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CHAPTER 

ONE 
INTRODUCTION 

1.1 CHARACTERIZATION OF ELECTROMAGNETIC RADIATION 

Molecular spectroscopy may be defined as the study of the interaction of electromagnetic waves 
and matter. Throughout this book we shall be concerned with what spectroscopy can tell us of 
the structure of matter, so it is essential in this first chapter to discuss briefly the nature of 
electromagnetic radiation and the sort of interactions which may occur; we shall also consider, 
in outline, the experimental methods of spectroscopy. 

Electromagnetic radiation, of which visible light forms an obvious but very small part, may 
be considered as a simple harmonic wave propagated from a source and travelling in straight 
lines except when refracted or reflected. The properties which undulate-corresponding to the 
physical displacement of a stretched string vibrating, or the alternate compressions and rarefac- 
tions of the atmosphere during the passage of a sound wave-are interconnected electric and 
magnetic fields. We shall see later that it is these undulatory fields which interact with matter 
giving rise to a spectrum. 

It is trivial to show that any simple harmonic wave has properties of the sine wave, defined 
by y = A sin 6,  which is plotted in Fig. 1. I .  Here y is the displacement with a maximum value A,  

Figure 1.1 The curve of j. = A sin 0. 
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Figure 1.2 The description of a sine curve in terms of the circular motion of a point P at a uniform angular velocity 
of w rad s- '  

and 0 is an angle varying between 0 and 360" (or 0 and 27r radians). The relevance of this 
representation to a travelling wave is best seen by considering the left-hand side of Fig. 1.2. A 
point P travels with uniform angular velocity w rad s-' in a circular path of radius A; we 
measure the time from the instant when P passes 0' and then, after a time t seconds, we 
imagine P to have described an angle 0 = wt radians. Its vertical displacement is then 
y = A sin0 = Asinwt, and we can plot this displacement against time as on the right-hand 
side of Fig. 1.2. After a time of 27rlw seconds, P will return to 0', completing a 'cycle'. 
Further cycles of P will repeat the pattern and we can describe the displacement as a continuous 
function of time by the graph of Fig. 1.2. 

In one second the pattern will repeat itself w/27r times, and this is referred to as the 
,frequency (v) of the wave. The SI unit of frequency is called the hertz (abbreviated to Hz) 
and has the dimensions of reciprocal seconds (abbreviated s-I). We may then write: 

y = A sin wt = A sin 27rvt (1.1) 

as a basic equation of wave motion. 
So far we have discussed the variation of displacement with time, but in order to consider 

the nature of a travelling wave, we are more interested in the distance variation of the displace- 
ment. For this we need the fundamental distance-time relationship: 

where x is the distance covered in time r at a speed c. Combining (1.1) and (1.2) we have: 

, 27rv.x 
y = A sin 27rvt = A sin - 

C 

and the wave is shown in Fig. 1.3. Besides the frequency v, we now have another property by 
which we can characterize the wave-its wavelength A, which is the distance travelled during a 
complete cycle. When the velocity is c metres per second and there are v cycles per second, there 
are evidently v waves in c metres, or 

vX = c X = c/v metres (1.3) 
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Figure 1.3 The concept of a travelling wave of wavelength A. 

so we have: 

27rx 
y = A sin - 

X 

In spectroscopy wavelengths are expressed in a variety of units, chosen so that in any 
particular range (see Fig. 1.4) the wavelength does not involve large powers of ten. Thus, in 
the microwave region, X is measured in centimetres or millimetres, while in the infra-red it is 
usually given in micrometres (pm)-formerly called the micron-where: 

In the visible and ultra-violet region X is usually expressed in nanometres (lop9 m), although 
occasional use is still made of the non-SI Angstrom unit where: 

There is yet a third way in which electromagnetic radiation can be usefully characterized, 
and this is in terms of the wavenumber V. Formally this is defined as the reciprocal of the 
wavelength expressed in centimetres: 

v = 1/X cm-' (1.7) 

and hence 

y = A sin 27rVx (1.8) 

It is more useful to think of the wavenumber, however, as the number of complete waves or 
cycles contained in each centimetre length of radiation. 

It is unfortunate that the conventional symbols of wavenumber (V) and frequency (v) are 
similar; confusion should not arise, however, if the units of any expression are kept in mind, 
since wavenumber is invariably expressed in reciprocal centimetres (cmp') and frequency in 
cycles per second (s-' or Hz). The two are, in fact, proportional: v = cV, where the proportion- 
ality constant is the velocity of radiation expressed in centimetres per second (that is 
3 x 1 0 ' ~ c m  s-I). 

1.2 THE QUANTIZATION OF ENERGY 

Towards the end of the last century experimental data were observed which were quite incom- 
patible with the previously accepted view that matter could take up energy continuously. In 
1900 Max Planck published the revolutionary idea that the energy of an oscillator is discon- 
tinuous and that any change in its energy content can occur only by means of a jump between 
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two distinct energy states. The idea was later extended to cover many other forms of the energy 
of matter. 

A molecule in space can have many sorts of energy; e.g. it may possess rotational energy by 
virtue of bodily rotation about its centre of gravity; it will have vibrational energy due to the 
periodic displacement of its atoms from their equilibrium positions; it will have electronic energy 
since the electrons associated with each atom or bond are in unceasing motion, etc. The chemist 
or physicist is early familiar with the electronic energy states of an atom or molecule and accepts 
the idea that an electron can exist in one of several discrete energy levels: he learns to speak of 
the energy as being quantized. In much the same way the rotational, vibrational, and other 
energies of a molecule are also quantized-a particular molecule can exist in a variety of 
rotational, vibrational, etc., energy levels and can move from one level to another only by a 
sudden jump involving a finite amount of energy. 

Consider two possible energy states of a system-two rotational energy levels of a molecule, 
for example-labelled El and E2 in the following diagram: 

The suffixes 1 and 2 used to distinguish these levels are, in fact, quantum numbers. The actual 
significance of quantum numbers goes far deeper than their use as a convenient label-in 
particular, we shall later see that analytical expressions for energy levels usually involve an 
algebraic function of one or more quantum numbers. Transitions can take place between the 
levels El and E2 provided the appropriate amount of energy, A E  = E2 - E l ,  can be either 
absorbed or emitted by the system. Planck suggested that such absorbed or emitted energy 
can take the form of electromagnetic radiation and that the frequency of the radiation has 
the simple form: 

A E  = kv joules (1.9) 

where we express our energies E in terms of the joule, and h is a universal constant-Planck's 
constant. This suggestion has been more than amply confirmed by experiment. 

The significance of this is that if we take a molecule in state 1 and direct on to it a beam of 
radiation of a single frequency v (monochromatic radiation), where v = AElh ,  energy will be 
absorbed from the beam and the molecule will jump to state 2. A detector placed to collect the 
radiation after its interaction with the molecule will show that its intensity has decreased. Also if 
we use a beam containing a wide range of frequencies ('white' radiation), the detector will show 
that energy has been absorbed only from that frequency v = AElh ,  all other frequencies being 
undiminished in intensity. In this way we have produced a spectrum-an absorption spectrum. 

Alternatively the molecule may already be in state 2 and may revert to state 1 with the 
consequent emission of radiation. A detector would show this radiation to have frequency 
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v = AE/h only, and the emission spectrum so found is plainly complementary to the absorption 
spectrum of the previous paragraph. 

The actual energy differences between the rotational, vibrational, and electronic energy 
levels are very small and may be measured in joules per molecule (or atom). In these units 
Planck's constant has the value: 

h = 6.63 x joules s 

Often we are interested in the total energy involved when a gram-molecule of a substance 
changes its energy state: for this we multiply by the Avogadro number N = 6.02 x loz3. 

However, the spectroscopist measures the various characteristics of the absorbed oi,emitted 
radiation during transitions between energy states and often, rather loosely, uses frequency, 
wavelength, and wavenumber as if they were energy units. Thus in referring to 'an energy of 
1Ocm-", the spectroscopist means 'a separation between two energy states such that the 
associated radiation has a wavenumber value of 10cm-". The first expression is so simple 
and convenient that it is essential to become familiar with wavenumber and frequency energy 
units if one is to understand the spectroscopist's language. Throughout this book we shall use 
the symbol E to represent energy in cm-'. 

It cannot be too firmly stressed at this point that the frequency of radiation associated with 
an energy change does not imply that the transition between energy levels occurs a certain 
number of times each second. Thus an electronic transition in an atom or molecule may absorb 
or emit radiation of frequency some 1015 Hz, but the electronic transition does not itself occur 
loi5 times per second. It may occur once or many times and on each occurrence it will absorb or 
emit an energy quantum of the appropriate frequency. 

1.3 REGIONS OF THE SPECTRUM 

Figure 1.4 illustrates in pictorial fashion the various, rather arbitrary, regions into which 
electromagnetic radiation has been divided. The boundaries between the regions are by no 
means precise, although the molecular processes associated with each region are quite differ- 
ent. Each succeeding chapter in this book deals essentially with one of these processes. 

In increasing frequency the regions are: 

1. Radiofrequency region: 3 x lo6-3 x 10'' Hz; 10 m-1 cm wavelength. Nuclear magnetic 
resonance (n.m.r.) and electron spin resonance (e.s.r.) spectroscopy. The energy change 
involved is that arising from the reversal of spin of a nucleus or electron, and is of the 
order 0.001-lOjoules/mole (Chapter 7). 

2. Microwave region: 3 x 10"-3 x 1012 Hz; 1 cm-100 pm wavelength. Rotational spectroscopy. 
Separations between the rotational levels of molecules are of the order of hundreds of joules 
per mole (Chapter 2). 

3. Infra-red region: 3 x 1012-3 x 1014 Hz; 100pm-1 pm wavelength. Vibrational spectroscopy. 
One of the most valuable spectroscopic regions for the chemist. Separations between levels 
are some lo4 joules/mole (Chapter 3). 

4. Visible and ultra-violet regions: 3 x 1014-3 x 1016 Hz; 1 pm-lOnm wavelength. Electronic 
spectroscopy. The separations between the energies of valence electrons are some hundreds 
of kilojoules per mole (Chapters 5 and 6). 

5. X-ray region: 3 x 1016-3 x 10'"~; 10 nm-100 pm wavelength. Energy changes involving the 
inner electrons of an atom or a molecule, which may be of order ten thousand kilojoules 
(Chapter 5). 
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Figure 1.4 The regions of the electromagnetic spectrum. 
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6. y-ray region: 3 x 1018-3 x 1020Hz; 100pm-1 pm wavelength. Energy changes involve the 
rearrangement of nuclear particles, having energies of 10~-10" joules per gram atom 
(Chapter 9). 

One other type of spectroscopy, that discovered by Raman and bearing his name, is 
discussed in Chapter 4. This, it will be seen, yields information similar to that obtained in the 
microwave and infra-red regions, although the experimental method is such that observations 
are made in the visible region. 

In order that there shall be some mechanism for interaction between the incident radiation 
and the nuclear, molecular, or electronic changes depicted in Fig. 1.4, there must be some 
electric or magnetic effect produced by the change which can be influenced by the electric or 
magnetic fields associated with the radiation. There are several possibilities: 

1. The radiofrequency region. We may consider the nucleus and electron to be tiny charged 
particles, and it follows that their spin is associated with a tiny magnetic dipole. The reversal 
of this dipole consequent upon the spin reversal can interact with the magnetic field of 
electromagnetic radiation at the appropriate frequency. Consequently all such spin reversals 
produce an absorption or emission spectrum. 

2. The microwave region. A molecule such as hydrogen chloride, HCl, in which one atom (the 
hydrogen) carries a permanent net positive charge and the other a net negative charge, is said 
to have a permanent electric dipole moment. Hz or C12, on the other hand, in which there is 
no such charge separation, have a zero dipole. If we consider the rotation of HCl (Fig. 1.5, 
where we notice that if only a pure rotation takes place, the centre of gravity of the molecule 
must not move), we see that the plus and minus charges change places periodically, and the 
component dipole moment in a given direction (say upwards in the plane of the paper) 
fluctuates regularly. This fluctuation is plotted in the lower half of Fig. 1.5, and it is seen 
to be exactly similar in form to the fluctuating electric field of radiation (cf. Fig. 1.2). Thus 
interaction can occur, energy can be absorbed or emitted, and the rotation gives rise to a 
spectrum. All molecules having a permanent moment are said to be 'microwave active'. If 
there is no dipole, as in Hz or C12, no interaction can take place and the molecule is 
'microwave inactive'. This imposes a limitation on the applicability of microwave spectro- 
scopy. 

Direction of 
rotation o+8-+ 

Vertical 
component 

of 
dipole 

Figure 1.5 The rotation of a polar diatomic molecule, showing the fluctuation in the dipole moment measured in a 
particular direction. 
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Figure 1.6 The symmetric stretching vibration of the carbon dioxide molecule with amplitude much exaggerated. 

3. The infra-red region. Here it is a vibration, rather than a rotation, which must give rise to a 
dipole change. Consider the carbon dioxide molecule as an example, in which the three atoms 
are arranged linearly with a small net positive charge on the carbon and small negative 
charges on the oxygens: 

h -  Zh+ h- 

0-C- 0 

During the mode of vibration known as the 'symmetric stretch', the molecule is alternately 
stretched and compressed, both C - 0 bonds changing simultaneously, as in Fig. 1.6. Plainly 
the dipole moment remains zero throughout the whole of this motion, and this particular 
vibration is thus 'infra-red inactive'. 

However, there is another stretching vibration called the anti-symmetrical stretch, depicted 
in Fig. 1.7. Here one bond stretches while the other is compressed, and vice versa. As the 
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Figure 1.7 The asymmetric stretching vibration of the carbon dioxide molecule, showing the fluctuation in the dipole 
moment. 
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Figure 1.8 The bending motion of the carbon dioxide molecule and its associated dipole fluctuation. 

figure shows, there is a periodic alteration in the dipole moment, and the vibration is thus 
'infra-red active'. One further vibration is allowed to this molecule (see Chapter 3 for a more 
detailed discussion), known as the bending mode. This, as shown in Fig. 1.8, is also infra-red 
active. In neither of these motions does the centre of gravity move. Note particularly that the 
relative motions of the atoms are very much exaggerated in Figs 1.6, 1.7, and 1.8; in real 
molecules the displacement of atoms during vibrations is seldom more than about 10 per cent 
of the bond length. 

Although dipole change requirements do impose some limitation on the application of 
infra-red spectroscopy, the appearance or non-appearance of certain vibration frequencies 
can give valuable information about the structure of a particular molecule (see Chapter 3). 

4. The visible and ultra-violet region. The excitation of a valence electron involves the moving 
of electronic charges in the molecule. The consequent change in the electric dipole gives rise 
to a spectrum by its interaction with the undulatory electric field of radiation. 

5. There is a rather special requirement for a molecular motion to be 'Raman active'; this is that 
the electrical polarizability of the molecule must change during the motion. This will be 
discussed fully in Chapter 4. 

1.4 REPRESENTATION OF SPECTRA 

We show in Fig. 1.9 a highly schematic diagram of a recording spectrometer suitable for use in 
the ultra-violet, visible and infra-red regions of the spectrum; since it uses a grating (a block of 
reflective material with a grid of parallel lines ruled on its surface) to select the frequencies which 
pass through, it is usually called a 'grating spectrometer'; another term frequently used is 
'dispersive spectrometer' since the grating 'disperses' the radiation into its frequency compo- 
nents. 
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' 
Recorder I \ 

Figure 1.9 Schematic diagram of a grating spectrometer. 

Radiation from the source, shown here as a hot or incandescent filament, passes through 
the vertical entrance slit SI (seen from above in the diagram) on to the spherical mirror M I ,  
from which a parallel beam is reflected on to the grating. The source is 'white', i.e. it radiates 
energy over a wide range of frequencies and, because of interference at the grid of the grating, 
different frequencies reflect from the grating at different angles. Thus when the grating is rotated 
as shown, a succession of frequencies is swept across the mirror M2, from where it is focused on 
to the exit slit, S2. SO we see that the frequency of the radiation arriving at S2 depends on the 
angle of the grating. 

From S2 the radiation falls on M 3 ,  by which it is focused on to the detector. The latter, 
perhaps a thermocouple for infra-red radiation or a photomultiplier for visible and ultra-violet, 
responds with an electrical output proportional to the intensity of the radiation falling on it. 
This signal is amplified electronically, and then used either to drive a pen, which records the 
spectrum immediately, or is collected and stored on a computer for later processing and display. 

The purpose of the slits is threefold. Firstly, they provide a sharply defined image which can 
be focused on the detector; secondly, the narrower they are the smaller is the frequency range 
which passes through, and consequently the resolving power (see Sec. 1.6) of the instrument is 
increased; and finally they help to prevent stray radiation, perhaps scattered from various 
components of the spectrometer or arriving from outside, getting to the detector and thus 
being falsely recorded as part of the spectrum. 

The sample (not shown in the diagram) can be placed almost anywhere in the radiation 
beam. In order to be able to minimize its size, it is often placed close to one of the slits, where the 
beam is smallest; also it is preferable to put it near the exit slit, S2, where it is bathed in only a 
narrow range of frequencies at any one time, rather than near SI where it is subjected to the full 
output of the source and may suffer some degradation from the intense heat or light. 

Let us consider now what happens when a spectrum is recorded. If there is no sample 
present the detector output will, ideally, be constant over the range of frequencies covered by 
the instrument. On the other hand, if we imagine putting into the beam a substance having just 
two possible energy levels, El and E2, the detector output will show a sudden fall at a frequency 
given by v = (E2 - El)/h, since some energy at this frequency will be absorbed by the sample 
and will no longer reach the detector. The resulting trace on the chart paper is illustrated in Fig. 
l.lO(a), where we show, on the left, the detector output (with 100 per cent at the bottom) and, 
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on the right, the percentage of the energy absorbed by the sample. We would say that the 
spectrum has been scanned between the beginning and ending frequencies, and such a picture 
is referred to, rather grandly, as a spectrum in the 'frequency domain', to indicate that it records 
detector output against frequency. In Section 1.8 we shall discuss 'time domain' spectroscopy, 
where the detector output is recorded as a function of time. 

The ideal situation of Fig. l.lO(a) is seldom attained. Not only does the source emissivity 
vary with frequency, but often the sensitivity of the detector is also frequency-dependent. Thus 
the baseline-the no-sample condition-is seldom horizontal, although matters can usually be 
arranged so that it is approximately linear. Further, since it is impossible to make the slits 
infinitely narrow, a range of frequencies, rather than just a single frequency, falls on the 
detector at any given position of the grating. Additionally, we shall see in Sec. 1.7 that no 
energy transitions in atoms and molecules are absolutely sharp, but they always occur over a 
range of frequencies. These factors cause a broadening of the spectral absorption and Fig. 
l.lO(b) illustrates a more typical spectrum showing their effects. Also shown are the small 
peaks and troughs arising from randomly generated electrical signals in the detector, the 
amplifier, or the pen recorder, usually collectively referred to as 'noise' on the spectrum. 

Frequency (%) 
(4 

Frequency (%) 

/ 

Figure 1.10 The spectrum of  a molecule undergoing a single transition: ( a )  idealized and (h )  usual appearance. 
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At this point it is helpful to pause briefly in our discussion of spectra and consider what 
happens to the energy absorbed in the sort of process discussed above. In the ultra-violet, 
visible, and infra-red regions it is an experimental fact that a given sample continues to show 
an absorption spectrum for as long as we care to irradiate it-in other words a finite number of 
sample molecules appear to be capable of absorbing an infinite amount of energy. Plainly the 
molecules must be able to rid themselves of the absorbed energy. The most common mechanism 
for this is thermal collisions. An energized molecule collides with its neighbours and gradually 
loses its excess energy to them as kinetic energy-the sample as a whole becomes warm. 

Another mechanism is that energy gained from radiation is lost as radiation once more. A 
molecule in the ground state absorbs energy at frequency v and its energy is raised an amount 
AE = hv above the ground state. It is thus in an excited, unstable, condition, but by emitting 
radiation of frequency v again, it can revert to the ground state and is able to reabsorb radiation 
from the source beam once more. In such a case it may be asked how an absorption spectrum 
can arise at all, since the absorbed energy is re-emitted by the sample. The answer is simply that 
the radiation is re-emitted in a random direction and the proportion of such radiation reaching 
the detector is tiny-in fact re-emitted radiation has the same chance of reaching the source as 
the detector. The net effect, then, is an absorption from the directed beam and, when re-emission 
occurs, a scattering into the surroundings. The scattered radiation can, of course, be collected 
and observed as an emission spectrum which will be-with important reservations to be dis- 
cussed in Chapter 4-the complement of the absorption spectrum. Under the right conditions 
much of the radiation emitted from a sample can be in a very coherent beam-the so-called laser 
radiation. We discuss this in Sec. 1.10. 

On the other hand, the mechanism for reradiating radiofrequency radiation is not particu- 
larly efficient. In this region it is quite possible for samples to become 'saturated' and be unable 
to continue to absorb radiation. 

Returning now to our general description of spectra: if there are several energy levels 
available to the sample, it is very unlikely that there is the same probability of transition 
between the various levels. This question will be discussed more fully in Sec. 1.7, but we may 
here note that differences in transition probability will mean that the absorbance (or transmit- 
tance) at each absorbing frequency will differ-the spectrum will show several peaks of varying 
height. 

Figure l.lO(b) shows the sort of record which is produced by most modern spectrometers, 
whatever the region in which they operate. However, another form of presentation is sometimes 
adopted-that showing the derivative of the spectral trace. A prime example of a technique 
using this form is electron paramagnetic resonance which shows relatively broad lines in the 
microwave region. The derivative of a curve is simply its slope at a given point; in calculus 
notation, the derivative of the spectral trace is dA/dv, where A is the energy absorbed or 
emitted. The derivative record is thus a plot of the slope dA/dv against v. In Fig. I . l l (a)  we 
show a typical broad absorption peak and in Fig. l . I  l(b) its derivative curve. Imagine moving 
from left to right across the spectrum in Fig. 1.1 l(a); we note that its slope is initially positive 
and small, that it increases until we reach a point midway up the peak, where it begins to 
decrease, becoming zero at the top of the peak, where the trace is horizontal. From then on 
the slope is always negative, increasingly so until half-way down the peak, and then steadily 
decreasing until it eventually becomes zero. The curve of Fig. 1.11 (6) traces out this pattern. 

Although at first sight more complex, the derivative trace has advantages over the direct 
record in some circumstances. Firstly, it indicates rather more precisely the centre of a broad 
absorbance peak; at this point the A curve is horizontal, hence dA/dv is zero, and the centre is 
marked by the intersection of the derivative curve with the axis. Secondly, the width of a peak is 
often more accurately measured from the derivative curve. The width is normally defined as the 
'half-width', i.e. the width of the absorbance peak at half its height, and this, as we can see from 



Figure 1.11 The relationship between absorption and derivative spectra: (a) a broad absorption band and (h)  its 
derivative. 

Fig. 1.1 l(b), is shown very clearly by the frequency difference between the maximum and the 
minimum of the derivative. Finally, for instrumental reasons, it is often better to measure the 
relative intensities of absorptions from the derivative curve rather than the direct trace. 

1.5 BASIC ELEMENTS OF PRACTICAL SPECTROSCOPY 

Spectrometers used in various regions of the spectrum naturally differ widely from each other in 
construction. These differences will be discussed in more detail in the following chapters, but 
here it will probably be helpful to indicate the basic features which are common to all types of 
spectrometer. We may, for this purpose, consider absorption and emission spectrometers sepa- 
rately. 

1. Absorption instruments. Figure 1.12(a) shows, in block diagram form, the components of an 
absorption spectrometer which might be used in the infra-red, visible, and ultra-violet 
regions. The radiation from a white source is directed by some guiding device (e.g. the 
mirror of Fig. 1.9) on to the sample, from which it passes through an analyser (e.g. the 
grating of Fig. 1.9), which selects the frequency reaching the detector at any given time. The 
signal from the latter passes to a recorder which is synchronized with the analyser so as to 
produce a trace of the absorbance as the frequency varies. 

Placed, often, between the sample and the analyser is a modulator; this mechanical or 
electronic device interrupts the radiation beam a certain number of times per second, usually 
fixed somewhere between 10 and 1000 times, and its effect is to cause the detector to send an 
alternating current signal to the recorder, with a fixed frequency of 10-1000 Hz, rather than 
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Figure 1.12 Block diagram of a typical scanning absorption spectrometer for use in (a) the infra-red, visible and ultra-violet regions, where 
a 'white' source is available, and (b) the microwave and radiofrequency regions where the source can be tuned over a range of frequencies. 
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Figure 1.13 Block diagram of a typical emission spectrometer. 

Samplc -.AM- 

the direct current signal which would result from a steady, uninterrupted beam. This has two 
main advantages: (a )  the amplifier in the recorder can be of a.c. type which is, in general, 
simpler to construct and more reliable in operation than a d.c. amplifier, and (b )  the amplifier 
can be tuned to select only that frequency which the modulator imposes on the signal, thus 
ignoring all other signals. In this way stray radiation and other extraneous signals are 
removed from the spectral trace and a better, cleaner spectrum results. 

In the microwave and radiofrequency regions it is possible to construct monochromatic 
sources whose emission frequency can be varied over a range. In this case, as Fig. 1.12(b) 
shows, no analyser is necessary, the source being, in a sense, its own analyser. Now it is 
necessary for the recorder to be synchronized with the source-scanning device in order that a 
spectral trace be obtained. 
Emission instruments. The layout now differs in that the sample, after excitation, is its own 
source, and it is necessary only to collect the emitted radiation, analyse, and record it in the 
usual way. Figure 1.13 shows, schematically, a typical spectrometer. The excitation can be 
thermal or electrical, but often takes the form of electromagnetic radiation. In the latter case 
it is essential that the detector does not collect radiation directly from the exciting beam, and 
the two are placed at right angles as shown. A modulator placed between the source of 
excitation and the sample, together with a tuned detector-amplifier, ensures that the only 
emission recorded from the sample arises directly from excitation; any other spontaneous 
emission is ignored. 

1.6 SIGNAL-TO-NOISE: RESOLVING POWER 

t t 
I 
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Two other spectroscopic terms may be conveniently discussed at this point since they will recur 
in succeeding chapters. 

1.6.1 Signal-to-Noise Ratio 

-&V- 

Since almost all modern spectrometers use some form of electronic amplification to magnify the 
signal produced by the detector, every recorded spectrum has a background of random fluctua- 
tions caused by spurious electronic signals produced by the source or detector, or generated in 
the amplifying equipment. These fluctuations are usually referred to as 'noise'. In order that a 
real spectral peak should show itself as such and be sufficiently distinguished from the noise, it 
must have an intensity some three or four times that of the noise fluctuations (a signal-to-noise 
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ratio of three or four). This requirement places a lower limit on the intensity of observable 
signals. In Sec. 1.9 we refer briefly to a computer-averaging technique by which it is possible to 
improve the effective signal-to-noise ratio. 

1.6.2 Resolving Power 

This is a somewhat imprecise concept which can, however, be defined rather arbitrarily and is 
often used as a measure of the performance of a spectrometer. We shall here. consider it in 
general terms only. 

No molecular absorption takes place at a single frequency only, but always over a spread of 
frequencies, usually very narrow but sometimes quite large (see Sec. 1.7); it is for this reason that 
we have up to now drawn spectra with broadened line shapes. 

Let us consider two such lines close together, as on the right of Fig. 1.14(a): the dotted curve 
represents the absorption due to each line separately, the full line their combined absorption. 
We shall first take the exit slit width to be larger than the separation between the lines. Scanning 
the spectrum plainly involves moving the twin absorbance peaks steadily to the left so that they 
pass across the exit slit and into the detector; the situation at successive stages is shown in (b), 
(c), and (d) of Fig. 1.14, the shaded area showing the amount of absorbance which the detector 

Exit slit - 
( u )  O",, Absorption 

( b )  - 5"" Absorpt~on 

( c )  -90% Absorption 

(4 - 90:,, Absarption 

I #  I T -Frequency 

( d ) ( c )  ( b )  (a )  falling on exit slit 

Figure 1.14 Illustrating the relationship between slit width and resolving power 



would register. At (e )  of this figure, the absorbance is plotted against frequency, together with 
the approximate positions of stages (a),  (b),  (c), and (d).  

It is quite evident that the separation between the lines has disappeared under these con- 
ditions-the lines are not resolved. It is equally evident that the use of a much narrower slit 
would result in their resolution-the resolving power would be increased. In fact, provided the 
slit width is less than the separation between the lines, the detector output will show a minimum 
between them. 

However, it must be remembered that a narrower slit allows less total energy from the beam 
to reach the detector and consequently the intrinsic signal strength will be less. There comes a 
point when decreasing the slit width results in such weak signals that they become indistinguish- 
able from the background noise mentioned in the previous paragraph. Thus spectroscopy is a 
continual battle to find the minimum slit width consistent with acceptable signal-to-noise values. 
Improvements in resolving power may arise not only as a result of obtaining better dispersion of 
the radiation by the analyser but also by using a more sensitive detector. 

1.7 THE WIDTH AND INTENSITY OF SPECTRAL TRANSITIONS 

In the preceding sections we have seen that a spectral transition has the important property of 
position, measured in terms of its frequency, wavelength, or wavenumber; there are two other 
important properties, its width and its intensity, and we shall consider these briefly here. 

1.7.1 The Width of Spectral Lines 

Throughout this chapter we have drawn spectral absorptions and emissions not as infinitely 
sharp lines but as more or less broad peaks; we have seen that one reason for this is that the 
mechanical slits in spectrometers are not infinitely narrow and thus allow a range of frequencies, 
rather than a single frequency, to fall on the detector, hence blurring the pattern. While 
improvements in spectrometer design can improve the resolving power of an instrument, how- 
ever, there is nonetheless a minimum width inherent in any atomic or molecular transition-the 
natural line width-beyond which no instrument, however superior, will show a sharpening. This 
width arises essentially because the energy levels of atomic and molecular systems are not 
precisely determined, but have a certain fuzziness or imprecision. Several factors contribute 
to this. 

1. Collision broadening. Atoms or molecules in liquid and gaseous phases are in continual 
motion and collide frequently with each other. These collisions inevitably cause some defor- 
mation of the particles and hence perturb, to some extent, the energies of at least the outer 
electrons in each. This immediately gives a possible explanation for the width of visible and 
ultra-violet spectral lines, since these deal largely with transitions between outer electronic 
shells. Equally vibrational and rotational spectra are broadened since collisions interfere with 
these motions too. In general, molecular interactions are more severe in liquids than in gases, 
and gas-phase spectra usually exhibit sharper lines than those of the corresponding liquid. 

In the case of solids, the motions of the particles are more limited in extent and less 
random in direction, so that solid-phase spectra are often sharp but show evidence of 
interactions by the splitting of lines into two or more components. 

2. Doppler broadening. Again in liquids and gases the motion of the particles causes their 
absorption and emission frequencies to show a Doppler shift; since the motion is random 
in a given sample, shifts to both high and low frequencies occur and hence the spectral line is 
broadened. In general, for liquids collision broadening is the most important factor, whereas 
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for gases, where collision broadening is less pronounced, the Doppler effect often determines 
the natural line width. 

3 .  Heisenberg uncertainty principle. Even in an isolated, stationary molecule or atom the 
energy levels are not infinitely sharp, due to the operation of a fundamental and very 
important principle, the uncertainty principle of Heisenberg. In effect this says that, if a 
system exists in an energy state for a limited time St seconds, then the energy of that state will 
be uncertain (fuzzy) to an extent SE where 

where h is again Planck's constant. Thus we see that the lowest energy state of a system is 
sharply defined since, left to itself, the system will remain in that state for an infinite time; 
thus St = oo and SE = 0. However, the lifetime of an excited electronic state, for example, is 
usually only about s, which gives a value for 6E of about 10-34/10-8 = J. A 
transition between this state and the ground state will thus have an energy uncertainty of 
SE and a corresponding uncertainty in the associated radiation frequency of SElh, which we 
can write as: 

Thus for our example of an excited electronic state lifetime of s, Sv x lo8 Hz. This 
apparently large uncertainty is, in fact, small compared with the usual radiation frequency 
of such transitions, 1 0 ~ ~ - 1 0 ' ~  Hz, and so the natural line width is said to be small; in fact, the 
apparent widths of electronic transitions are far more dependent on collision and Doppler 
broadening than on energy uncertainties. 

On the other hand an excited electron spin state may exist for some lo-'s which, from 
Eq. (1.1 l), leads to a frequency uncertainty of some lo7 Hz for a transition. This, compared 
with the usual frequency of such transitions, lo8-lo9 Hz, represents a very broad transition 
indeed, and here the Heisenberg uncertainty relation is by far the most important effect. 

Further examples of the application of Heisenberg's principle will be given in later 
chapters. 

1.7.2 The Intensity of Spectral Lines 

When discussing spectral intensities there are three main factors to be considered: the likelihood 
of a system in one state changing to another state-the transition probability; the number of 
atoms or molecules initially in the state from which the transition occurs-the population; and 
the amount of material present giving rise to the spectrum-the concentration or path length of 
the sample. 

1. Transition probability. The detailed calculation of absolute transition probabilities is basically 
a straightforward matter, but as it involves a knowledge of the precise quantum mechanical 
wave functions of the two states between which the transition occurs, it can seldom be done 
with accuracy and is, in any case, beyond the scope of this book. We shall generally content 
ourselves with qualitative statements about relative transition probabilities without attempt- 
ing any detailed calculations. 

At a much lower level of sophistication, however, it is often possible to decide whether a 
particular transition is forbidden or allowed (i.e. whether the transition probability is zero or 
non-zero). This process is essentially the deduction of selection rules, which allow us to decide 
between which levels transitions will give rise to spectral lines, and it can often be carried out 



through pictorial arguments very like those we have already used in discussing the activity or 
otherwise of processes in Sec. 1.3. 

2. Population of states. If we have two levels from which transitions to a third are equally 
probable, then obviously the most intense spectral line will arise from the level which 
initially has the greater population. There is a simple statistical rule governing the popula- 
tion of a set of energy levels. 

For example, if we have a total of N molecules distributed between two different energy 
states, a lower and an upper with energies El,,, and Euppe,, respectively, we would intuitively 
expect most of the molecules to occupy the lower state. Proper statistical analysis bears this 
out and shows that, at equilibrium: 

where A E  = EupF, - Elow,,, T is the temperature in K, and k is a universal constant. The 
expression is known as the Boltzmann distribution, after its originator, and k, which has a 
value of 1.38 x J K - I ,  as Boltzmann's constant. Examples showing the use of this very 
important expression will recur throughout the remaining chapters. 

3. Path length of sample. Clearly if a sample is absorbing energy from a beam of radiation, the 
more sample the beam traverses the more energy will be absorbed from it. We might expect 
that twice as much sample would give twice the absorption, but a very simple argument 
shows that this is not so. Consider two identical samples of the same material, S1 and S2, and 
assume that S1 or S2 alone absorb 50 per cent of the energy falling on them, allowing the 
remaining 50 per cent to pass through. If we pass a beam of initial intensity I. through S 1 ,  50 
per cent of lo will be absorbed and the intensity of the beam leaving S1 will be 10; if we then 
pass this beam through S2 a further 50 per cent will be absorbed, and x I lo = 10 will leave 
S2. Thus two 50 per cent absorptions in succession do not add up to 100 per cent but only to 
75 per cent absorption. An exactly similar relationship exists between the concentration of a 
sample and the amount of energy absorption-a doubling of the concentration produces 
something less than a doubling of the absorption. 

The relationship between concentration (c), path length ( l ) ,  and the incident and trans- 
mitted intensities of radiation, (Io and I, respectively) can be expressed in many ways, all 
based on the Beer-Lambert law, which is often written: 

where K. is a constant for the particular spectroscopic transition under investigation. To 
remove the inconvenience of using an exponential function, Eq. (1.13~) may be recast as: 

where we have introduced the symbol T for transmittance, defined simply as the ratio I l lo;  6 
is called the molar absorption coefficient, which is the term now favoured by the International 
Union of Pure and Applied Chemistry (IUPAC), although other terms still common are the 
decadic extinction coefficient, or decadic absorptivity (decadic meaning related to base 10 
rather than base e). 

When spectroscopy is used to measure concentration of material it is convenient to have 
a relationship which, unlike Eqs (1.13~) or (1.13b), is linear in concentration. Inverting Eq. 
(1.13b) and taking logarithms we have: 
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where we define the important quantity A ,  called the absorbance, or optical density. A is 
directly proportional to concentration and, because of its convenience in this respect, some 
spectrometers are constructed to record spectra directly in absorbance units. 

1.8 FOURIER TRANSFORM SPECTROSCOPY 

One of the major disadvantages of the conventional method of producing a spectrum such as 
that of Fig. l.lO(b) is its inherent slowness. Each point of the spectrum has to be recorded 
separately-the spectrometer is set to start reading at one end, the frequency is swept smoothly 
across the whole span of the spectrum, and the detector signal is monitored and recorded. The 
inefficiency of such a method is clear when one considers taking a spectrum with only one or 
two peaks in it; we have to sweep from one end to the other in order to find the peaks, but most 
of the time is spent recording nothing but background noise. Initially it was only in the visible 
and ultra-violet regions that the whole of a spectrum could be recorded simultaneously (on a 
photographic plate), but the development of Fourier transform (FT) spectroscopy now provides 
simultaneous and almost instantaneous recording of the whole spectrum in the magnetic 
resonance, microwave and infra-red regions. In this section we shall briefly discuss the basic 
ideas of the technique, leaving to later chapters more detailed consideration of its methods and 
applications. 

Although equally applicable to both emission and absorption spectroscopy, it is easier to 
visualize Fourier transform spectroscopy in terms of emission. For the moment, too, we shall 
ignore the line-broadening discussed in the previous section and think of the emitted radiation 
as a pure cosine wave at some quite precise frequency, v. If a detector capable of responding 
sufficiently rapidly receives this emitted radiation, its output will be an oscillating signal, again 
of frequency v. Note carefully that here we think of the detector output as a function of time 
('time domain spectroscopy') rather than as the function of frequency ('frequency domain') 
previously considered. 

Now imagine a sample emitting radiation at two different frequencies; a detector receiving 
the total radiation will 'see' the sum of the two cosine waves. We illustrate, diagrammatically, 
two separate but superimposed waves in Fig. 1.15(a), where the lower frequency wave is shown 
dashed, and their sum in Fig. 1.15(b); clearly the detector output, plotted against time, shows 
both an oscillation due to the frequency of the two waves, and a slow increase and decrease in 
overall amplitude. The frequency of this latter oscillation is often called the 'beat' frequency, by 
analogy with a similar phenomenon for musical tones, and it arises because the two component 
waves are sometimes in step, where they totally reinforce each other (points labelled A in the 
figure), and sometimes out of step, where they cancel (points B). 

If we decrease the difference in frequency between the component waves, they will get out of 
step more slowly and it takes longer for them to get back totally in step again. This is shown in 
Fig. 1.15(c) and (d), with the points marked A and B indicating, as before, where the waves are 
in step and totally out of step, respectively. The separate waves are drawn in Fig. 1.15(c) and 
their sum in Fig. 1.15(d), and we note that the beat frequency is lower than in Fig. 1.15(b). In 
general, it is easily shown that the beat frequency is equal to the difference in frequency of the 
two component waves. 

Mathematically it is simple, although tedious, to resolve a combined wave such as Fig. 
1.15(b) or (d) into its components. Essentially each component wave has its own frequency and 
maximum amplitude, so two components require the evaluation of four unknowns from the 
composite curve. In principle, then, observations of the time domain signal at four points and 
solution of four simultaneous equations will yield the information we seek. 
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Figure 1.15 Adding cosine waves: (a)  and ( c )  show the superposition of two cosine waves with slightly different 
frequencies; (h)  and (d) show their sums. The summation of six cosine waves with different frequencies is shown in 
(4. 

Adding more than two cosine waves complicates the resultant combined wave and makes 
the resolution into components even more tedious, but does not change the principle. Figure 
1.15(e) shows the result of superimposing six cosine waves of different frequencies. It would 
need 12 measured points and the solution of 12 simultaneous equations to determine the 
frequency and relative amplitude of each component. Fortunately there is a simple and quite 
general way to resolve a complex wave into its frequency components; this is the mathematical 
process known as Fourier transformation, named after the French mathematician Jean Baptiste 
Fourier, who developed the method in the early 1800s. Even more fortunately we do not need to 
know how the process works; it suffices to say that it is essentially a matter of integration of the 
complex waveform and that it is now carried out very conveniently by computer. 
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As an example of its operation let us imagine that a suitable detector is responding to the 
complex waveform of Fig. 1.15(b). A computer receiving the detector output might typically 
be set to sample it once every millisecond and to store, say, 2000 samplings in separate 
memory locations; it would thus need to collect the signal for just two seconds. The computer 
would then apply the Fourier transform process to the stored data, taking a further second or 
so, and the component cosine wave frequencies and amplitudes could be displayed. 
Conventionally the display would not take the form of Fig. 1.15(a), where the actual periodic 
variation of the waves is shown, but would instead be the spectrum of the waves4.e. two very 
sharp peaks of equal height plotted on a suitable frequency scale to show where the two 
frequencies occur. This is shown in Fig. 1.16, where the complex wave in Fig. 1.16(a) (taken 
from Fig. 1.15(b)) is seen to give rise to the spectrum of Fig. 1.16(b). Essentially the Fourier 
transform has converted the time domain plot of Fig. 1.16(a) into the frequency domain 
spectrum of Fig. 1.16(b). The process described above would have taken, perhaps, five 
seconds only. The detector collects all the spectral information virtually simultaneously 
and the computer 'decodes' that information into the conventional spectrum. It is in this 
way that the FT method speeds the collection of spectral data, typically, by factors of 10 
to 1000. 

We must consider one or two more points before we leave this discussion of basic FT 
spectroscopy. Firstly, recall that real samples do not emit radiation at precise frequencies; as 
we saw in the previous section, each emission is more or less broadened by various processes, 
and so each 'line' is really a package of slightly different frequencies. We show a typical peak in 
Fig. 1.17(a). In Fig. 1.17(b) we see that the peak can be considered as arising from a large 
number of sample molecules radiating at v,,,, the frequency maximum of the peak, with a 
smaller number radiating at frequencies away from that maximum, the number decreasing as 
the separation increases. If we wanted to discover the total signal emitted by such a peak we 
could, if we had time, plot out a cosine wave for each frequency, using an amplitude propor- 
tional to the number of molecules radiating at that frequency, and then add all the cosine waves 
together. To carry out this addition for the few 'packages' of radiating molecules shown in Fig. 
1.17(b) would not be difficult; to do it for a real sample, where every single molecule might have 
a radiation frequency different from its neighbour, is clearly quite impracticable. Fortunately, 
however, the Fourier transform process is a reciprocal one-just as FT converts a time domain 
signal to a frequency domain spectrum (e.g. Fig. 1.16), so it will carry out the reverse conver- 
sion. Thus if we supply the frequency curve of Fig. 1.17(a) to a computer and carry out the FT, 
the resultant display will be exactly the same as adding the component cosine waves. The result 
is shown in Fig. 1.17(c). 

We see that a detector receiving the total radiation from a single broad-line emission will 
show an oscillating signal whose overall amplitude decays smoothly to zero. The oscillation is 
the beat pattern set up by all the superimposed, but slightly different, cosine waves; the signal 

Figure 1.16 The use of the Fourier transform to convert the summed cosine waves of ( a )  (redrawn from Fig. 1.15(h)) 
into the frequency spectrum of (h ) .  
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Figure 1.17 (a)  The frequency distribution of a broad spectral line and (b)  the histogram of its frequency 
distribution. The Fourier transform of (c) a single broad spectral line and (d) a pair of broad lines. 

decays because, if we imagine all the waves in the peak to be 'in step' initially, after some time 
has elapsed the many different frequencies will be very much out of step, and on average half 
will have their amplitudes in the positive sense and half in the negative, giving a resultant of 
zero. Another way to think of this is to remember that two waves setting out in step with an 
infinitesimally small difference in frequency will take an infinite time to get back in step again, 
i.e. they will never do so. The frequency distribution of Fig. 1.17(a) has many infinitely close 
frequencies within it and so, after a few cycles, none of the individual waves ever get back into 
step again. If the band had been infinitely broad, i.e. containing an infinite number of infinit- 
esimally close neighbours, none would ever have been in step after the first instant, and the FT 
of such a 'white' source is a single decaying signal with no beats. We shall return to this in a 
moment. 
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The corollary of these arguments is that the rate of decay of the overall signal depends on 
the width of the original frequency peak. A broader peak contains a larger number of different 
frequencies and so will decay more rapidly. Clearly both the position and the width of a 
frequency peak can be recovered from the time domain signal. 

Next we should briefly consider the situation when a sample can undergo more than one 
spectroscopic transition, so that its frequency spectrum shows more than one peak. As before, 
the overall time domain signal is the sum of the various beat patterns set up by adding cosine 
waves from each broad peak. We show some typical patterns in Fig. 1.18, all taken from the 
type of frequency spectra typically found in nuclear magnetic resonance spectroscopy where the 
FT technique has found particularly wide application. Clearly the complexity of the time 
domain signal increases as more peaks are added; the point to remember is that all the informa- 
tion regarding the position, intensity, and width of each spectral line on the left of the figure is 
contained in the time domain pattern on the right; after experimentally observing the latter 
directly for a brief period, the frequency spectrum can be quickly recovered by Fourier trans- 
formation. 

Although we stated initially that the FT process is most easily visualized in terms of the 
emission of radiation, the technique is just as readily applied to absorption. We have already 
seen that a 'white' source would show a single decay signal with no beats; an approximation to 
this is shown in Fig. 1.19(a), where a very broad emission line (which can be considered as a 
white source covering a limited region of the spectrum) and its Fourier transform are shown. 
Although the time domain signal decays very rapidly, it does show some beats; this is because 
the broad emission line is only an approximation to a proper white source. We can now imagine 
an absorbing sample making some 'holes' in this radiation, as shown on the left-hand side of 

9(b), with its resulting FT signal on the right. Although we may find it difficult to 
Fourier-transforming (or even just adding up) the absence of radiation at some 
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Figure 1.18 The Fourier transform of some selected spectra 
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Figure 1.19 (a) An approximation to a 'white' source and its Fourier transform. (h)  Some absorptions from a 'white' 
source and their Fourier transform. 

frequencies, in practice a detector will collect a perfectly sensible signal which can be stored by a 
computer, transformed, and displayed as the normal absorption spectrum. 

Finally we should point out that, although this introduction to the FT process has con- 
centrated on time domain signals, monitoring the detector output as a function of time is not the 
only way in which the total spectrum from a sample can be collected. The student of physics will 
have recognized that the patterns of Fig. 1.15 can equally be described in terms of interference 
phenomena. In Chapter 3 we shall find that FT spectroscopy in the infra-red region operates by 
observing the interference pattern set up when the radiation beam is reflected between a pair of 
parallel mirrors which are steadily moved towards or away from each other; it is this pattern 
which is collected, recorded as a function of distance between mirrors, and later Fourier- 
transformed into the corresponding frequency spectrum. Whether to use interferometry or 
time domain signals in a particular application is based on purely practical grounds; it is 
difficult to find an infra-red detector with a response time sufficiently fast to be able to record 
a time domain signal, but it is very easy to reflect infra-red radiation between mirrors. 
Conversely, in the radiofrequency region, fast response detectors are no problem, but it is 
not at all easy to reflect the radiation between 'mirrors' in a sensible and coherent fashion. 

We see then that the FT method allows us to record spectra much more rapidly than the 
conventional frequency sweep technique. This in itself is valuable; spectrometers are costly 
instruments, and the more work we can get from them in a given time the more justified the 
initial investment. However, rapid data collection brings other benefits, e.g. in being able to 
record the spectra of transient species such as unstable molecules or intermediates in a chemical 
reaction. Since the technique essentially reduces the time spent obtaining a spectrum from hours 
or minutes down to seconds or even fractions of a second, it vastly increases the range of 
materials which can be studied. There are other advantages of using FT instruments, but we 



shall leave discussion of them until the relevant chapters on magnetic resonance and infra-red 
spectroscopy. 

1.9 ENHANCEMENT OF SPECTRA: COMPUTER AVERAGING 

We have already mentioned, in Sec. 1.6, that the problem of background noise imposes a 
limitation on the sensitivity of any spectroscopic technique-unless a real signal peak stands 
out clearly from noise fluctuations it is impossible to be sure that it is a signal. A signal-to-noise 
(SIN) ratio of 3 or 4 is usually reckoned necessary for unambiguous recognition of a signal. 
There are several ways in which SIN can be improved for a given sample, but all require the 
expenditure of time. Thus it is possible electronically to damp out oscillations of the recorder 
pen so that it is less susceptible to high-frequency noise. The baseline of the spectrum will then 
be smoother, but, because the pen responds more slowly to any change (including changes in 
signal), one must sweep more slowly across the spectrum. Nor is FT spectroscopy immune from 
noise-detector and amplifier noises occur during the collection of data and are transformed 
into spurious frequencies in the spectrum. 

The availability of cheaper and more powerful computers offers another method of signal 
enhancement, which involves recording the spectrum stepwise into a computer. Of course, this is 
already done if FT is intended, but it is just as easy to sample a frequency domain spectrum at, 
say, 2000 closely spaced points, and to store the intensity at each point in 2000 separate 
computer memory locations. This process may then be repeated as many times as we wish, 
but each time adding the new data into that already existing. Although in any one scan a weak 
signal may not be visible above the noise level, after n summed scans the signal will be n times 
larger in the store, whereas the noise, being random, will sometimes contribute to the store in a 
positive sense and sometimes negatively, so it will accumulate less rapidly. In fact it may be 
shown that n scans increase the noise level in the store by n1I2,  so the net gain in S/N is 
n/n' /2 = ~112. 

If a single scan takes several minutes, as is usually the case in conventional frequency-sweep 
spectroscopy, the necessity to store 100 scans in order to give an improvement in SIN by a factor 
of 10 is rather costly in instrument time, so computer averaging is not often used in such 
measurements. However, the combination of computer averaging with Fourier transform is 
very powerful indeed. Here one time domain scan can be completed in a second or two, and 
100 scans will only occupy a couple of minutes; thus a tenfold gain in SIN can be achieved in 
a total time often less than that required for a non-enhanced spectrum by ordinary sweep 
methods. 

Other benefits follow from the addition of a computer to a spectrometer. The spectrum of a 
solvent or other background can be stored in the computer and subtracted from the observed 
spectrum in order to isolate the spectrum of the substance, or peak intensities can be auto- 
matically measured and converted to sample concentrations. Even the operation of the spectro- 
meter itself can usefully be entrusted to the computer-samples can be changed automatically, 
and the optimum operating conditions can be determined and set for each new sample. 

1.10 STIMULATED EMISSION: LASERS 

We have already mentioned that, once radiation has been absorbed by a sample, the sample can 
lose its excess energy either by thermal collisions or by re-emission of radiation. In this section 
we shall consider the latter process in more detail, because it leads to the very important topic of 
laser radiation. 
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Radiation may be emitted by an excited molecule or atom either spontaneously or as the 
result of some stimulus acting on the molecule, called stimulated emission. Which of these two 
processes is most likely to occur in any given case depends on the energy jump involved, i.e. on 
the frequency of the radiation being emitted. For high-frequency transitions (infra-red, visible, 
and ultra-violet upwards) spontaneous emission is by far the most likely; conversely, for low- 
frequency changes (microwave and magnetic resonance) spontaneous emission is unlikely and, if 
the right conditions obtain, stimulated emission will occur. 

Stimulated emission is a resonance phenomenon-an excited state drops to the ground state 
(emitting radiation of frequency v = AE/h, where A E  is the energy gap) only when a photon 
(i.e. radiation) of the same frequency v interacts with the system. We illustrate the situation in 
Fig. 1.20. On the left, in both (a) and (b), we show the excitation of a molecule by absorption of 
radiation of frequency vex. At the right in (a) we show spontaneous emission, when radiation 
ve,it, is spontaneously given out, and in (b) stimulated emission where a photon of frequency 
v,,i,. interacts with the excited state and causes radiation of frequency v,,it. to be released. Note 
particularly that, although we have given different subscripts to v,,., ve,it., and vSti,. in order to 
indicate their origins, they all represent exactly the same frequency, the frequency AElh. 

Radiation emitted under stimulation of this sort has three very important qualities. Firstly, 
it is of a very precisely defined frequency: the excited state does not spontaneously decay, so it is 
inherently long-lived, which implies (see the discussion of Heisenberg uncertainty in Sec. 1.7.1) a 
narrow energy level. Secondly, the emitted radiation is in phase with the stimulating radiation: 
the excited state is stimulated to emit by interaction with the oscillating electromagnetic field of 
v,,i,., so it is not surprising that the maximum amplitude of the emitted wave coincides with that 
of vSti,.. Since the waves are of exactly the same frequency, they remain in phase as they leave 
the sample. Finally, the stimulating and emitted radiation are coherent, which means that they 
travel in precisely the same direction. In contrast spontaneous emission can occur at any time (so 
each emitted photon is not necessarily in phase with any other), in any direction, and within a 
more or less broad range of frequencies. 
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Figure 1.20 Showing (a) spontaneous and (h)  stimulated emission from an excited energy state. 



Of course the stimulating radiation of Fig. 1.20 is still present in the system after emission 
has occurred-it is in no way absorbed-so it can go on to interact with another excited 
molecule to induce more emission. Equally the emitted radiation has the right frequency to 
stimulate emission from yet another excited molecule. Clearly, all the time a supply of excited 
molecules exists, this process is likely to cascade and a great deal of radiation may be emitted 
coherently. This amplification of the original stimulating photon is reflected in the name of the 
process-light amplification by stimulated emission of radiation, or laser. 

In fact, as we have said, light (or, more properly, visible radiation) is far more likely to be 
emitted spontaneously, and so not to have the coherent properties of laser radiation. It was in the 
microwave region that the first successful amplification by stimulated emission was performed 
(and the process was therefore christened maser, standing for microwave amplification by 
stimulated emission of radiation). For the process to be possible in higher-frequency regions 
it is necessary to find systems with long-lived excited states so that stimulated, rather than 
spontaneous, emission may predominate, and this may only be achieved if more than two 
energy levels are involved. 

Consider the three energy levels of Fig. 1.21(a). Excitation from the ground state, level 1, to 
the normal excited state, level 2, can occur by absorption of radiation, as usual. Provided that, 
as well as emitting spontaneously, level 2 can transfer some molecules into a metastable state 
(level 3) which cannot easily revert spontaneously to the ground state, then the population of 
level 3 builds up, and laser action becomes feasible. The ruby laser is an example of this type of 
three-level system. Ruby is basically aluminium oxide containing a trace (about 0.05 per cent) of 
chromium ions, which gives it its characteristic colour. A discharge tube wound round a rod of 
ruby is flashed very briefly to raise the chromium ions into an excited electronic state; they drop 
rapidly by thermal, non-radiative processes, into a metastable state some 14 000cm-' above the 
ground state, and they then revert to the ground state, by laser action initiated by one of the 
infrequent spontaneously emitted photons emitting radiation at about 690 nm wavelength. The 
decay from excited to metastable state releases quite large amounts of heat, so the ruby must be 
allowed to cool before another excitation cycle is commenced; it is thus operated as a pulsed 
laser. 

In some cases the laser emission arises by reversion of level 3 to a lower state other than the 
original level 1, as shown in the four-level system of Fig. 1.21(6). This situation occurs parti- 
cularly when, as is quite possible, levels 3 and 4 belong to an entirely different molecular species 
from levels 1 and 2. For example, in the helium-neon laser it is the helium atoms which are 
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Figure 1.21 The energy levels of (a) a three-level and ( h )  a four-level system operating as a laser. 



initially excited (level 1 to 2), and which then transfer their excitation energy to neon atoms by 
collisions; this can happen only because neon has an excited state with almost exactly the same 
energy as the excited state of helium, so a resonance transfer of energy is possible. It also 
happens that the excited state of neon does not readily undergo an ordinary spectroscopic 
transition back to its ground state, so the conditions are ideal for laser action. Provided the 
exciting radiation for helium is maintained, so replenishing the population of excited helium 
atoms, this type of laser can operate continuously. We shall discuss the precise electronic energy 
levels involved in more detail in Chapter 5. 

The extreme coherence of laser radiation makes it ideal in applications like communications 
or distance measurement. From the spectroscopic point of view it is becoming increasingly 
important as new types of spectroscopy are developed but, for the purposes of this book, its 
most far-reaching application is in the area of vibrational spectroscopy. Raman spectroscopy, 
discussed at length in Chapter 4, requires an intense monochromatic source for which a laser in 
the visible or near-infra-red region is ideal. 

For virtually all other spectroscopic measurements, however, either a wide-band or a 
tunable source is desirable. Lasers cannot be wide-band (although the C 0 2  laser, to be 
described in Sec. 3.8.4, comes close to this since it gives a series of closely spaced lasing 
bands), but recent developments have led to their becoming tunable. To change the emission 
frequency of a laser it is necessary to be able to modify the energy levels between which laser 
transitions take place. Solids emitting laser radiation can be subjected to varying temperatures 
or pressures in order smoothly to change the relevant energies, but the extent of such changes is 
relatively small. More usefully, lasers made from coloured organic substances in solution-the 
so-called dye lasers-are widely tunable. In these the active material is usually a rare earth ion 
held in the centre of an organic 'ligand' which complexes firmly to the ion. The system can be 
tuned, within a continuum corresponding to a broad region of fluorescence, by building a 
spectrum dispersing element into the laser cavity, and it is now possible to produce laser 
emission at any frequency from the near-infra-red to the ultra-violet. Such intense, sharply 
defined but variable-frequency sources will certainly find application in many areas of spectro- 
scopy. 

1.1 1 SYNCHROTRON RADIATION 

As spectroscopic measurements become increasingly demanding, means to overcome sensitivity 
problems are developed and adapted. Sensitivity can often be improved by using a very power- 
ful radiation source to increase the signal-to-noise ratio and so greatly reduce scanning time. 
Synchrotron radiation, first observed in the late 1940s at the GEC synchrotron at Schenectady, 
New York, is such a source, and it has the huge additional advantage of being readily tunable. 
Since 1940 a number of synchrotrons have been constructed in various locations around the 
world, and the advantages to spectroscopists are such that there is considerable competition for 
'beamtime'. 

An electron synchrotron consists of a large ring-shaped vacuum chamber into which pulses 
of high-velocity electrons are injected after acceleration by electric fields. Magnetic fields, 
provided by magnets arranged around the ring, force the electrons to follow the curved path. 
At velocities close to that of light, electrons emit radiation when they are accelerated so that a 
narrow beam of radiation is produced tangentially to their path. 

This so-called synchrotron radiation can be tuned over a wide range of frequencies by 
changing the accelerating magnetic field. A number of different bending magnets (the two 
main types of which are called 'wigglers' and 'undulators') can be used on a single synchrotron 
ring to deliver radiation of a particular frequency range via a beam line to a spectrometer placed 



outside t h e  ring. T h e  tunability a n d  brilliance o f  these sources enable m a n y  otherwise extremely 
difficult experiments t o  b e  carried out .  Some newer experimental techniques, such as EXAFS, 
tha t  a r e  described in  Chapte r  8 have been developed using synchrotron sources. 
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PROBLEMS 

(Useful constants: N = 6.023 x mol-I; k = 1.381 x J K-I; 
c = 2.998 x 10' m s-I .) 

1.1 Convert the following spectroscopic quantities as indicated: 

State in which region of the electromagnetic spectrum you would expect each to appear, and what sort of 
transition each corresponds to. 

1.2 The wavelength of the radiation absorbed during a particular spectroscopic transition is observed to 
be 10pm. Express this in frequency (Hz) and in wavenumber (cm-I), and calculate the energy change 
during the transition in both joules per molecule and joules per mole. If the energy change were twice as 
large, what would be the wavelength of the corresponding radiation? 

1.3 Which of the following molecules would show (a) a microwave (rotational) spectrum, (h) an infra-red 
(vibrational) spectrum: Br2, HBr, CS2? 

1.4 How would you expect widening of the slits in a spectrometer to affect its resolution and its 
sensitivity? 

1.5 State the Beer-Lambert law. The transmittance of an aqueous solution of K M n 0 4  at a certain 
wavelength is 1 per cent (that is 0.01) for a molar solution in a 1 cm cell. What is (a) its absorbance 
and (h) the molar absorption coefficient of KMn04? 

1.6 A particular molecule is known to undergo spectroscopic transitions between the ground state and 
two excited states, (a) and (h), its lifetime in (a) being about 10s and in (h) about 0.1 s. Calculate the 
approximate uncertainty in the excited state energy levels and the widths of the associated spectral 'lines' in 
hertz. 

1.7 A certain transition involves an energy change of 4.005 x lo-" J molecule-'. If there are 1000 
molecules in the ground state, what is the approximate equilibrium population of the excited state at 
temperatures of (a) 29 K, ( h )  290 K, and (c) 2900 K? What would your answer have been if the energy 
change were 10 times greater? 

1.8 Sketch the curve you would expect from Fourier transformation of a sine wave. 



CHAPTER 

TWO 
MICROWAVE SPECTROSCOPY 

2.1 THE ROTATION OF MOLECULES 

We saw in the previous chapter that spectroscopy in the microwave region is concerned with the 
study of rotating molecules. The rotation of a three-dimensional body may be quite complex 
and it is convenient to resolve it into rotational components about three mutually perpendicular 
directions through the centre of gravity-the principal axes of rotation. Thus a body has three 
principal moments of inertia, one about each axis, usually designated I A ,  Is ,  and I=. 

Molecules may be classified into groups according to the relative values of their three 
principal moments of inertia-which, it will be seen, is tantamount to classifying them accord- 
ing to their shapes. We shall describe this classification here before discussing the details of the 
rotational spectra arising from each group. 

1 .  Linear molecules. These, as the name implies, are molecules in which all the atoms are 
arranged in a straight line, such as hydrogen chloride HC1 or carbon oxysulphide OCS, 
illustrated below 

The three directions of rotation may be taken as (a)  about the bond axis, (b) end-over-end 
rotation in the plane of the paper, and (c)  end-over-end rotation at right angles to the plane. 
It is self-evident that the moments of (6) and (c) are the same (that is IB = I=) while that of (a)  
is very small. As an approximation we may say that IA = 0, although it should be noted that 
this is only an approximation (see Sec. 2.3.1). 

Thus for linear molecules we have: 



2 .  Symmetric tops. Consider a molecule such as methyl fluoride, where the three hydrogen 
atoms are bonded tetrahedrally to the carbon, as shown below: 

"\ 
H-C-F 

As in the case of linear molecules, the end-over-end rotation in, and out of, the plane of the 
paper are still identical and we have IB = IC. The moment of inertia about the C- F bond 
axis (chosen as the main rotational axis since the centre of gravity lies along it) is now not 
negligible, however, because it involves the rotation of three comparatively massive hydrogen 
atoms off this axis. Such a molecule spinning about this axis can be imagined as a top, and 
hence the name of the class. We have then: 

Symmetric tops: IB = IC # IA IA # 0 (2 .2 )  

There are two subdivisions of this class which we may mention: if, as in methyl fluoride 
above, IB = Ic > I A ,  then the molecule is called a prolate symmetric top; whereas if 
IB = Ic < I A ,  it is referred to as oblate. An example of the latter type is boron trichloride, 
which, as shown, is planar and symmetrical. In this case IA = 21B = 21c. 

3. Spherical tops. When a molecule has all three moments of inertia identical, it is called a 
spherical top. A simple example is the tetrahedral molecule methane CH4. We have then: 

Spherical tops: IA = IB = IC (2 .3 )  

In fact these molecules are only of academic interest in this chapter. Since they can have no 
dipole moment owing to their symmetry, rotation alone can produce no dipole change and 
hence no rotational spectrum is observable. 

4 .  Asymmetric tops. These molecules, to which the majority of substances belong, have all three 
moments of inertia different: 

IA # IB # IC 

Simple examples are water H 2 0  and vinyl chloride CH2=CHC1. 



MICROWAVE SPECTROSCOPY 33 

Perhaps it should be pointed out that one can (and often does) describe the classification of 
molecules into the four rotational classes in far more rigorous terms than have been used above 
(see, for example, Herzberg, Molecular Spectra and Molecular Structure, vol. 11). However, for 
the purposes of this book the above description is adequate. 

2.2 ROTATIONAL SPECTRA 

We have seen that rotational energy, along with all other forms of molecular energy, is quan- 
tized: this means that a molecule cannot have any arbitrary amount of rotational energy (i.e. any 
arbitrary value of angular momentum) but its energy is limited to certain definite values 
depending on the shape and size of the molecule concerned. The permitted energy values- 
the so-called rotational energy levels-may in principle be calculated for any molecule by 
solving the Schrodinger equation for the system represented by that molecule. For simple 
molecules the mathematics involved is straightforward for tedious, while for complicated sys- 
tems it is probably impossible without gross approximations. We shall not concern ourselves 
unduly with this, however, being content merely to accept the results of existing solutions and to 
point out where reasonable approximations may lead. 

We shall consider each class of rotating molecule in turn, discussing the linear molecule in 
most detail, because much of its treatment can be directly extended to symmetrical and unsym- 
metrical molecules. 

2.3 DIATOMIC MOLECULES 

2.3.1 The Rigid Diatomic Molecule 

We start with this, the simplest of all linear molecules, shown in Fig. 2.1. Masses ml and m2 are 
joined by a rigid bar (the bond) whose length is 

The molecule rotates end-over-end about a point C,  the centre of gravity: this is defined by the 
moment, or balancing, equation: 

Figure 2.1 A rigid diatomic molecule treated as two masses, rnl and m?. joined by a rigid bar of length r.0 = r.1 + r ? .  
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The moment of inertia about C is defined by: 

2 2 I = mlrl + m2r2 

= m2r2rl + mlrlr2 (from Eq. (2.6)) 

= rlr2(ml + m2) 

However, from Eqs (2.5) and (2.6): 

Therefore, 

m2r0 r l  =- mlro and r2 = - 
m l +  m2 m1+ m2 

Replacing (2.8) in (2.7): 

where we have written p = mlrn2/(ml + mz), and p is called the reduced mass of the system. 
Equation (2.9) defines the moment of inertia conveniently in terms of the atomic masses and the 
bond length. 

By the use of the Schrodinger equation it may be shown that the rotational energy levels 
allowed to the rigid diatomic molecule are given by the expression: 

joules where J =  0, 1, 2, . . . 

In this expression h is Planck's constant, and I is the moment of inertia, either IB  or IC, since 
both are equal. The quantity J, which can take integral values from zero upwards, is called the 
rotational quantum number: its restriction to integral values arises directly out of the solution to 
the Schrodinger equation and is by no means arbitrary, and it is this restriction which effectively 
allows only certain discrete rotational energy levels to the molecule. 

Equation (2.10) expressed the allowed energies in joules; we, however, are interested in 
differences between these energies, or, more particularly, in the corresponding frequency, 
v = AEIhHz, or wavenumber, V = AElhccm-', of the radiation emitted or absorbed as a 
consequence of changes between energy levels. In the rotational region spectra are usually 
discussed in terms of wavenumber, so it is useful to consider energies expressed in these 
units. We write: 

where c, the velocity of light, is here expressed in cms-', since the unit of wavenumber is 
reciprocal centimetres. 

Equation (2.1 1)  is usually abbreviated to: 

where B, the rotational constant, is given by 

in which we have used explicitly the moment of inertia IB. We might equally well have used Ic 
and a rotational constant C,  but the notation of (2.13) is conventional. 
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Figure 2.2 The allowed rotational energies of a rigid diatomic molecule. 

From Eq. (2.12) we can show the allowed energy levels diagrammatically as in Fig. 2.2. 
Plainly for J = 0 we have EJ = 0 and we would say that the molecule is not rotating at all. For 
J =  1, the rotational energy is E I  = 2 8  and a rotating molecule then has its lowest angular 
momentum. We may continue to calculate EJ with increasing J values and, in principle, there 
is no limit to the rotational energy the molecule may have. In practice, of course, there comes a 
point at which the centrifugal force of a rapidly rotating diatomic molecule is greater than the 
strength of the bond, and the molecule is disrupted, but this point is not reached at normal 
temperatures. 

We now need to consider differences between the levels in order to discuss the spectrum. If 
we imagine the molecule to be in the J =  0 state (the ground rotational state, in which no 
rotation occurs), we can let incident radiation be absorbed to raise it to the J = 1 state. 
Plainly the energy absorbed will be: 

and, therefore, 

In other words, an absorption line will appear at 2Bcm-'. If now the molecule is raised from the 
J = 1 to the J = 2 level by the absorption of more energy, we see immediately: 

In general, to raise the molecule from the state J to state J + 1, we would have: 

V j + j +  = B(J+  l ) ( J +  2) - BJ( J+  1) 

= B[J~ + 3 J + 2  - ( J ~  + J)] 



Figure 2.3 Allowed transitions between the energy levels of a rigid diatomic molecule and the spectrum which arises 
from them. 

Thus a stepwise raising of the rotational energy results in an absorption spectrum consisting of 
lines at 2B, 4B, 6B, . . . cm-I, while a similar lowering would result in an identical emission 
spectrum. This is shown at the foot of Fig. 2.3. 

In deriving this pattern we have made the assumption that a transition can occur from a 
particular level only to its immediate neighbour, either above or below: we have not, for 
instance, considered the sequence of transitions J = 0 + J = 2 + J = 4 . . . In fact, a rather 
sophisticated application of the Schrodinger wave equation shows that, for this molecule, we 
need only consider transitions in which J changes by one unit-all other transitions being 
spectroscopically forbidden. Such a result is called a selection rule, and we may formulate it 
for the rigid diatomic rotator as: 

Selection rule: A J  = i 1 (2.17) 

Thus Eq. (2.16) gives the whole spectrum to be expected from such a molecule. 
Of course, only if the molecule is asymmetric (heteronuclear) will this spectrum be observed, 

since if it is homonuclear there will be no dipole component change during the rotation, and 
hence no interaction with radiation. Thus molecules such as HCl and CO will show a rotational 
spectrum, while N2 and O2 will not. Remember, also, that rotation about the bond axis was 
rejected in Sec. 2.1: we can now see that there are two reasons for this. Firstly, the moment of 
inertia is very small about the bond so, applying Eqs (2.10) or (2.11) we see that the energy levels 
would be extremely widely spaced: this means that a molecule requires a great deal of energy to 
be raised from the J = 0 to the J = 1 state, and such transitions do not occur under normal 
spectroscopic conditions. Thus diatomic (and all linear) nlolecules are in the J = 0 state for 
rotation about the bond axis, and they may be said to be not rotating. Secondly, even if such a 
transition should occur, there will be no dipole change and hence no spectrum. 
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To conclude this section we shall apply Eq. (2.16) to an observed spectrum in order to 
determine the moment of inertia and hence the bond length. Gilliam et a1.t have measured the 
first line ( J  = 0) in the rotation spectrum of carbon monoxide as 3.842 35 cm-l. Hence, from Eq. 
(2.16): 

Rewriting Eq. (2.13) as: I = h/8r2 BC, we have: 

where we express the velocity of light in cm s-I, since B is in cm-'. However, the moment of 
inertia is p2 (cf. Eq. (2.9)) and, knowing the relative atomic weights (H = 1.0080) to be 
C = =12.0000, 0 = 15.9994, and the absolute mass of the hydrogen atom to be 
1.67343 x kg, we can calculate the masses of carbon and oxygen, respectively, as 
19.921 68 and 26.561 36 x kg. The reduced mass is then: 

Hence: 

and 

I 
r2 = - = 1.2799 x m2 

P 

rco = 0.1131 nm (or 1.131 A)  

2.3.2 The Intensities of Spectral Lines 

We want now to consider briefly the relative intensities of the spectral lines of Eq. (2.16); for this 
a prime requirement is plainly a knowledge of the relative probabilities of transition between the 
various energy levels. Does, for instance, a molecule have more or less chance of' making the 
transition J  = 0 -+ J  = 1 than the transition J  = 1 -+ J  = 2? We mentioned above calculations 
which show that a change of A J  = &2, k3 ,  etc., was forbidden-in other words, the transition 
probability for all these changes is zero. Precisely similar calculations show that the probability 
of all changes with A J  = 4 ~ 1  is almost the same-all, to a good approximation, are equally 
likely to occur. 

This does not mean, however, that all spectral lines will be equally intense. Although the 
intrinsic probability that a single molecule in the J  = 0 state, say, will move to J  = 1 is the same 
as that of a single molecule moving from J = 1 to J  = 2, in an assemblage of molecules, such as 
in a normal gas sample, there will be different numbers of molecules in each level to begin with, 
and therefore different total numbers of molecules will carry out transitions between the various 
levels. In fact, since the intrinsic probabilities are identical, the line intensities will be directly 
proportional to the initial numbers of molecules in each level. 

The first factor governing the population of the levels is the Boltzmann distribution (cf. Sec. 
1.7.2). Here we know that the rotational energy in the lowest level is zero, since J  = 0, so, if we 

t Gilliam, Johnson, and Gordy. Physical Rc,vicw., 78. 140 (1950). 



have No molecules in this state, the number in any higher state is given by: 

NJ/No = exp(-EJ/kT) = exp -[-BhcJ(J + l ) /kT] (2.18) 

where, we must remember, c is the velocity of light in cm s-I when B is in cm-'. A very simple 
calculation shows how NJ varies with J; for example, taking a typical value of B = 2cmP', and 
room temperature (say T = 300 K), the relative population in the J = 1 state is: 

NI - ( 
2 x 6.63 x x 3 x 10" x 1 x 2 

= exp - 
No 1.38 x x 300 

= exp(-0.019) = 0.98 

and we see that there are almost as many molecules in the J = 1 state, at equilibrium, as in the 
J = 0. In a similar way the two graphs of Fig. 2.4 have been calculated, showing the more rapid 
decrease of NJ/No with increasing J and with larger B. 

A second factor is also required-the possibility of degeneracy in the energy states. 
Degeneracy is the existence of two or more energy states which have exactly the same energy. 
In the case of the diatomic rotator we may approach the problem in terms of its angular 
momentum. 

The defining equations for the energy and angular momentum of a rotator are: 

0 1 2 3 4 5 6 7 8 9 1 0  

Rot;~tionnl quantum numher J 

Figure 2.4 The Boltzmann populations of the rotational energy levels of Fig. 2.2. The diagram has been drawn 
taking values of B = 5 and 10 cm-' and T = 300 K in Eq. (2.18). 
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where I is the moment of inertia, w the rotational frequency (in radians per second), and P the 
angular momentum. Rearrangement of these gives: 

The energy level expression of Eq. (2.10) can be rewritten: 

h2 
2EI=  J ( J +  1)  - 

47T2 

and hence 

P = &o A = units 
27T 

where, following convention, we take h / 2 ~  as the fundamental unit of angular momentum. Thus 
we see that P, like E, is quantized. 

Throughout the above derivation P has been printed in bold face type to show that it is a 
vector-i.e. it has direction as well as magnitude. The direction of the angular momentum vector 
is conventionally taken to be along the axis about which rotation occurs and it is usually drawn 
as an arrow of length proportional to the magnitude of the momentum. The number of different 
directions which an angular momentum vector may take up is limited by a quantum mechanical 
law which may be stated: 

For integral values of the rotational quantum number (in this case J), the angular momentum vector 
may only take up  directions such that its component along a given reference direction is zero or an 
integral multiple of angular momentum units. 

We can see the implications of this most easily by means of a diagram. In Fig. 2.5 we show 
the case J =  1. Here P = units = a, and, as Fig. 2.5(a) shows, a vector of length 
fi(= 1.41) can have only three integral or zero components along a reference direction (here 
assumed to be from top to bottom in the plane of the paper): + 1, 0, and - 1. Thus the angular 

Figure 2.5 The three degenerate orientations of the rotational angular momentum vector for a molecule with J = 1 



Figure 2.6 The five and seven degenerate rotational orientations for a molecule with J = 2 and J = 3, respectively. 

momentum vector in this instance can be oriented in only three different directions (Fig. 2.5(b) 
to (d)) with respect to the reference direction. All three rotational directions are, of course, 
associated with the same angular momentum and hence the same rotational energy: the J = 1 
level is thus threefold degenerate. 

Figure 2.6(a) and (6) shows the situation for J = 2(P = &) and J = 3 (P 2 f i )  with 
fivefold and sevenfold degeneracy, respectively. In general it may readily be seen that each 
energy level is (2J + 1 )-fold degenerate. 

Thus we see that, although the molecular population in each level decreases exponentially 
(Eq. (2.18)), the number of degenerate levels available increases rapidly with J. The total relative 
population at an energy EJ will plainly be: 

Population cc (2J + 1) exp(-EJ/kT) (2.20) 

When this is plotted against J the points fall on a curve of the type shown in Fig. 2.7, indicating 
that the population rises to a maximum and then diminishes. Differentiation of Eq. (2.20) shows 
that the population is a maximum at the nearest integral J value to: 

Maximum population: J =  El 
We have seen that line intensities are directly proportional to the populations of the rotational 
levels; hence it is plain that transitions between levels with very low or very high J values will 
have small intensities while the intensity will be a maximum at or near the J value given by Eq. 
(2.21). 

2.3.3 The Effect of Isotopic Substitution 

When a particular atom in a molecule is replaced by its isotope-an element identical in every 
way except for its atomic mass-the resulting substance is identical chemically with the original. 
In particular there is no appreciable change in internuclear distance on isotopic substitution. 
There is, however, a change in total mass and hence in the moment of inertia and B value for the 
molecule. 

13 16 Considering carbon monoxide as an example, we see that on going from 12~'60 to C 0 
there is a mass increase and hence a decrease in the B value. If we designate the I3c molecule 
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Figure 2.7 The relative populations, including degeneracy, of the rotational energy levels of a diatomic molecule. The 
diagram has been drawn for the same conditions as Fig. 2.4. 

with a prime we have B > B'. This change will be reflected in the rotational energy levels of the 
molecule and Fig. 2.8 shows, much exaggerated, the relative lowering of the I3c levels with 
respect to those of 12c. Plainly, as shown by the diagram at the foot of Fig. 2.8, the spectrum of 
the heavier species will show a smaller separation between the lines (2B') than that of the lighter 
one (2B) .  Again the effect has been much exaggerated for clarity, and the transitions due to the 
heavier molecule are shown dashed. 

Observation of this decreased separation has led to the evaluation of precise atomic weights. 
Gilliam et a/., as already stated, found the first rotational absorption of 12c160 to be at 
3.842 35 cm-I, while that of I3cl60 was at 3.673 37 cm-I. The values of B determined from 
these figures are: 

B = 1.921 18 cm-I and B' = 1.836 69 cm-' 

where the prime refers to the heavier molecule. We have immediately: 



Figure 2.8 The effect of isotopic substitution on the energy levels and rotational spectrum of a diatomic molecule 
such as carbon monoxide. 

where p is the reduced mass, and the internuclear distance is considered unchanged by isotopic 
substitution. Taking the mass of oxygen to be 15.9994 and that of carbon-12 to be 12.00, we 
have: 

from which m l ,  the atomic weight of carbon-13, is found to be 13.0007. This is within 0.02 per 
cent of the best value obtained in other ways. 

It is noteworthy that the data quoted above were obtained by Gilliam et al. from I3cl60 
molecules in natural abundance (i.e. about 1 per cent of ordinary carbon monoxide). Thus, 
besides allowing an extremely precise determination of atomic weights, microwave studies can 
give directly an estimate of the abundance of isotopes by comparison of absorption intensities. 

2.3.4 The Non-rigid Rotator 

At the end of Sec. 2.3.1 we indicated how internuclear distances could be calculated from 
microwave spectra. It must be admitted that we selected our data carefully at this point- 
spectral lines for carbon monoxide, other than the first, would not have shown the constant 
2B separation predicted by Eq. (2.16). This is shown by the spectrum of hydrogen fluoride given 
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Table 2.1 Rotation spectrum of hydrogen fluoride 

t Lines numbered according to vJ = 2 B ( J +  I)cm-'. Observed data from 'An 
Examination of the Far Infra-red Spectrum of Hydrogen Fluoride' by A. A. 
Mason and A. H. Nielsen, published in Scientific Report No. 5, August 1963, 
Contract No. A F  19(604)-7981, by kind permission of the authors. 

t See Sec. 2.3.5 for details of the calculation. 

in Table 2.1; it is evident that the separation between successive lines (and hence the apparent B 
value) decreases steadily with increasing J. 

The reason for this decrease may be seen if we calculate internuclear distances from the B 
values. The calculations are exactly similar to those of Sec. 2.3.1 and the results are shown in 
column 6 of Table 2.1. Plainly the bond length increases with J and we can see that our 
assumption of a rigid bond is only an approximation; in fact, of course, all bonds are elastic 
to some extent, and the increase in length with J merely reflects the fact that the more quickly a 
diatomic molecule rotates the greater is the centrifugal force tending to move the atoms apart. 

Before showing how this elasticity may be quantitatively allowed for in rotational spectra, 
we shall consider briefly two of its consequences. Firstly, when the bond is elastic, a molecule 
may have vibrational energy-i.e. the bond will stretch and compress periodically with a certain 
fundamental frequency dependent upon the masses of the atoms and the elasticity (or force 
constant) of the bond. If the motion is simple harmonic (which, we shall see in Chapter 3, is 
usually a very good approximation to the truth) the force constant is given by: 

k = 4 . r r2~2~2p  (2.22) 

where G is the vibration frequency (expressed in cm-I), and c and p have their previous 
definitions. Plainly the variation of B with J is determined by the force constant-the weaker 
the bond, the more readily will it distort under centrifugal forces. 

The second consequence of elasticity is that the quantities r and B vary during a vibration. 
When these quantities are measured by microwave techniques many hundreds of vibrations 
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occur during a rotation, and hence the measured value is an average. However, from the 
defining equation of B we have: 

since all other quantities are independent of vibration. Now, although in simple harmonic 
motion a molecular bond is compressed and extended an equal amount on each side of the 
equilibrium distance and the average value of the distance is therefore unchanged, the average 
value of l / r 2  is not equal to l l r ; ,  where r, is the equilibrium distance. We can see this most easily 
by an example. Consider a bond of equilibrium length 0.1 nm vibrating between the limits 0.09 
and 0.11 nm. We have: 

but 

and therefore (r),,, = J1/103.5 = 0.0985 nm. The difference, though small, is not negligible 
compared with the precision with which B can be measured spectroscopically. In fact the real 
situation is rather worse. We shall see in Chapter 3 that real vibrations are not simple harmonic, 
since a real bond may be stretched more easily than it may be compressed, and this usually 
results in r,,, being greater than re,,. 

It is usual, then, to define three different sets of values for B and r. At the equilibrium 
separation, re, between the nuclei, the rotational constant is Be; in the vibrational ground state 
the average internuclear separation is ro associated with a rotational constant Bo; while if the 
molecule has excess vibrational energy the quantities are r, and B,, where v is the vibrational 
quantum number. 

During the remainder of this chapter we shall ignore the small differences between Bo, B,, 
and B,-the discrepancy is most important in the consideration of vibrational spectra in 
Chapter 3. 

We should note, in passing, that the rotational spectrum of hydrogen fluoride given in Table 
2.1 extends from the microwave well into the infra-red region (cf. Fig. 1.4). This underlines the 
comment made in Chapter 1 that there is no fundamental distinction between spectral regions, 
only differences in technique. Since hydrogen fluoride, together with other diatomic hydrides, 
has a small moment of inertia and hence a large B value, the spacings between rotational energy 
levels become large and fall into the infra-red region after only a few transitions. Historically, 
indeed, the moments of inertia and bond lengths of these molecules were first determined from 
spectral studies using infra-red techniques. 

2.3.5 The Spectrum of a Non-rigid Rotator 

The Schrodinger wave equation may be set up for a non-rigid molecule, and the rotational 
energy levels are found to be: 
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where the rotational constant, B, is as defined previously, and the centrifugal distortion constant, 
D ,  is given by: 

which is a positive quantity. Equation (2.24) applies for a simple harmonic force field only; if the 
force field is anharmonic, the expression becomes: 

where H, K, etc., are small constants dependent upon the geometry of the molecule. They are, 
however, negligible compared with D and most modern spectroscopic data are adequately fitted 
by Eq. (2.24). 

From the defining equations of B and D it may be shown directly that: 

where ~2 is the vibrational frequency of the bond and k has been expressed according to Eq. 
(2.22). We shall see in Chapter 3 that vibrational frequencies are usually of the order of 
103cm-', while B we have found to be of the order of 10cm-'. Thus we see that D, being of 
the order lop3 cm-I, is very small compared with B. For small J, therefore, the correction term 
D J ~ ( J +  112 is almost negligible, while for J values of 10 or more it may become appreciable. 

Figure 2.9 shows, much exaggerated, the lowering of rotational levels when passing from 
the rigid to the non-rigid diatomic molecule. The spectra are also compared, the dashed lines 
connecting corresponding energy levels and transitions of the rigid and the non-rigid molecules. 
It should be noted that the selection rule for the latter is still A J  = I t l .  

We may easily write an analytical expression for the transitions: 

where VJ represents equally the upward transition from J to J + 1, or the downward from J + 1 
to J. Thus we see analytically, and from Fig. 2.9, that the spectrum of the elastic rotor is similar 
to that of the rigid molecule except that each line is displaced slightly to low frequency, the 
displacement increasing with ( J +  I ) ~ .  

A knowledge of D gives rise to two useful items of information. Firstly, it allows us to 
determine the J value of lines in an observed spectrum. If we have measured a few isolated 
transitions it is not always easy to determine from which J  value they arise; however, fitting Eq. 
(2.28) to them-provided three consecutive lines have been measured-gives unique values for 
B, D ,  and J. The precision of such fitting is shown by Table 2.1 where the wavenumbers are 
calculated from the equation: 



J Rtgd rotator Non-ng~d rotator 

Rigid 

Non-rigid 

Figure 2.9 The change in rotational energy levels and spectrum when passing from a rigid to a non-rigid diatomic 
molecule. Energy levels on the right are calculated using D = I O - ~ B .  

Secondly, a knowledge of D enables us to determine-although rather inaccurately-the 
vibrational frequency of a diatomic molecule. From the above data for hydrogen fluoride and 
Eq. (2.27) we have: 

In the next chapter we shall see that a more precise determination leads to the value 
4138.3 cm-'; the 2 per cent inaccuracy in the present calculation is due partly to the assumption 
of simple harmonic motion and partly to the very small, and hence relatively inaccurate, value 
of D. 
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The force constant follows directly: 

k = 4,1r'c'i;j~~ = 960 N m-I 

which indicates, as expected, that H -F is a relatively strong bond. 

2.4 POLYATOMIC MOLECULES 

2.4.1 Linear Molecules 

We consider first molecules such as carbon oxysulphide OCS or chloroacetylene HC-CCl, 
where all the atoms lie on a straight line, since this type gives rise to particularly simple spectra 
in the microwave region. Since IB = ZC; IA = 0, as for diatomic molecules, the energy levels are 
given by a formula identical with Eq. (2.26), i.e. 

and the spectrum will show the same 2 8  separation modified by the distortion constant. In fact, 
the whole of the discussion on diatomic molecules applies equally to all linear molecules; three 
points, however, should be underlined: 

1. Since the moment of inertia for the end-over-end rotation of a polyatomic linear molecule is 
considerably greater than that of a diatomic molecule, the B value will be much smaller and 
the spectral lines more closely spaced. Thus B values for diatomic molecules are about 
10cm-', while for triatomic molecules they can be 1 cm-' or less, and for larger molecules 
smaller still. 

2. The molecule must, as usual, possess a dipole moment if it is to exhibit a rotational spectrum. 
Thus OCS will be microwave active, while OCO (more usually written COz) will not. In 
particular, it should be noted that isotopic substitution does not lead to a dipole moment 
since the bond lengths and atomic charges are unaltered by the substitution. Thus 160~180 is 
microwave inactive. 

3. A non-cyclic polyatomic molecule containing N atoms has altogether N - 1 individual bond 
lengths to be determined. Thus in the triatomic molecule OCS there is the CO distance, rco, 
and the CS distance, rcs. On the other hand, there is only one moment of inertia for the end- 
over-end rotation of OCS, and only this one value can be determined from the spectrum. 
Table 2.2 shows the data for this molecule. Over the four lines observed there is seen to be no 

Table 2.2 Microwave spectrum of carbon oxysulphide 



appreciable centrifugal distortion, and, taking the value of B as 0.2027 cm-', we calculate: 

From this one observation it is plainly impossible to deduce the two unknowns, rco and rcs. 
The difficulty can be overcome, however, if we study a molecule with different atomic masses 
but the same bond lengths-i.e. an isotopically substituted molecule-since this will have a 
different moment of inertia. 

Let us consider the rotation of OCS in some detail. Figure 2.10 shows the molecule, where 
ro, rc, and rs represent the distances of the atoms from the centre of gravity. Consideration of 
moments gives: 

where mi is the mass of atom i. The moment of inertia is: 

and we have the further equations: 

where rco and rcs are the bond lengths of the molecule. It is these we wish to determine. 
Substituting (2.33) in (2.31) and collecting terms: 

Mrc = m s r c ~  - morco (2.34) 

where we write M for the total mass of the molecule. Substituting (2.33) in (2.32): 

and finally substituting for rc from Eq. (2.34): 

Figure 2.10 The molecule of carbon oxysulphide, OCS, showing the distances of each atom from the centre of 
gravity. 
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Considering now the isotopic molecule, 180cs, we may write m& for mo throughout Eq. 
(2.35): 

and we can now solve for rco and rc-, provided we have extracted a value for I' from the 
microwave spectrum of the isotopic molecule. Note that we do not need to write rk0, since we 
assume that the bond length is unaltered by isotopic substitution. This assumption may be 
checked by studying the molecules 1 6 0 ~ 3 J ~  and "oc~~s, since we would then have four 
moments of inertia. The bond distances found are quite consistent, and hence justify the 
assumption. 

The extension of the above discussion to molecules with more than three atoms is straight- 
forward; it suffices to say here that microwave studies have led to very precise determinations of 
many bond lengths in such molecules. 

2.4.2 Symmetric Top Molecule 

Although the rotational energy levels of this type of molecule are more complicated than those 
of linear molecules, we shall see that, because of their symmetry, their pure rotational spectra 
are still relatively simple. Choosing methyl fluoride again as our example we remember that 

There are now two directions of rotation in which the molecule might absorb or emit energy- 
that about the main symmetry axis (the C - F bond in this case) and that perpendicular to this 
axis. 

We thus need two quantum numbers to describe the degree of rotation, one for IA and one 
for Is or Ic However, it turns out to be very convenient mathematically to have a quantum 
number to represent the total angular momentum of the molecule, which is the sum of the 
separate angular momenta about the two different axes. This is usually chosen to be the 
quantum number J. Reverting for a moment to linear molecules, remember that we there 
used J to represent the end-over-end rotation of a molecule; however, this was the only sort 
of rotation allowed, so it is quite consistent to use J, in general, to represent the total angular 
momentum. It is then conventional to use K to represent the angular momentum about the top 
axis4.e. about the C-F bond in this case. 

Let us briefly consider what values are allowed to K and J. Both must, by the conditions of 
quantum mechanics, be integral or zero. The total angular momentum can be as large as we like, 
that is J can be 0, 1, 2, . . . , oo (except, of course, for the theoretical possibility that a real 
molecule will be disrupted at very high rotational speeds). Once we have chosen J ,  however, K is 
rather more limited. Let us consider the case when J  = 3. Plainly the rotational energy can be 
divided in several ways between motion about the main symmetry axis and motion perpendic- 
ular to this. If all the rotation is about the axis, K = 3; but note that K cannot be greater than J 
since J is the total angular momentum. Equally we could have K = 2, 1, or 0, in which case the 
motion perpendicular to the axis increases accordingly. Additionally, however, K can be nega- 
tive-we can imagine positive and negative values of K to correspond with clockwise and 
anticlockwise rotation about the symmetry axis-and so can have values -1, -2, or -3. 

In general, then, for a total angular momentum, J ,  we see that K can take values: 

which is a total of 2 J +  1 values altogether. This figure of 2 J f  1 is important and will recur. 



If we take first the case of a rigid symmetric t0p-i.e. one in which the bonds are supposed 
not to stretch under centrifugal forces-the Schrodinger equation may be solved to give the 
allowed energy levels for rotation as: 

where, as before, 

h B = -  h 
and A = - 

87r2 IBc 87r2 1, c 

Note that the energy depends on K2, SO that it is immaterial whether the top spins clockwise or 
anticlockwise: the energy is the same for a given angular momentum. For all K > 0, therefore, 
the rotational energy levels are doubly degenerate. 

The selection rules for this molecule may be shown to be: 

A J  = & 1 (as before) and AK = 0 (2.39) 

and, when these are applied to Eq. (2.38), the spectrum is given by: 

Thus the spectrum is independent of K, and hence rotational changes about the symmetry axis 
do not give rise to a rotational spectrum. The reason for this is quite evident-rotation about 
the symmetry axis does not change the dipole moment perpendicular to the axis (which always 
remains zero), and hence the rotation cannot interact with radiation. Equation (2.40) shows that 
the spectrum is just the same as for a linear molecule and that only one moment of inertia-that 
for end-over-end rotation-an be measured. 

Equations (2.38) and (2.40) both apply to a rigid molecule. A real molecule, as we have seen, 
has elastic bonds and the picture inevitably becomes more complicated when the possible 
distortions of each individual bond in the symmetric top are allowed for. The details need 
not concern us here, but the microwave spectra of such molecules have, in the past, given 
very precise estimates of their bond lengths and angles. Table 2.3 collects some representative 
data for these, and for some linear and asymmetric top molecules (see the next section); this 
table illustrates the great precision which has bzen achieved. 

Table 2.3 Some molecular data determined by microwave spectroscopy 

Molecule Type Bond length (nm) 

NaCl Diatomic 0.236 06 f 0.000 01 

COS Linear 

HCN Linear 

NH3 Sym. top 

Sym. top 

I 0.116 4 f 0.000 1 (CO) 
0.155 9 f 0.000 I (CS) 
0.106 3 17 f 0.000 005 (CH) 
0. l I5 535 f 0.000 006 (CN) 
0.100 8 f 0.000 4 
0.109 59 f 0.000 05 (CH) 
0.178 12 f 0.000 05 (CCI) I 

HzO '0.095 84 f 0.000 05 
' I 

Asym. top 

Bond angle (deg) 

0 3  Asym. top 0.127 8 f 0.000 2 116.8 f 0.5 
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2.4.3 Asymmetric Top Molecules 

Since spherical tops show no microwave spectrum (cf. Sec. 2.1(3)), the only other class of 
molecule of interest here is the asymmetric top. These molecules, having three different 
moments of inertia, also have much more complicated rotational energy levels and spectra. 
No simple general expression corresponding to Eqs (2.24) or (2.28) can be derived for them, 
and they are usually treated by approximative methods, much computation being required 
before agreement between observed and calculated spectra is achieved. However, such methods 
have been very successful for small molecules and much accurate bond length and bond angle 
data have been derived. Some examples are included in Table 2.3 above. 

2.5 TECHNIQUES AND INSTRUMENTATION 

It is not proposed to give more than a brief outline here of the techniques of microwave 
spectroscopy since detailed accounts are available elsewhere, and the technique is rarely used 
as a routine analysis tool now as it has been largely superseded by other methods. Figure 2.1 1 
shows, very diagrammatically, how the various components discussed below are linked together. 

The source and monochromator. The usual source in this region is the klystron valve which, 
since it emits radiation over only a very narrow frequency range, is called 'monochromatic' 
and acts as its own monochromator. The actual emission frequency is variable electronically, 
and so a spectrum may be scanned over a limited range of frequencies using a single klystron. 

One slight disadvantage of this source is that the total energy radiated is very small-of 
the order of milliwatts only. However, since this is all concentrated into a very narrow range 
of frequencies, the electric field generated at these frequencies is more intense than might be 
expected from the radiative power. This means that a sharply tuned detector can be suffi- 
ciently sensitive to detect the signal. 
Beam direction. This is achieved by the use of 'waveguides7-hollow tubes of copper or silver, 
often of rectangular cross-section-inside which the radiation is confined. The tubing may be 
gently tapered or bent to focus or direct the radiation. Atmospheric absorption is consider- 
able, so the whole system must be efficiently evacuated. 
Sample and sample space. Normally the sample is gaseous and is retained in a piece of 
evacuated waveguide by very thin mica windows. Very small pressures are sufficient to 
obtain a spectrum, and many substances which are normally thought of as liquid or solid 
have sufficient vapour pressure to allow them to be studied by the technique. 
Detector. It is possible to use a radio receiver as detector, provided it can be tuned to the 
appropriate high frequency; however, a simple crystal detector is found to be more sensitive 

To vacuum pump 

4 
- 

L 

Klystron 4 4 Detector 

Mica 
window 

Mica 
window 

Figure 2.11 Schematic diagram of a microwave spectrometer. 



and easier to use. This detects the radiation focused on it by the waveguide, and the signal it 
gives is amplified for display on an oscilloscope or for permanent record on paper. 

2.6 CHEMICAL ANALYSIS BY MICROWAVE SPECTROSCOPY 

Improvements and simplifications in the techniques of microwave spectroscopy are now allow- 
ing it to move away from being purely a specialist research instrument towards becoming a 
technique for routine analysis. Even though effectively limited to gaseous samples, it has much 
to offer in this respect, since it is a highly sensitive (0.01 mmHg pressure is adequate) and specific 
analytical tool. 

The microwave spectrum of a substance is very rich in lines since many rotational levels are 
populated at room temperatures, but since the lines are very sharp and their positions can be 
measured with great accuracy, observation of just a few of them is sufficient, after comparison 
with tabulated data, to establish the presence of a previously examined substance in a sample. 
The technique is also quantitative, since the intensity of a spectrum observed under given 
conditions is directly dependent on the amount of substance present. Thus mixtures can be 
readily analysed. 

It is the whole molecule, by virtue of its moment(s) of inertia, which is examined by 
microwave spectroscopy. This means that the technique cannot detect the presence of particu- 
lar molecular groupings in a sample, like -OH or -CH3 (cf. the chapters on infra-red, 
Raman, and magnetic resonance spectroscopy later), but it can readily distinguish the presence 
of isotopes in a sample, and it can even detect different conformational isomers, provided they 
have different moments of inertia. 

One fascinating area where microwave analysis is being used is in the chemical examination 
of interstellar space. Electronic spectroscopy has long been able to detect the presence of various 
atoms, ions, and a few radicals (for example -OH) in the light of stars but recently use of 
microwaves has extended the analysis to the detection of simple stable molecules in space. Some 
80 or so molecules have already been characterized in this way, the earliest among them (water, 
ammonia, and formaldehyde) giving new impetus to speculations regarding the origins of 
biological molecules and of life itself. Such observations concern the emission of microwaves 
by these molecules and, by comparing the relative intensities of various rotational transitions, 
particularly in the spectrum of ammonia, accurate estimates can be made of the temperature of 
interstellar material. 

2.7 THE MICROWAVE OVEN 

One area where microwave radiation has become very familiar in recent years is the kitchen, in 
the shape of the microwave oven. While obviously not nearly as sophisticated as a spectrometer, 
its mode of operation depends entirely upon the absorption by the food of the microwave 
radiation in which it is bathed. In fact, it is the M1ater molecules only which absorb the radiation 
and so become raised into high rotational states-the biological molecules in food are far too 
large to be able to rotate. As with many other excited states, the excess rotational energy of the 
water molecules is re-emitted as heat and the food becomes cooked. 

The efficiency of the oven lies in the fact that this heating is internal. In a conventional hot 
oven a piece of meat or a cake is heated from the outside, and it must be left to cook until its 
centre has been raised to a sufficiently high temperature. In microwave heating, however, water 
molecules throughout the whole bulk of the food are simultaneously excited and 'heated', so 
cooking times are drastically reduced. 
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The effect of  such concentrated microwave radiation o n  the human body, unfortunately, is 
similar-whatever is exposed to the radiation is rapidly heated and  cooked from the inside! I t  is 
essential, therefore, to  ensure that  the door  seal o n  a microwave is in good condition, so that  n o  
radiation is allowed t o  leak out. 
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PROBLEMS 

(Useful constants: h = 6.626 x J s; k = 1.381 x J K-I; c = 2.998 x lo8 m s-I; 8 9  x 78.956; 
atomic masses (in kg): 'H = 1.673 x 'D = 3.344 x 1 9 ~  = 31.55 x 35 C1 = 
58.06 x 37C1 = 61.38 x 79Br = 131.03 x 1271= 210.7 x 

2.1 Which of the following molecules will show a microwave rotational spectrum: 

HZ, HC1, CH4, CH3CI, CHzClz, H20 ,  SF6? 

2.2 The rotational spectrum of 7 9 ~ r 1 9 ~  shows a series of equidistant lines 0.71433 cm-' apart. Calculate 
the rotational constant, B, and hence the moment of inertia and bond length of the molecule. Determine 
the wavenumber of the J = 9 + J = 10 transition, and find which transition gives rise to the most intense 
spectral line at room temperature (say 300 K). Calculate the number .of revolutions per second which the 
BrF molecule undergoes when in (a) the J = 0 state, (b) the J = 1 state, and (c) the J = 10 state. 
Hint: Use E = 4lwZ in conjunction with Eqs (2.10) and (2.13), but remember that here w is in radians per 
second. 

2.3 The rotational constant for H~'CI is observed to be 10.5909cm-I. What are the values of B for H ~ ~ c ~  
and for 'D~'c~? 

2.4 A microwave spectrometer capable of operating only between 60 and 90 cm-I was used to observe the 
rotational spectra of HI and DI. Absorptions were measured as follows: 

Find B, I and r for each molecule, and determine the J values between which transitions occur for the first 
line listed above for each. Do your results support the usual assumption that bond length is unchanged by 
isotopic substitution? 

2.5 Sketch a diagram similar to that of Fig. 2.7, using B = 5cm-I and a temperature of 1600K. (Note: 
Find the maximum and calculate two or three points on either side o n l y 4 0  not attempt to carry out the 
calculation for every value of J.) 

2.6 A space probe was designed to seek CO in the atmosphere of Saturn by looking for lines in its 
rotational spectrum. If the bond length of CO is 112.8pm, at what wavenumbers do the first three 
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rotational transitions appear? What resolution would be needed to determine the isotopic ratio of 13c to 
"C on Saturn by observing the first three I3c0 rotational lines as well? How could the experiment be 
extended to estimate the temperature of Saturn's atmosphere? 

2.7 HC1 has a B value of 10.593cm-' and a centrifugal distortion constant D of 5.3 x 10-4cm-'. 
Estimate the vibrational frequency and force constant of the molecule. The observed vibrational frequency 
is 2991 cm-I; explain, qualitatively, the discrepancy. 



CHAPTER 

THREE 
INFRA-RED SPECTROSCOPY 

We saw in the previous chapter how the elasticity of chemical bonds led to anomalous results in 
the rotational spectra of rapidly rotating molecules-the bonds stretched under centrifugal 
forces. In this chapter we consider another consequence of this elasticity-the fact that atoms 
in a molecule do not remain in fixed relative positions but vibrate about some mean position. 
We consider first the case of a diatomic molecule and the spectrum which arises if its only 
motion is vibration; then we shall deal with the more practical case of a diatomic molecule 
undergoing vibration and rotation simultaneously; finally we shall extend the discussion to more 
complex molecules. 

3.1 THE VIBRATING DIATOMIC MOLECULE 

3.1.1 The Energy of a Diatomic Molecule 

When two atoms combine to form a stable covalent molecule, for example HCI, they may be 
said to do so because of some internal electronic rearrangement. We shall not here discuss the 
detailed mechanisms of chemical bond formation, but we can simply look on the phenomenon 
as a balancing of forces. On the one hand there is a repulsion between the positively charged 
nuclei of both atoms, and between their negative electron 'clouds'; on the other there is an 
attraction between the nucleus of one atom and the electrons of the other, and vice versa. The 
two atoms settle at a mean internuclear distance such that these forces are just balanced and the 
total energy of the whole system is a minimum. Squeezing the atoms more closely together will 
cause the repulsive force to rise rapidly, while pulling them apart is resisted by the attractive 
force. Any attempt to distort the bond length requires an input of energy and we may plot 
energy against internuclear distance as in Fig. 3.1, where we have 'anchored' the chlorine atom 
on one axis and imagine pushing and pulling the hydrogen atom closer to or further from the 
chlorine-a bigger push or pull results in raising the energy more. At the energy minimum the 
internuclear distance is referred to as the equilibrium distance re,., or more simply as the bond 
length. 
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Internuclear distance (nm) 
req 

Figure 3.1 The energy of HC1 as the bond is compressed or extended 

The compression and extension of a bond may be likened to the behaviour of a spring, and 
we may extend the analogy by assumiiig that the bond, like a spring, obeys Hooke's law. We 
may write: 

where f is the restoring force, k the force constant, and r the internuclear distance. In this case 
the energy curve is parabolic and has the form 

This model of a vibrating diatomic molecule-the so-called simple harmonic oscillator model- 
while only an approximation, forms an excellent starting point for the discussion of vibrational 
spectra. 

3.1.2 The Simple Harmonic Oscillator 

In Fig. 3.1 we have plotted the energy in the form of Eq. (3.2), i.e. as a parabola. The zero of 
curve and equation is at r = re,,, and any energy in excess of this, for example at ~ 2 ,  arises 
because of extension or compression of the bond. The figure shows that if one atom (Cl) is 
considered to be stationary on the r = 0 axis, the other (H) will oscillate between HI and HI1. In 
the case of HCl, it is a good approximation to say that, during vibrations, the heavy chlorine 
atom stays virtually still and it is the much lighter hydrogen which moves. However, only the 
distance between the two atoms is important and for any diatomic molecule we can always 
imagine ourselves to be sitting on one atom and watching the other move-from our point of 
view the atom we are on is stationary and can be assumed fixed on the r = 0 axis. Thus diagrams 
like Fig. 3.1 apply to any diatomic molecule. 

If the energy of the HCl molecule of Fig. 3.1 is increased to E I  the oscillation will become 
more vigorous-that is to say the degree of compression and extension will be greater-but the 
vibrational frequency will not change. An elastic bond, like a spring, has a certain intrinsic 
vibrational frequency, dependent on the mass of the system and the force constant, but is 
independent of the amount of distortion. Classically it is simple to show that the oscillation 
frequency is: 
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where p is the reduced mass of the system (cf. Eq. (2.9)). To convert this frequency to wave- 
numbers, the unit most usually employed in vibrational spectroscopy, we must divide by the 
velocity of light, c, expressed in cm s-' (cf. Sec. 1. l), obtaining: 

Vibrational energies, like all other molecular energies, are quantized, and the allowed 
vibrational energies for any particular system may be calculated from the Schrodinger equa- 
tion. For the simple harmonic oscillator these turn out to be: 

E, = (v + i)hwoSc, joules (v = 0, l , 2 ,  . . . ) (3.5) 

where v is called the vibrational quantum number. Converting to the spectroscopic units, cm-I, 
we have: 

as the only energies allowed to a simple harmonic vibrator. Some of these are shown in Fig. 3.2. 
In particular, we should notice that the lowest vibrational energy, obtained by putting v = 0 

in Eq. (3.5) or (3.6), is 

E~ = hwosc. joules (woSc. in Hz) 

The implication is that the diatomic molecule (and, indeed, any molecule) can never have zero 
vibrational energy; the atoms can never be completely at rest relative to each other. The quantity 
fhw,,. joules or {a,,. cm-' is known as the zero-point energy; it depends only on the classical 
vibration frequency and hence (Eq. (3.3) or (3.4)) on the strength of the chemical bond and the 
atomic masses. 

The prediction of zero-point energy is the basic difference between the wave mechanical and 
classical approaches to molecular vibrations. Classical mechanics could find no objection to a 
molecule possessing no vibrational energy but wave mechanics insists that it must always vibrate 
to some extent; the latter conclusion has been amply borne out by experiment. 

Further use of the Schrodinger equation leads to the simple selection rule for the harmonic 
oscillator undergoing vibrational changes: 

To this we must, of course, add the condition that vibrational energy changes will only give rise 
to an observable spectrum if the vibration can interact with radiation i.e. (cf. Chapter 1) if the 
vibration involves a change in the dipole moment of the molecule. Thus vibrational spectra will 
be observable only in heteronuclear diatomic molecules since homonuclear molecules have no 
dipole moment. 



re., Internuclear 
distance - 

Figure 3.2 The vibrational energy levels and allowed transitions between them for a diatomic molecule undergoing 
simple harmonic motion. 

Applying the selection rule we have immediately: 

for emission and 

for absorption, whatever the initial value of v. 
Such a simple result is also obvious from Fig. 3.2-since the vibrational levels are equally 

spaced, transitions between any two neighbouring states will give rise to the same energy 
change. Further, since the difference between energy levels expressed in cm-' gives directly 
the wavenumber of the spectral line absorbed or emitted 

iispectroscopic = E = Wosc. ~ m - l  (3.10) 

This, again, is obvious if one considers the mechanism of absorption or emission in classical 
terms. In absorption, for instance, the vibrating molecule will absorb energy only from radiation 
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with which it can coherently interact (cf. Fig. 1.8) and this must be radihiion of its own 
oscillation frequency. 

3.1.3 The Anharmonic Oscillator 

Real molecules do not obey exactly the laws of simple harmonic motion; real bonds, although 
elastic, are not so homogeneous as to obey Hooke's law. If the bond between atoms is stretched, 
for instance, there comes a point at which it will break-the molecule dissociates into atoms. 
Thus although for small compressions and extensions the bond may be taken as perfectly elastic, 
for larger amplitudes-say greater than 10 per cent of the bond length-a much more compli- 
cated behaviour must be assumed. Figure 3.3 shows, diagrammatically, the shape of the energy 
curve for a typical diatomic molecule, together with (dashed) the ideal, simple harmonic 
parabola. 

A purely empirical expression which fits this curve to a good approximation was derived by 
P. M. Morse, and is called the Morse function: 

where a is a constant for a particular molecule and De,. is the dissociation energy. 

0.5 1.0 1.5 2.0 2.5 .A 

( I c q  ) Internuclear distance 

Figure 3.3 The Morse curve: the energy of a diatomic molecule undergoing anharmonic extensions and 
compressions. 



When Eq. (3.11) is used instead of Eq. (3.2) in the Schrodinger equation, the pattern of the 
allowed vibrational energy levels is found to be: 

where W e  is an oscillation frequency (expressed in wavenumbers) which we shall define more 
closely below, and xe is the corresponding anharmonicity constant which, for bond stretching 
vibrations, is always small and positive (= +0.01), so that the vibrational levels crowd more 
closely together with increasing v. Some of these levels are sketched in Fig. 3.4. 

It should be mentioned that Eq. (3.12), like (3.1 I), is an approximation only; more precise 
expressions for the energy levels require cubic, quartic, etc., terms in (v + 4) with anharmonicity 
constants ye, z,, etc., rapidly diminishing in magnitude. These terms are important only at large 
values of v, and we shall ignore them. 

If we rewrite Eq. (3.12), for the anharmonic oscillator, as: 

"rq Internuclear d~stance- 

Figure 3.4 The vibrational energy levels and some transitions between them for a diatomic molecule undergoing 
anharmonic oscillations. 



and compare with the energy levels of the harmonic oscillator (Eq. (3.6)), we see that we can 
write: 

Thus the anharmonic oscillator behaves like the harmonic oscillator but with an oscillation 
frequency which decreases steadily with increasing v. If we now consider the hypothetical energy 
state obtained by putting v = - 4 (at which, according to Eq. (3.13), E = 0) the molecule would 
be at the equilibrium point with zero vibrational energy. Its oscillation frequency (in cm-') 
would be: 

Thus we see that we may be defined as the (hypothetical) equilibrium oscillation frequency of the 
anharmonic system-the frequency for infinitely small vibrations about the equilibrium point. 
For any real state specified by a positive integral v the oscillation frequency will be given by Eq. 
(3.14). Thus in the ground state (v = 0) we would have: 

and 

and we see that the zero-point energy differs slightly from that for the harmonic oscillator (Eq. 
(3.7)). 

The selection rules for the anharmonic oscillator are found to be: 

Av = f l , f 2 , f 3 ,  . . .  

Thus they are the same as for the harmonic oscillator, with the additional possibility of larger 
jumps. These, however, are predicted by theory and observed in practice to be of rapidly 
diminishing probability and normally only the lines of Av = f 1, f 2, and f 3, at the most, 
have observable intensity. Further, the spacing between the vibrational levels is, as we shall 
shortly see, of order lo3 cm-I and, at room temperature, we may use the Boltzmann distribution 
(Eq. (1.12)) to show 

In other words, the population of the v = 1 state is nearly 0.01 or some one per cent of the 
ground state population. Thus, to a very good approximation, we may ignore all transitions 
originating at v = 1 or more and restrict ourselves to the three transitions: 

1, v = 0 + v = 1,  Av = +1, with considerable intensity. 

2. v = 0 + v = 2, Av = +2, with small intensity. 



3. v = 0 -+ v = 3, A v  = +3, with normally negligible intensity. 

These three transitions are shown in Fig. 3.4. To a good approximation, since x, = 0.01, the 
three spectral lines lie very close to we, 2w,, and 3G,. The line near G, is called the fundamental 
absorption, while those near 26, and 36, are called thefirst and second overtones, respectively. 
The spectrum of HCl, for instance, shows a very intense absorption at 2886 cm-', a weaker one 
at 5668 cm-', and a very weak one at 8347 cm-'. If we wish to find the equilibrium frequency of 
the molecule from these data, we must solve any two of the three equations (cf. Eqs (3.15)): 

and we find 6, = 2990cm-', x, = 0.0174. Thus we see that, whereas for the ideal harmonic 
oscillator the spectral absorption occurred exactly at the classical vibration frequency, for real, 
anharmonic molecules the observed fundamental absorption frequency and the equilibrium 
frequency may differ considerably. 

The force constant of the bond in HCl may be calculated directly from Eq. (2.22) by 
inserting the value of a,: 

when the fundamental constants and the reduced mass are inserted. These data, together with 
those for a few of the very many other diatomic molecules studied by infra-red techniques, are 
collected in Table 3.1. 

Although we have ignored transitions from v = 1 to higher states, we should note that, if 
the temperature is raised or if the vibration has a particularly low frequency, the population of 
the v = 1 state may become appreciable. Thus at, say, 600K (i.e. about 300°C) N,=I/N,=o 
becomes exp(-2.4) or about 0.09, and transitions from v = 1 to v = 2 will be some 10 per cent 
the intensity of those from v = 0 to v = 1. A similar increase in the excited state population 

Table 3.1 Some molecular data for diatomic molecules determined by 
infta-red spectroscopy 

Vibration Anharmonicity Force constant Internuclear 
Molecule (cm- ) constant .Y,. ( ~ m - ' )  distance re, (nm) 

t Data refers to the 3"1 isotope 



would arise if the vibrational frequency were 500 cm-I instead of 1OOOcm-I. We may calculate 
the wavenumber of this transition as: 

4. v = 1 -, v = 2, A v  = +1, normally very weak 

Thus, should this weak absorption arise, it will be f o k d  close to and at slightly lower 
wavenumbers than the fundamental (since x, is small and positive). Such weak absorptions 
are usually called hot bands since a high temperature is one condition for their occurrence. Their 
nature may be confirmed by raising the temperature of the sample when a true hot band will 
increase in intensity. 

We turn now to consider a diatomic molecule undergoing simultaneous vibration and 
rotation. 

3.2 THE DIATOMIC VIBRATING ROTATOR 

We saw in Chapter 2 that a typical diatomic molecule has rotational energy separations of 1- 
10cm-I, while in the preceding section we found that the vibrational energy separations of HCl 
were nearly 3000 cm-I. Since the energies of the two motions are so different we may, as a first 
approximation, consider that a diatomic molecule can execute rotations and vibrations quite 
independently. This, which we shall call the Born-Oppenheimer approximation (although, cf. 
Eq. (6.1), this strictly includes electronic energies), is tantamount to assuming that the combined 
rotational-vibrational energy is simply the sum of the separate energies: 

We shall see later in what circumstances this approximation does not apply. 
Taking the separate expressions for and from Eqs (2.26) and (3.12), respectively, we 

have: 

Initially, we shall ignore the small centrifugal distortion constants D, H, etc., and hence write: 

Note, however, that it is not logical to ignore D since this implies that we are treating the 
molecule as rigid, yet vibrating! The retention of D would have only a very minor effect on 
the spectrum. 

The rotational levels are sketched in Fig. 3.5 for the two lowest vibrational levels, v = 0 and 
v =  1. There is, however, no attempt at scale in this diagram since the separation between 
neighbouring J values is, in fact, only some 1/1000 of that between the v values. Note that 
since the rotational constant B in Eq. (3.18) is taken to be the same for all J and v (a conse- 
quence of the Born-Oppenheimer assumption), the separation between two levels of given J is 
the same in the v = 0 and v = 1 states. 



Figure 3.5 Some of the rotational energy levels for the first two vibrational states of a diatomic molecule. 

It may be shown that the selection rules for the combined motions are the same as those for 
each separately; therefore we have: 

A v = & l , f 2 ,  etc. A J = & 1  (3.19) 

Strictly speaking we may also have Av = 0, but this corresponds to the purely rotational 
transitions already dealt with in Chapter 2. Note carefully, however, that a diatomic mole- 
cule, except under very special and rare circumstances, may not have A J  = 0; in other words 
a vibrational change must be accompanied by a simultaneous rotational change. 

In Fig. 3.6 we have drawn some of the relevant energy levels and transitions, designating 
rotational quantum numbers in the v = 0 state as J" and in the v = 1 state as J'. The use of a 
single prime for the upper state and a double for the lower state is conventional in all branches 
of spectroscopy. 

Remember (and cf. Eq. (2.20)) that the rotational levels J1' are filled to varying degrees in 
any molecular population, so the transitions shown will occur with varying intensities. This is 
indicated schematically in the spectrum at the foot of Fig. 3.6. 

An analytical expression for the spectrum may be obtained by applying the selection rules 
(Eq. (3.19)) to the energy levels (Eq. (3.18)). Considering only the v = 0 -+ v = 1 transition we 
have in general: 



Figure 3.6 Some transitions between the rotational-vibrational energy levels of a diatomic molecule, together with 
the spectrum arising from them. 

where, for brevity, we write Go for &(l  - 2x,). 
We should note that taking B to be identical in the upper and lower vibrational states is a 

direct consequence of the Born-Oppenheimer approximation-rotation is unaffected by vibra- 
tional changes. 

Now we can have: 

2. AJ= - 1 ,  that is J1 '=  J 1 +  1 or J 1 -  J " =  -1: hence 

These two expressions may conveniently be combined into: 



where m, replacing J" + 1 in Eq. (3.20~) and J f  + 1 in Eq. (3.20b) has positive values for 
A J  = +1 and is negative if A J =  -1. Note particularly that m cannot be zero since this 
would imply values of J' or J" to be -1. The frequency 3, is usually called the band origin 
or band centre. 

Equation (3.20c), then, represents the combined vibration-rotation spectrum. Evidently it 
will consist of equally spaced lines (spacing = 2B) on each side of the band origin Go, but, since 
m # 0, the line at 3, itself will not appear. Lines to the low-frequency side of Go, corresponding 
to negative m (that is A J  = -1) are referred to as the P branch, while those to the high- 
frequency side (m positive, A J  = +1) are called the R branch. This apparently arbitrary nota- 
tion may become clearer if we state here that later, in other contexts, we shall be concerned with 
A J  values of 0 and f 2, in addition to f 1 considered here; the labelling of line series is then quite 
consistent: 

Lines arising from A J  = - 2 - 1 0 + 1 + 2 

called: 0 P Q R S branch 

The P and R notation, with the lower J (J" )  value as a suffix, is illustrated on the diagrammatic 
spectrum of Fig. 3.6. This is the conventional notation for such spectra. 

It is readily shown that the inclusion of the centrifugal distortion constant D leads to the 
following expression for the spectrum: 

However, we have seen in Chapter 2 that B is some 10cm-' or less, while D is only some 0.01 
per cent of B. Since a good infra-red spectrometer has a resolving power of about 0.5 cm-I it is 
obvious that D is negligible to a very high degree of accuracy. 

The anharmonicity factor, on the other hand, is not negligible. It affects not only the 
position of the band origin (since Go = G,(l - 2xe)), but, by extending the selection rules to 
include Av = f 2, f 3, etc., also allows the appearance of overtone bands having identical 
rotational structure. This is illustrated in Fig. 3.7(a), where the fundamental absorption and 
first overtone of carbon monoxide are shown. From the band centres we can calculate, as shown 
in the next section, the equilibrium frequency we and the anharmonicity constant x,. 

3.3 THE VIBRATION-ROT ATION SPECTRUM OF CARBON MONOXIDE 

In Fig. 3.7(b) we show the fundamental vibration-rotation band of carbon monoxide under high 
resolution, with some lines in the P and R branches numbered according to their J" values. 
Table 3.2 gives the observed wavenumbers of the first five lines in each branch. We shall discuss 
shortly the slight decrease in separation between the rotational lines as the wavenumber 
increases; this decrease is apparent from the table and from a close inspection of the 'wings' 
of the spectrum. 

From the table we see that the band centre is at about 2143cm-I while the average line 
separation near the centre is 3.83 cm-I . This immediately gives: 

2B = 3.83 cm-' B = 1.915 cmp' 

This is in satisfactory agreement with the value B = 1.921 18 cm-' derived by microwave studies 
(cf. Sec. 2.3.1) and we could, therefore, have obtained quite good values for the rotational 
constant and hence the moment of inertia and bond length from infra-red data alone. 
Historically, of course, the infra-red values came first, the more precise microwave values 
following much later. 



Figure 3.7 (a) The fundamental absorption (centred at about 2143cm-I) and the first overtone (centred at about 
4260cm-I) of carbon monoxide. ( h )  The fundamental band under higher resolution. The lines are labelled according 
to their J" values. The P branch is complicated by the presence of a band centred at about 2100cm-I due to the I 
per cent of "CO in the sample; some rotational lines from this band appear between P branch lines, others are 
overlapped by a P branch line and give it an enhanced intensity (e.g. lines P(16), Pp3), and Pp4). (Thanks are due to 
Mi.u J .  Cook of'the Universi/y of' Yorkfor providing this spectrum.) 



Table 3.2 Part of the infra-red spectrum of carbon monoxide 

Separation Separation 
V As Line Line v As 

It is worth noting at this point that approximate rotational data are obtainable from spectra 
even if the separate rotational lines are not resolved. Thus Fig. 3.8 shows the spectrum of carbon 
monoxide under much poorer resolution, when the rotational fine structure is blurred out to an 
envelope. Now we saw in Eq. (2.21) that the maximum population of levels, and hence the 
maximum intensity of transition, occurs at a J value of - 4. Remembering that 
m = J +  1 we substitute in Eq. (3.20~) m = + 4 and obtain: 

Figure 3.8 The fundamental band of Fig. 3.7(h) under very low resolution. All rotational fine structure has been lost 
and a typical PR contour is seen. (Thanks are due to Miss J .  Cook of the University of York,for providing this 
spectrum.) 



where the + and - signs refer to the R and P branches, respectively. The separation between the 
two maxima, AV, is then: 

AV=~B(J-+~) = J&E%~E+~B 
or, since B is small compared with AV, we can write 

AV x B sz hc (av12 /8k~  cm-' 

where c is expressed in cm s-'. In the case of carbon monoxide the separation is about 55 cm-' 
(Fig. 3.8), while the temperature at which the spectrum was obtained was about 300 K. We are 
led, then, to a B value of about 1.8 cm-', which is in fair agreement with the earlier values, but 
much less precise. 

From Table 3.2 we see that the band origin, at the midpoint of P(l) and R(o), is at 
2143.26cm-l. This, then, is the fundamental vibration frequency of carbon monoxide, if 
anharmonicity is ignored. The latter can be taken into account, however, since the first over- 
tone is found to have its origin at 4260.04cm-'. We have: 

from which we = 2169.74cm-', xe = 0.0061 

3.4 BREAKDOWN OF THE BORN-OPPENHEIMER APPROXIMATION: THE 
INTERACTION OF ROTATIONS AND VIBRATIONS 

So far we have assumed that vibration and rotation can proceed quite independently of each 
other. A molecule vibrates some lo3 times during the course of a single rotation, however, so it is 
evident that the bond length (and hence the moment of inertia and B constant) also changes 
continually during the rotation. If the vibration is simple harmonic the mean bond length will be 
the same as the equilibrium bond length and it will not vary with vibrational energy; this is seen 
in Fig. 3.1. However, the rotational constant B depends on l / r2  and, as shown by an example in 
Sec. 2.3.4, the average value of this quantity is not the same as l/rzq,, where req. is the equili- 
brium length. Further, an increase in the vibrational energy is accompanied by an increase in the 
vibrational amplitude and hence the value of B will depend on the v quantum number. 

In the case of anharmonic vibrations the situation is rather more complex. Now an increase 
in vibrational energy will lead to an increase in the average bond length-this is perhaps most 
evident from Fig. 3.4. The rotational constant then varies even more with vibrational energy. 

In general, it is plain that, since r,,. increases with the vibrational energy, B is smaller in the 
upper vibrational state than in the lower. In fact an equation of the form: 

gives, to a high degree of approximation, the value of B,, the rotational constant in vibrational 
level v in terms of the equilibrium value B, and a, a small positive constant for each molecule. 

Here we restrict our discussion to the fundamental vibrational change, i.e. the change 
v = 0 + v = 1, and we may take the respective B values as Bo and BI with Bo > Bl. For this 
transition: 

where, as before, wo = Ge(l - 2xe). 



We then have the two cases: 

AE = V R  = Go + (BI + Bo)(Jl1 + 1) + (BI - Bo)(J1I + 112 cm-I 

( J " =  0, 1, 2, . . . )  

and 

where we have written V p  and V R  to represent the wavenumbers of the P and R branch lines, 
respectively. These two equations can be combined into the expression: 

where positive m values refer to the R branch and negative to P. 
We see that ignoring vibration-rotation interaction involves setting B1 = Bo, when Eq. 

(3.23~) immediately simplifies to (3.20~). Since Bl < Bo the last term of (3.23~) is always 
negative, irrespective of the sign of m, and the effect on the spectrum of a diatomic molecule 
is to crowd the rotational lines more closely together with increasing m on the R branch side, 
while the P branch lines become more widely spaced as (negative) m increases. Normally B1 and 
Bo differ only slightly and the effect is marked only for high m values. This is exactly the 
situation shown in the spectrum of carbon monoxide (Fig. 3.7(b)). 

In Table 3.3 some of the data for carbon monoxide are tabulated, together with the 
positions of lines calculated from the equation: 

From this we see that, for this molecule: 

BI = 1.898 cm-I Bo = 1.915 cm-I 

Table 3.3 Observed and calculated wavenumbers of some lines in 
the spectrum of carbon monoxide 

224 1.64 
2227.63 
2212.62 
2196.66 
2179.77 
2161.97 
(Band cent 
2123.70 
2103.27 
2082.01 
2059.91 
2037.03 
2013.35 

2241.91 
2227.65 
2212.54 
2196.53 
2179.66 
2161.90 

tre) 2143.28 
2123.78 
2103.40 
2082.15 
2060.02 
2037.02 
2013.14 

t Values calculated from :C = 2143.28 + 3.813m - 0.01751n' 



and hence, using Eq. (3.22), we have: 

Further, we can calculate the equilibrium bond length and the bond lengths in the v = 0 and 
v = 1 states (cf. Sec. 2.3.1) to be: 

3.5 THE VIBRATIONS OF POLYATOMIC MOLECULES 

In this section and the next, just as in the corresponding one dealing with the pure rotational 
spectra of polyatomic molecules, we shall find that although there is an increase in the complex- 
ity, only slight and quite logical extensions to the simple theory are adequate to give us an 
understanding of the spectra. We shall need to discuss: 

1. The number of fundamental vibrations and their symmetry. 
2. The possibility of overtone and combination bands. 
3. The influence of rotation on the spectra. 

3.5.1 Fundamental Vibrations and Their Symmetry 

Consider a molecule containing N atoms: we can refer to the position of each atom by specifying 
three coordinates (e.g. the x, y, and z cartesian coordinates). Thus the total number of coordi- 
nate values is 3N and we say the molecule has 3N degrees of freedom since each coordinate value 
may be specified quite independently of the others. However, once all 3N coordinates have been 
fixed, the bond distances and bond angles of the molecule are also fixed and no further arbitrary 
specifications can be made. 

Now the molecule is free to move in three-dimensional space, as a whole, without change of 
shape. We can refer to such movement by noting the position of its centre of gravity at any 
instant-to do this requires a statement of three coordinate values. This translational movement 
uses three of the 3N degrees of freedom leaving 3N - 3. In general, also, the rotation of a non- 
linear molecule can be resolved into components about three perpendicular axes (cf. Sec. 1.1). 
Specification of these axes also requires three degrees of freedom, and the molecule is left with 
3N - 6 degrees of freedom. The only other motion allowed to it is internal vibration, so we 
know immediately that a non-linear N-atomic molecule can have 3N - 6 different internal 
vibrations: 

Non-linear: 3N - 6 fundamental vibrations (3.24~) 

If, on the other hand, the molecule is linear, we saw in Chapter 2 that there is no rotation 
about the bond axis; hence only two degrees of rotational freedom are required, leaving 3N - 5 
degrees of vibrational freedom-one more than in the case of a non-linear molecule: 

Linear: 3N - 5 fundamental vibrations (3.24h) 

In both cases, since an N-atomic molecule has N - 1 bonds (for acyclic molecules) between 
its atoms, N - 1 of the vibrations are bond-stretching motions; the other 2N - 5 (non-linear) or 
2N - 4 (linear) are bending motions. 

Let us look briefly at examples of these rules. First, we see that for a diatomic molecule 
(perforce linear) such as we have already considered in this chapter, N = 2, 3N - 5 = 1 and thus 
there can be only one fundamental vibration. Note, however, that the 3N - 5 rule says nothing 



Cz axis 

(a) Symmetric stretch (b)  Symmetric bend ( c )  Antisymmetric stretch 
3651.7 cm-' 1595.0 cm-' 3755.8 cm-' 
v,, parallel ( II ) v2. parallel ( 11 ) v,, perpendicular ( 1 ) 

Figure 3.9 The symmetry of the water molecule and its three fundamental vibrations. 

about the presence, absence, or intensity of overtone vibrations-these are governed solely by 
anharmonicity. 

Next, consider water, H20.  This (Fig. 3.9) is non-linear and triatomic. Also in the figure are 
the 3N - 6 = 3 allowed vibrational modes, the arrows attached to each atom showing the 
direction of its motion during half of the vibration. Each motion is described as stretching or 
bending depending on the nature of the change in molecular shape. 

These three vibrational motions are also referred to as the normal modes of vibration (or 
normal vibrations) of the molecule; in general a normal vibration is defined as a molecular 
motion in which all the atoms oscillate with the same frequency and pass through their equili- 
brium positions simultaneously. 

Further, each motion of Fig. 3.9 is labelled either symmetric or antisymmetric. It is not 
necessary here to go far into the matter of general molecular symmetry since other excellent 
texts already exist for the interested student, but we can see quite readily that the water molecule 
contains some elements of symmetry. In particular consider the dashed line at the top of Fig. 3.9 
which bisects the HOH angle; if we rotate the molecule about this axis by 180" its final 
appearance is identical with the initial one. This axis is thus referred to as a C2 axis since 
twice in every complete revolution the molecule presents an identical aspect to an observer. 
This particular molecule has only the one rotational symmetry axis, and it is conventional to 
refer the molecular vibrations to this axis. Thus consider the first vibration (Fig. 3.9(a)). If we 
rotate the vibrating molecule by 180" the vibration is quite unchanged in character-we call this 
a symmetric vibration. The bending vibration, v2, is also symmetric. Rotation of the stretching 
motion of Fig. 3.9(c) about the C2 axis, however, produces a vibration which is in antiphase 
with the original and so this motion is described as the antisymmetric stretching mode. 

In order to be infra-red active, as we have seen, there must be a dipole change during the 
vibration and this change may take place either along the line of the symmetry axis (parallel to 
it, or 11 )  or at right angles to the line (perpendicular, I). Figure 3.10 shows the nature of the 
dipole changes for the three vibrations of water, and justifies the labels parallel or perpendicular 
attached to them in Fig. 3.9. We shall see later that the distinction is important when consider- 
ing the influence of rotation on the spectrum. 

Finally the vibrations are labelled in Fig. 3.9 as vl , v2, and v3. By convention it is usual to label 
vibrations in decreasing frequency within their symmetry type. Thus the symmetric vibrations of 
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(a) v , ,  symmetric stretching mode 

( b )  vz, bending mode 

(c) y ,  asymmetric stretching mode 

Figure 3.10 The change in the electric dipole moment produced by each vibration of the water molecule. This is seen 
to occur either along ( 1 1 )  or across (I) the symmetry axis. 

H20 are labelled vl for the highest fully symmetric frequency (3651.7 cm-I) and v2 for the next 
highest (1595.0cm-I); the antisymmetric vibration at 3755.8cm-' is then labelled v3. 

Our final example is of the linear triatomic molecule COz, for which the normal vibrations 
are shown in Fig. 3.11. For this molecule there are two different sets of symmetry axes. There is 
an infinite number of twofold axes (C2) passing through the carbon atom at right angles to the 
bond direction, and there is an co-fold axis (C,) passing through the bond axis itself (this is 
referred to as co-fold since rotation of the molecule about the bond axis through any angle gives 
an identical aspect). The names symmetric stretch and antisymmetric stretch are self-evident, 
but it should be noted that the symmetric stretch produces no change in the dipole moment 
(which remains zero) so that this vibration is not infra-red active; the vibration frequency may 
be obtained in other ways, however, which we shall discuss in the next chapter. 

For linear triatomic molecules, 3N - 5 = 4, and we would expect four vibrational modes 
instead of the three shown in Fig. 3.11. However, consideration shows that v2 in fact consists of 
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(a) Symmetric stretch ( 6 )  Antisymmetric stretch 
1330 cm-' (approx.) 2349.3 cm-I 
VI. II v3, II (c) Bending 

667.3 cm-' 
V2,L 

Figure 3.11 The symmetry and fundamental vibrations of the carbon dioxide molecule 

two vibrations-one in the plane of the paper as drawn and the other in which the oxygen atoms 
move simultaneously into and out of the plane. The two sorts of motion are, of course, identical 
in all respects except direction and are termed degenerate; they must, nevertheless, be considered 
as separate motions, and it is always in the degeneracy of a bending mode that the extra 
vibration of a linear molecule over a non-linear one is to be found. 

It might be thought that v2 of H 2 0  (Fig. 3.9(b)) could occur by the hydrogens moving 
simultaneously in and out of the plane of the paper. Such a motion is not a vibration, however, 
but a rotation. As the molecule approaches linearity this rotation degenerates into a vibration, 
and the molecule loses one degree of rotational freedom in exchange for one of vibration. 

3.5.2 Overtone and Combination Frequencies 

If one were able to observe the molecules of H 2 0  or C 0 2  directly their overall vibrations would 
appear extremely complex; in particular, each atom would not follow tidily any one of the 
separate paths depicted in Figs 3.9 or 3.1 1, but its motion would essentially be a superposition 
of all such paths, since every possible vibration is always excited, at least to the extent of its zero- 
point energy. However, such superposition could be resolved into its components if, for 
instance, we could examine the molecules under stroboscopic light flashing at each fundamen- 
tal frequency in turn. This is, so to speak, the essence of infra-red spectroscopy-instead of 
flashing we have the radiation frequency, and the 'examination' is a sensing of dipole alteration. 
Thus, as we would expect, the infra-red spectrum of a complex molecule consists essentially of 
an absorption band at each of the 3N - 6 (non-linear) or 3N - 5 (linear) fundamental frequen- 
cies. 

This is, of course, an over-simplification, in which two approximations are implicit: (1) that 
each vibration is simple harmonic, (2) that each vibration is quite independent and unaffected 
by the others. We shall consider (2) in more detail later; for the moment we can accept it as a 
good working approximation. 

When the restriction to simple harmonic motion is lifted we have again, as in the case of the 
diatomic molecule (Sec. 3.1.3), the possibility of first, second, etc., overtones occurring at 
frequencies near 2vl, 3v1, . . . , 2v2, 3v2, . . . , 2v3, . . . , etc., where each vi is a fundamental 
mode. The intensities fall off rapidly. However, in addition, the selection rules now permit 
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combination bands and difference bands. The former arise simply from the addition of two or 
more fundamental frequencies or overtones. Such combinations as vl + v2, 2vl + v2, 

V I  + v2 + v3, etc., become allowed, although their intensities are normally very small. 
Similarly the difference bands, for example, vl - v2, 2vl - vz, vl + v2 - v3, have small intensi- 
ties but are often to be found in a complex spectrum. 

The intensities of overtone or combination bands may sometimes be considerably enhanced 
by a resonance phenomenon. It may happen that two vibrational modes in a particular molecule 
have frequencies very close to each other-they are described as accidentally degenerate. Note 
that we are not here referring to identical vibrations, such as the two identical v2's of C 0 2  (Fig. 
3.11), but rather to the possibility of two quite different modes having similar energies. 
Normally the fundamental modes are quite different from each other and accidental degener- 
acy is found most often between a fundamental and some overtone or combination. A simple 
example is to be found in C 0 2  where vl, described as at about 1330 cm-I, is very close to that of 
2v2 = 1334cm-'. (As mentioned earlier, these bands are not observable in the infra-red, but 
both may be seen in the Raman spectrum discussed in the next chapter; the principles of 
resonance apply equally to both techniques.) Quantum mechanics shows that two such bands 
may interfere with each other in such a way that the higher is raised in frequency, the lower 
depressed-and in fact the Raman spectrum shows two bands, one at 1285cmP', the other at 
1385 cm-' . Their mean is plainly at about 1330 cm-' . 

Note, however, that one of these bands arises from a fundamental mode (vl), the other from 
the overtone 2v2, and we would normally expect the former to be much more intense than the 
latter. In fact, they are found to be of about the same intensity-the overtone has gained 
intensity at the expense of the fundamental. This is an extreme case-normally the overtone 
takes only a small part of the intensity from the fundamental. The situation is often likened to 
that of two pendulums connected to a common bar-when the pendulums have quite different 
frequencies they oscillate independently; when their frequencies are similar they can readily 
exchange energy, one with the other, and an oscillation given to one is transferred to and fro 
between them. They are said to resonate. Similarly two close molecular vibrational frequencies 
resonate and exchange energy-the phenomenon being known as Fermi resonance when a 
fundamental resonates with an overtone. In the spectrum of a complex molecule exhibiting 
many fundamentals and overtones, there is a good chance of accidental degeneracy, and 
Fermi resonance, occurring. However, it should be mentioned that not all such degeneracies 
lead to resonance. It is necessary, also, to consider the molecular symmetry and the type of 
degenerate vibrations; we shall not, however, pursue the topic further here. 

3.6 THE INFLUENCE OF ROTATION ON THE SPECTRA OF POLYATOMIC 
MOLECULES 

In Sec. 3.2 we found that the selection rule for the simultaneous rotation and vibration of a 
diatomic molecule was 

A v =  f 1 1 f 2 , f 3 ,  ... A J = k 1  A J # O  

and that this gave rise to a spectrum consisting of approximately equally spaced line series on 
each side of a central minimum designated as the band centre. 

Earlier in the present section we showed that the vibrations of complex molecules could be 
subdivided into those causing a dipole change either (1) parallel or (2) perpendicular to the 
major axis of rotational symmetry. The purpose of this distinction, and the reason for repeating 
it here, is that the selection rules for the rotational transitions of complex molecules depend, 
rather surprisingly, on the type of vibration, 1 1  or I, which the molecule is undergoing. Less 



surprisingly, the selection rules and the energies depend on the shape of the molecule also. We 
shall deal first with the linear molecule as the simplest, and then say a few words about the other 
types of molecule. 

3.6.1 Linear Molecules 

Parallel vibrations The selection rule for these is identical with that for diatomic molecules, i.e. 

A J =  f 1  Av = f 1  for simple harmonic motion (3.25a) 

AJ = f 1 Av = f 1, &2, f 3, . . . for anharmonic motion (3.25b) 

(This is, in fact, as expected, since a diatomic molecule is linear and can undergo only parallel 
vibrations.) The spectra will thus be similar in appearance, consisting of P and R branches with 
lines about equally spaced on each side, no line occurring at the band centre. Now, however, the 
moment of inertia may be considerably larger, the B value correspondingly smaller, and the P or 
R line spacing will be less. Figure 3.12 shows part of the spectrum of HCN, a linear molecule 
whose structure is H - C-N. The band concerned is the symmetric stretching frequency at 
about 3310 cm-' (corresponding to the vl mode of C 0 2  in Fig. 3.1 l), and the spacing is observed 
to be about 2.8-3.0cm-' near the band centre. This is to be compared, for example, with the 
spacing of about 4.0cm-I in the case of CO. 

For still larger molecules the value of B may be so small that separate lines can no longer be 
resolved in the P and R branches. In this case the situation is exactly analogous to that shown 
previously in Fig. 3.8 and the same remarks apply as to the possibility of deriving a rough value 
of B from the separation between the maxima of the P and R envelopes. We shall shortly see 
that a non-linear molecule cannot give rise to this type of band shape, so its observation 
somewhere within a spectrum is sufficient proof that a linear, or nearly linear, molecule is 
being studied. 

Perpendicular vibrations For these the selection rule is found to be: 

for simple harmonic motion 

Figure 3.12 Spectrum of the symmetric stretching vibration of HCN, showing the P and R branch lines. 
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which implies that now, for the first time, a vibrational change can take place with no simul- 
taneous rotational transition. The result is illustrated in Fig. 3.13, which shows the same energy 
levels and transitions as Fig. 3.6 with the addition of AJ = 0 transitions. If the oscillation is 
taken as simple harmonic the energy levels are identical with those of Eq. (3.18) and the P and R 
branch lines are given, as before, by Eqs (3.20) or (3.21). Transitions with AJ = 0, however, 
correspond to a Q branch whose lines may be derived from the equations: 

= a, cm-' for all J 

Thus the Q branch consists of lines superimposed upon each other at the band centre Go, 
one contribution arising for each of the populated J values. The resultant line is usually very 
intense. 

Figure 3.13 The rotational energy levels for two vibrational states, showing the effect on the spectrum of transitions 
for which A J  = 0. 



If we take into account the fact that the B values differ slightly in the upper and lower 
vibrational states (cf. Sec. 3.4), we would write instead: 

Further, if B' < B", we see that the Q branch line would become split into a series of lines on the 
low-frequency side of Go (since B' - B1' is negative). Normally, however, B' - B" is so small that 
the lines cannot be resolved, and the Q branch appears as a somewhat broad absorption centred 
around 3,. This is illustrated in Fig. 3.14, which is a spectrum of the bending mode of HCN 
(corresponding to vz of C 0 2  in Fig. 3.11). Finally, if the rotational fine structure is unresolved, 
this type of band has the distinctive contour shown in Fig. 3.15. 

It should be remembered (see Chapter 2) that polyatomic molecules with zero dipole 
moment do not give rise to pure rotation spectra in the microwave region (for example COz, 
HC S C H ,  CH4). Such molecules do, however, show vibrational spectra in the infra-red region 
(or Raman, cf. Chapter 4) and, if these spectra exhibit resolved fine structure, the moment of 
inertia of the molecule can be obtained 

Figure 3.14 Spectrum of the bending mode of HCN,  showing the PQR structure. The broad absorption centred at 
800cm-' is due to an impurity. 
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Figure 3.15 The contour of a PQR band under low resolution. 

3.6.2 The Influence of Nuclear Spin 

It is necessary here to say a brief word about the spectrum of carbon dioxide and other linear 
molecules possessing a centre of symmetry. A centre of symmetry means that identical atoms are 
symmetrically disposed with respect to the centre of gravity of the molecule. Thus, plainly both 
C02 [0 = C = 01 and ethyne [H - C - C - HI possess a centre of symmetry, while HCN or 
N20 [N-N=O] do not. 

The reader may have noticed that, although we used C 0 2  as an example of a vibrating 
molecule in Fig. 3.1 1, we did not use it to illustrate real spectra in the subsequent discussion. 
This is because the centre of symmetry has an effect on the intensity of alternate lines in the P 
and R branches. The effect is due to the existence of nuclear spin (cf. Chapter 7) and is an 
additional factor determining the populations of rotational levels. In the case of C 0 2  every 
alternate rotational level is completely unoccupied and so alternate lines in the P and R 
branches have zero intensity. This leads to a line spacing of 4B instead of the usual 2B discussed 
above. That the spacing is indeed 4B (and not 2B with an unexpectedly large value of B) can be 
shown in several ways, perhaps the most convincing of which is to examine the spectrum of the 
isotopic molecule 180-~-  160. Here there is no longer a centre of symmetry, nuclear spin 
does not now affect the spectrum and the line spacing is found to be just half that for 'normal' 
co2. 

In the case of acetylene, alternate levels have populations which differ by a factor of 3:l 
(this, due to nuclear spin alone, is superimposed on the normal thermal distribution and 
degeneracy) so that the P and R branch lines show a strong, weak, strong, 
weak, . . . alternation in intensity, as shown in Fig. 3.16. 

3.6.3 Symmetric Top Molecules 

Following the Born-Oppenheimer approximation we can take the vibrational-rotational energy 
levels for this type of molecule to be the sum of the vibrational levels: 
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Figure 3.16 The spectrum of the bending mode of ethyne, H C X H ,  showing the strong, weak, strong, 
weak, . . . intensity alternation in the rotational fine structure due to the nuclear spin of the hydrogen atoms. 

1 2  
Evib. = (U + $)We - (U  + 2) x,W, cm-' (U = 0, 1, 2, 3, . . . )  

and the rotational levels (cf. Eq. (2.38)): 

=BJ(J + 1) + (A - B)K2 cm-I 

[ J = 0 ,  1 ,2 ,  . . . ;  K = J , ( J - l ) , ( J - 2 ) ,  . . . ,  -J] 

Thus 

This equation assumes, of course, that centrifugal distortion is negligible. 
Again it is necessary to divide the vibrations into those which change the dipole (1) parallel 

and (2) perpendicular to the main symmetry axis-which is nearly always the axis about which 
the 'top' rotates. The rotational selection rules differ for the two types. 

Parallel vibrations Here the selection rule is: 

A v = + 1  A J = O , k 1  AK=O 
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Figure 3.17 The parallel stretching vibration, centred at 1251 cm-', of the symmetric top molecule methyl iodide, 
CHsI, showing the typical PQR contour. (Thanks are due to Mr J .  Camplin of the University of York for providing 
this spectrum.) 

Since here A K  = 0 ,  terms in K  will be identical in the upper and lower state and so the spectral 
frequencies will be independent of K.  Thus the situation will be identical to that discussed for the 
perpendicular vibrations of a linear molecule. The spectrum will contain P, Q, and R branches 
with a P, R line spacing of 2B (which is unlikely to be resolved) and a strong central Q branch. 
Such a spectrum, a 11 band of methyl iodide, CH31, is shown in Fig. 3.17. The intensity of the Q 
branch (relative to lines in the P and R branches) varies with the ratio I A / I B ;  in the limit, when 
IA -) 0, the symmetric top becomes a linear molecule and the Q branch has zero intensity, as 
discussed earlier. 

Perpendicular vibrations For these the selection rule is: 

A v = f l  A J = O , f l  A K = & 1  

Each of the following expressions is readily derivable for the spectral lines, taking the energy 
levels of Eq. (3.29). 

1. AJ = f l ,  A K  = f 1  (R branch lines): 

2. AJ = - 1 ,  A K  = f  1 ( P  branch lines): 

3. AJ = 0 ,  A K  = f 1  (Q branch lines): 



Figure 3.18 A perpendicular stretching vibration of methyl iodide showing the typical Q branch sequence. (Thanks 
are due to Mr J .  Camplin of the University of York for providing this spectrum.) 

We see, then, that this type of vibration gives rise to many sets of P and R branch lines since 
for each J value there are many allowed values of K (K = J ,  J  - 1 ,  . . . , - J ) .  The wings of the 
spectrum will thus be quite complicated and will not normally be resolvable into separate lines. 
The Q branch is also complex, since it too will consist of a series of lines on both sides of Go 
separated by 2 ( A  - B). This latter term may not be small (and is equal to zero only for spherical 
top molecules which have all their moments of inertia equal). For A >> B (for example CH31) the 
Q branch lines will be well separated and will appear as a series of maxima above the P, R 
envelope. This spectrum is shown in Fig. 3.18. 

It will be noted in this figure that the lines have a distinct periodical variation in intensity- 
strong, weak, weak, strong, weak, weak, . . . . This behaviour reminds us of C 0 2  and C2H2, 
discussed earlier, in which the presence or absence of nuclear spin altered the relative popula- 
tions of the rotational levels. In that case, where the molecule had a twofold axis of symmetry, 
the periodicity also was two-strong, weak, strong, weak, . . . . It is not surprising, therefore, 
that the threefold periodicity, strong, weak, weak, strong, . . . , seen in CH31, arises because of 
its threefold axis of symmetry to rotations about the C-I axis. The appearance of such a 
spectrum confirms immediately that we are dealing with a molecule containing an XY3 group- 
ing. 

3.6.4 Other Polyatomic Molecules 

We shall not go further with the discussion of their detailed spectra here-it suffices to state that 
the complexity increases, naturally, with the molecular complexity. An excellent treatment is to 
be found in Herzberg's book, but the subject is not for the beginner in spectroscopy. 



3.6.5 Summary 

We have seen that the infra-red spectrum of even a simple diatomic molecule may contain a 
great many lines, while that of a polyatom may be extraordinarily complex, even though some 
of the details of fine structure are blurred by insufficient resolving power. Although in favour- 
able cases much information may be obtained about bond lengths and angles or at least the 
general shape of a molecule, in others even the assignment of observed bands to particular 
molecular vibrations is not trivial. Assignments are based mainly on experience with related 
molecules, on the band contour (from which the type of vibration, 1 1  or I, can usually be 
deduced), and on the use of Raman spectra (see Chapter 4). Consideration of the symmetry 
of the molecule is also important because this determines which vibrations are likely to be infra- 
red active. 

Fortunately the usefulness of infra-red spectroscopy extends far beyond the measurement of 
precise vibrational frequencies and molecular structural features. In the next section we discuss 
briefly the application of infra-red techniques to chemical analysis-a branch of the subject 
where it is by no means essential always to be able to assign observed bands precisely. 

3.7 ANALYSIS BY INFRA-RED TECHNIQUES 

Because of the 3N - 6 and 3N - 5 rules it is evident that a complex molecule is likely to have an 
infra-red spectrum exhibiting a large number of normal vibrations. Each normal mode involves 
some displacement of all, or nearly all, the atoms in the molecule, but while in some of the 
modes all atoms may undergo approximately the same displacement, in others the displace- 
ments of a small group of atoms may be much more vigorous than those of the remainder. Thus 
we may divide the normal modes into two classes: the skeletal vibrations, which involve many of 
the atoms to much the same extent, and the characteristic group vibrations, which involve only a 
small portion of the molecule, the remainder being more or less stationary. We deal with these 
classes separately. 

3.7.1 Skeletal Vibrations 

For organic molecules these usually fall in the range 140&700cm-' and arise from linear or 
branched chain structures in the molecule. Thus such groups as 

etc., each give rise to several skeletal modes of vibration and hence several absorption bands in 
the infra-red. It is seldom possible to assign particular bands to specific vibrational modes, but 
the whole complex of bands observed is highly typical of the molecular structure under exam- 
ination. Further, changing a substituent (on the chain, or in the ring) usually results in a marked 
change in the pattern of the absorption bands. Thus these bands are often referred to as the 
'fingerprint' bands, because a molecule or structural moiety may often be recognized merely 
from the appearance of this part of the spectrum. 

One example of infra-red (IR) spectroscopy as a fingerprint technique is shown in Fig. 3.19(a). 
The late 1970s saw the launch of Voyager space probes to observe the giant planets Jupiter, 
Saturn, Uranus, and Neptune. The probes were equipped with a number of spectrometers 



Wavenumber (cm-') 

Figure 3.19(a) The infra-red emission spectrum of the radiation from Jupiter and Saturn recorded with a 
spectrometer on Voyager. (Reproduced, with permission, from Hanel, R. A . ,  B. J .  Conrath, D. E. Jennings, and R. E. 
Samuelson, in Exploration of the Solar System by Infra-red Remote Sensing, Cambridge University Press, 1992.) 

in order to gather as much information as possible. The atmospheres of these planets are mostly 
composed of hydrogen and helium, but IR spectroscopy proved to be extremely useful for the 
determination of some of the other constituents. Figure 3.19(a) shows the IR emission spectra of 
Saturn and Jupiter, together with the assignment of the major peaks. 

Another excellent example of IR as a fingerprint technique is shown in Fig. 3.19(b), which 
compares the spectra of natural and synthetic thymidine. The remarkably exact correlation 
between the spectra proves that the synthetic product does not differ in the slightest degree 
from the natural substance. 

3.7.2 Group Frequencies 

Group frequencies, on the other hand, are usually almost independent of the structure of the 
molecule as a whole and, with a few exceptions, fall in the regions well above and well below 
that of the skeletal modes. Table 3.4 collects some of the data, of which a much more complete 
selection is to be found in the book by Williams and Fleming mentioned in the bibliography at 
the end of this chapter. We see that the vibrations of light atoms in terminal groups (for 
example -CH3, -OH, - C r N ,  > C=O, etc.) are of high frequency, while those of 
heavy atoms (-C-Cl, -C - Br, metal-metal, etc.) are low in frequency. Their frequen- 
cies, and consequently their spectra, are highly characteristic of the group, and can be used for 
analysis. For example, the -CH3 group gives rise to a symmetric C-H stretching absorption 



Figure 3.19(b) Comparison of the infra-red spectra of natural and synthetic thymidine. (N = absorption from liquid paraftin 
(nujol) in which the solid thymidine is suspended.) (Reproduced by permission of Professor N .  Sheppard FRS of the University of 
East Anglia, Norwich.) 
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Table 3.4 Characteristic stretching frequencies of some molecular groups 

Group Approximate frequency (cm-') 

2970 (asym. stretch) 
2870 (sym. stretch) 
1460 (asym. deform.) 
1375 (sym. deform.) 

2930 (asym. stretch) 
2860 (sym. stretch) 
1470 (deformation) 
2580 
2250 
2220 

3roup Approximate frequency (cm-' ) 

invariably falling between 2850 and 2890cm-', an asymmetric stretching frequency at 
2940-2980 cmp', a symmetric deformation (i.e. the opening and closing of the 

A\ 
H H H  

'umbrella') at about 1375 cm-', and an asymmetric deformation at about 1470cm-'. Again, the 
3 C = O  group shows a very sharp and intense absorption between 1600 and 1750cm-', 
depending largely on the other substituents of the group. An example of the application of 
group frequency data is shown in Fig. 3.19(c); this is the spectrum of thioacetic acide-acetic 
acid in which one oxygen atom has been replaced by sulphur. The question might be asked: is 
the molecule CH3C0.SH or CH3CS.0H? The infra-red spectrum gives a very clear answer. It 
shows a very sharp absorption at about 1730cmp', and one at about 2600cm-', and these are 
consistent with the presence of > C = O  and -SH groups, respectively (cf. Table 3.4). Also 
there is no strong absorption at 1100 c m ' ,  thus indicating the absence of > C = S. 

The idea of group vibrations also covers the motions of isolated features of a molecule 
which have frequencies not too near those of the skeletal vibrations. Thus isolated multiple 
bonds (for example > C = C < or - C - C - ) have frequencies which are highly character- 
istic. When, however, two such groups which, in isolation, have comparable frequencies occur 
together in a molecule, resonance occurs and the group frequencies may be shifted considerably 
from the expected value. Thus the isolated carbonyl in a ketone 
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\ ,C=O 

S-H 
1 

Figure 3.19(c) Part of the infra-red spectrum of thioacetic acid, CH,COSH, to illustrate the use of infra-red group 
frequencies. 

and the > C = C < double bond have group frequencies of 17 15 and 1650 cm-' , respectively; 
however, when the grouping 

1 
I 

,C=C-C=O 
I 

occurs, their separate frequencies are shifted to 1675 and about 1600cm-', respectively, and the 
intensity of the > C = C < absorption increases to become comparable with that of the inher- 
ently strong > C = 0 band (cf. Fermi resonance, Sec. 3.5.2). Closer coupling of the two groups, 
as in the ketene radical, > C = C = 0 ,  gives rise to absorptions at about 2100 and 1100 cm-', 
which are very far removed from the 'characteristic' frequencies of the separate groups. 

Shifts in group frequencies can arise in other ways too, particularly as the result of inter- 
actions between different molecules. Thus the -OH stretching frequency of alcohols is very 
dependent on the degree of hydrogen bonding, which lengthens and weakens the -OH bond, 
and hence lowers its vibrational frequency. If the hydrogen bond is formed between the -OH 
and, say, a carbonyl group, the the latter frequency is also lowered, although to a less extent 
than the -OH, since hydrogen bonding weakens the > C = 0 linkage also. However, shifts in 
group frequency position caused by resonance or intermolecular effects are in themselves highly 
characteristic and very useful for diagnostic purposes. 

In a similar way a change of physical state may cause a shift in the frequency of a vibration, 
particularly if the molecule is rather polar. In general the more condensed phase gives a lower 
frequency: v,,, > vaquid -- v ~ ~ ~ ~ ~ , ~ ~  > vsoli& Thus in the relatively polar molecule HC1 there is a 
shift of some 100cm-' in passing from vapour to liquid and a further decrease of 20cm-' on 
solidification. Non-polar COz, on the other hand, shows negligible shifts in its symmetric 
vibrations (Fig. 3.11(a) and (6)) but a lowering of some 60 cm-' in v3 on solidification. 

Examination of Table 3.4 shows that there are logical trends in group frequencies, since Eq. 
(3.4): 



is approximately obeyed. Thus we see that increasing the mass of the atom undergoing oscilla- 
tion within the group (i.e. increasing p) tends to decrease the frequency --cf. the series CH, CF, 
CCl, CBr, or the values for > C =  0 and > C = S. Also, increasing the strength of the bond, 
and hence increasing the force constant k, tends to increase the frequency, e.g. the series 
-C- X, -C= X, -C- X, where X is C, N, or (in the first two fragments) 0 .  

We should at this point consider very briefly the intensities of infra-red bands. We have seen 
that an infra-red spectrum only appears if the vibration produces a change in the permanent 
electric dipole of the molecule. It is reasonable to suppose, then, that the more polar a bond, the 
more intense will be the infra-red spectrum arising from vibrations of that bond. This is 
generally borne out in practice. Thus the intensities of the > C=O,  > C=N-,  and 
> C = C  < bands decrease in that order, as do those of the -OH, >NH,  and f CH 
bands. For this reason, too, the vibrations of ionic crystal lattices often give rise to very strong 
absorptions. We shall see in the next chapter that the reverse is true in Raman spectroscopy- 
there the less polar (and hence usually more polarizable) bonds give the most intense spectral 
lines. 

In summary, then, experience coupled with eomparison spectra of known compounds 
enables one to deduce a considerable amount of structural information from an infra-red 
spectrum. It should perhaps be mentioned that the complete interpretation of the spectrum of 
a complex molecule can be a very difficult or impossible task. One is usually content to assign 
the strongest bands and to be able to explain some of the weaker ones as overtones or combina- 
tions. 

3.8 TECHNIQUES AND INSTRUMENTATION 

3.8.1 Outline 

We first deal briefly with each component of the spectrometer as it is usually assembled for 
infra-red work. 

1. Source. The source is always some form of filament which is maintained at red- or white-heat 
by an electric current. Two common sources are the Nernst filament, consisting of a spindle 
of rare earth oxides about 1 inch long and 0.1 inch in diameter, and the 'globar' filament, a 
rod of carborundum, somewhat thicker and longer than the Nernst. The Nernst requires to 
be pre-heated before it will conduct electricity, but once red-heat is reached the temperature 
is maintained by the current. 

2. Optical path and monochromator. The beam is guided and focused by mirrors aluminized or 
silvered on their surfaces. Normally a focus is produced at the point where the sample is to be 
placed. Ordinary lenses and mirrors are not suitable as glass absorbs strongly over most of 
the frequencies used. Any windows which are essential (e.g. to contain a sample, or to protect 
the detector) must be made of mineral salts transparent to infra-red radiation which have 
been highly polished in order to reduce scattering to a minimum. NaCl, which is transparent 
above 650cmp', and KBr, transparent above 400cm-', are much used. For aqueous sam- 
ples, AgCl and CaFz sample cells can be used, and are infra-red transparent above 400 and 
1200 cm-' , respectively. 

A rotatable grating is usually used to disperse the radiation, having largely superseded 
rotatable prisms, which have poorer resolving power. Where the latter are still in use, the 
prism is usually made of NaCl or KBr. 

3. Detector. Two main types are in common use, one sensing the heating effect of the radiation, 
the other depending on photoconductivity. In both the greater the effect (temperature or 



conductivity rise) at a given frequency, the greater the transmittance (and the less the 
absorbance) of the sample at that frequency. 

An example of the temperature method is to be found in the Golay cell which is 
pneumatic in operation. The radiation falls on to a very small cell containing air, and 
temperature changes are measured in terms of pressure changes within the cell which can 
be recorded directly as 'transmittance'. Alternative examples of thermal detectors are small, 
sensitive thermocouples or bolometers. 

Pyroelectric detectors such as deuterated triglycine sulphate (DTGS) are in common use 
in FT spectrometers. As they are also thermal detectors they are sensitive across the whole 
infra-red range, but have the rapid signal response needed in interferometry. 

The phenomenon of conductivity in substances is thought to arise as a consequence of 
the movement of loosely held electrons through the lattice; insulators, on the other hand, 
have no such loosely bound electrons. Semiconductors are essentially midway between these 
materials, having no loosely bound electrons in the normal state, but having 'conduction 
bands' or raised electron energy levels into which electrons may be readily excited by the 
absorption of energy from an outside source. Photoconductors are a particular class of 
semiconductor in which the energy required comes from incident radiation, and some 
materials, such as lead sulphide, have been found sufficiently sensitive to infra-red radiation 
(although only above some 3000cm-') that they make excellent detectors. The conductivity 
of the material can be measured continuously by a type of Wheatstone bridge network and, 
when plotted against frequency, this gives directly the transmittance of the sample. 

Other photoconductive detectors in common use are indium antimonide (InSb) which 
can be used above 1400 cm-' and mercury cadmium telluride (MCT) used above -700 cm-I . 
These detectors operate at liquid nitrogen temperatures, which reduces noise, and tend to 
have a faster response time and sensitivity, compared even with, for example, the DTGS. 
Where extremely high sensitivity is required doped photoconductors such as copper- or gold- 
doped germanium detectors can be used-but these generally need to operate at liquid 
helium temperatures. 

4. Sample. For reasons just stated, the sample is held between plates of polished mineral salt 
rather than glass. Pure liquids are studied in thicknesses of about 0.01 mm, while solutions 
are usually 0.1-10 mm thick, depending on the dilution. Gas samples at pressures of up to 1 
atmosphere or greater are usually contained in glass cells either 5 or lOcm long, closed at 
their ends with rock salt windows. Special long-path cells, in which the radiation is repeatedly 
reflected up and down the cell, may be used for gases at low pressure, perhaps less than 
I00 mmHg. 

Solid samples are more difficult to examine because the particles reflect and scatter the 
incident radiation and transmittance is always low. If the solid cannot be dissolved in a 
suitable solvent, it is best examined by grinding it very finely in paraffin oil (nujol) and 
thus forming a suspension, or 'mull'. This can then be held between salt plates in the same 
way as a pure liquid or solvent. Provided the refractive indices of the liquid and solid phase 
are not very different, scattering will be slight. 

Another technique for handling solids is to grind them very finely with potassium 
bromide. Under very high pressure this material will flow slightly, and the mixture can 
usually be pressed into a transparent disk. This may then be placed directly in the infra- 
red beam in a suitable holder. Although superficially attractive the method is not generally 
recommended because of the difficulty in obtaining really reproducible results. 

A further technique which is often used to study otherwise intractable samples is known as 
attenuated total reflectance (ATR) spectroscopy. Consider a trapezoidal block of a transparent 
material, as in Fig. 3.20(a). If the chamfer angle is properly chosen, radiation shone into one end 
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Figure 3.20 Attenuated total reflection: (a) the transparent block, (h )  internal reflection in the block, and (c) 
penetration into the sample pressed against the block. 

will strike the flat surfaces at less than the critical angle and so will undergo total internal 
reflection to emerge, only slightly diminished in intensity, at the far end, as in Fig. 3.20(b). 
Now, although the internal reflection is conventionally called 'total', in fact the radiation beam 
penetrates slightly beyond the surface of the block during each reflection. If sample material is 
pressed closely to the outside of the block (Fig. 3.20(c)) the beam will travel a small distance 
through the sample at each reflection and so, on emerging at the far end of the block, it will 
'carry' the absorption spectrum of the sample-the internal reflection is attenuated, or dimin- 
ished by sample absorption, hence the name of this type of spectroscopy. The amount of 
penetration into the sample depends on the wavelength of the radiation and the angle of 
incidence, but it is of the order of 10-~-10-~ cm for infra-red waves. During its passage through 
the block it may undergo some 10-20 reflections, so the total path length through the sample is 
10-3-1~-2 cm, which is a short, but often perfectly adequate, path length for the production of a 
reasonable spectrum. 

The block must be of material which is infra-red transparent, and must have a refractive 
index higher than that of the sample, otherwise internal reflection will not occur. Suitable 
materials are silver chloride, thallium halides, or germanium, and the block is typically some 
5 cm long, 2 cm wide, and 0.5 cm thick. The sample material can be in any form (except gaseous, 
for which a path length of cm is far too short) provided it can be kept in very close contact 
with the block, but the technique is usually reserved for samples difficult to study by ordinary 
means. Thus, it is virtually impossible to study fibrous material by transmission-the rough 
surface scatters all the radiation falling on it; but if the fibres are clamped firmly to the outside 
of an ATR block, quite acceptable spectra result. It is an excellent method of studying surface 
coatings, since it is only the surface of the sample which is penetrated by the radiation. Further, 
since the depth of penetration can, to some extent, be changed by varying the angle of incidence 



of the beam, the change in composition of a surface with depth can be studied. Thus one can 
measure the degree of oxidation of a polymer surface, or the diffusion of materials into a 
surface. 

3.8.2 Double- and Single-Beam Operation 

Figure 3.21 shows the spectrum of the atmosphere between 4000 and 400 cm-' taken with a path 
length of some 2m-this is not abnormally long for the beam paths in a spectrometer. It is 
evident that, although H 2 0  and CO;! occur in air only in small percentages, their absorbance 
over much of the spectrum is considerable. Not only would this absorbance have to be sub- 
tracted from the spectrum of any sample run under comparable conditions but, since the 
percentage of water vapour in the atmosphere is variable, such a 'background' spectrum as 
Fig. 3.21 would have to be run afresh for each sample. 

If the regions of these absorbances are not to be denied us in spectroscopic studies, some 
action must be taken either to remove the H 2 0  and C 0 2  from the air, or to remove the effects of 
their spectra. It is possible to remove these gases either by complete evacuation of the spectro- 
meter or by sweeping them out with a current of dry nitrogen or dry C02-free air. The first is not 
easy since a modern spectrometer may have a volume of some 0.3 m3 and there will be a great 
many places in its container where leaks may occur. Nor is it ever completely effective, since 
water vapour proves to be remarkably tenacious and weeks of hard evacuation may be neces- 
sary before all the water vapour is desorbed from the surfaces inside the spectrometer. For this 

Figure 3.21 The infra-red spectrum of atmospheric water vapour and carbon dioxide. (T l~anks  are due to Miss J .  
Cook of' the. Utliwrsity of' York fbr proviriiting this s lxvtrun~.)  



reason, also, sweeping with a dry inert gas is not very effective. However, these methods do, 
quite rapidly, reduce the interference considerably. 

The effects of this interference can be removed much more simply by using an instrument 
designed for double-beam operation. In this, the source radiation is divided into two by means of 
the mirrors M I  and MZ (Fig. 3.22). One beam is brought to a focus at the sample space, while 
the other follows an exactly equivalent path and is referred to as the reference beam. The two 
beams meet at the sector mirror M 3 ,  which is sketched in plan view in Fig. 3.22(b). As this 
mirror rotates it alternately reflects the reference beam, or allows the sample beam through the 
spaces, into the monochromator. Thus the detector 'sees' the sample beam and reference beam 
alternately. Both beams have travelled the same distance through the atmosphere and thus both 
are reduced in energy to the same extent by absorption by C 0 2  and H20.  

If a sample, capable of absorbing energy from the beam at the particular frequency passed 
by the monochromator, is now placed in the sample beam, the detector will receive a signal 
alternating in intensity, since the sample beam carries less energy than the reference beam. It is a 
simple matter, electronically, to amplify this alternating signal and to arrange that a calibrated 
attenuator is driven into the reference beam until the signal is reduced to zero, i.e. until sample 
and reference beams are again balanced. The distance moved by the attenuator is a direct 
measure of the amount of energy absorbed by the sample. 

Figure 3.22 ( a )  Schematic diagram of a double-beam spectrometer; ( h )  a plan view of the rotating sector mirror, M3. 
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By balancing sample and reference beams in this way, the absorption of atmospheric C 0 2  
and H 2 0  does not appear in the infra-red spectra since both beams are reduced in energy to the 
same extent. The double-beam spectrometer has other advantages, however. 

Firstly, it is much simpler to amplify the alternating signal produced than the d.c. signal 
resulting from a single-beam detector. 

Secondly, the sector mirror acts as a modulator since it interrupts the beam periodically 
and, by amplifying only that component of the signal having the sector mirror frequency 
(usually 1G100 rotations per second), a great improvement in the signal-to-noise ratio results. 

Thirdly, when examining the spectra of solutions, one can put a cell containing the appro- 
priate quantity of pure solvent into the reference beam, thus eliminating the solvent spectrum 
from the final trace. On a single-beam instrument the solvent spectrum must be taken separately 
and 'subtracted' from the solution spectrum in order to arrive at the spectrum of the substance 
of interest. 

It should be pointed out, however, that a double-beam instrument is never completely 
effective in removing traces of water vapour or C 0 2  from the spectra. No matter how carefully 
the instrument is assembled small differences occur in the beam paths and a small residual 
spectrum results. This can usually be removed, however, by sweeping with dry, inert gas as 
well as using the double-beam principle. 

A further, more serious disadvantage which is not always appreciated by users of spectro- 
meters is that the double-beam instrument only removes the spectral trace of C 0 2  and H20;  the 
very strong absorption of energy by these gases still remains in both beams. This means that at 
some parts of the spectrum the actual amount of energy reaching the detector may be extremely 
small. Under these conditions, unless the spectrometer is very carefully operated, the spectral 
trace of a substance may be quite false. Fortunately, regions of very high atmospheric absorp- 
tion are few and narrow but they should be borne in mind when examining infra-red spectra. 
This disadvantage can only be removed by sweeping out or evacuating the spectrometer. 
Similar, but more pronounced, effects occur in regions of strong solvent absorbance when a 
compensating cell is put in the reference beam. 

3.8.3 Fourier Transform Spectroscopy 

Infra-red spectroscopy extends outside the limits we have discussed so far in this chapter, and in 
particular a good deal of useful molecular information is contained in spectra below 400 cm-I, 
i.e. the far infra-red region, from about 400cm-I to 20cm-I or 10cm-'. Because sources are 
weak and detectors insensitive, this region is known as 'energy-limited' and difficulty is experi- 
enced in obtaining good signal-to-noise ratios by conventional means. The advent of Fourier 
transform spectroscopy, already introduced in Sec. 1.8, has made the far infra-red much more 
accessible, and has considerably speeded and improved spectroscopy in the infra-red region in 
general. 

In this region Fourier transform (FT) methods are used in absorption. The apparatus 
derives from the classical attempt by Michelson to measure the 'ether wind' by determining 
the velocity of light in two perpendicular directions. A parallel beam of radiation is directed 
from the source to the interferometer, consisting of a beam splitter B and two mirrors M I  and 
M2 (Fig. 3.23). The beam splitter is a plate of suitably transparent material (e.g. potassium 
bromide) coated so as to reflect just 50 per cent of the radiation falling on it. Thus half the 
radiation goes to M1, and half to M2, returns from both these mirrors along the same path, and 
is then recombined to a single beam at the beam splitter (clearly half the total radiation is sent 
back to the source, but this is immaterial). 

It is well known (and the essence of the Michelson experiment) that if monochromatic 
radiation is emitted by the source, the recombined beam leaving B shows constructive or 
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Figure 3.23 Schematic diagram of a Fourier transform infra-red spectrometer. 

destructive interference, depending on the relative path lengths B to M I  and B to M2. Thus if the 
path lengths are identical or differ by an integral number of wavelengths, constructive inter- 
ference gives a bright beam leaving B, whereas if the difference is a half-integral number of 
wavelengths, the beams cancel at B. As the mirror M2 is moved smoothly towards or away from 
B, therefore, a detector sees radiation alternating in intensity. It is fairly easy to imagine that if 
the source emits two separate monochromatic frequencies, v l  and v2, then the interference 
pattern (beat pattern) of v l  and v.2 would overlay the interference caused by M I  and M2; the 
detector would see a more complicated intensity fluctuation as M2 is moved, but computing the 
Fourier transform of the resultant signal is a very rapid way of obtaining the original frequen- 
cies and intensities emitted by the source. Taking the process further, even 'white' radiation 
emitted by the source produces an interference pattern which can be transformed back to the 
original frequency distribution. 

Figure 1.19(a) shows a typical interference pattern or interferogram for a 'white' source, 
where the wide range of frequencies causes a rapid diminishing of signal away from the position 
at which both mirrors are an equal distance from the beam splitter (the so-called zero retarda- 
tion peak). No real source is truly white, of course, and Fig. 3.24 shows, schematically, the 
variation in total intensity caused by varying source output and beam splitter efficiency across 
the IR range for a typical FT spectrometer. Since FT infra-red spectroscopy is carried out as a 
single-beam technique, this background variation must be taken into account for each spectrum. 
If the beam from such a source is directed through a sample before reaching the detector, sample 
absorptions cause gaps in the frequency distribution which, after transformation, will appear as 
down-going peaks. 

The production of a spectrum, then, is a two-stage process, which may be thought of as 
follows. Firstly, without a sample in the beam, mirror M2 is moved smoothly over a period of 
time (e.g. one second) through a distance of about 1 cm, while the detector signal-the inter- 
ferogram-is collected into a multi-channel computer (it may be, for instance, that the detector 
signal is monitored every thousandth of a second during the mirror traverse, and each piece of 
information put serially into one of a thousand different storage locations in the computer); the 
computer carries out the Fourier transformation of the stored data to produce the background 
spectrum. Secondly, a sample interferogram is recorded in exactly the same way, Fourier 
transformed, and then ratioed against the background spectrum for plotting as a transmittance 
spectrum. Alternatively, the sample and background spectra may each be calculated in 
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Figure 3.24 The single-beam profile of an infra-red interferometer 

absorbance forms and the latter simply subtracted from the former to give an absorbance 
spectrum of the sample alone. 

There are a number of advantages to be gained by using Fourier transform rather than 
dispersive measurements in the infra-red. 

1. The whole spectrum is obtained across the entire frequency range at once. In dispersive IR, it 
is common to have to change the dispersing grating during the scan, as one grating is not 
usually able to function sufficiently well over the whole range. 

2. The multiplex (or Fellgett) advantage. This arises because the total scanning time for Fourier 
transform infra-red (FTIR) is considerably less than that required to produce a dispersive 
spectrum of the same sensitivity and resolution. For a dispersive spectrometer, each resolu- 
tion element is scanned consecutively, so for a total scan time T,  the time t taken to record 
one resolution element is T/n where n is the number of resolution elements. In FTIR, the 
entire frequency range is sampled for the whole total scan time T. In Sec. 1.9, we briefly 
discussed the signal-to-noise ratio, SIN. If t is the recording time, it is found that the signal 
(S) is proportional to t and the noise (N) is proportional to Ji, or: 

Therefore we may write: 

or (S/N),T,R/(S/N)msp = J;; 

Thus the multiplex advantage gives a gain of ,/h in signal-to-noise for an FTIR spectrum 
recorded over the same total time as a dispersive spectrum. For example, for a spectrum 
recorded over the frequency range from 4000 to 400 cm-I, at 1 cm-' resolution, n = 3600, 



giving an improvement of fi = 60. Thus, if it took 10 minutes to record a dispersive 
spectrum, an FTIR spectrum of the same SIN could be obtained in only 10 seconds. 

3 .  The throughput (or Jacquinot) advantage. In a dispersive instrument the radiation is invari- 
ably brought to a focus on a slit, and it is essentially the image of the slit which is seen by the 
detector; a very fine slit gives good resolving power since only a narrow spread of frequencies 
falls on the detector at any one moment, but the total amount of energy passing through the 
instrument is severely limited, requiring high-gain and hence 'noisy' amplifiers. In FT work 
parallel beams are used throughout, and there is no need to bring the radiation to a focus 
except for convenience at the sample and at the detector-no slit is required and all the 
source energy passes through the instrument; consequently amplifiers are less critical and the 
resolving power is governed solely by the mirror traverse and computer capacity. It is for this 
reason that FT instruments were first developed for use in the energy-limited far-infra-red 
region. This is illustrated in Fig. 3.25,  where we show schematically the relative areas of the 
infra-red beam for a dispersive and a Fourier transform instrument. 

4. The Connes advantage. The position of the moving mirror is measured by counting inter- 
ference fringes from a helium-neon laser. Because the frequency of the laser is known with 
great precision, it is possible to measure the mirror position, and hence the frequency, very 
accurately. 

5 .  Resolving power. The resolving power of an FT instrument is constant over the entire 
spectrum; in a grating or prism instrument the resolving power depends on the angle 
which that component makes with the radiation beam, and hence varies with frequency- 
in particular it is usually especially poor at the ends of the spectrum. 

The resolution of a Fourier transform spectrometer is related to the mirror travel by the 
equation: 

where AD is the resolution and 6 the maximum travel of the mirror. Thus for a resolution of 
1 cm-', the maximum mirror travel must be 1 cm, whereas for a resolution of 0.01 cm-', 100cm 
travel is required. Obviously the ultimate limitation on resolution in FTIR is the ability to make 
a controlled bearing for the moving mirror to travel smoothly over long enough distances. 
Measurements at resolutions of 0.1-2 cm-' are quite routine, however, and it is only in special- 
ized, very high resolution work that difficulties arise. 

Dispersive 
instrument 

Fourier transform 
instrument 

Figure 3.25 Schematic comparison of the throughput of dispersive and Fourier transform instruments 
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3.8.4 The Carbon Dioxide Laser 

The carbon dioxide laser, actually made from a mixture of carbon dioxide and nitrogen, has 
potential for use in routine infra-red spectroscopy. The primary excitation step in this is the 
electron-impact excitation of nitrogen molecules into their first excited vibrational level, which, 
as Fig. 3.26 shows, is at about 2360 cm-' above the ground state. This happens to be very close 
in energy to v3, the asymmetric stretching vibration of C 0 2  at 2350cm-I, and so resonance 
excitation of C 0 2  to this level occurs by collision with excited N2. NOW both N2 and C 0 2  have 
rotational states associated with these vibrational energies, which are also indicated 
(schematically and not to scale) in Fig. 3.26. This means that many different rotational levels 
of N2 will be populated in the initial excitation, and consequently many rotational levels of the 
v3 vibration of C 0 2  will be collisionally activated. In fact, levels up to some 200 cm-I above the 
lowest state of v3 are effectively populated in this way. 

The excited C 0 2  can, and of course does, decay spontaneously and directly to the ground 
state, liberating energy as heat. For this reason some helium is incorporated into the gas 
mixture, to help in transferring the heat to the walls of the containing tube, and the laser is 
normally operated in the pulsed mode, although pulses can be as high as several per second. In 
addition, however, stimulated emission is possible to vl, the symmetric stretching mode of C02 
at about 1390cm-', and this mode also has associated rotational levels. The system, then, is 

Collisions F-r 
Laser radiation 

Figure 3.26 The energy levels of nitrogen and of carbon dioxide involved in the C 0 2  laser 



basically a four-level laser (cf. Sec. 1. lo), although the many additional rotational levels also 
play their part. 

When acting as a laser, any activated molecules in v3 can drop to any allowed levels of vl, 
i.e. those levels to which transitions are allowed under the A J  = *I selection rule. This means 
that a large number (perhaps 80-100) of discrete laser frequencies are emitted over the range 
900-1 100cm-'--the separation of the v l  and v3 vibrations of C02.  The spacing between the 
emission lines is about 2cmP', the spacing of the rotational transitions. Now although this 
cannot be regarded as a 'continuous' source of radiation, and although its frequency range is 
very limited compared with the useful infra-red spectrum (covering 3 0 0 ~ 0 0 c m - '  or lower), 
nonetheless it has some potential as an infra-red source, as we illustrate in the following 
paragraphs. 

Most organic materials, especially when in solution, have fairly broad infra-red absorptions, 
with a bandwidth of some 5-20 cm-I; in this respect a source with discrete lines spaced at only 
2cm-' is essentially continuous, in the sense that there is little loss of spectral information 
between the lines. Equally, many such molecules do have useful diagnostic absorptions in the 
900-1 100 cm-' region. So spectra obtained with a C 0 2  laser, although perhaps looking slightly 
different from those obtained with a normal source, may well have useful 'fingerprinting' 
possibilities. 

Further, the laser radiation is very intense-in fact, since its main industrial use is in cutting 
and welding materials, an unmodified C 0 2  laser tends to melt the spectrometer. Once its 
intensity has been reduced so that it is 'only' some lo3-lo5 times stronger than a normal 
infra-red source, however, it proves ideally suited to applications such as monitoring air pollu- 
tion. Here one is looking for parts-per-million quantities of pollutants, and the best method is to 
shine the infra-red beam through a very long path of the material. Clearly an intense beam that 
does not diverge over a large distance is exactly what is required. 

Finally, quantitative measurements of materials are most accurately obtained by using 
monochromatic radiation, and in this respect one of the emission lines from the C 0 2  laser, 
selected by the use of a normal dispersion grating, is ideal, and potentially very useful for 
continuous monitoring of production materials. A similar CO gas laser, also activated by 
electron-impact excitation of NZ, gives multiple discrete lines in the 2000 cm-I region. 
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PROBLEMS 

(Useful constants: h = 6.626 x J s; c = 2.998 x 10' m s-I; N = 6.023 x loz3 mol-I; k = 1.381 
x J K-';  4 r 2  = 39.478; 1 cm-I = 11.958 J m o l l ;  atomic masses: 1 4 ~  = 23.25 x kg, 
160 = 26.56 x 10-*'kg.) 

3.1 The fundamental and first overtone transitions of I 4 ~ l 6 0  are centred at 1 8 7 6 . 0 6 ~ m - ~  and 
3724.20cm-I, respectively. Evaluate the equilibrium vibration frequency, the anharmonicity, the exact 
zero-point energy, and the force constant of the molecule. Assuming that in Eq. (3.12) v is a continuous 
variable, use calculus to determine the maximum value of E,, and hence calculate a value for the dissocia- 
tion energy of NO. Criticize this method. 

3.2 The vibrational wavenumbers of the following molecules in their v = 0 states are: HC1: 2885cm-I; 
DC1: 1990cm-I; D2: 2990cm-'; and HD: 3627cm-I. Calculate the energy change, in kJmol-I, of the 
reaction 

HC1+ D2 + DCI + H D  

and determine whether energy is liberated or absorbed. 
Hint: Consider the zero-point energies of the four molecules concerned. 

3.3 The equilibrium vibration frequency of the iodine molecule I2 is 215cm-', and the anharmonicity 
constant x is 0.003; what, at 300 K, is the intensity of the 'hot band' (u = 1 + u = 2 transition) relative to 
that of the fundamental (v = 0 + v = I)? 

3.4 An infra-red spectrum of OCS is obtained in which the rotational fine structure is not resolved. Using 
data from Table 2.2, calculate the separation between the P and R branch maxima at T = 300 K. 

3.5 How many normal modes of vibration are possible for the following molecules: HBr, 0 2 ,  OCS 
(linear), SO2 (bent), BC13, H C G C H ,  CH4 CH31, C6H6? 

3.6 Estimate, using data from Table 3.4, the vibrational wavenumber of (a) E C D ,  (b) -OD, (c) --. 7 C -  S - . (Relative atomic masses are: H = 1, D = 2, C = 12, 0 = 16, S = 32.) 

3.7 The vibration frequency of 'H'~CI is 2990.6cm-I; without calculating the bond force constant, 
estimate the frequency for ' H ~ ~ c I ,  ' D ~ ~ c I ,  and ' D ~ ~ c I .  

3.8 In the vibration-rotation spectrum (u = 0 + 1) of HF, the rotational constants are slightly different 
in the u = 0 and v = 1 states; experimentally, their values are found to be Bv=o = 20.6cm-I and 
B,= 1 = 19.8cm-I. Calculate the percentage increase in bond length on going from v = 0 to v = 1. 
What effect does this lengthening of the bond have on the spacing of the rotational lines? 

3.9 Assume the following data for the molecule 'H'~cI: 
Bond length: 127.5pm 
Bond force constant: 516.3 Nm-I 
Atomic masses: I H  = 1.673 x lo-'' kg, 'VI = 58.066 x kg 

Do the following, giving answers in cm-': 
(a) Calculate the zero-point energy and the energy of the fundamental vibration vo. 
(b) Calculate the rotational constant B. 
(c) Calculate the wavenumbers of the lines P( ' ) ,  P p ) ,  P(3)r R(q), R('!, and R(?). 
(d)  Sketch the expected vibration-rotation spectrum of HCI, including the approximate intensity 

distribution. 
(e) Suggest two differences which you would expect to find between the spectrum you have sketched 

in (d) and that which is actually observed for HC1, giving your reasons. 

3.10 Explain why the C = O  stretching vibration of an aldehyde gives rise to a strong absorption in the 
infra-red, yet the absorption due to the C = C  vibration in an alkene is normally very weak. 



CHAPTER 

FOUR 
RAMAN SPECTROSCOPY 

4.1 INTRODUCTION 

When a beam of light is passed through a transparent substance, a small amount of the 
radiation energy is scattered, the scattering persisting even if all dust particles or other extra- 
neous matter are rigorously excluded from the substance. If monochromatic radiation, or 
radiation of a very narrow frequency band, is used, the scattered energy will consist almost 
entirely of radiation of the incident frequency (the so-called Rayleigh scattering) but, in addition, 
certain discrete frequencies above and below that of the incident beam will be scattered; it is this 
which is referred to as Raman scattering. 

4.1.1 Quantum Theory of Raman Effect 

The occurrence of Raman scattering may be most easily understood in terms of the quantum 
theory of radiation. This treats radiation of frequency v as consisting of a stream of particles 
(called photons) having energy hv where h is Planck's constant. Photons can be imagined to 
undergo collisions with molecules and, if the collision is perfectly elastic, they will be deflected 
unchanged. A detector placed to collect energy at right angles to an incident beam will thus 
receive photons of energy hv, i.e. radiation of frequency v. Elastic scattering can be likened to a 
ball bearing striking a rigid table-the ball bearing bounces off the table without any loss of 
energy. 

However, it may happen that energy is exchanged between photon and molecule during the 
collision: such collisions are called 'inelastic'. The molecule can gain or lose amounts of energy 
only in accordance with the quanta1 laws; i.e. its energy change, A E  joules, must be the 
difference in energy between two of its allowed states. That is to say, A E  must represent a 
change in the vibrational and/or rotational energy of the molecule. If the molecule gains energy 
AE, the photon will be scattered with energy hv - A E  and the equivalent radiation will have a 
frequency v - AElh.  Conversely, if the molecule loses energy AE,  the scattered frequency will 
be v + AElh.  The inelastic process can be pictured in terms of a ball bearing striking a drum. If 
the surface of the drum is stationary when the ball bearing hits, it will start oscillating at its own 



RAMAN SPECTROSCOPY 101 

normal frequency and the ball bearing will be reflected with less energy, having lost an amount 
of energy equal to that taken up by the oscillation of the drum. On the other hand, if the drum is 
already oscillating when the ball bearing strikes, and if the ball bearing hits at the right phase of 
the drum's oscillation, the drum will give energy to the ball bearing-rather like a catapult-and 
the ball bearing will be flung off with increased energy. 

Radiation scattered with a frequency lower than that of the incident beam is referred to as 
Stokes' radiation, while that at higher frequency is called anti-Stokes' radiation. Since the 
former is accompanied by an increase in molecular energy (which can always occur, subject 
to certain selection rules) while the latter involves a decrease (which can only occur if the 
molecule is originally in an excited vibrational or rotational state), Stokes' radiation is generally 
more intense than anti-Stokes' radiation. Overall, however, the total radiation scattered at any 
but the incident frequency is extremely small, and sensitive apparatus is needed for its study. 

4.1.2 Classical Theory of the Raman Effect: Molecular Polarizability 

The classical theory of the Raman effect, while not wholly adequate, is worth consideration 
since it leads to an understanding of a concept basic to this form of spectroscopy-the polariz- 
ability of a molecule. When a molecule is put into a static electric field it suffers some distortion, 
the positively charged nuclei being attracted towards the negative pole of the field, the electrons 
to the positive pole. This separation of charge centres causes an induced electric dipole moment to 
be set up in the molecule and the molecule is said to be polarized. The size of the induced dipole 
p, depends both on the magnitude of the applied field, E, and on the ease with which the 
molecule can be distorted. We may write 

p = LYE (4.1) 

where a is the polarizability of the molecule. 
Consider first the diatomic molecule HZ, which we show placed in an electric field in Fig. 

4.l(a) and (b) in end-on and sideways orientation, respectively. The electrons forming the bond 
are more easily displaced by the field along the bond axis (Fig. 4.1 (b)) than that across the bond 
(Fig. 4.l(a)), and the polarizability is thus said to be anisotropic. This fact may be confirmed 

(a) 
w 

Figure 4.1 The hydrogen molecule in an electric field and its polarizability ellipsoid, seen along and across the bond 
axis. 
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experimentally (e.g. by a study of the intensity of lines in the Raman spectrum of H2), when it is 
found that the induced dipole moment for a given field applied along the axis is approximately 
twice as large as that induced by the same field applied across the axis; fields in other directions 
induce intermediate dipole moments. 

The polarizability of a molecule in various directions is conventionally represented by 
drawing a polarizability ellipsoid. We shall define this formally in the next paragraph, but for 
hydrogen its general shape is that of a squashed sphere, like a tangerine, and we have drawn this 
in two orientations in Fig. 4.l(c) and (d) (together with totally imaginary tangerine segment 
lines to make the picture clearer). In Fig. 4.l(c) we are looking down on to the top of the 
tangerine just off its axis and in Fig. 4.l(d) we look at it sideways; these viewpoints correspond 
to those for the hydrogen molecule in Fig. 4.l(a) and (b), respectively. 

In general a polarizability ellipsoid is defined as a three-dimensional surface whose distance 
from the electrical centre of the molecule (in H2 this is also the centre of gravity) is proportional 
to I/&, where ai is the polarizability along the line joining a point i on the ellipsoid with the 
electrical centre. Thus where the polarizability is greatest, the axis of the ellipsoid is least, and 
vice versa. (Historically this representation arose by analogy with the momentum of a body- 
the momenta1 ellipsoid is defined similarly using 1 / a ,  where I; is the moment of inertia about 
an axis i.) 

If we imagine applying an electric field across the bond axis of H2, as in Fig. 4.l(a), a certain 
amount of polarization of the molecule will occur. If we also imagine the molecule rotating 
about its bond axis, it is obvious that it will present exactly the same aspect to the electric field at 
all orientations-i.e. its polarizability will be exactly the same in any direction across the axis. 
This means that a section through the polarizability ellipsoid will be circular, which is what we 
have drawn in Fig. 4.l(c). 

If the field is applied along the bond axis, as in Fig. 4.l(b), the polarizability is greater, as we 
mentioned earlier. Thus the cross-section of the ellipsoid is less, as shown in Fig. 4.l(d). 

The student must not make the mistake of confusing a polarizability ellipsoid with electron 
orbitals or electron clouds. In a sense the polarizability ellipsoid is the inverse of an electron 
cloud-where the electron cloud is largest the electrons are further from the nucleus and so are 
most easily polarized. This, as we have seen, is represented by a small axis for the polarizability 
ellipsoid. 

All diatomic molecules have ellipsoids of the same general tangerine shape as HZ, as do 
linear polyatomic molecules, such as C02,  HC - CH, etc. They differ only in the relative sizes of 
their major and minor axes. 

When a sample of such molecules is subjected to a beam of radiation of frequency v the 
electric field experienced by each molecule varies according to the equation (cf. Eq. (1.1)): 

E = Eo sin 2nvt ( 4 4  

and thus the induced dipole also undergoes oscillations of frequency v: 

p = CYE = aEO sin 2nvt (4.3) 

Such an oscillating dipole emits radiation of its own oscillation frequency and we have imme- 
diately in Eq. (4.3) the classical explanation of Rayleigh scattering. 

If, in addition, the molecule undergoes some internal motion, such as vibration or rotation, 
which changes the polarizability periodically, then the oscillating dipole will have superimposed 
upon it the vibrational or rotational oscillation. Consider, for example, a vibration of frequency 
v,ib. which changes the polarizability: we can write 

CY = CYO + P sin 2nvVib. t (4.4) 



where a 0  is the equilibrium polarizability and P represents the rate of change of polarizability 
with the vibration. Then we have: 

p = a E  = (aO + P sin 2mvib, t)Eo sin 27~vt 

or, expanding and using the trigonometric relation: 

sin A sin B = 4 {cos(A - B) - cos(A + B)) 

we have 

and thus the oscillating dipole has frequency components v f vvib, as well as the exciting 
frequency v. 

It should be carefully noted, however, that if the vibration does not alter the polarizability 
of the molecule (and we shall later give examples of such vibrations) then P = 0 and the dipole 
oscillates only at the frequency of the incident radiation; the same is true of a rotation. Thus we 
have the general rule: 

In order to be Raman active a molecular rotation or vibration must cause some change in a compo- 
nent of the molecular polarizability. A change in polarizability is, of course, reflected by a change in 
either the magnitude or the direction of the polarizability ellipsoid. 

(This rule should be contrasted with that for infra-red and microwave activity, which is that the 
molecular motion must produce a change in the electric dipole of the molecule.) 

Let us now consider briefly the shapes of the polarizability ellipsoids of more complicated 
molecules, taking first the bent triatomic molecule H 2 0  shown in Fig. 4.2(a). By analogy with 
the discussion for H2 given above, we might expect the polarizability surface to be composed of 
two similar ellipsoids, one for each bond. While this may be correct in minute detail, we must 
remember that the oscillating electric field which we wish to apply for Raman spectroscopy is 
usually that of radiation in the visible or ultra-violet region, i.e. having a wavelength of some 
1 pm-10 nm (cf. Fig. 1.4); molecular bonds, on the other hand, have dimensions of only some 
0.1 nm, so we cannot expect our radiation to probe the finer details of bond polarizability-even 
the hardest of X-rays can scarcely do that. Instead the radiation can only sense the average 
polarizability in various directions through the molecule, and the polarizability ellipsoid, it may 
be shown, is always a true ellipsoid-i.e. a surface having all sections elliptical (or possibly 
circular). In the particular case of H 2 0  the polarizability is found to be different along all three 
of the major axes of the molecule (which lie along the line in the molecular plane bisecting the 
HOH angle, at right angles to this in the plane, and perpendicularly to the plane), and so all 
three of the ellipsoidal axes are also different; the ellipsoid is sketched in various orientations in 
Fig. 4.2(b). Other such molecules, for example H2S or SO2, have similarly shaped ellipsoids but 
with different dimensions. 

Symmetric top molecules, because of their axial symmetry, have polarizability ellipsoids 
rather similar to those of linear molecules, i.e. with a circular cross-section at right angles to 
their axis of symmetry. It should be stressed, however, that sections in other planes are truly 
elliptical. For a molecule such as chloroform, CHC13 (Fig. 4.3(a)), where the chlorine atoms are 
bulky, the usual tendency is to draw the polarizability surface as egg-shaped, fatter at the 
chlorine-containing end. This is not correct; the polarizability ellipsoid for chloroform is 
shown at Fig. 4.3(b) where it will be seen that, since the polarizability is greater across the 
symmetry axis, the minor axis of the ellipsoid lies in this direction. Similar molecules are, for 
example, CH3Cl and NH3, etc. (although the latter fortuitously has a virtually spherical 
'ellipsoid'). 



Figure 4.2 The water molecule and its polarizability ellipsoid. seen along the three main axes. 

Figure 4.3 The chloroform molecule and its polarizability ellipsoid, seen from across and along the symmetry axis 

Finally, spherical top molecules, such as CH4, CC4,  SiH4, etc., have spherical polarizability 
surfaces, since they are completely isotropic as far as incident radiation is concerned. 

We are now in a position to discuss in detail the Raman spectra of various types of 
molecule. Since we shall be dealing with rotational and vibrational changes it is evident that 
expressions for the energy levels and for many of the allowed transitions will be identical with 
those already discussed in the previous two chapters. For clarity we shall repeat any such 
expressions but not rederive them, being content to give a cross-reference to where their 
derivation may be found. 
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4.2 PURE ROTATIONAL RAMAN SPECTRA 

4.2.1 Linear Molecules 

The rotational energy levels of linear molecules have already been stated (cf. Eq. (2.24)): 

but, in Raman spectroscopy, the precision of the measurements does not normally warrant the 
retention of the term involving D, the centrifugal distortion constant. Thus we take the simpler 
expression: 

to represent the energy levels. 
Transitions between these levels follow the formal selection rule: 

A J = O ,  or f 2  only (4.7) 

which is to be contrasted with the corresponding selection rule for microwave spectroscopy, 
A J =  k1,  given in Eq. (2.17). The fact that in Raman work the rotational quantum number 
changes by two units rather than one is connected with the symmetry of the polarizability 
ellipsoid. For a linear molecule, such as is depicted in Fig. 4.1, it is evident that during end- 
over-end rotation the ellipsoid presents the same appearance to an observer twice in every 
complete rotation. It is equally clear that rotation about the bond axis produces no change in 
polarizability and hence, as in infra-red and microwave spectroscopy, we need concern ourselves 
only with end-over-end rotations. 

If, following the usual practice, we define A J  as (Jupperstate - Jlowerstate) then we can ignore 
the selection rule A J  = -2 since, for a pure rotational change, the upper state quantum number 
must necessarily be greater than that in the lower state. Further, the 'transition' A J  = 0 is trivial 
since this represents no change in the molecular energy and hence Rayleigh scattering only. 

Combining, then, A J  = $2 with the energy levels of Eq. (4.6) we have: 

Since A J  = +2, we may label these lines S branch lines (cf. Sec. 3.2) and write 

where J is the rotational quantum number in the lower state. 
Thus if the molecule gains rotational energy from the photon during collision we have a 

series of S branch lines to the low wavenumber side of the exciting line (Stokes' lines), while if 
the molecule loses energy to the photon the S branch lines appear on the high wavenumber side 
(anti-Stokes' lines). The wavenumbers of the corresponding spectral lines are given by: 

where the plus sign refers to anti-Stokes' lines, the minus to Stokes' lines, and &,. is the 
wavenumber of the exciting radiation. 

The allowed transitions and the Raman spectrum arising are shown schematically in Fig. 
4.4. Each transition is labelled according to its lower J value and the relative intensities of the 
lines are indicated assuming that the population of the various energy levels varies according to 
Eq. (2.21) and Fig. 2.7. In particular it should be noted here that Stokes' and anti-Stokes' lines 
have comparable intensity because many rotational levels are populated and hence downward 
transitions are approximately as likely as upward ones. 



Stokes' lines Anti-Stokes' lines 

Figure 4.4 The rotational energy levels of a diatomic molecule and the rotational Raman spectrum arising from 
transitions between them. Spectral lines are numbered according to their lower J values. 

When the value J = 0 is inserted into Eq. (4.10) it is seen immediately that the separation of 
the first line from the exciting line is 6Bcm-l, while the separation between successive lines is 
4Bcm-I. For diatomic and light triatomic molecules the rotational Raman spectrum will 
normally be resolved and we can immediately obtain a value of B, and hence the moment of 
inertia and bond lengths for such molecules. If we recall that homonuclear diatomic molecules 
(for example 0 2 ,  H2) give no infra-red or microwave spectra since they possess no dipole 
moment, whereas they do give a rotational Raman spectrum, we see that the Raman technique 
yields structural data unobtainable from the techniques previously discussed. It is thus com- 
plementary to microwave and infra-red studies, not merely confirmatory. 

It should be mentioned that, if the molecule has a centre of symmetry (as, for example, do 
HZ, 0 2 ,  C02), then the effects of nuclear spin will be observed in the Raman as in the infra-red. 
Thus for O2 and C 0 2  (since the spin of oxygen is zero) every alternate rotational level is absent; 
for example, in the case of 0 2 ,  every level with even J values is missing, and thus every transition 
labelled J = 0, 2, 4, . . . in Fig. 4.4 is also completely missing from the spectrum. In the case of 
HZ, and other molecules composed of nuclei with non-zero spin, the spectral lines show an 
alternation of intensity. 

Linear molecules with more than three heavy atoms have large moments of inertia and their 
rotational fine structure is often unresolved in the Raman spectrum. Direct structural informa- 
tion is not, therefore, obtainable, but we shall see shortly that, taken in conjunction with the 
infra-red spectrum, the Raman can still yield much very useful information. 



4.2.2 Symmetric Top Molecules 

The polarizability ellipsoid for a typical symmetric top molecule, for example CHC13, was 
shown in Fig. 4.3(b). Plainly rotation about the top axis produces no change in the polariz- 
ability, but end-over-end rotations will produce such a change. 

From Eq. (2.38) we have the energy levels: 

~hese l ea ion  rules for Raman spectra are: 

AK=O 

A J  = 0, &I,  f 2 (except for K = 0 states (4.12) 

when A J  = f 2  only) 

K, it will be remembered, is the rotational quantum number for axial rotation, so the 
selection rule AK = 0 implies that changes in the angular momentum about the top axis will 
not give rise to a Raman spectrum-such rotations are, as mentioned previously, Raman 
inactive. The restriction of A J  to It2 for K = 0 states means effectively that A J  cannot be f 1 
for transitions involving the ground state ( J  = 0) since K = f J, f ( J  - l ) ,  . . . , 0. Thus for all J 
values other than zero, K also may be different from zero and A J  = It1 transitions are allowed. 

Restricting ourselves, as before, to positive A J  we have the two cases: 

1. A J  = + I  (R branch lines) 

= EJ'=J+~ - EJN=J 
(4.13~) 

= 2B(J + 1) cm-I ( J  = I ,  2, 3, . . . (but J # 0)) 

2. A J  = +2 ( S  branch lines) 

Thus we shall have two series of lines in the Raman spectrum: 

These series are sketched separately in Fig. 4.5(a) and (b), where each line is labelled with its 
corresponding lower J value. In the R branch, lines appear at 4B, 6B, 8B, 10B, . . . cm-' from 
the exciting line, while the S branch series occurs at 6B, 10B, 14B, . . . cm-'. The complete 
spectrum, shown in Fig. 4.5(c) illustrates how every alternate R line is overlapped by an S  line. 
Thus a marked intensity alternation is to be expected which, it should be noted, is not connected 
with nuclear spin statistics. 

4.2.3 Spherical Top Molecules: Asymmetric Top Molecules 

Examples of spherical top molecules are those with tetrahedral symmetry such as methane, CH4, 
or silane, SiH4. The polarizability ellipsoid for such molecules is a spherical surface and it is 
evident that rotation of this ellipsoid will produce no change in polarizability. Therefore the 
pure rotations of spherical top molecules are completely inactive in the Raman. 
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(a) R branch 

9 8 7 6 5 4 3 2 1 0  ' 
( h )  S  branch 

R R R R R R R R R R R K R R R R  v:, R R R R R R R R R R R R R R R R  
S S S S S S S S S S  S S S S S S S S S S  

( c )  Complete spectrum 

Figure 4.5 The rotational Raman spectrum of a symmetric top molecule. The R and S branch lines are shown 
separately in (a) and (h ) ,  respectively, with the total spectrum in (c ) .  

Normally all rotations of asymmetric top molecules, on the other hand, are Raman active. 
Their Raman spectra are thus quite complicated and will not be dealt with in detail here; it 
suffices to say that, as in the microwave region, the spectra may often be interpreted by 
considering the molecule as intermediate between the oblate and prolate types of symmetric top. 

4.3 VIBRATIONAL RAMAN SPECTRA 

4.3.1 Raman Activity of Vibrations 

If a molecule has little or no symmetry it is a very straightforward matter to decide whether its 
vibrational modes will be Raman active or inactive: in fact, it is usually correct to assume that 
all its modes are Raman active. However, when the molecule has considerable symmetry it is not 
always easy to make the decision, since it is sometimes not clear, without detailed consideration, 
whether or not the polarizability changes during the vibration. 



We consider first the simple asymmetric top molecule H 2 0  whose polarizability ellipsoid 
was shown in Fig. 4.2. In Fig. 4.6 we illustrate in (a), (b), and (c), respectively, the three 
fundamental modes v , ,  vz, and v3, sketching for each mode the equilibrium configuration in 
the centre with the extreme positions to right and left. The approximate shapes of the corre- 
sponding polarizability ellipsoids are also shown. 

During the symmetric stretch, in Fig. 4.6(a), the molecule as a whole increases and decreases 
in size; when a bond is stretched, the electrons forming it are less firmly held by the nuclei and so 
the bond becomes more polarizable. Thus the polarizability ellipsoid of H 2 0  may be expected to 
decrease in size while the bonds stretch, and to increase while they compress, but to maintain an 

@ A % @ &  0' I & 

(a) v , ,  symmetric stretching mode 

(b) v,, bending mode 

(c) v3 ,  asymmetric stretching mode 

Figure 4.6 The change in size, shape, or direction of the polarizability ellipsoid of the water molecule during each of 
its three vibrational modes. The centre column shows the equilibrium position of the molecule, while to right and left 
are the (exaggerated) extremes of each vibration. 
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approximately constant shape. On the other hand, while undergoing the bending motion, in Fig. 
4.6(b), it is the shape of the ellipsoid which changes most; thus if we imagine vibrations of very 
large amplitude, at one extreme (on the left) the molecule approaches the linear configuration 
with a horizontal axis, while at the other extreme (on the right) it approximates to a diatomic 
molecule (if the two H atoms are almost coincidental) with a vertical axis. Finally in Fig. 4.6(c) 
we have the asymmetric stretching motion, v3, where both the size and shape remain approxi- 
mately constant, but the direction of the major axis changes markedly. Thus all three vibrations 
involve obvious changes in at least one aspect of the polarizability ellipsoid, and all are Raman 
active. 

Now consider the linear triatomic molecule COz, whose three fundamental vibrational 
modes have been shown in Fig. 3.1 1; in the first three columns of Fig. 4.7 we illustrate the 
extreme and equilibrium configurations of the molecule and their approximate polarizability 
ellipsoids. The question of the Raman behaviour of the symmetric stretching mode, vl, is easily 
decidedauring the motion the molecule changes size, and so there is a corresponding fluctua- 
tion in the size of the ellipsoid; the motion is thus Raman active. It might be thought that the vz 
and v3 vibrations are also Raman active, because the molecule changes shape during each 
vibration and hence, presumably, so does the ellipsoid; however, both these modes are observed 
to be Raman inactive. We must, then, consider this example rather more carefully. 

To do this it is usual to discuss the change of polarizability with some displacement 
coordinate, normally given the symbol J. Thus for a stretching motion, J is a measure of the 
extension (positive J) or compression (negative J) of the bond under consideration, while for a 
bending mode, J measures the displacement of the bond angle from its equilibrium value, 
positive and negative J referring to opposite displacement directions. 

Consider, as an example, the v l  stretch of carbon dioxide sketched in Fig. 4.7(a). If the 
equilibrium value of the polarizability is cro (second picture) then, when the bonds stretch (5 
positive), a increases (remember that the extent of the ellipsoid measures the reciprocal of a), 
while when the bonds contract (negative J) a decreases. Thus we can sketch the variation of a 
with 5 as shown on the right of Fig. 4.7. The details of the curve are not important since we are 
concerned only with small displacements; it is plain that near the equilibrium position ([ = 0) 
the curve has a distinct slope, that is da/dJ # 0 at J = 0. Thus for small displacements the 
motion produces a change in polarizability and is therefore Raman active. 

If we now consider the situation for v2, the bending motion of Fig. 4.7(b), we can count a 
downwards displacement of the oxygen atoms as negative J and an upwards displacement as 
positive. Although it is not clear from the diagrams whether the motion causes an increase or a 
decrease in polarizability (actually it is an increase) it is plain that the change is exactly the same 
for both positive and negative <. Thus we can plot cr against < on the right of Fig. 4.7(b) with, as 
before, a = a 0  at J = 0. Now for small displacements we evidently have da/dJ = 0 and hence 
for small displacements there is effectively no change in the polarizability and the motion is 
Raman inactive. 

Exactly the same argument applies to the asymmetric stretch, v3, shown in Fig. 4.7(c). Here 
the polarizability decreases equally for positive and negative J, so the plot of polarizability 
against < has the appearance shown. Again da/dJ = 0 for small displacements and the motion 
is Raman inactive. 

We could have followed the same reasoning for the three vibrations of water discussed 
previously. In each case we would have discovered that the a versus J curve has the general 
shape of Fig. 4.7(a) or its mirror image; in other words, in each case da/dJ # 0 and the motion 
is Raman active. In general, however, the slopes of the three curves would be different at [ = 0, 
that is da/dJ would have different values. Since we have seen that the Raman spectrum is 
forbidden for da/dJ = 0 but allowed for da /dJ  # 0 we can imagine that the 'degree of allow- 
edness' varies with dcr/d[. Thus if the polarizability curve has a large slope at J = 0 the Raman 
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(a) v l ,  symmetric stretching mode 

(b)  v2, bending mode 

(c) v ~ ,  asymmetric stretching mode 

Figure 4.7 The changes in the polarizability ellipsoid of carbon dioxide during its vibrations, and a graph showing 
the variation of the polarizability, a, with the displacement coordinate, t, during each vibration. 

line will be strong; if the slope is small it will be weak; and if zero, not allowed at all. From this 
stems the following very useful general rule: 

Symmetric vibrations give rise to intense Raman lines; non-symmetric ones are usually weak and 
sometimes unobservable. 

In particular, a bending motion usually yields only a very weak Raman line; e.g. the v2 

motion of H 2 0  (Fig. 4.6(b)), although allowed in the Raman, has not been observed, nor has v 3 ,  

for which da/d< is also small. 
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Table 4.1 Raman and infra-red activities of carbon 
dioxide 

Mode of vibration of COz Raman Infra-red 

vl : symmetric stretch Active Inactive 
vz  : bend Inactive Active 
v3 i asymmetric stretch Inactive Active 

4.3.2 Rule of Mutual Exclusion 

A further extremely important general rule has been established whose operation may be 
exemplified by carbon dioxide. We can summarize our conclusions about the Raman and 
infra-red activities of the fundamental vibrations of this molecule in Table 4.1, and we see 
that, for this molecule, no vibration is simultaneously active in both Raman and infra-red. 
The corresponding general rule is: 

Rule of mutual exclusion. I f  a molecule has a centre of symmetry then Raman active vibrations are 
infra-red inactive, and vice versa. If there is no centre of symmetry then some (but not necessarily all) 
vibrations may be both Raman and infra-red active. 

The converse of this rule is also true, i.e. the observance of Raman and infra-red spectra 
showing no common lines implies that the molecule has a centre of symmetry; but here caution 
is necessary since, as we have already seen, a vibration may be Raman active but too weak to be 
observed. However, if some vibrations are observed to give coincident Raman and infra-red 
absorptions it is certain that the molecule has no centre of symmetry. Thus extremely valuable 
structural information is obtainable by comparison of the Raman and infra-red spectra of a 
substance; we shall show examples of this in Sec. 4.5. 

4.3.3 Overtone and Combination Vibrations 

Without detailed consideration of the symmetry of a molecule and of its various modes of 
vibration, it is no easy matter to predict the activity, either in Raman or infra-red, of its 
overtone and combination modes. The nature of the problem can be seen by considering vl 
and v2 of carbon dioxide; the former is Raman active only, the latter infra-red active. What, 
then, of the activity of vl + v2? In fact it is only infra-red active, but this is not at all obvious 
merely from considering the dipole or polarizability changes during the motions. Again, when 
discussing Fermi resonance (Sec. 3.5.2) we chose as an example the resonance of v l  and 2 v 2  of 
carbon dioxide in the Raman effect. Thus 2 v 2  is Raman active although the fundamental v2 is 
only infra-red active. 

We shall not attempt here to discuss this matter further, being content to leave the reader 
with a warning that the activity or inactivity of a fundamental in a particular type of spectro- 
scopy does not necessarily imply corresponding behaviour of its overtones or combinations, 
particularly if the molecule has considerable symmetry. A more detailed discussion is to be 
found in Herzberg's book Infra-red and Raman Spectra and others mentioned in the biblio- 
graphy. 



4.3.4 Vibrational Raman Spectra 

The structure of vibrational Raman spectra is easily discussed. For every vibrational mode we 
can write an expression of the form: 

where, as before (cf. Eq. (3.12)), w, is the equilibrium vibrational frequency expressed in 
wavenumbers and x, is the anharmonicity constant. Such an expression is perfectly general, 
whatever the shape of the molecule or the nature of the vibration. Quite general, too, is the 
selection rule: 

which is the same for Raman as for infra-red spectroscopy, the probability of Av = 412, k3 ,  . . . 
decreasing rapidly. 

Particularizing, now, to Raman active modes, we can apply the selection rule (4.16) to the 
energy level expression (4.15) and obtain the transition energies (cf. Eq. (3.15)): 

Since the Raman scattered light is, in any case, of low intensity we can ignore completely all 
the weaker effects such as overtones and 'hot' bands, and restrict our discussion merely to the 
fundamentals. This is not to say that active overtones and hot bands cannot be observed, but 
they add little to the discussion here. 

We would expect Raman lines to appear at distances from the exciting line corresponding to 
each active fundamental vibration. In other words we can write: 

where the minus sign represents the Stokes' lines (i.e. for which the molecule has gained energy 
at the expense of the radiation) and the plus sign refers to the anti-Stokes' lines. The latter are 
often too weak to be observed, since as we saw earlier (cf. Sec. 3.1.3) very few of the molecules 
exist in the u = 1 state at normal temperatures. 

The vibrational Raman spectrum of a molecule is, then, basically simple. It will show a 
series of reasonably intense lines to the low-frequency side of the exciting line with a much 
weaker, mirror-image series on the high-frequency side. The separation of each line from the 
centre of the exciting line gives immediately the Raman active fundamental vibration frequen- 
cies of the molecule. 

As an example we illustrate the Raman spectrum of chloroform, CHC13, a symmetric top 
molecule (Fig. 4.8(a)). The exciting line in this case is the 488 nm argon ion laser line (at a power 
of 100 mW), and a wavenumber scale is drawn from this line as zero. Raman lines appear at 262, 
366,668, 761, 1216, and 3019 cm-' on the low-frequency (Stokes') side of the exciting line while 
the line at 262cm-' on the frequency (anti-Stokes') side is included for a comparison of its 
intensity. 

For comparison also we show at Fig. 4.8(b) the infra-red spectrum of the same molecule. 
The range of the instrument used precluded measurements below 600 cm-', but we see clearly 
that strong (and hence fundamental) lines appear in the spectrum at wavenumbers correspond- 
ing very precisely with those of lines in the Raman spectrum but with very different relative 
intensities. 



Figure 4.8 Comparison between ( a )  the Raman and ( b )  the infra-red spectra of chloroform, CHCI,, showing the 
coincidence of bands. (Thanks are due to Miss S. Coulthurst and Mr M .  Russell for ( a )  and to Mr J .  Camplin for 
( b ) ,  all of  the University of York.) 

For this molecule, cotaining five atoms, nine fundamental vibrations (that is 3N - 6) are to 
be expected. The molecule has considerable symmetry, however, and three of these vibrations 
are doubly degenerate (see Herzberg's Infra-red and Raman Spectra for details) leaving six 
different fundamental absorptions; we see that these are all active in both the infra-red and 
Raman. The immediate conclusion, not at all surprisingly, is that the molecule has no centre of 
symmetry. 



4.3.5 Rotational Fine Structure 

We need not consider in detail the rotational fine structure of Raman spectra in general, if only 
because such fine structure is rarely resolved, except in the case of diatomic molecules. For the 
latter we can write the vibration-rotation energy levels (cf. Eq. (3.18)) as: 

where, as before in Raman, we ignore centrifugal distortion. For diatomic molecules the J 
selection rule is A J =  0, k 2  (Sec. 2.1) and, combining this with the vibrational change 
u = O  -+ u = 1, we have:. 

A J  = 0: AEQ = Go cm-' (for all J )  (4.20) 

where we write % for Ge(l - 2x,) and use the subscripts 0, Q, and S to refer to the 0 branch 
lines (AJ  = -2), Q branch lines (AJ  = O), and S branch lines (AJ  = +2), respectively. 

Stokes' lines (i.e. lines to low frequency of the exciting radiation) will occur at wavenumbers 
given by: 

VQ = GX. - AE, = &,. - V, cm-' (for all J )  

Vo = %,. - Aeo = Vex.  - G + B(4J + 6) cm-' ( J  = 2, 3, 4, . . . ) 
Vs = i4,. - AES = ii,. - V, - B(4J+ 6) cm-' ( J  = 0, 1, 2, . . . ) 

The spectrum arising is sketched in Fig. 4.9 where, for completeness, the pure rotation lines in 
the immediate vicinity of the exciting line are also shown. The presence of the strong Q branch 
in the Raman spectrum is to be noted and compared with the P and R branches only which 
occur for a diatomic molecule in the infra-red (cf. the spectrum of carbon monoxide in Fig. 3.7). 
The analysis of the 0 and S branches in the Raman spectrum to give a value for B and hence for 
the moment of inertia and bond length is straightforward. 

Much weaker anti-Stokes' lines will occur at the same distance from, but to high frequency 
of, the exciting line. 

The resolution of Raman spectra is not sufficient to warrant the inclusion of finer details 
such as centrifugal distortion or the breakdown of the Born-Oppenheimer approximation which 
were discussed in Chapter 3 for the corresponding infra-red spectra. 

For larger molecules we can, in fact, ignore the rotational fine structure altogether since it is 
not resolved. Even the 0 and S (or 0, P, R, and 5') band contours are seldom observed since 
they are very weak compared with the Q branch. While some information is denied us in Raman 
spectra because of this, it does represent a considerable simplification of the overall appearance 
of such spectra. 

In Table 4.2 we collect together some of the information on bond lengths and vibration 
frequencies which have been obtained from vibrational-rotational Raman spectra. In the case of 
CS2 and CH4 the symmetrical stretching modes only are given since the wavenumbers of the 
other modes are determined from infra-red techniques. 



- Y o  b 

Rotation-vibration Pure rotation 

Figure 4.9 The pure rotation and the rotation-vibration spectrum of a diatomic molecule having a fundamental 
frequency of cm-I. Stokes' lines only are shown. 

Table 4.2 Some molecular data determined by Raman 
spectroscopy 

Bond length Vibration 
Molecule (nm) (cm-') 

H2 0.074 13 f 0.000 01 4395.2 
N2 0.109 76 f 0.000 01 2359.6 
F2 0.141 8 f 0.000 1 802.1 
cs2 0.155 3 f 0.000 5 656.6 (symmetrical stretch) 
CH4 0.109 4 f 0.000 1 2914.2 (symmetrical stretch) 

4.4 POLARIZATION OF LIGHT AND THE RAMAN EFFECT 

4.4.1 The Nature of Polarized Light 

It is well known that when a beam of light is passed through a Nicol prism or a piece of crystal 
filter (e.g. polaroid) the only light passing has its electric (or magnetic) vector confined to a 
particular plane; it is plane polarized light. Although superficially this light is indistinguishable 
from ordinary (or unpolarized) light, it has a very important property which can be demon- 
strated by using a second Nicol prism or crystal filter. When previously polarized light falls on 
the second polarizing device (now called the 'analyser') it will be passed with undiminished 
intensity only if the polarizing axes of the two prisms or crystal sheets are parallel to each other. 
At any other orientation of these axes the intensity passed will decrease until, when the axes are 
perpendicular, no light at all passes through the analyser. Thus the analyser serves both to detect 
polarized light and to determine its plane of polarization. 

If the light incident upon the analyser is only partially polarized-i.e. if the majority, but 
not all, of the rays have their electric vectors parallel to a given plane-then the light will not be 
completely extinguished at any orientation of the analyser; its intensity will merely go through a 



minimum when the analyser is perpendicular to the plane of maximum polarization. We could, 
then, measure the degree of polarization in terms of the intensity of light transmitted parallel 
and perpendicular to this plane; it is more convenient, however, to measure the degree of 
depolarization, p, as: 

where I l l  is the maximum and Il the minimum intensity passed by the analyser. Thus for 
completely plane polarized light I1  = 0 and hence the degree of depolarization is zero also; 
for completely unpolarized (i.e. ordinary) light, I,. = I l l  and p = 1. For intermediate degrees of 
polarization p lies between 0 and 1. 

The relevance of this to Raman spectroscopy is that lines in some Raman spectra are found 
to be plane polarized to different extents even though the exciting radiation is completely 
depolarized. The reason for this is most easily seen if we consider the vibrations of spherical 
top molecules. 

4.4.2 Vibrations of Spherical Top Molecules 

The tetrahedral molecule methane, CH4, is a good example of a spherical top and we can see, 
from Fig. 4.10, that its polarizability ellipsoid is spherical. During the vibration known as the 
symmetric stretch all four C-H distances increase and diminish in phase so that the polariz- 
ability ellipsoid contracts and expands but remains spherical. For this reason the motion is often 
referred to as the 'breathing frequency'; it is plainly Raman active. 

Let us now consider a beam of unpolarized radiation falling on this molecule, and let us 
designate the direction of this exciting radiation as the z axis. Since all diameters of a sphere are 
equal the molecule is equally polarizable in all directions; hence the induced dipole in the 
molecule will lie along the direction of greatest electric vector in the exciting radiation, i.e. 
perpendicular to the direction of propagation. Thus the induced dipole will lie in the xy 
plane whatever the plane of the incident radiation. This behaviour is illustrated in Fig. 4.1 1, 
where we show an incident beam with its electric vector in the vertical (zy) plane (Fig. 4.1 l (a))  
and some other plane making an angle a with the horizontal (Fig. 4.1 l(b)). In both cases the 
induced dipole is in the xy plane. A non-polarized incident beam will contain components 
having all values a. 

To an observer studying the scattered radiation at right angles to the incident beam, i.e. 
along the x axis, the oscillating dipole emitting the radiation is confined to the xy plane-the 
radiation is plane polarized. When the molecule undergoes the breathing vibration, the polariz- 
ability ellipsoid remains spherical and the dipole change remains in the xy plane. Thus for this 
vibration the Raman line will be completely plane polarized, and p = 0, quite irrespective of the 
nature of the exciting radiation. 

Figure 4.10 The tetrahedral structure of methane. CH4, and the spherical polarizability ellipsoid of the molecule. 



118 FUNDAMENTALS OF MOLECULAR SPECTROSCOPY 

Figure 4.11 To illustrate the plane polarization of Raman scattering from the symmetric vibration ('breathing 
vibration') of a spherical top molecule. 

Now consider a less symmetric vibration of this molecule, e.g. the asymmetric stretching 
mode where one C-H bond stretches while the other three contract, and vice versa. During 
this vibration the polarizability surface loses its spherical symmetry and becomes ellipsoid at the 
extremes of the vibration. When exciting radiation interacts with the molecule the induced 
dipole moment will be greatest along the direction of easiest polarizability, i.e. along one of 
the minor axes of the ellipsoid. In a sample of molecules these axes will be oriented in random 
directions to the incident radiation, so now, because of the lack of spherical symmetry in the 
vibration, the induced dipole will be randomly oriented and the observed Raman line will be 
depolarized. 

Thus we have immediately a method of assigning some observed Raman lines to their 
appropriate molecular vibrations-in the case of methane the totally symmetric vibration 
gives rise to a completely polarized Raman line whereas the non-symmetric vibrations give 
depolarized lines. The degree of polarization of spectral lines can be readily estimated by noting 
how the intensity of each line varies when a piece of polaroid or other analyser is put into the 
scattered radiation firstly with its polarizing axis parallel to the xy plane (where z is defined by 
the direction of the incident beam) and secondly perpendicular to this plane. 

4.4.3 Extension to Other Types of Molecule 

Precise calculation, rather than the somewhatgictorial argument used above, shows that Raman 
scattering may be to some extent polarized when emitted by molecules with less symmetry than 
the tetrahedral ones. In general it can be stated that a completely symmetric vibi-ation gives rise 
to a polarized or partially polarized Raman line while a non-symmetric vibration gives a 
depolarized line. Theoretically, if the degree of depolarization, p, is less than when laser 
excitation is used, then the vibration concerned is symmetric and the Raman line is described 
as 'polarized', while if p > the line is 'depolarized' and the corresponding vibration non- 
symmetric. If we can speak loosely of molecules with increasing symmetry-e.g. linear mole- 
cules are less symmetric than symmetric tops which, in turn, are less symmetric than spherical 
tops-then the higher the molecular symmetry the smaller will be the degree of depolarization of 
the Raman line for a symmetrical vibration. 

We can see the usefulness of polarization measurements by considering a simple example. 
The molecule nitrous oxide has the formula N20.  Knowing nothing about the structure of this 
molecule we might turn for help to its infra-red and Raman spectra. The strongest lines in these 



Table 4.3 Infra-red and Raman spectra of nitrous oxide 

V (cm-') Infra-red Raman 

589 Strong; PQR contour - 

1285 Very strong; PR contour Very strong; polarized 
2224 Very strong; PR contour Strong: depolarized 

spectra are collected in Table 4.3 together with their band contours (infra-red) and state of 
polarization (Raman). 

The data tell us immediately that the molecule has no centre of symmetry (Raman and 
infra-red lines occur at the same wavenumber) and so the structure is not N-0-N. The fact 
that some infra-red bands have PR contour indicates that the molecule is linear, however, so we 
are led to the conclusion that the structure is N-N-0. Such a molecule should have 
3N - 5 = 4 fundamental modes but two of these (the bending modes) will be degenerate; all 
three different fundamental frequencies should be both infra-red and Raman active but we note 
that the perpendicular infra-red band (plainly to be associated with the bending mode) does not 
appear in the Raman. This accords with expectations-bending modes are often weak and even 
unobservable in the Raman. 

We are left with the assignment of the 1285 and 2224cm-' bands to the symmetric and 
asymmetric stretching modes. Both infra-red bands have the same PR (parallel) contour, but we 
note that only the 1285cm-I is strongly Raman polarized. This, then, we assign to the sym- 
metric mode, leaving the 2224cm-' band as the asymmetric. 

The analysis would not normally rest there. The overtone and combination bands would 
also be studied to ensure that their activities and contours are in agreement with the molecular 
model proposed; the fine structure of the infra-red bands also supports the structure; and finally 
isotopic substitution leads to changes in vibrational frequencies in excellent agreement with the 
model and assignments. 

In this rather simple case polarization data were hardly essential to the analysis, but 
certainly useful. In more complicated molecules it can give very valuable information indeed, 
particularly for the identification of completely symmetrical vibrations. 

4.5 STRUCTURE DETERMINATION FROM RAMAN AND INFRA-RED 
SPECTROSCOPY 

In this section we shall discuss some examples of the combined use of Raman and infra-red 
spectroscopy to determine the shape of some simple molecules. The discussion must necessarily 
be limited and the molecules considered (C02, N20,  SO2, NO,-, C103-, and ClF3) have been 
chosen to illustrate the principles used; extension to other molecular types should be obvious. 

Dealing first with the triatomic AB2 molecules, the questions to be decided are whether each 
molecule is linear or not and, if linear, whether it is symmetrical (B- A- B) or asymmetrical 
(B- B- A).  In the case of carbon dioxide and nitrous oxide, both molecules give rise to some 
infra-red bands with PR contours; they must, therefore, be linear. The mutual exclusion rule (cf. 
Sec. 4.3.2) shows that C 0 2  has a centre of symmetry (0 - C - 0 )  while N 2 0  has not (N - N - 
0), since only the latter has bands common to both its infra-red and Raman spectra. Thus the 
structures of these molecules are completely determined. 

The infra-red and Raman absorptions of SO2 are collected in Table 4.4. We see immediately 
that the molecule has no centre of symmetry, since all three fundamentals are both Raman and 
infra-red active. In the infra-red all three bands show very complicated rotational fine structure, 
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Table 4.4 Infra-red and Raman bands of sulphur dioxide 

Wavenumber Infra-red contours Raman 

ll type band Polarized 
1 type band Polarized 
I type band Depolarized 

and it is evident that the molecule is non-linear-no band shows the simple PR structure of, say, 
carbon dioxide. the molecule, has, then, the bent shape. 

The AB3 type molecules require rather more discussion. In general we would expect 
3N - 6 = 6 fundamental vibrations for these four-atomic molecules. However, if the molecular 
shape has some symmetry this number will be reduced by degeneracy. In particular, for the 
symmetric planar and symmetric pyramidal shapes, one stretching mode and one angle defor- 
mation mode are each doubly degenerate and so only four different fundamental frequencies 
should be observed. These are sketched in Table 4.5 where their various activities and band 
contours or polarizations are also collected. Both molecular shapes are in fact symmetric tops 
with the main (threefold) axis passing through atom A perpendicular to the B3 plane. It is with 
respect to this axis that the vibrations can be described as 1 1  or I. The symmetric modes of 

Table 4.5 Activities of vibrations of planar and pyramidal AB3 molecules 
-- 

Activity 
Symmetric ( R  = Raman, 
planar I = infra-red) Vibration 

Activity 
(R = Raman, 

Pyramidal I = infra-red) 

( @ = upwards 
8 = downwards) 

R: active (pol.) " I  

strong symmetric 
I: inactive stretch 

R: inactive V 2  

I: active l l  out-of-plane 
symmetric 
deformation 

R: active (depol.) v3 

weak asymmetric 
I: active I stretch 

R: active (depol.) vd 

weak asymmetric 
I: active I deformation 

t 
A R: active (pol.) 

B ' ~ \ B ~  strong 
h! + I: active 1 1  

f R: active (pol.) 
medium 

Kg' h\*n 
B 

I: active 1 1  

A R: active (depol.) 
B';\B= weak 

+ I: active I 

A 
u / I \  R: active (depol.) 

B B weak 
Bx+ I: active I 
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Table 4.6 Infra-red and Raman spectra of NO3- and C103- 

Nitrate ion (NO3-) Chlorate ion (C103-) 

Raman Infra-red Raman Infra-red 
(cm-' ) (cm- ' ) Assignment (cm-' ) (cm-l) Assignment 

690 (depol.) 680 1 v4 450 (depol.) 434 1 v4 
- 830 I 1  v2 610 (pol.) 624 I I ~2 

1049 (pol.) - V I  940 (depol.) 950 1 v3 

1355 (depol.) 1350 1 v3 982 (pol.) 994 I I V I  

vibration are parallel and Raman polarized while the asymmetric are perpendicular and depo- 
larized. All the vibrations of the pyramidal molecule change both the dipole moment and the 
polarizability; hence all are both infra-red and Raman active. The symmetric stretching mode 
(vl) of the planar molecule, however, leaves the dipole moment unchanged (it remains zero 
throughout) and so is infra-red inactive, while the symmetric bending mode does not change the 
polarizability (cf. the discussion of the bending mode of C 0 2  in Sec. 4.3.1) and so v2 is Raman 
inactive for planar AB3. 

The overall pattern of the spectra, then, should be as follows: 

Planar A B3 : 1 vibration Raman active only (vl) 
1 infra-red active only (v2) 
2 vibrations both Raman and infra-red active (v3, v4). 

Pyramidal AB3: All four vibrations both Raman and infra-red active. 
Non-symmetric AB3: Possibly more than four different fundamental frequencies. 

With this pattern in mind we can consider the spectra of N O ,  and C l O ,  ions. The 
spectroscopic data are summarized in Table 4.6. Without considering any assignment of the 
various absorption bands to particular vibrations, we can see immediately that the nitrate ion 
fits the expected pattern for a planar system, while the chlorate ion is pyramidal. Detailed 
assignments follow by comparison with Table 4.5. Thus for the nitrate ion, the band which is 
Raman active only is obviously vl while that which appears only in the infra-red is v2. If we 
make the very reasonable assumption that stretching frequencies are larger than bending, then 
the assignment of v3 and v4 is self-evident. This same assumption, coupled with polarization and 
band contour data, gives the assignment shown in the table for the chlorate ion. 

Finally we consider the spectroscopic data for ClF3. This is found to have no less than six 
strong (and hence fundamental) infra-red absorptions, some of which also occur in the Raman. 
We know immediately, then, that the molecule is neither symmetric planar nor pyramidal. A 
complete analysis is not possible from the Raman and infra-red spectra alone, but the use of 
microwave spectroscopy shows that the molecule is T-shaped with bond angles of nearly 90". 

4.6 TECHNIQUES AND INSTRUMENTATION 

The invention of the laser and its subsequent use as a source for Raman spectrometers revolu- 
tionized that technique. Previously, Raman measurements were taken with a mercury arc as the 
exciting source, but, because Raman is an inherently weak process, these sources were not 
intense enough for routine use, many hours sometimes being necessary to record a single 
spectrum. 
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The laser is almost ideal as a source for Raman experiments; it gives a very narrow, highly 
monochromatic, coherent beam, which can be focused very finely into a small sample. In 
addition, lasers can be extremely powerful, ranging from milliwatts to several watts, concen- 
trated into a small energy spread. The rare gas lasers ( ~ r + ,  ~ r + ,  etc.), which are most com- 
monly used for Raman measurements, can provide intensities as great as one million times that 
of sunlight. 

Figure 4.12 illustrates a typical Raman spectrometer. The laser beam is passed through a 
cell, usually a narrow glass or quartz tube filled with the sample. Light scattered sideways from 
the sample is collected by a lens and passed into a grating monochromator similar to that used 
in a dispersive infra-red instrument. The signal is measured by a sensitive photomultiplier and, 
after amplification, it is usually processed by a computer which plots the Raman spectrum. 

As we have seen in Sec. 4.4, the use of plane polarized radiation gives information about the 
symmetries of molecular vibrations. To make these measurements, the laser beam in Fig. 4.12 is 
plane polarized perpendicularly to the plane of the paper, and a polarizing filter is placed 
between the sample and the collecting lens. The Raman spectrum is then measured twice, 
first with the polarizing filter set to pass light polarized perpendicularly to the paper, and 
then at right angles to this. The ratio of the two signals for each Raman line is a measure of 
the degree of polarization of that line. 

For vibrational measurements the Raman technique has several advantages over infra-red. 
Firstly, because both the incident and scattered radiation are at ultra-violet or visible frequen- 
cies, conventional optics and sample cells (glass, quartz, etc.) can be used, so avoiding the 
problems inherent in NaCl windows, atmospheric absorption, etc. Secondly, because the 
beam can be focused extremely finely (diameters as small as 0.1 nm are possible), very small 
samples can be studied. This, combined with pulsed techniques which can give very short time 
resolutions, enables very small quantities of transient species to be studied. Thirdly, water, 
which has strong infra-red absorptions, is a rather weak Raman scatterer and so aqueous 
solutions can be studied using Raman, because the sample signal is not swamped by that of 
the solvent. 

Monochromator 

Figure 4.12 Schematic diagram of a Raman spectrometer. 



These reasons collectively ensure that Raman spectroscopy is particularly well suited to the 
study of biological systems. As an example, the Raman spectrum of myoglobin, which is 
essentially a protein chain surrounding a single iron atom, is shown in Fig. 4.13(a). The 
spectrum, which was obtained using less than 1 mg of myoglobin, shows that a number of 
Raman modes are allowed, due mainly to the protein chain. The iron in myoglobin can bind 
reversibly to gas molecules, such as oxygen and carbon dioxide, and more firmly to carbon 
monoxide (it is in this way that the molecule assists the transport of gases to muscle in the body 

( a )  Frequency (cm-') 

Figure 4.13 (a) The Raman spectrum of myoglobin. (h)  Detail of the ironxarbon stretching region for 
carboxymyglobin. (Thanks are due to Dr D .  Birani,for spectruni ( a ) ;  ( h i  is rc~~iral~~r~,fi .oril  R. E. Hc,stw. Proceedings 
of 13th International Conference on Raman Spectroscopy, Joht~ Wile!., 1992, pp. 12-16.) 



and can be so easily poisoned with carbon monoxide). Figure 4.13(b) shows, in more detail, the 
iron-carbon stretching frequency region of the Raman spectrum of carbon monoxide bound to 
myoglobin (carboxymyoglobin). Here the full curve is the (smoothed) Raman spectrum, while 
the dashed curves show the result of using a computer to resolve the spectrum into its compo- 
nent lines. Clearly the spectrum reveals several peaks in this region, which indicates that carbon 
monoxide takes up slightly different configurations in different myoglobin molecules. The 
relative intensities of the component peaks vary for carboxymyoglobin formed from myoglobin 
taken from different animal species. 

In addition to liquids and solutions, Raman spectra can be obtained from gas and solid 
samples. In the case of gases, multiple reflection techniques are sometimes adopted, where the 
laser beam is reflected several times back and forth through the sample, in order to enhance the 
signals. 

One major problem with some Raman samples-particularly if they are coloured-is that 
the heat generated by the intense, focused laser beam may cause decomposition. If the sample 
has an ultra-violet or visible absorption peak at about the same frequency as the incident laser, 
rapid heating will certainly occur, which can best be overcome by using a different laser. A more 
general way to reduce sample heating, however, is to spin the sample so that no single spot is 
continuously irradiated by the laser. 

Another problem which sometimes arises is that of sample fluorescence. Fluorescence 
occurs when an electronically excited molecule decays back to the ground state sponta- 
neously, emitting radiation at a frequency characteristic of the transition between the excited 
and ground states (see Chapter 6, Sec. 6.3). Such radiation can totally swamp the weak Raman 
signal. If it results from defects and/or impurities in solid samples, prolonged exposure to the 
laser beam can sometimes burn out the impurity, provided this treatment does not also destroy 
the sample. Where the latter may occur, or where the fluorescence is intrinsic to the sample, the 
simplest approach is to record spectra using a different exciting frequency. The incident beam 
and Raman signals shift by the same amount, while the fluorescence remains in its original 
position. Alternatively, pulsed laser excitation and time-gated detection can be used, which can 
discriminate between the slower fluorescence and the fast spontaneous Raman emission. 
Finally, a 'quenching agent' can be added to liquids or solutions which allows the excited 
molecule to decay via a pathway involving the quenching molecule instead of by emission of 
radiation. However, more recently the development of FT-Raman spectroscopy using near-IR 
lasers (see the next section) has greatly helped to overcome fluorescence problems. 

Computer averaging of multiple scans is commonly used to improve the signal-to-noise 
ratio, while other developments such as multi-channel detection (effectively an array of signal 
detectors, each sensing a different small part of the frequency range of the scattered radiation) 
can also be used to increase the sensitivity of the experiment. 

4.7 NEAR-INFRA-RED FT-RAMAN SPECTROSCOPY 

For a given energy of the laser beam, the strength of Raman scattering depends on (frequency14, 
and it was for this reason that lasers in the high-frequency, visible end of the spectrum were 
formerly used. More recently, however, near-infra-red laser excitation has been successful, 
usually using an NdYAG laser operating at 9398 cm-' . Raman scattering is inherently weaker 
at this lower frequency, and less sensitive indium gallium arsenide (InGaAs) or germanium 
detectors have to be used, but the application of FT methods, already well developed in the 
infra-red region, can restore the lost sensitivity. An added economy is that, once the optical path 
of the FT spectrometer has been properly aligned, it is a fairly simple matter to interchange 
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Figure 4.14 FT-Raman spectrum of powdered CnO. (Reproduced with permission from P.  J .  Hendra, J .  of Molecular 
Structure, 266, 97-114, 1992.) 

sources, beam splitters and detectors, and a single FT instrument can thus be operated either as 
an infra-red spectrometer or as a Raman spectrometer. 

Another advantage of near-infra-red FT-Raman work is that it is less prone to sample 
heating and sample fluorescence because samples have few absorptions bands in the near-infra- 
red region. As a result excellent spectra can be obtained from even highly coloured materials. 
Two disadvantages are that samples heated above 200 "C give a background of thermal emission 
in this region and that water is no longer a useful solvent, since it has absorption bands from 
overtones of the -OH stretching fundamentals. 

Figure 4.14 shows the near-infra-red FT-Raman spectrum of the highly coloured com- 
pound buckminster fullerene (C6& this is the spherical allotrope of carbon, which looks rather 
like a football. The molecule has 174 normal vibrational modes but, because of its high 
symmetry, many of them are multiply degenerate or forbidden, resulting in this remarkably 
simple Raman spectrum. 
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PROBLEMS 

(Useful constants: h = 6.626 x J S; c = 2.998 x lo8 m s-I; 87$ = 78.957; 
mass of H atom = 1.673 x kg.) 

4.1 (a) What is meant by the term polarizability? 
(b) State the selection rules for Raman scattering. 
(c) What technological advances have enabled the routine use of Raman spectroscopy? 

4.2 With which type of spectroscopy would one observe the pure rotation spectrum of HZ? If the bond 
length of H2 is 0.074 17 nm, what would be the spacing of the lines in the spectrum? 

4.3 The spin of the hydrogen nucleus is f; does this make any difference to your answer to Prob. 4.2? 

4.4 Which type of vibrational spectroscopy (IR or Raman) would you use to measure the vibrational 
frequency of the following bonds: 

The stretching frequency of 1 4 ~ -  "N 
The C-C stretch in ethyne, H C G C H  
The C = O  stretch in acetone, CH3.C0.CH3 
The Re-Re stretch of the inorganic cluster compound, (CO)SRe-Re(C0)5 

4.5 The Re-Re vibration of (CO)SRe-Re(CO)5 is observed at 122cm-', while that of the Re2Clsz- 
ion occurs at 275 cm-'. Without calculating separate force constants, calculate the ratio of the Re-Re 
bond force constants of the two molecules. Use your result to comment on the bond orders in the two 
species. (Note: Here, as frequently, it is a sufficiently good approximation to treat the vibration of the 
heavy Re atoms as being independent of the rest of the molecule.) 

4.6 A molecule A2B2 has infra-red absorptions and Raman spectral lines as in the following table: 

cm-' Infra-red Raman 

3374 - Strong 
3287 Very strong; PR contour - 

1973 - Very strong 
729 Very strong; PQR contour - 

612 - Weak 

Deduce what you can about the structure of the molecule and assign the observed vibrations to particular 
molecular modes as far as possible. 

Hint: Use data from Table 3.4 to help with your answer. 

4.7 A molecule AB2 has the following infra-red and Raman spectra: 

cm-I Infra-red Raman 

3756 Very strong; perpendicular - 

3652 Strong; parallel Strong; polarized 
1595 Very strong; parallel - 

The rotational fine structure of the infra-red bands is complex and does not show simple PR or PQR 
characteristics. Comment on the molecular structure, and assign the observed lines to specific molecular 
vibrations as far as possible. 

4.8 Both N 2 0  and NO2 exhibit three different fundamental vibrational frequencies, and for the two 
molecules some modes are observed in both the infra-red and the Raman. The bands in N 2 0  show only 
simple PR structure (no Q branches) while those in NOz show complex rotational structure. What can be 
deduced about the structure of each molecule? 



CHAPTER 

FIVE 
ELECTRONIC SPECTROSCOPY OF ATOMS 

5.1 THE STRUCTURE OF ATOMS 

5.1.1 Electronic Wave Functions 

It is well known that an atom consists of a central, positively charged nucleus, which contributes 
nearly all the mass to the system, surrounded by negatively charged electrons in sufficient 
number to balance the nuclear charge. Hydrogen, the smallest and simplest atom, has a nuclear 
charge of + 1 units (where the unit is the electronic charge 1.60 x 10-19 coulomb) and one 
electron; each succeeding atom increases the nuclear charge and electron total by unity, up to 
atoms with 100 or more electrons. 

Modern theories have long ceased to regard the electron as a particle which obeys the laws 
of classical mechanics applicable to massive, everyday objects; instead, in common with all 
entities of subatomic size, we consider that it obeys the laws of quantum mechanics (or wave 
mechanics) as embodied in the Schrodinger wave equation. In principle, this equation may be 
used to determine many things: e.g. the way in which electrons group themselves about a 
nucleus when forming an atom, the energy which each electron may have, the way in which 
it can undergo transitions between energy states, etc. In practice the application of the 
Schrodinger equation to these problems presents difficulties which can only be overcome in 
the case of the simplest atoms or by the use of gross approximations. Here, however, we shall be 
concerned only with the results obtained-and then only in qualitative terms-rather than the 
mathematical theory of the process. 

The Schrodinger theory can be used to predict the probability of an electron with a parti- 
cular energy being at a particular point in space, and it expresses this probability in terms of a 
very important algebraic expression called the wave function of the electron. The wave function 
is given the Greek symbol $. Quite simply, the probability of finding an electron, whose wave 
function is $I, within unit volume at a given point in space, is proportional to the value of $? at 
that point. 

Relative probability density = $2 (5.1) 



Let us see what this means. Electronic wave functions consist of three elements: (1) some 
fundamental physical constants (n, h, c, m ,  e,  etc.-where m and e are the mass and charge, 
respectively, of the electron); (2) parameters peculiar to the system under discussion-e.g. for 
atoms, distance from the nucleus, either radially (r)  or along some coordinate axes (x, y, z); and 
(3) one or more quantum numbers. These latter are by no means arbitrarily introduced into the 
problem in order to make the predictions match experiment; they belong to the solution of the 
Schrodinger equation in the sense that $ represents a sensible physical situation only i f  the 
quantum numbers have certain values. 

As an example we may quote here the expression for a set of wave functions, $,, which are 
solutions to the Schrodinger equation for the hydrogen atom: 

where a0 = h2/4$me2, r is radial distance from the nucleus, f (r /ao)  is a power series of degree 
(n  - 1) in r/ao, and n is the principal quantum number, which can have only integral values, 1, 2, 
3, . . . , m. The constant a0 has dimensions of length (and is, in fact, about 53 nm) and so the 
quantity r/ao is a pure number. Thus for particular values of r and n, $, and $2 are also simply 
numbers, and $: represents the probability of finding the electron at our chosen distance r from 
the nucleus when it is in the state represented by the given n value. 

It is found that the electronic wave functions of all atoms require the introduction of only 
four quantum numbers. We shall describe these briefly here, leaving a more thorough discussion 
to later sections. 

5.1.2 The Shape of Atomic Orbitals; Atomic Quantum Numbers 

Table 5.1 lists the four quantum numbers, gives the allowed values of each, and states what is 
the function of each. The principal quantum number, as stated earlier, can take integral values 
from one to infinity. It governs the energy of the electron mainly (although we shall see later that 
the other quantum numbers also affect this energy to some extent). The table shows that n also 
governs the size of the electronic orbital; this latter is a term used to represent the space within 
which an electron can move according to the Schrodinger theory-it corresponds approximately 
to the earlier idea of Bohr that electrons move in circular or elliptical orbits like planets round a 
sun. Energy and size of the orbital are connected in that the smaller the orbital the closer to the 
nucleus the electron will be and hence the more firmly bound. 

The orbital (or azimuthal) quantum number 1 also has integral values only, but these must be 
less than n. Thus for n = 3, 1 can be 2, 1, or 0. It governs the shape of the orbital (cf. Fig. 5.1) 
and the angular momentum of the electron as it circulates about the nucleus in its orbital. 

Table 5.1 The atomic quantum numbers 

Quantum No. Allowed values Function 

Principal, n I ,  2, 3 , .  . . 

Orbital, I ( ) I -  I) , ( t1-2) .  . . . .  0 

Magnetic. IN &I.+(/-  I ) .  . . . ,  0 

Governs the energy and size of the orbital 

Governs the shape of the orbital and the electronic 
angular momentum 

Governs the direction of an orbital and the 
electrons behaviour in a magnetic field 

Spin, s + i Governs the axial angular momentum of the 
electron 



Figure 5.1 Some electronic orbitals which may be occupied by the electron in a hydrogen atom. 

The magnetic quantum number m takes integral values which depend on I. Thus for 1 = 2, m 
can be + 2, + 1, 0, - 1, or -2; in general there are 21 + 1 values of m .  Besides denoting the 
behaviour of electrons in orbitals when the atom is placed in a magnetic field, the m quantum 
number can also be used to specify the direction of a particular orbital. 

The spin quantum number s is of magntitude + only (but cf. Sec. 5.2.2). It measures the spin 
angular momentum which the electron possesses whether it is present in an atom or in free 
space. 

Since wave functions represent only a probability distribution of an electron it is difficult to 
define precisely the shape and size of an orbital. From Eq. (5.2) we see that even at very large 
values of r ,  $, (and hence $:) still has a value, even though small. Thus an orbital tails off to 
intinity (although, because of the smallness of ao, 'infinity' on the atomic scale might be taken as 

or cm) in all directions. However, the difficulty can be overcome if we agree to draw a 
three-dimensional shape within which the electron spends, say, 95 per cent or some other 
fraction of its time. This can be taken as the effective boundary of the electron's domain and 
it can be called the orbital. 

Considering still the wave function of Eq. (5.2) we see that the corresponding orbital must 
be spherical, for at any given distance r from the nucleus $,, has the same value irrespective of 
direction. Thus the 95 per cent boundary will be spherical. For larger n the function tails off less 
rapidly with distance and so the electron can spend proportionately more of its time further 
from the nucleus; thus the 95 per cent sphere will increase in size with n. We have drawn the 
cases n = 1, 2, and 3 at the top of Fig. 5.1. These spherical orbitals, it so happens, are associated 



with an I value of zero (and hence m = 0) and they are referred to as s orbitals. (Although it is 
perhaps helpful to connect s with 'spherical'-in fact the label arose historically because of the 
alleged particular sharpness of spectral lines arising from transition of electrons occupying s 
orbitals-the connection which should be remembered is between s orbitals and I = 0.) The s 
orbitals are labelled according to their n quantum numbers: Is, 2s, . . . , ns. 

Orbitals with 1 = 1 (and hence n > 2) also arise as solutions to the Schrodinger equation for 
the hydrogen atom. These are twin-lobed and have the approximate shape shown for n = 2 in 
the lower half of Fig. 5.1. Orbitals with n = 3, 1 = 1 are larger but have the same shape. Such 
orbitals are labelled p (historically their transitions were thought to be 'principal') and we see 
that, for a given n, there are three of them, one along each coordinate axis. They can be 
distinguished as np,, np,, and np,, if necessary. The fact that there are three of them is con- 
nected with the three values of m, m = + 1 ,  0, and - 1, allowed for I = 1 states. It is conventional 
to associate the value m = 0 with the np, orbitals but, for good physical reasons which lie 
outside the scope of this book, it is not then possible to associate the other m values with 
either np, or np,. Other representations of these orbitals can be drawn, however, in such a 
way that there is a one-to-one correspondence between each m value and an orbital; these 
representations are less convenient for the descriptive purposes of this book and we shall not 
discuss them here. 

We can go further: for I = 2 (hence n > 3) we have a set of d orbitals (historically 'diffuse') 
and I = 3(n 2 4 )  f orbitals (historically 'fundamental'): there are five of the former (m = &2, k1 
or 0 )  and seven of the latter (m = &3, f 2, k1, or 0). Sketches of d orbitals show that they have 
four lobes, while the f have six, but we shall not attempt to reproduce these here. Orbitals with 
higher I values, I = 4 ,  5 ,  6 ,  . . . , are of less importance and we shall not consider them further; if 
necessary they are labelled alphabetically afterf, that is 1 = 4,  g; I = 5, h, etc. 

5.1.3 The Energies of Atomic Orbitals; Hydrogen Atom Spectrum 

However large an atom its electrons take up orbitals of the s ,  p, d, . . . type (according to very 
specific laws which we shall discuss later) and so the overall shape of each electron's domain is 
unaltered. The energy of each orbital, on the other hand, varies considerably from atom to 
atom. There are two main contributions to this energy: (1) attraction between electrons and 
nucleus, (2) repulsion between electrons in the same atom. 

We consider first the case of hydrogen in some detail: this is the simplest because, having 
only one electron, factor (2) is completely absent. We shall later see how the picture should be 
modified for larger atoms. 

Because of the absence of interelectronic effects all orbitals with the same n value have the 
same energy in hydrogen. Thus the 2s and 2p orbitals, for instance, are degenerate, as are the 3s, 
3p and 3d. However, the energies of the 2s, 3s, 4s, . . . orbitals differ considerably. For the s 
orbitals given by Eq. (5.2): 

the Schrodinger equation shows that the energy is: 



where E, is the vacuum permittivity, and where the fundamental constants have been collected 
together and given the symbol R, called the Rydberg constant. Since p ,  d, . . . orbitals have the 
same energies as the corresponding s (for hydrogen only), Eq. (5.3) represents all the electronic 
energy levels of this atom. 

The lowest value of E, is plainly E, = -R cm-' (when n = l), and so this represents the most 
stable (or ground) state; E, increases with increasing n, reaching a limit, E, = 0 for n = co. This 
represents complete removal of the electron from the nucleus, i.e. the state of ionization. We 
sketch these energy levels for n = 1 to 5 and 1 = 0, 1, and 2  only in Fig. 5.2. (Some possible 
transitions, also shown, will be discussed shortly.) The three p  states and five d states for each n 
are degenerate and not shown separately. 

Equation (5.3) and Fig. 5.2, then, represent the energy levels of the atom; in order to discuss 
the spectra which may arise we need the selection rules governing transitions. The Schrodinger 
equation shows these to be: 

An = anything and A1 = * 1 only (5.4) 

From these selection rules we see immediately that an electron in the ground state (the 1s) can 
undergo a transition into any p  state: 

while a 2p electron can have transitions either into an s state or a d state: 

Since s and d orbitals are here degenerate the energy of both these transitions will be identical. 
These transitions are sketched in Fig. 5.2. 

l = O  
( S  state). 

I = 1  
@ state) 

Figure 5.2 Some of the lower electronic energy levels and transitions between them for the single electron of the 
hydrogen atom. 



In general an electron in a lower state n" can undergo a transition into a higher state n', with 
absorption of energy: 

Therefore: 

An identical spectral line will be produced in emission if the electron falls from state n' to state 
n". In both cases 1 must change by unity. Let us consider a few of these transitions, restricting 
ourselves to absorption for simplicity. 

Transitions 1s -+ n'p, n' = 2, 3, 4, . . . . For these: 

- 3R 8R 15R 24R -- - - - 
4 '  9 '  1 6 '  25 I " '  

cm-I (for n' = 2, 3, 4, 5, . . . ) 

Hence we expect a series of lines at the wavenumbers given above. Just such a series is indeed 
observed in the atomic hydrogen spectrum, and it is called the Lyman series after its discoverer. 
The appearance of this spectrum is sketched in Fig. 5.3 together with a scale in units of R and in 
wavenumbers. We can see that the spectrum converges to the point Rcm-I, and from the 
observed spectrum the very precise value R = 109 677.581 cm-' is obtained. This convergence 
limit, which arises when n' = m, is shown dashed on the figure. It plainly represents complete 
removal of the electron-i.e. ionization-and the energy required to ionize the atom is given, in 
cm-I, by the value of R. Using the conversion factor 1 cm-' = 1.987 x J, we have a very 
precise measure of the ionization potential from the ground (Is) state: 2.1781 x 10-l8 J (which 
may be more familiar in non-SI units as 13.595eV). 

Another set of transitions arises from an electron initially in the 2s or 2p states: 2s -+ n'p or 
2p -+ n's, n'd. For these we write: 

- - 5R 3R 21R - 
36 '  16' 100'"' cm-I (for n' = 3, 4, 5, . . . ) 

Figure 5.3 Representation of part of the Lyman series of the hydrogen atom, showing the convergence (ionization) 
point. 



Thus we expect another series of lines converging to ~ c m - '  (n' = a); this series, called the 
Balmer series after its discoverer, is observed and the value of R obtained from its convergence 
limit-which represents the ionization potential from the first excited state-is in excellent 
agreement with the value of R from the Lyman series. 

Other similar line series (called the Paschen, Brackett, Pfund, etc., series) are observed for 
n" = 3 ,  4, 5, . . . ; indeed these spectra were observed long before the modern theory of atomic 
structure had been developed. The spectral lines were correlated empirically by Rydberg, and he 
showed that an equation of the form given in Eq. (5.5) described the wavenumbers of each. It is 
after him that the Rydberg constant is named. 

It should be mentioned that each line series discussed above shows a continuous absorption 
or emission to high wavenumbers of the convergence limits. The convergence limit represents the 
situation where the atomic electron has absorbed just sufficient energy from radiation to escape 
from the nucleus with zero velocity. It can, however, absorb more energy than this and hence 
escape with higher velocities and, since the kinetic energy of an electron moving in free space is 
not quantized, any energy above the ionization energy can be absorbed. Hence the spectrum in 
this region is continuous. 

This completes our discussion of what might be termed the coarse structure of the hydrogen 
atom spectrum. In order to consider the fine structure we need to know how the other quantum 
numbers, besides n, affect the electronic energy levels. 

5.2 ELECTRONIC ANGULAR MOMENTUM 

5.2.1 Orbital Angular Momentum 

An electron moving in its orbital about a nucleus possesses orbital angular momentum, a 
measure of which is given by the I value corresponding to the orbital. This momentum is, of 
course, quantized, and it is usually expressed in terms of the unit h/27r, where h is Planck's 
constant. We may write: 

h 
Orbital angular momentum = d m .  - = units 

27r 

Angular momentum is a vector quantity, by which we mean that its direction is important as 
well as its magnitude-the axis of a spinning top, for instance, points in a particular direction. 
Conventionally, vectors may be represented by arrows, and the angular momentum vector is 
represented by an arrow based at the centre of the top, along the top axis, and of length 
proportional to the magnitude of the angular momentum. Such an arrow can lie in two 
different directions, at 180" to each other; these directions are associated, depending on the 
sign convention used, with clockwise and anticlockwise rotations of the top. Mathematically we 
can ignore the spinning body and deal merely with the properties of the arrow. 

It is usual to distinguish vector quantities by the use of bold-face type and we shall accord- 
ingly represent orbital angular momentum by the symbol 1 where: 

1 = Ji(FlJ units (5.7) 

In this equation I is always zero or positive and hence so is I. Since 1 and I are so closely 
connected they are often loosely used interchangeably: thus we speak of an electron having 
'an angular momentum of 2' when we strictly mean that 1 = 2 and 1 = = 2.44 units. 

We might at first think that the angular momentum vector of an electron could point in an 
infinite number of different directions. This, however, would be to reckon without the quantum 
theory. In fact, once a reference direction has been specified (and this may be done in many 



ways, either externally, such as by applying an electric or magnetic field, or internally, perhaps 
in terms of the angular momentum vector of one particular electron), the angular momentum 
vector can point only so that its components along the reference direction are integral multiples of 
h/27r. Figure 5.4(a) and (6) shows the situation for an electron with I = 1 and I = 2, respectively 
(i.e. a p and a d electron). The reference direction, here taken to be vertical in the figure, is 
conventionally used to define the z axis, and so we can write the components of 1 in this direction 
as li (note the use of bold-face type for l,, since the components of angular momentum are 
clearly vectors, having both magnitude and direction). Alternatively, since we know that the 1, 
are integral multiples of h/27r, we can represent the components in terms of an integral number 
IZ (not bold-face), where: 

This latter notation is used in Fig. 5.4, and we see there that for I = 1, I, takes values of + 1, 0, 
and - 1, while for I = 2 the values are + 2, + 1, 0, - 1, and -2. In general we see that 1, has 
values: 

d 

I ,= / ,  1 - 1 ,  . . . ,  0, . . . ,  - ( I - l ) , l  (5.9) 

and that there are 21 + 1 values of I, for a given I. Plainly I, is to be identified with the magnetic 
quantum number m introduced in Sec. 5.1.2: 

and this justifies our previous assertion that m governs essentially the direction of an orbital. 

(a) 1 = 1 

Figure 5.4 The allowed directions of the electronic angular momentum vector for an electron in (a) a p state ( I  = I ) ,  
(b )  a d state ( I  = 2). and (c) the allowed directions of the electronic spin angular momentum vector. The reference 
direction is taken arbitrarily as upwards in the plane of the paper. 



Before proceeding further let us reiterate the distinction between I ,  1, I,, and 1;. The quantum 
number I is an integer, positive or zero, representing the state of an electron in an atom and 
determining its orbital angular momentum. The vector 1 designates the magnitude and direction 
of this momentum as shown by the vector arrows of Fig. 5.4. When expressed in units of h/2.rr, 1 
is numerically equal to J1(1+1). Once a reference direction is specified (and this is often 
arbitrary) 1 can point only so as to have components 1, = l,h/27r (with 1, an integer or zero) 
along that direction. 

Usually the orbital energy of the electron depends only on the magnitude and not the 
direction of its angular momentum; thus the 21+ 1 values of 1; are all degenerate. However, 
we should note that it is possible to lift the degeneracy (cf. Sec. 5.6) so that levels with different 1: 
have different energy. 

5.2.2 Electron Spin Angular Momentum 

Every electron in an atom can be considered to be spinning about an axis as well as orbiting 
about the nucleus. Its spin motion is designated by the spin quantum number s, which can be 
shown to have a value of $ only. Thus the spin angular momentum is given by: 

s  = = units 
2.rr 

= $ fl units 

The quantization law for spin momentum is that the vector can point so as to have components 
in the reference direction which are half-integral multiples of h/2.rr, i.e. so that s; = s,h/2.rr with 
s, taking the values + or - $ only. The two (that is 2s + I)  allowed directions are shown in Fig. 
5.4(c); they are normally degenerate. 

5.2.3 Total Electronic Angular Momentum 

We now need to discover some means whereby the orbital and spin contributions to the 
electronic angular momentum may be combined. Formally we can write: 

j = l + s  (5.11) 

where j  is the total angular momentum. Since I and s  are vectors, Eq. (5.1 1) must be taken to 
imply vector addition. Also formally, we can express j  in terms of a total angular momentum 
quantum number j: 

h 
j  = J j '  - = Jm units 

2.rr 

where j is half-integral (since s is half-integral for a one-electron atom), and a quanta1 law applies 
equally to j  as to 1 and s  : j can have z-components which are halfintegral only, i.e.: 

j z  = kj, *(j- 1 ) ,  * ( j -21 ,  . . . ,  i (5.13) 

There are two methods by which we can deduce the various allowed values of j  for 
particular 1 and s values. We shall consider them both briefly. 

1. Vector summation. In ordinary mechanics two forces in different directions may be added by 
a graphical method in which vector arrows are drawn to represent the magnitude and 
direction of the forces, the 'parallelogram is completed', and the magnitude apd direction 
of the resultant given by the diagonal of the parallelogram. Exactly the same method can be 
used to find the resultant (j)  of the vectors 1 and s. The important difference is that quantum 



mechanical laws restrict the angle between 1 and s to values such that j is given by Eq. (5.12) 
with halj%egral j. Thus j can take values 

1 3 5  I- 4  0, i el . . . corresponding to j = 3 2 ' 2 1  2 '  " '  

The method is illustrated in Fig. 5.5(a) and (b) for the case 1 = 1 (that is 1 = d)  and 
s = i (s = fi). In Fig. 5.5(a) the summation yields j = i 0, which corresponds to a j value 
of 5, while in Fig. 5.5(b) j = 4 fi or j = 4 .  Construction or calculation shows that 1 and s may 
not be combined in any other way to give an allowed value of j. 

Note that we can get exactly the same answer by summing the quantum numbers I and s to 
get the quantum number j. In this example 1 = 1, s = 4, and hence: 

I 

This simple approach, although adequate for systems with one electron only, is not 
readily extended to multi-electron systems. For these we must use the rather more funda- 
mental method outlined below. 
Summation of z components. If the components along a common direction of two vectors are 
added, the summation yields the component in that direction of their resultant. We have seen 
(cf. Eq. (5.9)) that the z components of I = 1 are &1 and 0, while those of s = i are f i only. 
Taking all possible sums of these quantities we have: 

ji = 1; + sz 
Therefore: 

j, = 1 +1, 1 - 1 ,  o + i ,  0 - i ,  -1 + I - ,  - 1  -I-  2 2 2 -5 - I- I- -I- -1 - 3  ' 2 '  2 '  2 '  2 '  2 

In this list of six jz components, the maximum value is 5, which we know (cf. Eq. (5.13)) must 
belong to j = 5. Other components of j = 5 are 4, - i ,  and - 5 and, striking these from 
the above six, we are left with j, = + i and - i. These values are plainly consistent with j = i. 

Thus all the six components are accounted for if we say that the states j = and j = 1 
may be formed from I = 1 and s = $. This is, of course, in agreement with the vector 
summation method. 

Both these methods show that for a p electron (that is I = l ) ,  the orbital and spin momenta 
may be combined to produce a total momentum of j = i fi when 1 and s reinforce (physically 

Figure 5.5 The two energy states having different total angular momentum which can arise as a result of the vector 
addition of I = and s = 4 &. 



we would say that the angular momenta have the same direction) or to give j = id when 1 and s 
oppose each other. Thus the total momentum is different in magnitude in the two cases and 
hence we have arrived at two different energy states depending on whether 1 and s reinforce or 
oppose. Both energy states are p states, however (since 1 is 1 for both), and they may be 
distinguished by writing the j quantum number value as a subscript to the state symbol P ,  
thus: P312 or P I l 2 .  (We here use a capital letter for the state of a whole atom and a small letter 
for the state of an individual electron; in the hydrogen atom, which contains only one electron, 
the distinction is trivial.) States such as these, split into two energies, are termed doublet states; 
their doublet nature is usually indicated by writing a superscript 2 to the state symbol, thus: 
2 P312, P I l 2 .  The state (or term) symbols produced are to be read 'doublet P three halves' or 
'doublet P one half', respectively. 

All other higher 1 values for the electron will obviously produce doublet states when 
combined with s = i ;  for instance, 1 = 2, 3 ,  4, . . . will yield 2 ~ 5 1 2 , 3 1 2 ,  F712,512, G912,712, etc. 
The student should be satisfied of this, preferably by using the z-component summation method 
outlined above. There is, however, a slight difficulty with s states (I = 0). Here, since 1 = 0, it can 
make no contribution to the vector sum, and the only possible resultant is s = ifi or s = i. 
Remember that s = - i is not allowed, since the quantum number cannot be negative; it is only 
the z component of the vector which can have negative values. Thus for an s electron we would 
have the state symbol Sl12 only. This is nonetheless formally written as a doublet state ( 2 ~ 1 1 2 )  

for reasons which should become clear during the discussion of multiplicity in Sec. 5.4.3. 
We can now consider the relevance of this discussion to atomic spectroscopy. 

5.2.4 The Fine Structure of the Hydrogen Atom Spectrum 

The hydrogen atom contains but one electron and so the coupling of orbital and spin momenta 
and consequent splitting of energy levels will be exactly as described above. We summarize the 
essential details of the energy levels in Fig. 5.6. Each level is labelled with its n quantum number 
on the extreme left and its j value on the right; the 1 value is indicated by the state symbols S,  P ,  
D, . . . at the top of each column. There is no attempt to show the energy-level splitting of the P 
and D states to scale in this diagram-the separation between levels differing only in j is many 
thousands of times smaller than the separation between levels of different n. However, we do 
indicate that the j-splitting decreases with increasing n and with increasing 1. The F, 
G ,  . . . states, not shown on the diagram, follow the same pattern. 

The selection rules for n and 1 are the same as before: 

An = anything A1 = k 1  only (5.14) 

but now there is a selection rule for j: 

These selection rules indicate that transitions are allowed between any S level and any P 
level: 

Thus the spectrum to be expected from the ground ( I s )  state will be identical with the Lyman 
series (cf. Sec. 5.1.3) except that every line will be a doublet. In fact the separation between the 
lines is too small to be readily resolved but we shall shortly consider the spectrum of sodium in 
which this splitting is easily observed. 
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Figure 5.6 Some of the lower energy levels of the hydrogen atom, showing the inclusion of j-splitting. The splitting is 
greatly exaggerated for clarity. 

2D5,2 4 

Figure 5.7 The 'compound doublet' spectrum arising as the result of transitions between ' P  and 'D levels in the 
hydrogen atom. 

Transitions between the 2~ and 2~ states are rather more complex; Fig. 5.7 shows four of 
the energy levels involved. Plainly the transition at lowest frequency will be that between the 
closest pair of levels, the 'P312 and 2 ~ 3 1 2 .  This, corresponding to Aj = 0, is allowed. The next 
transition, 2 ~ 3 1 2  + ' D 5 p  (Aj = + I ) ,  is also allowed and will occur close to the first because the 



separation between the doublet D states is very small. Thirdly, and more widely spaced, will be 
2 ~ 1 1 2  --+ 2 ~ 3 1 2  (Aj  = +I),  but the fourth transition (shown dotted), 2 ~ 1 1 2  4 2 ~ 5 1 2 ,  is not 
allowed since for this A j  = $2. 

Thus the spectrum will consist of the three lines shown at the foot of the figure. This, arising 
from transitions between doublet levels, is usually referred to as a 'compound doublet' spec- 
trum. 

We see, then, that the inclusion of coupling between orbital and spin momenta has led to e 
slight increase in the complexity of the hydrogen spectrum. In practice, the complexity will be 
observed only in the spectra of heavier atoms, since for them the j-splitting is larger than for 
hydrogen. In principle, however, all the lines in the hydrogen spectrum should be close doublets 
if the transitions involve s levels, or 'compound doublets' if s electrons are not involved. 

5.3 MANY-ELECTRON ATOMS 

5.3.1 The Building-Up Principle 

The Schrodinger equation shows that electrons in atoms occupy orbitals of the same type and 
shape as the s, p, d, . . . orbitals discussed for the hydrogen atom, but that the energies of these 
electrons differ markedly from atom to atom. There is no general expression for the energy 
levels of a many-electron atom comparable to Eq. (5.3) for hydrogen; each atom must be treated 
as a special case and its energy levels either tabulated or shown on a diagram similar to Fig. 5.2 
or Fig. 5.6. 

There are three basic rules, known as the building-up rules, which determine how electrons 
in large atoms occupy orbitals. These may be summarized as: 

1. Pauli's principle: no two electrons in an atom may have the same set of values for n, I ,  
1, (= m) ,  and s,. 

2. Electrons tend to occupy the orbital with lowest energy available. 
3. Hund's principle: electrons tend to occupy degenerate orbitals singly with their spins parallel. 

Rule 1 effectively limits to two the number of electrons in each orbital. An example may 
make this clear: we may characterize both an orbital and an electron occupying it by specifying 
the n, 1, and m quantum numbers. Thus a 1s orbital or 1s electron has n = 1, I = 0 ,  and 
m = 1: = 0; the electron (but not the orbital) is further characterized by a statement of its 
spin direction, i.e. by specifying s, = +! or s, = - i. Two electrons can together occupy the 
1s orbital provided, according to rule 1 ,  that one has the set of values 

I n =  1 ,  l = 0 ,  1,=0, s,=+?, and the other n =  1, l=O,  l,=O, s : = - - l  We talk, rather 
?' 

loosely, of two electrons occupying the same orbital only if their spins are paired (or 
opposed). A third electron cannot exist in the same orbital without repeating a set of values 
for n, I, l,, and s, already taken up. It would have to be placed into some other orbital and the 
choice is determined by rule 2: it would go into the next higher vacant or half-vacant orbital. In 
general, orbital energies in many-electron atoms increase with increasing n, as they do for 
hydrogen, but they also increase with increasing I, whereas we noted for hydrogen that all s, 
p, d . . . orbitals with the same n were degenerate. In fact the order of the energy levels for most 
atoms is as follows: 

Thus when the Is orbital is full (i.e. contains two electrons) the next available orbital is the 2s, 
and after this the 2p. Now we remember that there are three 2p orbitals, one along each 



coordinate axis, and each of these can contain two electrons. We may write the n, 1, I;, and s: 
values as: 

All three p orbitals remain degenerate (as do the five d orbitals, sevenf, etc.) for a given n. It is 
rule 3 which tells us how electrons occupy these degenerate orbitals. Hund's rule states that 
when, for example, the 2p, orbital contains an electron, the next electron will go into a different 
2p, say 2p,, orbital, and a third into the 2p,. This may be looked upon as a consequence of 
repulsion between electrons. A fourth electron has no choice but to pair its spin with an electron 
already in one 2p orbital, while a fifth and sixth will complete the filling of the three 2p's. 

On this basis we can build up the electronic confgurations of the 10 smallest atoms, from 
hydrogen to neon. This is shown in Table 5.2 where each box represents an orbital occupied by 
one or two electrons with spin directions shown by the arrows. A convenient notation for the 
electronic configuration is also shown in the table. 

When a set of orbitals of given n and I is filled it is referred to as a closed shell. Thus the ls2 
set of helium, the 2s2 set of beryllium, and the 2p6 set of neon are all closed shells. The 
convenience of this is that closed shells make no contribution to the orbital or spin angular 
momentum of the whole atom and hence they may be ignored when discussing atomic spectra. 
This represents a considerable simplification. 

Table 5.2 Electronic structure of some atoms 

Is 2s 2P 

Hydrogen 

Helium 

Lithium 

Beryllium 

Boron [T11 
Carbon 

Nitrogen 

Oxygen I 
Fluorine 

Neon t!a 

5.3.2 The Spectrum of Lithium and Other Hydrogen-like Species 

The alkali metals, lithium, sodium, potassium, rubidium, and cesium, all have a single electron 
outside a closed-shell core (cf. lithium in Table 5.2). Superficially, then, they resemble hydrogen 
and this resemblance is augmented by the fact that we can ignore the angular momentum of the 
core and deal merely with the spin and orbital momentum of the outer electron. Thus we 
immediately expect the p, d, . . . levels to be split into doublets because of coupling between I 
and s.  

The energy levels of lithium are sketched in Fig. 5.8, which should be compared with the 
corresponding Fig. 5.6 for hydrogen. The two diagrams are similar except for the energy 
difference between the s, p, and d orbitals of given n in the case of lithium and the fact that, 



Figure 5.8 Some of the lower energy levels of the lithium atom, showing the difference in energy of s, p, and d states 
with the same value of n. Some allowed transitions are also shown. The,/-splitting is greatly exaggerated. 

for this metal, the 1s state is filled with electrons which do not generally take part in spectro- 
scopic transitions, as it requires much less energy to induce the 2s electron to undergo a 
transition. Under high energy conditions, however, one or both of the 1s electrons may be 
promoted. 

The selection rules for alkali metals are the same as for hydrogen, that is An = anything, 
A1 = k1 ,  Aj = 0, *1, and so the spectra will be similar also. Thus transitions from the ground 
state (ls22s) can occur to p levels: 2Sl12 + nP1/2,312, and a series of doublets similar to the 
Lyman series will be formed, converging to some point from which the ionization potential can 
be found. From the 2p state, however, two separate series of lines will be seen: 

and 

The former will be doublets, the latter compound doublets, but their frequencies will differ 
because the s and d orbital energies are no longer the same. 

The same remarks apply to the other alkali metals, the differences between their spectra and 
that of lithium being a matter of scale only. For instance the j-splitting due to coupling between 1 
and s increases markedly with the atomic number. Thus the doublet separation of lines in the 
spectral series, which is scarcely observable for hydrogen, is less than 1 cm-I for the 2p level of 
lithium, about 17 cm-' for sodium, and over 5000cm-' for cesium. 

Any atom which has a single electron moving outside a closed shell will exhibit a spectrum 
of the type discussed above. Thus ions of the type He+, Be+, B*+, etc., should, and indeed do, 
show what are termed 'hydrogen-like spectra'. 



5.4 THE ANGULAR MOMENTUM OF MANY-ELECTRON ATOMS 

We turn now to consider the contribution of two or more electrons in the outer shell to the total 
angular momentum of the atom. There are two different ways in which we might sum the orbital 
and spin momentum of several electrons: 

1. First sum the orbital contributions, then the spin contributions separately, and finally add 
the total orbital and total spin contributions to reach the grand total. Symbolically: 

where we use bold-face capital letters to designate total momentum. 
2. Sum the orbital and spin momenta of each electron separately, finally summing the indivi- 

dual totals to form the grand total: 

The first method, known as Russell-Saunders coupling, gives results in accordance with the 
spectra of small and medium-sized atoms, while the second (called j-j coupling, since individual 
j9s are summed) applies better to large atoms. We shall consider only the former in detail. 

5.4.1 Summation of Orbital Contributions 

The orbital momenta 11, 12, . . . of several electrons may be added by the same methods as were 
discussed in Sec. 5.2.3 for the summation of the orbital and spin momenta of a single electron. 
Thus we could: 

1. Add the vectors I , ,  12, . . . graphically, remembering that their resultant L must be expres- 
sible by: 

where L is the total orbital momentum quantum number. Thus L can have values 0, a, &, a, . . . only. Figure 5.9 illustrates the method for a p and a d electron, 
I l  = 1, h = 2; hence I l  = a, l2 = A. There are three, and only three, ways in which the 
two vectors may be combined to give L consistent with Eq. (5.17). The three values of L are 

(4 (b)  
Figure 5.9 Summation of orbital angular momenta for a p and a d electron. 



seen to be a, &, and a, corresponding to the quantum numbers L = 3, 2, and 1, 
respectively. 

2. Alternatively we could add the individual quantum numbers 11 and I2 to obtain the total 
quantum number L according to: 

L = I I + G ,  1 1 + 1 2 -  1, . . .  111 -121 (5.18) 

where the modulus sign I . . . I indicates that we are to take 1, - l2 or I2 - 1 1 ,  whichever is 
positive. For two electrons, there will plainly be 21,. + 1 different values of L, where li is the 
smaller of the two I values. 

3. Finally we could add the z components of the individual vectors, picking out from the result 
sets of components corresponding to the various allowed L values. Symbolically this process 
is: 

Of these, method 2 is the simplest but it is only applicable when the individual electrons 
concerned have different n or different I values (these are termed non-equivalent electrons). If 
n and I are the same for two or more electrons they are termed equivalent and method 3 must be 
used. Examples will be given later. 

5.4.2 Summation of Spin Contributions 

The same methods may be used here as in Sec. 5.4.1. Briefly, if we write the total spin angular 
momentum as S and the total spin quantum number as S (which is often simply called the total 
spin), we can have: 

1. Graphical summation, provided the resultant is 

s = J ~  
where S is either integral or zero only, if the number of contributing spins is even, or half- 
integral only, if the number is odd. 

2. Summation of individual quantum numbers. For N spins we have: 

3. Summation of individual s2 to give S2. 

Method 2, which is always applicable, is the simplest. Thus for two electrons we have the 
two possible spin states: 

s = L + L -  1 or S = L + L -  1 = O  
2 2 -  2 2 

In the former the spins are called parallel and the state may be written (TT), while in the latter 
they are paired or opposed and written (TJ). 

Again, for three electrons we may have: 



(a )  L = 2 

Figure 5.10 The z components of (a) an orbital angular momentum vector, ( h )  a spin vector for which S is half- 
integral, and (c) a spin vector for which S is integral. 

where we see that there are three ways in which the S = state may be realized and one in which 
s = 3. 

2 
As we have implied above, both L and S have z components along a reference direction. For 

L these components are limited to integral values by quantum laws and, as we can see from Fig. 
5.10(a), there are, in general, 2 L  + 1 of them, while for S the Sz will be integral only or half- 
integral only, depending on whether S is integral or half-integral. We show examples in Fig. 
5.lO(b) and (c). In both cases there are 2 s  + 1 components. 

5.4.3 Total Angular Momentum 

The addition of the total orbital momentum L and the total spin momentum S to give the grand 
total momentum J  can be carried out in the same ways as the addition of 1 and s to give j, for a 
single electron. The only additional point is that the quantum number J in the expression: 

J =  ~m.1 27r (5.21) 

must be integral if S is integral and half-integral if S is half-integral. In terms of the quantum 
numbers we can write immediately: 

where, as before, the positive value of L - S is the lowest limit of the series of values. 
For example, if L = 2 ,  S = i, we would have: 

J = Z  5 1 andL 
2 '  2 '  2 '  2 

while if L = 2, S = 1, the J values are: 

J = 3. 2 ,  or 1 only 



In general we see that there are 2S + 1 different values of J and hence 2S + 1 states with 
different total momentum. The energy of a state depends on its total momentum, so we arrive 
at 2S + 1 different energy levels, the energy of each depending on the way in which L and S are 
combined. The quantity 2S + 1, which occupies a special place in atomic spectroscopy, is called 
the multiplicity of the system. 

We recall that, when discussing the total angular momentum of a single electron (Sec. 5.2.3), 
we found that each state, except those with I = 0, consisted of two very slightly different energy 
levels owing to j-splitting; we called these 'doublet states'. We also called the I = 0 states 
doublets, although each has but one energy level since j = i only. We now see that the concept 
of multiplicity justifies us in labelling all one-electron states as doublets, since for all of them 
S = 1, and hence 2S + 1 = 2, and they all have a multiplicity of two. 

It is a general rule that in states with L > S, whether consisting of one electron or of many, 
the multiplicity is equal to the actual number of levels with different J ,  whereas if L < S, then 
there are only 2L + 1 different J values, which is less than the multiplicity. As an example of the 
latter, if L = 1 and S = 2, there are only three different J values, J = 3, 2, or 1, whereas the 
multiplicity is 2S + 1 = 5. 

It is in fact highly convenient to label states with their multiplicities rather than to show the 
number of different J values because, as we shall see shortly, there is a selection rule which 
forbids transitions between states with different multiplicities; thus designating the multiplicity 
of a particular state immediately indicates to which other levels in the system a transition may 
take place. 

5.4.4 Term Symbols 

In the whole of this section we have been describing the way in which the total angular 
momentum of an atom is built up from its various components. Using one sort of coupling 
only (the Russell-Saunders coupling) we arrive at vector quantities L, S, and J  for a system 
which may be expressed in terms of quantum numbers L, S, and J: 

L = J ~  S =  Jm J = J ~  (5.23) 

where the integral L and integral or half-integral S and J are themselves combinations of 
individual electronic quantum numbers. 

In any particular atom, then, we see that the individual electronic angular momenta may be 
combined in various ways to give different states each having a different total angular momen- 
tum (J) and hence a different energy (unless some states happen to be degenerate). Before 
discussing the effect of these states on the spectrum of an atom we require some symbolism 
which we may use to describe states conveniently. We have already introduced such state 
symbols or term symbols in Sec. 5.2.3, but we now consider them rather more fully. 

The term symbol for a particular atomic state is written as follows: 

Term symbol = 2 S + ' ~ J  (5.24) 

where the numerical superscript gives the multiplicity of the state, the numerical subscript gives 
the total angular momentum quantum number J, and the value of the orbital quantum number 
L is expressed by a letter: 

For L = 0 , 1 , 2 , 3 , 4  , . . .  
Symbol = S, P, D, F, G ,  . . 

a symbolism which is comparable with the s, p, d, . . . already used for single-electron states 
with I =  0, 1, 2, . . . . 



Let us now see some examples. 

1. S = 4 ,  L = 2; hence J = 5 or 4 and 2 s  + 1 = 2. Term symbols: 2 ~ 5 / 2  and 2 ~ 3 / 2 ,  which are to 
be read 'doublet D five halves' and 'doublet D three halves', respectively. 

2. S = 1, L = 1; hence J = 2, 1, or 0 and 2 s  + 1 = 3. Term symbols: 3 ~ 2 ,  3 ~ 1 ,  or (read 
'triplet P two', etc.). 

In both these examples we see that (since L 2 S),  the multiplicity is the same as the 
number of different energy states. 

4 3. S = 4 ,  L = 1; hence J = $, 2, or 4 and 2S + 1 = 4. Term symbols: 4 ~ 5 / 2 ,  P3/2, 4P1/2 (read 
'quartet P five halves', etc.) where, since L < S, there are only three different energy states 
but each is nonetheless described as quartet since 2 s  + 1 = 4. 

The reverse process is equally easy; given a term symbol for a particular atomic state we can 
immediately deduce the various total angular momenta of that state. Some examples: 

4. 3 ~ 1 :  we read immediately that 2 s  + 1 = 3, and hence S = 1, and that L = 0 and J = 1. 
5. 2 ~ 3 / 2 :  L =  1, J = $ ,  2 ~ + 1  =2 ;  h e n c e ~ = i .  

Note, however, that the term symbol tells us only the total spin, total orbital, and grand 
total momenta of the whole atom-it tells us nothing of the states of the individual electrons in 
the atoms, nor even how many electrons contribute to the total. Thus in example 5 above, the 
fact that S = 4 implies that the atom has an odd number of contributing electrons, all except one 
of which have their spins paired. Thus a single electron (T), three electrons (TTl), five electrons 
(Tlf i f ) ,  etc., all form a doublet state. Similarly, the value L = 1 implies, perhaps, onep electron, 
or perhaps one p and two s electrons, or one of many other possible combinations. 

Normally this is not important; the spectroscopist is interested only in the energy state of 
the atom as a whole. Should we wish to specify the energy states of individual electrons, 
however, we can do so by including them in the term symbol as a prefix. Thus in example 5 
we might have 2p 2 ~ 3 / 2 ,  or ls2p3s 2 ~ 3 / 2 ,  etc. 

We can now apply our knowledge of atomic states to the discussion of the spectra of some 
atoms with two or more electrons. We start with the simplest, that of helium. 

5.4.5 The Spectrum of Helium and the Alkaline Earths 

Helium, atomic number two, consists of a central nucleus and two outer electrons. Clearly there 
are only two possibilities for the relative spins of the two electrons: 

1. Their spins are paired; in which case if sl: is + 4 ,  s2; must be - 4; hence Si = sl: + s2: = 0, 
and so S = 0 and we have singlet states. 

2. Their spins are parallel; now sl. = s2. = + i ,  say, so that Sz = 1 and the states are triplet. 

The lowest possible energy state of this atom is when both electrons occupy the 1s orbital; 
this, by Pauli's principle, is possible only if their spins are paired, so the ground state of helium 
must be a singlet state. Further, L = 1, + l2 = 0, and hence J can only be zero. The ground state 
of helium, therefore, is 'So. 

The relevant selection rules for many-electron systems are: 

A S = O  A L = & l  A J = O , & l  (5.25) 

(There is a further rule that a state with J = 0 cannot make a transition to another J = 0 state, 
but this will not concern us here.) We see immediately that, since S cannot change during a 



transition, the singlet ground state can undergo transitions only to other singlet states. The 
selection rules for L and J are the same as those for 1 and j considered earlier. 

For the moment we shall imagine that only one electron undergoes transitions, leaving the 
other in the 1s orbital, and the left-hand side of Fig. 5.11 shows the energy levels for the various 
singlet states which arise. 

Initially the 1s2 'So state can undergo a transition only to 1s' npl states (abbreviated to 
Isnp); in the latter L = 1, S = 0, and hence J = 1 only, so the transition may be symbolized: 

or, briefly: 

From the 'PI state the system could either revert to 'So states, as shown in the figure, or 
undergo transitions to the higher ID2 states (for these S = 0, L = 2, and hence J = 2 only). 
In general, then, all these transitions will give rise to spectral series very similar to those of 
lithium except that here transitions are between singlet states only and all the spectral lines will 
be single. 

Returning now to the situation in which the electron spins are parallel (case 2, the triplet 
states) we see that, since the electrons are now forbidden by Pauli's principle from occupying the 
same orbital, the lowest energy state is ls2s. This and other triplet energy levels are shown on the 
right of Fig. 5.11. The ls2s state has S = 1, L = 0, and hence J = 1 only, and so it is 3 ~ I ;  by the 
selection rules of Eq. (5.25) it can only undergo transitions into the lsnp triplet states. These, 
with S = 1, L = 1, have J = 2, 1, or 0, and so the transitions may be written. 

3 ~ 1  -' 3 ~ 2 ,  3 ~ 1 ,  3 ~ 0  

All three transitions are allowed, since A J  = 0 or *1, so the resulting spectral lines will be 
triplets. 

Transitions from the P states may take place either to 3~ states (spectral series of triples) or 
to 3~ states. In the latter case the spectral series may be very complex if completely resolved. For 
3~ we have S = 1, L = 2, and hence J = 3, 2, or 1, and we show in Fig. 5.12 a transition 

Figure 5.11 Some of the energy levels of the electrons in the helium atom, together with a few allowed transitions. 



Figure 5.12 The 'compound triplet' spectrum arising from transitions between 'P and ' D  levels in the helium atom. 
The separation between levels of different J is much exaggerated. 

between P and 3~ states, bearing in mind the selection rule A J  = 0, &1. We note that 3 ~ 2  can 
go to each of 3 ~ 3 , 2 ,  1 ,  3 ~ 1  can go only to 3 ~ 2 ,  1, and 3Po can go only to 3 ~ 1 .  Thus the complete 
spectrum (shown at the foot of the figure) should consist of six lines. Normally, however, the 
very close spacing is not resolved, and only three lines are seen; for this reason the spectrum is 
referred to as a compound triplet. 

We might note in passing that Fig. 5.12 shows that levels with higher J have a higher energy 
in helium, and that the separation decreases from top to bottom. This is not the case with all 
atoms, however. If higher J is equivalent to lower energy then the separation increases from top 
to bottom and the multiplet is described as inverted. In helium, and other atoms with similar 
behaviour, the multiplet is normal or regular. 

We see, then, that the spectrum of helium consists of spectral series grouped into two types 
which overlap each other in frequency. In one type, involving transitions between singlet levels, 
all the spectral lines are themselves singlets, while in the other the transitions are between triplet 
states and each 'line' is at least a close triplet and possibly even more complex. Because of the 
selection rule AS = 0 there is a strong prohibition on transitions between singlet and triplet 
states, and transitions cannot occur between the right- and left-hand sides of Fig. 5.1 1. Early 
experimenters, noting the difference between the two types of spectral series, suggested that 
helium exists in two modifications, ortho- and para-helium. This is not far from the truth, 
although we know now that the difference between the two forms is very subtle: it is merely 
that one has its electron spins always opposed and the other always parallel. 

Other atoms containing two outer electrons exhibit spectra similar to that of helium. Thus 
the alkaline earths, beryllium, magnesium, calcium, etc., fall into this category, as do ionized 
species with just two remaining electrons, for example, B+, c 2 + ,  etc. 

We should remind the reader at this point that the above discussion on helium has been 
carried through on the assumption that one electron remains in the 1s orbital all the time. This is 
a reasonable assumption since a great deal of energy would be required to excite two electrons 
simultaneously, and this would not happen under normal spectroscopic conditions. However, 



not all atoms have only s electrons in their ground state configuration, and we consider next 
some of the consequences. 

5.4.6 Equivalent and Non-Equivalent Electrons; Energy Levels of Carbon 

The ground state electronic configuration of carbon is ls22s22p2, which indicates that both the 
1s and 2s orbitals are filled (and hence contribute nothing to the angular momentum of the 
atom), while the 2p orbitals are only partially filled. The 2p electrons, also, are most easily 
removed, so it is these which normally undergo spectroscopic transitions. 

Two or more electrons are referred to as equivalent if they have the same value of n and of I. 
Thus the two 2p electrons in the ground state of carbon are equivalent (nl = n* = 2, 11 = l2 = 1) 
while the set of ls2s are non-equivalent (nl # n2 although II = 12), as are, for example, 2s2p 
(nl = n2 but II # 12). Special care is necessary when considering the total angular momentum of 
equivalent electrons since restrictions are placed on the values of the quantum numbers which 
each may have. Let us consider the case of 2p2 in some detail. 

The first restriction arises from Pauli's principle (Sec. 5.3.1). Since we have nl = nz and 
11 = 12 we cannot simultaneously choose 1,: = 12: and sl; = s2:. 

Further restrictions follow from physical considerations. The basic principle is that elec- 
trons cannot be distinguished from each other and so if the energies of two electrons are 
exchanged we have no way of discovering experimentally that such exchange has taken place. 
The implication is that if the values of all four numbers n, I, I:, and sz for each of two electrons 
are exchanged, the initial situation is identical in every way with the final. When considering 
total momentum and the term symbols of atoms we are interested only in different situations 
and we must not count twice those systems which are interconvertible merely by an exchange of 
all four numbers, n, I, lr, and sr. Consider some examples chosen from the 2p2 case: 

1. We have nl = n2, II = I:! and if we also choose 11; = 12; then we know (Pauli's principle) that 
if sl; = + 1, then ~ 2 ;  = - i; alternatively, if sir = - 4 then s2; = +1. Now these two cases are 
completely identical because one can be reached from the other by exchanging n, 1, I;, and sz. 
Thus, while we can consider either set alone as typical of the state, we must not consider both 
together. 

2. Similarly, if we assume sl. = s2. then we know 11: # 12:. For p electrons 1 = 1 and hence 
lr = 1, 0, or - 1. So we might have: 

Note, however, that the system represented by the pair of values (1, 0) for (IIz,  12:) is 
identical with that for (0, 1); (0, -1) is identical with (- 1, 0) and (1, - 1) with (-1, 1). 
Thus we reduce the above six pairs to only three different sets: 

3. Finally we note that if 11. # h and sl. # SZ., then interchange of only one pair of values (for 
I example sl; = + 5 ,  s2: = - i ,  -+ sl. = - L 2 9  s2 z = + 4) does produce a different situation; phy- 

sically an electron already distinguishable by its I, value is being reversed in spin. All four 
numbers n, I, I,, and s, must be exchanged to produce an indistinguishable state. 



Table 5.3 Substates of two equivalent p electrons (nl = n2 = 2; 11 = I2 = 1) 

Keeping these rules in mind we can construct Table 5.3, in which the first four columns list 
combinations of 111, 12:, slz, and ~ 2 :  leading to different energy states (let us call them substates). 
We are interested in the total energy and so we show in the next two columns the values of 
11; + 12: = LZ and sl; + ~ 2 :  = S,, respectively. The final column merely supplies a convenient 
label to each substate for the following discussion. The 15 substates in the table constitute 
the z components of the various L and S vectors which may be formed from two equivalent 
p electrons. We can find the term symbols in the following way: 

1. Note first that the largest L, value in the table is L, = +2 (substate (a)), and this is associated 
with S, = 0. L, = +2 must be a z component of the state L = 2, i.e. one component of a D 
state, the other components of which are Lz = +1, 0, - 1, and -2. In the table we can find 
several substates of the requisite L, values, all associated with SZ = 0; it is immaterial which 
of the alternatives we choose, so let us take substates (c), ( g ) ,  (I), and (0). Since S, = 0 the 
state must be singlet; hence we have: 

I D  = substates (a), (c), ( g ) ,  ( I ) ,  and (0) 

With L = 2, S = 0 this can only be a  ID^ state. 
2. Of the remaining substates the largest L, is + 1 associated with Sz = +1 (substate (6)). This is 

plainly one component of a 3~ state, the other components of which may be selected as: 

3 ~ s t a t e :  S z = + l :  L z =  1, 0, and - 1, that is(b) ,  Cf), (k) 

S,=O: L I = l , O , a n d  - l , t h a t i s ( d ) , ( h ) , ( m )  

S, = -1: L, = 1, 0, and - 1, that is (e), (i), (n) 

Here we have considered the three components of S = 1, S, = + 1, 0, and - 1, to be asso- 
ciated in turn with the components of L = 1. The three states listed correspond to term 
symbols 3 ~ 2 ,  P I ,  and 3 ~ ~ .  
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3. Finally the one remaining substate, ( j ) ,  has L, = S, = 0 and this plainly comprises a 'So  
state. 

Overall, then, two equivalent p electrons give rise to the three different energy states I D ,  IS, 
and 3 ~ ,  of which the latter, being a triplet state, has three close energy levels 3 ~ 2 ,  3 ~ 1 ,  and 3 ~ o .  
Hund's rule, which we quoted in Sec. 5.3.1, may be expressed for equivalent electrons as: 

The state of lowest energy for a given electronic configuration is that having the greatest multiplicity. If 
more than one state has the same multiplicity then the lowest of these is that with the greatest L value. 

Thus for carbon the ground state is the 3 ~ ,  the next in energy is the I D ,  and finally the IS. 
We note that this new expression of Hund's rule implies that electrons in degenerate orbitals 
tend to have their spins parallel (since this gives the greatest multiplicity, and hence lowest 
energy); this in turn means that electrons tend to go into separate orbitals since in the same 
orbital they must have paired spins. Thus we are justified in writing the electronic structures of 
carbon, nitrogen, and oxygen as in Table 5.2.  

If now one of the 2p electrons of carbon is promoted to the 3p state we have the config- 
uration 1 ~ ~ 2 ~ ~ 2 ~ 3 ~ .  This is an excited state in which the p electrons are non-equivalent. The 
interested student should show, by the method of Table 5.3, that six different term symbols can 
be found for this configuration, that is IS, I P ,  I D ,  3 ~ ,  3 ~ ,  and 3 ~ .  In this case, since nl # n2, 
neither the Pauli principle nor the principle of indistinguishability offers restrictions to I,  and s, 
values, and hence more terms result. 

For non-equivalent electrons, however, it is simpler to deal directly with L  and S  values. 
Thus we have sl + s2 = 1 or 0 depending upon whether the electron spins are parallel or 
opposed, while for 1, = l2 = 1 we can have L  = 2 ,  1 or 0 .  We can then tabulate L, S, and J 
directly, together with their term symbols: 

L S J Term symbol 

and we arrive at the six states listed previously. Note that this direct method is not applicable to 
equivalent electrons because summation of 1 to give L  implies that all I, are allowed: this, we 
have seen, is not true when the electrons are equivalent. 

Many other electronic configurations occur, both for carbon and other atoms, in which two 
or more equivalent electrons contribute to the total energy. We shall not discuss these further, 
however, except to state that their total energies and term symbols may be discovered by the 
same process as exemplified above for 2p2 electrons. 

We can, however,. now conveniently discuss rather more fully the operation of the helium- 
neon laser which was mentioned briefly in Sec. 1.10. This is an example of a continuous laser; by 
means of an electric discharge the helium atoms in a mixture of helium and neon are excited and 
ionized. Those which are excited into singlet states decay by emitting radiation until they arrive 
in the ground state once more, ready for re-excitation; those excited to triplet states, however 
(see Fig. 5.1 l ) ,  can decay only as far as the 1.92s 'sI state, which is metastable, since the selection 
rule AS = 0 prevents its reversion to the ground Is2 ISo state. The ls2s 3 S I  state is about 
160 000 cm-' above the ground state. 



Turning now to the other component of the mixture, neon, this has a ground state config- 
uration ls22s22p6 ISo; it happens that one of its excited states, the ls22s22p54s', where one of the 
2p electrons has been promoted to the 4s orbital, is very nearly 160 000 cm-' above the ground 
state, so collisions between excited helium atoms and ground state neon atoms can result in a 
resonance exchange of energy: 

He* + Ne + He + Ne* 

Thus the electric discharge essentially pumps neon atoms into an excited state. This state can 
undergo spontaneous decay to lower singlet states, but here the induced decay is quite important 
and, if radiation of about 8700cmp' is present, the decay to ls'2s22p53pl is induced, while 
radiation of 15 800cm-I results in decay to 1~~2s"~~3s l - - i t  is this latter which gives the usual 
632.8 nm radiation from this laser. 

The presence of radiation of the appropriate frequency is ensured by keeping the helium- 
neon mixture at low pressure in a tube placed between a pair of highly efficient mirrors. Thus 
the majority of the radiation is repeatedly reflected up and down the tube, and it is only the one 
per cent or so which 'escapes' through the mirrors that constitutes the useful output from the 
laser. Nonetheless, because all the available power is concentrated into a very narrow, highly 
monochromatic, and coherent beam, these lasers are increasingly used as sources of light and 
power. 

5.5 PHOTOELECTRON SPECTROSCOPY 

Photoelectron spectroscopy (PES) is an excellent technique for probing atomic and molecular 
electronic energy levels. When an atom or molecule is subjected to high-energy radiation, 
photons in the radiation collide with and eject electrons from atoms, leaving behind ions. 
Ejected electrons depart with different velocities and photoelectron spectroscopy measures the 
velocity distribution of the released electrons. In this section we describe the technique generally 
and concentrate on its effect on individual atoms (either alone or in a molecule); we shall 
consider in Chapter 6 (Sec. 6.5) features arising from the vibration of molecules undergoing 
ionization by PES and the effect of chemical bonding. 

The process involved in photoelectron spectroscopy is sketched in Fig. 5.13, where we depict 
a few electrons (shown as circles) in some of the energy levels of an atom. Each electron is held 
in place by the nucleus with a characteristic binding energ.v-a term used in this context in 
preference to ionization potential which is usually taken to mean the least energy required to 
remove an electron from the atom, i.e. the energy needed to remove an electron from the highest 
occupied atomic orbital. For PES we must consider removing an electron from any orbital- 
hence the use of the term binding energy. A photon (depicted as a wave with a particular energy 
hv) is seen arriving from the left of Fig. 5.13 and colliding with an electron. The energy of the 
photon is imparted to the electron and, if this energy is greater than the binding energy, the 
electron will leave the atom and carry with it the excess energy-thus it will have a certain 
kinetic energy (and velocity). Clearly the total energy must be conserved, so we have: 

hv = binding energy + kinetic energy 

or Binding energy = hv - kinetic energy (5.26) 

and it follows that, provided we know the energy of the monochromatic exciting radiation, we 
can measure the binding energies of electrons in the atom under examination by observing the 
kinetic energies with which they leave. 
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Figure 5.13 The principle of photoelectron spectroscopy 

Electrons can be ejected from either the core or the valence levels of the atom, depending on 
the energy of the exciting radiation, and their kinetic energies are characteristic of the atom from 
which they have been emitted. If the atom is part of a molecule, the energy of its valence 
electrons (and, to a much lesser extent, its core electrons) will be modified by the bonding, 
but are nonetheless characteristic of the orbital in question. 

When ionization occurs the kinetic energy acquired by the emitted electrons is not quan- 
tized, so that any incident energy higher than the ionization energy can be used for excitation. 
Experimentally a monochromatic radiation source is ideal or one with only a few sharp emission 
frequencies. A helium lamp (emission wavelength 58.4 nm in the ultra-violet region, which has 
an equivalent photon energy of 21.2 eV) is commonly used for excitation of valence electrons, 
and the technique is then referred to as ultra-violet photoelectron spectroscopy, or UPES. A 
higher energy is required to ionize inner core electrons, however, for which an X-ray source is 
suitable; the technique is then called X-ray photoelectron spectroscopy (or XPES). In this case the 
X-ray beam is produced by electron bombardment of a clean metal target, such as A1 or Mg, 
resulting in the emission of radiation at very specific energies; e.g. the k ,  line for A1 occurs at 
1486.6eV. If a very high intensity source is required, synchrotron radiation can be used (see 
Chapter 1, Sec. 1.1 l), which has the further advantage that its emission frequency can be tuned 
over a range. 

Experimentally, the detection of electrons must be carried out in a high vacuum, as elec- 
trons are chemically active. There are no known window materials for He lamp sources, and so 
the lamp is usually mounted in a chamber which has a small hole into the sample compartment 
through which the emitted radiation can pass; continuous pumping maintains the high vacuum 
as helium leaks slowly through the hole. Obviously, the requirement for high vacuum means 
that measurements on solid samples are far easier than those on liquids and gases. However, 
modifications such as the use of flow techniques have ensured that a useful body of data has 
been obtained for the latter. 

Figure 5.14 shows the binding energies of electrons in the energy levels of three different 
elements. The !evels are labelled with their term symbols (Is, 2p, etc.) and with the X-ray 
notation which is sometimes used in PES. In this notation the levels are given letters correspond- 
ing to their shell: 

For n = 1 2 3 4 . . . ,  etc. 

X-ray notation K L M N . . . , etc. 



L Is (X) 
Figure 5.14 Binding energies of electrons in the free atoms of hydrogen, lithium, and fluorine; the X-ray notation for 
each level is also shown. 

If necessary, a subscript denotes the sublevel from which the electron is ejected. The following 
examples show both notations for a few selected states: 

Termsymbol 'So 2 ~ o  2 ~ 1 1 2  2 ~ 3 1 2  
X-ray notation K L I  L2 L3 

In both XPES and UPES the kinetic energy of the ejected electrons is measured using a 
hemispherical analyser such as that shown in Fig. 5.15. Monochromatic X-ray or ultra-violet 

Figure 5.15 Schematic diagram of a photoelectron spectrometer. 



radiation falls on the sample and ejected electrons pass between a pair of electrically charged 
hemispherical plates which act as an energy filter, allowing electrons of only a particular kinetic 
energy to pass through-the pass energy, E,,,,. The resulting electron current, measured by an 
electron multiplier, indicates the number of electrons ejected from the surface with that kinetic 
energy. E,,,, can be systematically varied by changing the retarding voltage ( V R )  applied to the 
analyser. Thus a photoelectron spectrum is a plot of the number of electrons emitted against 
their kinetic energy. 

Figure 5.16 shows part of the XPES and UPES spectra of argon with an illustration of the 
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Figure 5.16 ( a )  The X-ray and (h )  the ultra-violet photoelectron spectra of gaseous argon. ( c )  The energy levels of 
the states from which the spectra in ( a )  and (h)  arise. 



associated levels. A number of peaks are observed which are characteristic of the Ar+ resulting 
from the removal of a single electron from each of the different levels. For example, an electron 
removed from the 2p orbital leaves behind a 1 ~ ~ 2 ~ ~ 2 ~ ~ 3 ~ ~ 3 ~ ~  configuration which, because of the 
possible combinations of I and s values, results in two slightly different energy states, 2 ~ 3 1 2  and 
2 ~ 1 1 2 .  Of these, the 2 ~ 3 / 2  is slightly higher in energy and so, when this state is formed, the 
electron leaving carries with it slightly less kinetic energy. This j-splitting can be seen to give rise 
to two well-resolved peaks in the spectrum. 

The probability of ejecting an electron from a particular energy level will obviously depend 
on the number of electrons originally in that level, i.e. on its degeneracy. Under ideal operating 
conditions, the area under a PES peak is a measure of that degeneracy. Comparison of the total 
areas under the peaks resulting from excitation of the 3s and 2p electrons in Fig. 5.16 shows a 
ratio of about 1:3, as expected (two electrons in 3s and six in 2p). It is also evident from the 
250eV peak that there is twice the chance of forming an ion in the 2 ~ 3 1 2  state compared to ion 
formation in the 2 ~ 1 1 2  state; this is because each level has a degeneracy of 2 J  + 1, which is four 
for the 2 ~ 3 1 2  state and two for 2 ~ l 1 2 .  

5.6 THE ZEEMAN EFFECT 

We have been concerned in this chapter with two sorts of electronic energy. Firstly, there is 
energy ofposition-nergy arising by virtue of interaction between electrons and the nucleus and 
between electrons and other electrons in the same atom. This energy can be described in terms of 
the n and 1 quantum numbers, although we have discussed it, rather less precisely, by drawing 
energy-level diagrams. Secondly, there is energy of motion-nergy arising from the summed 
orbital and spin momenta of the electrons in the atom which depends on the I, and s; values of 
each electron and the way in which these are coupled. This gives rise to the fine structure of 
spectroscopic lines discussed earlier. 

Angular momentum can be considered as arising from a physical movement of electrons 
about the nucleus and, since electrons are charged, such motion constitutes a circulating electric 
current and hence a magnetic field. This field can, indeed, be detected, and it is its interaction 
with exterior fields which is the subject of this section. 

We can represent the angular momentum field by a vector p-the magnetic dipole of the 
atom-and it is readily shown that p is directly proportional to the angular momentum J and has 
the same direction. If the electron is considered as a point of mass m and charge e, then we have: 

(Here we use the SI unit of magnetic field, the tesla (T), which is equivalent to 10000 gauss in 
electromagnetic units.) However, quantum mechanics indicates that the electron is not a point 
charge and a more exact expression for p is: 

where g is a purely numerical factor, called the Lande splitting factor. This factor depends on 
the state of the electrons in the atom and is given by: 

In general g lies between 0 and 2. 



We now recall (cf. Eq. (5.13) for one electron) that J can have either integral or half-integral 
components Jz along a reference direction, depending upon whether the quantum number J is 
integral or half-integral. Figure 5.17(a) shows this for a state with J = i, the 2 J  + 1 components 
being given in general by: 

Further, since p is proportional to J, p will also have components in the z direction which are 
given by: 

These are shown diagrammatically in Fig. 5.17(b). If now an external field is applied to the 
atom, thus specifying the previously arbitrary z direction, the atomic dipole p will interact with 
the applied field to an extent depending on its component in the field direction. If the strength of 
the applied field is Bz then the extent of the interaction is simply p,B,: 

In this equation we have expressed the interaction as AE since the application of the field splits 
the originally degenerate energy levels corresponding to the 2 J +  1 values of Jz into 2 J +  1 
different energy levels. This is shown for J = $ in Fig. 5.17(c). It is this splitting, or lifting of 
the degeneracy on the application of an external magnetic field, which is called the Zeeman 
effect after its discoverer. 

The energy splitting is very small; the factor he/41rm in Eq. (5.31), known as the Bohr 
magneton, has a value of 9.27 x J T p l ;  thus for g = 1, and for an applied field B, of one 
tesla (that is 10000 gauss), the interaction energy is only some joules, which in turn is of 
the order of 0.5cm-'. This small splitting is, of course, reflected in a splitting of the spectral 
transitions observed when a magnetic field is applied to an atom. In order to discuss the effect 
on the spectrum we need one further selection rule: 

AJ, = 0, & I  

Let us consider the doublet lines in the sodium spectrum produced, as we have discussed in 
Sec. 5.3.2, by transitions between the 2 ~ 1 1 2  states and the 2 ~ 1 1 2  and 2P312 states. When a field B, 
is applied to the atom, the 2 ~ 1 1 2  and 2 ~ 1 1 2  states are both split into two (since 
J =  i, 2 J +  1 = 2), while the 2 ~ 3 1 2  is split into four. The extent of the splitting (Eq. (5.31)) is 
proportional to the g factor in each state and, from Eq. (5.28), we can easily calculate: 

2 
Sl12: S = L  = 0, J = 4 , hence g = 2 2 '  

2 Pl12: s=;, L =  1, J= ; ,  henceg=$ 

2 P312: S = i ,  L =  1, J = i ,  henceg= 11 3 

and we see that the 2 ~ 1 1 2 ,  PIl2, and 2 ~ 3 1 2  levels are split in the ratio of 3 : 1 : 2. We show the 
situation in Fig. 5.18. On the left of the figure we see the energy levels and transitions before the 
field B, is applied; the levels are unsplit and the spectrum is a simple doublet. On the right we see 
the effect of the applied field. The spectrum shows that the original line due to the *sll2 4 2 ~ 1 1 2  

transition disappears and is replaced by ,four new lines, while the 2 ~ 1 1 2  + 2 ~ 3 / 2  transition is 
replaced by six new lines. 

The effect described above is usually referred to as the anomalous Zeeman effect-although, 
in fact, most atoms show the effect in this form. The normal Zeeman effect applies to transitions 
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Figure 5.18 The Zeeman effect on transitions between ? S  and ?P states. The situation before the field is applied is 
shown on the left, that after on the right. 

between singlet states only (e.g. the transitions of electrons in the helium atom shown on the left 
of Fig. 5.1 1). For singlet states we have: 

2s + 1 = 1 hence S = 0 

Therefore: 

J = L and g = 1 (cf. Eq. (5.28)) 

Thus the splitting between all singlet levels is identical for a given applied field and the corre- 
sponding Zeeman spectrum is considerably simplified. 

In general, the Zeeman effect can give very useful information about the electronic states of 
atoms. In the first place, the number of lines into which each transition becomes split when a 
field is applied depends on the J value of the states between which transitions arise. Next the g 
value, deduced from the splitting for a known applied field, gives information about the L and S 
values of the electron undergoing transitions. Overall, then, the term symbols for various atomic 
states can be deduced by Zeeman experiments. In this way all the details of atomic states, term 
symbols, etc., discussed above, have been amply confirmed experimentally. 

5.7 THE INFLUENCE OF NUCLEAR SPIN 

The nuclei of many atoms are known to be spinning about an axis. We shall discuss at some 
length in Chapter 7 the spectrum which this spin may give rise to in the radiofrequency region, 



but it is pertinent here to consider very briefly what effect such spin may have on the electronic 
spectra of atoms. 

The nuclear spin quantum number I may be zero, integral, or half-integral depending on the 
particular nucleus considered. Thus the nuclear angular momentum, given by 

can have values 0, &@, &', m, etc. 
The effect of I on the spectrum can be understood if we define the total momentum 

(electronic + nuclear) of an atom by F: 

F = d~(~s-1) 1 = units (5.33) 
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where F is the total momentum quantum number. If, as before, J is the total electronic quantum 
number, then we may write 

F = J + I ,  J + I -  1, . . .  I J - I 1  (5.34) 

thus giving 2 J  + 1 or 21 + 1 different energy states, whichever is the less. 
The energy-level splitting due to nuclear spin is of the order of that due to electron 

spin; thus extremely fine resolving power is necessary for its observation and it is normally 
referred to as hyperfine structure. 

5.8 CONCLUSION 

This completes all we have to say about atomic spectroscopy. In the next chapter we extend the 
ideas introduced here to cover the electronic spectra of simple molecules, and we shall briefly 
discuss the techniques of electronic spectroscopy. 
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PROBLEMS 

(Useful constants: R = 109 677.581 c m '  ; 1 cm-' = 1 1.958 J m o l l  .) 

5.1 Calculate the first three lines in the absorption spectrum arising from transitions from the 3s level of 
the hydrogen atom. What is the ionization energy of this level? 

5.2 The term symbol for a particular atomic state is quoted as 4D512.  What are the values of L. S, and J 
for this state? What is the minimum number of electrons which could give rise to this? Suggest a possible 
electronic configuration. 

5.3 What are the term symbols for the following pairs of non-equivalent electrons: (a) ss, ( h )  pp, (c )  sd 
and (4 pa? 



5.4 What are the term symbols for the following pairs of equivalent electrons: (a) s2, (6) p2, and (c) d2? 

5.5 The term symbols for particular states of three different atoms are quoted as 4SI, ' ~ ~ ~ 2 ,  and 'PI; 
explain why these are erroneous. 

5.6 Figure 5.7 shows the three transitions arising between 2P and 2 D  states. Into how many lines would 
each of these transitions split if a magnetic field were applied? (Assume that the g-value is different for each 
energy level.) 

5.7 The ground state electron configuration of phosphorus is 1 ~ ~ 2 ~ ~ 2 ~ ~ 3 ~ ~ 3 ~ ~ .  Ignoring spin-orbit 
coupling, find the terms for this state and identify that which is lowest in energy. 

5.8 Work out the lowest energy terms for the following atoms, including spin-orbit coupling (the 
essential part of the electron configuration is given in brackets): 

5.9 What are the electron configurations for the ground state and first excited state of the T1+ ion? List 
the terms which arise from each of these configurations, including spin-orbit coupling. Place the levels in 
order of increasing energy. The observed energies of the lowest four levels are: 

(a) zero (by convention); (b) 49 45 1 cm-I; 
(c) 52 393 cm-' ( 4  61 725 cm-I. 

According to the Russell-Saunders coupling scheme, the energy separation between adjacent spin-orbit 
coupling levels from a given term should be 1 times the larger value of J (e.g. 31 between levels with J = 2 
and J = 3), where 1 is the spin-orbit coupling constant. On this basis, what would you expect the relative 
sizes of the energy gaps (b)-(c) and (c)-(4 to be, and why? 



CHAPTER 

SIX 
ELECTRONIC SPECTROSCOPY OF MOLECULES 

In the first section of this chapter we shall discuss, in some detail, the electronic spectra of 
diatomic molecules. We shall find that the overall appearance of such spectra can be considered 
without assuming any knowledge of molecular structure, without reference to any particular 
electronic transition, and, indeed, with little more than a formal understanding of the nature of 
electronic transitions within molecules. In Sec. 6.2 we shall summarize modern ideas of molec- 
ular structure and show how these lead to a classification of electronic states analogous to the 
classification of atomic states discussed in the previous chapter. Section 6.3 will extend the ideas 
of Secs 6.1 and 6.2 to polyatomic molecules and Sec. 6.4 will deal briefly with experimental 
techniques. Section 6.5 discusses the application of photoelectron spectroscopy to molecular 
species. 

6.1 ELECTRONIC SPECTRA OF DIATOMIC MOLECULES 

6.1.1 The Born-Oppenheimer Approximation 

As a first approach to the electronic spectra of diatomic molecules we may use the Born- 
Oppenheimer approximation previously mentioned in Sec. 3.2; in the present context this 
may be written: 

which implies that the electronic, vibrational, and rotational energies of a molecule are com- 
pletely independent of each other. We shall see later to what extent this approximation is 
invalid. A change in the total energy of a molecule may then be written: 



The approximate orders of magnitude of these changes are: 

and so we see that vibrational changes will produce a 'coarse structure' and rotational changes a 
'fine structure' on the spectra of electronic transitions. We should also note that whereas pure 
rotation spectra (Chapter 2) are shown only by molecules possessing a permanent electric dipole 
moment and vibrational spectra (Chapter 3) require a change of dipole during the motion, 
electronic spectra are given by all molecules since changes in the electron distribution in a 
molecule are always accompanied by a dipole change. This means that homonuclear molecules 
(for example H2 or N2), which show no rotation or vibration-rotation spectra, do give an 
electronic spectrum and show vibrational and rotational structure in their spectra from which 
rotational constants and bond vibration frequencies may be derived. 

Initially we shall ignore rotational fine structure and discuss the appearance of the vibra- 
tional coarse structure of spectra. 

6.1.2 Vibrational Coarse Structure: Progressions 

Ignoring rotational changes means that we rewrite Eq. (6.1) as 

Etotal = Eelec. + Evib. J 

From Eq. (3.12) we can write immediately: 

The energy levels of this equation are shown in Fig. 6.1 for two arbitrary values of As in 
previous chapters the lower states are distinguished by a double prime (v", &diec,), while the 
upper states carry only a single prime (v', E:~,,,). Note that such a diagram cannot show 
correctly the relative separations between levels of different E,I,,., on the one hand, and those 
with different v' or v", on the other (cf. Eq. (6.3)), but that the spacing between the upper 
vibrational levels is deliberately shown to be rather smaller than that between the lower; this is 
the normal situation since an excited electronic state usually corresponds to a weaker bond in 
the molecule and hence a smaller vibrational wavenumber G,. 

There is essentially no selection rule for v when a molecule undergoes an electronic transi- 
tion, i.e. every transition v" -, v' has some probability, and a great many spectral lines would, 
therefore, be expected. However, the situation is considerably simplified if the absorption 
spectrum is considered from the electronic ground state. In this case, as we have seen in Sec. 
3.1.3, virtually all the molecules exist in the lowest vibrational state, that is v" = 0, and so the 
only transitions to be observed with appreciable intensity are those indicated in Fig. 6.1. These 
are conventionally labelled according to their (v', v") numbers (note: upper state first), that is 
(0, O), (1, O), (2, O), etc. Such a set of transitions is called a band since, under low resolution, each 
line of the set appears somewhat broad and diffuse, and is more particularly called a v' 
progression, since the value of v' increases by unity for each line in the set. The diagram 
shows that the lines in a band crowd together more closely at high frequencies; this is a direct 
consequence of the anharmonicity of the upper state vibration which causes the excited vibra- 
tional levels to converge. 

An analytical expression can easily be written for this spectrum. From Eq. (6.5) we have 
immediately: 



Figure 6.1 The vibrational 'coarse' structure of the band formed during electronic absorption from the ground 
(v" = 0) state to a higher state. 

Therefore 

and, provided some half-dozen lines can be observed in the band, values for a,', xi, a:, and x:, 
as well as the separation between electronic states, (E' - E " ) ,  can be calculated. Thus the 
observation of a band spectrum leads not only to values of the vibrational frequency and 
anharmonicity constant in the ground state (G: and xf), but also to these parameters in the 
excited electronic state (G,' and xi). This latter information is particularly valuable since such 
excited states may be extremely unstable and the molecule may exist in them for very short 
times; nonetheless, the band spectrum can tell us a great deal about the bond strength of such 
species. 

We shall see later that molecules normally have many excited electronic energy levels, so 
that the whole absorption spectrum of a diatomic molecule will be more complicated than Fig. 
6.1 suggests: the ground state can usually undergo a transition to several excited states, and each 
such transition will be accompanied by a band spectrum similar to Fig. 6.1. 

Further, in emission spectra the previously excited molecule may be in one of a large number 
of available (E', v') states, and has a similar multitude of (E", v") states to which it may revert. 
Thus emission spectra are usually extremely complicated, and a great deal of care and patience 
is needed for a complete analysis. 

6.1.3 Intensity of Vibrational-Electronic Spectra: the Franck-Condon Principle 

Although quantum mechanics imposes no restrictions on the change in the vibrational quantum 
number during an electronic transition, the vibrational lines in a progression are not all 



observed to be of the same intensity. In some spectra the (0, 0) transition is the strongest, in 
others the intensity increases to a maximum at some value of v', while in yet others only a few 
vibrational lines with high v '  are seen, followed by a continuum. All these types of spectrum are 
readily explicable in terms of the Franck-Condon principle which states that an electronic 
transition takes place so rapidly that a vibrating molecule does not change its internuclear distance 
appreciably during the transition. 

We have already seen in Chapter 3 how the energy of a diatomic molecule varies with 
internuclear distance (cf. Fig. 3.3). We recall that this figure, the Morse curve, represents the 
energy when one atom is considered fixed on the r = 0 axis and the other is allowed to oscillate 
between the limits of the curve. Classical theory would suggest that the oscillating atom would 
spend most of its time on the curve at the turning point of its motion, since it is moving most 
slowly there; quantum theory, while agreeing with this view for high values of the vibrational 
quantum number, shows that for v = 0 the atom is most likely to be found at the centre of its 
motion, i.e. at the equilibrium internuclear distance re,,. For v = 1, 2, 3, . . . the most probable 
positions steadily approach the extremities until, for high v, the quanta1 and classical pictures 
merge. This behaviour is shown in Fig. 6.2 where we plot the probability distribution in each 
vibrational state against internuclear distance. Those who have studied quantum mechanics will 
realize that Fig. 6.2 shows the variation of $2 with internuclear distance, where $ is the 
vibrational wave function. 

If a diatomic molecule undergoes a transition into an upper electronic state in which the 
excited molecule is stable with respect to dissociation into its atoms, then we can represent the 
upper state by a Morse curve similar in outline to that of the ground electronic state. There will 
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Figure 6.2 The probability distribution for a diatomic molecule according to the quantum theory. The nuclei are 
most likely to be found at distances apart given by the maxima of the curve for each vibrational state. 



probably (but not necessarily) be differences in such parameters as vibrational frequency, 
equilibrium internuclear distance, or dissociation energy between the two states, but this simply 
means that we should consider each excited molecule as a new, but rather similar, molecule with 
a different, but also rather similar, Morse curve. 

Figure 6.3 shows four possibilities. In Fig. 6.3(a) we show the upper electronic state having 
the same equilibrium internuclear distance as the lower. Now the Franck-Condon principle 
suggests that a transition occurs vertically on this diagram, since the internuclear distance does 
not change, and so if we consider the molecule to be initially in the ground state both electron- 
ically (&") and vibrationally (v" = 0), then the most probable transition is that indicated by the 
vertical line in Fig. 6.3(a). Thus the strongest spectral line of the v" = 0 progression will be the 
(0, 0). However, the quantum theory only says that the probability of finding the oscillating 
atom is greatest at the equilibrium distance in the v = 0 state-it allows some, although small, 
chance of the atom being near the extremities of its vibrational motion. Hence there is some 
chance of the transition starting from the ends of the v" = 0 state and finishing in the v' = 1,2, 
etc., states. The (1, O), (2, O), etc., lines diminish rapidly in intensity, however, as shown at the 
foot of Fig. 6.3(a). 

In Fig. 6.3(b) we show the case where the excited electronic state has a slightly smaller 
internuclear separation than the ground state. A vertical transition from the v" = 0 level will be 
most likely to occur into the upper vibrational state v' = 2, transitions to lower and higher v' 
states being less likely; in general the upper state most probably reached will depend on the 
difference between the equilibrium separations in the lower and upper states. In Fig. 6.3(c), the 
excited electronic state has a slightly larger internuclear separation than the ground state, but 
the resulting transitions and spectrum are similar (however, see Sec. 6.5). 

Figure 6.3 The operation of the Franck-Condon principle for ( a )  internuclear distances equal in the upper and lower 
states. (h )  upper state internuclear distance a little less than that in the lower state, (c) upper state distance a little 
greater than in the lower, and (4 upper state distance considerably greater. 



In Fig. 6.3(d) the upper state separation is drawn as considerably greater than that in the 
lower state and we see that, firstly, the vibrational level to which a transition takes place has a 
high v' value. Further, transitions can now occur to a state where the excited molecule has 
energy in excess of its own dissociation energy. From such states the molecule will dissociate 
without any vibrations and, since the atoms which are formed may take up any value of kinetic 
energy, the transitions are not quantized and a continuum results. This is shown at the foot of 
the figure. We consider the phenomenon of dissociation more fully in the next section. 

The situation is rather more complex for emission spectra and for absorption from an 
excited vibrational state, for now transitions take place from both ends of the vibrational limits 
with equal probability; hence each progression will show two maxima which will coincide only if 
the equilibrium separations are the same in both states. 

6.1.4 Dissociation Energy and Dissociation Products 

Figure 6.4(a) and (b) shows two of the ways in which electronic excitation can lead to dissocia- 
tion (a third way called predissociation will be considered in Sec. 6.1.7). Figure 6.4(a) represents 
the case, previously discussed, where the equilibrium nuclear separation in the upper state is 
considerably greater than that in the lower. The dashed line limits of the Morse curves represent 
the dissociation of the normal and excited molecule into atoms, the dissociation energies being 
D[ and Di from the v = 0 state in each case. We see that the total energy of the dissociation 
products (i.e. atoms) from the upper state is greater by an amount called Eex. than that of the 
products of dissociation in the lower state. This energy is the excitation energy of one (or rarely 
both) of the atoms produced on dissociation. 

We saw in the previous section that the spectrum of this system consists of some vibrational 
transitions (quantized) followed by a continuum (non-quantized transitions) representing dis- 
sociation. The lower wavenumber limit of this continuum must represent just sufficient energy 
to cause dissociation and no more (i.e. the dissociation products separate with virtually zero 
kinetic energy) and thus we have 

Figure 6.4 Illustrating dissociation by excitation into (a) a stable upper state and (h)  a continuous upper state. 



and we see that we can measure Dl, the dissociation energy, if we know E,,,, the excitation 
energy of the products, whatever they may be. Now, although the excitation energy of atoms to 
various electronic states is readily measurable by atomic spectroscopy (cf. Chapter 5), the 
precise state of dissociation products is not always obvious. There are several ways in which 
the total energy Dl + E,,. may be separated into its components, however; here we shall 
mention just two. 

Firstly, thermochemical studies often lead to an approximate value of Dl and hence, since 
D: + E,,. is accurately measurable spectroscopically, a rough value for E,,. is obtained. When 
the spectrum of the atomic products is studied, it usually happens that only one value of 
excitation energy corresponds at all well with E,,,. Thus the state of the products is known, 
E,,, measured accurately, and a precise value of Dl deduced. 

Secondly, if more than one spectroscopic dissociation limit is found, corresponding to 
dissociation into two or more different states of products with different excitation energies, 
the separations between the excitation energies are often found to correspond closely with the 
separations between only one set of excited states of the atoms observed spectroscopically. Thus 
the nature of the excited products and their energies are immediately known. 

In Fig. 6.4(b) we illustrate the case in which the upper electronic state is unstable: there is no 
minimum in the energy curve and, as soon as a molecule is raised to this state by excitation, the 
molecule dissociates into products with total excitation energy E,,,. The products fly apart with 
kinetic energy Ekinetic which represents (as shown on the figure) the excess energy in the final 
state above that needed just to dissociate the molecule. Since Eklnetic is not quantized the whole 
spectrum for this system will exhibit a continuum, the lower limit of which (if observable) will be 
precisely the energy D{ + E,,,. As before, if E,, can be found from a knowledge of the 
dissociation products, Dl can be measured with great accuracy. 

We shall see in Sec. 6.2.2 what sort of circumstances lead to the minimum in the upper state 
(Fig. 6.4(a)), on the one hand, or the continuous upper state (Fig. 6.4(b)), on the other. 

In many electronic spectra no continua appear at all-the internuclear distances in the 
upper and lower states are such that transitions near to the dissociation limit are of negligible 
probability-but it is still possible to derive a value for the dissociation energy by noting how 
the vibrational lines converge. We have already seen in Chapter 3 (cf. Eq. (3.12)) that the 
vibrational energy levels may be written: 

And so the separation between neighbouring levels, AE, is plainly: 

This separation obviously decreases linearly with increasing v and the dissociation limit is 
reached when AE -+ 0. Thus the maximum value of v is given by v,,,,, where: 

We recall that the anharmonicity constant, x,, is of the order of hence v,,,. is about 50. 
We saw in Sec. 3.1.3 that two vibrational transitions (in the infra-red) were sufficient to 

determine x, and Go. Thus, an example given there for HCI yielded a, = 2990cm-I, 



x, = 0.0174. From Eq. (6.10) we calculate v,,,. = 27.74 and the next lowest integer is v = 27. 
Replacing u = 27, a, = 2990cm-I, and x, = 0.0174 into Eq. (6.8) gives the maximum value of 
the vibrational energy as 42 890cm-' or 513.0k~mol-'. This is to be compared with a more 
accurate value of 427.2 kJ mol-I evaluated thermochemically. 

The discrepancy between these two figures arises from two causes. Firstly, the infra-red data 
only allow us to consider two or three vibrational transitions (the fundamental plus the first and 
second overtones). The electronic spectrum, as we have seen, shows many more vibrational lines 
(in fact the number is limited not by quantum restrictions but by the Franck-Condon principle) 
and we shall get a better value of D{ if we make use of these extra data. Secondly, we have 
assumed that Eq. (6.8) applies exactly even at high values of v ;  this is not true because cubic and 
even quartic terms become important at this stage. Because of these, A& decreases more rapidly 
than Eq. (6.9) suggests. 

Both these points may be met if we plot the separation between vibrational transitions, AE, 
as observed in the electronic spectrum, against the vibrational quantum number. Initially, Eq. 
(6.9) will apply quite accurately and the graph will be a straight line which may be extrapolated 
either to find v,,,. or, since the dissociation energy itself is simply the sum of all the increments 
AE from v = 0 to v = v,,,., the area under the A& versus v graph gives this energy directly. Such 
a linear extrapolation was first suggested by Birge and Sponer and is usually given their name. 

On the other hand, if extensive data are available about a set of electronic-vibration 
transitions, the graph of AE versus v will, at high v, begin to fall off more sharply as cubic 
and quartic terms become significant. In this case the most accurate determination of dissocia- 
tion energy is obtained by extrapolating the smooth curve and finding the area beneath it. 
Figure 6.5 shows this process for data on iodine vapour given by R. D. Verma. 

Figure 6.5 Birge-Sponer extrapolation to determine the dissociation energy of the iodine molecule, I?. (Taken,f'rom 
the data of' R. D. Varma, J .  Chem. Phys., 32, p. 738, 1960, by kindpc~rniission o f ' / l ~e  author.) 



In absorption spectra it is normally the series of lines originating at v" = 0 which is 
observed (cf. Fig. 6.1). Thus the convergence of the levels in the upper state and hence the 
dissociation energy of that state is normally found. While this in itself is of great interest, 
particularly since molecules in excited states usually revert to the ground state within fractions 
of a microsecond, the dissociation energy in the ground state can be found quite easily provided 
that, as before, the dissociation products and their excitation energy are known. Thus, in Fig. 
6.4(a), if we know Ee,, (from atomic spectroscopy) and Di (from Birge-Sponer extrapolation), 
and if we can measure the energy of the (0,O) transition either directly or by calculation from the 
observed energy levels, we have: 

D{ = energy of (0, 0) + DA - Ee,. cm-' (6.1 1) 

6.1.5 Rotational Fine Structure of Electronic-Vibration Transitions 

So far we have seen that the electronic spectrum of a diatomic molecule consists of one or more 
series of convergent lines constituting the vibrational coarse structure on each electronic transi- 
tion. Normally each of these 'lines' is observed to be broad and diffuse or, if the resolution is 
sufficiently good, each appears as a cluster of many very close lines. This is, of course, the 
rotational fine structure. 

To a very good approximation we can ignore centrifugal distortion and we have the energy 
levels of a rotating diatomic molecule (cf. Eqs (2.1 1) and (2.12)) as: 

where I is the moment of inertia, B  the rotational constant, and J the rotational quantum 
number. Thus, by the Born-Oppenheimer approximation, the total energy (excluding kinetic 
of translation) of a diatomic molecule is: 

Changes in the total energy may be written: 

and the wavenumber of a spectroscopic line corresponding to such a change becomes simply: 

where we write V(,II , , IO to represent the wavenumber of an electronic-vibrational transition. This 
plainly corresponds to any one of the transitions, for example (0, 0) or (1, O), etc., considered in 
previous sections. Here we are mainly concerned with A { B J ( J +  1)). 

The selection rule for J  depends upon the type of electronic transition undergone by the 
molecule. We shall discuss these in more detail in Sec. 6.2.2; for the moment we must simply 
state that if both the upper and lower electronic states are lC states (i.e. states in which there is 
no electronic angular momentum about the internuclear axis), this selection rule is: 

A J  = k 1  only for 'C  --+ 'C transitions (6.16) 

whereas for all other transitions (i.e. provided either the upper or the lower states (or both) have 
angular momentum about the bond axis) the selection rule becomes: 



For this latter case there is the added restriction that a state with J = 0 cannot undergo a 
transition to another J = 0 state: 

J = O +  J = O  (6.18) 

Thus we see that for transitions between 'C states, only P and R branches will occur, while for 
other transitions Q branches will appear in addition. 

We can expand Eq. (6.15) as follows: 

where B' and J' refer to the upper electronic state, B" and J" to the lower. When we considered 
vibration-rotational spectra in Chapter 3, we saw (cf. Sec. 3.4) that the difference between B 
values in different vibrational levels was very small and could be ignored except in explaining 
finer details of the spectra. However, this is by no means the case in electronic spectroscopy: 
here we have seen, when discussing the Franck-Condon principle in Sec. 6.1.3, that equilibrium 
internuclear distances in the lower and upper electronic states may differ considerably, in which 
case the moments of inertia, and hence B values, in the two states will also differ. We cannot say 
a priori which of the two B values will be greater. Quite often the electron excited is one of those 
forming the bond between the nuclei; if this is so, the bond in the upper state will be weaker and 
probably longer (cf. Fig. 6.3(b) or (c)) so that the equilibrium moment of inertia increases during 
the transition and B decreases. Thus B' < B". The reverse is sometimes true, however, e.g. when 
the electron is excited from an antibonding orbital (see Sec. 6.2.2). 

We can discuss the rotational fine structure quite generally by applying the selection rules of 
Eqs (6.16), (6.17), and (6.18) to the expression for spectral lines, Eq. (6.19). We may note, in 
passing, that the treatment given here for the P and R branch lines is identical with that given in 
Sec. 3.4 for the vibration-rotation spectrum, except that there we were concerned with Bo and 
BI i.e. B values in lower and upper vibrational states. Here our concern is with B values in lower 
and upper electronic states, B" and B', and we also consider the formation of a Q branch. 

Taking the P, R, and Q branches in turn: 

AE = i i p  = V(, , , , t , )  - (B' + B1')(J' + 1) + (B' - B")(J' + 1)2 cm-I 

where J' = 0 ,  1, 2, . . .  

2. R branch: A J =  +1, J 1 =  J1'+ 1 

A E  = V R  = V ( , J , , ~ , )  + (B' + B")(J1' + 1 )  + (B' - B")(J1' + 1)2 cm-I 

where J1 '=  0 ,  1, 2, . . .  

These two equations can be combined into: 

V p , R  = P(v , ,u , , )  + (B' + B N ) m  + (B' - ~ " ) m ~  cm-I 

where m = f 1, k2, 

with positive m values comprising the R branch (i.e. corresponding to AJ = + l )  and negative 
values the P branch ( A J  = -1). Note that m cannot be zero (this would correspond in, for 
example, the P branch to J' = -1 which is impossible) so no line from the P and R branch 
appears at the band origin V ( , , , u l l ) .  We draw the appearance of the R and P branches sepa- 
rately in Fig. 6.6(a) and (b), respectively, taking a 10 per cent difference between the upper 
and lower B values and choosing B' < B". Note that, with this choice, P branch lines occur 
on the low wavenumber side of the band origin and the spacing between the lines increases 
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Figure 6.6 The rotational fine structure of a particular vibration-electronic transition for a diatomic molecule. The 
R, P, and Q branches are shown separately at  (a), (b) ,  and ( c ) ,  respectively, with the complete spectrum at  (d). 

with m. On the other hand the R branch appears on the high wavenumber of the origin and 
the line spacing decreases rapidly with m-so rapidly that the lines eventually reach a 
maximum wavenumber and then begin to return to low wavenumbers with increasing spa- 
cing.t It will be remembered that in Sec. 3.4, a similar decrease in spacing was observed in the 
R branch but this was much too slow for a convergence limit to be reached; the rapid 
convergence here is due simply to the magnitude of B' - B". The point at which the R 
branch separation decreases to zero is termed the band head. 
Q branch: AJ = 0, J' = J" 

A& = Ve = V ( U , , u T O  + (B' - B")J" + (B' - B")J"~ cmp' 
(6.21) 

where J" = 1, 2, 3, . . .  

Note that here J" = J' # 0 since we have the restriction shown in Eq. (6.18). Thus again no 
line will appear at the band origin. We sketch the Q branch in Fig. 6.6(c), again for B' < B" 
and a 10 per cent difference between the two. We see that the lines lie on the low wavenumber 
side of the origin and their spacing increases. The first few lines of this branch are not usually 
resolved. 

The complete rotational spectrum is shown in Fig. 6.6(d). We have seen in Sec. 2.3.2 that 
many rotational levels are populated even at room temperature; consequently a large number of 
the P and R (and Q, where appropriate) lines will appear in the spectrum with comparable 
intensity. The spectrum is usually dominated by the band head, since here several of the R 
branch lines crowd together; for this reason, the Q branch is not very apparent if it occurs. 

t The returning lines of the R branch coincide with earlier lines if Eq. (6.20(b) is obeyed exactly. For real molecules 
cubic and quartic terms become important at  high values of m. 



In the situation we have been discussing (B' < B"), the band head appears in the R branch 
on the high wavenumber side of the origin; such a band is said to be degraded (or shaded) 
towards the red-i.e. the tail of the band where the intensity falls off points towards the red (low- 
frequency) end of the spectrum. If, on the other hand, B' > B", then all our previous arguments 
are reversed. Briefly: (1) the Q branch spreads to high wavenumber, (2) the R branch (still, of 
course, on the high wavenumber side) consists of a series of lines with increasing separation, and 
(3) the band head appears in the P branch to low frequency of the origin. Such a band is shaded 
to the violet. 

Normally, all the vibrational bands in any one electronic transition (e.g. the set of bands 
shown as a line spectrum in Fig. 6.1) are shaded in the same direction, while different electronic 
transitions in the same molecule may well show different shadings. Thus, observation of the 
shading may assist in the analysis of a complete spectrum. However, it may happen that 
different shadings are observed in bands belonging to the same electronic transition. This is 
because the B' and B" values are not altogether independent of the vibrational state (as we have 
already seen in Sec. 3.4) so that, if B' - B" is small, it may reverse sign for some higher 
vibrational levels. This behaviour is observed, for example, in the molecular fragment AlF, 
but is rare. 

6.1.6 The Fortrat Diagram 

We may rewrite the expressions for the P, R, and Q lines, Eqs (6.20~) and (6.21), with con- 
tinuously variable parameters p  and q: 

VQ = i f ( , t , , q  + (B' - B1')q + (B' - ~ " ) q ~  (6.22b) 

when we see that they each represent a parabola, p  taking both positive and negative values, 
while q is positive only. We sketch these parabolae in Fig. 6.7 choosing, as before, B' < B" and 
a difference of 10 per cent between them, and labelling regions of positive p  with VR and negative 
p  with Vp.  These parabolae are usually referred to as the Fortrat parabolae. If we now illustrate 
the fact that p  and q may in fact take only integral values (but not zero) by drawing circles round 
the allowed points on the parabolae, we can then read off the V values of the spectral lines 
directly from the graph. We show at the foot of the figure the first few lines of each branch with 
dotted leader lines connecting the spectrum and Fortrat diagram at intervals. 

A useful property of the Fortrat diagram is that the band head is plainly at the vertex of the 
P, R parabola. We may calculate the position of the vertex by differentiation of Eq. (6.22~): 

p = -  B' + B" 
for band head 

2(B1 - B") 

Thus if B' < B" (upper state has longer equilibrium bond length) the band head occurs at 
positive p  values (i.e. in the R branch), the line at maximum wavenumber being given by the 
nearest positive integer to p. Conversely, for B' > B" the band head occurs in the region oPp 
negative, i.e. in the P branch. A simple calculation shows that for a 10 per cent difference 
between B' and B" the band head occurs at p FZ 10. 
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Figure 6.7 The Fortrat diagram sketched for a 10 per cent difference between B' and B" (with B' < Br'). The 
spectrum illustrated at the foot is identical with that of Fig. 6.6(d) .  

6.1.7 Predissociation 

If a large number of vibrational transitions is observed for a particular molecule, it sometimes 
happens that the vibrational and rotational structures are quite distinct within a progression for 
large and small changes in the vibrational quantum number, but either the rotational structure 
is blurred or a complete continuum is observed for intermediate changes. A diagram showing 
the appearance of such a band is sketched in Fig. 6.8. A continuum at high wavenumber would 
correspond to ordinary dissociation (cf. Sec. 6.1.4) but the central continuum, occurring at 
energies well below the true dissociation limit, is referred to as predissociation. 

Predissociation can arise when the Morse curves of a particular molecule in two different 
excited states intersect; one such possibility is shown in Fig. 6.9. One of the excited states is 
stable, since it has a minimum in the curve, and the other is continuous. Some of the vibrational 
levels are also shown, and let us suppose a transition takes places from some lower state into the 
vibrational levels shown bracketed on the left. Now if a transition takes place into the levels 
labelled a, 6, or c, a normal vibrationalklectronic spectrum occurs complete with rotational fine 

- 
Region of predissociation - 

Figure 6.8 Diagrammatic illustration of the appearance of predissociation. The rotational fine structure is clearly 
defined for vibrational transitions both above and below the predissociation region, but in this region the fine 
structure becomes blurred and lost. 



From lower 
state 

Figure 6.9 Showing the occurrence of predissociation during transitions into a stable upper state intersected by a 
continuous state. 

structure; two such bands appear at the left of Fig. 6.8. If the transition is to levels d, e,  or f there 
is a possibility that the molecule will 'cross over' on to the continuous curve and thus dissociate. 
In general, transition from one curve to another in this way (a so-called radiationless transfer 
since no energy is absorbed or emitted in the process) is faster than the time taken by the 
molecule to rotate (- 10-lo S) but usually slower than the vibrational time (- s). Thus 
predissociation will occur before the molecule rotates (and thus all rotational fine structure will 
be destroyed in the spectrum), while the vibrational structure is usually not destroyed. If the 
cross-over is faster than the vibrational time, then a complete continuum will occur in the 
spectrum as shown in Fig. 6.8. 

On the other hand, transitions into levels g, h, . . . will give rise to a normal vibrational- 
electronic spectrum including rotational fine structure once more. As we have seen previously 
(Sec. 6.1.3) the molecule spends most time at the extreme ends of its vibrational motion when v 
is large, and very little time in between. When moving in the vibrational states g, h, . . . , the 
molecule spends insufficient time near the cross-over point for appreciable dissociation to occur 
and a normal spectrum results. 

6.1.8 Diatomic Molecules: A Summary 

When the rotational fine structure of electronic spectra can be resolved-as it normally can for 
diatomic molecules-we see that a great deal of useful information becomes available. We can 
immediately determine the rotational constant, and hence calculate the moment of inertia and 
bond length, for both the lower and the upper electronic states. Isotopic species in the molecule 
will cause a slight difference in the rotational constant, so such isotopes may be detected, and 
their concentrations measured from the band intensity. Equally, the vibrational levels of 
the electronic states can be determined from the position of band origins; these lead to the 



evaluation of fundamental vibration frequencies, of bond force constants, and, perhaps, of 
dissociation energies too. The latter, however, are more accurately determined if a continuum 
is observed at the end of a band spectrum. 

Where data obtained from such spectra can be checked independently, e.g. by microwave or 
infra-red spectroscopy, by X-ray or neutron diffraction, or by thermochemical methods, per- 
fectly satisfactory agreement is found. Thus we can use electronic spectroscopic methods with 
great confidence to determine bond lengths and strengths in those molecules to which such 
independent methods are not applicable. 

Probably the most important application of this type of spectroscopy is to the study of 
excited states and unstable radicals. Thus we have seen that B values and dissociation energies 
are obtained for both the upper and lower electronic states-and data for the upper state are not 
obtainable by other means. Further, considerable amounts of energy are involved in the pro- 
duction of electronic spectra, and complex molecules are frequently disrupted into fragments 
during the process, the fragments, or free radicals, normally being very short-lived. Examples 
are legion, a few of the more important diatomic ones being CH, NH, C2, OH, CN, etc. Spectra 
arising from these radicals can be recognized and studied, leading to the determination of bond 
lengths, force constants, dissociation energies, etc. Further, if the variation of the intensity of 
such spectra over short periods of time is studied-as in the techniques of flash photolysis- 
information can be obtained about the rate at which the radicals are produced and destroyed. 
Since the length of time during which some radicals have an independent existence is measured 
in microseconds or less, it is remarkable that many such 'diatomic molecules' are as well 
characterized as, for example, the rather more stable H2 or CO. 

6.2 ELECTRONIC STRUCTURE OF DIATOMIC MOLECULES 

6.2.1 Molecular Orbital Theory 

Several theories have been suggested to account for the formation of molecules from atoms. All, 
if taken to a sufficiently high degree of approximation, seem to agree with observed data, but the 
calculation involved is so extensive that complete agreement is seldom reached and then only in 
the simplest examples. Here we shall discuss just one of these theories-the molecular orbital 
theory; we choose this, not because it is better or simpler than others (such considerations 
depend upon the particular problem in hand and are, in any case, largely subjective), but 
because it gives a convenient pictorial representation of molecule formation which is particu- 
larly suited to the discussion of electronic transitions and because the ideas it uses are entirely 
analogous to those of atomic structure which we have discussed in the previous chapter. 

Thus we have seen that electrons in atoms do not occupy space haphazardly or have 
arbitrary energies, but that their distribution and energy are governed by well-defined natural 
laws. These characteristics may be calculated from the Schrodinger equation and expressed in 
terms of a three-dimensional wave function, or orbital, $, which depends on the values of three 
quantum numbers, n, I ,  and m (or I,); the spin of the electron also contributes to the energy. 
Definite rules determine which orbitals are occupied in the ground state and what transitions 
may take place between orbitals. 

Molecular orbital theory supposes orbitals to extend about, and embrace, two or more 
nuclei, the shape and energy of these orbitals being calculable from the Schrodinger equation 
in terms of three quantum numbers. Essentially the same rules (i.e. lowest energy first, max- 
imum of two (paired) electrons per orbital, parallel spins in degenerate orbitals) apply to their 
filling as to the filling of atomic orbitals. 



The situation is relatively simple for diatomic molecules where the molecular orbital 
embraces two nuclei only and we shall discuss these molecules in some detail first. The exten- 
sion to polyatomic molecules will be outlined in Sec. 6.3. 

6.2.2 The Shapes of Some Molecular Orbitals 

As in atomic orbital theory (cf. Sec. 5.1.2) the shape of a molecular orbital is the space within 
which an electron belonging to that orbital will spend 95 per cent (or some other arbitrary 
fraction) of its time. While detailed computation of these shapes from the Schrodinger theory 
may be extremely difficult, a very good qualitative idea of their approximate shape may be 
obtained by considering molecular orbitals to be made up of sums and differences of the atomic 
orbitals of the constituent atoms-the so-called linear combination of atomic orbitals (LCAO) 
approximation. Thus for a diatomic molecule we could imagine the formation of two different 
molecular orbitals whose wave functions would be: 

where $1 and $2 are the relevant atomic orbitals of the two atoms. Note that the function 
$2 - $1 is identical with $I - $z, since it is $io, which represents the probability of finding an 
electron in a particular place. 

Let us consider the hydrogen molecule, HZ, as an example; the obvious atomic orbitals to 
use are the 1s orbitals of each atom. Figure 6.10(a) shows the situation: 

We recall from the previous chapter (Eq. (5.2)) that $ I ,  is everywhere positive in value and so, 
where the atomic orbitals overlap, the value of $H2 will be increased. This suggests (and detailed 
calculation confirms) that the molecular orbital of Eq. (6.25) is a simple ellipsoid, symmetrical in 
shape. The concentration of electronic charge between the nuclei acts as a sort of cement 
keeping the nuclei together and thus this orbital represents the formation of a bond between 
the atoms. It is called a bonding orbital and given the label lsu since it is produced from two 1s 
orbitals (we shall see later that u has a similar significance regarding the orbital angular 
momenta of molecular electrons as s has for atoms). 

Figure 6.10 The formation of (a) a bonding Isu orbital and (h)  an antibonding Isu* orbital from two atomic Is 
orbitals. 



On the other hand, Fig. 6.10(b) shows the situation for 

Since, again, $,, is everywhere positive, where the two separate $1, orbitals overlap, they will 
cancel each other. Thus between the nuclei $,,, will be zero, while it will be positive near one 
nucleus and negative near the other (remember that it is $? which determines probability and 
this is, in either case, positive). Now, however, the shape of the molecular orbital shows that 
electronic charge, far from being concentrated between the nuclei, is greatest outside them; thus 
the nuclear repulsion is enhanced and the orbital is described as antibonding. It leads to a state of 
higher energy than two separate atoms and is labelled lsa*, the asterisk representing high 
energy. Figure 6.10 also shows, at the extreme right, an end-view of these orbitals. They are 
both seen to have cylindrical symmetry about the bond axis; it is this property which leads to 
their both being described as a orbitals although in other respects they have quite different 
appearances. 

Another facet of orbital symmetry should be mentioned here. If the molecule considered is 
homonuclear (i.e. made of two identical atoms) then the midpoint of the bond between them is a 
centre of symmetry-starting from any point in the molecule, on or off the internuclear axis, 
exactly similar surroundings are encountered by proceeding to the point diagonally opposite the 
centre. Such a process is known as inversion, and such molecular properties as electron density, 
force fields, etc., are quite unchanged by inversion. However, we note that $ (as opposed to +2) 

may or may not be changed in sign by inversion. Thus inversion of the lsa molecular orbital of 
Fig. 6.10(a) plainly causes no change in $ since it is everywhere positive; this orbital, in which 11, 
is completely symmetrical, is described as even and usually given the symbol g (German: 
gerade = even) as a suffix: lsa,. On the other hand, the lsu* orbital in Fig. 6.10(b) is anti- 
symmetrical, since inversion reverses the sign of $. This orbital is thus odd and given the 
subscript u, lsa, or Isa: (German: ungerade = odd). In the case of molecular hydrogen, 
then, the bonding orbital is even, the antibonding is odd; this situation may be reversed for 
other molecular orbitals, as we shall see. 

If the molecule is heteronuclear (for example CO, HCl, etc.) then there is no centre of 
symmetry and the o d d w e n  classification of orbitals does not arise. 

Before turning to the shapes of other molecular orbitals, it is instructive to consider how the 
energy of the lsu, and lsat orbitals varies with the distance between the nuclei. This variation 
may be calculated from the Schrodinger equation and the result is shown in Fig. 6.11. The lsn,, 
the bonding orbital, shows a typical Morse curve for a diatomic molecule, the minimum in the 
curve showing that a bond is formed between the atoms. The lsu:, on the other hand, shows no 
minimum, but is one of the 'continuous' curves already discussed in Sec. 6.1.4. In this case the 
dissociation limits of the two curves coincide since the dissociation products are identical-two 
hydrogen atoms. The relationship of the orbitals sketched in Fig. 6.10 to the energy curve is 
shown by superimposing the molecular orbitals at their appropriate equilibrium internuclear 
distance and the separate atomic orbitals at a large distance. 

Two 2s atomic orbitals can form 2.~0, and 2sa; bonding and antibonding orbitals with 
identical shape to (but larger and with higher energy than) the lsa, and lsa: orbitals. Two 2p- 
type orbitals can overlap in two different ways depending on their relative orientation. If we 
label the internuclear axis the z direction, then we may consider first the 2p orbital which lies 
along this axis from each atom, i.e. the 2p, orbitals. Now the expression for the wave function of 
a 2p, orbital has the form $2p- = zf (r), where f (r) is a positive function of distance from the 
nucleus. We see, then, that for +z directions + is also positive, while it is negative for -z .  The 
two lobes of a 2p orbital thus have opposite signs of $ (although, of course, $? is everywhere 
positive). 
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Figure 6.11 The variation of energy with internuclear distance in the bonding and antibonding orbitals, lsux and 
1su:. 

We draw these orbitals and indicate their signs on the left of Fig. 6.12 and it is evident that 
in the molecular orbital 

the electron density between the nuclei is cancelled to zero and the orbital will have the shape 
shown at the top right of the figure. Similarly, in 

the electron density increases between the nuclei and the shape is shown at the bottom right of 
the figure. Plainly the latter is bonding, and consideration of its symmetry shows that it is even 
(g), while the former is plainly antibonding and odd (u)  in character. The end-view of both is the 
same, however, and shows symmetry about the bond axis; for this reason both are referred to as 
a orbitals and they may be labelled 2pog and 2po:, respectively, to indicate their origin. 

The overlap of two 2p,, orbitals is shown in Fig. 6.13 (2p,  are exactly similar but rotated out 
of the plane of the paper through 90"). The summed orbitals, which are bonding, are sketched at 
bottom right and we see that the molecular orbital formed consists of two streamers, one above 
and one below the nuclei. The end-view of this orbital is shown at the extreme right; it has the 
appearance of an atomic p orbital and hence it is labelled T. In this case the bonding orbital is 
evidently odd, so we have a 2p7r, state. 



Difference \ 

Figure 6.12 The formation of bonding (2pug)  and antibonding (2pu:) orbitals from two atomic 2p, orbitals, where 
the z axis is taken as the internuclear axis. 

Figure 6.13 The formation of bonding (2pn, )  and antibonding (2px;)  orbitals from two atomic 2p,, orbitals, the : 
axis being the internuclear axis. Atomic 2p ,  orbitals would form ident~cal molecular orbitals except that all lobes 
would be rotated through a right angle about the z axis. 

On the other hand, if the atomic orbitals are subtracted the orbital picture shown at top 
right of Fig. 6.13 is produced. This has a similar end-view to 2pru ,  is antibonding and even, and 
hence it is labelled ri. 

More complex orbitals exist-6, 4, etc., formed by interaction between d, f, etc., atomic 
orbitals-but they need not concern us; the simple molecules with which we shall deal use a and 
r orbitals only. We do need to know, however, the order of increasing energy of the molecular 
orbitals so far discussed so that we can consider the ground states of some atoms. This we show 
diagrammatically (and by no means to scale) in Fig. 6.14(a), where we also indicate, to the right 
and left, the atomic orbitals which combine to form each molecular state. This diagram should 
be taken to be schematic only, since there is considerable overlap and interaction between the 
2pru ,  2pug, and 2sa: orbitals for some lighter diatomic molecules such as Li2; it will be sufficient 
for our purposes, however. For H2 this overlap does not occur and the situation is as shown in 
Fig. 6.14(6). Using these diagrams and the Pauli principle (not more than two electrons to each 
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Figure 6.14 Schematic molecular orbital energy level diagrams for (a) simple diatomic molecules other than hydrogen 
and (h )  the hydrogen molecule. 

orbital) we can build up the electronic configurations of simple molecules. Some examples 
follow: 

Hydrogen, H2. In the ground state of this molecule the two Is atomic electrons, one from 
each atom, can both occupy the molecular Is% provided their spins are opposed. The energy 
of the electrons in this state, as we can see from Figs 6.11 and 6.14(6), is lower than that of 
two separate atoms; hence the molecule is stable. We can write its configuration as lsai. 
Helium, He2. If this molecule were to form it would have a total of four electrons to place 
into orbitals, two from each atom. Only two of these could go into the Isa,; the other two 
would have to go into Isai. However, we can see from Figs 6.1 1 and 6.14(a) that more energy 
would be absorbed by the latter than evolved by the former; hence the molecule is unstable 
with respect to the atoms. 
Nitrogen, N2. The two atoms each have an electronic configuration 1 ~ ~ 2 . ~ ~ 2 ~ ~  (cf. Table 5.2), 
so we have a total of 14 electrons to dispose of, in pairs, into the molecular orbitals of Fig. 
6.14(a); clearly the configuration will be lsa~lsa~2sa~2s~~2~a~2~r~ (where we omit the 
asterisks to avoid confusion). As a good approximation we can allow the bonding and 
antibonding contributions of the lsai and lsai to cancel, and similarly with the 2sai and 
2 s 4 .  We are left, then, with three pairs of electrons in bonding orbitals, the 2pag and the 
2pru, so we conclude that the molecule has a triple bond. 
Oxygen, 02. Each atom has one electron more than the nitrogen atom (Table 5.2), and 
clearly the lowest available orbital in Fig. 6.14(a) is the antibonding 2pr,. Two electrons in 
this orbital effectively cancel the bonding contribution of a pair in the 2pr,, and we are left 
with a net bonding of four electrons, i.e. a double bond. One unusual characteristic of the 
structure of 0 2  concerns the two electrons in the antibonding 2prg. Since there are here two 
degenerate orbitals, the electrons will occupy one each to satisfy electron repulsion; however, 
according to Hund's rule (Sec. 5.4.6) which applies to molecules just as to atoms, they will 



preferentially have their spins parallel rather than paired. Thus O2 is a molecule containing 
some unpaired electrons-a structural characteristic which gives it its most unusual magnetic 
properties. 

6.2.3 Electronic Angular Momentum in Diatomic Molecules; Classification of States 

We found in Sec. 5.2 that the total energy of an electron, while depending mainly on its average 
distance from the nucleus (represented by the quantum number n), also depends on its orbital 
and spin angular momenta (quantum numbers 1 and s )  and on the way in which these are 
coupled together (quantum number j). For several electrons in an atom we found that their 
separate energies can be combined in different ways to produce a variety of states; simple rules 
allow the ground state to be predicted in any particular case. 

Much the same comments apply to electrons in molecules. Thus a single electron in a 
molecule has a quantum number n specifying the size of its orbital and mainly determining 
its energy, and a number 1 specifying its orbital angular momentum. Small letters s,  p, d ,  . . . are 
used, as before, to designate I values of 0, 1, 2, . . . . However, it will be remembered that in 
order to discuss the components of I we required to invoke some reference direction called the z 
direction; in a diatomic molecule a reference direction is already quite obviously specified-the 
internuclear axis, or bond-and it would be perverse (not to say wrong) to discuss the compo- 
nents of 1 along any other direction. Furthermore, a force field exists along this direction due to 
the presence of two nuclear charges; therefore different 1 components are not degenerate but 
represent different energies. 

The axial component of orbital angular momentum is of more importance in molecules 
than the momentum itself and for this reason it is given the special symbol A. Formally XvII,I, SO 

that X takes positive integral values or is zero, and we designate the X state of an electron in a 
molecule by using the small Greek letters corresponding to the s,  p, d ,  . . . of atomic nomen- 
clature. Thus we have, for 

and the symbols are: 0, 6, 4, . . . 

Since X has positive values only, each X state with X > 0 is doubly degenerate, because it 
corresponds to I,  being both positive and negative. The significance of X is that the axial 
component of orbital angular momentum = X h l 2 ~  or X units. 

The total orbital angular momentum of several electrons in a molecule can be discussed, as 
for atoms, in terms of the quantum number L = El, E l -  1 ,  etc., with L = J-h/27r, but 
again the axial component, denoted by A, is of greatest significance. Since, by definition, all 
individual Xi lie along the internuclear axis, their summation is particularly simple. We have: 

and states are designated by capital Greek letters C, II, A, etc., for A = 0, 1, 2, . . .. We must 
take into account, when using Eq. (6.29), that the individual Xi may have the same or opposite 
directions and all possible combinations which give a positive A should be considered. Thus for 
a T and a S electron (XI = 1, X2 = 2) we could have A = 1 or 3 (but not - l), i.e. a II or a state. 

Electron spin momentum, on the other hand, is not greatly affected by the electric field of 
the two nuclei-we say the spin-axial coupling is weak, whereas the orbital-axial coupling is 
usually strong. Normally, therefore, we use the same notation for electronic spin in molecules as 
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Table 6.1 Comparison of symbols used for electronic angular momenta 

Orbital momentum Spin momentum Total momentum 

For atoms 
Single electron 

Single electron 
(I component) 

Several electrons 

Several electrons 
( z  component) 

For molecules 
Single electron 
Single electron 

(axial component) 
Several electrons 
Several electrons 

(axial component) 

I (symbol s, p, d for 
/ = o ,  I ,  2, . . . )  

1: 
L (symbol S, P, D for 

L=O,  1, 2, . . . )  

I 
X (symbol u, K, 6 for 

x = o ,  I, 2, . . . )  
L 
A (symbol C, II, A for 

A = 0 ,  1 ,  2 , .  . . )  

.I 

Jz  

J 

J: 

j,, (seldom used) 

W 

J ,  (seldom used) 

R 

in atoms; the total spin momentum S is given by where the total spin quantum 
number S is: 

The multiplicity of a molecular state is, as for atoms, 2 s  + 1 and this is usually indicated as an 
upper prefix to the state symbol. Thus for the II and states discussed in the previous para- 
graph, the states would be written 'II or 3@ if the individual .rr and 6 electron spins are parallel 
( S  = f + = 1, 2s + 1 = 3), or as 'Il or ' @  if the spins are paired. 

When the axial component of a spin is required, however, it is often designated by a for a 
single electron or C for several (corresponding to s and S for the atomic case). In this case the 
multiplicity is 2C + 1. 

Finally, we consider the axial component of the total electronic angular momentum, i.e. the 
sum of the axial components of spin and orbital motion. In general the total momentum is 
strongly coupled to the axis and its axial component is more significant than the momentum 
itself. If we write the axial component as R we have simply: 

but we must remember that A and C may have the same or opposite directions along the 
internuclear axis. Thus in the 311 state described above we have A = 1 ,  C = 1; hence R = 2 
or 0. The 'II state has A = 1, C = 0; hence we have R = 1 only. These states would be indicated 
by writing their R values as subscripts: 3112, no, III.  

Perhaps it will be of assistance to the student if we draw up a table (Table 6.1) showing the 
symbols used to designate the various sorts of angular momentum in atoms and molecules, 
together with their axial components, for one or more electrons. 

6.2.4 An Example: The Spectrum of Molecular Hydrogen 

Before turning to polyatomic molecules, let us see how the above ideas may be applied to the 
simplest molecule, H2. We shall consider first the nature of the ground state and some excited 
states of the molecule and how these relate to occupancy of the molecular orbitals of Fig. 



6.14(b), then the energy of these states and, finally, what transitions may arise between them. 
The student may find it helpful to discover the many points of similarity between the discussion 
which follows and that given in Sec. 5.4.5 on helium. 

The hydrogen molecule contains two electrons, one contributed to by each of the atoms. We 
would thus expect to find singlet and triplet states, depending on whether the electron spins are 
paired or parallel. In the ground state both electrons will occupy the same lowest orbital, i.e. the 
lsa, of Fig. 6.14(b), and, by Pauli's principle, they must then form a singlet state. Both electrons 
are a electrons (since both are in a a orbital); hence X I  = X2 = 0 and A = 0 also. The state is thus 
'C. We could indicate the value of R as a subscript (R = A + C = 0 + 0 = 0, since C = 0 for 
singlet states) but it is more informative to specify the symmetry (g or u) of the orbital. In this 
case both electrons are in the same g orbital; hence the total state is 'C,. 

A further subdivision of C states is normally made, representing another facet of molecular 
symmetry. In any diatomic molecule (whether homo- or heteronuclear) any plane drawn 
through both nuclei is a plane of symmetry, i.e. electron density, shape, force fields, etc., are 
quite unchanged by reflection in the plane. However, the wave function of the electron, @, may 
either be completely unchanged (symmetrical) or changed in sign only (antisymmetrical) with 
respect to such a reflection (in either case, of course, @2 is unchanged). The former states are 
distinguished by a superscript + and the latter by -. For several reasons this division is made 
for C states only and nearly all such states are in fact + . Certainly all the states of hydrogen are 
symmetric. 

Thus the ground state of molecular hydrogen can be written: 

Ground state: ( l ~ a , ) ~  ' C i  

A large number of excited singlet states also exist; let us consider some of the lower ones for 
which one electron only has been raised from the ground state into some higher molecular 
orbital, i.e. singly excited states. We can ignore promotion into any of the starred states of 
Fig. 6.14(b), since this would lead to the formation of an unstable molecule and immediate 
dissociation (cf. Fig. 6.1 1, where the placing of an electron in each of the ag and a: orbitals 
produces dissociation into two H atoms). Thus we may consider the three possible excited states 
(lsa,2sa,), (1sa,2pag), and (1sag2p7r,). 

Taking (lsa,2sa,) first: here both electrons are a electrons; hence A = X I  + X2 = 0 and, 
since we are considering only singlet states, S = 0 also. Further, since both constituent orbitals 
are even and symmetrical, the overall state will be the same, and we have (lsag2sa,) 'C;. 

Now (lsa,2pa,): here we again have a ' C  state since both electrons are a ,  but the overall 
state is now odd (u); this may be rationalized if we think of one electron as rising from a 
hydrogen atom in the even Is state and the other from an odd 2p state, the combination of 
an odd and an even state leading to an overall odd state. Thus (lsa,2pog) 'C;. 

Finally the (Isa,2p7rU): now A = X I  + X2 = 1, since one electron is in a ri state and, again 
since one electron originates from a 2p orbital, the combined state is u: In,. 

The energies of these three states increase in the order of the constituent molecular orbitals, 
as shown in Fig. 6.14(b), i.e.: 

Similar states are obtained by excitation to the 3s and 3p states, to the 4s and 4p states, etc. 
Also for n = 3, 4, . . . there exists the possibility of excitation to the nd orbital. It may be shown 
by methods similar to those above that interaction between 1s and nd electrons can lead to the 
three configurations and state symbols in increasing energy: 

( lsanda)  'c,' < ( l s o n d ~ )  In, < (lsandb) 'A, 
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Figure 6.15 The singlet and triplet energy levels of the hydrogen molecule. One electron only is assumed to undergo 
transitions, the other remaining in the Isa state. 

Some of these energy levels are shown at the left of Fig. 6.15. Transitions between them can 
occur according to the selection rules: 

Thus transitions C H C, C o II, Il H II, etc., are allowed, but C ++ A, for example, is not. 

For the present we are concerned only with singlet states so this rule does not arise. 

This follows directly from 1 and 2 above. 
4. There are also restrictions on symmetry changes. C+ states can undergo transitions only into 

other Cf states (or, of course, into II states) while C go only into C- (or II). Symbolically: 

We show a few allowed transitions from the ground state and the lowest excited state in Fig. 
6.15. 

Let us now consider some of the triplet states of molecular hydrogen, i.e. those states in 
which the electron spins are parallel and hence S = 1. Plainly both electrons cannot now occupy 
the same orbital so the state of lowest energy will be either (lsu,2sag), (lsu,2pu,), or 
(lsu,2p.ir1,). The first two are evidently 'C states, the third is 'II, and, following the rules 
outlined above, we can write down their state symbols and order of energies as: 



These energy levels are shown on the right of Fig. 6.15, together with those formed by the 
introduction of 3d and 4d orbitals. (The very small splitting of the levels into states with different 
R = A + S is ignored in the figure.) A few of the allowed transitions are shown from the 
(lsa2sa) state, but it should be particularly noted that, because of the selection rule AS = 0 
given in Eq. (6.33), transitions are not allowed between singlet and triplet states, i.e. between the 
two halves of Fig. 6.15. 

Transitions are not shown from the lowest 3 ~ , +  state on Fig. 6.15, i.e. the lowest triplet state. 
This is not because transitions are forbidden, but because the state is the continuous one shown 
in the upper half of Fig. 6.1 1, the Isu,. Thus in this state the molecule immediately dissociates 
into atoms before further transitions can occur. The energy level shown for this state in Fig. 6.15 
is the lower limit, i.e. the dissociation limit, and in fact the state extends continuously from this 
limit up to the top of the diagram. Part of Fig. 6.11 is reproduced in Fig. 6.15 to underline the 
relationship between them. 

Thus although the hydrogen spectrum will be complicated by the presence of vibrational 
and rotational structures on each of the transitions sketched in the figure, basically the overall 
pattern consists of sets of Rydberg-like line series from which the positions of the energy levels 
can be found. 

6.3 ELECTRONIC SPECTRA OF POLYATOMIC MOLECULES 

We have seen in Sec. 3.7 that the vibrational frequencies of a particular atomic grouping within 
a molecule, for example CH3, C=O,  C=C,  etc., are usually fairly insensitive to the nature of 
the rest of the molecule. Other bond properties, such as length or dissociation energy, are also 
largely independent of the surrounding atoms in a molecule. Since all these properties depend, in 
the final analysis, on the electronic structure of the bond, it is plain that we may, at least as an 
approximation, discuss the structure, and hence the spectrum, of each bond in isolation. Bonds 
for which this approximation is adequate are usually said to have 'localized' molecular orbitals, 
i.e. orbitals embracing a pair of nuclei only; other molecules, for which this approximation is 
invalid, have non-localized orbitals and are often called 'conjugated'. We shall meet some 
examples of this latter class shortly. 

When each bond may be considered in isolation, it is evident that the complete electronic 
spectrum of a molecule is the sum of the spectra from each bond. The result will plainly be very 
complex, but a great deal of information about the molecule is contained within it. Thus if some 
band series can be recognized for a particular bond we immediately know the vibrational 
frequency of that bond and probably a good estimate of its dissociation energy also. If the 
rotational structure is resolved, then we have the moment of inertia (from the line spacing) and 
hence information about the shape and size of the molecule. 

Such detailed information is usually obtainable only for molecules studied in the gas phase: 
in pure liquids, or in solution, molecular rotation is hindered and no rotational structure will be 
observed. The blurring of the rotational structure often masks the vibrational line series also, 
and the electronic spectrum of a liquid is usually rather broad and characterless. However, as we 
shall discuss shortly, it may still be highly characteristic of a particular molecular grouping both 
in its frequency and its intensity. 

Confining our attention, for the moment, to gas-phase spectra, we hve already remarked 
that one of the more important advantages of electronic spectroscopy is that the vibrations, 
rotations, dissociation energies, and structures of molecules may be investigated in their excited 
states, even though a particular molecule may exist in such a state for not much longer than the 
time it takes to complete a few rotations. We have not the space to discuss this topic in detail, 
but one aspect is especially interesting-the fact that electronic excitation often leads to a 
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change in shape of the molecule. That this happens can be seen by studying rotational fine 
structure in the spectra; here we briefly discuss the theoretical basis for its occurrence. 

6.3.1 Change of Shape on Excitation 

In Fig. 6.16 we show the orbital picture of a hydride H2A where A is any polyvalent atom, both 
in its bent configuration (a), with a bond angle of 90°, and in a linear form (b), bond angle 180". 
We have seen in Sec. 5.1 that the p orbitals of an atom are at right angles to each other, so we 
can readily imagine the rectangular molecule to be formed by interaction of two of these p 
orbitals with hydrogen 1s orbitals, leaving the third p orbital unaffected; the latter is called a 
'non-bonding' orbital since it plays no part in bonding A and H together, and in general it will 
have a higher energy than bonding orbitals. In Fig. 6.16(a) we label the non-bonding orbital 
(which is out of the plane of the paper) N I ,  the two bonding molecular orbitals formed from the 
p and 1s atomic orbitals as a ,  and az, and the unused (and hence non-bonding) atomic orbital s 
of A simply as s. 

In the linear molecule a new principle must be introduced-that of orbital hybridization. 
For this, atom A is supposed to mix its s orbital with one of its p orbitals and, from these two 
orbitals, to form two new orbitals-hybrids-which, it may be shown theoretically, point at 
180" to each other. These sp hybrids form rather stronger bonds to other atoms than separate s 

Figure 6.16 Orbital pictures for an AH? molecule where the AH bonds are ( a )  at 90" and (h) at 180". In (c) is shown 
qualitatively the change in energy of the various orbitals as the bond angle changes from 90 to 180". (Adapted, with 
kitlrl prrmissiot~ qf' tllc. author. , frot,~ A .  D .  Walsh, J .  Chem. Soc.. 1953, p. 2262.) 



and p orbitals, so it is energetically favourable, in certain cases, for the atom to 'prepare' hybrid 
orbitals at the moment of bond formation. In this configuration (Fig. 6.16(b)), there are now 
two non-bonding p orbitals, labelled N1 and N2, and two bonding orbitals formed by overlap 
between sp hybrids and hydrogen Is, called b1 and b2. 

Remembering that a non-bonding orbital is higher in energy than a bonding orbital and 
that an sp-bonding orbital is stronger (hence lower in energy because the molecule is more 
stable) than a p-bonding orbital, we can plot the qualitative energy changes for a smooth 
transition from 90 to 180" bonding. This we do in Fig. 6.16(c), which is constructed as 
follows: 

1. The non-bonding orbital NI remains unchanged throughout; hence its energy is constant. 
2. The bonding orbital a1 passes over into the stronger orbital bl; hence its energy decreases. 
3. The bonding orbital a2 becomes the non-bonding N2, thus increasing in energy; N1 and N2 

are identical in energy at 180". 
4. The bonding orbitals bl and b2 are formed by absorption of the non-bonding s into al .  
5. If we increase the bond angle beyond 180" (or decrease it below 90") the reverse changes 

begin to take place, so 180 and 90" represent maxima and minima on the energy curves as 
shown. 

Now let us see the relevance of this to molecular shapes. Consider first the molecule BeH2, 
beryllium hydride. Beryllium, we have seen in Sec. 5.3.1, has the electronic ground state con- 
figuration ls22s2, i.e. it has two outer electrons with which to form bonds, the two 1s electrons 
being too firmly held by the nucleus to take part in bonding. Each hydrogen atom contributes a 
further electron, so the BeH2 molecule must dispose of four electrons into molecular orbitals, 
with, according to Pauli, a maximum of two electrons per orbital. The most stable state, as can 
be seen from Fig. 6.16(c), will be for two electrons to go into bl and two into b2, thus producing 
a linear molecule. 

When the molecule is excited electronically, the next available orbital to contain the excited 
electron is N2 (or NI),  but with a configuration b f b l ~ i  it is evident from the figure that the most 
stable state will be at a bond angle, a,  somewhere between 90 and 180"-the increase in the 
energies of bl and b2 being more than compensated for by the decrease in N2 until equilibrium 
occurs at an angle a.  Thus we see that the excited state is bent. If the electron is so excited as to 
be ionized completely, leaving the ion BeH2+, the three remaining electrons will all be in the bl 
and b2 orbitals and hence the most stable configuration will again be linear. 

Now consider the case of water, H20 .  The oxygen atom has an outer electron configuration 
2s22p4, and so has six electrons to dispose into molecular orbitals. As before each hydrogen 
contributes one, so water is formed by placing a total of four pairs of electrons into four 
molecular orbitals. The lowest energy state at which this can be done is shown by the angle P 
in the figure, which is some angle between 90 and 180" (and is observed experimentally to be 
about 104"). Thus water is bent in the ground state, with a configuration which may be written 
a : a i s2~ f ,  since the angle is not far removed from 90". During excitation one of the NI electrons 
will undergo transitions since these, being of highest energy, are most easily removed. However, 
since the energy of NI does not change with angle, the angle of the remaining a :a i s2~i  state will 
not change during the transition. 

These arguments may be readily extended to other triatomic molecules or to larger poly- 
atomic molecules, although the energy diagram corresponding to Fig. 6.16(c) is more compli- 
cated since more orbitals are involved. The results show, however, and experiment confirms, 
that linear molecules such as C 0 2  and HC - CH become bent on excitation, the latter taking up 
a planar zig-zag conformation. 



6.3.2 Chemical Analysis by Electronic Spectroscopy 

Although rotational and sometimes vibrational fine structure do not appear in the liquid or 
solid state, both the position and intensity of the rather broad absorption due to an electronic 
transition is very characteristic of the molecular group involved. In this branch of spectroscopy 
the position of an absorption is almost invariably given as the wavelength at the point of 
maximum absorption, A,,,., quoted either in Angstrom units (1 A = 10-lo m) or in nanometres 
(1 nm = lop9 m), the latter being more usual. It should be particularly noted that a large energy 
change, corresponding to a high frequency or wavenumber, is represented by a small wave- 
length. For practical reasons the electronic spectrum is divided into three regions: (1) the visible 
region, between 400 and 750 nm (4000-7500 A or 25 000-13 300 cmp'), (2) the near-ultra-violet 
region, between 200 and 400nm (2000-4000A or 50000-25 000cm-I), and (3) the far (or 
vacuum) ultra-violet, below 200 nm (below 2000 A or above 50 000 cm-I). The latter is so called 
because absorption by atmospheric oxygen is considerable in this region and spectra can only be 
obtained if the whole spectrometer is carefully evacuated. Thus commercial instruments extend 
only down to about 185 nm and absorptions below this range are little used for routine chemical 
purposes. 

The intensity of an electronic absorption is given by the simple equation: 

where c and I are the concentration and path length of the sample (in moll-I and in cm-', 
respectively), I. is the intensity of light of wavelength A,,,. falling on the sample, and I is the 
intensity transmitted by the sample. E is the molar absorption coefficient and ranges from some 
5 x lo5 for the strongest bands to 1 or less for very weak absorptions. 

Electrons in the vast majority of molecules fall into one of the three classes: a electrons, 7r 

electrons, and non-bonding electrons (called n electrons). The first two classes were discussed in 
Sec. 6.2.2 and the third, which plays no part in the bonding of atoms into molecules, was 
mentioned briefly in Sec. 6.3.1. In chemical terms a single bond between atoms, such as 
C-C, C- H, 0- H, etc., contains only a electrons, a multiple bond, C=C,  C-C, 
C =  N, etc., contains T electrons in addition, while atoms to the right of carbon in the periodic 
table, notably nitrogen, oxygen, and the halogens, possess n electrons. In general the a electrons 
are most firmly bound to the nuclei and hence require a great deal of energy to undergo 
transitions, while the T and n electrons require less energy, the n electrons usually (but not 
invariably) requiring less than the T .  Thus, in an obvious notation, a + a* transitions fall into 
the vacuum ultra-violet, T -+ T* and n + a* appear near the borderline of the near- and far- 
ultra-violet, and n + 7r' come well into the near-ultra-violet and visible regions. These general- 
izations are indicated schematically in Fig. 6.17, which also shows the relationship between the 
nanometer and wavenumber scales. 

Saturated hydrocarbon molecules, then, which can only undergo a + a* transitions, do not 
give rise to spectra with any analytic interest since they fall outside the generally available range; 
examples are the a + a* transitions of methane CH4 and ethane C2H6 which are at 122 and 
135 nm, respectively. 

The insertion of a group containing n electrons, e.g. the NH2 group, allows the possibility of 
n + a* transitions in addition and also tends to increase the wavelength of the a -+ a* absorp- 
tion; for example CH3NH2: a + a* 170nm, n -+ a* 213 nm. It is unsaturated molecules, i.e. 
molecules containing multiple bonds, which give rise to the most varied and interesting spectra, 
however. We cannot here discuss the large mass of data in any detail but must be content to 
indicate a few of the more important generalizations. More detail is to be found in the book by 
Williams and Fleming, listed in the bibliography at the end of this chapter. 
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Figure 6.17 The regions of the electronic spectrum and the type of transition which occurs in each 

Consider, first, isolated multiple bonds within a molecule; the most important factor deter- 
m k n g  the position of the absorption maxima is, of course, the nature of the atoms which are 
multiply-bonded. From the following table we see that the T -t T* transitions are relatively 
insensitive to those atoms while the n 4 T* transitions vary widely: 

T -+ T* (strong) n + T* (weak) 
(nm) (nm) 

This behaviour is very reasonable since the n electrons play no part in the bonding and control 
of them is retained by the atom ( 0 ,  N, or S) contributing them. The above data are approximate 
only since different substituents on the A = B group produce slight variations in the wavelength 
of the n -+ T* transition. Thus, considering ketones alone, A,,,. varies from 272nm for 
CH3COCH3 to 290nm for cyclohexanone, and even higher if halogen substituents are 
included. From the mass of empirical data already assembled, a great deal of information 
about the substituents to a particular group is obtainable from the electronic spectrum. 
Figure 6.18 shows the ultra-violet/visible spectrum of propanone. Then n -+ T* transition at 
272 nm is clearly seen as a broad feature. 

More pronounced changes occur when two or more multiple bonds are conjugated in the 
molecule, i.e. when structures having alternate single and multiple bonds arise, for example 
-C=C -C=C - or -C=C - C = 0 .  In this case the T + T* and n -+ T* transitions 
both increase considerably in wavelength and intensity, the increase being greater the more 
conjugate linkages there are. As a simple example we have the following approximate data 
for T -, T* transitions in carbon-carbon bonds: 
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Figure 6.18 The ultra-violet spectrum o f  propanone. (Thanks are due to Mr P.  Gibbs of Queen's University, Belfast, 
for this spectrum.) 

while for oxygen-containing molecules we have both T + T* and n + T* transitions: 

a + ?r* (strong) n + a* (weak) 
(nm)  (nm)  

Thus we see that conjugation immediately brings the very intense T + T* transition into the 
easily available region of ultra-violet spectrometers. For this reason these techniques are par- 
ticularly well adapted to the study of conjugated and aromatic systems. 

In the last example given above we see that the n -, T* absorption of p-benzoquinone, at 
435 nm, has shifted into the blue region of the visible spectrum. When the substance is seen in 
the ordinary way the complementary colour-yellow-is observed. Colour in large organic 
molecules is invariably due to the existence of considerable conjugation raising the transition 
wavelength into the visible region-a fact on which the chemistry of dyestuffs is based. 

Figure 6.19 shows part of the ultra-violet/visible spectrum of benzene, the series of bands 
around 250 nm being due to a weak T -+ T* transition. This transition slightly weakens the bond 
and gives rise to a vibrational structure, the origin of which is shown in Fig. 6.3(c). 

Substituents on conjugated systems also perturb the ultra-violet transitions in a systematic 
way; a great deal of empirical data has led to the formulation of rules to predict the effects. 
These are known as Woodward's rules, but they have undergone considerable modification and 
extension since they were first formulated by Woodward in 1941. As a simple example, consider 
butadiene, CH2 = CH . CH = CH2, which has a strong absorption at 217 nm due to the T + T* 



Figure 6.19 Part of the ultra-violet spectrum of benzene showmg vibrational fine structure. 

transition. This molecule may be considered to be thz 'parent' of a whole series of molecules 
containing the trans conjugated \U\ group, whether in hydrocarbon chains or in ring systems. 
Any substituents or modifications to this parent fragment have each been assigned a positive or 
negative value which must be added to the basic absorption at 217nm in order to arrive at the 
expected absorption frequency of the substituted molecule. Thus the increment for a chlorine 
atom is 5 nm and for an -OCH3 group 6 nm; if both of these substituents occur together, the 
molecule would absorb at 217 + 5 + 6 = 228 nm. Excellent accounts of these rules, and tabula- 
tions of the values for various substituents, etc., are to be found in the book by Williams and 
Fleming, mentioned in the bibliography. 

6.3.3 The Re-emission of Energy by an Excited Molecule 

After a molecule has undergone an electronc transition into an excited state there are several 
processes by which its excess energy may be lost; we discuss some of these briefly below. 

1. Dissociation. The excited molecule breaks into two fragments. This was discussed in some 
detail for the particular case of a diatomic molecule dissociating into atoms in Sec. 6.1.4. No 
spectroscopic phenomena, beyond the initial absorption spectrum, are observed unless the 
fragments radiate energy by one of the processes mentioned below. 

2. Re-emission. If the absorption process takes place as shown schematically in Fig. 6.20(a), 
then re-emission is just the reverse of this, as in Fig. 6.20(b). The radiation emitted, which 
may be collected and displayed as an emission spectrum, is identical in frequency with that 
absorbed. 

3. Fluorescence. If, as in Fig. 6.20(a), the molecule is in a high vibrutional state after electronic 
excitation, then excess vibrational energy may be lost by intermolecular collisions; this is 
illustrated in Fig. 6.20(c). The vibrational energy is converted to kinetic energy and appears 
as heat in the sample; such transfer between energy levels is referred to as 'radiationless'. 
When the excited molecule has reached a lower vibrational state (for example v '  = 0), it may 
then emit radiation and revert to the ground state; the radiation emitted, called thefluores- 
cence spectrum, is normally of lower frequency than that of the initial absorption, but under 
certain conditions it may be of higher frequency. The time between initial absorption and 
return to the ground state is very small, of the order of lopX s. 
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Figure 6.20 Showing the various ways in which an electronically excited molecule can lose energy. 

4 .  Phosphorescence. This can occur when two excited states of different total spin have compar- 
able energies. Thus in Fig. 6.20(d), we imagine the ground state and one of the excited states 
to be singlets (that is S = 0), while the neighbouring excited state is a triplet ( S  = 1). 
Although the rule AS = 0 forbids spectroscopic transitions between singlet and triplet 
states, there is no prohibition if the transfer between the excited states occurs kinetically, 
i.e. through radiationless transitions induced by collisions. Such transfer, known as inter- 
system crossing, can only occur close to the cross-over point of the two potential curves (cf. 
Sec. 6.1.7), and once the molecule has arrived in the triplet state and undergone some loss of 
vibrational energy in that state, it cannot return to the excited singlet state. It will, therefore, 
eventually reach the u' = 0 level of the triplet state. Now although a transition from here to 
the ground state is spectroscopically forbidden, it may take place but much more slowly than 
an allowed electronic transition. Thus it is that a phosphorescent material will continue to 
emit radiation seconds, minutes, or even hours after the initial absorption. The phosphor- 
escence spectrum, as a rule, consists of frequencies lower than that absorbed. 

Considerable confusion often occurs between the Raman effect, discussed in Chapter 4, 
and the phenomena of fluorescence or phosphorescence. The main points of difference are as 
follows: 

(a) In fluorescence and phosphorescence, radiation must be absorbed by the molecule and 
an excited electronic state formed; in Raman spectroscopy energy is merely transferred 
from radiation to molecule (in the form of an electrical perturbation of the ground state 
electron distribution), or vice versa, but no excited electronic state is formed. 

(b) The exciting radiation for fluorescence or phosphorescence must be just that equivalent 
to the energy difference between electronic states. The exciting radiation for classical 
Raman spectroscopy can be of any frequency except that which would induce an 
electronic transition; in the latter case absorption would occur, rather than scattering. 
Resonance Raman spectroscopy arises from the intermediate case. 

5. Stimulated emission. This increasingly important mechanism for removal of excess energy can 
lead to the production of laser radiation, as discussed in Sec. 1.10. The helium-neon laser, 
which emits light in the visible region of the spectrum, was considered in Sec. 5.4.6. 



6.4 TECHNIQUES AND INSTRUMENTATION 

The simple techniques of electronic spectroscopy are familiar to anyone studying physics-a 
glass prism, some sort of telescope, a bunsen burner, and a pinch of common salt are sufficient 
apparatus for observing part of the emission spectrum of sodium. In fact, a great deal of rapid 
and precise analytical work, both qualitative and quantitative, is carried out using flame 
spectrophotometers not very much more sophisticated in construction than this, except that a 
photomultiplier or photographic plate is used instead of the rather inaccurate human eye. 
However, for high-resolution work or for absorption studies, the practical requirements are 
more stringent. 

The choice of a suitable source was formerly one of the main difficulties. The prime 
requirements of a source are that it should be continuous over the region of interest (i.e. there 
must be no wavelengths at which it does not emit) and it should be as even as possible (i.e. there 
must be no intense emission lines). In the visible region and just into the near-ultra-violet-say 
between 350 and 800nm-an ordinary tungsten filament lamp is quite suitable. The filament 
acts as a black body radiator and has sufficient intensity for measurements in this region. Below 
this a hydrogen discharge lamp proves adequate, down to about 190 nm, while below this again 
discharge lamps containing rare gases, such as xenon, must be used. Thus we see that, in 
contrast to the other forms of spectroscopy discussed in previous chapters, no one source is 
suitable throughout the region. 

Transparent materials for windows and sample cells present no problem, at least in the 
visible and near-ultra-violet regions, since good-quality glass or quartz transmit down to 200 nm 
or better. Below this region alkali fluorides, such as lithium fluoride or calcium fluoride, must be 
used; these are transparent down to about 100nm. Prisms, if used, can be made of the same 
materials. It is common nowadays to use reflection gratings in ultra-violet/visible spectrometers, 
rather than prisms, since the former gives better dispersion and so allows more precise wave- 
length selection and measurement. 

The detector for visible and ultra-violet studies is either a photographic plate or a photo- 
multiplier tube. The chief disadvantage of the photographic method is that the resolving power 
is limited by the graininess of the image; on the other hand there is no other detector which can 
record the complete spectrum simultaneously in a small fraction of a second. When studying 
short-lived species, such as free radicals, it would be quite impossible to scan the complete 
spectrum using a photomultiplier. Also, at the other end of the time-scale the photographic 
plate is an efficient integrator of very weak signals-exposure times can be extended to many 
hours or even days to record a weak emission or absorption. For most routine purposes, 
however, where the spectrum of a stable material is to be recorded in a time of several min- 
utes, a photomultiplier detector coupled to an amplifier and computer is the most flexible and 
useful combination. In the long-wavelength end of the visible region, photoconductive detectors 
can also be used. 

6.5 MOLECULAR PHOTOELECTRON SPECTROSCOPY 

The principles of photoelectron spectroscopy (PES) and its application to atoms were described 
in Sec. 5.5. In this section we will discuss applications to molecular species. 

In PES an electron is ejected from an atom or molecule following irradiation by ultra-violet 
or X-ray radiation, leaving a singly charged ion. Ejection of the electron can take place from the 
valence levels (which have energies corresponding to ultra-violet radiation) or from the core 
levels (corresponding to X-ray excitation). For atomic species, the features observed in both 
XPES and UPES spectra are characteristic of the elements, providing a 'fingerprint' of a given 



element. For molecular species this is still true of core-level (XPES) spectra, but UPES spectra 
arise from the outer valence-related molecular orbitals and are more characteristic of the 
molecule as a whole. 

6.5.1 Ultra-violet Photoelectron Spectroscopy (UPES) 

Typical values for the binding energies of electrons in the valence level of atoms fall in the range 
5-30 eV. It is, of course, possible to eject such electrons with X-ray radiation, but considerably 
higher resolution is obtained with an ultra-violet source. Recognition and assignment of 
observed binding energies can usually be made by comparison with chemically similar spe- 
cies, but the fine structure of bands, which can often be observed at high resolution and 
which results from transitions to more than one vibrational level in the ion, gives further 
information. 

An ionized molecule is short-lived but normally relatively stable and, in the absence of 
electron capture, it will exist for long enough to undergo vibrations and rotations like any 
other molecule. Typically, transitions originate from the u = 0 state in the neutral molecule 
to one of several vibrational states of the ion, resulting in a series of approximately equally 
spaced bands in the spectrum. The transitions are governed by the Franck-Condon principle 
(see Sec. 6.1.3 and, in particular, Fig. 6.3), and the relative intensities of the lines depend on the 
positions of the potential wells for the neutral'and ionized species, giving the highest intensities 
where the bond length in the ion is closest to that in the neutral species. The bond length, and 
other properties of the ion, in turn depend on what sort of electron is ionized from the neutral 
molecule, as follows: 

1. If a non-bonding electron is removed, there is virtually no change in bond strength or length 
and, as shown in Fig. 6.3(a), the intensity of the transition is concentrated almost entirely 
into the 0,O line. 

2. If an antibonding electron is ionized, the bond becomes stronger and hence shorter; this, as 
shown in Fig. 6.3(b), results in transitions to several vibrational states in the ion, and 
consequently a spectrum showing vibrational fine structure. In this case, too, the potential 
well for the ion is generally rather deeper and narrower than that of the molecule, and the 
vibrational frequency increases; this is a consequence of the increase in bond strength or 
force constant. 

3. The removal of a bonding electron gives a weaker, longer bond (Fig. 6.4(c)), with a spectrum 
otherwise similar to that of 2 above. Here, however, the decrease in bond strength results in a 
wider and shallower potential well, with a lower vibrational frequency than that of the 
neutral molecule. 

As can be seen in Fig. 6.3, the spacing of the vibrational fine-structure lines reflects the 
separations between the vibrational level of the ion rather than those of the neutral molecule. 
Thus observation of the fine structure immediately leads to an approximate value for the 
vibrational frequency of the ion concerned. 

Figure 6.21 shows the UPES spectrum of carbon monoxide. This molecule has a total of ten 
valence electrons-four from the carbon and six from the oxygen-the outer eight of which 
occupy the molecular orbitals 2u22r42n2, where n2 represents a pair of electrons in a non- 
bonding orbital. It should be noted that this structure is amply confirmed by the photoelectron 
spectrum, as we show below. 

Three main features appear in the spectrum, at 14.0, 16.5, and 19.7eV. The 14eV band has 
virtually no fine structure-only two peaks appear, one of them very weak-and it clearly arises 
from removal of an electron from the non-bonding orbital. The band at 16.5eV with its 



Figure 6.21 The photoelectron spectrum of carbon monoxide. 

associated fine structure arises from the 2pr bonding orbital, which is higher in energy (i.e. has a 
weaker binding energy) than the 2sa; the latter gives rise to the 19.7eV peak. Confirmation of 
this assignment can be made by measuring the vibrational spacing. This is observed to be 
1549cm-' for the 16.5 eV band and 1706cm-I for the 19.7 eV band; both of these values are 
significantly lower than that of the fundamental frequency of the free molecule (2157cm-I), 
indicating removal of an electron from a bonding orbital. The spacing of the two lines for the 
14.0 eV band is about 2200 cm-I, which is reasonably close to the neutral molecule and confirms 
a non-bonding case. 

Two further effects should be mentioned. Firstly, spin-orbit coupling may sometimes result 
in the additional splitting of bands, just as for atoms. Secondly, if an electron is removed from a 
degenerate level, the resulting ion may initially also be in a degenerate state; subsequent distor- 
tion of the ion may lead to a removal of the degeneracy and hence a splitting of the energy levels; 
this is known as the Renner-Teller effect for linear molecules and as the Jahn-Teller effect for 
non-linear ones. For example, if an electron is removed from one of the four equivalent 
hybridized orbitals of methane, the resulting CH: ion is not tetrahedral. The remaining 
three orbitals are no longer degenerate and so each contributes separately to the spectrum, 
producing three maxima. In this case the splitting is small, and often observed merely as a 
broadening, rather than a splitting, of the photoelectron peak. 

6.5.2 X-Ray Photoelectron Spectroscopy (XPES)j 

X-ray photoelectron spectroscopy probes the binding energies of core electrons in an atom. 
Although such electrons usually play little part in chemical bonding, different chemical envir- 
onments can induce small changes in their binding energies; this is because the formation of a 
bond changes the distribution of electrons in the system and hence, by modifying nuclear 
shielding, produces changes in the effective nuclear charge of the bound atoms. 

Consider, as an example, the case of carbon in the C - F bond. The highly electronegative 
fluorine attracts electrons and so reduces the electron density around the carbon nucleus; the 
carbon is thus less shielded than in the free state, and its effective nuclear charge is increased. 

t In the earlier literature XPES was called electron spectroscopy for chemical analysis and abbreviated to ESCA 
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Figure 6.22 The photoelectron spectrum of NzO. 

This means that core carbon electrons experience an increased nuclear force and so have a 
higher binding energy. This phenomenon is known as the chemical shift. 

Another example is N20; we show the nitrogen 1s region of the XPES spectrum of the 
molecule in Fig. 6.22. The molecule is linear with the structure N - N - 0 and so the central 
nitrogen experiences a greater reduction of electron density, and hence more strongly bound 
core electrons, from the electronegative oxygen than does the end one. Clearly, then, the central 
atom is assigned to the 412.6eV peak and the end atom to the 408.7eV peak, as shown. 

In principle it would seem to be possible to use the chemical shift to determine the effective 
charge on an individual atom in the molecule; in practice this process is sometimes complicated 
by a number of experimental factors which will not be dealt with here. 

A further point worth mentioning is that, as for UPES measurements, XPES spectra may 
show the effect of spin-orbit coupling. In the case of XPES, however, the splittings are usually 
so small that they cannot be resolved and merely appear as slight broadening of the bands. 
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PROBLEMS 

(Useful constant: 1 cm-' = 1 1.958 J mol-I .) 

6.1 Using the data of Fig. 6.5 (some of which is tabulated below), estimate the dissociation energy of the 
I2 molecule: 

6.2 The absorption spectrum of O2 shows vibrational structure which becomes a continuum at 
56 876cm-I; the upper electronic state dissociates into one ground state atom and one excited atom (the 
excitation energy of which, measured from the atomic spectrum, is 15 875 cm-I). Estimate the dissociation 
energy of ground state O2 in kJ mol-I. 

6.3 The values of 5, and x, in the ground state (311,) and a particular excited state (3n,) of C2 are: 

Ground state 1641.4 7.1 1 x 
Excited state 1788.2 9.19 x lo-) 

Use Eq. (6.10) to find the number of vibrational energy levels below the dissociation limit and hence the 
dissociation energy of C2 in both states. 

6.4 The spectrum arising from transitions between the two states of C2 in Prob. 6.3 shows the uoo line at 
19 378 cm-' and a convergence limit at 39 23 1 cm-I . The dissociation is into one ground state atom and one 
excited atom, the excitation energy of the latter being 10 308 cm-' ; calculate the exact dissociation energies 
of the two states and compare your answers with those of Prob. 6.3. Explain any discrepancy. 

6.5 The band origin of a transition in C2 is observed at 19 378 cm-I, while the rotational fine structure 
indicates that the rotational constants in excited and ground states are, respectively, B' = 1.7527 cm-' and 
B" = 1.6326cm-I. Estimate the position of the band head. Which state has the larger internuclear dis- 
tance? 

6.6 Describe qualitatively what you would expect to see in the carbon region of the XPES spectrum of 
ethyl trifluoroacetate, giving reasons. The structure of the molecule is: 

I I I 

F H H 

6.7 A diatomic molecule, AB, has a UPES spectrum which contains two main features. The first shows 
only one sharp line, while the other is a cluster of peaks separated by 2300cm-I. Interpret the spectrum in 
terms of the orbitals from which the features arise, given that the vibrational frequency of the neutral 
molecule in the ground state is about 2100cm-'. 


