [(A e—rk_'-f + Be";‘""")fk(fl eik.r _ Be—ak.x')
+ (A e™ + Be ™ ¥)ik(A e ™ + Be'r¥)]

hk , . .
Jx = (—) [A? — B2 — ABe 2kX 4+ ABe?IKX 4 A2 — B2 4 ABe 2IKX

2m
_ ABezikx] — (E) [AZ _ BZ]
m

e The Probability Interpretation and Normalization :
The Born's statistical interpretation of the wave function has been used to describe the
state of particle, which says that |W(x. t)|* gives the probability of finding the particle
at point x, at time t - or more precisely;

Wx. ) |2dx = (probabmty of Illl.dlllg the parltlcle )

' between x and (x + dx).attime t

The statistical interpretation introduces a kind of indeterminacy into QM and because
of the statistical interpretation, probability plays a control role in QM. For example,

when an electron manifests as a wave, it is described by :

: a2
(z) o exp(ikz) and Flp(z) = —k%Y(z)
And a generalization of this wave into three dimensions' yields :

VA(r) = -k*P(r)
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The statistical interpretation of the wave function |W(x. t)|” is the probability density
for finding the particle at point x at time t.The value of the integral of the probability
density must be equal 1, so that the particle's go to be somewhere :

400, .

j_lx.I‘}’(lx. t)?dx =1
This mathematical relation represents the normalization of the probability density for
finding the particle over all region.

III. The Schrodinger's wave Equation

Schrédinger in 1924 provided a formulation called wave mechanics which mcorporated

¢ The principle of quanta (Planck).

¢ Wave -particle duality (de Broglie).
Based on the wave-particle duality principle, we will describe the motion of electron in a crystal
by wavefunction ¥ (7.1).

Classical physics

Wave mechanics

.. 0 . 0
p—>—1ha E—>1ﬁa

The behavior of a particle of mass m subject to a potential V' (x, t) is described by the }‘Ullm\'ing
partial differential equation that named as “Schridinger's wave Equation” jadiag sl salal adilaad
h® 92W(x.t) VO () 2 d¥(r.t)
- —+ V(x)¥(r.t) = ih——
2m  dx? . dt
I- The Time-dependenl Schrodinger equalivn derivalive ©

The wave function ¥{x.t) of a particle moving m x-direction m terms of p, and £ can be
expressed as:

(Et pex
{- h f ]‘

Pir.t) = Aexp ‘—e’

From this equation
dW¥ iE
= - —‘-I-
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Differentiating Eq. 1, again with respect to x, we have
iR ' Dy
—ih=—=p,—=1 (6)
0x? , 0x :
0¥
—h? W o plep (7)
For a non-relativistic free particle, the total energy E of the particle moving in x -direction is
equal to 1ts kinetic energy T.
o P
E=T ==—
Zm
Multiplving both sides of above equation by W, we have
EV¥ = E‘P (8)
. _2m
Making use of Eqs. (2) and (7) we can write Eq. (8) as:
Y —-h?o*y

(N = = e e 9
. o . at  2m 0x* ‘ . o
This equation i1s known as time-dependent Schrodinger for a free particle. If the particle is
moving in a force field described by potential energy function V. its total energy is
2
Py
E==—+V
- - - - ~2'71 ~
and the Schrodinger equation. it will be now in the form of

L4 _]3 J2
[h_}: ; ;— VY 'lO)

dat 2m 0x

1 three dimensions. 1t 1s represented by:

Y =h? \
h—=—VY + VY (11)
at 2m

1s known as the time-dependent Schrodinger equation of a particle in three dimensions.

The Schrodinger equation i1s motivated by further energy balance that total energy is equal to
the sum of potential energy and Kinetic energy. Defining the potential energy to be V (1), the
energy balance equation becomes

h?
|——I—-V“’ - l'(r)] Yr.t) = EVir.t)

2m

However, 1t predicts many experimental outcomes, as well as predicting the existence of
electron orbitals inside an atom, and hhow electron would interact with other particles.
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II- Stasionary State ( Time-independent Schrodinger Equation)

When the potential energy V is independent of time. the wave function may be written as
product of two wave functions, of which one is function of x and the other 1s function of r only
Assume the position and time parameters in wavefunction is separable.
Y(r.t) = yY(r)e(r) in 3D
or
Y(x.t) = Y(x)ep(tr) inl1lD
The Schrodinger equation Eq. (10) can be written with this new form of the wavefunction as
- " . (p(t)M—'(,_:‘) + V()Y (x)gp(t) = iy (x) 9¢(t)
2m dx? at
Divided the equation above be Y (x)@ (1) we get
—nh2 1 9%yY(x) 1 d¢p(t)
- . +Vix)=ih——
2m Y(x) Ix2 ¢(t) oat
The left side of equation 1s a function of position x only and the right side is a function of time
r only, which implies each side of this equation must be equal to same constant.
—h* 1 ad%yY(x) 1 d¢(r)

> po > D(x) Ox2 + V(x) =ih 200 ot = 1 (constant)

iii. Physical meaning of n

: 1 ad¢(r)

: l(f)(_t) dt
= ¢(t) = e "W/ME = p—iwt  The position-independent wavefunction is always in a
Where % = w form of exponential term e ~'@f,

= 1n (constant)

v E=hw =1n=E The separation constant is the total energy E of the particle.
Whereas. the wave equation can be written as ¥ (x.t) = P(x)@p(t) = YP(x) e '“*
Then we can find two solutions to the ime-independent Schrédinger equation:

—h? 1 9%yY(x) 1 dp(t)

+ V(x) =ih

2m YP(x) 9Ix?2 ¢(t) at =4

—h? 1 3%YP(x)
2m ‘r/,v(.\‘) dx?
%Y (x)
dx?
>0 ifE >V(x) = yY(x) = A exp(tikx)

+V(x)—E=0

+ kZ2YPp(x) =0
2mlE—-v(x)]

hz
Case 2: y = M >0 ifV(x) > E = yP(x) = A exp(tiyx)

Case 1: o =

iv. Physical meaning of the wave equation

= Y(x.t) cannot be a physical wave like an oscillating string, or EM wave of Maxwell
theory.

= TDSE is complex equation, solutions are inherently complex (real and imaginary parts
of ¥ do not separately solve equation)

= Something that i1s complex cannot be directly measured.

= Max Bormn postulated in 1926 that the wavefunction |W(x.t)|?dx is the probability of
finding the particle between x and dx at a given

W(x.t)]|? = W(x.t) - W(x.t)
—_ JJI-'{X}E’_I.I'E":.'IEH . fi"ff]' o HIE/ )T

Px) - P(x)’
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Probabilin [W(x. t)]|? = P(x) - P(x)
= The probability density function 1s independent of tune.
= Fortunately. the Schrédinger equation has the property that it automatically preserves the

norimalization of the wave function.
d s+o - +oo g -
— [T (x.)|Pdx = [ B Yix.t)|?dx

Ar =

[Note that the integral is a function only of x, so we use a total derivative (E) in the first term,

. : : : : UPRPT: I
but the integrand is a function of x as well as t, so it's partial derivative (5 the second one].

P =L rwy =w 2 2y
dat - at( ) = at + at

Now the Schrodinger equation says that
¥  ih 0*W i -
_ it 2mox? h
And hence (taking the complex conjugate of equation above)
av"  ih 92y N diV
at ~ 2m 0x?2

So

dt ~2m dx  Odx
The integral of equation above can be now evaluated explicitly by the equation:
d = g2 ~_ih VEJZ‘P 62‘{1*1 +00
Ef_,x, ¥ 0x- O dx = 2m (q dx2  9x2 P) —
But W(x.t) must go to zero as x goes to (+) infinity — otherwise the wave function would not
be normalizable. It follows that

ar + oo
EI W(x.t)|?dx =0

And hence that the integral on the left is constant (independent of time); if W is normalize at
t = 0, 1t stays normalize for all future time.
= The state of a particle has to be more richly endowed and described by a wave function
or state function W(x, 7). The state function (also known as a state vector) is a vector in
the infinite dimensional space.
= The state of a particle in quantum mechanics is described by a state function, which has
infinitely many degrees of freedom.

0 w7 = ih o R S A U _ 0 [ih (1 0¥ Bl}’*qi)}
dx? 0x?2 ~ dx 12m

= [n the Schrodinger equation, the wave function W(x, ) 15 a contimuous function of the
position variable x at any time mstant ; hence, 1t 1s described by infinmtely many numbers,
and has infimte degrees of freedom.
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v. Boundary condition for wavefunction

= The probability of finding the particle over the entire space must be equal to 1

+00 +o
f |¥(x.t)|?dx = J' P(x) - Y(x)*dx =1

= 1/(x) must be finite, single-valued and continuous.

= diy(x)/dx must be finite. single-valued and continuous.

= If the probability were to become infinite at some point in space. then the probability of
finding the particle at the position would be certain. that violate the uncertainty principle.

= The second derivative must finite which implies that the furst derivative must be
continuous.

= The first derivative is related to the particle momentum. which must be finite and single-
valued.

= The finite first derivative implies that the function itself must be continuous.

vi. Probabilistic Interpretation of the wave function

The final, most accepted interpretation of this wave function (one that also agrees with
experiments) is that its magnitude squared corresponds to the probabilistic density function. In
other words, the probability of finding an electron in an interval [x; x + Ax] is equal to
|W(x.t)|? Ax
For the 3D case, the probability of finding an electron in a small volume AV in the vicinity of
the point r 1s given by
W(x.0)|? AV
Since the magnitude squared of the wavefunction represents a probability density function, it
must satisfy the normalization condition of a probability density function, viz.,

f|lp(x. Oz dv = 1

The magnitude squared of this wave function is like some kind of "energy" that cannot be
destroved. Electrons cannot be destroved and hence, charge conservation is upheld by the
Schrédinger equation.
Motivated by the conservation of the "energy" of the wave function. we shall consider an
"energy" conserving system where the classical Hamiltonian will be a constant of motion. In
this case, there is no "energy" loss from the system. Therefore, the Schrédinger equation that
governs the time evolution of the wave function 1is:

. R Y N

HY = ih— (1)

-~ at

where H 1s the Hamiltonian operator, one can solve (1) formally to obtained:

W(t) = e TW(t = 0) (2)
Since the above is a function of an operator, it has meaning only if this function acts on the
eigenvectors of the operator /1 . It can be shown easily that if A - V; = A; V,,

exp(A) - Vi = exp(4) V; (3)
If A is a Hermitian operator, then there exists Eigenfunctions, or special wave functions, W,,.
such that
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ﬁqj}i = E,¥y 4
where E,, is purely real. In this case. the time evolution of i, from (2) is

w(t) = e‘f%’“fqr”(t = 0) = e @Y, (t = 0) )
In the above, E,, = hw,,. or the energy E,, is related to frequency w,, via the reduced Planck
constant 7.
Scalar variables that are measurable in classical mechanics, such as p and x, are known as
observables in quantum mechanics. They are elevated from scalar variables to operators in
quantum mechanics, denoted by a """ symbol here. In classical mechanics, for a one particle
system. the Hamiltonian is given by
2
H=T+V=1—4V (0)
2m
The Hamiltonian contains the information from which the equations of motion for the particle

can be derived. But in quantum mechanics, this is not sufficient, and 5 becomes an operator
(7)
This operator works in tandem with a wavefunction to describe the state of the particle.
The operator acts on a wave function W(t), where in the coordinate x representation, is
¥(x.t).
When W(x.t) is an Eigenfunction with energy E,,. it can be expressed as
W(x.t) =¥, (x)e”ont (8)
where E;,, = hw,. The Schrédinger equation for 1),,(x) then becomes
A2
_ p ~ . . .
HWY,(x) = (2 +V ) ¥(x) = E,¥(x) 9)
m ' '
For simplicity, we consider an electron moving in free space where it has only a constant kinetic
energy but not influenced by any potential energy. In other words, there is no force acting on

the electron. In this case, V = 0. and this equation becomes
p'*2

— Y(x) = E,W (10)
o PO = EW ()

It has been observed by de Broglie that the momentum of a particle, such as an electron
which behaves like a wave, has a momentum

p = hk (11)
where k = 2m /A is the wave number of the wave function; This motivates that the operator p

can be expressed by
d
P = —ihe— (12)
. . . dx . . .
in the coordinate space representation. This is chosen so that if an electron is described by a
state function (x) = c;e™™, then pip(x) = hky(x). The above motivation for the form of
the operator p is highly heuristic. Equation (10) for a free particle is then
h? d? .
Sz Pn (%) = By () (13)
Since this is a constant coefficient ordinary differential equation, the solution is of the form
Yn(x) = eFtkx (14)
which when used in (13), yields

h2k?

2m En (13)

Namely. the kinetic energy 7 of the particle is given by
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(16)

where p = ik 1s 1 agreement with de Broglie's finding.
In many problems, the operator ¥ is a scalar operator in coordinate space representation
which 1s a scalar function of position V' (x). This potential traps the particle within it acting as
a potential well. In general, the Schrodinger equation for a particle becomes
h? g2 N d y _

[_Eﬁ + V(,x._)] P(x.t) = ih El} (x.t) (17)

For a particular eigenstate with energy E,, as indicated by (8), it becomes
h? 092 _ _ ]
[_ %ﬁ + V{A‘.) 1{’?1(3@_) = Enq]n (X) (18)

The above is an eigenvalue problem with eigenvalue E, and Eigenfunction W, (x). These
eigenstates are also known as stationary states, because they have a time dependence indicated
by (8). Hence. their probability density functions |W(x. t)|? are time independent.
These Eigenfunctions correspond to trapped modes in the potential well defined by V (x) very
much like trapped guided modes in a dielectric waveguide. These modes are usually countable
and they can be indexed by the index .
In the special case of a particle in free space, or the absence of the potential well, the
particle or electron 1s not trapped and it 1s free to assume any energy or momentum indexed by
the continuous variable 4. In (15), the index for the energy should rightfully be 4 and the
Eigenfunctions are uncountably mfinite. Moreover, the above can be generalized to two and
three dimensional cases.
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CD Chapter (3)

Applications
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Application of Shrodimger Wave Equation

vii. Application of Schrodinger wave Equation

We have now enough knowledge to study some simple solutions of time-independent
Schrodinger equation such as:

Electron in free space.

Electron in infinite potential well.

Step potential function (The potential step).
Potential barrier (The Finite Square Well Potential).
Potential barrier and well.

Harmonic oscillator.

O\'Jl:l-(qu—

1. Electron in free space (Free particle: Continuous states).

e This simplest one-dimensional problem (Electron in free space means no force acting on
the electron), it corresponding to V(x) = 0 for any value of x.

e We must have E > V(x) to assure the motion of electron.

h? a%y(x) _
———  (V(x) = E)Y(x) =0 (1-1)

o . ' 2m 0dx? . : ‘ SE
This 1s above time-mdependent Schrédinger's wave equation, and since V(x) = 0, tlus
equation become

% P(x) 2mE

> —i(x) =0 (free space) (1-2)
dx? h?

Or (_]’\_.4. ;\'2),/,.(,\-) =0 (1-3)

Where k? = 2mE /h? . k being the wave number; The most general solution to eq. above is a

thx

combination of two linearly independent wave planes ), = e and p_ = e
W (x) = A ek* 4+ A_e~ikx
Where A, and A_ are two arbitrary constants.
v @(t) = e f and W(x.t) = P(x) - ¢(t) (1-3)
Then
1{_;('1..{) :A+€!'k\—mm 4 Aﬁ{,—i:kzo:m[,- (1-6)
Right- going wave Left-going wave
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This formula above of the wavefunction represents the stationary state, which can also be
written as

W(x.t) = J._»!FE,r'-:ki hkZe/2m) + A e i(kx+hkZt/2m) (1-7)

Since w = E/h = hk?/2m. the first term W, (x.t) = A;e' ™ “0)  represents a wave
travelling to the right, while the second term W_(x.t) = A_e " @0 represents a wave
travelling to the left. The intensities of these waves are given by |A,|? and |A_|?. respectively.
We should note that the wave W, (x.t) and W_(x. 1) are associated, respectively. with a free
particle travelling to the right and to the left with well-defined momenta and energy: p; =
+hk, E. = itk?/2m.
We will comment on the physical implications of this in moment. Since there are no boundary
conditions, there are no restrictions on & or on £, all vales yield solutions to the equation.
Remember the postulate of de Broglie's wave-particle principle:

.

p

We also have p=+vZmE and E = p?/2m

Which implies the consistencv of wave-particle principle and wave mechanics in free space
(wave mechanics is based on energy quanta and wave particle duality).

The free particle problem 1s simple to solve mathematically, vet it presents a number of
physical subtleties. Let us discuss briefly three of these subtleties.
First, the probability density corresponding to either solutions

Py(x.t) = [Wa(x.t)|” = |4y (1-8)

are constant, for they depend neither on x and 7. This 1s due to the complete loss of information
about the position and time for a state with definite values of momentum, p, = +hk, and
energy. £, = h?k?/2m. This is consequence of Heisenberg's uncertainty principle: when the
momentum and energy of a particle are known exactly, Ap =0 and AE = 0, there must be total
uncertamty about its position and time: Ax = w and At = o,

Second, an apparent discrepancy between the speed of the wave and the speed of the particle;
it 1s supposed to represent. The speed of the plane waves W, (x.t) 1s given by
E h%k?%*/2m hk (1-9)

On the other hand, the classical speed of the particle is given by
p hk

Uclassical = == = LVyqape
m m

This means that the particle travels twice as fast as the wave that represents it.

(1-10)
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Third, the wavefunction 1s not normalizable:

4= 0 f= o0
j Wi (. )W, (x.t) dx = |.-1:|:’f dx — oo (1-11)

00 0
The solution W, (x. t) are thus unphysical; physical wavefunctions must be square mtegrable.
The problem can be traced to this; a free particle cannot have sharply defined momenta and
energy.

In view of these three subtleties above, the solution of the Schrodinger equation related to this
case, that are physically acceptable cannot be planes waves. The answer is provided wave
packet

1

—
V2

+ 0
Y(x.t) = J O(k)e'Fr—wtdk. (1-12)

Where @(k ), the amplitude of the wave packet. 1s given by the Fourier transform of 1(x.0) as
1 00 .
a(k) ::f P(x. 0)e " dx, (1-13)
V2mJ_ .

The wave packet solution cures and avoids all the subtleties raised above. First, the momentum,
the position and the energy of the particle are no longer known exactly: only probabilistic
outcomes are possible. Second, the wave packet (1-12) and the particle travel with the same
speed v, = p/m, called the group speed or the speed of the whole packet.

Third, the wave packet (1-12) 15 normahlizable. To summarize, a free particle cannot be
represented by a single (monochromatic) plane wave; it has to be represented by a wave packet.
The physical solutions of the Schrodinger equation are thus given by wave packets, not by
stationary solutions.

Q4:-Wave Function for a Free Particle
A free electron has wave function
W(x,t) = sin(kx — wt) (1)
1. Determine the electron's de Broglie wavelength. momentum. Kinetic energy and speed
when k = 50nm 1.
2. Determuine the electron's de Broglie wavelength. momentum. total energy. Kinetic energy

and speed when k = 50 pm 1.

Solution:-
1. The equations relating the speed v. momentum p, de Broglie wavelength A. wave number
k. kinetic energy E. angular frequency @ and group velocity v, for a nonrelativistic particle

of mass m are:
h
p=mv===hk
A - -
1 ])2 flsl\'“
B _—IHL'?‘ — e— S e— hw
2 2m 2m
dw
U, = —
g (”\

=V
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When k = 50 nm™,
A= 126 pm, p=987KeV/c (3)
And. for an electron (m = 511 keV /c?).
E =95.26eV, v=193x10"% (6)
2. The equations relating the speed v, momentum p, de Brogle wavelength A, wave number k,
total energy E, kinetic energy K. angular frequency w and group velocity v, for a relativistic
particle of mass m are:

!
p=ymv=-==hk

E=ymc*=mc? 4+ K =p?c? + m?c* = hw

pe?
13

dw

Y=g =V =

When k = 50 pm™,
A =126 fm, p=987MeV/c
And, for an electron (m = 511 keV /c?).
E=988MeV, K=937MeV v=09987 ¢

QS5:- Potential Energy of a Particle
In a region of space, a particle with mass m and with zero energy has a time-independent wave
function
P(x) = Axe >/ (14)
Where A and L are constants.
Determine the potential energy U(x) of the particle.
Solution:-
The time-mndependent Schrodinger equation for the wavefunction 1(x) of a particle of mass
m in a potential U(x) is:
h? l’:',"‘i v) . " ' -
g + U(x)Y(x) = EYP(x) (15)
When a particle with zero energy has wavefunction y/(x) given by Eq. (14). 1t follows on
substitution into Eq. (15) that
282 ¢ 5 312 :
U(,\'p:m(x-’—T) (16)

2>

U(x) 1s a parabola centred at x = 0 with U(x)= — “_'_
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2. Electron in infinite potential well (bound particle)
a. The Asymmetric square well.
Consider a particle of mass m confined to move inside an infinitely deep asymmetric potential

well.
V(x)

- -] o

1 | ‘<o

~
Region 1 Region 3 U =X =a. [_l}
v oo . V=o . X > a.

Classically, the particle remains confined inside the well, moving at constant momentum p =
++/2mE back and forth as a result of repeated reflection from the walls of the wsell.
Quantum mechanically, we expect this particle to have only bound state solutions and a discrete
nondegenerate energy spectrum. Since V' (x) is infinite outside the region 0 <x < a.the
wavefunction of the particle must be zero outside the boundary.
Region 1 & 3 Region 2
V(x) =o and V(x) > E V(x) =0 and E > V(x)
= Decaying wave = Travelling wave

3% (x) N tht V() — EJp(x) = 0 J a'l;(;) N 2]:125 P(x) =0

0 x?

Hence we can look for solutions only inside the well, in the same way that we have learned in

“Fundamental physics"

32?{”2.\_‘} 2 () = i 2 __ 2mME
dx2 + k“Pp(x) = 0. with k ==

So that, the solution Wﬂl be .
P(x) = Aet ™ 4+ Be KX = (x) = Acos(kx) + Bsin(kx) (2-3)

Boundary conditions
1 (x) must continuous (at boundaries and the wavefunction vanishes at the walls).
Y(0) =¢Y(a) =0 2-4)
P =04 = P(x=07) =0 -
And
A 4Ty — o
Ppx=a)=yPx=a)=0 (2-5)
Since Acos(k0) = Acos(ka) =0
Then A=0
Because cos(k0) = o and cos(ka) =0
But Bsin(ka) =0
Then sin(ka) =0
Because B =0
And k,a =nm (n=1.2.3.--
This condition above determines the energy
.2 272
E,=7—k}=2"=n? (n=123.-)
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The energy is quantized; only certain values are permitted. This 1s expected since the szares
of a particle which is confined to a limited region of space are bounded and the energy
spectrum is discrete. This 1s in sharp contrast to classical physics where the energy of the
particle, given by E = p?/2m, takes any value; the classical energy evolves continuously.
As it can be inferred from (2-6). we should note that the energy between adjacent levels is not
constant:

Eniqi—E,=2n+1
Which leads
Ens1—E, (m+1)?—m* 2n+1
E, N n2 ~ n?
In the classical limit n — oo,

. Evi1 — Ey . n+1
lim ————— = lim —— =0
n—co n n—oo n

The levels become so close together as to be practically indistinguishable.
Since A = 0 and k,, = nm/a. then the wavefunction yields 1/,,(x) = Bsin(nmx/a). and we
can choose the constant B so that 1, (x) is normalized (total probability equal one):

a a
1= J‘ [, (x)]? dx = |B|2f sin?(nmx/a) dx (2-10)
0 0

fa(Bsi'rt (!{)())2 dx =1
0

J‘“‘ 2(kx) d _ X sinZkx
sin®(kx) dx = = Y

0
a >
. 2 T E_Sln. X) 1
J; (Bsin (kx)) " dx=1=B (2 £ 0

2

a

B =
N

P (x) = \Esi.n. () m=123.-) (2-14)

The solution of the time-independent Schrédinger equation has thus given us the energy (2-6)
and the wave function (2-14). There is then an infinite sequence of discrete energy levels
corresponding to the positive integer values of the quantum number n. It 1s clear that n = 0,
yields an uninteresting result: 1, (x) = 0 and E, = 0:later, we will examine in more detail the
physical implications of this. So, the lowest energy. or ground state energy, corresponds to n =
1:1tis E; = h2m? /(2ma?). As will be explained later, this is called the zero-point energy. for
there exists no state with zero energy. The states corresponding to n = 2.3.4.--- are called
excited states:, their energies are given by E,, = n?E,. As shown in Figure above, we can see
that each function ¥, (x) has(n — 1) nodes, and the functions 1,,,,,(x) are even and the
functions 1,,,(x) are odd with respect to the center of the well;

Note that none of the energy levels is degenerate (there is only one eignfunction for each energy
level) and that the wavefunctions corresponding to different energy levels are orthogonal:

f i () () dx = Sy (2-15)
0
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Since we are dealing with stationary states and since E,, = n?E;, the most general solutions of

the time-dependent Schrédinger equation are given by
.x.

2 n
_ _ N 2 nmx . , R
Y(x.t) = Z W, (x)e~Ent/h — I||_IZ sin (_) p—in?Ext/h (2-16)
(

a
n=1 N n=1

Quantization of energy levels

Discrete discrete energy ' \J
Wave vector

k=" Epg

a

Infinite well
E, « n?

Enargy of electron

Example: infinite potential well
Infinite potential well width of 54

_ hPn®m? n?(1.054 x 10 3*)2x?2

E=E,= = n2(2.41 x 10719)]

2ma? = 2(9.11 x 10—34)(5 x 10-10)2
z 1w in—19
= CEA) 2 (15 1)eV
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=.1.51. eV

= 6.04 eV = 4E,

= 13.59 eV = 9E,

For potential. well, E,, o< n?

E,

b. The symmetric potential well

In this case, the potential well that previously described. is translated to the left by a distance of a/2 to
become symmetric

+co x < —a.

Vix)=41 0 x| < a.

+co x> a.
First, we would expect the energy spectrum (i1-6) to remain unaffected by this translation, since
the Hamiltonian is mvariant under spatial translations: as it contains only a kinetic part, it
commutes with the particle’s momentum, [ﬁp] = 0. The energy spectrum is discrete and
nondegenerate.
Second, earlier in this chapter we saw that for symmetric potentials, V(—x) = V(x). the wave
function of bound states must be either even or odd. The wave function corresponding to the
potential that described in Eq. above can be written as follows:

2
/E cos

. 12 nm a -
P, (x) = }E sin ?(x +§)] = 1 \'I{_
\ (2 nm :
[—sin (—x) (n=24.6.-).
Ml a a

That 1s, the wave functions corresponding to odd quantum numbers are symmetric n
1.3.5.---, are symmetric (—x) =1(x) , and those corresponding to even numbers n =
2.4.6. ---are antisymmetric, 1 (—x) = (x).

3. Harmonic oscillator.

The harmonic oscillator is one of those few problems that are important to all branches of
physics. It provides a useful model for a variety of vibrational phenomena that are
encountered .for instance, in classical mechanics, electrodynamics, statistical mechanics,
solid state, atomic ,nuclear, and particle physics. In quantum mechanics, it serves as an
mvaluable tool to illustrate the basic concepts and the formalism.

The paradigm for a classical harmonic oscillator 1s a mass m attached to a spring of force
constant k. The motion is governed by Hooke’s law.
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F e —lx = d?x
= —kx =m 702

(as always, we i1gnore friction), and the solution is
x(t) = Asin(wt) + Bcos(wt)

. [k . R : :
Where w = — Is the (angular) frequency of oscillation. The potential energy is

V(x) = : kx?
2

Its graph 1s a parabola.

Of course, there’s no such thing as a perfect simple harmonic oscillator-if you stretch it too
far the spring is going to break, and typically Hook’s law fails long before that point is
reached. But practically any potential is approximately parabolic, in the neighborhood of a
local minimum (Figure below). Formally, if we expand V(x) in a Taylor series about the
minimum:

V(:X) = V(:xo) + V’(:XO)(:X - xo) +%V”(:X0)(X - xo)z + - (3'4)

Subtract 1 (x,) [you can add a constant to V(x,) with impunity, since that doesn’t change
the force], recognize that V' = 0 (since x, 1s a minimum), and drop the higher —order terms
[which are negligible as long as (x — x,) stays small]. the potential becomes

V(x) = %V”(xo)(:x —x,)? (3-3)

Which described simple harmonic oscillation (about the point x,), with an effective spring
constant k = V" (x,). That’s why the simple harmonic oscillator is so important: virtually any
oscillatory motion 1s approximately simple harmonic, as long as the amplitude 1s small.

Vix)

~/

4
X x

Figure: Parabolic approximation (dashed curve) to an arbitrary potential. in the neighborhood of a
local minimum.

The quantum mechanics problem is to solve the Schrédinger equation for the potential
1 L
V(x) = zmwzxz (3-6)

(it is customary to eliminate the spring constant in favor of the classical frequency, using
Equation (6-6). As we have seen, it suffices to solve the time-independent Schrodinger
equation:
n?d*y 1 .
———+=mw’x*)) = Ew (3-7)
2m dx 2

In the literature you will find two entirely different approaches to this problem. The first called
the analvtic method, which is a straightforward “brute force” solution to differential equation,
using the method of power series expansion; it has the virtue that the same strategy can be
applied to many others potentials. The second method i1s a diabolically clever algebraic
technique, using so-called the ladder or algebraic method, does not deal with solving the
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Schrodinger equation, but deals instead with operator algebra involving operators known as
the creation and annihilation or ladder operators.
a. Algebraic method
To begin with, let’s rewrite Equation (6-7) in a more suggestive form
. 2
% l(?d(—i) + (mw x )zl ) = EY (3-8)
The idea is to factor the term in square brackets. If these were numbers, it would be
2+ vl =(u—iv)(u+iv)
Here, however, it’s not quite so simple, because u and v are operators, and operators do not, in
general, commute (uv is not the same as vu). Still, this does invite us to take a look at the
expressions
1 h d _
a; (——+ imw x ) (3-9)
-\32?}3 i dx
What is their product, a_a, ? Warring: operators can be slippery to work with in the abstract,
and you are bound to mike mistake unless you give them a “test function”, f (x), to act on. At
the end you can throw away the test function, and you’ll be left with an equation involving the

operators alone. In the present case, we have
( L 1 /h d h d )
a_ay)f(x) = E(TE —imwXx ) (T? + imw x )f(x)
1 /hd N\ (hdf . )
= K(TE_ imaw x ) (TE_'_ imw xf )
1 (3-10)
dx

1 (ﬁ_) + (mw x )? + hmw } f(x)

2m i dx

2m

2
=—[—f2§ ! + hmo —(xf) — mw xi-i— (mw x) f]

[Tused d(xf)/dx = x(df /dx) + f in the last step]. Discarding the test function, we conclude
that
1 [/h dy? 1
_a, = =—||=—— mwx)?| +=1 3-11
a-a, =-— (i (Ix) + (mw x) l+2 1w 3-11)
Evidently, Equation (vi-8) does not factor perfectly — there’s an extra term (1/2)hw.
However, if we pull this over to the other side, the Schrodinger equation becomes

1
(a_a+—§ﬁw)ap —F (3-12)

Notice that the ordering of the factors @, and a_ is important here, the same argument with
a. on the left yields
1 [/h dy° ] 1
ara- =— (TE) — (mw x) l — Ehcu
Thus
a_ay —asa_ = hw

And the Schrédinger equation can also be written

1
(a+a + = hw)q‘;_Ed;

Now, here comes the crucial step: I c]alm that 1f 1); satisfies the Schrédinger equation, with
energy E. then a, ) satisfies the Schrédinger equation with energy (E +hw). Proof:
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1 1
(ﬂ+ﬂ_ + Ehw ) (agy) = (a+a_a+ + Ehw a+) Y

1 1
=a, (a_mr + Ehw ) Y =a, [(n_a+ - Eﬁw ) Y+ ﬁwa,b}
=a,(EyY + hoy ) = (E + hw )(ayP).QED
Notice that whereas the ordering of a, and a_ does matter, the ordering of a. and
any constants (such as fi. w. and E') does not.] By the same token. a_1) 1s a solution with
energy(E — hw ):

1 1
(ﬂ_ﬂ+ — Eﬁfu ) (a_y) = a_ ((T+(T_ —zhw ) 1)

=a_ [((T+(T +%hm ) P — hmtj:] =a_(EyY —hw))

=(E—hw)(a_y).QED
Here, then, is a wonderful machine for grinding out new solutions, with higher and lower
energies—Iif we can just find one solution, to get started! We call a. ladder operators, because
they allow us to climb up and down in energy; a, is called the raising operator, and a_ the
lowering operator. The “ladder” of states is illustrated in Figure below.
But wait! What if I apply the lowering operator repeatedly? Eventually I'm going to reach a
state with energy less than zero, which (according to the general theorem) does not exist! At
some point the machine must fail. How can that happen? We know that a_1) is a new solution
to the Schrodinger equation, but there is no guarantee that it will be normalizable—it might be
zero, or its square integral might be infinite. Conclusion: There must occur a “lowest rung”
(let’s call it o) such that
a iy =0 (3-16)
That is to say
1 /hdy,
\%(i Tx imaw x t[)o) =0

diy, mw /
= — Xy
dx h ?
This differential equation for 1, is easy to solve:
dy, mw mw

=—— | xdx = Iny, =- x? + constant,
Uy h ‘ Yo 2h cors

So

me -

Po(x) = Aje 27,

TE

Figure: the ladder of stationary states for the simple harmonic
oscillator.
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To determine the energy of this state, we plug it into the Schrédinger equation {in the form of
Equation (6-15}.(a+a_ + %hcu ) Y, = E,i,, and exploit the fact that a_y =0.
Evidently

1
E, =5 ho (3-18)

With our foot now securely planted on the bottom rung” (the ground state of the quantum
oscillator), we simply apply the raising Operator to generate the excited states™:

_mw o 1 .
P (x) = Ap(a)e 227, with E, = ('H * E) freo (3-19)
(This method does not immediately determine the normalization factor A,,; For example,

mew 5 1 i d mw -
g — X . ——rX
P (x) = Aja,e 2 = A (—,— —imw x ) e 2h

) \.*2-”1 [ dx

;—11 h maw _mw ] _Mmw o,
= —,(——x) e 2 + imw xe 2h°
V2m \i h

Which simplify to

mw
P, (x) = (iAywV2m)xe 2R (3-20)

I wouldn’t want to calculate 1)<, in this way, but never mind: We have found all the allowed
energies. and in principle we have determined the stationary states—the rest 1s just
computation.

a. Analytical Method

We return now to the Schrédinger equation for the harmonic oscillator (Equation 3-7):
h? (Iza,b_’_l 252 = |
i —mMw=XxX"yY = LW
2mdx? = 2

Things look a little cleaner if we introduce the dimensionless variable
mo

="h
In term of £, the Schrodinger reads
d%y o
dx? ="Ky
Where K is the energy. in units of (1/2)hw:
2E

- hw
Our problem is to solve Equation 3-22. and in the process obtain the “allowed” values

of K (and hence of £).
To begin with, note that at very large & (which is to say. at very large x). &Zcompletely
dominates over the constant K, so in this regime

sy, .
22 a2 QEL‘[} (3-24)
which has the approximate solution (check it!)
(&) = Ae$°/2 4 Bet+8?/2 (3-25)
The B term i1s clearly not normalizable (it blows up as |x| — ); the physically acceptable
solutions, then, have the asymptotic for

(&) = (e ¥°/2, atlarge ¢ (3-26)
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This suggests that we “peel off * the exponential part,

(&) = h(E)e 572, (3-27)
in hopes that what remains [h( & )] has a simpler functional form than ) (¢) itself.
Differentiating Equation 3-26, we have

dy dh
dé (

d¢
And

2 2
dy _ (d h_ o, ez 1)) 52/

dgz — \dez “qr
So the Schrodinger equation (Equation 3-21) becomes

d?h dh
N ¥ ;o — 3-28
75~ gt (K= Dh=0, (3-28)

I propose to look for a solution to Equation 6-28 in the form of a power series in &:
o0

h(§) = ap + 1§ + a8 + - = Z a;¢7, (3-29)
Jj=0
Differentiating the series term by term.,
dh

-
E:al+2a25+3a352 "':Z)jaj"cj—l’ (3-30)
l|T:

And
d?h

dzce

Putting these into Equation 3-27, we find

Co

Z[U + 1) + 2)ajes — 2ja; + (K — Da;]el =0, (3-32)
j=0
It follows (from the uniqueness of power series expansions™) that the coefficient of each power

of & must vanish

= 20, + 23036 + 34,62 + - = Z(_,f + 1)+ 2)a;428, (3-31)
=0

G+ D0 +2)aj4, —2jaj+ (K—=1)a; =0
And hence that
(2j+1—-K)
G+DG+2) 7
This recursion formula is entirely equivalent to the Schrédinger equation itself.
Given a, it enables us (in principle) to generate a,. a,, ag, ... and given a, it generates
as. as, a-, ... . Let us write

h(§) = hepen($) + hoga($) (3-34)

Ajt12 =

(3-33)

Where

) = 2 r4

hepen(§) = ap + a28° + a ™ + -

is an even function of ¢ (since it involves only even powers), built on a,. and

Ty — & 3 s
_ _ o hoga(§) = an$ + azé” +asd + - . .
1s an odd function, built on a,. Thus Equation vi-31 determines h(¢) in terms arbitrary
constants (a, and a,)—which 1s just what we would expect, for a second order differential
equation.
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However, not all the solutions so obtained are normalizable. For at very large j, the recursion
formula becomes (approximately)

2
aj'+2 ~ )I_ﬂ-"”

With the (approximate) solution
C

aj R,
- - j (-,I /2 ) [ . -
For some constant C, and this yields ( at large &, where the higher powers dominate)

h($) ~ CZ;&" ~ Czis”\' ~ Cet’
° (j/2)! k! |

Now, if h goes like exp(¢?). then ) (remember 1)? that’s what we’re trying to calculate)
goes like exp(£2/2), (Equation vi-27), which is precisely the asymptotic behavior we don ’t
want.” There is only one way to wiggle out of this: For normalizable solutions the power series
must terminate. There must occur some “highest” j (call it n) such that the recursion formula
spits out a,, 4, = 0 (this will truncate either the series h,,., or the series h,,4: the other one
must be zero from the start). For physically acceptable solutions, then, we must have
K=2n+1,

for some positive integer n , which is to say (referring to Equation 3-23) that the energy must
be of the form

E, = (n. + %) hw, forn=0,12,... (3-35)

Thus we recover, by a completely different method, the fundamental quantization condition we
found algebraically in Equation 3-19.
For the allowed values of K, the recursion formula reads

I —2(n —j) . (3-36)

TG+ +2)
If n = 0. there is only one term in the series (we must pick a, to kill h,44, and j = 0 in
Equation. 3-36 yields a; = 0):

ho(€) = a,,
And hence
Yo (8) = age /2
(which reproduces Equation 3-17). For n = 0 we pick a, = 0, and Equation 6-36
with j = 0 yields a; = 0, so
h,(§) = a;&,
And hence
1 (§) = 0159_52’;2
(confirming Equation 3-20). For n = 2, j = Oyields a, = —2a,, andj j = 2 gives
a, =0, so
ho(§) = ao(1 —282),
And
2(8) = a,(1 = 28%)e ™5/
and so on.
In general. h,, () will be a polynomial of degree n in &, involving even powers only. if n is an
even integer, and odd powers only. if n is an odd integer. Apart from the overall factor (a, or
a, ) they are the so-called Hermite polynomials, H,,(&).
The Hermite polynomials is:
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n

_ o dt
H, (&) = (—1)"ef’ e el
The first few of them are listed in Table below. By tradition, the arbitrary multiplicative factor

is chosen so that the coefficient of the highest power of ‘¢ 1s 2™”. With this convention, the

normalized stationary states for the harmonic oscillator are
1/4

L maw 1 2 3-37
(D) = (7)o Ha(©e 72 537
L v ]

They are identical (of course) to the ones we obtained algebraically in Equation 3-19.
In Figure below a I have plotted 1, (x) for the first few n’s.
The quantum oscillator is strikingly different from its classical counterpart—not only are the
energies quantized, but the position distributions have some bizaire features. For instance, the
probability of finding the particle outside the classically allowed range (that is, with x greater
than the classical amplitude for the energy in question) is not zero, and in all odd states the
probability of
Table: The first few Hermite polynomials, H,,(¢).
=1, For n =0,
H, = 2x, For n =1,
H, = 4x%? — 2, For n = 2,

= 8x3 — 12x, For n =3,

= 16x* — 48x%2 + 12, For n =4,

= 32x5% — 160x3 + 120x, For n =5,

i -
-
sy

Figure: (a) The first four stationary states of the harmonic oscillator.
(b) Graph of |I,b1(x) |2__ with the classical distribution (dashed curve) superimposed.

finding the particle at the center of the potential well is zero. Only at relatively large n do we
begin to see some resemblance to the classical case. In Figure above-b I have superimposed
the classical position distribution on the quantum one (for n = 100 ); if you smoothed out the
bumps in the latter, the two would fit pretty well (however, in the classical case we are talking
about the distribution of positions over time for one oscillator, whereas in the quantum case we
are talking about the distribution over an ensemble of identically-prepared systems).
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Q6: The dynamics of a particle moving one-dimensionally in a potential V(x) 1s governed by
the Hamiltonian H, = p?/2m + V(x), where p = —ihd/dx is the momentum operator. Let
EY n = 1,2,3,..., be the eigenvalues H, . Now consider a new Hamiltonian H = H, +
Ap/m. where /A is a given parameter. Given 4, m and E?.). find the eigenvalues of H.

Solution:-
The new Hamiltonian is

H=Hy,+ Ap/m = p?/2m + Ap/m + V(x),
=(p+A)?/2m+V(x)— 1?/2m,

12
H =24 v,
, 2m
Where H' = H +%,,U’ = p+A4

The eigenfunctions and eigenvalues of H' are respectively EY and ).
. ! 1 . .
AS the wave number is k' = % == (p + A) .the new eigenfunction are
f f
) = YO AX/N
and the corresponding eigenvalues are
E, =ES— 21?2/2m.

Q7: Use the uncertainty principle to obtain the ground state energy of a linear
Oscillator.

Solution:-
AxAp~h/2
B h
f T 2x
' 1

E = % -- Emcuzxz
h? 1. 2.
E = T~ +Emw X

2

: . . 3E
The ground state energy is obtained by setting =0
JdE h?

= - — + mw?x =0
, dx Amx3
Whence x% = —

21w

1
~E=1/4hw + 1/4hw = Efm)

Q8: Derive the probability distribution for a classical simple harmonic oscillator.

Solution:-
One can expect the probability of finding the particle of mass m at distance x from the
equilibrium position to be inversely proportional to the velocity
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: A

P(x) =~

where A =normalization constant. The equation for S.H.O. is
d?x

dt?

which has the solution

x = asinwt; (att = 0,x = 0)

where «a is the amplitude.

v = % = wva? — x?2

Using (2) in (1)
P(X) = wvVaZ—x2

We can find the normalization constant 4.
J.P(X)('{IX — J-_CT Adx _ T!'A_l

a wvaz—x< w

Therefore,
A==

o
Using (4) in (3), the normalized distribution 1s
1
mvaz—x2
QY9: Show that the wavefunction Y, (x) = A exp(—x?/2a?) is a solution to the
time- independent Schrodinger equation for a simple harmonic oscillator (SHO) potential.

(-2 5+ () meoy =Ew

with energy E, = (E) hw,, and determine « in terms of 7 and w,,.

P(x) =

()

The corresponding dimensionless form of this equation is

dy
—Trz T R*Y = €¢E

where R = x/aand e = E/E,.
Show that putting )(R) = AH(R)exp(— R?/2) into this equation leads to Hermite’s equation

A —)+(E-DH=0
dR? : -

R (dH
_ dR
H(R) is a polynomial of order » of the form a,R,, + a, — 2R, — 2+ a, — 4R, — 4+

Deduce that € 1s a simple function of » and that the energy levels are equally spaced.

Solution:-

By substituting 1)(R) = AH(R) exp (—R?/2) in the dimensionless form of the equation and
simplifying we easily get the Hermite’s equation.

The problem is solved by the series method

H = XH,(R) = 2p—024an Ry

dH
dR

dzu
—= =Yn(n—-1)a,R"?

In(n — 1)a,R"? — 2Xa,nR"™ + (¢ — 1)Za,R" = 0
Equating equal power of R,

_ [2n — (e — Dla,
Intz = n+Dn+2)

= a,nR" 1!
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If the series 1s to terminate for some value of » then

2n— (e — 1) = Obecuase a, = 0. This gives e =2n+1
Thus € 1s a simple function of »

E =¢E,= (2n + 1)1/2hw,n = 0,2,4,...
=1/2hw,3hw/2,5hw/2,...

Thus energy levels are equally spaced.

Q10: Show that for a simple harmonic oscillator in the ground state the probability
for finding the particle in the classical forbidden region is approximately 16%.

Solution:-

a1l 2, .
U, = |—=|e/?H,(0):{ = ax
V1T

P=1 —j luy|?dx =1 - 2[ (ff/\-"?)ze 2 gy = 1 __f ,~¢2/2g4g
—a 0

;
E, =1/2ka? :E(n =0)

. fie il 1/2
Therefore a? = — = ( )(—)
k k m

Therefore « (12 =loraa=1

2
P=1-— e=5f2d<—1— f!
/Tt Jo

+ 10 42 +418

Fig. Probability of the particle found outside
the classical limits is shown shaded.
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Schrodinger Equation in 3D Cartesian Coordinates:

The stationary Schrodinger equation in three dimensions is a partial differential equation involving three
coordinates per particle. The mathematical complexity behind such an equation can be intractable
bv analvtical means. However, there are certain high-symmetry cases when it is possible to separate
rariables in some convenient coordinate svstem and reduce the Schrodinger equation to one-dimensional
problems.

The simplest example of variable separation is a particle in infinitely deep three dimensional quantum
well. Let the potential V(z,y,2z) be zero inside a block with edges aq, as, as and infinite outside:

V(r) = 0 , O<ae<a AN O<y<as A 0<z<ag
ST oo, otherwise

We immediately note that this function can be written as a sum of three one-dimensional functions:

Vir) =Vi(z) + Valy) + Va(z)
Gea={ O Vgmze)
v, otherwise

272
_hg?z -tl;'"(l‘) + L’[rju'(ll — EL'(I\}

The Sehrodinger equation

can be expressed as a sum involving individual coordinates:

R 0%y(r) B2 0%yu(r) A% 6%Y(r) _ . . .
—o il LS PR Vi(@)e(n) + Va(w) () + Va(2)e(r) = Eu(x)

2m  Ox* 2m  Oy* 2m Oz
Whenever the operator acting on the unknown function can be expressed as a sum of operators involving
individual coordinates, the solution for the function has the form of a product:

b (x) = ¥ (x)n(u)iia(2)
Now, the one-variable functions ¥y, ¥ and 4 are unknown. We substitute (r) in the Schrodinger

equation and note that the derivative with respect to 2 acts only on . ete.:

[ »2 U"‘!.‘](J'l S |
e + Vi) ()| voly)a(z)
2m  Odre

W Paly) |, .

e f ‘_‘ll}:’f:\l}’ 1';‘[:)('1(!‘!

2m Oy~

W2 0%y(2) : , i 2 X _
2 + Va(z)a(z) | v (x)a(y) (Ey + Eg + Eq)ty (x)¥a(y)ina(z)

522

We have also expressed the total energy E as a sum of contributions from individual dimensions.

E = ,.1 + ,;'_3 . i ,‘,..(.
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e Consider any point r at which ¢(r) # 0. Divide the whole equation by ¥(r) = ¢y (x)ve(y)a(z):

1 h? %y (x) : ]
— ———————-"‘ll,l"ll,'l(_l'l

—l_lﬁ—l 2m Ox2
h? 92y aly)
2m Oy?

[ h? H"L'-,(; )

2m  Oz2

= If..g -+ 1'_.'_: -+ ILAx

Fach term on the left-hand side depends on only one coordinate and hence is completely independent
from other terms. The only way to satisty this equation for any combination of (z,y,z) is to require
that three one-dimensional equations be satistied:

hg 52'1;'"1(;1[') r |

555 T Vi(z)¥1(z) = E1¢i(z)

2m  Or2 Y (

)]

2m Oy

k2 @2‘&;‘3(3)

“9m 022 Va(2)vs(z) = Eatha(2)

One can now substitute these expressions into the full 3D Schrodinger equation and see that they solve
it even at the points r where 1(r) = 0. Therefore, the solution of the 3D Schrodinger equation is
obtained by multiplying the solutions of the three 1D Schrodinger equations.

+ Va(y)e(y) = Eaa(y)

e Now, in each dimension we have a simple one-dimensional infinitely deep quantum well problem, which
we solved before: -
TR

i = - 3

2ma;

[2 . [mn;
vi(zi) = f—sm( -z

a; a;

n;

e The full 3D solutions are characterized by three positive integer quantum mimbers, (n.,n,,n.), one
per dimension. The total energyv is

w2h?
E=FE{+E;+ F;=
2m

and the full wavetunction is:

[8 . [mn, . {7,

Ay a,

where V' = azaya. is the volume of the quantum well.
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Particle in a 3D Box
A real box has three dimensions. Consider a particle which can move freely with in rectangular
box of dimensions a = b x ¢ with impenetrable walls. The potential can be written
mathematically as: AY

{O Inside

o0 At surfaces and outside

Since the wavefunction y should be well behaved. so,

it must vanish everywhere outside the box. By the

continuity requirement, the wavefunction must also

vanish in the six surfaces of the box. Orienting the box V (x, v, z)=0

so its edges are parallel to the cartesian axes, with one z

corner at (0,0.0). the following boundary conditions must be satisfied:
Y(xX.yv.Z)=0whenx=0,x=a.y=0.y=b,z=0o0orz=c

Inside the box, where the potential energy is everywhere zero. the Hamiltonian is simply the

three-dimensional kinetic energy operator and the Schrodinger equation reads

ey sy = Eeyn) "
2m

Since we can write w(xy, z) = MNx)Y(v)Z(z), with condition X(x) is independent of v and z
coordinates. Also, Y(y) and Z(z) are only functions of v and z, respectively. The boundary
conditions are

NO=X@)=0.Y (=X (b =0. Z(0)=Z{c)=0 (2)

So. on substituting (x.y, z) = X(x)Y(v)Z(z) into Schrodinger equation we obtain

X'(x) Y'()  Z'(z) 2mE

+ — =1 (3)
Xix) ¥i(v) Z(z) fi~

Each of the first three terms depends on one variable only. mdependent of the other two. We can
write it as;

X'(x) | ¥Y'(»)  Z"(z) 2mE

X(x) Y(v) Z(z) &’

Now on left hand side (LHS) we have only function of x. while right hand side (RHS) contains

functions of v and z. This is possible only if each term separately equals a constant, say. —a’. So.

= —r .

X"(x) _[ Yt | ZME) 2;;;5} .

A) F(wv) Z(=z) i~
X" )

— ——————————
Xix)
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"(v) N Z"(z) N 2mE
Y(y) z(z)

That  implies {

a2 . -~ .
} o which can be transformed nto

(v » | Z"(2) 2mE . . . . .
% =a" —{ (2) - m., ]. Using similar argument as above both sides of equfion should be
-1l

Z(z) k-
equal to a constant, say. -f *:

Therefore. 0 _ a’ - EAC) + 2”',:E =_f
Y(y) Z(z) h°

0
o L
And
» | £"(z) 2mE _ a2
’ {Z(:} e }_ p

2mE

Z(:)=(Z2+,B2— .
i

—
Z(z)

e L L 2"(z)
Now. LHS of above equation is just a constant so we can write it as a 2) _ -y° (6)

Z(z) '
Thereby we have transformed a single Schrodinger equation (1) into three ordinary differential
equations
X4’ X =0:Y"+°Y =0 and Z"+y°Z =0
The constants o, B and y are related by
2;5:a3+ﬁ2+;/2 (7
Each of the equations (4, 5 and 6) with its associated boundary conditions in (2) is equivalent to
the one-dimensional problem. The normalized solutions X(x). Y (v), Z(z) can therefore be

written down in complete analogy with one dimensional box
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172
A@Ax)z[ } Sin 27

a

m

2\ v
Y. (x)=| 2| sin2=
o (x) {n] in 5

1/2
2 N,z
Z s(x) :[;] Sin —— ns =

c
The constants in Eq (7) are given by

n,..T n.,imT
a=—"—: f=—"—and y=

a C

?13.?1'

and the allowed energy levels are therefore

E

2 2 2 2
kP (nl ony ong ]
— | 2+ 2 +2 |,

e, = S > m.nz.n3=1.2... (11)
R 8m\ a” D c

Three quantum numbers are required to specify the state of this three dimensional system. The
corresponding eigen-functions are

1,7Tx

: (12)

a b c

1/2
3 I , TIX
W g (X2 1.2) = (?J Sin 17 Sin 227 s !

where V = abc, the volume of the box. These eigen-functions form an ortho-normal set such that

(s
J'r,;fﬂ.:_”.:_”.s (x, v, =) |7 (x,v,2)dxdvdz = SOt m, O
0

Note that two eigen-functions will be orthogonal unless all three quantum numbers match.

When the box has the symmetry of a cube. with a = b = c. the energy formula (11) simplifies to

,
h_ 9 '1 9
=—(}11‘ +n; +n;). m.mp.n3=1,2... (13)
- 2 2
Sma

E

.1y By

Quantum systems with symmetry generally exhibit degeneracy in their energy levels. This means
that there can exist distinct eigenfunctions which share the same eigenvalue. An eigenvalue
which corresponds to a unique eigenfunction is termed nondegenerate while one which belongs

to n different eigenfunctions is termed n-fold degenerate. As an example, we enumerate the first

few levels for a cubic box, with £ expressed in units in units of A* /8ma’.

"y My My
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E; 11 = 3 (nondegenerate)
= F12.1 = FE211 = 6 (3-fold degenerate)
= Fy19 = FEs9,; =9 (3-fold degenerate)
= Fy31 = FE3,1 =11 (3-fold degenerate)

= 12 (nondegenerate)

=FEy32=FEy13=FEy3)1=E312=E32, =14 (6-fold degenerate)

Z"(z) 2

Now, LHS of above equation is just a constant so we can write 1t as a Z( =—y (6)
z)

Thereby we have transformed a single Schrodinger equation (1) into three ordinary differential
equations

X'+’ X =0:Y"+4°Y =0 and Z"+y°Z =0

The constants a, B and y are related by

2mE 5 )
m,) =a’+ B> +y’ (7)
h 2
Each of the equations (4, 5 and 6) with its associated boundary conditions in (2) is equivalent to
the one-dimensional problem. The normalized solutions X(x). Y (y), Z(z) can therefore be

written down in complete analogy with one dimensional box

2\ n, 7Ix
an(:c)z[ in W72 3.... ®)

9).
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