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1 Introduction 

These lecture notes are designed to accompany a lower-division college survey 

course covering electricity, magnetism, and optics. Students are expected to be 

familiar with calculus and elementary mechanics. 
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2 Vectors 

 
2.1 Vector Algebra 

 
In applied mathematics, physical quantities are (predominately) represented by 

two distinct classes of objects. Some quantities, denoted scalars, are represented 

by real numbers.  Others, denoted vectors, are represented by directed line ele- 

ments in space: e.g., PQ in see Fig. 2.1. Note that line elements (and, therefore, 

vectors) are movable, and do not carry intrinsic position information:  i.e., in 

Fig.  2.2,  P
→
S and  Q

→
R are  considered  to  be  the  same  vector.   In  fact,  vectors  just 

possess a magnitude and a direction, whereas scalars possess a magnitude but no 

direction. By convention, vector quantities are denoted by bold-faced characters 

(e.g., a) in typeset documents.  Vector addition can be represented using a par- 

allelogram:  e.g.,  P
→
R = P

→
Q + Q

→
R in Fig.  2.2.  P

→
R is said to be the  resultant  of  P

→
Q 

and QR.  Suppose that a PQ SR, b QR PS, and c PR.  It follows, from 

Fig. 2.2, that vector addition is commutative: i.e., a + b = b + a (since PR is also 

the resultant of PS and SR). It can also be shown that the associative law holds: 

i.e., a + (b + c) = (a + b) + c. 

There are two general approaches to vector analysis. The geometric approach 

is based on drawing line elements in space, and then making use of the theorems 

of Euclidian geometry.  The coordinate approach assumes that space is defined 

by Cartesian coordinates, and uses these to characterize vectors. In Physics, we 
 

Q 
 
 
 
 
 
 

P 
 

Figure 2.1: A directed line element. 
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Figure 2.2: Vector addition. 

 
generally adopt the second approach, because it is far more convenient. 

In the coordinate approach, a vector is denoted as the row matrix of its com- 

ponents along each of the Cartesian axes (the x-, y-, and z-axes, say): 

a ≡ (ax, ay, az). (2.1) 

Here,  ax  is the x-coordinate of the “head” of the vector minus the x-coordinate 

of its “tail,” etc.  If a   (ax, ay, az) and b   (bx, by, bz) then vector addition is 
defined 

a + b ≡ (ax + bx, ay + by, az + bz). (2.2) 

If a is a vector and n is a scalar then the product of a scalar and a vector is defined 

n a ≡ (n ax, n ay, n az). (2.3) 

The vector n a is interpreted as a vector which points in the same direction as 

a (or in the opposite direction,  if n < 0),  and is |n| times as long as a.   It is 
clear that vector algebra is distributive with respect to scalar multiplication: i.e., 

n (a + b) = n a + n b. 

Unit vectors can be defined in the x-, y-, and z-directions as ex     (1, 0, 0), 

ey (0, 1, 0), and ez (0, 0, 1). Any vector can be written in terms of these unit 
vectors: i.e., 

a = ax ex + ay ey + az ez. (2.4) 

a 
b 

c 

b 
a 
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Figure 2.3: Rotation of the basis about the z-axis. 

 
In mathematical terminology, three vectors used in this manner form a basis of 

the vector space. If the three vectors are mutually perpendicular then they are 

termed orthogonal basis vectors. However, any set of three non-coplanar vectors 

can be used as basis vectors. 

Examples of vectors in Physics are displacements from an origin, 

r = (x, y, z), (2.5) 

and velocities,  

v = 
dr 

 

= lim 

 
r(t + δt) − r(t) 

. (2.6) 
dt δt    0 δt 

Suppose that we transform to a new orthogonal basis, the xJ-, yJ-, and zJ-axes, 

which are related to the x-, y-, and z-axes via a rotation through an angle θ 

around the z-axis—see Fig. 2.3. In the new basis, the coordinates of the general 

displacement r from the origin are (xJ, yJ, zJ). These coordinates are related to 
the previous coordinates via the transformation 

xJ 

yJ 

zJ 

Now, we do not need to change our notation for the displacement in the new 

basis. It is still denoted r. The reason for this is that the magnitude and direction 

= x cos θ + y sin θ, (2.7) 

= −x sin θ + y cos θ, (2.8) 

= z. (2.9) 
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of r are independent of the choice of basis vectors. The coordinates of r do depend 

on the choice of basis vectors. However, they must depend in a very specific 

manner [i.e., Eqs. (2.7)–(2.9)] which preserves the magnitude and direction of r. 

Since any vector can be represented as a displacement from an origin (this is 

just a special case of a directed line element), it follows that the components of a 

general vector a must transform in an similar manner to Eqs. (2.7)–(2.9). Thus, 

axJ = ax cos θ + ay sin θ, (2.10) 

ayJ = −ax sin θ + ay cos θ, (2.11) 

azJ = az, (2.12) 

with analogous transformation rules for rotation about the y- and z-axes. In the 

coordinate approach, Eqs. (2.10)–(2.12) constitute the definition of a vector. The 

three quantities (ax, ay, az) are the components of a vector provided that they 

transform under rotation like Eqs. (2.10)–(2.12). Conversely, (ax, ay, az) cannot 

be the components of a vector if they do not transform like Eqs. (2.10)–(2.12). 

Scalar quantities are invariant under transformation. Thus, the individual com- 

ponents of a vector (ax, say) are real numbers, but they are not scalars. Displace- 

ment vectors, and all vectors derived from displacements, automatically satisfy 

Eqs. (2.10)–(2.12). There are, however, other physical quantities which have 

both magnitude and direction, but which are not obviously related to displace- 

ments. We need to check carefully to see whether these quantities are vectors. 

 

2.2 Vector Area 

 
Suppose that we have a plane surface of scalar area S. We can define a vector area 

S whose magnitude is S, and whose direction is perpendicular to the plane, in the 

sense determined by a right-hand grip rule on the rim—see Fig. 2.4. This quantity 

clearly possesses both magnitude and direction. But is it a true vector? Well, we 

know that if the normal to the surface makes an angle αx with the x-axis then the 

area seen looking along the x-direction is S cos αx. Let this be the x-component 

of S. Similarly,  if the normal makes an angle αy  with the y-axis then the area 

seen looking along the y-direction is S cos αy. Let this be the y-component of S. 
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Figure 2.4: A vector area. 

 
If we limit ourselves to a surface whose normal is perpendicular to the z-direction 
then αx = π/2 − αy = α. It follows that S = S (cos α, sin α, 0). If we rotate the 

basis about the z-axis by θ degrees, which is equivalent to rotating the normal to 

the surface about the z-axis by −θ degrees, then 

SxJ = S cos (α − θ) = S cos α cos θ + S sin α sin θ = Sx cos θ + Sy sin θ, (2.13) 

which is the correct transformation rule for the x-component of a vector. The 
other components transform correctly as well. This proves that a vector area is a 
true vector. 

According to the vector addition theorem, the projected area of two plane 

surfaces, joined together at a line, looking along the x-direction (say) is the x- 
component of the resultant of the vector areas of the two surfaces. Likewise, for 

many joined-up plane areas, the projected area in the x-direction, which is the 

same as the projected area of the rim in the x-direction, is the x-component of 
the resultant of all the vector areas: i.e., 

S = Si. (2.14) 
i 

If we approach a limit, by letting the number of plane facets increase, and their 

areas reduce, then we obtain a continuous surface denoted by the resultant vector 

area 

S = δSi. (2.15) 
i 
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It is clear that the projected area of the rim in the x-direction is just Sx. Note that 
the vector area of a given surface is completely determined by its rim. So, two 
different surfaces sharing the same rim both possess the same vector area. 

In conclusion, a loop (not all in one plane) has a vector area S which is the 
resultant of the vector areas of any surface ending on the loop. The components 
of S are the projected areas of the loop in the directions of the basis vectors. As a 

corollary, a closed surface has S = 0, since it does not possess a rim. 

 

2.3 The Scalar Product 

 
A scalar quantity is invariant under all possible rotational transformations. The 

individual components of a vector are not scalars because they change under 

transformation. Can we form a scalar out of some combination of the compo- 

nents of one, or more, vectors? Suppose that we were to define the “ampersand” 

product, 

a & b = ax by + ay bz + az bx = scalar number, (2.16) 

for general vectors a and b. Is a & b invariant under transformation, as must 
be the case if it is a scalar number?  Let us consider an example.  Suppose that 

a = (1, 0, 0) and b = (0, 1, 0).  It is easily seen that a & b = 1.  Let√us now√rotate 

the basis thr√ough  4√5
◦ about the z-axis.  In the new basis,  a  = (1/ 2, −1/ 2, 0) 

and b = (1/ 2, 1/ 2, 0), giving a & b = 1/2. Clearly, a & b is not invariant under 
rotational transformation, so the above definition is a bad one. 

Consider, now, the dot product or scalar product, 

a · b = ax bx + ay by + az bz = scalar number. (2.17) 

Let us rotate the basis though θ degrees about the z-axis. According to Eqs. (2.10)– 
(2.12), in the new basis a · b takes the form 

a · b = (ax cos θ + ay sin θ) (bx cos θ + by sin θ) 

+(−ax sin θ + ay cos θ) (−bx sin θ + by cos θ) + az bz 

=  ax bx + ay by + az bz. (2.18) 
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Thus, a b is invariant under rotation about the z-axis. It can easily be shown that 

it is also invariant under rotation about the x- and y-axes. Clearly, a b is a true 

scalar, so the above definition is a good one. Incidentally, a b is the only simple 

combination of the components of two vectors which transforms like a scalar. It 

is easily shown that the dot product is commutative and distributive: 

a · b = b · a, 

a · (b + c) = a · b + a · c. (2.19) 

The associative property is meaningless for the dot product, because we cannot 

have (a · b) · c, since a · b is scalar. 

We have shown that the dot product a b is coordinate independent. But what 

is the physical significance of this? Consider the special case where a = b. Clearly, 

a · b = a 2 + a 2 + a 2 = Length (OP)2, (2.20) 

if a is the position vector of P relative to the origin O.  So, the invariance of a   a 
is equivalent to the invariance of the length, or magnitude, of vector a under 

transformation. The length of vector a is usually denoted |a| (“the modulus of 

a”) or sometimes just a, so 

a · a = |a|2 = a2. (2.21) 

B 
 
 

b 
b − a 

 



O a A 
 

Figure 2.5: A vector triangle. 
 

Let us now investigate the general case. The length squared of AB in Fig. 2.5 
is 

(b − a) · (b − a) = |a|2 + |b|2 − 2 a · b. (2.22) 

. 
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· 

· 

 

However, according to the “cosine rule” of trigonometry, 

(AB)2 = (OA)2 + (OB)2 − 2 (OA) (OB) cos θ, (2.23) 

where (AB) denotes the length of side AB. It follows that 

a · b = |a| |b| cos θ. (2.24) 

Clearly, the invariance of a b under transformation is equivalent to the invariance 

of the angle subtended between the two vectors. Note that if a   b = 0 then either 
|a| = 0, |b| = 0, or the vectors a and b are mutually perpendicular. The angle θ 
subtended between two vectors can easily be obtained from the dot product: i.e., 

cos θ =
 a · b 

. (2.25) 
|a| |b| 

Note that ax = a cos θx, etc., where θx is the angle subtended between vector a 

and the x-axis. 

The work W performed by a constant force F which moves an object through 
a displacement r is the product of the magnitude of F times the displacement in 

the direction of F. So, if the angle subtended between F and r is θ then 

W = |F| (|r| cos θ) = F · r. (2.26) 

 
2.4 The Vector Product 

 
We have discovered how to construct a scalar from the components of two gen- 

eral vectors a and b. Can we also construct a vector which is not just a linear 

combination of a and b? Consider the following definition: 

a x b = (ax bx, ay by, az bz). (2.27) 

Is a x b a proper vector? Suppose that a = (1, 0, 0) and b = (0, 1, 0). Clearly, 
a x b  = √0.   How√ever,  if  we  rota√te   the√basis  through  45◦ about  the  z-axis  then 

a = (1/ 2, −1/ 2, 0), b = (1/ 2, 1/ 2, 0), and a x b = (1/2, −1/2, 0). Thus, 
a x b does not transform like a vector, because its magnitude depends on the 

choice of axes. So, above definition is a bad one. 
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Consider, now, the cross product or vector product, 

a × b = (ay bz − az by, az bx − ax bz, ax by − ay bx) = c. (2.28) 

Does this rather unlikely combination transform like a vector? Let us try rotating 

the basis through θ degrees about the z-axis using Eqs. (2.10)–(2.12). In the new 
basis, 

 

cxJ = (−ax sin θ + ay cos θ) bz − az (−bx sin θ + by cos θ)  

= 

= 

(ay bz − az by) cos θ + (az bx − ax bz) sin θ 

cx cos θ + cy sin θ. 

 
(2.29) 

Thus, the x-component of a b transforms correctly. It can easily be shown that 
the other components transform correctly as well, and that all components also 

transform correctly under rotation about the y- and z-axes. Thus, a b is a proper 
vector. Incidentally, a  b is the only simple combination of the components of 
two vectors which transforms like a vector (which is non-coplanar with a and b). 
The cross product is anticommutative, 

a × b = −b × a, (2.30) 

distributive, 

 
but is not associative: 

 
a × (b + c) = a × b + a × c, (2.31) 

a × (b × c) (a × b) × c. (2.32) 

Note that a b can be written in the convenient, and easy to remember, determi- 

nant form 
ex ey ez 

. . 

a × b = 
. 
ax ay az . (2.33) 

. 

. bx by bz . 
 

The cross product transforms like a vector, which means that it must have a well-

defined direction and magnitude. We can show that a × b is perpendicular to 

both a and b. Consider a · a × b. If this is zero then the cross product must be 
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θ 

 

thumb 
 
 
 
 
 

middle finger 
 

 

a index finger 
 

Figure 2.6: The right-hand rule for cross products. 

 
perpendicular to a. Now 

a · a × b  =  ax (ay bz − az by) + ay (az bx − ax bz) + az (ax by − ay bx) 

= 0. (2.34) 

Therefore, a ×b is perpendicular to a. Likewise, it can be demonstrated that a ×b 
is perpendicular to b. The vectors a, b, and a × b form a right-handed set, like the 

unit vectors ex, ey, and ez. In fact, ex × ey = ez. This defines a unique direction 
for a × b, which is obtained from a right-hand rule—see Fig. 2.6. 

Let us now evaluate the magnitude of a × b. We have 

(a × b)2 =  (ay bz − az by)
2 + (az bx − ax bz)

2 + (ax bz − ay bx)
2 

=  (a 2 + a 2 + a 2) (b 2 + b 2 + b 2) − (ax bx + ay by + az bz)
2 

x y z x y z 

 
 
 
Thus, 

= |a|2 |b|2 − (a · b)2 

= |a|2 |b|2 − |a|2 |b|2 cos2 θ = |a|2 |b|2 sin2 θ. (2.35) 

 
|a × b| = |a| |b| sin θ. (2.36) 

Clearly, a × a = 0 for any vector, since θ is always zero in this case. Also, if 

a × b = 0 then either |a| = 0, |b| = 0, or b is parallel (or antiparallel) to a. 

Suppose that a force F is applied at position r—see Fig. 2.7. The moment, or 

torque, about the origin O is the product of the magnitude of the force and the 
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dt δt 0 δt 
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O 

 

Figure 2.7: A torque. 
 

length of the lever arm OQ. Thus, the magnitude of the moment is |F| |r| sin θ. 
The direction of the moment is conventionally the direction of the axis through 

O about which the force tries to rotate objects, in the sense determined by a right-
hand grip rule. It follows that the vector moment is given by 

M = r × F. (2.37) 

 
 
2.5 Vector Calculus 

 
Suppose that vector a varies with time, so that a = a(t). The time derivative of 

the vector is defined 

da  
= lim 

 
a(t + δt) − a(t)

 . (2.38)
 

When written out in component f

→

orm this becomes 
da 

= 

  
dax 

, 
day 

, 
daz 

! 

. (2.39) 

dt dt dt dt 
 

Suppose that a is, in fact, the product of a scalar φ(t) and another vector b(t). 

θ 

P 

r 

r sin θ 
Q 
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d 

d 

· 

 

What now is the time derivative of a? We have 

dax d = (φ b 
 

 

dφ ) = b 
 

 

+ φ 
dbx 

, (2.40) 
 

 

 
which implies that 

dt dt 

 

da 

dt 

x dt 

 

= 
dφ 

b + φ 
dt 

x dt 

 
db

. (2.41) 

dt 

It is easily demonstrated that 

 

dt 
(a · b) = 

 
da 

dt 
· b + a · 

 

db 
. (2.42) 

dt 

Likewise,  

dt 
(a × b) = 

 

da 

dt 
× b + a × 

 
db 

. (2.43) 
dt 

It can be seen that the laws of vector differentiation are fairly analogous to 

those in conventional calculus. 

 

2.6 Line Integrals 

 
A vector field is defined as a set of vectors associated with each point in space. 

For instance, the velocity v(r) in a moving liquid (e.g., a whirlpool) constitutes a 
vector field. By analogy, a scalar field is a set of scalars associated with each point 

in space. An example of a scalar field is the temperature distribution T(r) in a 
furnace. 

Consider a general vector field A(r). Line integrals of the form 

Q 

A dr = 
P 

Q 

(Ax dx + Ay dy + Az dz), 
P 

 
(2.44) 

evaluated on some particular path taken between two fixed points P and Q, often 

arise in Physics. Here dr = (dx, dy, dz) is a path element. The path might be 

specified as x = f(l), y = g(l), and z = h(l), where f, g, h are mathematical 

functions, and l is a parameter (such as path-length) which varies monotonically 

∫ ∫ 
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! 

· 

F · dr. Take P = (∞, 0, 0) and Q = (a, 0, 0). Route 1 is along the x-axis, so 

dS 

∫ 

 

along the path. It follows that dr = (df/dl, dg/dl, dh/dl) dl. In particular, if 

A(r) is a force-field then the line integral is the work done by the force in going 

between points P and Q along the given path [cf.,  Eq. (2.26)].   Finally,  if the 

path is a closed loop (i.e., if P and Q are the same point) then the integral is 

conventionally written 

I 

A · dr. (2.45) 

As an example of a path integral, consider the work done in a repulsive, 

inverse-square,  central  field,  F  = −r/|r3|.   The  element  of  work  done  is  dW  = 
 

a 1 
W = − 

x2 

 

dx = 
" 
1 

#a 

 

 

= 
1 

. (2.46) 
a 

The second route is,  firstly,  aro
∞

und  a large circle 

∞

(r = constant) to the point (a, 
, 0), and then parallel to the y-axis—see Fig. 2.8. In the first, part no work is 

done, since F is perpendicular to dr. In the second part, ∫ 0
 −y dy   1 

0 
1 

W = 
(a2 + y2)3/2 

= 
(y2 + a2)1/2  = . (2.47) a 

In this case, the integral 

∞

is independent of the path take
∞

n between the beginning 

and end points. However, not all line integrals are path independent. Indeed, 

there are two different classes of line integral—those whose values only depend 

on the end points, and those whose values depend both on the end points and 

the path taken between these points. 

 

2.7 Surface Integrals 

 
Surface integrals often arise in Physics. For instance, the rate of flow of a liquid 

of velocity v through an infinitesimal surface of vector area dS is v dS (i.e., the 

product of the normal component of the velocity, v cos θ, and the magnitude of 

the area, dS, where θ is the angle subtended between v and dS). The net rate of 

flow through a surface S made up of very many infinitesimal surfaces is ∫ 

v · dS = lim  
 X 

v cos θ dS
 
, (2.48) 

 
S → 0 

x 

∞ 
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Figure 2.8: An example line integral. 

 

where θ is the angle subtended between a surface element dS and the local flow 

velocity v(r). If the surface is closed, and the surface elements all point outward, 
then the integral is conventionally written 

I 

v · dS. (2.49) 
 

In this case, the integral is often termed the fiux of the velocity field v out of the 

closed surface S. 

 

2.8 Volume Integrals 
 

A volume integral takes the form 

∫

V

 

 
 

F(x, y, z) dV, (2.50) 

where F is a three-dimensional mathematical function, V some volume in space, 

and dV = dx dy dz an element of this volume. The volume element is sometimes 
written d3r. 

As an example of a volume integral, let us evaluate the centre of gravity of a 

solid hemisphere of radius a (centered on the origin). The height of the centre of 

2 

2 

Q 

a 1 

P 
∞ 

S 
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∫ ∫ 

∫ 

∫ 

 

gravity is given by  

z = 
V 

z dV

, ∫

 

 

dV. (2.51) 

The bottom integral is simply the volume of the hemisphere, which is 2π a3/3. 

The top integral is most easily evaluated in spherical polar coordinates (r, θ, φ), 
for which z = r cos θ and dV = r2 sin θ dr dθ dφ. Thus, 

 

 

z dV = 
V 

a π/2 

dr dθ 
0 0 

2π 

dφ r cos θ r2 
0 

sin θ 

 

 
giving 

a 

= r3 dr 
0 

π/2 

0 
sin θ cos θ dθ 

2π 

dφ = 
0 

π a4 

4 
, (2.52) 

π a4 
z = 

4 

3 

2π a3 

= 
3 a

. (2.53) 
8 

∫ 

∫ ∫ 

V 

∫ 
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3 Electricity 

 
3.1 Historical Introduction 

 
We usually associate electricity with the 20th Century, during which it revolu- 

tionized the lives of countless millions of ordinary people, in much the same 

manner as steam power revolutionized lives in the 19th Century. It is, therefore, 

somewhat surprising to learn that people have known about electricity for many 

thousands of years. In about 1000 BC, the ancient Greeks started to navigate 

the Black Sea, and opened up trade routes, via the river Dnieper, to the Baltic 

region. Amongst the many trade items that the Greeks obtained from the Baltic 

was a substance which they called “electron” ( ), but which we nowadays 

call amber.  Amber is fossilized pine resin, and was used by the Greeks, much as 

it is used today, as a gem stone. However, in about 600 BC, the ancient Greek 

philosopher Thales of Miletus discovered that amber possesses a rather peculiar 

property: i.e., when it is rubbed with fur, it develops the ability to attract light ob- 

jects, such as feathers. For many centuries, this strange phenomenon was thought 

to be a unique property of amber. 

In Elizabethan times, the English physician William Gilbert coined the word 

“electric” (from the Greek word for amber) to describe the above mentioned ef- 

fect. It was later found that many materials become electric when rubbed with 

certain other materials. In 1733, the French chemist du Fay discovered that there 

are, in fact, two different types of electricity. When amber is rubbed with fur, it 

acquires so-called “resinous electricity.” On the other hand, when glass is rubbed 

with silk, it acquires so-called “vitreous electricity.” Electricity repels electricity 

of the same kind, but attracts electricity of the opposite kind. At the time, it was 

thought that electricity was created by friction. 

Scientists in the 18th Century eventually developed the concept of electric 

charge in order to account for a large body of observations made in countless 

electrical experiments. There are two types of charge: positive (which is the same 

as vitreous), and negative (which is the same as resinous). Like charges repel one 

another, whilst opposite charges attract. When two bodies are rubbed together, 
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charge can be transfered from one to the other, but the total charge remains con- 

stant. Thus, when amber is rubbed with fur, there is transfer of charge such that 

the amber acquires a negative charge, and the fur an equal positive charge. Like- 

wise, when glass is rubbed with silk, the glass acquires a positive charge,  and 

the silk an equal negative charge. The idea that electrical charge is a conserved 

quantity is attributed to the American scientist Benjamin Franklin (who is also 

to blame for the unfortunate sign convention in electricity). The law of charge 

conservation can be written: 

 
In any closed system, the total electric charge remains constant. 

 
Of course, when summing charge, positive charges are represented as positive 

numbers, and negative charges as negative numbers. 

In the 20th Century, scientists discovered that the atoms out of which ordi- 

nary matter is composed consist of two components: a relatively massive, pos- 

itively charged nucleus, surrounded by a cloud of relatively light, negatively 

charged particles called electrons. Electrons and atomic nuclii carry fixed electri- 

cal charges, and are essentially indestructible (provided that we neglect nuclear 

reactions). Under normal circumstances, only the electrons are mobile. Thus, 

when amber is rubbed with fur, electrons are transferred from the fur to the am- 

ber, giving the amber an excess of electrons, and, hence, a negative charge, and 

the fur a deficit of electrons, and, hence, a positive charge. Substances normally 

contain neither an excess nor a deficit of electrons, and are, therefore, electrically 

neutral. 

The SI unit of electric charge is the coulomb (C). The charge on an electron is 

−1.602 × 10−19 C. 

 
3.2 Conductors and Insulators 

 
Suppose that we were to electrically charge two isolated metal spheres: one with 

a positive charge, and the other with an equal negative charge. We could then 

perform a number of simple experiments. For instance, we could connect the 
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spheres together using a length of string. In this case, we would find that the 

charges residing on the two spheres were unaffected. Next, we could connect the 

spheres using a copper wire. In this case, we would find that there was no charge 

remaining on either sphere. Further investigation would reveal that charge must 

have fiowed through the wire, from one sphere to the other, such that the positive 

charge on the first sphere completely canceled the negative charge on the sec- 

ond, leaving zero charge on either sphere. Substances can be classified into two 

main groups, depending on whether they allow the free flow of electric charge. 

Conductors allow charge to pass freely through them, whereas insulators do not. 

Obviously, string is an insulator, and copper is a conductor. As a general rule, sub- 

stances which are good conductors of heat are also good conductors of electricity. 

Thus, all metals are conductors, whereas air, (pure) water, plastics, glasses, and 

ceramics are insulators. Incidentally, the distinction between conductors and in- 

sulators was first made by the English scientist Stephen Gray in 1729. 

Metals are good conductors (both of heat and electricity) because at least one 

electron per atom is free: i.e., it is not tied to any particular atom, but is, instead, 

able to move freely throughout the metal. In good insulators, such as glass, all of 

the electrons are tightly bound to atoms (which are fixed), and so there are no 

free electrons. 

 

3.3 Electrometers and Electroscopes 

 
Electric charge is measured using a device called an electrometer, which consists 

of a metal knob connected via a conducting shaft to a flat, vertical metal plate. A 

very light gold leaf, hinged at the top, is attached to the plate. Both the plate and 

the gold leaf are enclosed in a glass vessel to protect the delicate leaf from air 

currents. When charge is deposited on the knob, some fraction is conducted to 

the plate and the gold leaf, which consequently repel one another, causing the leaf 

to pull away from the plate. The angular deflection of the gold leaf with respect 

to the plate is proportional to the charge deposited on the knob. An electrometer 

can be calibrated in such a manner that the angular deflection of the gold leaf 

can be used to calculate the absolute magnitude of the charge deposited on the 
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knob. 

An electroscope is a somewhat cruder charge measuring device than an elec- 

trometer, and consists of two gold leaves, hinged at the top, in place of the metal 

plate and the single leaf. When the knob is charged, the two leaves also become 

charged and repel one another, which causes them to move apart. The mutual 

deflection of the leaves can be used as a rough measure of the amount of electric 

charge deposited on the knob. 

 

3.4 Induced Electric Charge 

 
We have seen how an electroscope can be used to measure the absolute magni- 

tude of an electric charge. But, how can we determine the sign of the charge? In 

fact, this is fairly straightforward. Suppose that an electroscope carries a charge 

of unknown sign. Consider what happens when we bring a negatively charged 

amber rod, produced by rubbing the rod with fur, close to the knob of the elec- 

troscope. The excess electrons in the rod repel the free electrons in the knob and 

shaft of the electroscope. The repelled electrons move as far away from the rod 

as possible, ending up in the gold leaves. Thus, the charge on the leaves becomes 

more negative. If the original charge on the electroscope is negative then the 

magnitude of the charge on the leaves increases in the presence of the rod, and 

the leaves consequently move further apart. On the other hand, if the original 

charge on the electroscope is positive then the magnitude of the charge on the 

leaves decreases in the presence of the rod, and the leaves consequently move 

closer together. The general rule is that the deflection of the leaves increases 

when a charge of the same sign is brought close to the knob of the electroscope, 

and vice versa. The sign of the charge on an electroscope can easily be determined 

in this manner. 

Suppose that we bring a negatively charged rod close to the knob of an un- 

charged electroscope.   The excess electrons in the  rod repel the  free electrons 

in the knob and shaft of the electroscope so that they collect in the gold leaves, 

which, therefore, move apart. It follows that whenever a charged object is brought 

close to the knob of an uncharged electroscope, the electroscope registers a 
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charge. Thus, an uncharged electroscope can be used to detect electric charge 

residing on nearby objects, without disturbing that charge. 

Suppose that we bring a negatively charged rod close to the knob of an un- 

charged electroscope which is attached, via a conducting wire, to a large un- 

charged conductor. The excess electrons in the rod repel the free electrons in the 

knob and shaft of the electroscope. The repelled electrons move as far away from 

the rod as possible, which means that they flow down the wire into the external 

conductor. Suppose that we disconnect the wire and then remove the charged 

rod. By disconnecting the wire we have stranded the electrons which were re- 

pelled down the wire on the external conductor. Thus, the electroscope, which 

was initially uncharged, acquires a deficit of electrons. In other words, the elec- 

troscope becomes positively charged. Clearly, by bringing a charged object close 

to an uncharged electroscope, transiently connecting the electroscope to a large 

uncharged conductor, and then removing the object, we can induce a charge of 

the opposite sign on the electroscope without affecting the charge on the object. 

This process is called charging by induction. 

But where are we going to find a large uncharged conductor? Well, it turns 

out that we standing on one. The ground (i.e., the Earth) is certainly large, and 

it turns out that it is also a reasonably good electrical conductor. Thus, we can 

inductively charge an electroscope by transiently connecting it to the ground (i.e., 

“grounding” or “earthing” it) whilst it is in the presence of a charged object. The 

most effective way of earthing an object is to connect it to a conducting wire 

which is attached,   at the other end,   to a metal stake driven into the ground. 

A somewhat less effective way of grounding an object is simply to touch it. It 

turns out that we are sufficiently good electrical conductors that charge can flow 

though us to the ground. 

Charges can also be induced on good insulators, although to nothing like the 

same extent that they can be induced on good conductors. Suppose that a neg- 

atively charged amber rod is brought close to a small piece of paper (which is 

an insulator). The excess electrons on the rod repel the electrons in the atoms 

which make up the paper, but attract the positively charged nuclei. Since paper 

is an insulator, the repelled electrons are not free to move through the paper. 
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Instead, the atoms in the paper polarize: i.e., they distort in such a manner that 

their nuclei move slightly towards, and their electrons slightly away from, the 

rod. The electrostatic force of attraction between the excess electrons in the rod 

and the atomic nuclei in the paper is slightly greater than the repulsion between 

the electrons in the rod and those in the paper, since the electrons in the pa- 

per are, on average, slightly further away from the rod than the nuclei (and the 

force of electrostatic attraction falls off with increasing distance). Thus, there 

is a net attractive force between the rod and the paper. In fact, if the piece of 

paper is sufficiently light then it can actually be picked up using the rod. In sum- 

mary, whenever a charged object is brought close to an insulator, the atoms in 

the insulator polarize, resulting in a net attractive force between the object and 

the insulator. This effect is used commercially to remove soot particles from the 

exhaust plumes of coal-burning power stations. 

 

3.5 Coulomb’s Law 

 
The first precise measurement of the force between two electric charges was per- 

formed by the French scientist Charles-Augustin de Coulomb in 1788. Coulomb 

concluded that: 

 
The electrical force between two charges at rest is directly proportional to 

the product of the charges, and inversely proportional to the square of the 

distance between the charges 

 
This law of force is nowadays known as Coulomb’s law. Incidentally, an electrical 

force exerted between two stationary charges is known as an electrostatic force. 

In algebraic form, Coulomb’s law is written 

f = 
q qJ 

4πs0 r2 

 

, (3.1) 

where f is the magnitude of the force, q and qJ are the magnitudes of the two 

charges (with the appropriate signs), and r is the distance between the two 

charges. The force is repulsive if f > 0, and attractive if f < 0. The universal 
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constant 

s0 = 8.854 × 10−12 N−1 m−2 C2 (3.2) 

is called the permittivity of free space or the permittivity of the vacuum. We can 

also write Coulomb’s law in the form 
 

f = ke 
q qJ 

, (3.3) 

r2 

where the constant of proportionality ke = 1/4πs0 takes the value 

ke = 8.988 × 109 N m2 C−2. (3.4) 

Coulomb’s law has an analogous form to Newton’s law of gravitation, 

f = −G 
m mJ 

, (3.5) 

r2 

with electric charge playing the role of mass. One major difference between the 

two laws is the sign of the force. The electrostatic force between two like charges 

is repulsive (i.e., f > 0), whereas that between two unlike charges is attractive 

(i.e., f < 0). On the other hand, the gravitational force between two masses 

is always attractive (since there is no such thing as a negative mass). Another 

major difference is the relative magnitude of the two forces. For instance, the 

electrostatic repulsion between two electrons is approximately 1042 times larger 

than the corresponding gravitational attraction. 

The electrostatic force fab exerted by a charge qa on a second charge qb, lo- 

cated a distance r from the first charge, has the magnitude 

f =
  qa qb  

, (3.6) 
4πs0 r2 

and is directed radially away from the first charge if f > 0, and radially towards 

it if f < 0. The force fba exerted by the second charge on the first is equal and 
opposite to fab, so that 

fba = −fab, (3.7) 

in accordance with Newton’s third law of motion. 
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Suppose that we have three point charges, qa, qb, and qc. It turns out that 

electrostatic forces are superposable. That is, the force fba exerted by qb on qa is 

completely unaffected by the presence of qc. Likewise, the force fca exerted by qc 

on qa is unaffected by the presence of qb. Thus, the net force fa  acting on qa  is 
the resultant of these two forces: i.e., 

fa = fba + fca. (3.8) 

This rule can be generalized in a straightforward manner to the case where there 

are more than three point charges. 

 

3.6 Electric Fields 

 
According to Coulomb’s law, a charge q exerts a force on a second charge qJ, and 

vice versa, even in a vacuum. But, how is this force transmitted through empty 

space? In order to answer this question, physicists in the 19th Century developed 

the concept of an electric field. The idea is as follows. The charge q generates an 

electric field E(r) which fills space. The electrostatic force exerted on the second 

charge qJ is actually produced locally by the electric field E at the position of this 

charge, in accordance with Coulomb’s law. Likewise, the charge qJ generates its 

own electric field EJ(r) which also fills space. The equal and opposite reaction 

force exerted on q is produced locally by the electric field E J at the position of 

this charge, again, in accordance with Coulomb’s law. Of course, an electric field 

cannot exert a force on the charge which generates it, in just the same way as 

we cannot pick ourselves up with our own shoelaces. Incidentally, electric fields 

have a real physical existence, and are not just theoretical constructs invented by 

physicists to get around the problem of the transmission of electrostatic forces 

through vacuums. We can say this with certainty because, as we shall see later, 

there is an energy associated with an electric field filling space. Indeed, it is 

actually possible to convert this energy into heat or work, and vice versa. 

The electric field E(r) generated by a set of fixed electric charges is a vector 

field which is defined as follows. If f(r) is the electrostatic force experienced by 

some small positive test charge q J located at a certain point r in space, then the 
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electric field at this point is simply the force divided by the magnitude of the test 

charge. In other words, 

E = 
f
 

qJ 
. (3.9) 

Electric field has dimensions of force per unit charge, and units of newtons per 

coulomb (N C−1). Incidentally, the reason that we specify a small, rather than a 

large, test charge is to avoid disturbing any of the fixed charges which generate 

the electric field. 

Let us use the above rule to reconstruct the electric field generated by a point 

charge q. According to Coulomb’s law, the electrostatic force exerted by a point 

charge q on a positive test charge q J, located a distance r from it, has the magni- 

tude 

f = 
q qJ 

4πs0 r2 
, (3.10) 

and is directed radially away from the former charge if q > 0, and radially to- 

wards it if q < 0. Thus, the electric field a distance r away from a charge q has 
the magnitude 

q 
E = 

4πs0 r2 
, (3.11) 

and is directed radially away from the charge if q > 0, and radially towards the 

charge if q < 0. Note that the field is independent of the magnitude of the test 
charge. 

A corollary of the above definition of an electric field is that a stationary charge 

q located in an electric field E experiences an electrostatic force 

f = q E, (3.12) 

where E is the electric field at the location of the charge (excluding the field 

produced by the charge itself). 

Since electrostatic forces are superposable, it follows that electric fields are 

also superposable. For example,  if we have three stationary point charges,  qa, 

qb, and qc, located at three different points in space, then the net electric field 

which fills space is simply the vector sum of the fields produced by each point 

charge taken in isolation. 
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3.7 Worked Examples 

 
Example 3.1: Electrostatic force between three colinear point charges 

 
Question:   A particle of charge q1 = +6.0 µC is located on the x-axis at coordinate 

x1 = 5.1 cm. A second particle of charge q2 = −5.0 µC is placed on the x-axis at 

x2 = −3.4 cm. What is the magnitude and direction of the total electrostatic force 

acting on a third particle of charge q3 = +2.0 µC placed at the origin (x = 0)? 

Solution: The force f acting between charges 1 and 3 is given by 
 

f = ke 
q1 q3 

2 
1 

= (8.988 × 10 ) 
(6 × 10−6) (2 × 10−6) 

(5.1 × 10−2)2 

Since f > 0, the force is repulsive. This means that the force f13 exerted by charge 

1 on charge 3 is directed along the −x-axis (i.e., from charge 1 towards charge 

3), and is of magnitude |f|.  Thus, f13 = −41.69 N.  Here, we adopt the convention 

that forces directed along the +x-axis are positive, and vice versa. The force f J 
acting between charges 2 and 3 is given by 

 

−6 −6 
J q2 q3 9  (−5 × 10 ) (2 × 10 ) 

 

f = ke 
|x2 |2  

= (8.988 × 10 ) = −77.75 N. 
(3.4 × 10−2)2 

Since fJ < 0, the force is attractive. This means that the force f23 exerted by 

charge 2 on charge 3 is directed along the −x-axis (i.e., from charge 3 towards 
charge 2), and is of magnitude |f J|.  Thus, f23 = −77.75 N. 

The resultant force f3 acting on charge 3 is the algebraic sum of the forces 
exerted by charges 1 and 2 separately (the sum is algebraic because all the forces 

act along the x-axis). It follows that 

f3 = f13 + f23 = −41.69 − 77.75 = −119.22 N. 

Thus, the magnitude of the total force acting on charge 3 is 119.22 N, and the 
force is directed along the −x-axis (since f3 < 0). 

x 
= +41.68 N. 
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× × × 

× × × 

= 4.31 10 N, 

= 7.99 10 N. 

 

Example 3.2: Electrostatic force between three non-colinear point charges 

 
Question: Suppose that three  point  charges,  qa,  qb,  and  qc,  are  arranged  at 
the vertices of a right-angled triangle, as shown in the diagram. What is the 
magnitude and direction of the electrostatic force acting on the third charge if 

qa = −6.0 µC, qb = +4.0 µC, qc = +2.0 µC, a = 4.0 m, and b = 3.0 m? 

Solution: The magnitude fac of the force fac exerted by charge qa on charge qc is 
given by 

 

fac = ke 
|qa| qc   

= (8.988 109) 
c2 

(6 10−6) (2 10−6) −3 

(42 + 32) 
×

 
where use has been made of the Pythagorean theorem. The force is attractive 

(since charges qa and qc are of opposite sign). Hence, the force is directed from 

charge qc towards charge qa, as shown in the diagram. The magnitude fbc of the 

force fbc exerted by charge qb on charge qc is given by 
 

fbc = ke 
qbqc 

= (8.988 109) 

b2 

(4 10−6) (2 10−6) −3 

(32) 
×

 

The force is repulsive (since charges qb and qc are of the same sign). Hence, 

the force is directed from charge qb towards charge qc, as shown in the diagram. 

Now, the net force acting on charge qc is the sum of fac and fbc. Unfortunately, 
since fab and fbc are vectors pointing in different directions, they cannot be added 

together algebraically. Fortunately, however, their components along the x- and 

y-axes can be added algebraically. Now, it is clear, from the diagram, that fbc is 

q
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directed along the +x-axis. If follows that 

fbc x = fbc = 7.99 × 10−3 N, 

fbc y = 0. 

It is also clear, from the diagram, that fac subtends an angle 

θ = tan−1(a/b) = tan−1(4/3) = 53.1◦ 

with the −x-axis, and an angle 90◦ − θ with the +y-axis. It follows from the 
conventional laws of vector projection that 

fac x = −fac cos θ = −(4.31 × 10−3) (0.6) = −2.59 × 10−3 N, 

fac y = fac cos(90◦ − θ) = fac sin θ = (4.31 × 10−3) (0.8) = 3.45 × 10−3 N. 

The x- and y-components of the resultant force fc acting on charge qc are given 

by 

fc x = fac x + fbc x = −2.59 × 10−3 + 7.99 × 10−3 = 5.40 × 10−3 N, 

fc y = fac y + fbc y = 3.45 × 10−3 N. 

Thus, from the Pythagorean theorem, the magnitude of the resultant force is 

fc = 
q

(fc x)2 + (fc y)2 = 6.4 × 10−3 N. 

Furthermore, the resultant force subtends an angle 

φ = tan−1(fc y/fc x) = 32.6◦ 

with the +x-axis, and an angle 90◦ − φ = 57.4◦ with the +y-axis. 

 

Example 3.3: Electric field generated by two point charges 

 
Question: Two point charges, qa and qb, are separated by a distance c. What is 
the electric field at a point halfway between the charges? What force would be 

exerted on a third charge qc placed at this point? Take qa = 50 µC, qb = 100 µC, 
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c 

q q 

a e (c/2)2 

× 

b e (c/2)2 

× 

 

. 

 

 

 

x 
a b 

 

qc = 20 µC, and c = 1.00 m. 
 

Solution: Suppose that the line from qa to qb runs along the x-axis. It is clear, 
from Coulomb’s law, that the electrostatic force exerted on any charge placed on 

this line is parallel to the x-axis. Thus, the electric field at any point along this 

line must also be aligned along the x-axis. Let the x-coordinates of charges qa 

and qb be −c/2 and +c/2, respectively. It follows that the origin (x = 0) lies 

halfway between the two charges. The electric field Ea generated by charge qa at 
the origin is given by 

 

E = k 
   qa 

= (8.988 × 109) 
(50 10−6) 6 

(0.5)2 
= 1.80 × 10 N C−1. 

The field is positive because it is directed along the +x-axis (i.e., from charge qa 

towards the origin). The electric field Eb generated by charge qb at the origin is 
given by 

 

E = −k 
   qb 

= −(8.988 × 109) 
(100 10−6) 6 

(0.5)2 
= −3.60 × 10 N C−1. 

The field is negative because it is directed along the −x-axis (i.e., from charge qb 

towards the origin). The resultant field E at the origin is the algebraic sum of Ea 

and Eb (since all fields are directed along the x-axis). Thus, 

E = Ea + Eb = −1.8 × 106 N C−1. 

Since E is negative, the resultant field is directed along the −x-axis. 

The force f acting on a charge qc placed at the origin is simply 

f = qc E = (20 × 10−6) (−1.8 × 106) = −36 N. 

Since f < 0, the force is directed along the −x-axis. 
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4 Gauss’ Law 

 
4.1 Electric Field-Lines 

 
An electric field can be represented diagrammatically as a set of lines with ar- 

rows on, called electric field-lines, which fill space. Electric field-lines are drawn 

according to the following rules: 

 
The direction of the electric field is everywhere tangent to the field-lines, in the 

sense of the arrows on the lines. The magnitude of the field is proportional to 

the number of field-lines per unit area passing through a small surface normal 

to the lines. 

 
Thus, field-lines determine the magnitude, as well as the direction, of the electric 

field. In particular, the field is strong at points where the field-lines are closely 

spaced, and weak at points where they are far apart. 
 

 

Figure 4.1: The electric field-lines of a positive point charge. 

 

The electric field-lines associated with a positive point charge are a set of 

unbroken, evenly spaced (in solid angle) straight-lines which radiate from the 

charge—see Fig. 4.1. Thus, the tangent to the field-lines is always directed radi- 

ally away from the charge, giving the correct direction for the electric field. The 
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number of electric field-lines per unit area normal to the lines falls off like 1/r2, 

where r is the radial distance from the charge, since the total number of lines is 
fixed, whereas the area normal to the lines increases like r2. Thus, the electric 

field-strength falls off like 1/r2, in accordance with Coulomb’s law. 

By analogy, the electric field-lines associated with a negative point charge are a 

set of unbroken, evenly spaced (in solid angle) straight lines which converge on 

the charge. 

As a general rule, electric field-lines generated by fixed charges begin on pos- 

itive charges, end on negative charges, and are unbroken and never cross in the 

vacuum regions between charges. 

 

4.2 Gauss’ Law 

 
One of the most useful results in electrostatics is named after the celebrated Ger- 

man mathematician Karl Friedrich Gauss (1777–1855). 

Suppose that a positive point charge q generates an electric field E. Consider a 

spherical surface of radius R, centred on the charge. The normal to this surface is 
everywhere parallel to the direction of the electric field E, since the field always 

points radially away from the charge. The area of the surface is 4π R2. Finally, 

the strength of the electric field at radius R is E(R) = q/(4πs0 R2). Hence, if we 
multiply the electric field-strength by the area of the surface, we obtain 

E(R) 4π R2 = 
q
 

4πs0 R2 

4π R2 = 
q 

. (4.1) 
s0 

Note that the final result is independent of the radius of the sphere. Thus, the 

same result would be obtained for any sphere centred on the charge. This is the 

essence of Gauss’ law. 

You may be wondering why it took a famous German mathematician to prove 
such a trivial-seeming law. Well, Gauss proved that this law also applies to any 
closed surface, and any distribution of electric charges. Thus, if we multiply each 

outward element of a general closed surface S by the component of the electric 
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field normal to that element, and then sum over the entire surface, the result is 

the total charge enclosed by the surface, divided by s0. In other words, 

E dS = 
Q 

, (4.2) 

S s0 

where S is  a  closed surface,  and  Q is  the  charge enclosed by it.   The integral 

is termed the electric fiux, ΦE, through the surface, and is proportional to the 

number of electric field-lines which pierce this surface. We adopt the convention 

that the flux is positive if the electric field points outward through the surface, 

and negative if the field points inward. Thus, Gauss’ law can be written: 

 
The electric flux through any closed surface is equal to the total charge 

enclosed by the surface, divided by s0. 
 

Gauss’ law is especially useful for evaluating the electric fields produced by 

charge distributions which possess some sort of symmetry. Let us examine three 

examples of such distributions. 

 

4.3 Electric Field of a Spherical Conducting Shell 

 
Suppose that a thin, spherical, conducting shell carries a negative charge −Q. 

We expect the excess electrons to mutually repel one another, and, thereby, be- 

come uniformly distributed over the surface of the shell. The electric field-lines 

produced outside such a charge distribution point towards the surface of the con- 

ductor, and end on the excess electrons. Moreover, the field-lines are normal to 

the surface of the conductor. This must be the case, otherwise the electric field 

would have a component parallel to the conducting surface. Since the excess 

electrons are free to move through the conductor, any parallel component of the 

field would cause a redistribution of the charges on the shell. This process will 

only cease when the parallel component has been reduced to zero over the whole 

surface of the shell. It follows that: 

 
The electric field immediately above the surface of a conductor is directed 

normal to that surface. 
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Figure 4.2: The electric field generated by a negatively charged spherical conducting shell. 

 

Let us consider an imaginary surface, usually referred to as a gaussian surface, 

which is a sphere of radius R lying just above the surface of the conductor. Since 

the electric field-lines are everywhere normal to this surface, Gauss’ law tells us 

that 

ΦE = E A = 
−Q

, (4.3) 
s0 

where ΦE is the electric flux through the gaussian surface, A = 4π R2 the area 

of this surface, and E the electric field-strength just above the surface of the 

conductor. Note that, by symmetry, E is uniform over the surface of the conductor. 
It follows that 

−Q 
E = 

s0 A 

Q 
= − 

4πs0 R2 
. (4.4) 

But, this is the same result as would be obtained from Coulomb’s law for a point 

charge of magnitude −Q located at the centre of the conducting shell. Now, a 
simple extension of the above argument leads to the conclusion that Eq. (4.4) 

holds everywhere outside the shell (with R representing the radial distance from 
the center of the shell). Hence, we conclude the electric field outside a charged, 

spherical, conducting shell is the same as that generated when all the charge is 
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concentrated at the centre of the shell. 

Let us repeat the above calculation using a spherical gaussian surface which 

lies just inside the conducting shell. Now, the gaussian surface encloses no 

charge, since all of the charge lies on the shell, so it follows from Gauss’ law, 

and symmetry,  that the electric field inside the shell is zero.   In fact, the elec- 

tric field inside any closed hollow conductor is zero (assuming that the region 

enclosed by the conductor contains no charges). 

 

4.4 Electric Field of a Uniformly Charged Wire 

 
Consider a long straight wire which carries the uniform charge per unit length 

λ. We expect the electric field generated by such a charge distribution to possess 
cylindrical symmetry. We also expect the field to point radially (in a cylindrical 
sense) away from the wire (assuming that the wire is positively charged). 

 
 
 
 
 
 
 
 
 

 

L 

E 
 
 
 
 
 
 
 
 
 

 

Figure 4.3: The electric field generated by a uniformly charged wire. 
 

Let us draw a cylindrical gaussian surface, co-axial with the wire, of radius 

R and length L—see Fig. 4.3. The above symmetry arguments imply that the 
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electric field generated by the wire is everywhere perpendicular to the curved 

surface of the cylinder. Thus, according to Gauss’ law, 

λ L 

E(R) 2π R L = , (4.5) 
s0 

where E(R) is the electric field-strength a perpendicular distance R from the wire. 
Here, the left-hand side represents the electric flux through the gaussian surface. 
Note that there is no contribution from the two flat ends of the cylinder, since 
the field is parallel to the surface there. The right-hand side represents the total 

charge enclosed by the cylinder, divided by s0. It follows that 
λ 

E(R) = 
2πs0 R 

. (4.6) 

The field points radially (in a cylindrical sense) away from the wire if λ > 0, and 

radially towards the wire if λ < 0. 

 

4.5 Electric Field of a Uniformly Charged Plane 

 
Consider an infinite plane which carries the uniform charge per unit area σ. Sup- 

pose that the plane coincides with the y–z plane (i.e., the plane which satisfies 

x = 0). By symmetry, we expect the electric field on either side of the plane to 

be a function of x only, to be directed normal to the plane, and to point away 

from/towards the plane depending on whether σ is positive/negative. 

Let us draw a cylindrical gaussian surface, whose axis is normal to the plane, 
and which is cut in half by the plane—see Fig. 4.4.   Let the cylinder run from 

x = −a to x = +a, and let its cross-sectional area be A. According to Gauss’ law, 
σ A 

2 E(a) A = , (4.7) 
s0 

where E(a) = −E(−a) is the electric field strength at x = +a. Here, the left-hand 
side represents the electric flux out of the surface. Note that the only contribu- 
tions to this flux come from the flat surfaces at the two ends of the cylinder. The 
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Figure 4.4: The electric field generated by a uniformly charged plane. 
 

right-hand side represents the charge enclosed by the cylindrical surface, divided 

by s0. It follows that 
σ 

E = 
2 s0 

. (4.8) 

Note that the electric field is uniform (i.e., it does not depend on x), normal to the 
charged plane, and oppositely directed on either side of the plane. The electric 

field always points away from a positively charged plane, and vice versa. 
 

positively charged 
+

 

conducting plate + 

- 
negatively charged 

- conducting plate 

 
+ - 

+ - 

+ - 

+ - 
 

Figure 4.5: The electric field generated by two oppositely charged parallel planes. 
 

Consider the electric field produced by two parallel planes which carry equal 

and opposite uniform charge densities σ. We can calculate this field by super- 
posing the electric fields produced by each plane taken in isolation. It is easily 
seen, from the above discussion, that in the region between the planes the field 

- 

 
+ 
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is uniform, normal to the planes, directed from the positively to the negatively 

charged plane, and of magnitude 

E = 
σ 

(4.9) 

s0 

—see Fig. 4.5. Outside this region, the electric field cancels to zero. The above 

result is only valid for two charged planes of infinite extent. However, the result 

is approximately valid for two charged planes of finite extent, provided that the 

spacing between the planes is small compared to their typical dimensions. 

 

4.6 Charged Conductors 

 
Suppose that we put a negative charge on an arbitrarily shaped, solid, conducting 

object. Where does the excess negative charge end up after the charges have 

attained their equilibrium positions? 

Let us construct a gaussian surface which lies just inside the surface of the 

conductor. Application of Gauss’ law yields 

E dS = 
Q 

, (4.10) 
s0 

where Q is the enclosed charge. But, the electric field-strength inside a conductor 

must be zero,  since the charges are free to move through the conductor,  and 

will, thus, continue to move until no field remains. Hence, the left-hand side 

of the above equation is zero, and, therefore, the right-hand side must also be 

zero. This can only be the case if there are no charges enclosed by the gaussian 

surface. In other words, there can be no excess charge in the interior of the 

conductor. Instead, all of the excess charge must be distributed over the surface 

of the conductor. It follows that: 

 
Any excess charge on a solid conductor resides entirely on the outer surface 

of the conductor. 
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4.7 Worked Examples 

 
Example 4.1: Electric field of a uniformly charged sphere 

 

Question: An insulating sphere of radius a carries a total charge Q which is uni- 
formly distributed over the volume of the sphere. Use Gauss’ law to find the 
electric field distribution both inside and outside the sphere. 

 
Solution: By symmetry, we expect the electric field generated by a spherically 

symmetric charge distribution to point radially towards, or away from, the center 

of the distribution, and to depend only on the radial distance r from this point. 

Consider a gaussian surface which is a sphere of radius r, centred on the centre 

of the charge distribution. Gauss’ law gives 
 

A(r) Er(r) = 
q(r) 

, 
s0 

where A(r) = 4π r2 is the area of the surface, Er(r) the radial electric field- 

strength at radius r, and q(r) the total charge enclosed by the surface. It is easily 
seen that 

Q r ≥ a 
q(r) = . 

Q (r/a)3 r < a 

Thus, 

Er(r) = 

     Q  

4πs0 r2 

    Q r 
4πs0 a3 

r ≥ a 
. 

r < a 

Clearly, the electric field-strength is proportional to r inside the sphere, but falls 
off like 1/r2 outside the sphere. 
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5 Electric Potential 

 
5.1 Electric Potential Energy 

 
Consider a charge q placed in a uniform electric field E (e.g., the field between 

two oppositely charged, parallel conducting plates). Suppose that we very slowly 

displace the charge by a vector displacement r in a straight-line. How much work 

must we perform in order to achieve this?  Well,  the force F we must exert on 

the charge is equal and opposite to the electrostatic force q E experienced by 

the charge (i.e., we must overcome the electrostatic force on the charge before 

we are free to move it around). The amount of work W we would perform in 

displacing the charge is simply the product of the force F = −q E we exert, and 

the displacement of the charge in the direction of this force. Suppose that the 

displacement vector subtends an angle θ with the electric field E. It follows that 

W = F·r = −q E·r = −q E r cos θ. (5.1) 

Thus, if we move a positive charge in the direction of the electric field then we 

do negative work (i.e., we gain energy). Likewise, if we move a positive charge 

in the opposite direction to the electric field then we do positive work (i.e., we 

lose energy). 

Consider a set of point charges, distributed in space, which are rigidly clamped 

in position so that they cannot move. We already know how to calculate the 

electric field E generated by such a charge distribution (see Sect. 3). In general, 

this electric field is going to be non-uniform. Suppose that we place a charge 

q in the field,  at point A, say,  and then slowly move it along some curved path 

to a different point B.  How much work must we perform in order to achieve 

this? Let us split up the charge’s path from point A to point B into a series of 

N straight-line segments, where the ith segment is of length ∆ri  and subtends 

an angle θi with the local electric field Ei.  If we make N sufficiently large then 

we can adequately represent any curved path between A and B, and we can also 

ensure that Ei is approximately uniform along the ith path segment. By a simple 

generalization of Eq. (5.1), the work W we must perform in moving the charge 
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from point A to point B is 
 

N 

W = −q Ei ∆ri cos θi. (5.2) 
i=1 

Finally, taking the limit in which N goes to infinity, the right-hand side of the 
above expression becomes a line integral: 

∫B 

 
  

 

Let us now consider the special case where point B is identical with point A. 

In other words, the case in which we move the charge around a closed loop in the 

electric field. How much work must we perform in order to achieve this? It is, 

in fact, possible to prove, using rather high-powered mathematics, that the net 

work performed when a charge is moved around a closed loop in an electric field 

generated by fixed charges is zero. However, we do not need to be mathematical 

geniuses to appreciate that this is a sensible result. Suppose, for the sake of 

argument, that the net work performed when we take a charge around some 

closed loop in an electric field is non-zero. In other words, we lose energy every 

time we take the charge around the loop in one direction, but gain energy every 

time we take the charge around the loop in the opposite direction. This follows 

from Eq. (5.2), because when we switch the direction of circulation around the 

loop the electric field Ei on the ith path segment is unaffected, but, since the charge is moving along the segment in the opposite direction, θ 180◦ + θ , 
and,  hence,  cos 

 

 

cos i → i 

θi. Let us choose to move the charge around the i → − 
loop in the direction in which we gain energy.  So, we move the charge once 
around the loop, and we gain a certain amount of energy in the process. Where 

does this energy come from? Let us consider the possibilities. Maybe the electric 

field of the movable charge does negative work on the fixed charges, so that the 

latter charges lose energy in order to compensate for the energy which we gain? 

But, the fixed charges cannot move, and so it is impossible to do work on them. 

Maybe the electric field loses energy in order to compensate for the energy which 

we gain? (Recall, from the previous section, that there is an energy associated 

with an electric field which fills space).  But, all of the charges (i.e., the fixed 

θ 

E · dr. (5.3) 
A 

W = −q 
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charges and the movable charge) are in the same position before and after we 

take the movable charge around the loop, and so the electric field is the same 

before and after (since, by Coulomb’s law, the electric field only depends on the 

positions and magnitudes of the charges), and, hence, the energy of the field 

must be the same before and after. Thus, we have a situation in which we take a 

charge around a closed loop in an electric field, and gain energy in the process, 

but nothing loses energy. In other words, the energy appears out of “thin air,” 

which clearly violates the first law of thermodynamics. The only way in which 

we can avoid this absurd conclusion is if we adopt the following rule: 

The work done in taking a charge around a closed loop in an electric field 

generated by fixed charges is zero. 

 
One corollary of the above rule is that the work done in moving a charge 

between two points A and B in such an electric field is independent of the path 
taken between these points. This is easily proved. Consider two different paths, 

1 and 2, between points A and B. Let the work done in taking the charge from 

A to B along path 1 be W1, and the work done in taking the charge from A to B 

along path 2 be W2. Let us take the charge from A to B along path 1, and then 

from B to A along path 2. The net work done in taking the charge around this 

closed loop is W1 − W2. Since we know this work must be zero, it immediately 

follows that W1 = W2. Thus, we have a new rule: 

The work done in taking a charge between two points in an electric field 

generated by fixed charges is independent of the path taken between the 

points. 

 
A force which has the special property that the work done in overcoming it 

in order to move a body between two points in space is independent of the path 

taken between these points is called a conservative force. The electrostatic force 

between  stationary charges is clearly a conservative force.  Another example of 

a conservative force is the force of gravity (the work done in lifting a mass only 

depends on the difference in height between the beginning and end points, and 

not on the path taken between these points). Friction is an obvious example of a 

non-conservative force. 
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Suppose that we move a charge q very slowly from point A to point B in an 

electric field generated by fixed charges. The work W which we must perform in 

order to achieve this can be calculated using Eq. (5.3). Since we lose the energy 

W as the charge moves from A to B, something must gain this energy. Let us, for 

the moment, suppose that this something is the charge. Thus, the charge gains 

the energy W when we move it from point A to point B. What is the nature of 

this energy gain? It certainly is not a gain in kinetic energy, since we are moving 

the particle slowly:  i.e.,  such that it always possesses negligible kinetic energy. 

In fact, if we think carefully, we can see that the gain in energy of the charge 

depends only on its position. For a fixed starting point A, the work W done in 

taking the charge from point A to point B depends only on the position of point 

B, and not, for instance, on the route taken between A and B. We usually call 

energy a body possess by virtue of its position potential energy: e.g., a mass has 

a certain gravitational potential energy which depends on its height above the 

ground. Thus, we can say that when a charge q is taken from point A to point 

B in an electric field generated by fixed charges its electric potential energy P 

increases by an amount W: 

PB − PA = W. (5.4) 

Here, PA denotes the electric potential energy of the charge at point A, etc. This 
definition uniquely defines the difference in the potential energy between points 

A and B (since W is independent of the path taken between these points), but 

the absolute value of the potential energy at point A remains arbitrary. 

We have seen that when a charged particle is taken from point A to point B 

in an electric field its electric potential energy increases by the amount specified 

in Eq. (5.4). But, how does the particle store this energy?  In fact, the particle 

does not store the energy at all. Instead, the energy is stored in the electric field 

surrounding the particle. It is possible to calculate this increase in the energy of 

the field directly (once we know the formula which links the energy density of an 

electric field to the magnitude of the field), but it is a very tedious calculation. It 

is far easier to calculate the work W done in taking the charge from point A to 

point B, via Eq. (5.3), and then use the conservation of energy to conclude that 

the energy of the electric field must have increased by an amount W. The fact 

that we conventionally ascribe this energy increase to the particle, rather than the 
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field, via the concept of electric potential energy, does not matter for all practical 

purposes. For instance, we call the money which we have in the bank “ours,” 

despite the fact that the bank has possession of it, because we know that the bank 

will return the money to us any time we ask them. Likewise, when we move a 

charged particle in an electric field from point A to point B then the energy of 

the field increases by an amount W (the work which we perform in moving the 

particle from A to B), but we can safely associate this energy increase with the 

particle because we know that if the particle is moved back to point A then the 

field will give all of the energy back to the particle without loss. Incidentally, we 

can be sure that the field returns the energy to the particle without loss because 

if there were any loss then this would imply that non-zero work is done in taking 

a charged particle around a closed loop in an electric field generated by fixed 

charges. We call a force-field which stores energy without loss a conservative 

field. Thus, an electric field, or rather an electrostatic field (i.e., an electric field 

generated by stationary charges), is conservative. It should be clear, from the 

above discussion, that the concept of potential energy is only meaningful if the 

field which generates the force in question is conservative. 

A gravitational field is another example of a conservative field. It turns out 

that when we lift a body through a certain height the increase in gravitational 

potential energy of the body is actually stored in the surrounding gravitational 

field (i.e., in the distortions of space-time around the body). It is possible to 

determine the increase in energy of the gravitational field directly, but it is a very 

difficult calculation involving General Relativity. On the other hand, it is very easy 

to calculate the work done in lifting the body. Thus, it is convenient to calculate 

the increase in the energy of the field from the work done, and then to ascribe 

this energy increase to the body, via the concept of gravitational potential energy. 

In conclusion, we can evaluate the increase in electric potential energy of a 

charge when it is taken between two different points in an electrostatic field 

from the work done in moving the charge between these two points. The energy 

is actually stored in the electric field surrounding the charge, but we can safely 

ascribe this energy to the charge, because we know that the field stores the energy 

without loss, and will return the energy to the charge whenever it is required to 

do so by the laws of Physics. 
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5.2 Electric Potential 

 
Consider a charge q placed in an electric field generated by fixed charges. Let 

us chose some arbitrary reference point A in the field. At this point, the elec- 

tric potential energy of the charge is defined to be zero. This uniquely specifies 

the electric potential energy of the charge at every other point in the field. For 

instance, the electric potential energy PB at some point B is simply the work W 

done in moving the charge from A to B along any path. Now, W can be calcu- 

lated using Eq. (5.3). It is clear, from this equation, that PB depends both on the 

particular charge q which we place in the field, and the magnitude and direction 

of the electric field along the chosen route between points A and B. However, 

it is also clear that PB is directly proportional to the magnitude of the charge q. 

Thus, if the electric potential energy of a charge q at point B is PB then the elec- 

tric potential energy of a charge 2 q at the same point is 2 PB. We can exploit this 

fact to define a quantity known as the electric potential. The difference in electric 

potential between two points B and A in an electric field is simply the work done 

in moving some charge between the two points divided by the magnitude of the 

charge. Thus, 

VB − VA = 
W

, (5.5) 
q 

where VA denotes the electric potential at point A, etc. This definition uniquely 

defines the difference in electric potential between points A and B, but the abso- 

lute value of the potential at point A remains arbitrary. We can therefore, without 

loss of generality, set the potential at point A equal to zero. It follows that the 

potential energy of a charge q at some point B is simply the product of the mag- 
nitude of the charge and the electric potential VB at that point: 

PB = q VB. (5.6) 

It is clear,  from a comparison of Eqs. (5.3) and (5.4),  that the electric potential 

at point B (relative to point A) is solely a property of the electric field, and is, 
therefore, the same for any charge placed at that point. We shall see exactly how 
the electric potential is related to the electric field later on. 

The dimensions of electric potential are work (or energy) per unit charge. The 

units of electric potential are, therefore, joules per coulomb (J C−1). A joule per 
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coulomb is usually referred to as a volt (V): i.e., 

1 J C−1 ≡ 1 V. (5.7) 

Thus, the alternative (and more conventional) units of electric potential are volts. 

The difference in electric potential between two points in an electric field is usu- 

ally referred to as the potential difference, or even the difference in “voltage,” 

between the two points. 

A battery is a convenient tool for generating a difference in electric potential 

between two points in space. For instance, a twelve volt (12 V) battery generates 

an electric field, usually via some chemical process, which is such that the poten- 

tial difference V+ −V− between its positive and negative terminals is twelve volts. 

This means that in order to move a positive charge of 1 coulomb from the nega- 

tive to the positive terminal of the battery we must do 12 joules of work against 

the electric field. (This is true irrespective of the route taken between the two 

terminals). This implies that the electric field must be directed predominately 

from the positive to the negative terminal. 

More generally, in order to move a charge q through a potential difference 

∆V we must do work W = q ∆V, and the electric potential energy of the charge 

increases by an amount ∆P = q ∆V in the process. Thus, if we move an electron, 

for which q = −1.6   10−19 C, through a potential difference of minus 1 volt then 

we must do 1.6    10−19 joules of work. This amount of work (or energy) is called 
an electronvolt (eV): i.e., 

1 eV ≡ 1.6 × 10−19 J. (5.8) 

The electronvolt is a convenient measure of energy in atomic physics. For in- 
stance, the energy required to break up a hydrogen atom into a free electron and 

a free proton is 13.6 eV. 

 

5.3 Electric Potential and Electric Field 

 
We have seen that the difference in electric potential between two arbitrary points 

in space is a function of the electric field which permeates space, but is indepen- 
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dent of the test charge used to measure this difference. Let us investigate the 

relationship between electric potential and the electric field. 

Consider a charge q which is slowly moved an infinitesimal distance dx along 

the x-axis. Suppose that the difference in electric potential between the final and 

initial positions of the charge is dV. By definition, the change dP in the charge’s 
electric potential energy is given by 

dP = q dV (5.9) 

From Eq. (5.1), the work W which we perform in moving the charge is 

W = −q E dx cos θ, (5.10) 

where E is the local electric field-strength, and θ is the angle subtended between 
the direction of the field and the x-axis.   By definition, E cos θ = Ex, where Ex 

is the x-component of the local electric field. Energy conservation demands that 
∆P = W (i.e., the increase in the charge’s energy matches the work done on the 
charge), or 

 
which reduces to 

q dV = −q Ex dx, (5.11) 

dV 

Ex = − . (5.12) 
dx 

We call the quantity dV/dx the gradient of the electric potential in the x-direction. 

It basically measures how fast the potential V varies as the coordinate x is changed 

(but the coordinates y and z are held constant). Thus, the above formula is say- 

ing that the x-component of the electric field at a given point in space is equal to 

minus the local gradient of the electric potential in the x-direction. 

According to Eq. (5.12), electric field strength has dimensions of potential 
difference over length. It follows that the units of electric field are volts per 

meter (V m−1). Of course, these new units are entirely equivalent to newtons per 
coulomb: i.e., 

1 V m−1 ≡ 1 N C−1. (5.13) 

Consider the special case of a uniform x-directed electric field Ex generated 

by two uniformly charged parallel planes normal to the x-axis.  It is clear, from 
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Eq. (5.12), that if Ex is to be constant between the plates then V must vary linearly 

with x in this region. In fact, it is easily shown that 

V(x) = V0 − Ex x, (5.14) 

where V0 is an arbitrary constant.  According to Eq. (5.14), the electric potential 

V decreases continuously as we move along the direction of the electric field. 

Since a positive charge is accelerated in this direction, we conclude that positive 

charges are accelerated down gradients in the electric potential, in much the same 

manner as masses fall down gradients of gravitational potential (which is, of 

course, proportional to height). Likewise, negative charges are accelerated up 

gradients in the electric potential. 

According to Eq. (5.12), the x-component of the electric field is equal to minus 

the gradient of the electric potential in the x-direction. Since there is nothing spe- 

cial about the x-direction, analogous rules must exist for the y- and z-components 
of the field. These three rules can be combined to give 

E = −

 
dV 

, 
dV 

, 
dV 

! 

. (5.15) 

dx dy dz 

Here, the x derivative is taken at constant y and z, etc. The above expression 

shows how the electric field E(r), which is a vector field, is related to the electric 

potential V(r), which is a scalar field. 

We have seen that electric fields are superposable. That is, the electric field 

generated by a set of charges distributed in space is simply the vector sum of the 

electric fields generated by each charge taken separately. Well, if electric fields 

are superposable, it follows from Eq. (5.15) that electric potentials must also 

be superposable. Thus, the electric potential generated by a set of charges dis- 

tributed in space is just the scalar sum of the potentials generated by each charge 

taken in isolation. Clearly, it is far easier to determine the potential generated by 

a set of charges than it is to determine the electric field, since we can sum the 

potentials generated by the individual charges algebraically, and do not have to 

worry about their directions (since they have no directions). 

Equation (5.15) looks rather forbidding. Fortunately, however, it is possible to 

rewrite this equation in a more appealing form. Consider two neighboring points 
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A and B. Suppose that dr = (dx, dy, dz) is the vector displacement of point B 

relative to point A. Let dV be the difference in electric potential between these 

two points. Suppose that we travel from A to B by first moving a distance dx 

along the x-axis, then moving dy along the y-axis, and finally moving dz along 

the z-axis. The net increase in the electric potential dV as we move from A to B 
is simply the sum of the increases dxV as we move along the x-axis, dyV as we 

move along the y-axis, and dzV as we move along the z-axis: 

dV = dxV + dyV + dzV. (5.16) 

But, according to Eq. (5.15), dxV = −Ex dx, etc. So, we obtain 

dV = −Ex dx − Ey dy − Ez dy, (5.17) 

which is equivalent to 

dV = −E·dr = −E dr cos θ, (5.18) 

where θ is the angle subtended between the vector dr and the local electric field 

E.   Note that dV attains its most negative value when θ = 0.   In other words, 

the direction of the electric field at point A corresponds to the direction in which 

the electric potential V decreases most rapidly. A positive charge placed at point 

A is accelerated in this direction. Likewise, a negative charge placed at A is 
accelerated in the direction in which the potential increases most rapidly (i.e., 

θ = 180◦). Suppose that we move from point A to a neighboring point B in a 

direction perpendicular to that of the local electric field (i.e., θ = 90◦). In this 

case, it follows from Eq. (5.18) that the points A and B lie at the same electric 

potential (i.e., dV = 0). The locus of all the points in the vicinity of point A which 

lie at the same potential as A is a plane perpendicular to the direction of the local 
electric field. More generally, the surfaces of constant electric potential, the so- 
called equipotential surfaces, exist as a set of non-interlocking surfaces which are 

everywhere perpendicular to the direction of the electric field. Figure 5.1 shows 

the equipotential surfaces (dashed lines) and electric field-lines (solid lines) gen- 

erated by a positive point charge. In this case, the equipotential surfaces are 

spheres centred on the charge. 

In Sect. 4.3, we found that the electric field immediately above the surface 

of a conductor is directed perpendicular to that surface. Thus, it is clear that 
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Figure 5.1: The equipotential surfaces (dashed lines) and the electric field-lines (solid lines) of a 
positive point charge. 

 
the surface of a conductor must correspond to an equipotential surface. In fact, 

since there is no electric field inside a conductor (and, hence, no gradient in the 

electric potential), it follows that the whole conductor (i.e., both the surface and 

the interior) lies at the same electric potential. 

 

5.4 Electric Potential of a Point Charge 

 
Let us calculate the electric potential V(r) generated by a point charge q located 
at the origin.  It is fairly obvious, by symmetry, and also by looking at Fig. 5.1, 

that V is a function of r only, where r is the radial distance from the origin. 
Thus, without loss of generality, we can restrict our investigation to the potential 

V(x) generated along the positive x-axis. The x-component of the electric field 
generated along this axis takes the form 

 

Ex(x) = 
q 

4πs0 
. (5.19) 

x2 

Both the y- and z-components of the field are zero. According to Eq. (5.12), Ex(x) 

and V(x) are related via 

Ex(x) = − 
dV(x) 

dx 
. (5.20) 
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Thus, by integration,  
V(x) = 

 

q 

4πs0 x 

 

+ V0, (5.21) 

where V0 is an arbitrary constant. Finally, making use of the fact that V = V(r), 
we obtain  

V(r) = 
q 

4πs0 r 

 

. (5.22) 

Here, we have adopted the common convention that the potential at infinity is 

zero. A potential defined according to this convention is called an absolute poten- 

tial. 

Suppose that we have N point charges distributed in space. Let the ith charge 

qi be located at position vector ri. Since electric potential is superposable, and 

is also a scalar quantity, the absolute potential at position vector r is simply the 

algebraic sum of the potentials generated by each charge taken in isolation: 
 

N 

V r i . (5.23) 
4πs0 |r − ri| 

i=1 

The work W we would perform in taking a charge q from infinity and slowly 

moving it to point r is the same as the increase in electric potential energy of 

the charge during its journey [see Eq. (5.4)]. This, by definition, is equal to the 

product of the charge q and the increase in the electric potential. This, finally, is 

the same as q times the absolute potential at point r: i.e., 

W = q V(r). (5.24) 

 

5.5 Worked Examples 

 
Example 5.1: Charge in a uniform electric field 

 
Question: A charge of q = +1.20 µC is placed in a uniform x-directed electric 

field of magnitude Ex = 1.40 103 N C−1. How much work must be performed in 

order to move the charge a distance c = −3.50 cm in the x-direction? What is the 
potential difference between the initial and final positions of the charge? If the 
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electric field is produced by two oppositely charged parallel plates separated by 

a distance d = 5.00 cm, what is the potential difference between the plates? 
 

Solution: Let us denote the initial and final positions of the charge A and B, 

respectively. The work which we must perform in order to move the charge from 

A to B is minus the product of the electrostatic force on the charge due to the 

electric field (since the force we exert on the charge is minus this force) and the 

distance that the charge moves in the direction of this force [see Eq. (5.1)]. Thus, 

W = −q Ex c = −(1.2 × 10−6) (1.40 × 103) (−3.50 × 10−2) = +5.88 × 10−5 J. 

Note that the work is positive. This makes sense, because we would have to do 

real work (i.e., we would lose energy) in order to move a positive charge in the 

opposite direction to an electric field (i.e., against the direction of the electrostatic 

force acting on the charge). 

The work done on the charge goes to increase its electric potential energy, so 

PB − PA = W. By definition, this increase in potential energy is equal to the 

product of the potential difference VB − VA between points B and A, and the 

magnitude of the charge q. Thus, 

q (VB − VA) = PB − PA = W = −q Ex c, 

giving 
VB − VA = −Ex c = −(1.40 × 10 ) (−3.50 × 10 ) = 49.0 V. 

3 −2 
 

Note that the electric field is directed from point B to point A, and that the former 
point is at a higher potential than the latter. 

It is clear, from the above formulae, that the magnitude of the potential differ- 

ence between two points in a uniform electric field is simply the product of the 

electric field-strength and the distance between the two points (in the direction 

of the field). Thus, the potential difference between the two metal plates is 

∆V = Ex d = (1.40 × 103) (5.00 × 10−2) = 70.0 V. 

If the electric field is directed from plate 1 (the positively charged plate) to plate 

2 (the negatively charged plate) then the former plate is at the higher potential. 
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Example 5.2: Motion of an electron in an electric field 

 
Question: An electron in a television set is accelerated from the cathode to the 

screen through a potential difference of +1000 V. The screen is 35 mm from the 

cathode.  What is the net change in the potential energy of the electron during 

the acceleration process? How much work is done by the electric field in accel- 

erating the electron? What is the speed of the electron when it strikes the screen? 

 
Solution: Let call the cathode point A and the screen point B.  We are told that 

the potential difference between points B and A is +1000 V, so 

VB − VA = 1000 V. 

By definition, the difference in electric potential energy of some charge q at points 

B and A is the product of the charge and the difference in electric potential 
between these points. Thus, 

PB − PA = q (VB − VA) = (−1.6 × 10−19) (1000) = −1.6 × 10−16 J, 

since q = −1.6 10−19 C for an electron. Note that the potential energy of the 
electron decreases as it is accelerated towards the screen. As we have seen, the 
electric potential energy of a charge is actually held in the surrounding electric 
field. Thus, a decrease in the potential energy of the charge corresponds to a 
reduction in the energy of the field. In this case, the energy of the field decreases 

because it does work W J on the charge. Clearly, the work done (i.e., energy lost) 
by the field equals the decrease in potential energy of the charge, 

W J = −∆P. 

Thus,  
W J = 1.6 × 10−16 J. 

 

The total energy E of the electron is made up of two components—the electric 

potential energy P, and the kinetic energy K. Thus, 

E = P + K. 
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Of course,  

K = 
1 

m v2, 
2 

where m = 9.11 10−31 kg is the mass of the electron, and v its speed. By 

conservation of energy, E is a constant of the motion, so 

KB − KA = ∆K = −∆P. 

In other words, the decrease in electric potential energy of the electron, as it is 
accelerated towards the screen, is offset by a corresponding increase in its kinetic 

energy. Assuming that the electron starts from rest (i.e. vA = 0), it follows that 
1 

m v 2 = −∆P, 
 

2 B 

or       
 

vB = 
−2 ∆P 

= 
m 

‚−2 (−1.6 10−16) 7 

9.11 × 10−31 
= 1.87 × 10 m s−1. 

Note that the distance between the cathode and the screen is immaterial in this 

problem. The final speed of the electron is entirely determined by its charge, its 

initial velocity, and the potential difference through which it is accelerated. 

 

Example 5.3: Electric potential due to point charges 

 
Question: A particle of charge q1 = +6.0 µC is located on the x-axis at the point 

x1 = 5.1 cm. A second particle of charge q2 = −5.0 µC is placed on the x-axis at 

x2 = −3.4 cm. What is the absolute electric potential at the origin (x = 0)? How 

much work must we perform in order to slowly move a charge of q3 = −7.0 µC 
from infinity to the origin, whilst keeping the other two charges fixed? 

 
Solution: The absolute electric potential at the origin due to the first charge is 

V = k 
q1

 
1 e 

x1
 = (8.988 × 10 

−6 

) 
(5.1 × 10−2) 

= 1.06 × 10 V. 

Likewise, the absolute electric potential at the origin due to the second charge is 
 q2 9   (−5 × 10−6) 6 

 

V2 = ke 
|x | 

= (8.988 × 10 ) 
(3.4 × 10−2) 

= −1.32 × 10 V. 

9 

2 
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The net potential V at the origin is simply the algebraic sum of the potentials due 
to each charge taken in isolation. Thus, 

V = V1 + V2 = −2.64 × 105 V. 

The work W which we must perform in order to slowly moving a charge q3 
from infinity to the origin is simply the product of the charge and the potential 

difference V between the end and beginning points. Thus, 

W = q3 V = (−7 × 10−6) (−2.64 × 105) = 1.85 J. 

 
Example 5.4: Electric potential due to point charges 

 

q
a

 

 
 
 
 

a 
 

y 

 

x 
q

b
 

 

Question: Suppose that three point charges, qa, qb, and qc, are arranged at the 

vertices of a right-angled triangle, as shown in the diagram. What is the absolute 

electric potential of the third charge if qa = −6.0 µC, qb = +4.0 µC, qc = +2.0 µC, 

a = 4.0 m, and b = 3.0 m? Suppose that the third charge, which is initially at 

rest, is repelled to infinity by the combined electric field of the other two charges, 

which are held fixed. What is the final kinetic energy of the third charge? 

 
Solution: The absolute electric potential of the third charge due to the presence 

of the first charge is 
 

Va = ke 
qa 

= (8.988 109) 

c 

−6 

(
√

42 + 32) 
= −1.08 × 10 V, 

c 

b q
c
 



5 ELECTRIC POTENTIAL 5.5 Worked Examples 

62 

 

 

× 
× (4 10 ) 4 

 

where use has been made of the Pythagorean theorem. Likewise, the absolute 

electric potential of the third charge due to the presence of the second charge is 
 

Vb = ke 
qb 

= (8.988 109) 

b 

−6 

(3) 
= 1.20 × 10 V. 

The net absolute potential of the third charge Vc is simply the algebraic sum of 
the potentials due to the other two charges taken in isolation. Thus, 

Vc = Va + Vb = 1.20 × 103 V. 

The change in electric potential energy of the third charge as it moves from its 

initial position to infinity is the product of the third charge, qc, and the difference 

in electric potential (−Vc) between infinity and the initial position. It follows that 

∆P = −qc Vc = −(2 × 10−6) (1.2 × 103) = −2.40 × 10−3 J. 

This decrease in the potential energy of the charge is offset by a corresponding 

increase ∆K = −∆P in its kinetic energy. Since the initial kinetic energy of the 
third charge is zero (because it is initially at rest), the final kinetic energy is 
simply 

K = ∆K = −∆P = 2.40 × 10−3 J. 



6 CAPACITANCE 

63 

 

 

I 

·

 

 

6 Capacitance 

 
6.1 Charge Storage 

 
Consider a hollow metal sphere mounted on an insulating stand. The sphere 

is initially grounded so that no excess charge remains on it. Suppose that we 

introduce a metal ball, suspended on an insulating thread, through a small hole 

in the sphere, and then fill in the hole with a metal plug. Let the ball carry a 

charge +Q. What distribution of charge is induced on the hollow sphere as a 

result of introducing the positive charge into the cavity? 

To answer this question we make use of Gauss’ law (see Sect. 4.2) 
 

Φ  = E dS = 
Q 

. (6.1) 
E 

s0
 

 

Assuming that the metal ball is placed at the centre of the hollow sphere, we 

can use symmetry arguments to deduce that the electric field depends only on 

the radial distance r from the centre, and is everywhere directed radially away 

from the ball. Let us choose a spherical gaussian surface, centred on the ball, 

which runs through the interior of the hollow metal sphere. We know that the 

electric field inside a conductor is everywhere zero (see Sect. 4.6), so the electric 

flux ΦE through the surface is also zero. It follows from Gauss’ law that zero 

net charge is enclosed by the surface. Now, there is a charge +Q on the ball at 

the centre of the hollow sphere, so there must be an equal and opposite charge 

−Q distributed over the interior surface of the sphere (recall that any charge 

carried on a conductor must reside on its surface). Furthermore, since the sphere 

is insulated, and was initially uncharged, a charge +Q must be distributed over 

its exterior surface. Thus, when the charge +Q is introduced into the centre of 

the sphere, there is a redistribution of charge in the sphere such that a positive 

charge +Q is repelled to its exterior surface, leaving a negative charge −Q on the 

interior surface. (In actuality, free electrons are attracted to the interior surface, 

exposing positive charges on the exterior surface). Further use of Gauss’ law 

shows that the electric field between the charged ball and the interior surface of 

the sphere is the same as that generated by a point charge +Q located at the 
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centre of the sphere. Likewise, for the electric field exterior to the sphere. The 

electric field inside the conducting sphere is, of course, zero. 

Suppose, finally, that the ball is moved so that it touches the inside of the 

hollow sphere. The charge −Q on the interior surface of the sphere cancels the 

charge +Q on the ball, leaving the charge +Q distributed over its exterior sur- 

face. Thus, the effect of touching the ball to the inside of the sphere is to transfer 

the charge +Q from the ball to the exterior surface of the sphere. In principle, we 

can repeat this process, again and again, until a very large amount of charge is ac- 

cumulated on the outside of the sphere. The idea of transferring charge from one 

conductor to another by means of internal contact is the theoretical basis of the 

Van de Graaff generator. In this type of device, charge is continuously transmitted 

to a conducting sphere by means of a moving belt charged by friction. 

 

6.2 Breakdown 

 

Is there any practical limit to the charge Q which can be accumulated on the 
conducting sphere of a Van de Graaff generator? Well, we know that the field 

outside the sphere is just the same as if the charge Q were placed at the centre of 
the sphere. In fact, the electric field is at its most intense just above the surface 

of the sphere, where it has the magnitude E = Q/(4πs0 a
2). Here, a is the radius 

of the sphere. Air (assuming that the sphere is surrounded by air) is generally a 
very good insulator. However, air ceases to be an insulator when the electric field- 

strength through it exceeds some critical value which is about Ecrit ∼ 106 V m−1. 
This phenomenon is known as breakdown, and is associated with the formation of 
sparks. The explanation of breakdown is quite straightforward. Air naturally con- 
tains a very small fraction of ionized molecules (not enough to prevent air from 
being an insulator). In an electric field, these ionized molecules are constantly be- 
ing accelerated, and then crashing into neutral molecules. As the strength of the 
field is increased, the ionized molecules are accelerated to ever higher energies 
before crashing into the neutral molecules. Eventually, a critical field-strength 

Ecrit is reached at which the ionized molecules are accelerated to a sufficiently 
high energy that they ionize the neutral molecules when they hit them. At this 
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point, a chain reaction takes place which rapidly leads to the almost complete 
ionization of the air. Thus, the air makes an almost instantaneous transition from 

a good insulator to a good conductor. It follows that the charge Q on the con- 
ducting sphere of a Van de Graaff generator can never exceed the critical value 

Qcrit = 4πs0 a
2 Ecrit, because for Q Qcrit the electric field around the sphere is 

sufficiently intense to cause breakdown. Of course, when breakdown occurs the 
charge on the sphere is conducted to earth. 

The phenomenon of breakdown sets an upper limit on the charge which can 

be stored on a conductor. There is, however, another important factor which 

affects the onset of breakdown. This is best illustrated in the following simple 

example.  Suppose that we have two charged conducting spheres of radii a and 

b, respectively, which are connected by a long conducting wire. The wire allows 

charge to move back and forth between the spheres until they reach the same 

potential (recall that the electric potential is uniform in a conductor). Let Qa be 

the charge on the first sphere, and Qb the charge on the second sphere. Of course, 

the total charge Q = Qa + Qb carried by the two spheres is a conserved quantity. 

The electric field generated by each sphere is the same as if the charge on that 

sphere were concentrated at its centre. Assuming that the wire is sufficiently long 

that the two spheres do not affect one another very much, the absolute potential 

of the first sphere is Va = Qa/(4πs0 a), whereas that of the second sphere is 

Vb = Qb/(4πs0 b) [see Eq. (5.22)]. Since Va = Vb, we find that 
 

Qa a 
= 

Q a + b 
Qb b 

= 
Q a + b 

, (6.2) 

 

. (6.3) 

Note that if the second sphere is much smaller than the first (i.e., if b a) then 
the larger sphere grabs the lion’s share of the charge: 

 

Qa a 
= 

Qb b 
  1. (6.4) 

The electric field-strengths just above the surfaces of the two spheres are Ea = 

Qa/(4πs0 a2) and Eb = Qb/(4πs0 b2), respectively.  Thus, the ratio of the field- 
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strengths generated in the immediate vicinities of the two spheres is 
 

Eb Qb a2 
= 

Ea Qa b2 

= 
a
. (6.5) 

b 

Clearly, if b a then the field just above the smaller sphere is far stronger than 

that above the larger one.  Suppose that the total charge Q0  on the two spheres 

is gradually increased until breakdown occurs. Since Eb Ea, it follows that 
breakdown always occurs above the smaller sphere. 

Equation (6.5) is a special case of a far more general rule: i.e., the electric field-

strength above some point on the surface of a conductor is inversely pro- portional 

to the local radius of curvature of the surface. It is clear that if we wish to store 

significant amounts of charge on a conductor then the surface of the conductor 

must be made as smooth as possible. Any sharp spikes on the sur- face possess 

relatively small radii of curvature. Intense local electric fields are generated above 

these spikes whenever the conductor is charged. These fields can easily exceed 

the critical field for the breakdown of air, leading to sparking, and the eventual 

loss of the charge on the conductor. Sparking tends to be very destructive because of 

its highly localized nature, which leads inevitably to very large electric currents, 

and, hence, to intense heating. 

Clouds can acquire very large negative charges during thunderstorms. An 

equal and opposite positive charge is induced on the surface of the Earth. The 

electric field generated between the clouds and the Earth can become sufficiently 

large to cause breakdown in the atmosphere, giving rise to the phenomenon 

which we call lightning. Let us consider the various factors which determine 

where lightning strikes. Breakdown starts at cloud level, as a so-called “dark 

leader” of ionized air traces out a path towards the ground. When it comes within 

about 10 meters of ground level, a second dark leader comes up from the ground 

to meet it. Once the two leaders meet, and a conducting path is established, the 

lightning strike proper occurs. Note that, contrary to popular opinion, the light- 

ning strike travels upwards from the Earth to the clouds. It is clear that lightning 

“strikes” a particular object on the ground because the object emits a dark leader: 

i.e., because breakdown takes place just above the object. In a thunderstorm, the 

ground, and the objects upon it, acts essentially like a charged conductor with a 
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convoluted surface.  Thus, any “spikes” on the ground (e.g., a person standing in 

a field, a radio mast, a lightning rod) are comparatively more likely to be hit by 

lightning, because the electric field-strength above these points is relatively large, 

which facilitates breakdown. 

 

6.3 Capacitance 

 
As we have seen, the amount of charge which can be stored on a conductor is 

limited by the electric field-strength just above its surface, which is not allowed 

to exceed a certain critical value, Ecrit. Unfortunately, the field-strength varies 

from point to point across the surface (unless the surface possesses a constant 

radius of curvature). It is, therefore, generally convenient to parameterize the 

maximum field-strength above the surface of a conductor in terms of the voltage 

difference V between the conductor and either infinity or another conductor. The 

point is that V, unlike the electric field-strength, is a constant over the surface, 

and can, therefore, be specified unambiguously. 

How do we tell the difference between a good and a bad charge storage de- 

vice? Well, a good charge storage device must be capable of storing a large 

amount of charge without causing breakdown. Likewise, a bad charge storage 

device is only capable of storing a small amount of charge before breakdown oc- 

curs. Thus, if we place a charge Q in a good storage device then the electric fields 

generated just above the surface of the device should be comparatively weak. In 

other words, the voltage V should be relatively small. A convenient measure of 

the ability of a device to store electric charge is its capacitance, C, which is defined 

as the ratio of Q over V: 

C = 
Q

. (6.6) 
V 

Obviously, a good charge storage device possesses a high capacitance. Note that 
the capacitance of a given charge storage device is a constant which depends on 

the dimensions of the device, but is independent of either Q or V. This follows 
from the linear nature of the laws of electrostatics: i.e., if we double the charge 
on the device, then we double the electric fields generated around the device, 
and so we double the voltage difference between the device and (say) infinity. 
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In other words, V Q. The units of capacitance are called farads (F), and are 
equivalent to coulombs per volt: 

 

1 F ≡ 1 C V−1. (6.7) 

A farad is actually a pretty unwieldy unit. In fact, most of the capacitors found in 

electronic circuits have capacitances in the micro-farad range. 

Probably the simplest type of capacitor is the so-called parallel plate capacitor, 

which consists of two parallel conducting plates, one carrying a charge +Q and 

the other a charge −Q, separated by a distance d. Let A be the area of the two 

plates. It follows that the charge densities on the plates are σ and −σ, respec- 

tively, where σ = Q/A. Now, we have already seen (in Sect. 4.5) that the electric 

field generated between two oppositely charged parallel plates is uniform, and of 

magnitude E = σ/s0. The field is directed perpendicular to the plates, and runs 

from the positively to the negatively charged plate. Note that this result is only 

valid if the spacing between the plates is much less than their typical dimensions. 

According to Eq. (4.8), the potential difference V between the plates is given by 
 

V = E d = 
σ d Q d 

= 
s0 s0 A 

, (6.8) 

where the positively charged plate is at the higher potential. It follows from 

Eq. (6.6) that the capacitance of a parallel plate capacitor takes the form 

C = 
s0 A

. (6.9) 

d 

Note that the capacitance is proportional to the area of the plates, and inversely 

proportional to their perpendicular spacing. It follows that a good parallel plate 

capacitor possesses closely spaced plates of large surface area. 

 

6.4 Dielectrics 

 
Strictly speaking, the expression (6.9) for the capacitance of a parallel plate ca- 

pacitor is only valid if the region between plates is a vacuum. However, this 

expression turns out to be a pretty good approximation if the region is filled with 
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Material K 
Vacuum 1 

Air 1.00059 
Water 80 
Paper 3.5 
Pyrex 4.5 

Teflon 2.1 

Table 6.1: Dielectric constants of various common materials. 

 
air. But, what happens if the region between the plates is filled by an insulating 

material such as glass or plastic? 

We could investigate this question experimentally. Suppose that we started 

with a charged parallel plate capacitor, whose plates were separated by a vacuum 

gap, and which was disconnected from any battery or other source of charge. We 

could measure the voltage difference V0 between the plates using a voltmeter. 

Suppose that we inserted a slab of some insulating material (e.g., glass) into the 

gap between the plates, and then re-measured the voltage difference between 

the plates. We would find that the new voltage difference V was less than V0, 

despite that fact that the charge Q on the plates was unchanged. Let us denote 

the voltage ratio V0/V as K. Since, C = Q/V, it follows that the capacitance 

of the capacitor must have increased by a factor K when the insulating slab was 

inserted between the plates. 

An insulating material which has the effect of increasing the capacitance of a 

vacuum-filled parallel plate capacitor, when it is inserted between its plates, is 

called a dielectric material, and the factor K by which the capacitance is increased 

is called the dielectric constant of that material. Of course, K varies from material 

to material. A few sample values are given in Table 6.1. Note, however, that K is 

always greater than unity, so filling the gap between the plates of a parallel plate 

capacitor with a dielectric material always increases the capacitance of the device 

to some extent. On the other hand, K for air is only 0.06 percent greater than K 

for a vacuum (i.e., K = 1), so an air-filled capacitor is virtually indistinguishable 

from a vacuum-filled capacitor. 
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The formula for the capacitance of a dielectric-filled parallel plate capacitor is 

s A 

 
where 

C = , (6.10) 
d 

s = K s0 (6.11) 

is called the permittivity of the dielectric material between the plates. Note that 

the permittivity s of a dielectric material is always greater than the permittivity 

of a vacuum s0 

How do we explain the reduction in voltage which occurs when we insert a 

dielectric between the plates of a vacuum-filled parallel plate capacitor?    Well, 

if the voltage difference between the plates is reduced then the electric field be- 

tween the plates must be reduced by the same factor. In other words, the electric 

field E0 generated by the charge stored on the capacitor plates must be partially 

canceled out by an opposing electric field E1 generated by the dielectric itself 

when it is placed in an external electric field. What is the cause of this opposing 

field? It turns out that the opposing field is produced by the polarization of the 

constituent molecules of the dielectric when they are placed in an electric field 

(see Sect. 3.4). If E0 is sufficiently small then the degree of polarization of each 

molecule is proportional to the strength of the polarizing field E0. It follows that 

the strength of the opposing field E1 is also proportional to E0. In fact, the con- 

stant of proportionality is 1 − 1/K, so E1 = (1 − 1/K) E0. The net electric field 

between the plates is E0 − E1 = E0/K. Hence, both the field and voltage between 

the plates are reduced by a factor K with respect to the vacuum case. In principle, 

the dielectric constant K of a dielectric material can be calculated from the prop- 

erties of the molecules which make up the material. In practice, this calculation 

is too difficult to perform, except for very simple molecules. Note that the result 

that the degree of polarization of a polarizable molecule is proportional to the 

external electric field-strength E0 breaks down if E0 becomes too large (just as 

Hooke’s law breaks down if we pull too hard on a spring). Fortunately, however, 

the field-strengths encountered in conventional laboratory experiments are not 

generally large enough to invalidate this result. 

We have seen that when a dielectric material of dielectric constant K is placed 
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in the uniform electric field generated between the plates of a parallel plate ca- 

pacitor then the material polarizes, giving rise to a reduction of the field-strength 

between the plates by some factor K. Since there is nothing particularly spe- 

cial about the electric field between the plates of a capacitor, we surmise that 

this result is quite general. Thus, if space is filled with a dielectric medium then 

Coulomb’s law is rewritten as 

f = 
q qJ 

4πs r2 
, (6.12) 

and the formula for the electric field generated by a point charge becomes 
q 

E = 
4πs r2 

, (6.13) 

etc. Clearly, in a dielectric medium, the laws of electrostatics take exactly the 

same form as in a vacuum, except that the permittivity of free space s0 is replaced 

by the permittivity s = K s0 of the medium. Dielectric materials have the general 

effect of reducing the electric fields and potential differences generated by electric 

charges. Such materials are extremely useful because they inhibit breakdown. 

For instance,  if we fill a parallel plate capacitor with a dielectric material then 

we effectively increase the amount of charge we can store on the device before 

breakdown occurs. 

 

6.5 Capacitors in Series and in Parallel 

 
Capacitors are one of the standard components in electronic circuits. Moreover, 

complicated combinations of capacitors often occur in practical circuits. It is, 

therefore, useful to have a set of rules for finding the equivalent capacitance of 

some general arrangement of capacitors. It turns out that we can always find the 

equivalent capacitance by repeated application of two simple rules. These rules 

related to capacitors connected in series and in parallel. 

Consider two capacitors connected in parallel: i.e., with the positively charged 

plates connected to a common “input” wire, and the negatively charged plates 

attached to a common “output” wire—see Fig. 6.1. What is the equivalent capac- 

itance between the input and output wires? In this case, the potential difference 
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i=1 

 

C1 

C
2

 

Figure 6.1: Two capacitors connected in parallel. 

 

V across the two capacitors is the same, and is equal to the potential difference 

between the input and output wires. The total charge Q, however, stored in the 

two capacitors is divided between the capacitors, since it must distribute itself 

such that the voltage across the two is the same. Since the capacitors may have 

different capacitances, C1 and C2, the charges Q1 and Q2 may also be different. 

The equivalent capacitance Ceq of the pair of capacitors is simply the ratio Q/V, 

where Q = Q1 + Q2 is the total stored charge. It follows that 
 

Q 
Ceq = = 

Q1 + Q2 = 
Q1 

+ 
Q2 

, (6.14) 

 
giving 

V V V V 

Ceq = C1 + C2. (6.15) 

Here, we have made use of the fact that the voltage V is common to all three 
capacitors. Thus, the rule is: 

 

The equivalent capacitance of two capacitors connected in parallel is the sum 

of the individual capacitances. 

For N capacitors connected in parallel, Eq. (6.15) generalizes to Ceq = 
.N

 

 
 
 

Ci. 

Consider two capacitors connected in series: i.e., in a line such that the positive 

plate of one is attached to the negative plate of the other—see Fig. 6.2. In fact, 

+ 

+ 
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Figure 6.2: Two capacitors connected in series. 

 

let us suppose that the positive plate of capacitor 1 is connected to the “input” 

wire, the negative plate of capacitor 1 is connected to the positive plate of capac- 

itor 2, and the negative plate of capacitor 2 is connected to the “output” wire.  

What is the equivalent capacitance between the input and output wires? In this 

case, it is important to realize that the charge Q stored in the two capacitors is 

the same. This is most easily seen by considering the “internal” plates: i.e., the 

negative plate of capacitor 1, and the positive plate of capacitor 2. These plates 

are physically disconnected from the rest of the circuit, so the total charge on 

them must remain constant. Assuming, as seems reasonable, that these plates 

carry zero charge when zero potential difference is applied across the two capac- 

itors, it follows that in the presence of a non-zero potential difference the charge 

+Q on the positive plate of capacitor 2 must be balanced by an equal and op- 

posite charge −Q on the negative plate of capacitor 1.  Since the negative plate 

of capacitor 1 carries a charge −Q, the positive plate must carry a charge +Q. 

Likewise, since the positive plate of capacitor 2 carries a charge +Q, the negative 

plate must carry a charge −Q. The net result is that both capacitors possess the 

same stored charge Q. The potential drops, V1 and V2, across the two capacitors 
are, in general, different. However, the sum of these drops equals the total po- 

tential drop V applied across the input and output wires: i.e., V = V1 + V2. The 

equivalent capacitance of the pair of capacitors is again Ceq = Q/V. Thus, 

1 
= 

V 
= 

V1 + V2 = 
V1 

+ 
V2 

, (6.16) 

 
giving 

Ceq Q Q Q Q 

 
1 1 1 

 
 

Ceq 

= + 
C1 C2 

. (6.17) 

Here, we have made use of the fact that the charge Q is common to all three 
capacitors. Hence, the rule is: 

+ + 
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i=1 

∫ 2 

 

The reciprocal of the equivalent capacitance of two capacitors connected in 

series is the sum of the reciprocals of the individual capacitances. 
 

For N capacitors connected in series, Eq. (6.17) generalizes to 1/Ceq = 
.N

 (1/Ci). 
 
 

6.6 Energy Stored by Capacitors 

 
Let us consider charging an initially uncharged parallel plate capacitor by trans- 

ferring a charge Q from one plate to the other, leaving the former plate with 

charge −Q and the later with charge +Q. Of course, once we have transferred 

some charge, an electric field is set up between the plates which opposes any 

further charge transfer. In order to fully charge the capacitor, we must do work 

against this field, and this work becomes energy stored in the capacitor. Let us 

calculate this energy. 

Suppose that the capacitor plates carry a charge q and that the potential dif- 

ference between the plates is V. The work we do in transferring an infinitesimal 

amount of charge dq from the negative to the positive plate is simply 

dW = V dq. (6.18) 

In order to evaluate the total work W(Q) done in transferring the total charge Q 
from one plate to the other, we can divide this charge into many small increments 

dq, find the incremental work dW done in transferring this incremental charge, 
using the above formula, and then sum all of these works. The only complication 

is that the potential difference V between the plates is a function of the total 

transferred charge. In fact, V(q) = q/C, so 
q dq 

 
Integration yields 

dW = . (6.19) 
C 

 

W(Q) = 
Q q dq 

= 
Q 

. (6.20) 

0 C 2 C 

Note, again, that the work W done in charging the capacitor is the same as the 

energy stored in the capacitor. Since C = Q/V, we can write this stored energy 
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in one of three equivalent forms: 

Q2 
W = = 

2 C 

 
C V2 

2 

 
= 

Q V 
. (6.21) 

2 

These formulae are valid for any type of capacitor, since the arguments that we 

used to derive them do not depend on any special property of parallel plate ca- 

pacitors. 

Where is the energy in a parallel plate capacitor actually stored? Well, if we 

think about it, the only place it could be stored is in the electric field generated 

between the plates. This insight allows us to calculate the energy (or, rather, the 

energy density) of an electric field. 

Consider a vacuum-filled parallel plate capacitor whose plates are of cross 

sectional area A, and are spaced a distance d apart. The electric field E between 

the plates is approximately uniform, and of magnitude σ/s0, where σ = Q/A, and 

Q is the charge stored on the plates. The electric field elsewhere is approximately 

zero. The potential difference between the plates is V = E d. Thus, the energy 
stored in the capacitor can be written 

 

C V2 
W = 

2 

s0 A E2 d2 
= 

2 d 

s0 E
2 Ad 

= 
2 

, (6.22) 

where use has been made of Eq. (6.9). Now, A d is the volume of the field-filled 
region between the plates, so if the energy is stored in the electric field then the 
energy per unit volume, or energy density, of the field must be 

s0 E2 
w = . (6.23) 

2 

It turns out that this result is quite general. Thus, we can calculate the energy 

content of any electric field by dividing space into little cubes, applying the above 

formula to find the energy content of each cube, and then summing the energies 

thus obtained to obtain the total energy. 

It is easily demonstrated that the energy density in a dielectric medium is 

s E2 
w = , (6.24) 

2 
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× 

 

where s = K s0 is the permittivity of the medium. This energy density consists of 

two elements: the energy density s0 E2/2 held in the electric field, and the energy 

density (K − 1) s0 E2/2 held in the dielectric medium (this represents the work 
done on the constituent molecules of the dielectric in order to polarize them). 

 
 

6.7 Worked Examples 

 
Example 6.1: Parallel plate capacitor 

 
Question: A parallel plate capacitor consists of two metal plates, each of area 

A = 150 cm2, separated by a vacuum gap d = 0.60 cm thick. What is the ca- 
pacitance of this device? What potential difference must be applied between the 

plates if the capacitor is to hold a charge of magnitude Q = 1.00 10−3 µC on 
each plate? 

 

Solution: Making use of formula (6.9), the capacitance C is given by 

(8.85 10−12) (150 10−4) 

C = 
(0.6 × 10−2) 

= 2.21 × 10 

 
−11 

 

= 22.1 pF. 

The voltage difference V between the plates and the magnitude of the charge 

Q stored on each plate are related via C = Q/V, or V = Q/C.  Hence, if Q = 
1.00 × 10−3 µC then 

(1.00 10−9) 
V = 

(2.21 × 10−11) 
= 45.2 V. 

 

Example 6.2: Dielectric filled capacitor 

 
Question: A parallel plate capacitor has a plate area of 50 cm2 and a plate sepa- 

ration of 1.0 cm. A potential difference of V0 = 200 V is applied across the plates 
with no dielectric present. The battery is then disconnected, and a piece of Bake- 

lite (K = 4.8) is inserted which fills the region between the plates. What is the 
capacitance, the charge on the plates, and the potential difference between the 
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plates, before and after the dielectric is inserted? 

 
Answer: Before the dielectric is inserted, the space between the plates is presum- 
ably filled with air. Since the dielectric constant of air is virtually indistinguish- 
able from that of a vacuum, let us use the vacuum formula (6.9) to calculate the 

initial capacitance C0. Thus, 

C0 = 
s0 A 

=
 

d 

(8.85 × 10−12) (50 × 10−4) 
 

(1 × 10−2) 

After the dielectric is inserted, the capacitance increases by a factor K, which in 

this case is 4.8, so the new capacitance C is given by 

C = K C0 = (4.8) (4.4 × 10−12) = 21 pF. 

Before the dielectric is inserted, the charge Q0 on the plates is simply 

Q0 = C0V0 = (4.4 × 10−12) (200) = 8.8 × 10−10 C. 

After the dielectric is inserted, the charge Q is exactly the same, since the capac- 
itor is disconnected, and so the charge cannot leave the plates. Hence, 

Q = Q0 = 8.8 × 10−10 C. 

The potential difference before the dielectric is inserted is given as V0 = 200 V. 

The potential difference V after the dielectric is inserted is simply 

Q 
V = = 

C 

(8.8 × 10−10) 

(21 × 10−12) 

 

= 42 V. 

Note, of course, that V = V0/K. 

 
Example 6.3: Equivalent capacitance 

 
Question: A 1 µF and a 2 µF capacitor are connected in parallel, and this pair of 

capacitors is then connected in series with a 4 µF capacitor, as shown in the di- 
agram. What is the equivalent capacitance of the whole combination? What is 

= 4.4 pF. 
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4 F 

 

1F 

2 F 

the charge on the 4 µF capacitor if the whole combination is connected across the 

terminals of a 6 V battery? Likewise, what are the charges on the 1 µF and 2 µF 
capacitors? 

 
Answer: The equivalent capacitance of the 1 µF and 2 µF capacitors connected 

in parallel is 1 + 2 = 3 µF. When a 3 µF capacitor is combined in series with a 

4 µF capacitor, the equivalent capacitance of the whole combination is given by 

 

 
and so 

1 
 

Ceq 

1 

= 
(3 × 10−6) 

1 

+ 
(4 × 10−6) 

(12 × 10−6) 

(7) 

= 
(12 × 10−6) 

F−1, 

Ceq = 
(7) 

= 1.71 µF. 

 

The charge delivered by the 6 V battery is 

Q = CeqV = (1.71 × 10−6) (6) = 10.3 µC. 

This is the charge on the 4 µF capacitor, since one of the terminals of the battery 
is connected directly to one of the plates of this capacitor. 

The voltage drop across the 4 µF capacitor is 
Q 

V4 = 
4 

(10.3 10−6) 
= 

(4 × 10−6) 

Thus, the voltage drop across the 1 µF and 2 µF combination must be V12 = 6 − 

2.57 = 3.43 V. The charge stored on the 1 µF is given by 

Q1 = C1 V12 = (1 × 10−6) (3.43) = 3.42 µC. 

= 2.57 V. 
C 
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= 2.5 10 J. 

 

Likewise, the charge stored on the 2 µF capacitor is 

Q2 = C2 V12 = (2 × 10−6) (3.43) = 6.84 µC. 

Note that the total charge stored on the 1 µF and 2 µF combination is Q12 = 

Q1 + Q2 = 10.3 µC, which is the same as the charge stored on the 4 µF capacitor. 

This makes sense because the 1 µF and 2 µF combination and the 4 µF capacitor 
are connected in series. 

 
 

Example 6.4: Energy stored in a capacitor 

 
Question: An air-filled parallel plate capacitor has a capacitance of 5.0 pF. A poten- 

tial of 100 V is applied across the plates, which are 1.0 cm apart, using a storage 
battery. What is the energy stored in the capacitor? Suppose that the battery is 

disconnected, and the plates are moved until they are 2.0 cm apart. What now 
is the energy stored in the capacitor? Suppose, instead, that the battery is left 

connected, and the plates are again moved until they are 2.0 cm apart. What is 
the energy stored in the capacitor in this case? 

 
Answer: The initial energy stored in the capacitor is 

 

C V2 
W = = 

2 

(5 10−12) (100)2 −8 

2 
× 

 

When the spacing between the plates is doubled, the capacitance of the capac- 

itor is halved to 2.5 pF. If the battery is disconnected then this process takes place 

at constant charge Q. Thus, it follows from the formula 

Q2 
W = 

2 C 

that the energy stored in the capacitor doubles. So, the new energy is 5.0 

10−8 J. Incidentally, the increased energy of the capacitor is accounted for by the 

work done in pulling the capacitor plates apart (since these plates are oppositely 

charged, they attract one another). 
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If the battery is left connected, then the capacitance is still halved, but now 

the process takes place at constant voltage V. It follows from the formula 

C V2 
W = 

2 

that the energy stored in the capacitor is halved. So, the new energy is 1.25 

10−8 J. Incidentally, the energy lost by the capacitor is given to the battery (in 

effect, it goes to re-charging the battery). Likewise, the work done in pulling the 

plates apart is also given to the battery. 
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7 Electric Current 

 
7.1 Electric Circuits 

 
A battery is a device possessing a positive and a negative terminal. Some process, 

usually a chemical reaction, takes place inside the battery which causes positive 

charge to migrate towards the positive terminal, and vice versa. This process 

continues until the electric field set up between the two terminals is sufficiently 

strong to inhibit any further charge migration. 

An electric circuit is a conducting path, external to the battery, which allows 

charge to flow from one terminal to the other. A simple circuit might consist of 

a single strand of metal wire linking the positive and negative terminals. A more 

realistic circuit possesses multiple branch points, so that charge can take many 

different paths between the two terminals. 

Suppose that a (positive) charge q is driven around the external circuit, from 

the positive to the negative terminal, by the electric field set up between the 

terminals. The work done on the charge by this field during its journey is q V, 

where V is the difference in electric potential between the positive and negative 

terminals.   We usually refer to V as the voltage of the battery:  e.g.,  when we 

talk of a 6 volt battery, what we actually mean is that the potential difference 

between its two terminals is 6 V. Note, from Sect. 5, that the electrical work q V 

done on the charge is completely independent of the route it takes between the 

terminals. In other words, although there are, in general, many different paths 

through the external circuit which the charge could take in order to get from the 

positive to the negative terminal of the battery, the electrical energy which the 

charge acquires in making this journey is always the same. Since, when analyzing 

electrical circuits, we are primarily interested in energy (i.e., in the transformation 

of the chemical energy of the battery into heat energy in some electric heating 

element, or mechanical energy in some electric motor, etc.), it follows that the 

property of a battery which primarily concerns us is its voltage.  Hence, we do 

not have to map out the electric field generated by a battery in order to calculate 

how much energy this field gives to a charge q which goes around some external 
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circuit connected to it. All we need to know is the potential difference V between 
the two terminals of the battery. This is obviously an enormous simplification. 

This section is only concerned with steady-state electric circuits powered by 

batteries of constant voltage. Thus, the rate at which electric charge flows out of 

the positive terminal of the battery into the external circuit must match the rate 

at which charge flows from the circuit into the negative terminal of the battery, 

otherwise charge would build up in either the battery or the circuit, which would 

not correspond to a steady-state situation. The rate at which charge flows out 

of the positive terminal is termed the electric current flowing out of the battery. 

Likewise, the rate at which charge flows into the negative terminal is termed the 

current flowing into the battery. Of course, these two currents must be the same 

in a steady-state. Electric current is measured in units of amperes (A), which are 

equivalent to coulombs per second: 

1 A ≡ 1 C s−1. (7.1) 

We can define the electric current I flowing at any particular point in the ex- 

ternal circuit as follows. If an amount of charge dQ flows past this point in an 

infinitesimal time interval dt then 

I = 
dQ

. (7.2) 
dt 

By convention, the direction of the current is taken to be the direction positive 

charges would have to move in order to account for the flow of charge. In a 

steady-state, the current at all points in the external circuit must remain constant 

in time. We call this type of circuit a direct current (DC) circuit because the current 

always flows in the same direction. There is a second type of circuit, called 

an alternating current (AC) circuit, in which the current periodically switches 

direction. 

Consider a simple circuit in which a steady current I flows around a single 

conducting wire connecting the positive and negative terminals of a battery of 

voltage V. Let us suppose that the current is carried by positive charges flowing 

around the external circuit from the positive to the negative terminal.  In real- 

ity, the current is carried by negative charges (i.e., by electrons) flowing in the 
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opposite direction, but for most purposes we can safely ignore this rather incon- 

venient fact. Every charge q which flows around the external circuit experiences 

a potential drop V. In order to flow around the circuit again, the charge must be 

raised to the potential of the positive terminal of the battery. This process occurs 

inside the battery, as the charge migrates from the negative to the positive ter- 

minal. The energy q V required to move the charge between the two terminals 

is derived from the energy released by the chemical reactions taking place inside 

the battery. 

The simple circuit described above is somewhat analogous to a small ski resort. 

The charges flowing around the external circuit are like people skiing down the 

ski-slope. The charges flow down a gradient of electric potential just as the people 

ski down a gradient of gravitational potential.  Note that  the  good skiers who 

ski directly down the slope acquire exactly the same gravitational energy as the 

poor skiers who ski from side to side. In both cases, the total acquired energy 

depends only on the difference in height between the top and bottom of the slope. 

Likewise, charges flowing around an external circuit acquire the same electrical 

energy no matter what route they take, because the acquired energy only depends 

on the potential difference between the two terminals of the battery. Once the 

people in our ski resort reach the bottom of the slope, they must be lifted to 

the top in a ski-lift before they can ski down it again. Thus, the ski-lift in our 

resort plays an analogous role to the battery in our circuit.  Of course,  the ski- 

lift must expend non-gravitational energy in order to lift skiers to the top of the 

slope, in just the same manner as the battery must expend non-electrical energy 

to move charges up a potential gradient. If the ski-lift runs out of energy then the 

circulation of skiers in the resort rapidly stops. Likewise, if the battery runs out 

of energy (i.e., if the battery “runs down”) then the current in the external circuit 

stops flowing. 

 

7.2 Ohm’s Law 

 
Consider, again, a simple circuit in which a steady current I flows through a sin- 
gle conducting wire connecting the positive and negative terminals of a battery 
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of voltage V. What is the relationship between the current I flowing in the wire 

and the potential difference V applied across the two ends of the wire by the bat- 
tery? If we were to investigate this relationship experimentally we would quickly 

conclude that the current I is directly proportional to the potential difference V. 
In other words, 

V = I R, (7.3) 

where the constant of proportionality R is termed the (electrical) resistance of 
the wire. The above formula is called Ohm’s law after its discoverer, the early 
nineteenth century German physicist Georg Simon Ohm. The unit of electrical 

resistance is the ohm (Ω), which is equivalent to a volt per ampere: 

1 Ω ≡ 1 V A−1. (7.4) 

There is a slight discrepancy between what we are saying now, and what we 

said earlier. In Sect. 5, we maintained that the electric field inside a conductor 

is zero. However, if there is a potential difference V between the beginning and 

the end of a conducting wire, as described above, then there must be an electric 

field running along the length of the wire. In fact, if the wire is straight, and 

the electric potential decreases uniformly with distance traveled along the wire, 

then the longitudinal electric field-strength is given by E = V/L (see Sect. 5.3), 

where L is the length of the wire. The earlier result that there is zero electric field 

inside a conductor is equivalent to saying that conductors possess zero electrical 

resistance. This follows because if R is zero then the electric field, and, hence, 

the potential difference V, must be zero, otherwise an infinite current would flow 

according to Ohm’s law. It turns out that good conductors (i.e., copper, silver, alu- 

minium, and most other metals) possess non-zero electrical resistances. However, 

these resistances are generally so small that if we were to connect the terminals 

of a battery together using a wire fashioned out of a good conductor then the 

current which would flow in the wire, according to Ohm’s law, would be so large 

that it would damage both the wire and the battery. We usually call such a circuit 

a short-circuit. In order to prevent excessively large currents from flowing, con- 

ventional electric circuits contain components, called resistors, whose electrical 

resistance is many orders of magnitude greater than that of the conducting wires 

in the circuit. When we apply Ohm’s law, V = I R, to a circuit, we usually only 
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count the net resistance R of all the resistors in the circuit, and neglect the re- 

sistances of the interconnecting wires. This means that all of the major drops in 

electric potential, as we travel around the circuit from one terminal of the battery 

to the other, take place inside the resistors. The drop in potential in the con- 

ducting wires themselves is usually negligible. Thus, to all intents and purposes, 

good conductors, and wires made out of good conductors, act as if they have zero 

resistance, and contain zero electric field. 

 

7.3 Resistance and Resistivity 

 
Let us attempt to find a microscopic explanation for electrical resistance and 

Ohm’s law. Now, electric current in metals, and most other conductors found in 

conventional electric circuits (good or bad), is carried by free electrons. Consider 

a uniform wire of cross-sectional area A and length L made of some conducting 

material. Suppose that the potential difference between the two ends of the wire 

is V. The longitudinal electric field inside the wire is therefore E = V/L. Consider 

a free electron of charge q and mass m inside the wire. The electric field in the 

wire exerts a force f = q E on the electron, causing it to accelerate with an accel- 

eration a = q E/m along the direction of the wire. However, the electron does 

not accelerate for ever. Eventually, it crashes into one of the atoms in the wire. 

Since atoms are far more massive than electrons, the electron loses all forward 

momentum every time it hits an atom (just as we would lose all forward momen- 

tum if we ran into a brick wall). Suppose that the average time interval between 

collisions is τ. Of course, this characteristic time interval depends on the size and 

number density of the atoms in the wire. Immediately after the electron hits an 

atom (at t = 0, say) its forward velocity v is zero. The electron is then acceler- 

ated by the electric field, so v = (q E/m) t. The final velocity of the electron is 

v = (q E/m) τ, and its average velocity is 

q E τ 

vd = . (7.5) 
2 m 

In fact, on average, the electron acts as though it drifts along the wire with the 

constant velocity vd. This velocity is therefore called the drift velocity. 
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Material ρ (Ω m) 

Silver 1.5 × 10−8 
Copper 1.7 × 10−8 
Aluminium 2.6 × 10−8 

Iron 8.85 × 10−8 
 

Table 7.1: Resistivities of some common metals at 0◦ C. 

Suppose that there are N free electrons per unit volume in the wire. All of 

these electrons effectively drift along the wire with the drift velocity vd. Thus, 
the total charge which passes any particular point on the wire in a time interval 

dt is dQ = q N (A vd dt). This follows because all free electrons contained in a 

tube of length vd dt and cross-sectional area A pass the point in question in the 

time interval dt. The electric current I flowing in the wire is given by 
dQ 

I = = q
2 N τ A 

  

V. (7.6) 
dt 2 m L 

This equation can be rearranged to give Ohm’s law, 

V = I R, (7.7) 

where 

 
and 

 
R = ρ 

L 
, (7.8) 

A 

2 m 
ρ = 

q2 N τ 
. (7.9) 

Thus, we can indeed account for Ohm’s law on a microscopic level. According 

to Eq. (7.8), the resistance of a wire is proportional to its length, and inversely 

proportional to its cross-sectional area. The constant of proportionality ρ is called 
the resistivity of the material making up the wire. The units of resistivity are ohm- 

meters (Ω m). Table 7.1 below shows the resistivities of some common metals at 

0◦ C. 

 
7.4 Emf and Internal Resistance 

 
Now, real batteries are constructed from materials which possess non-zero resis- 

tivities. It follows that real batteries are not just pure voltage sources. They also 
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Figure 7.1: A battery of emf E and internal resistance r connected to a load resistor of resistance R. 

possess internal resistances. Incidentally, a pure voltage source is usually referred 

to as an emf (which stands for electromotive force). Of course, emf is measured in 

units of volts. A battery can be modeled as an emf connected in series with a 

resistor r, which represents its internal resistance. Suppose that such a battery is 

used to drive a current I through an external load resistor R, as shown in Fig. 7.1. 

Note that in circuit diagrams an emf is represented as two closely spaced paral- 

lel lines of unequal length. The electric potential of the longer line is greater than 

that of the shorter one by +E volts. A resistor is represented as a zig-zag line. 

Consider the battery in the figure. The voltage V of the battery is defined as the 
difference in electric potential between its positive and negative terminals: i.e., 

the points A and B, respectively. As we move from B to A, the electric potential 

increases by + volts as we cross the emf, but then decreases by I r volts as 
we cross the internal resistor. The voltage drop across the resistor follows from 

Ohm’s law, which implies that the drop in voltage across a resistor R, carrying a 

current I, is I R in the direction in which the current flows. Thus, the voltage V 

of the battery is related to its emf E and internal resistance r via 

V = E − I r. (7.10) 

Now, we usually think of the emf of a battery as being essentially constant (since it 

only depends on the chemical reaction going on inside the battery, which converts 

chemical energy into electrical energy), so we must conclude that the voltage of 
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a battery actually decreases as the current drawn from it increases. In fact, the 

voltage only equals the emf when the current is negligibly small. The current 

draw from the battery cannot normally exceed the critical value 

I0 = 
E 

, (7.11) 
r 

since for I > I0 the voltage V becomes negative (which can only happen if the 

load resistor R is also negative:   this is essentially impossible).    It follows that 

if we short-circuit a battery, by connecting its positive and negative terminals 

together using a conducting wire of negligible resistance, the current drawn from 

the battery is limited by its internal resistance. In fact, in this case, the current is 

equal to the maximum possible current I0. 

A real battery is usually characterized in terms of its emf (i.e., its voltage at 

zero current), and the maximum current I0 which it can supply. For instance, a 

standard dry cell (i.e., the sort of battery used to power calculators and torches) 

is usually rated at 1.5 V and (say) 0.1 A. Thus, nothing really catastrophic is 

going to happen if we short-circuit a dry cell. We will run the battery down in a 

comparatively short space of time, but no dangerously large current is going to 

flow. On the other hand, a car battery is usually rated at 12 V and something like 

200 A (this is the sort of current needed to operate a starter motor). It is clear 

that a car battery must have a much lower internal resistance than a dry cell. 

It follows that if we were foolish enough to short-circuit a car battery the result 

would be fairly catastrophic (imagine all of the energy needed to turn over the 

engine of a car going into a thin wire connecting the battery terminals together). 

 

7.5 Resistors in Series and in Parallel 

 
Resistors are probably the most commonly occurring components in electronic 

circuits. Practical circuits often contain very complicated combinations of resis- 

tors. It is, therefore, useful to have a set of rules for finding the equivalent resis- 

tance of some general arrangement of resistors. It turns out that we can always 

find the equivalent resistance by repeated application of two simple rules. These 

rules relate to resistors connected in series and in parallel. 
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Figure 7.2: Two resistors connected in series. 

 
Consider two resistors connected in series, as shown in Fig. 7.2. It is clear that 

the same current I flows through both resistors. For, if this were not the case, 

charge would build up in one or other of the resistors, which would not corre- 

spond to a steady-state situation (thus violating the fundamental assumption of 

this section). Suppose that the potential drop from point B to point A is V. This 

drop is the sum of the potential drops V1 and V2 across the two resistors R1 and 

R2, respectively. Thus, 

V = V1 + V2. (7.12) 

According to Ohm’s law, the equivalent resistance Req between B and A is the 

ratio of the potential drop V across these points and the current I which flows 
between them. Thus, 

 

V 
Req = = 

V1 + V2 = 
V1 

+ 
V2 

, (7.13) 

 
giving 

I I I I 

Req = R1 + R2. (7.14) 

Here, we have made use of the fact that the current I is common to all three 
resistors. Hence, the rule is 

 
The equivalent resistance of two resistors connected in series is the sum of 

the individual resistances. 
 

For N resistors connected in series, Eq. (7.14) generalizes to Req = 
.N 

Ri. 

Consider two resistors connected in parallel, as shown in Fig. 7.3. It is clear, 

from the figure, that the potential drop V across the two resistors is the same. 
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Figure 7.3: Two resistors connected in parallel. 

 
In general, however, the currents I1 and I2 which flow through resistors R1 and 

R2, respectively, are different. According to Ohm’s law, the equivalent resistance 

Req between B and A is the ratio of the potential drop V across these points and 

the current I which flows between  them.   This current must equal the sum of 

the currents I1 and I2 flowing through the two resistors, otherwise charge would 
build up at one or both of the junctions in the circuit. Thus, 

I = I1 + I2. (7.15) 

It follows that  
1 

= 
I 

= 
I1 + I2 = 

I1 
+ 

I2 
, (7.16) 

 
giving 

Req V 
 

1 

V V V 
 
1 1 

 
 

Req 

= + 
R1 R2 

. (7.17) 

Here, we have made use of the fact that the potential drop V is common to all 
three resistors. Clearly, the rule is 

 
The reciprocal of the equivalent resistance of two resistances connected in 

parallel is the sum of the reciprocals of the individual resistances. 
 

For N resistors connected in parallel, Eq. (7.17) generalizes to 1/Req = 
.N

 (1/Ri). 

B I A 

. 
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7.6 Kirchhoff’s Rules 

 
We now know just about all that we need to know about emfs and resistors. How- 

ever, it would be convenient if we could distill our knowledge into a number of 

handy rules which could then be used to analyze any DC circuit. This is essen- 

tially what the German physicist Gustav Kirchhoff did in 1845 when he proposed 

two simple rules for dealing with DC circuits. 

Kirchhoff’s first rule applies to junction points in DC circuits (i.e., points at 

which three or more wires come together). The junction rule is: 

 
The sum of all the currents entering any junction point is equal to the sum 

of all the currents leaving that junction point. 

 
This rule is easy to understand. As we have already remarked, if this rule were 

not satisfied then charge would build up at the junction points, violating our 

fundamental steady-state assumption. 

Kirchhoff’s second rule applies to loops in DC circuits. The loop rule is: 

 
The algebraic sum of the changes in electric potential encountered in a com- 

plete traversal of any closed circuit is equal to zero. 

 
This rule is also easy to understand. We have already seen (in Sect. 5) that 

zero net work is done in slowly moving a charge q around some closed loop in an 

electrostatic field. Since the work done is equal to the product of the charge q and 

the difference ∆V in electric potential between the beginning and end points of 

the loop, it follows that this difference must be zero. Thus, if we apply this result 

to the special case of a loop in a DC circuit, we immediately arrive at Kirchhoff’s 

second rule. When using this rule, we first pick a closed loop in the DC circuit 

that we are analyzing. Next, we decide whether we are going to traverse this loop 

in a clockwise or an anti-clockwise direction (the choice is arbitrary). If a source 

of emf E is traversed in the direction of increasing potential then the change in 

potential is +E. However, if the emf is traversed in the opposite direction then 

the change in potential is −E. If a resistor R, carrying a current I, is traversed in 
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the direction of current flow then the change in potential is −I R. Finally, if the 

resistor is traversed in the opposite direction then the change in potential is +I R. 

The currents flowing around a general DC circuit can always be found by 

applying Kirchhoff’s first rule to all junction points, Kirchhoff’s second rule to 

all loops, and then solving the simultaneous algebraic equations thus obtained. 

This procedure works no matter how complicated the circuit in question is (e.g., 

Kirchhoff’s rules are used in the semiconductor industry to analyze the incredibly 

complicated circuits, etched onto the surface of silicon wafers, which are used to 

construct the central processing units of computers). 

 

7.7 Capacitors in DC Circuits 

 
Capacitors do not play an important role in DC circuits because it is impossible 

for a steady current to flow across a capacitor. If an uncharged capacitor C is 

connected across the terminals of a battery of voltage V then a transient current 

flows as the capacitor plates charge up. However, the current stops flowing as 

soon as the charge Q on the positive plate reaches the value Q = C V.  At this 

point, the electric field between the plates cancels the effect of the electric field 

generated by the battery, and there is no further movement of charge. Thus, if a 

capacitor is placed in a DC circuit then, as soon as its plates have charged up, the 

capacitor effectively behaves like a break in the circuit. 

 

7.8 Energy in DC Circuits 

 
Consider a simple circuit in which a battery of voltage V drives a current I through 

a resistor of resistance R. As we have seen, the battery is continuously doing work 

by raising the potentials of charges which flow into its negative terminal and then 

flow out of its positive terminal. How much work does the battery do per unit 

time? In other words, what is the power output of the battery? 

Consider a (positive) charge q which flows through the battery from the neg- 
ative terminal to the positive terminal. The battery raises the potential of the 
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charge by V, so the work the battery does on the charge is q V.  The total amount 
of charge which flows through the battery per unit time is, by definition, equal to 

the current I flowing through the battery. Thus, the amount of work the battery 

does per unit time is simply the product of the work done per unit charge, V, and 

the charge passing through the battery per unit time, I. In other words, 

P = V I, (7.18) 

where P, of course, stands for the power output of the battery. Thus, the rule is 
 

The power in a DC circuit is the product of the voltage and the current. 

 
This rule does not just apply to batteries. If a current I flows through some 

component of a DC circuit which has a potential drop V in the direction of current 

flow then that component gains the energy per unit time V I at the expense of the 

rest of the circuit, and vice versa. Incidentally, since the SI unit of power is the 

watt (W), it follows that 

1 W ≡ 1 V · 1 A. (7.19) 

Consider a resistor R which carries a current I. According to Ohm’s law, the 

potential drop across the resistor is V = I R. Thus, the energy gained by the 
resistor per unit time is 

P = V I = I2 R = 
V 

. (7.20) 
R 

In what form does the resistor acquire this energy? In turns out that the energy 

is dissipated as heat inside the resistor. This effect is known as Joule heating. 

Thus, the above formula gives the electrical heating power of a resistor. Electrical 

energy is converted into heat (i.e., random motion of the atoms which make up 

the resistor) as the electrically accelerated free electrons inside the resistor collide 

with the atoms and, thereby, transfer all of their kinetic energy to the atoms. It is 

this energy which appears as heat on a macroscopic scale (see Sect. 7.3). 

Household electricity bills depend on the amount of electrical energy the house- 

hold in question uses during a given accounting period, since the energy usage 

determines how much coal or gas was burnt on the household’s behalf in the lo- 

cal power station during this period. The conventional unit of electrical energy 
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usage employed by utility companies is the kilowatthour. If electrical energy is 

consumed for 1 hour at the rate of 1 kW (the typical rate of consumption of a 

single-bar electric fire) then the total energy usage is one kilowatthour (kWh). It 

follows that 

1 kWh = (1000) (60) (60) = 3.6 × 106 J. (7.21) 

 
7.9 Power and Internal Resistance 

 
Consider a simple circuit in which a battery of emf    and internal resistance 

r drives a current I through an external resistor of resistance R (see Fig. 7.1). 

The external resistor is usually referred to as the load resistor. It could stand for 

either an electric light, an electric heating element, or, maybe, an electric motor. 

The basic purpose of the circuit is to transfer energy from the battery to the 

load, where it actually does something useful for us (e.g., lighting a light bulb, or 

lifting a weight). Let us see to what extent the internal resistance of the battery 

interferes with this process. 

The equivalent resistance of the circuit is r + R (since the load resistance is in 
series with the internal resistance), so the current flowing in the circuit is given 
by 

I =
   E 

. (7.22) 
r + R 

The power output of the emf is simply 
 

      2 

PE = E I = 
r + R

. (7.23) 

The power dissipated as heat by the internal resistance of the battery is 
 

       2 

Pr = I r = . (7.24) 
(r + R)2 

Likewise, the power transferred to the load is 
 

      2 

PR = I R = . (7.25) 
(r + R)2 
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Note that 

PE = Pr + PR. (7.26) 

Thus, some of the power output of the battery is immediately lost as heat dissi- 

pated by the internal resistance of the battery. The remainder is transmitted to 

the load. 

Let y = PR/(E 2/r) and x = R/r. It follows from Eq. (7.25) that 
x 

y = 
(1 + x)2 

. (7.27) 

The function y(x) increases monotonically from zero for increasing x in the range 

0 < x < 1, attains a maximum value of 1/4 at x = 1, and then decreases monoton- 

ically with increasing x in the range x > 1. In other words, if the load resistance 

R is varied at constant and r then the transferred power attains a maximum 
value of 

(PR)max = 
E  

 
4 r 

(7.28) 

when R = r. This is a very important result in electrical engineering. Power 
transfer between a voltage source and an external load is at its most efficient 

when the resistance of the load matches the internal resistance of the voltage 

source. If the load resistance is too low then most of the power output of the 

voltage source is dissipated as heat inside the source itself. If the load resistance 

is too high then the current which flows in the circuit is too low to transfer energy 

to the load at an appreciable rate.  Note that in the optimum case, R = r, only 

half of the power output of the voltage source is transmitted to the load. The 

other half is dissipated as heat inside the source. Incidentally, electrical engineers 

call the process by which the resistance of a load is matched to that of the power 

supply impedance matching (impedance is just a fancy name for resistance). 
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7.10 Worked Examples 

 
Example 7.1: Ohm’s law 

 
Question: What is the resistance at 0◦ C of a 1.0 m long piece of no. 5 gauge cop- 

per wire (cross-sectional area 16.8 mm2)? What voltage must be applied across 
the two ends of the wire to produce a current of 10 A through it? 

 

Answer: Using the basic equation R = ρ L/A, and the value of ρ for copper given 
in Tab. 7.1, we have 

 

(1.7 10−8) (1.0) −3 

R = 
(16.8 × 10−6) 

= 1.0 × 10 Ω. 

 

Using Ohm’s law V = I R, we obtain 

V = (10) (1.0 × 10−3) = 1.0 × 10−2 V. 

 
Example 7.2: Equivalent resistance 

 
 

 
. 

 
 

1 











I 
 
 
 
 
 
 
 
 
 
 
 








. 

 
 
 
 
 
 

Question: A 1 Ω and a 2 Ω resistor are connected in parallel, and this pair of re- 

sistors is connected in series with a 4 Ω resistor. What is the equivalent resistance 

of the whole combination? What is the current flowing through the 4 Ω resistor 

I1 4

I2 
   

2 

6 V 
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if the whole combination is connected across the terminals of a 6 V battery (of 
negligible internal resistance)? Likewise, what are the currents flowing through 

the 1 Ω and 2 Ω resistors? 

Answer: The equivalent resistance of the 1 Ω and 2 Ω resistors is 

1 1 1 3 
= + = Ω−1, 

Re
J 
q 1 2 2 

giving Re
J 
q = 0.667 Ω. When a 0.667 Ω resistor is combined in series with a 4 Ω 

resistor, the equivalent resistance is Req = 0.667 + 4 = 4.667 Ω. 

The current driven by the 6 V battery is 

V 
I = 

Req 

(6) 
= 

(4.667) 
= 1.29 A. 

This is the current flowing through the 4 Ω resistor, since one end of this resistor 
is connected directly to the battery, with no intermediate junction points. 

The voltage drop across the 4 Ω resistor is 

V4 = I R4 = (1.29) (4) = 5.14 V. 

Thus, the voltage drop across the 1 Ω and 2 Ω combination is V12 = 6 − 5.14 = 

0.857 V. The current flowing through the 1 Ω resistor is given by 

I = 
V12 

1 
R1

 

(0.857) 
= 

(1) 
= 0.857 A. 

Likewise, the current flowing through the 2 Ω resistor is 

I = 
V12 

2 
R2

 

(0.857) 
= 

(2) 
= 0.429 A. 

Note that the total current flowing through the 1 Ω and 2 Ω combination is I12 = 

I1 +I2 = 1.29 A, which is the same as the current flowing through the 4 Ω resistor. 

This makes sense because the 1 Ω and 2 Ω combination is connected in series 

with the 4 Ω resistor. 
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Example 7.3: Kirchhoff’s rules 

 
Question:  Find the three currents I1, I2, and I3 in the circuit shown in the dia- 

gram, where R1 = 100 Ω, R2 = 10 Ω, R3 = 5 Ω, E1 = 12 V and E2 = 6 V. 

Answer: Applying the junction rule to point a, and assuming that the currents 
flow in the direction shown (the initial choice of directions of the currents is 
arbitrary), we have 

I1 = I2 + I3. 

There is no need to apply the junction rule again at point b, since if the above 

equation is satisfied then this rule is automatically satisfied at b. 
 
 

. 

 
 








R1      

c d 

I
1

 

b a 

 
I

3
 

f e 
 
 
 







. 

 
 
 
 

Let us apply the loop rule by going around the various loops in the circuit in a 

clockwise direction. For loop abcd, we have 

— I2 R2 + E1 − I1 R1 = 0. 

Note that both the terms involving resistors are negative, since we cross the re- 
sistors in question in the direction of nominal current flow. Likewise, the term 
involving the emf is positive since we traverse the emf in question from the neg- 

ative to the positive plate. For loop aefb, we find 

−I3 R3 − E2 − E1 + I2 R2 = 0. 



7 ELECTRIC CURRENT 7.10 Worked Examples 

99 

 

 

 

There is no need to apply the loop rule to the full loop defc, since this loop is 

made up of loops abcd and aefb, and the loop rules for these two loops therefore 
already contain all of the information which would be obtained by applying the 

loop rule to defc. 

Combining the junction rule with the first loop rule, we obtain 

(R1 + R2) I2 + R1 I3 = E1. 

The second loop rule can be rearranged to give 

−R2 I2 + R3 I3 = −(E1 + E2). 

The above two equations are a pair of simultaneous algebraic equations for the 

currents I2 and I3, and can be solved using the standard method for solving such 

equations. Multiplying the first equation by R2, the second by (R1 + R2), and 
adding the resulting equations, we obtain 

(R1R2 + R2R3 + R1R3) I3 = −R1 E1 − (R1 + R2) E2, 

which can be rearranged to give 
 

I = −
R1 E1 + (R1 + R2) E2 

,
 

3 R1R2 + R2R3 + R1R3 
or 

I3 = − 
(100) (12) + (110) (6) 

(1000 + 50 + 500) 

(1860) 
= − 

(1550) 
= −1.2 A. 

Likewise, multiplying the first equation by R3, the second by R1, and taking the 
difference of the resulting equations, we obtain 

(R1R2 + R2R3 + R1R3) I2 = (R1 + R3) E1 + R1 E2, 

which can be rearranged to give 
 

I = 
(R1 + R3) E1 + R1 E2 

,
 

2 R1R2 + R2R3 + R1R3 
or 

I2 = 
(105) (12) + (100) (6) 

(1000 + 50 + 500) 

(1860) 
= 

(1550) 
= 1.2 A. 
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Finally, from the junction rule, 

I1 = I2 + I3 = −1.2 + 1.2 = 0 A. 

The fact that I3 = −1.2 A indicates that this current is of magnitude 1.2 A, but 
flows in the opposite direction to that which we initially guessed. In fact, we can 

see that a current of 1.2 A circulates in an anti-clockwise direction in the lower 
loop of the circuit, whereas zero current circulates in the upper loop. 

 

Example 7.4: Energy in DC circuits 

 
Question: A 150 W light bulb is connected to a 120 V line. What is the current 

drawn from the line? What is the resistance of the light bulb whilst it is burning? 

How much energy is consumed if the light is kept on for 6 hours? What is the 

cost of this energy at 8 cents/kWh? 

 

Answer: Since power is equal to I V, it follows that 
P 

I = = 
V 

(150) 

(120) 
= 1.25 A. 

From Ohm’s law, the resistance of the light bulb is 

V 
R = = 

I 

(120) 
 

(1.25) 

 

= 96 Ω. 

The energy W consumed is the product of the power P (the energy consumed per 

unit time) and the time period t for which the light is on, so 

W = P t = (150) (6) (60) (60) = 3.24 × 106 J. 

Since, 1 kWh ≡ 3.6 × 106 J, it follows that 
(3.24 × 106) 

 W = 
(3.6 × 106) 

= 0.9 kWh. 

The cost c of the electricity is product of the number of kilowatthours used and 
the cost per kilowatthour, so 

c = (0.9) (0.08) = 0.072 dollars = 7.2 cents. 
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8 Magnetism 

 
8.1 Historical Introduction 

 
The phenomenon of magnetism has been known to mankind for many thousands 

of years. Loadstone (a magnetized form of the commonly occurring iron oxide 

mineral magnetite) was the first permanent magnetic material to be identified 

and studied. The ancient Greeks were aware of the ability of loadstone to attract 

small pieces of iron.  The Greek word magnes ( ), which is the root of the 

English word magnet, is derived from Magnesia, the name of an ancient city in 

Asia Minor, which, presumably, was once a copious source of loadstones. 

The magnetic compass was invented some time during the first ten centuries 

AD. Credit is variously given to the Chinese, the Arabs, and the Italians. What 

is certain is that by the 12th century magnetic compasses were in regular use 

by mariners to aid navigation at sea. In the 13th century, Peter Perigrinus of 

France discovered that the magnetic effect of a spherical loadstone is strongest 

at two oppositely directed points on the surface of the sphere, which he termed 

the poles of the magnet.   He found that there are two types of poles,  and that 

like poles repel one another whereas unlike poles attract. In 1600, the English 

physician William Gilbert concluded, quite correctly, that the reason magnets like 

to align themselves in a North-South direction is that the Earth itself is a magnet. 

Furthermore, the Earth’s magnetic poles are aligned, more or less, along its axis 

of rotation. This insight immediately gave rise to a fairly obvious nomenclature 

for the two different poles of a magnet: a magnetic north pole (N) has the same 

magnetic polarity as the geographic south pole of the Earth, and a magnetic south 

pole (S) has the same polarity as the geographic north pole of the Earth. Thus, the 

north pole of a magnet likes to point northwards towards the geographic north 

pole of the Earth (which is its magnetic south pole). Another British scientist, 

John Michell, discovered in 1750 that the attractive and repulsive forces between 

the poles of magnets vary inversely as the square of the distance of separation. 

Thus, the inverse square law for forces between magnets was actually discovered 

prior to that for forces between electric charges. 
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8.2 Ampère’s Experiments 

 
In 1820, the Danish physicist Hans Christian Ørsted was giving a lecture demon- 

stration of various electrical and magnetic effects. Suddenly, much to his amaze- 

ment, he noticed that the needle of a compass he was holding was deflected when 

he moved it close to a current carrying wire. This was a very surprising observa- 

tion, since, until that moment, electricity and magnetism had been thought of as 

two quite unrelated phenomena. Word of this discovery spread quickly along the 

scientific  grapevine,  and  the  French  physicist  Andre  Marie  Ampère  immediately 

decided  to  investigate  further.   Ampère’s  apparatus  consisted  (essentially)  of  a 

long straight wire carrying an electric current current I.  Ampère quickly discov- 

ered that the needle of a small compass maps out a series of concentric circular 

loops in the plane perpendicular to a current carrying wire—see Fig. 8.1. The 

direction of circulation around these magnetic loops is conventionally taken to 

be the direction in which the north pole of a compass needle points. Using this 

convention, the circulation of the loops is given by a right-hand rule. If the thumb 

of the right-hand points along the direction of the current, then the fingers of the 

right-hand circulate in the same sense as the magnetic loops. 
 

 

I 
current carrying 

wire 

 

magnetic field-line 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.1: Magnetic loops around a current carrying wire. 

 
Ampère’s next series of experiments involved bringing a short test wire, carry- 

ing a current IJ, close to the original wire, and investigating the force exerted on 
the test wire. This experiment is not quite as clear cut as Coulomb’s experiment 
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because, unlike electric charges, electric currents cannot exist as point entities. 

They have to flow in complete circuits. We must imagine that the circuit which 

connects with the central wire is sufficiently far away that it has no appreciable 

influence on the outcome of the experiment. The circuit which connects with the 

test wire is more problematic. Fortunately, if the feed wires are twisted around 

each other, as indicated in Fig. 8.2, then they effectively cancel one another out, 

and also do not influence the outcome of the experiment. 

 

current carrying 
wire 

I 

current carrying test wire 
 
 

IJ 

 

 

 

magnetic field-line 
 

Figure 8.2:  Ampère’s experiment. 

 
Ampère  discovered  that  the  force  exerted  on  the  test  wire  is  directly  propor- 

tional to its length. He also made the following observations. If the current in the 

test wire (i.e., the test current) flows parallel to the current in the central wire 

then the two wires attract one another. If the current in the test wire is reversed 

then the two wires repel one another. If the test current points radially towards 

the central wire (and the current in the central wire flows upward) then the test 

wire is subject to a downward force. If the test current is reversed then the force 

is upward. If the test current is rotated in a single plane, so that it starts parallel 

to the central current and ends up pointing radially towards it, then the force on 

the test wire is of constant magnitude, and is always at right-angles to the test 

current. If the test current is parallel to a magnetic loop then there is no force 

exerted on the test wire. If the test current is rotated in a single plane, so that it 

starts parallel to the central current, and ends up pointing along a magnetic loop, 

then the magnitude of the force on the test wire attenuates like cos θ (where θ is 
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the angle the current is turned through, and θ = 0 corresponds to the case where 

the test current is parallel to the central current), and its direction is again always 

at right-angles to the test current.  Finally, Ampère was able to establish that the 

attractive force between two parallel current carrying wires is proportional to the 

product of the two currents, and falls off like one over the perpendicular distance 

between the wires. 

This rather complicated force law can be summed up succinctly in vector no- 

tation provided that we define a vector field B, called the magnetic field, which 

fills space, and whose direction is everywhere tangential to the magnetic loops 

mapped out by the north pole of a small compass. The dependence of the force 

per unit length, F, acting on a test wire with the different possible orientations of 

the test current is described by 
 

F = IJ × B, (8.1) 

where IJ is a vector whose direction and magnitude are the same as those of the 
test current. 

The variation of the force per unit length acting on a test wire with the strength 

of the central current, and the perpendicular distance r to the central wire, is 

accounted for by saying that the magnetic field-strength is proportional to I, and 

inversely proportional to r. Thus, we can write 

B = 
µ0 I 

. (8.2) 

2π r 

The constant of proportionality µ0 is called the permeability of free space, and 
takes the value 

µ0 = 4π × 10−7 N A−2. (8.3) 

Incidentally, the SI unit of magnetic field strength is the tesla (T), which is the 

same as a newton per ampere per meter: 

1 T ≡ 1 N A−1 m−1. (8.4) 

The concept of a magnetic field which fills the space around a current carrying 

wire allows the calculation of the force on a test wire to be conveniently split 
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into two parts.   In the first part,  we calculate the magnetic field generated by 

the current flowing in the central wire. This field circulates in the plane normal 

to the wire. Its magnitude is proportional to the central current, and inversely 

proportional to the perpendicular distance from the wire.   In the second part, 

we use Eq. (8.1) to calculate the force per unit length acting on a short current 

carrying wire placed in the magnetic field generated by the central current. This 

force is perpendicular to both the direction of the magnetic field and the direction 

of the test current.  Note that, at this stage, we have no reason to suppose that 

the magnetic field has any real existence. It is introduced merely to facilitate the 

calculation of the force exerted on the test wire by the central wire. It turns out, 

however, that the magnetic field does have a real existence, since, as we shall see, 

there is an energy associated with a magnetic field which fills space. 

 

8.3 Ampère’s Law 

 
Magnetic fields, like electric fields, are completely superposable. So, if a field B1 is 

generated by a current I1 flowing through some circuit, and a field B2 is generated 

by a current I2 flowing through another circuit, then when the currents I1 and I2 

flow through both circuits simultaneously the generated magnetic field is B1 + B2. 
This is true at all points in space. 

 
 
 
 
 
 
 

 

B1 B2
 

 
 
 

r 

Figure 8.3: Two parallel current carrying wires. 
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Consider two parallel wires separated by a perpendicular distance r, and car- 

rying electric currents I1 and I2, respectively. The magnetic field-strength at the 

second wire due to the current flowing in the first wire is B = µ0 I1/2π r. This 

field is orientated at right-angles to the second wire, so the force per unit length 

exerted on the second wire is 

F = 
µ0 I1 I2 

. (8.5) 
2π r 

This follows from Eq. (8.1), which is valid for continuous wires as well as short 
test wires.   The force acting on the second wire is directed radially inwards to- 
wards the first wire. The magnetic field-strength at the first wire due to the 

current flowing in the second wire is B = µ0 I2/2π r. This field is orientated at right-
angles to the first wire, so the force per unit length acting on the first wire 
is equal and opposite to that acting on the second wire, according to Eq. (8.1). 

Equation (8.5) is called Ampère’s law. 

Incidentally, Eq. (8.5) is the basis of the official SI definition of the ampere, 

which is: 

 
One ampere is the magnitude of the current which, when flowing in each of 

two long parallel wires one meter apart, results in a force between the wires 

of exactly 2 × 10−7 N per meter of length. 

We can see that it is no accident that the constant µ0 has the numerical value 

of exactly 4π 10−7. The SI system of units is based on four standard units: the 

meter, the kilogram, the second, and the ampere. Hence, the SI system is sometime 

referred to as the MKSA system. All other units can be derived from these four 

standard units. For instance, a coulomb is equivalent to an ampere-second. You 

may be wondering why the ampere is the standard electrical unit, rather than 

the coulomb, since the latter unit is clearly more fundamental than the former. 

The answer is simple.  It is very difficult to measure charge accurately, whereas 

it is easy to accurately measure electric current. Clearly, it makes sense to define 

a standard unit in terms of something which is easily measurable, rather than 

something which is difficult to measure. 
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8.4 The Lorentz Force 

 
The flow of an electric current down a conducting wire is ultimately due to the 

movement of electrically charged particles (in most cases, electrons) along the 

wire.  It seems reasonable, therefore, that the force exerted on the wire when it 

is placed in a magnetic field is simply the resultant of the forces exerted on these 

moving charges. Let us suppose that this is the case. 

Let A be the (uniform) cross-sectional area of the wire, and let n be the num- 

ber density of mobile charges in the wire. Suppose that the mobile charges each 

have charge q and drift velocity v. We must assume that the wire also contains 

stationary charges, of charge −q and number density n, say, so that the net charge 

density in the wire is zero. In most conductors, the mobile charges are electrons, 

and the stationary charges are atoms. The magnitude of the electric current flow- 

ing through the wire is simply the number of coulombs per second which flow 

past a given point. In one second, a mobile charge moves a distance v, so all of 

the charges contained in a cylinder of cross-sectional area A and length v flow 

past a given point. Thus, the magnitude of the current is q n A v. The direction 

of the current is the same as the direction of motion of the charges (i.e., I J   v), 

so the vector current is IJ = q n A v. According to Eq. (8.1), the force per unit 

length acting on the wire is 
 

F = IJ × B = q n A v × B. (8.6) 

However, a unit length of the wire contains n A moving charges. So, assuming 

that each charge is subject to an equal force from the magnetic field (we have no 

reason to suppose otherwise), the magnetic force acting on an individual charge 

is 

f = q v × B. (8.7) 

This formula implies that the magnitude of the magnetic force exerted on a mov- 

ing charged particle is the product of the particle’s charge, its velocity, the mag- 

netic field-strength, and the sine of the angle subtended between the particle’s 

direction of motion and the direction of the magnetic field. The force is directed 

at right-angles to both the magnetic field and the instantaneous direction of mo- 

tion. 
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We can combine the above equation with Eq. (3.12) to give the force acting on 

a charge q moving with velocity v in an electric field E and a magnetic field B: 

f = q E + q v × B. (8.8) 

This is called the Lorentz force law, after the Dutch physicist Hendrick Antoon 

Lorentz, who first formulated it. The electric force on a charged particle is parallel 

to the local electric field. The magnetic force, however, is perpendicular to both 

the local magnetic field and the particle’s direction of motion. No magnetic force 

is exerted on a stationary charged particle. 

The equation of motion of a free particle of charge q and mass m moving in 
electric and magnetic fields is 

m a = q E + q v × B, (8.9) 

according to the Lorentz force law. Here, a is the particle’s acceleration. This 

equation of motion was verified in a famous experiment carried out by the Cam- 

bridge physicist J.J. Thompson in 1897. Thompson was investigating cathode 

rays, a then mysterious form of radiation emitted by a heated metal element held 

at a large negative voltage (i.e., a cathode) with respect to another metal element 

(i.e., an anode) in an evacuated tube. German physicists maintained that cathode 

rays were a form of electromagnetic radiation, whereas British and French physi- 

cists suspected that they were, in reality, a stream of charged particles. Thompson 

was able to demonstrate that the latter view was correct. In Thompson’s exper- 

iment, the cathode rays pass though a region of crossed electric and magnetic 

fields (still in vacuum). The fields are perpendicular to the original trajectory of 

the rays, and are also mutually perpendicular. 

Let us analyze Thompson’s experiment. Suppose that the rays are originally 

traveling in the x-direction, and are subject to a uniform electric field E in the z-

direction, and a uniform magnetic field B in the −y-direction—see Fig. 8.4. Let us 

assume, as Thompson did, that cathode rays are a stream of particles of mass m 

and charge q. The equation of motion of the particles in the z-direction is 

m az = q (E − v B) , (8.10) 

where v is the velocity of the particles in the x-direction, and az the acceleration 

of the particles in the z-direction. Thompson started off his experiment by only 
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Figure 8.4: Thompson’s experiment. 

 
turning on the electric field in his apparatus, and measuring the deflection d of 

the rays in the z-direction after they had traveled a distance l through the field. 
Now, a particle subject to a constant acceleration az in the z-direction is deflected 

a distance d = (1/2) az t
2 in a time t. Thus, 

 

1 q E 
d = t2 = q E l2 

 

, (8.11) 
2 m m 2 v2 

where the time of fiight t is replaced by l/v. This replacement is only valid if d   l 
(i.e., if the deflection of the rays is small compared to the distance they travel 
through the electric field), which is assumed to be the case. Next, Thompson 
turned on the magnetic field in his apparatus, and adjusted it so that the cathode 
rays were no longer deflected. The lack of deflection implies that the net force on 

the particles in the z-direction is zero. In other words, the electric and magnetic 
forces balance exactly. It follows from Eq. (8.10) that, with a properly adjusted 
magnetic field-strength, 

v = 
E
. (8.12) 

B 
Thus, Eqs. (8.11) and (8.12) can be combined and rearranged to give the charge 

to mass ratio of the particles in terms of measured quantities: 
 

q 2 d E 

m 
= 

l2 B2 

. (8.13) 

particle trajectory 
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Using this method, Thompson inferred that cathode rays are made up of nega- 

tively charged particles (the sign of the charge is obvious from the direction of the 

deflection in the electric field) with a charge to mass ratio of −1.7   1011 C kg−1. 

A decade later, in 1908, the American Robert Millikan performed his famous oil 

drop experiment in which he discovered that mobile electric charges are quan- 

tized in units of −1.6 10−19 C. Assuming that mobile electric charges and the 

particles which make up cathode rays are one and the same thing, Thompson’s 

and Millikan’s experiments imply that the mass of these particles is 9.4   10−31 kg. 

Of course, this is the mass of an electron (the modern value is 9.1 10−31 kg), 

and −1.6 10−19 C is the charge of an electron. Thus, cathode rays are, in fact, 

streams of electrons which are emitted from a heated cathode, and then acceler- 

ated because of the large voltage difference between the cathode and anode. 

If a particle is subject to a force f which causes it to displace by dr then the 
work done on the particle by the force is 

W = f · dr = f dr cos θ, (8.14) 

where θ is the angle subtended between the force and the displacement. How- 

ever, this angle is always 90◦ for the force exerted by a magnetic field on a charged 

particle, since the magnetic force is always perpendicular to the particle’s instan- 

taneous direction of motion. It follows that a magnetic field is unable to do work 

on a charged particle. In other words, a charged particle can never gain or lose 

energy due to interaction with a magnetic field. On the other hand, a charged 

particle can certainly gain or lose energy due to interaction with an electric field. 

Thus, magnetic fields are often used in particle accelerators to guide charged par- 

ticle motion (e.g., in a circle), but the actual acceleration is always performed by 

electric fields. 

 

8.5 Charged Particle in a Magnetic Field 

 
Suppose that a particle of mass m moves in a circular orbit of radius ρ with a con- 

stant speed v. As is well-known, the acceleration of the particle is of magnitude 
m v2/ρ, and is always directed towards the centre of the orbit. It follows that the 
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acceleration is always perpendicular to the particle’s instantaneous direction of 

motion. 

We have seen that the force exerted on a charged particle by a magnetic field 

is always perpendicular to its instantaneous direction of motion. Does this mean 

that the field causes the particle to execute a circular orbit? Consider the case 

shown in Fig. 8.5.  Suppose that a particle of positive charge q and mass m 

moves in a plane perpendicular to a uniform magnetic field B. In the figure, the 

field points into the plane of the paper. Suppose that the particle moves, in an 

anti-clockwise manner, with constant speed v (remember that the magnetic field 

cannot do work on the particle,  so it cannot affect its speed),  in a circular orbit 

of radius ρ. The magnetic force acting on the particle is of magnitude f = q v B 

and, according to Eq. (8.7),  this force is always directed towards the centre of 

the orbit. Thus, if 

f = q v B = 
m v2 

ρ 
, (8.15) 

then we have a self-consistent picture. It follows that 
m v 

ρ = . (8.16) 
q B 

The angular frequency of rotation of the particle (i.e., the number of radians the 

particle rotates through in one second) is 
 

v 
ω = = 

ρ 

q B
. (8.17) 

m 

Note that this frequency, which is known as the Larmor frequency, does not de- 

pend on the velocity of the particle. For a negatively charged particle, the picture 

is exactly the same as described above, except that the particle moves in a clock- 

wise orbit. 

It is clear, from Eq. (8.17), that the angular frequency of gyration of a charged 
particle in a known magnetic field can be used to determine its charge to mass 
ratio. Furthermore, if the speed of the particle is known, then the radius of the 

orbit can also be used to determine q/m, via Eq. (8.16). This method is employed 
in High Energy Physics to identify particles from photographs of the tracks which 
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Figure 8.5: Circular motion of a charged particle in a magnetic field. 
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Figure 8.6: Spiral trajectory of a charged particle in a uniform magnetic field. 

 
they leave in magnetized cloud chambers or bubble chambers. It is, of course, 

easy to differentiate positively charged particles from negatively charged ones 

using the direction of deflection of the particles in the magnetic field. 

We have seen that a charged particle placed in a magnetic field executes a 

circular orbit in the plane perpendicular to the direction of the field. Is this the 

most general motion of a charged particle in a magnetic field? Not quite. We can 

also add an arbitrary drift along the direction of the magnetic field. This follows 

because the force q v   B acting on the particle only depends on the component 

of the particle’s velocity which is perpendicular to the direction of magnetic field 

(the cross product of two parallel vectors is always zero because the angle θ they 

subtend is zero). The combination of circular motion in the plane perpendicular 

to the magnetic field, and uniform motion along the direction of the field, gives 

rise to a spiral trajectory of a charged particle in a magnetic field, where the field 

forms the axis of the spiral—see Fig. 8.6. 

v 

f 
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8.6 The Hall Effect 

 
We have repeatedly stated that the mobile charges in conventional conducting 

materials are negatively charged (they are, in fact, electrons). Is there any di- 

rect experimental evidence that this is true? Actually, there is. We can use a 

phenomenon called the Hall effect to determine whether the mobile charges in 

a given conductor are positively or negatively charged. Let us investigate this 

effect. 

Consider a thin, flat, uniform, ribbon of some conducting material which is 

orientated such that its flat side is perpendicular to a uniform magnetic field B— 

see Fig. 8.7. Suppose that we pass a current I along the length of the ribbon. 

There are two alternatives. Either the current is carried by positive charges mov- 

ing from left to right (in the figure),  or it is carried by negative charges moving 

in the opposite direction. 

Suppose that the current is carried by positive charges moving from left to 

right. These charges are deflected upward (in the figure) by the magnetic field. 

Thus, the upper edge of the ribbon becomes positively charged, whilst the lower 

edge becomes negatively charged. Consequently, there is a positive potential dif- 

ference VH between the upper and lower edges of the ribbon. This potential 

difference is called the Hall voltage. 

Suppose, now, that the current is carried by negative charges moving from 

right to left. These charges are also deflected upward by the magnetic field. Thus, 

the upper edge of the ribbon becomes negatively charged, whilst the lower edge 

becomes positively charged. It follows that the Hall voltage (i.e., the potential 

difference between the upper and lower edges of the ribbon) is negative in this 

case. 

Clearly, it is possible to determine the sign of the mobile charges in a current 

carrying conductor by measuring the Hall voltage. If the voltage is positive then 

the mobile charges are positive (assuming that the magnetic field and the current 

are orientated as shown in the figure), whereas if the voltage is negative then the 

mobile charges are negative. If we were to perform this experiment we would 
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Figure 8.7: Hall effect for positive charge carriers (left) and negative charge carriers (right). 

 
discover that the the mobile charges in metals are always negative (because they 

are electrons). However, in some types of semiconductor the mobile charges turn 

out to be positive. These positive charge carriers are called holes. Holes are 

actually missing electrons in the atomic lattice of the semiconductor, but they act 

essentially like positive charges. 

Let us investigate the magnitude of the Hall voltage. Suppose that the mobile 

charges each possess a charge q and move along the ribbon with the drift velocity 

vd. The magnetic force on a given mobile charge is of magnitude q vd B, since the 

charge moves essentially at right-angles to the magnetic field. In a steady-state, 

this force is balanced by the electric force due to the build up of charges on the 

upper and lower edges of the ribbon. If the Hall voltage is VH, and the width of 

the ribbon is w, then the electric field pointing from the upper to the lower edge 

of the ribbon is of magnitude E = VH/w. Now, the electric force on a mobile 

charge is q E. This force acts in opposition to the magnetic force. In a steady- 

state, 

 

giving 

q E = 
q VH

 

w 
= q vd B, (8.18) 

VH = vd w B. (8.19) 

Note that the Hall voltage is directly proportional to the magnitude of the mag- 

netic field. In fact, this property of the Hall voltage is exploited in instruments, 

called Hall probes, which are used to measure magnetic field-strength. 
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Suppose that the thickness of the conducting ribbon is d, and that it contains 

n mobile charge carriers per unit volume. It follows that the total current flowing 
through the ribbon can be written 

I = q n w d vd, (8.20) 

since all mobile charges contained in a rectangular volume of length vd, width w, 

and thickness d, flow past a given point on the ribbon in one second. Combining 
Eqs. (8.19) and (8.20), we obtain 

VH = 
I B 

 

q n d 
. (8.21) 

It is clear that the Hall voltage is proportional to the current flowing through 

the ribbon, and the magnetic field-strength, and is inversely proportional to the 

number density of mobile charges in the ribbon, and the thickness of the ribbon. 

Thus, in order to construct a sensitive Hall probe (i.e., one which produces a 

large Hall voltage in the presence of a small magnetic field), we need to take a 

thin ribbon of some material which possesses relatively few mobile charges per 

unit volume (e.g., a semiconductor), and then run a large current through it. 

 

8.7 Ampère’s Circuital Law 

 
Consider a long thin wire carrying a steady current I. Suppose that the wire is 

orientated such that the current flows along the z-axis. Consider some closed loop 

C in the x-y plane which circles the wire in an anti-clockwise direction, looking 

down the z-axis. Suppose that dr is a short straight-line element of this loop. Let 
us form the dot product of this element with the local magnetic field B. Thus, 

dw = B · dr = B dr cos θ, (8.22) 

where θ is the angle subtended between the direction of the line element and 

the direction of the local magnetic field. We can calculate a dw for every line 

element which makes up the loop C. If we sum all of the dw values thus obtained, 

and take the limit as the number of elements goes to infinity, we obtain the line 

integral 

w = 
C 

B · dr. (8.23) 
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What is the value of this integral? In general, this is a difficult question to 

answer. However, let us consider a special case. Suppose that C is a circle of 

radius r centred on the wire. In this case, the magnetic field-strength is the same 
at all points on the loop. In fact, 

 

B = 
µ0 I 

. (8.24) 
2π r 

Moreover, the field is everywhere parallel to the line elements which make up the 

loop. Thus, 

w = 2π r B = µ0 I, (8.25) 
or 

I  

B · dr = µ0 I. (8.26) 

In other words, the line integral of the magnetic field around some circular loop 

C, centred on a current carrying wire, and in the plane perpendicular to the wire, 

is equal to µ0 times the current flowing in the wire. Note that this answer is 

independent of the radius r of the loop: i.e., the same result is obtained by taking 
the line integral around any circular loop centred on the wire. 

In 1826, Ampère demonstrated that Eq. (8.26) holds for any closed loop which 

circles  around  any  distribution  of  currents.  Thus,  Ampère’s  circuital  law  can  be 

written: 

 
The line integral of the magnetic field around some closed loop is equal to 

the µ0 times the algebraic sum of the currents which pass through the loop. 

 
In forming the algebraic sum of the currents passing through the loop, those 

currents which the loop circles in an anti-clockwise direction (looking against 

the direction of the current) count as positive currents, whereas those which the 

loop circles in a clockwise direction (looking against the direction of the current) 

count as negative currents. 

Ampère’s  circuital  law  is  to  magnetostatics  (the  study  of  the  magnetic  fields 

generated by steady currents) what Gauss’ law is to electrostatics (the study of 

the  electric  fields  generated  by  stationary  charges).   Like  Gauss’  law,  Ampère’s 

C 
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circuital law is particularly useful in situations which possess a high degree of 

symmetry. 

 

8.8 Magnetic Field of a Solenoid 

 
A solenoid is a tightly wound helical coil of wire whose diameter is small com- 

pared to its length. The magnetic field generated in the centre, or core, of a 

current carrying solenoid is essentially uniform, and is directed along the axis of 

the solenoid. Outside the solenoid, the magnetic field is far weaker. Figure 8.8 

shows (rather schematically) the magnetic field generated by a typical solenoid. 

The solenoid is wound from a single helical wire which carries a current I. The 

winding is sufficiently tight that each turn of the solenoid is well approximated as 

a circular wire loop, lying in the plane perpendicular to the axis of the solenoid, 

which carries a current I. Suppose that there are n such turns per unit axial 

length of the solenoid. What is the magnitude of the magnetic field in the core of 

the solenoid? 
 

 

Figure 8.8: A solenoid. 

 
In  order  to  answer  this  question,  let  us  apply  Ampère’s  circuital  law  to  the 

rectangular loop abcd. We must first find the line integral of the magnetic field 
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around abcd. Along bc and da the magnetic field is essentially perpendicular to 
the loop,  so there is no contribution to the line integral from these sections of 

the loop. Along cd the magnetic field is approximately uniform, of magnitude 

B, say, and is directed parallel to the loop. Thus, the contribution to the line 

integral from this section of the loop is B L, where L is the length of cd. Along 

ab the magnetic field-strength is essentially negligible, so this section of the loop 
makes no contribution to the line integral. It follows that the line integral of the 

magnetic field around abcd is simply 

w = B L. (8.27) 

By Ampère’s circuital law, this line integral is equal to µ0 times the algebraic sum 

of the currents which flow through the loop abcd. Since the length of the loop 

along the axis of the solenoid is L, the loop intersects n L turns of the solenoid, 

each carrying a current I. Thus, the total current which flows through the loop 

is n L I. This current counts as a positive current since if we look against the 
direction of the currents flowing in each turn (i.e., into the page in the figure), 

the loop abcd circulates these currents in an anti-clockwise direction.  Ampère’s 
circuital law yields 

 
which reduces to 

B L = µ0 n L I, (8.28) 

 
B = µ0 n I. (8.29) 

Thus, the magnetic field in the core of a solenoid is directly proportional to the 

product of the current flowing around the solenoid and the number of turns per 

unit length of the solenoid. This, result is exact in the limit in which the length of 

the solenoid is very much greater than its diameter. 

 

8.9 Origin of Permanent Magnetism 

 
We now know of two distinct methods of generating a magnetic field. We can 

either use a permanent magnet, such as a piece of loadstone, or we can run a 

current around an electric circuit. Are these two methods fundamentally differ- 

ent, or are they somehow related to one another? Let us investigate further. 
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Figure 8.9: Magnetic fields of a solenoid (left) and a bar magnet (right). 

 
As illustrated in Fig. 8.9, the external magnetic fields generated by a solenoid 

and a conventional bar magnet are remarkably similar in appearance. Inciden- 

tally, these fields can easily be mapped out using iron filings. The above obser- 

vation allows us to formulate two alternative hypotheses for the origin of the 

magnetic field of a bar magnet. The first hypotheses is that the field of a bar 

magnet is produced by solenoid-like currents which flow around the outside of 

the magnet, in an anti-clockwise direction as we look along the magnet from its 

north to its south pole. There is no doubt, by analogy with a solenoid, that such 

currents would generate the correct sort of field outside the magnet. The second 

hypothesis is that the field is produced by a positive magnetic monopole located 

close to the north pole of the magnet, in combination with a negative monopole 

of equal magnitude located close to the south pole of the magnet. What is a 

magnetic monopole? Well, it is basically the magnetic equivalent of an electric 

charge. A positive magnetic monopole is an isolated magnetic north pole. We 

would expect magnetic field-lines to radiate away from such an object, just as 

electric field-lines radiate away from a positive electric charge. Likewise, a neg- 

ative magnetic monopole is an isolated magnetic south pole. We would expect 

magnetic field-lines to radiate towards such an object, just as electric field-lines 

radiate towards a negative electric charge. The magnetic field patterns gener- 

ated by both types of monopole are sketched in Fig. 8.10. If we place a positive 

monopole close to the north pole of a bar magnet, and a negative monopole of 

S 

N 
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the same magnitude close to the south pole, then the resultant magnetic field 

pattern is obtained by superposing the fields generated by the two monopoles in- 

dividually. As is easily demonstrated, the field generated outside the magnet is 

indistinguishable from that of a solenoid. 
 

 

Figure 8.10: Magnetic field-lines generated by magnetic monopoles. 

 
We now have two alternative hypotheses to explain the origin of the magnetic 

field of a bar magnet. What experiment could we perform in order to determine 

which of these two hypotheses is correct? Well, suppose that we snap our bar 

magnet in two. What happens according to each hypothesis? If we cut a solenoid 

in two then we just end up with two shorter solenoids. So, according to our first 

hypothesis, if we snap a bar magnet in two then we just end up with two smaller 

bar magnets. However, our second hypothesis predicts that if we snap a bar 

magnet in two then we end up with two equal and opposite magnetic monopoles. 

Needless to say, the former prediction is in accordance with experiment, whereas 

the latter most certainly is not. Indeed, we can break a bar magnetic into as many 

separate pieces as we like. Each piece will still act like a little bar magnet. No 

matter how small we make the pieces, we cannot produce a magnetic monopole. 

In fact, nobody has ever observed a magnetic monopole experimentally, which 

leads most physicists to conclude that magnetic monopoles do not exist. Thus, we 

can conclude that the magnetic field of a bar magnet is produced by solenoid-like 
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currents flowing over the surface of the magnet. But, what is the origin of these 

currents? 

In order to answer the last question, let us adopt a somewhat simplistic model 

of the atomic structure of a bar magnet.  Suppose that the north-south  axis of 

the magnet is aligned along the z-axis, such that the z-coordinate of the magnet’s 

north pole is larger than that of its south pole. Suppose, further, that the atoms 

which make up the magnet are identical cubes which are packed very closely to- 

gether. Each atom carries a surface current which circulates in the x-y plane in an 

anti-clockwise direction (looking down the z-axis). When the atoms are arranged 

in a uniform lattice, so as to form the magnet, the interior surface currents cancel 

out, leaving a current which flows only on the outer surface of the magnet. This 

is illustrated in Fig. 8.11. Thus, the solenoid-like currents which must flow over 

the surface of a magnet in order to account for its associated magnetic field are, 

in fact, just the resultant of currents which circulate in every constituent atom of 

the magnet. But, what is the origin of these atomic currents? 
 
 

 
. 

 
 
 

internal currents cancel out 

 
 
 
 
 
 
 
 
 
 

 

z-axis resultant current flows in anti-clockwise 
direction over outer surface 

x-axis 

 

Figure 8.11: A schematic diagram of the current pattern in a permanent magnet. 

 

Well, atoms consist of negatively charged electrons in orbit around positively 

charged nuclei. A moving electric charge constitutes an electric current, so there 

must be a current associated with every electron in an atom. In most atoms, 

y
-a

x
is
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these currents cancel one another out, so that the atom carries zero net current. 

However, in the atoms of ferromagnetic materials (i.e., iron, cobalt, and nickel) 

this cancellation is not complete, so these atoms do carry a net current. Usually, 

the atomic currents are all jumbled up (i.e., they are not aligned in any partic- 

ular plane)  so that  they  average  to  zero  on  a macroscopic scale.  However,  if 

a ferromagnetic material is placed in a strong magnetic field then the currents 

circulating in each atom become aligned such that they flow predominately in 

the plane perpendicular to the field. In this situation, the currents can combine 

together to form a macroscopic magnetic field which reinforces the alignment 

field. In some ferromagnetic materials, the atomic currents remain aligned after 

the alignment field is switched off, so the macroscopic field generated by these 

currents also remains. We call such materials permanent magnets. 

In conclusion, all magnetic fields encountered in nature are generated by circu- 

lating currents. There is no fundamental difference between the fields generated 

by permanent magnets and those generated by currents flowing around conven- 

tional electric circuits. In the former, case the currents which generate the fields 

circulate on the atomic scale, whereas, in the latter case, the currents circulate 

on a macroscopic scale (i.e., the scale of the circuit). 

 

8.10 Gauss’ Law for Magnetic Fields 

 
Recall (from Sect. 4.2) that the electric flux through a closed surface S is written 

 

ΦE = 
S 

E · dS. (8.30) 

Similarly, we can also define the magnetic fiux through a closed surface as 

ΦB = 

I

S 

B · dS. (8.31) 

According to Gauss’ law (see Sect. 4.2), the electric flux through any closed 

surface is directly proportional to the net electric charge enclosed by that sur- 

face. Given the very direct analogy which exists between an electric charge and a 

I 
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magnetic monopole, we would expect to be able to formulate a second law which 

states that the magnetic flux through any closed surface is directly proportional 

to the number of magnetic monopoles enclosed by that surface.   However,  as 

we have already discussed, magnetic monopoles do not exist. It follows that the 

equivalent of Gauss’ law for magnetic fields reduces to: 

 
The magnetic flux though any closed surface is zero. 

 
This is just another way of saying that magnetic monopoles do not exist, and that 

all magnetic fields are actually generated by circulating currents. 

An immediate corollary of the above law is that the number of magnetic field- 

lines which enter a closed surface is always equal to the number of field-lines 

which leave the surface. In other words: 

 
Magnetic field-lines form closed loops which never begin or end. 

 
Thus, magnetic field-lines behave in a quite different manner to electric field- 

lines, which begin on positive charges, end on negative charges, and never form 

closed loops. Incidentally, the statement that electric field-lines never form closed 

loops follows from the result that the work done in taking an electric charge 

around a closed loop is always zero (see Sect. 5). This clearly cannot be true 

if it is possible to take a charge around the path of a closed electric field-line. 

Note, however, that this conclusion regarding electric field-lines only holds for 

the electric fields generated by stationary charges. 

 

8.11 Galvanometers 

 
We have talked a lot about potential differences, currents, and resistances, but 

we have not talked much about how these quantities can be measured. Let us 

now investigate this topic. 

Broadly speaking, only electric currents can be measured directly. Potential 

differences and resistances are usually inferred from measurements of electric 
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currents. The most accurate method of measuring an electric current is by using 

a device called a galvanometer. 

A galvanometer consists of a rectangular conducting coil which is free to pivot 

vertically in an approximately uniform horizontal magnetic field B—see Fig. 8.12. 
The magnetic field is usually generated by a permanent magnet. Suppose that a 

current I runs through the coil. What are the forces exerted on the coil by the 
magnetic field? According to Eq. (8.1), the forces exerted on those sections of the 
coil in which the current runs in the horizontal plane are directed vertically up or 
down. These forces are irrelevant, since they are absorbed by the support struc- 
ture of the coil, which does not allow the coil to move vertically. Equation (8.1) 
also implies that the force exerted on the section of the coil in which the current 

flows downward is of magnitude F = I B L, where L the length of this section, and 
is directed out of the page (in the figure). Likewise, the force exerted on the sec- 

tion of the coil in which the current flows upward is also of magnitude F = I B L, 
and is directed into the page. These two forces exert a torque on the coil which 
tries to twist it about its vertical axis in an anti-clockwise direction (looking from 
above). Using the usual definition of torque (i.e., torque is the product of the 
force and the perpendicular distance from the line of action of the force to the 

axis of rotation), the net torque τ acting on the coil is 
D 

τ = 2 F 
2 

= I B L D = I B A. (8.32) 

where D is the horizontal width of the coil, and A is its area. Note that the two 
vertical sections of the coil give rise to equal contributions to the torque. Strictly 

speaking, the above expression is only valid when the coil lies in the plane of 

the magnetic field. However, galvanometers are usually constructed with curved 

magnetic pole pieces in order to ensure that, as the coil turns, it always remains in 

the plane of the magnetic field. It follows that, for fixed magnetic field-strength, 

and fixed coil area, the torque exerted on the coil is directly proportional to the 

current I. 

The coil in a galvanometer is usually suspended from a torsion wire. The wire 
exerts a restoring torque on the coil which tries to twist it back to its original 
position. The strength of this restoring torque is directly proportional to the 

angle of twist ∆θ. It follows that, in equilibrium, where the magnetic torque 
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Figure 8.12: A galvanometer. 

 

balances the restoring torque, the angle of twist ∆θ is directly proportional to 

the current I flowing around the coil. The angle of twist can be measured by 
attaching a pointer to the coil, or, even better, by mounting a mirror on the coil, 

and reflecting a light beam off the mirror. Since ∆θ I, the device can easily be 
calibrated by running a known current through it. 

There is, of course, a practical limit to how large the angle of twist ∆θ can 

become in a galvanometer. If the torsion wire is twisted through too great an 

angle then it will deform permanently, and will eventually snap. In order to 

prevent this from happening, most galvanometers are equipped with a “stop” 

which physically prevents the coil from twisting through more than (say) 90◦. 

Thus, there is a maximum current Ifsd  which a galvanometer can measure.  This 

is usually referred to as the full-scale-defiection current. The full-scale-deflection 

current in conventional galvanometers is usually pretty small: e.g., 10 µ A. So, 

what do we do if we want to measure a large current? 

What we do is to connect a shunt resistor in parallel with the galvanometer, so 
that most of the current flows through the resistor, and only a small fraction of the 
current flows through the galvanometer itself. This is illustrated in Fig. 8.13. Let 

the resistance of the galvanometer be RG, and the resistance of the shunt resistor 
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be RS. Suppose that we want to be able to measure the total current I flowing 

through the galvanometer and the shunt resistor up to a maximum value of Imax. 

We can achieve this if the current IG flowing through the galvanometer equals the 

full-scale-deflection current Ifsd when I = Imax. In this case, the current IS = I−IG 

flowing through the shunt resistor takes the value Imax − Ifsd. The potential drop 

across the shunt resistor is therefore (Imax − Ifsd) RS. This potential drop must 

match the potential drop Ifsd RG across the galvanometer, since the galvanometer 
is connected in parallel with the shunt resistor. It follows that 

(Imax − Ifsd) RS = Ifsd RG, (8.33) 

which reduces to 

R =
 Ifsd 

R
 

S 
Imax − Ifsd 

G
 

 
. (8.34) 

Using this formula, we can always choose an appropriate shunt resistor to allow 

a galvanometer to measure any current, no matter how large.  For instance,  if 

the full-scale-deflection current is Ifsd = 10 µA, the maximum current we wish to 

measure is Imax = 1 A, and the resistance of the galvanometer is RG = 40 Ω, then 

the appropriate shunt resistance is 
 

RS = 
1 10−5 −4 

1 − 1 × 10−5 
40 ' 4.0 × 10 Ω. (8.35) 

Most galvanometers are equipped with a dial which allows us to choose between 
various alternative ranges of currents which the device can measure:  e.g., 0– 

100 mA, 0–1 A, or 0–10 A. All the dial does is to switch between different shunt 
resistors connected in parallel with the galvanometer itself. Note, finally, that the 
equivalent resistance of the galvanometer and its shunt resistor is 

 

1 

Req = 
(1/R ) + (1/R ) 

= 
Ifsd 

Imax 
RG. (8.36) 

Clearly, if the full-scale-deflection current Ifsd is much less than the maximum cur- 

rent Imax which we wish to measure then the equivalent resistance is very small 

indeed. Thus, there is an advantage to making the full-scale-deflection current of 

a galvanometer small. A small full-scale-deflection current implies a small equiv- 

alent resistance of the galvanometer, which means that the galvanometer can be 
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Figure 8.13: Circuit diagram for a galvanometer measuring current. 

 
connected into a circuit without seriously disturbing the currents flowing around 

that circuit. 

A galvanometer can be used to measure potential difference as well as current 

(although, in the former case, it is really measuring current). In order to measure 

the potential difference V between two points a and b in some circuit, we con- 

nect a galvanometer, in series with a shunt resistor, across these two points—see 

Fig. 8.14. The galvanometer draws a current I from the circuit. This current is, of 

course, proportional to the potential difference between a and b, which enables 

us to relate the reading on the galvanometer to the voltage we are trying to mea- 

sure. Suppose that we wish to measure voltages in the range 0 to Vmax.  What is 

an appropriate choice of the shunt resistance RS? Well, the equivalent resistance 

of the shunt resistor and the galvanometer is RS + RG, where RG is the resis- 

tance of the galvanometer. Thus, the current flowing through the galvanometer 

is I = V/(RS + RG).  We want this current to equal the full-scale-deflection current 

Ifsd of the galvanometer when the potential difference between points a and b 

attains its maximum allowed value Vmax. It follows that 

Ifsd =
   Vmax 

, (8.37) 

RS + RG 

which yields 

R = 
Vmax 

− R 
S Ifsd 

G
 

 
. (8.38) 

Using this formula, we can always choose an appropriate shunt resistor to allow 

a galvanometer to measure any voltage, no matter how large. For instance, if 

I 
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the full-scale-deflection current is Ifsd = 10 µA, the maximum voltage we wish to 

measure is 1000 V, and the resistance of the galvanometer is RG = 40 Ω, then the 
appropriate shunt resistance is 

 

1000 

RS = 
1 × 10−5 

— 40 ' 108 Ω. (8.39) 

Again, there is an advantage in making the full-scale-deflection current of a gal- 

vanometer used as a voltmeter small, because, when it is properly set up, the gal- 

vanometer never draws more current from the circuit than its full-scale-deflection 

current. If this current is small then the galvanometer can measure potential dif- 

ferences in a circuit without significantly perturbing the currents flowing around 

that circuit. 

RS RG 

 
 
 
 
 
 











a b 
. 

 

Figure 8.14: Circuit diagram for a galvanometer measuring potential difference. 

 
 

 
8.12 Worked Examples 

 
Example 8.1: Earth’s magnetic field 

 
Question: In Texas, the Earth’s magnetic field is approximately uniform, and of 

magnitude B = 10−4 T. The horizontal component of the field is directed north- 
ward. The field also has a vertical component which is directed into the ground. 

The angle the field lines dip below the horizontal is 40◦.  A metal bar of length 

l = 1.2 m carries a current of IJ = 1.7 A. Suppose that the bar is held horizontally 

I 
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such that the current flows from East to West. What is the magnitude and direc- 

tion of the magnetic force on the bar?  Suppose that the direction of the current 

is reversed. What, now, is the magnitude and direction of the magnetic force on 

the bar? Suppose that the bar is held vertically such the current flows upward. 

What is the magnitude and direction of the magnetic force on the bar? Suppose, 

finally, that the direction of the current is reversed. What, now, is the magnitude 

and direction of the magnetic force on the bar? 

 
Answer: If the current in the bar flows horizontally from East to West then the 

direction of the current makes an angle of 90◦ with the direction of the magnetic 
field. So, from Eq. (8.1), the magnetic force per unit length acting on the bar is 

F = I J B sin 90◦ = I J B = (1.7) (10−4) = 1.7 × 10−4 N m−1. 

Thus, the total force acting on the bar is 

f = F l = (1.7 × 10−4) (1.2) = 2.04 × 10−4 N. 

Using the right-hand rule, if the index finger of a right-hand points horizontally 

from East to West, and the middle finger points northward, but dips 40◦ below the 

horizontal, then the thumb points southward, but dips 50◦ below the horizontal. 

Thus, the force on the bar is directed southward, and dips 50◦ below the horizon- 

tal. If the current in the bar is reversed, so that it now flows horizontally from 

West to East, then the angle subtended between the direction of current flow and 

the direction of the magnetic field is still 90◦, so the magnitude of the force on the 

o 
40 

ground 
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bar remains unchanged. According to the right-hand rule, if the index finger of 

a right-hand points horizontally from West to East, and the middle finger points 

northward, but dips 40◦ below the horizontal, then the thumb points northward, 

but is directed 50◦ above the horizontal. Thus, the force on the bar is directed 

northward at an angle of 50◦ above the horizontal. In other words, the new force 

points in exactly the opposite direction to the old one. 

If the current in the bar flows vertically upward then the direction of current 

flow subtends an angle of 50◦ degrees with the direction of the magnetic field. 
So, from Eq. (8.1), the magnetic force per unit length acting on the bar is 

F = I J B sin 50◦ = (1.7) (10−4) (0.7660) = 1.30 × 10−4 N m−1. 

Thus, the total force acting on the bar is 

f = F l = (1.30 × 10−4) (1.2) = 1.56 × 10−4 N. 

Using the right-hand rule, if the index finger of a right-hand points vertically 

upward, and the middle finger points northward, but dips 40◦ below the hori- 

zontal, then the thumb points horizontally westward. Thus, the force on the bar 

is directed horizontally westward. If the current in the bar is reversed, so that 

it flows vertically downward, then the force on the bar is of the same magni- 

tude, but points in the opposite direction, which means that the new force points 

horizontally eastward. 

 

Example 8.2: Charged particle in magnetic field 

 
Question: Suppose that an electron is accelerated from rest through a voltage 

difference of V = 103 volts and then passes into a region containing a uniform 

magnetic field of magnitude B = 1.2 T. The electron subsequently executes a 

closed circular orbit in the plane perpendicular to the field. What is the radius of 

this orbit? What is the angular frequency of gyration of the electron? 

 
Answer: If an electron of mass me = 9.11 10−31 kg and charge e = 1.60   10−19 C 

is accelerated from rest through a potential difference V then its final kinetic 
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= , 
(9.11 × 10−31) 

= 1.87 × 10
 

m s 

= 8.87 10 m. 

 

energy is 1 
m v2 = e V. 

 

 

2 
e 

Thus, the final velocity v of the electron is given by 

2 e V 
 

 

‚

. (2) (1.6 × 10−19) (103) 
 

 
7 −1 

The initial direction of motion of the electron is at right-angles to the direction of 
the magnetic field, otherwise the orbit of the electron would be a spiral instead 

of a closed circle. Thus, we can use Eq. (8.16) to calculate the radius ρ of the 
orbit. We obtain 

ρ = 
me v 

= 

e B 

(9.11 10−31) (1.87 107) −5 

(1.6 × 10−19) (1.2) 
×

 

The angular frequency of gyration ω of the electron comes from Eq. (8.17): 

e B 
ω = = 

me 

(1.6 10−19) (1.2) 11 

(9.11 × 10−31) 
= 2.11 × 10

 
rad. s−1. 

 

Example 8.3:  Ampère’s circuital law 

 
Question: A z-directed wire of radius a carries a total z-directed current I. What 

is the magnetic field distribution, both inside and outside the wire, if the current 

is evenly distributed throughout the wire? What is the magnetic field distribution 

if the current is concentrated in a thin layer at the surface of the wire? 

 
Answer: Since the current distribution possesses cylindrical symmetry, it is rea- 

sonable to suppose that the magnetic field it generates also possesses cylindrical 

symmetry. By analogy with the magnetic field generated by an infinitely thin z- 

directed wire, we expect the magnetic field to circulate in the x-y plane in an 

anti-clockwise direction (looking against the direction of the current). Let us ap- 

ply  Ampère’s  circuital  law  to  a  circular  loop  in  the  x-y plane  which  is  centred 

on the centre of the wire, and is of radius r > a. The magnetic field is every- 

where tangential to the loop, so the line integral of the magnetic field (taken in 

me 
v = . 
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an anti-clockwise sense, looking against the direction of the current) is 

w(r) = 2π r B(r), 

where  B(r) is  the  magnetic  field-strength  at  radius  r.    According  to  Ampère’s 
circuital law, this line integral is equal to µ0 times the total current enclosed by 

the loop. The total current is clearly I, since the loop lies outside the wire. Thus, 

w(r) = 2π r B(r) = µ0 I, 

giving  

B(r) = 
µ0 I

 
2π r 

for r > a. This is exactly the same field distribution as that generated by an 

infinitely thin wire carrying the current I. Thus, we conclude that the magnetic 

field generated outside a cylindrically symmetric z-directed current distribution 
is the same as if all of the current were concentrated at the centre of the distri- 

bution.   Let  us  now  apply  Ampère’s  circuital  law  to  a  circular  loop  which  is  of 

radius r < a. The line integral of the magnetic field around this loop is simply 

w(r) = 2π r B(r). However, the current enclosed by the loop is equal to I times 

the ratio of the area of the loop to the cross-sectional area of the wire (since the 

current is evenly distributed throughout the wire).  Thus, Ampère’s law yields 

r2 

2π r B(r) = µ0 I 
a2 

, 

which gives 

B(r) = 
µ0 I r 

. 
2π a2 

Clearly, the field inside the wire increases linearly with increasing distance from 

the centre of the wire. 

If the current flows along the outside of the wire then the magnetic field distri- 

bution exterior to the wire is exactly the same as that described above. However, 

there is no field inside the wire.  This follows immediately from Ampère’s circuital 

law because the current enclosed by a circular loop whose radius is less than the 

radius of the wire is clearly zero. 
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9 Magnetic Induction 

 
9.1 Faraday’s Law 

 
The phenomenon of magnetic induction plays a crucial role in three very useful 

electrical devices: the electric generator, the electric motor, and the transformer. 

Without these devices, modern life would be impossible in its present form. Mag- 

netic induction was discovered in 1830 by the English physicist Michael Faraday. 

The American physicist Joseph Henry independently made the same discovery 

at about the same time. Both physicists were intrigued by the fact that an elec- 

tric current flowing around a circuit can generate a magnetic field. Surely, they 

reasoned, if an electric current can generate a magnetic field then a magnetic 

field must somehow be able to generate an electric current. However, it took 

many years of fruitless experimentation before they were able to find the essen- 

tial ingredient which allows a magnetic field to generate an electric current. This 

ingredient is time variation. 

Consider a planar loop C of conducting wire of cross-sectional area A. Let us 

place this loop in a magnetic field whose strength B is approximately uniform 
over the extent of the loop. Suppose that the direction of the magnetic field 

subtends an angle θ with the normal direction to the loop. The magnetic fiux 

ΦB through the loop is defined as the product of the area of the loop and the 
component of the magnetic field perpendicular to the loop. Thus, 

ΦB = A B⊥ = A B cos θ. (9.1) 

If the loop is wrapped around itself N times (i.e., if the loop has N turns) then 

the magnetic flux through the loop is simply N times the magnetic flux through 
a single turn: 

ΦB = N A B⊥. (9.2) 

Finally, if the magnetic field is not uniform over the loop, or the loop does not lie 

in one plane, then we must evaluate the magnetic flux as a surface integral 

ΦB = 

∫

S 

B · dS. (9.3) 
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Here, S is some surface attached to C. If the loop has N turns then the flux is N 
times the above value. The SI unit of magnetic flux is the weber (Wb). One tesla 
is equivalent to one weber per meter squared: 

1 T ≡ 1 Wb m−2. (9.4) 

Faraday discovered that if the magnetic field through a loop of wire varies in 

time then an emf is induced around the loop. Faraday was able to observe this 

effect because the emf gives rise to a current circulating in the loop. Faraday 

found that the magnitude of the emf is directly proportional to the time rate of 

change of the magnetic field. He also discovered that an emf is generated when 

a loop of wire moves from a region of low magnetic field-strength to one of high 

magnetic field-strength, and vice versa. The emf is directly proportional to the 

velocity with which the loop moves between the two regions. Finally, Faraday 

discovered that an emf is generated around a loop which rotates in a uniform 

magnetic field of constant strength. In this case, the emf is directly proportional 

to the rate at which the loop rotates. Faraday was eventually able to propose a 

single law which could account for all of his many and varied observations. This 

law, which is known as Faraday’s law of magnetic induction, is as follows: 

 
The emf induced in a circuit is proportional to the time rate of change of the 

magnetic flux linking that circuit. 

 
SI units have been fixed so that the constant of proportionality in this law is unity. 

Thus, if the magnetic flux through a circuit changes by an amount dΦB in a time 

interval dt then the emf E generated in the circuit is 
dΦB 

= . (9.5) 
dt 

 

There are many different ways in which the magnetic flux linking an electric 

circuit can change. Either the magnetic field-strength can change, or the direction 

of the magnetic field can change, or the position of the circuit can change, or the 

shape of the circuit can change, or the orientation of the circuit can change. 

Faraday’s law states that all of these ways are completely equivalent as far as the 

generation of an emf around the circuit is concerned. 

E 



9 MAGNETIC INDUCTION 9.2 Lenz’s Law 

135 

 

 

conducting loop 

I 

 

magnetic field lines 
 

 

Figure 9.1: Magnetic field generated by a planar current-carrying loop. 

 
9.2 Lenz’s Law 

 
We still have not specified in which direction the emf generated by a time-varying 
magnetic flux linking an electric circuit acts. In order to help specify this direc- 

tion, we need to make use of a right-hand rule. Suppose that a current I circulates 
around a planar loop of conducting wire, and, thereby, generates a magnetic field 

B. What is the direction of this magnetic field as it passes through the middle of 

the loop? Well, if the fingers of a right-hand circulate in the same direction as the 

current, then the thumb indicates the direction of the magnetic field as it passes 

through the centre of the loop. This is illustrated in Fig. 9.1. 

Consider a plane loop of conducting wire which is linked by magnetic flux. 

By convention, the direction in which current would have to flow around the 

loop in order to increase the magnetic flux linking the loop is termed the positive 

direction. Likewise, the direction in which current would have to flow around 

the loop in order to decrease the magnetic flux linking the loop is termed the 

negative direction. Suppose that the magnetic flux linking the loop is increased. 

In accordance with Faraday’s law, an emf is generated around the loop. Does this 

emf act in the positive direction, so as to drive a current around the loop which 

further increases the magnetic flux, or does it act in the negative direction, so as 
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to drive a current around the loop which decreases the magnetic flux? It is easily 

demonstrated experimentally that the emf acts in the negative direction. Thus: 

 
The emf induced in an electric circuit always acts in such a direction that 

the current it drives around the circuit opposes the change in magnetic flux 

which produces the emf. 

 
This result is known as Lenz’s law, after the nineteenth century Russian scientist 

Heinrich Lenz, who first formulated it. Faraday’s law, combined with Lenz’s law, 

is usually written 

E = − 
dΦB 

. (9.6) 
dt 

The minus sign is to remind us that the emf always acts to oppose the change in 

magnetic flux which generates the emf. 

 

9.3 Magnetic Induction 

 
Consider a one-turn loop of conducting wire C which is placed in a magnetic field 

B. The magnetic flux ΦB linking loop C can be written 
 

ΦB = 
S 

B · dS (9.7) 

where S is any surface attached to the loop. 

Suppose that the magnetic field changes in time, causing the magnetic flux 

ΦB linking circuit C to vary. Let the flux change by an amount dΦB in the time 

interval dt. According to Faraday’s law, the emf      induced around loop C is given 
by 

E = − 
dΦB 

. (9.8) 
dt 

If is positive then the emf acts around the loop in the same sense as that indi- 

cated by the fingers of a right-hand, when the thumb points in the direction of 

the mean magnetic field passing through the loop. Likewise, if is negative then 

the emf acts around the loop in the opposite sense to that indicated by the fingers 



9 MAGNETIC INDUCTION 9.3 Magnetic Induction 

137 

 

 

E 

E 

E 

E 

E 

· 

I 

I 

 

of a right-hand, when the thumb points in the direction of the mean magnetic 

field passing through the loop.  In the former case,  we say that the emf acts in 

the positive direction, whereas in the latter case we say it acts in the negative 

direction. 

Suppose that > 0, so that the emf acts in the positive direction. How, ex- 

actly, is this emf produced? In order to answer this question, we need to remind 

ourselves what an emf actually is. When we say that an emf acts around the 

loop C in the positive direction, what we really mean is that a charge q which 

circulates once around the loop in the positive direction acquires the energy q . 

How does the charge acquire this energy? Clearly, either an electric field or a 

magnetic field, or some combination of the two, must perform the work q  on 

the charge as it circulates around the loop. However, we have already seen, from 

Sect. 8.4, that a magnetic field is unable to do work on a charged particle. Thus, 

the charge must acquire the energy q from an electric field as it circulates once 

around the loop in the positive direction. 

According to Sect. 5, the work that the electric field does on the charge as it 

goes around the loop is 

W = q 
C 

E · dr, (9.9) 

where dr is a line element of the loop. Hence, by energy conservation, we can 

write W = q E, or 

E = 

I

 E · dr. (9.10) 

The term on the right-hand side of the above expression can be recognized as the 

line integral of the electric field around loop C in the positive direction. Thus, the 

emf generated around the circuit C in the positive direction is equal to the line 
integral of the electric field around the circuit in the same direction. 

Equations (9.8) and (9.10) can be combined to give 

E dr = −
dΦB 

. (9.11) 

C dt 

Thus, Faraday’s law implies that the line integral of the electric field around cir- 

cuit C (in the positive direction) is equal to minus the time rate of change of the 

C 
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magnetic flux linking this circuit. Does this law just apply to conducting circuits, 

or can we apply it to an arbitrary closed loop in space? Well, the difference be- 

tween a conducting circuit and an arbitrary closed loop is that electric current 

can flow around a circuit, whereas current cannot, in general, flow around an 

arbitrary loop. In fact, the emf induced around a conducting circuit drives a 

current I = /R around that circuit, where R is the resistance of the circuit. How- 

ever, we can make this resistance arbitrarily large without invalidating Eq. (9.11). 

In the limit in which R tends to infinity, no current flows around the circuit, so 

the circuit becomes indistinguishable from an arbitrary loop. Since we can place 

such a circuit anywhere in space, and Eq. (9.11) still holds, we are forced to the 

conclusion that Eq. (9.11) is valid for any closed loop in space, and not just for 

conducting circuits. 

Equation (9.11) describes how a time-varying magnetic field generates an elec- 

tric field which fills space. The strength of the electric field is directly proportional 

to the rate of change of the magnetic field. The field-lines associated with this 

electric field form loops in the plane perpendicular to the magnetic field. If the 

magnetic field is increasing then the electric field-lines circulate in the opposite 

sense to the fingers of a right-hand, when the thumb points in the direction of 

the field. If the magnetic field is decreasing then the electric field-lines circulate 

in the same sense as the fingers of a right-hand, when the thumb points in the 

direction of the field. This is illustrated in Fig. 9.2. 

We can now appreciate that when a conducting circuit is placed in a time- 

varying magnetic field, it is the electric field induced by the changing magnetic 

field which gives rise to the emf around the circuit. If the loop has a finite re- 

sistance then this electric field also drives a current around the circuit. Note, 

however, that the electric field is generated irrespective of the presence of a con- 

ducting circuit. The electric field generated by a time-varying magnetic field is 

quite different in nature to that generated by a set of stationary electric charges. 

In the latter case, the electric field-lines begin on positive charges, end on nega- 

tive charges, and never form closed loops in free space. In the former case, the 

electric field-lines never begin or end, and always form closed loops in free space. 

In fact, the electric field-lines generated by magnetic induction behave in much 

the same manner as magnetic field-lines.  Recall, from Sect. 5.1, that an elec- 
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Figure 9.2: Inductively generated electric fields 
. 

 

tric field generated by fixed charges is unable to do net work on a charge which 

circulates in a closed loop. On the other hand, an electric field generated by mag- 

netic induction certainly can do work on a charge which circulates in a closed 

loop. This is basically how a current is induced in a conducting loop placed in a 

time-varying magnetic field. One consequence of this fact is that the work done 

in slowly moving a charge between two points in an inductive electric field does 

depend on the path taken between the two points. It follows that we cannot cal- 

culate a unique potential difference between two points in an inductive electric 

field. In fact, the whole idea of electric potential breaks down in a such a field 

(fortunately, there is a way of salvaging the idea of electric potential in an in- 

ductive field, but this topic lies beyond the scope of this course). Note, however, 

that it is still possible to calculate a unique value for the emf generated around 

a conducting circuit by an inductive electric field, because, in this case, the path 

taken by electric charges is uniquely specified: i.e., the charges have to follow the 

circuit. 

B 



9 MAGNETIC INDUCTION 9.4 Motional Emf 

140 

 

 

I 

l v 

I 

 

magnetic field into page 

 

B  

rod frame 

 

 
 

 

 

 

 
x 

Figure 9.3: Motional emf. 
 

9.4 Motional Emf 

 
We now understand how an emf is generated around a fixed circuit placed in 

a time-varying magnetic field. But, according to Faraday’s law, an emf is also 

generated around a moving circuit placed in a magnetic field which does not 

vary in time. According to Eq. (9.11), no space-filling inductive electric field is 

generated in the latter case, since the magnetic field is steady. So, how do we 

account for the emf in the latter case? 

In order to help answer this question, let us consider a simple circuit in which 

a conducting rod of length l slides along a U-shaped conducting frame in the 
presence of a uniform magnetic field. This circuit is illustrated in Fig. 9.3. Sup- 
pose, for the sake of simplicity, that the magnetic field is directed perpendicular 
to the plane of the circuit. To be more exact, the magnetic field is directed into 
the page in the figure. Suppose, further, that we move the rod to the right with 

the constant velocity v. 

The magnetic flux linked by the circuit is simply the product of the perpendicu- 

lar magnetic field-strength, B, and the area of the circuit, l x, where x determines 
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the position of the sliding rod. Thus, 

ΦB = B l x. (9.12) 

Now, the rod moves a distance dx = v dt in a time interval dt, so in the same 
time interval the magnetic flux linking the circuit increases by 

dΦB = B l dx = B l v dt. (9.13) 

It follows, from Faraday’s law, that the magnitude of the emf generated around 

the circuit is given by 

= 
dΦB  

= B l v. (9.14) 
dt 

Thus, the emf generated in the circuit by the moving rod is simply the product 
of the magnetic field-strength, the length of the rod, and the velocity of the rod. 
If the magnetic field is not perpendicular to the circuit, but instead subtends an 

angle θ with respect to the normal direction to the plane of the circuit, then it is 
easily demonstrated that the motional emf generated in the circuit by the moving 
rod is 

E = B⊥ l v, (9.15) 

where B⊥ = B cos θ is the component of the magnetic field which is perpendicu- 
lar to the plane of the circuit. 

Since the magnetic flux linking the circuit increases in time, the emf acts in the 
negative direction (i.e., in the opposite sense to the fingers of a right-hand, if the 
thumb points along the direction of the magnetic field).  The emf,  , therefore, 

acts in the anti-clockwise direction in the figure. If R is the total resistance of 
the circuit, then this emf drives an anti-clockwise electric current of magnitude 

I = E /R around the circuit. 

But, where does the emf come from? Let us again remind ourselves what an 

emf is. When we say that an emf acts around the circuit in the anti-clockwise 

direction, what we really mean is that a charge q which circulates once around 

the circuit in the anti-clockwise direction acquires the energy q  . The only way 

in which the charge can acquire this energy is if something does work on it as 

it circulates. Let us assume that the charge circulates very slowly. The magnetic 

E 
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field exerts a negligibly small force on the charge when it is traversing the non- 
moving part of the circuit (since the charge is moving very slowly). However, 
when the charge is traversing the moving rod it experiences an upward (in the 

figure) magnetic force of magnitude f = q v B (assuming that q > 0).   The net 
work done on the charge by this force as it traverses the rod is 

W J = q v B l = q E, (9.16) 

since = B l v. Thus, it would appear that the motional emf generated around 
the circuit can be accounted for in terms of the magnetic force exerted on charges 
traversing the moving rod. 

But, if we think carefully, we can see that there is something seriously wrong 
with the above explanation. We seem to be saying that the charge acquires the 

energy q from the magnetic field as it moves around the circuit once in the anti- 
clockwise direction. But, this is impossible, because a magnetic field cannot do 
work on an electric charge. 

Let us look at the problem from the point of view of a charge q traversing the 
moving rod. In the frame of reference of the rod, the charge only moves very 
slowly, so the magnetic force on it is negligible. In fact, only an electric field can 
exert a significant force on a slowly moving charge. In order to account for the 
motional emf generated around the circuit, we need the charge to experience an 

upward force of magnitude q v B. The only way in which this is possible is if the 
charge sees an upward pointing electric field of magnitude 

E0 = v B. (9.17) 

In other words, although there is no electric field in the laboratory frame, there 
is an electric field in the frame of reference of the moving rod, and it is this field 
which does the necessary amount of work on charges moving around the circuit 

to account for the existence of the motional emf, E = B l v. 

More generally,   if a conductor moves in the laboratory frame with velocity 

v in the presence of a magnetic field B then a charge q inside the conductor 

experiences a magnetic force f = q v      B. In the frame of the conductor, in which 
the charge is essentially stationary, the same force takes the form of an electric 
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force f = q E0, where E0 is the electric field in the frame of reference of the 
conductor. Thus, if a conductor moves with velocity v through a magnetic field B 
then the electric field E0 which appears in the rest frame of the conductor is given 
by 

E0 = v × B. (9.18) 

This electric field is the ultimate origin of the motional emfs which are generated 

whenever circuits move with respect to magnetic fields. 

We can now appreciate that Faraday’s law is due to a combination of two 

apparently distinct effects.  The first is the space-filling electric field generated 

by a changing magnetic field. The second is the electric field generated inside a 

conductor when it moves through a magnetic field. In reality, these effects are two 

aspects of the same basic phenomenon, which explains why no real distinction is 

made between them in Faraday’s law. 

 

9.5 Eddy Currents 

 
We have seen, in the above example, that when a conductor is moved in a mag- 

netic field a motional emf is generated. Moreover, according to Worked Example 

9.3, this emf drives a current which heats the conductor, and, when combined 

with the magnetic field, also gives rise to a magnetic force acting on the conduc- 

tor which opposes its motion. In turns out that these results are quite general. 

Incidentally, the induced currents which circulate inside a moving conductor in a 

static magnetic field, or a stationary conductor in a time-varying magnetic field, 

are usually called eddy currents. 

Consider a metal disk which rotates in a perpendicular magnetic field which 

only extends over a small rectangular portion of the disk, as shown in Fig. 9.4. 

Such a field could be produced by the pole of a horseshoe magnetic. The motional 

emf induced in the disk, as it moves through the field-containing region, acts in 

the direction v B, where v is the velocity of the disk, and B the magnetic field. It 

follows from Fig. 9.4 that the emf acts downward. The emf drives currents which 

are also directed downward. However, these currents must form closed loops, 

and, hence, they are directed upward in those regions of the disk immediately 
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Figure 9.4: Eddy currents 
. 

 

adjacent to the field-containing region,  as shown in the figure.  It can be seen 

that the induced currents flow in little eddies. Hence, the name “eddy currents.” 

According to the right-hand rule, the downward currents in the field-containing 

region give rise to a magnetic force on the disk which acts to the right. In other 

words, the magnetic force acts to prevent the rotation of the disk. Clearly, ex- 

ternal work must be done on the disk in order to keep it rotating at a constant 

angular velocity. This external work is ultimately dissipated as heat by the eddy 

currents circulating inside the disk. 

Eddy currents can be very useful. For instance, some cookers work by using 

eddy currents. The cooking pots, which are usually made out of aluminium, are 

placed on plates which generate oscillating magnetic fields. These fields induce 

eddy currents in the pots which heat them up. The heat is then transmitted to 

the food inside the pots. This type of cooker is particularly useful for food which 

needs to be cooked gradually over a long period of time: i.e., over many hours, or 

even days. Eddy currents can also be used to heat small pieces of metal until they 

become white-hot by placing them in a very rapidly oscillating magnetic field. 

This technique is sometimes used in brazing. Heating conductors by means of 

eddy currents is called inductive heating. Eddy currents can also be used to damp 
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Figure 9.5: An alternating current generator. 

 
motion. This technique, which is called eddy current damping, is often employed 

in galvanometers. 

 

9.6 The Alternating Current Generator 

 
An electric generator, or dynamo, is a device which converts mechanical energy 

into electrical energy. The simplest practical generator consists of a rectangular 

coil rotating in a uniform magnetic field. The magnetic field is usually supplied 

by a permanent magnet. This setup is illustrated in Fig. 9.5. 

Let l be the length of the coil along its axis of rotation, and w the width of 
the coil perpendicular to this axis. Suppose that the coil rotates with constant 

angular velocity ω in a uniform magnetic field of strength B. The velocity v with 

which the the two long sides of the coil (i.e., sides ab and cd) move through the 

magnetic field is simply the product of the angular velocity of rotation ω and the 

distance w/2 of each side from the axis of rotation, so v = ω w/2. The motional 

emf induced in each side is given by = B⊥ l v, where B⊥ is the component of 
the magnetic field perpendicular to instantaneous direction of motion of the side 

in question. If the direction of the magnetic field subtends an angle θ with the 
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normal direction to the coil, as shown in the figure, then B⊥ = B sin θ. Thus, the 

magnitude of the motional emf generated in sides ab and cd is 

Eab = 
B w l ω sin θ 

= 
2 

B A ω sin θ 
, (9.19) 

2 

where A = w l is the area of the coil. The emf is zero when θ = 0◦ or 180◦, 

since the direction of motion of sides ab and cd is parallel to the direction of 

the magnetic field in these cases. The emf attains its maximum value when θ = 

90◦ or 270◦, since the direction of motion of sides ab and cd is perpendicular to 
the direction of the magnetic field in these cases. Incidentally, it is clear, from 

symmetry, that no net motional emf is generated in sides bc and da of the coil. 

Suppose that the direction of rotation of the coil is such that side ab is moving 

into the page in Fig. 9.5 (side view), whereas side cd is moving out of the page. 

The motional emf induced in side ab acts from a to b. Likewise, the motional 

emf induce in side cd acts from c to d. It can be seen that both emfs act in the 
clockwise direction around the coil. Thus, the net emf acting around the coil is 

2 ab. If the coil has N turns then the net emf becomes 2 N ab. Thus, the general 
expression for the emf generated around a steadily rotating, multi-turn coil in a 
uniform magnetic field is 

 

E = N B A ω sin(ω t), (9.20) 

where we have written θ = ω t for a steadily rotating coil (assuming that θ = 0 

at t = 0). This expression can also be written 

E = Emax sin(2π f t), (9.21) 

where  
Emax = 2π N B A f (9.22) 

is the peak emf produced by the generator, and f = ω/2π is the number of 

complete rotations the coils executes per second. Thus, the peak emf is directly 

proportional to the area of the coil, the number of turns in the coil, the rotation 

frequency of the coil, and the magnetic field-strength. 

Figure 9.6 shows the emf specified in Eq. (9.21) plotted as a function of time. 

It can be seen that the variation of the emf with time is sinusoidal in nature. The 
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Figure 9.6: Emf generated by a steadily rotating AC generator. 

 
emf attains its peak values when the plane of the coil is parallel to the plane of the 

magnetic field, passes through zero when the plane of the coil is perpendicular to 

the magnetic field, and reverses sign every half period of revolution of the coil. 

The emf is periodic (i.e., it continually repeats the same pattern in time), with 

period T = 1/f (which is, of course, the rotation period of the coil). 

Suppose that some load (e.g., a light-bulb, or an electric heating element) of 

resistance R is connected across the terminals of the generator. In practice, this is 
achieved by connecting the two ends of the coil to rotating rings which are then 
connected to the external circuit by means of metal brushes. According to Ohm’s 

law, the current I which flows in the load is given by 

I = 
E

 
R 

= 
Emax 

R 
sin(2π f t). (9.23) 

Note that this current is constantly changing direction, just like the emf of the 
generator. Hence, the type of generator described above is usually termed an 

alternating current, or AC, generator. 

The current I which flows through the load must also flow around the coil. 
Since the coil is situated in a magnetic field, this current gives rise to a torque on 
the coil which, as is easily demonstrated, acts to slow down its rotation. Accord- 

ing to Sect. 8.11, the braking torque τ acting on the coil is given by 

τ = N I Bǁ A, (9.24) 


 −

>
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where Bǁ = B sin θ is the component of the magnetic field which lies in the plane 
of the coil. It follows from Eq. (9.20) that 

τ = 
E I

, (9.25) 
ω 

since     = N Bǁ A ω. An external torque which is equal and opposite to the break- 
ing torque must be applied to the coil if it is to rotate uniformly, as assumed 

above. The rate P at which this external torque does work is equal to the product 

of the torque τ and the angular velocity ω of the coil. Thus, 

P = τ ω = E I. (9.26) 

Not surprisingly, the rate at which the external torque performs works exactly 

matches the rate I at which electrical energy is generated in the circuit com- 
prising the rotating coil and the load. 

Equations (9.20), (9.23), and (9.25) yield 

τ = τmax sin2(2π f t), (9.27) 

where τmax = ( max)
2/(2π f R). Figure 9.7 shows the breaking torque τ plotted 

as a function of time t, according to Eq. (9.27). It can be seen that the torque 

is always of the same sign (i.e., it always acts in the same direction, so as to 

continually oppose the rotation of the coil), but is not constant in time.  Instead, 

it pulsates periodically with period T. The breaking torque attains its maximum 

value whenever the plane of the coil is parallel to the plane of the magnetic 

field, and is zero whenever the plane of the coil is perpendicular to the magnetic 

field. It is clear that the external torque needed to keep the coil rotating at a 

constant angular velocity must also pulsate in time with period T. A constant 

external torque would give rise to a non-uniformly rotating coil, and, hence, to 

an alternating emf which varies with time in a more complicated manner than 

sin(2π f t). 

Virtually all commercial power stations generate electricity using AC genera- 

tors. The external power needed to turn the generating coil is usually supplied 

by a steam turbine (steam blasting against fan-like blades which are forced into 

rotation). Water is vaporized to produce high pressure steam by burning coal, or 
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Figure 9.7: The braking torque in a steadily rotating AC generator. 

 
by using the energy released inside a nuclear reactor. Of course, in hydroelectric 

power stations, the power needed to turn the generator coil is supplied by a water 

turbine (which is similar to a steam turbine, except that falling water plays the 

role of the steam). Recently, a new type of power station has been developed in 

which the power needed to rotate the generating coil is supplied by a gas turbine 

(basically, a large jet engine which burns natural gas). In the United States and 

Canada, the alternating emf generated by power stations oscillates at f = 60 Hz, 

which means that the generator coils in power stations rotate exactly sixty times 

a second. In Europe, and much of the rest of the world, the oscillation frequency 

of commercially generated electricity is f = 50 Hz. 

 

9.7 The Direct Current Generator 

 
Most common electrical appliances (e.g., electric light-bulbs, and electric heating 

elements) work fine on AC electrical power. However, there are some situations 

in which DC power is preferable. For instance, small electric motors (e.g., those 

which power food mixers and vacuum cleaners) work very well on AC electricity, 

but very large electric motors (e.g., those which power subway trains) generally 

work much better on DC electricity. Let us investigate how DC electricity can be 

generated. 
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Figure 9.8: A split-ring commutator. 

 
A simple DC generator consists of the same basic elements as a simple AC gen- 

erator: i.e., a multi-turn coil rotating uniformly in a magnetic field. The main 

difference between a DC generator and an AC generator lies in the manner in 

which the rotating coil is connected to the external circuit containing the load. In 

an AC generator, both ends of the coil are connected to separate slip-rings which 

co-rotate with the coil, and are connected to the external circuit via wire brushes. 

In this manner,  the emf   ext  seen by the external circuit is always the same as 

the emf  generated around the rotating coil.  In a DC generator, the two ends 

of the coil are attached to different halves of a single split-ring which co-rotates 

with the coil. The split-ring is connected to the external circuit by means of metal 

brushes—see Fig. 9.8. This combination of a rotating split-ring and stationary 

metal brushes is called a commutator. The purpose of the commutator is to en- 

sure that the emf ext seen by the external circuit is equal to the emf generated 

around the rotating coil for half the rotation period, but is equal to minus this 

emf for the other half (since the connection between the external circuit and the 

rotating coil is reversed by the commutator every half-period of rotation). The 

positions of the metal brushes can be adjusted such that the connection between 

the rotating coil and the external circuit reverses whenever the emf generated 

around the coil goes through zero. In this special case, the emf seen in the exter- 

nal circuit is simply 

Eext = |E | = Emax | sin(2π f t)|. (9.28) 
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Figure 9.9: Emf generated in a steadily rotating DC generator. 
 

Figure 9.9 shows ext plotted as a function of time, according to the above for- 

mula. The variation of the emf with time is very similar to that of an AC generator, 

except that whenever the AC generator would produce a negative emf the com- 

mutator in the DC generator reverses the polarity of the coil with respect to the 

external circuit, so that the negative half of the AC signal is reversed and made 

positive. The result is a bumpy direct emf which rises and falls but never changes 

direction. This type of pulsating emf can be smoothed out by using more than 

one coil rotating about the same axis, or by other electrical techniques, to give 

a good imitation of the direct current delivered by a battery. The alternator in 

a car (i.e., the DC generator which recharges the battery) is a common example 

of a DC generator of the type discussed above. Of course, in an alternator, the 

external torque needed to rotate the coil is provided by the engine of the car. 

 

9.8 The Alternating Current Motor 

 
The first electric dynamo was constructed in 1831 by Michael Faraday. An electric 

dynamo is, of course, a device which transforms mechanical energy into electri- 

cal energy. An electric motor, on the other hand, is a device which transforms 

electrical energy into mechanical energy. In other words, an electric motor is an 

electric dynamo run in reverse. It took a surprisingly long time for scientists in 
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x
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the nineteenth century to realize this. In fact, the message only really sank home 

after a fortuitous accident during the 1873 Vienna World Exposition. A large hall 

was filled with modern gadgets. One of these gadgets, a steam engine driven dy- 

namo, was producing electric power when a workman unwittingly connected the 

output leads from another dynamo to the energized circuit. Almost immediately, 

the latter dynamo started to whirl around at great speed. The dynamo was, in 

effect, transformed into an electric motor. 

An AC electric motor consists of the same basic elements as an AC electric 

generator: i.e., a multi-turn coil which is free to rotate in a constant magnetic 

field. Furthermore, the rotating coil is connected to the external circuit in just 

the same manner as in an AC generator: i.e., via two slip-rings attached to metal 

brushes. Suppose that an external voltage source of emf V is connected across 

the motor. It is assumed that V is an alternating emf, so that 

V = Vmax sin(2π f t), (9.29) 

where Vmax is the peak voltage, and f is the alternation frequency. Such an emf 
could be obtained from an AC generator, or, more simply, from the domestic 

mains supply.   For the case of the mains, Vmax = 110 V and f = 60 Hz in the 
U.S. and Canada, whereas Vmax = 220 V and f = 50 Hz in Europe and Asia. The 
external emf drives an alternating current 

I = Imax sin(2π f t) (9.30) 

around the external circuit, and through the motor. As this current flows around 

the coil, the magnetic field exerts a torque on the coil, which causes it to rotate. 

The motor eventually attains a steady-state in which the rotation frequency of the 

coil matches the alternation frequency of the external emf. In other words, the 

steady-state rotation frequency of the coil is f. Now a coil rotating in a magnetic 

field generates an emf   .  It is easily demonstrated that this emf acts to oppose 

the circulation of the current around the coil: i.e., the induced emf acts in the 

opposite direction to the external emf. For an N-turn coil of cross-sectional area 

A, rotating with frequency f in a magnetic field B, the back-emf E is given by 

E = Emax sin(2π f t), (9.31) 
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Figure 9.10: Circuit diagram for an AC motor connected to an external AC emf source. 
 

where 

Emax = 2π N B A f, (9.32) 

and use has been made of the results of Sect. 9.6. 

Figure 9.10 shows the circuit in question. A circle with a wavy line inside is 
the conventional way of indicating an AC voltage source. The motor is modeled 

as a resistor R, which represents the internal resistance of the motor, in series 
with the back-emf . Of course, the back-emf acts in the opposite direction to the 

external emf V. Application of Ohm’s law around the circuit gives 

V = I R + E, (9.33) 

or 

Vmax sin(2π f t) = Imax R sin(2π f t) + Emax sin(2π f t), (9.34) 

which reduces to 

Vmax = Imax R + Emax. (9.35) 
 

The rate P at which the motor gains electrical energy from the external circuit 
is given by 

P = E I = Pmax sin2(2π f t), (9.36) 
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where 
Pmax = max Imax = 

Emax (Vmax − Emax)
. (9.37) 

R 

By conservation of energy, P is also the rate at which the motor performs me- 
chanical work. Note that the rate at which the motor does mechanical work is 

not constant in time, but, instead,  pulsates at the rotation frequency of the coil. 

It is possible to construct a motor which performs work at a more uniform rate 

by employing more than one coil rotating about the same axis. 

As long as Vmax > max, the rate at which the motor performs mechanical work 

is positive (i.e., the motor does useful work).  However, if Vmax <  max then the 

rate at which the motor performs work becomes negative. This means that we 

must do mechanical work on the motor in order to keep it rotating, which is 

another way of saying that the motor does not do useful work. Clearly, in order 

for an AC motor to do useful work, the external emf V must be able to overcome 

the back-emf E induced in the motor (i.e., Vmax > Emax). 

 
9.9 The Direct Current Motor 

 
In steady-state, an AC motor always rotates at the alternation frequency of its 

power supply. Thus, an AC motor powered by the domestic mains supply rotates 

at 60 Hz in the U.S. and Canada, and at 50 Hz in Europe and Asia. Suppose, 

however, that we require a variable speed electric motor. We could always use 

an AC motor driven by a variable frequency AC power supply, but such power 

supplies are very expensive. A far cheaper alternative is to use a DC motor driven 

by a DC power supply. Let us investigate DC motors. 

A DC motor consists of the same basic elements as a DC electric generator: i.e., 

a multi-turn coil which is free to rotate in a constant magnetic field. Furthermore, 

the rotating coil is connected to the external circuit in just the same manner as in 

a DC generator: i.e., via a split-ring commutator which reverses the polarity of the 

coil with respect to the external circuit whenever the coil passes through the plane 

perpendicular to the direction of the magnetic field. Suppose that an external DC 

voltage source (e.g., a battery, or a DC generator) of emf V is connected across the 
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Figure 9.11: Circuit diagram for an DC motor connected to an external DC emf source. 

 

motor. The voltage source drives a steady current I around the external circuit, 
and through the motor. As the current flows around the coil, the magnetic field 
exerts a torque on the coil, which causes it to rotate. Let us suppose that the 

motor eventually attains a steady-state rotation frequency f. The rotating coil 
generates a back-emf      whose magnitude is directly proportional to the frequency 
of rotation [see Eq. (9.32)]. 

Figure 9.11 shows the circuit in question. The motor is modeled as a resistor 

R, which represents the internal resistance of the motor, in series with the back- 
emf  . Of course, the back-emf acts in the opposite direction to the external emf 

V. Application of Ohm’s law around the circuit gives 

V = I R + E, (9.38) 

which yields  

I = 
V − E 

. (9.39) 
R 

The rate at which the motor performs mechanical work is 

P = I = 
E (V − E)

. (9.40) 
R 
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Suppose that a DC motor is subject to a light external load, so that it only has 

to perform mechanical work at a relatively low rate. In this case, the motor will 

spin up until its back-emf is slightly less than the external emf V, so that very 

little current flows through the motor [according to Eq. (9.39)], and, hence, the 

mechanical power output of the motor is relatively low [according to Eq. (9.40)]. 

If the load on the motor is increased then the motor will slow down, so that its 

back-emf is reduced, the current flowing through the motor is increased, and, 

hence, the mechanical power output of the motor is raised until it matches the 

new load. Note that the current flowing through a DC motor is generally limited 

by the back-emf, rather than the internal resistance of the motor. In fact, conven- 

tional DC motors are designed on the assumption that the back-emf will always 

limit the current flowing through the motor to a relatively small value. If the 

motor jams, so that the coil stops rotating and the back-emf falls to zero, then the 

current I = V/R which flows through the motor is generally so large that it will 

burn out the motor if allowed to flow for any appreciable length of time. For this 

reason, the power to an electric motor should always be shut off immediately if 

the motor jams. When a DC motor is started up, the coil does not initially spin 

fast enough to generate a substantial back-emf. Thus, there is a short time period, 

just after the motor is switched on, in which the motor draws a relatively large 

current from its power supply. This explains why the lights in a house sometimes 

dim transiently when a large motor, such as an air conditioner motor, is switched 

on. 

Suppose that a DC motor is subject to a constant, but relatively light, load. As 

mentioned above, the motor will spin up until its back emf almost matches the 

external emf. If the external emf is increased then the motor will spin up further, 

until its back-emf matches the new external emf. Likewise, if the external emf is 

decreased then the motor will spin down. It can be seen that the rotation rate of 

a DC motor is controlled by the emf of the DC power supply to which the motor is 

attached. The higher the emf, the higher the rate of rotation. Thus, it is relatively 

easy to vary the speed of a DC motor, unlike an AC motor, which is essentially a 

fixed speed motor. 
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9.10 Worked Examples 

 
Example 9.1: Faraday’s law 

 
Question: A plane circular loop of conducting wire of radius r = 10 cm which 

possesses N = 15 turns is placed in a uniform magnetic field. The direction of the 

magnetic field makes an angle of 30◦ with respect to the normal direction to the 

loop. The magnetic field-strength B is increased at a constant rate from B1 = 1 T 

to B2 = 5 T in a time interval of ∆t = 10 s. What is the emf generated around 

the loop? If the electrical resistance of the loop is R = 15 Ω, what current flows 
around the loop as the magnetic field is increased? 

 
Answer: The area of the loop is 

A = π r2 = π (0.1)2 = 0.0314 m2. 

The component of the magnetic field perpendicular to the loop is 

B⊥ = B cos θ = B cos 30◦ = 0.8660 B, 

where B is the magnetic field-strength. Thus, the initial magnetic flux linking the 
loop is 

 

ΦB 1 = N A B1 cos θ = (15) (0.0314) (1) (0.8660) = 0.408 Wb. 

Likewise, the final flux linking the loop is 

ΦB 2 = N A B2 cos θ = (15) (0.0314) (5) (0.8660) = 2.039 Wb. 

The time rate of change of the flux is 
 

dΦB 

dt 
= 

ΦB 2 − ΦB 1 

∆t 

(2.039 − 0.408) 
= 

(10) 
= 0.163 Wb s−1. 

Thus, the emf generated around the loop is 

dΦB 
= = 0.163 V. 

dt 
E 
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Note, incidentally, that one weber per second is equivalent to one volt. 

According to Ohm’s law, the current which flows around the loop in response 

to the emf is 

I = 
E

 
R 

(0.163) 
= 

(15) 
= 0.011 A. 

 

Worked Example 2: Lenz’s law 

 
Question: A long solenoid with an air core has n1 = 400 turns per meter and a 

cross-sectional area of A1 = 10 cm2. The current I1 flowing around the solenoid 

increases from 0 to 50 A in 2.0 s. A plane loop of wire consisting of N2 = 10 turns, 

which is of cross-sectional area A2 = 100 cm2 and resistance R2 = 0.050 Ω, is 

placed around the solenoid close to its centre. The loop is orientated such that 

it lies in the plane perpendicular to the axis of the solenoid. What is the magni- 

tude 2 of the emf induced in the coil? What current I2 does does this emf drive 

around the coil? Does this current circulate in the same direction as the current 

flowing in the solenoid, or in the opposite direction? 

 
Answer: We must, first of all, calculate the magnetic flux linking the coil. The 

magnetic field is confined to the region inside the solenoid (the field generated 

outside a long solenoid is essentially negligible). The magnetic field runs along 

the axis of the solenoid, so it is directed perpendicular to the plane of the coil. 

Thus, the magnetic flux linking a single turn of the coil is the product of the area 

A1 of the magnetic-field-containing region and the strength B of the perpendicu- 

lar field. Note that, in this case, the magnetic flux does not depend on the area A2 

of the coil, as long as the magnetic-field-containing region lies completely within 

the coil. The magnetic flux ΦB linking the whole coil is the flux linking a single 

turn times the number N2 of turns in the coil. Thus, 

ΦB = N2 A1 B. 

Now, the magnitude of the magnetic field generated by the solenoid is given by 

(see Sect. 8.8) 

B = µ0 n1 I1, 
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so the magnetic flux linking the coil can be written 

ΦB = N2 A1 µ0 n1 I1. 

This magnetic flux increases because the current I1 flowing in the solenoid in- 
creases. Thus, the time rate of change of the magnetic flux is given by 

 

dΦB 

dt 
= N2 A1 µ0 n1 

dI1 

dt 
= (10) (10 10−4) (4π 10−7) (400) 

(50)
 

(2) 

= 1.26 × 10−4 Wb s−1. 

By Faraday’s induction law, the emf generated around the coil is 
 

 
 
 

Ohm’s law gives 

E2 = − 
dΦB 

= −1.26 10−4 V. 

dt 

 

I2 = 
E2

 

R2 

(−1.26 10−4) 
= 

(0.050) 
= −2.6 mA, 

as the current induced in the coil. 

According to Lenz’s law, the current induced in the coil is such as to oppose 

the increase in the magnetic flux linking the coil. Thus, the current in the coil 

must circulate in the opposite direction to the current in the solenoid, so that the 

magnetic field generated by the the former current, in the middle of the coil, 

is oppositely directed to that generated by the latter current. The fact that the 

current I2 in the above formula is negative is indicative of the fact that this current 

runs in the opposite direction to the current flowing around the solenoid. 

 

Worked Example 3: Motional emf 

 
Question: Consider the circuit described in Sect. 9.4. Suppose that the length of 

the moving rod is l = 0.2 m, its speed is v = 0.1 m s−1, the magnetic field-strength 

is B = 1.0 T (the field is directed into the page—see Fig. 9.3), and the resistance 
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of the circuit is R = 0.020 Ω. What is the emf generated around the circuit? What 

current flows around the circuit? What is the magnitude and direction of the 

force acting on the moving rod due to the fact that a current is flowing along it? 

What is the rate at which work must be performed on the rod in order to keep it 

moving at constant velocity against this force? What is the rate at which electrical 

energy is generated? What is the rate at which energy is converted into heat due 

to the resistivity of the circuit? 

 
Answer: The emf is generated by the motion of the rod. According to Eq. (9.14), 

the magnitude of the motional emf is 

E = B l v = (1) (0.2) (0.1) = 0.020 V. 

The emf acts in the anti-clockwise direction in Fig. 9.3. 

The anti-clockwise current driven around the circuit by the motional emf fol- 

lows from Ohm’s law: 

I = 
E

 
R 

(0.020) 
= 

(0.020) 
= 1.0 A. 

 

Since the rod carries a current I which flows perpendicular to a magnetic field 

B, the force per unit length acting on the rod is F = I B (see Sect. 8.2). Thus, the 
total force acting on the rod is of magnitude 

f = I B l = (1) (1) (0.2) = 0.20 N. 

This force is directed parallel to the vector I B. It follows that the force is to the 

left in Fig. 9.3. In other words, the force opposes the motion producing the emf. 

In order to keep the rod moving at a constant velocity, some external agent 
must apply a force to the rod which is equal and opposite to the magnetic force 

described above.  Thus, the externally applied force acts to the right. The rate P 
at which work is done by this force is the product of the force and the velocity of 
the rod in the direction of this force. Thus, 

P = f v = (0.20) (0.10) = 0.020 W. 
 

Every charge q which circulates around the circuit in the anti-clockwise direc- 

tion acquires the energy q E. The amount of charge per unit time which circulates 
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around the circuit is, by definition, equal to the current I flowing around the cir- 
cuit. Thus, the rate at which electric charges acquire energy in the circuit is 

P = E I = (0.020) (1) = 0.020 W. 

Now, the rate at which electric charges acquire energy in the circuit is equal to 

the rate at which mechanical work is done on the rod by the external force, as 

must be the case if energy is to be conserved.  Thus, we can think of this circuit 

as constituting a primitive generator which transforms mechanical into electrical 

energy. 

The rate at which electrical energy is converted into heat energy in the circuit 
is 

P = I2 R = (1) (1) (0.020) = 0.020 W. 

Thus, all of the mechanical work done on the rod eventually ends up as heat 

dissipated in the circuit. 

 

Worked Example 4: AC generators 

 
Question: A simple AC generator consists of an N = 10 turn coil of area A = 

1200 cm2 which rotates at a constant frequency of f = 60 Hz in a B = 0.40 T mag- 
netic field. What is the peak emf of the device? 

 
Answer: The peak emf Emax is given by [see Eq. (9.22)] 

Emax = 2π N B A f = (6.283) (10) (0.40) (0.12) (60) = 181 V. 

 
Worked Example 5: AC motors 

 
Question: An AC motor has an internal resistance of R = 4.0 Ω. When powered by 

a 50 Hz AC supply of peak voltage V = 120 V it draws a peak current of I = 5.0 A. 

What is the peak back-emf produced by the motor? What is the peak power de- 

livered to the motor by the AC supply? What is the peak rate of energy loss as 
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heat in the motor? What is the peak useful power produced by the motor? What 

is the efficiency (i.e., the ratio of the peak useful power output to the peak power 

delivered) of such a motor? 

 

Answer: If V is the peak applied voltage, and the peak back-emf, then the 
peak applied voltage must equal the sum of the peak voltage drops across the 

motor, or V = E + I R. It follows that 

E = V − I R = (120) − (5.0) (4.0) = 100 V. 

The peak power delivered by the AC supply is 

P1 = V I = (120) (5.0) = 600 W. 

Energy is lost as heat in the motor at the peak rate 

P2 = I2 R = (5.0)2 (4.0) = 100 W. 

The peak useful power produced by the motor is the difference between the peak 

power supplied to the motor and the peak power dissipated as heat: 

P = P1 − P2 = (600) − (100) = 500 W. 

The peak useful power is also given by the product of the peak back-emf and the 

peak current flowing through the motor [see Eq. (9.36)], 

P = E I = (100) (5.0) = 500 W. 

The efficiency η is the ratio of the peak useful power output of the motor to the 
peak power supplied, or 

 

P 
η = = 

P1 

500 

600 
= 0.83 = 83 %. 
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10 Inductance 

 
10.1 Mutual Inductance 
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Figure 10.1: Two inductively coupled circuits. 

 

Consider two arbitrary conducting circuits, labelled 1 and 2. Suppose that I1 

is the instantaneous current flowing around circuit 1. This current generates a 

magnetic field B1 which links the second circuit, giving rise to a magnetic flux Φ2 

through that circuit. If the current I1 doubles, then the magnetic field B1 doubles 

in strength at all points in space, so the magnetic flux Φ2 through the second 

circuit also doubles. This conclusion follows from the linearity of the laws of 

magnetostatics, plus the definition of magnetic flux. Furthermore, it is obvious 

that the flux through the second circuit is zero whenever the current flowing 

around the first circuit is zero. It follows that the flux Φ2 through the second 

circuit is directly proportional to the current I1 flowing around the first circuit. 

Hence, we can write 

Φ2 = M21 I1, (10.1) 

where the constant of proportionality M21 is called the mutual inductance of cir- 

cuit 2 with respect to circuit 1. Similarly, the flux Φ1 through the first circuit 

due to the instantaneous current I2 flowing around the second circuit is directly 

circuit 2 

I1 

circuit 1 
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proportional to that current, so we can write 

Φ1 = M12 I2, (10.2) 

where M12 is the mutual inductance of circuit 1 with respect to circuit 2. It is 

possible to demonstrate mathematically that M12 = M21. In other words, the flux 

linking circuit 2 when a certain current flows around circuit 1 is exactly the same 

as the flux linking circuit 1 when the same current flows around  circuit 2.  This 

is true irrespective of the size, number of turns, relative position, and relative 

orientation of the two circuits. Because of this, we can write 

M12 = M21 = M, (10.3) 

where M is termed the mutual inductance of the two circuits. Note that M is a 

purely geometric quantity, depending only on the size, number of turns, relative 

position, and relative orientation of the two circuits. The SI units of mutual 

inductance are called Henries (H). One henry is equivalent to a volt-second per 

ampere: 

1 H ≡ 1 V s A−1. (10.4) 

It turns out that a henry is a rather unwieldy unit. The mutual inductances of the 

circuits typically encountered in laboratory experiments are measured in milli- 

henries. 

Suppose that the current flowing around circuit 1 changes by an amount dI1 

in a time interval dt. It follows from Eqs. (10.1) and (10.3) that the flux linking 

circuit 2 changes by an amount dΦ2 = M dI1 in the same time interval. According 
to Faraday’s law, an emf 

E2 = − 
dΦ2 

(10.5) 
dt 

is generated around the second circuit due to the changing magnetic flux linking 

that circuit. Since, dΦ2 = M dI1, this emf can also be written 
dI1 

E2 = −M . (10.6) 
dt 

Thus, the emf generated around the second circuit due to the current flowing 

around the first circuit is directly proportional to the rate at which that current 
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changes.  Likewise,  if the current I2  flowing around the second circuit changes 

by an amount dI2 in a time interval dt then the emf generated around the first 

circuit is 

E1 = −M 
dI2 

. (10.7) 
dt 

Note that there is no direct physical coupling between the two circuits. The 

coupling is due entirely to the magnetic field generated by the currents flowing 

around the circuits. 

As a simple example, suppose that two insulated wires are wound on the same 

cylindrical former, so as to form two solenoids sharing a common air-filled core. 

Let l be the length of the core, A the cross-sectional area of the core, N1 the 

number of times the first wire is wound around the core, and N2 the number of 

times the second wire is wound around the core. If a current I1 flows around 

the first wire then a uniform axial magnetic field of strength B1 = µ0 N1 I1/l is 

generated in the core (see Sect. 8.8). The magnetic field in the region outside the 

core is of negligible magnitude. The flux linking a single turn of the second wire 

is B1 A. Thus, the flux linking all N2 turns of the second wire is Φ2 = N2 B1 A = 

µ0 N1 N2 A I1/l. From Eq. (10.1), the mutual inductance of the second wire with 

respect to the first is 

M21 = 
Φ2 

I1 
= 

µ0 N1 N2 A
. (10.8) 

l 
Now, the flux linking the second wire when a current I2 flows in the first wire is 

Φ1 = N1 B2 A, where B2 = µ0 N2 I2/l is the associated magnetic field generated 
in the core. It follows from Eq. (10.2) that the mutual inductance of the first wire 
with respect to the second is 

M12 = 
Φ1 

I2 
= 

µ0 N1 N2 A
. (10.9) 

l 

Note that M21 = M12, in accordance with Eq. (10.3). Thus, the mutual induc- 
tance of the two wires is given by 

M = 
µ0 N1 N2 A

. (10.10) 
l 

As described previously, M is a geometric quantity depending on the dimensions 
of the core, and the manner in which the two wires are wound around the core, 

but not on the actual currents flowing through the wires. 
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10.2 Self Inductance 

 
We do not necessarily need two circuits in order to have inductive effects. Con- 

sider a single conducting circuit around which a current I is flowing. This current 

generates a magnetic field B which gives rise to a magnetic flux Φ linking the 

circuit. We expect the flux Φ to be directly proportional to the current I, given 

the linear nature of the laws of magnetostatics, and the definition of magnetic 

flux. Thus, we can write 

Φ = L I, (10.11) 

where the constant of proportionality L is called the self inductance of the circuit. 

Like mutual inductance, the self inductance of a circuit is measured in units of 

henries, and is a purely geometric quantity, depending only on the shape of the 

circuit and number of turns in the circuit. 

If the current flowing around the circuit changes by an amount dI in a time 

interval dt then the magnetic flux linking the circuit changes by an amount dΦ = 

L dI in the same time interval. According to Faraday’s law, an emf 

E = − 
dt 

(10.12) 

is generated around the circuit. Since dΦ = L dI, this emf can also be written 

E = −L 
dt

. (10.13) 

Thus, the emf generated around the circuit due to its own current is directly 

proportional to the rate at which the current changes. Lenz’s law, and common 

sense, demand that if the current is increasing then the emf should always act 

to reduce the current, and vice versa. This is easily appreciated, since if the emf 

acted to increase the current when the current was increasing then we would 

clearly get an unphysical positive feedback effect in which the current continued 

to increase without limit.  It follows, from Eq. (10.13), that the self inductance 

L of a circuit is necessarily a positive number. This is not the case for mutual 
inductances, which can be either positive or negative. 

Consider a solenoid of length l and cross-sectional area A. Suppose that the 

solenoid has N turns. When a current I flows in the solenoid, a uniform axial 
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field of magnitude 

B = 
µ0 N I 

l 

 
(10.14) 

is generated in the core of the solenoid. The field-strength outside the core is 

negligible. The magnetic flux linking a single turn of the solenoid is Φ = B A. 

Thus, the magnetic flux linking all N turns of the solenoid is 

µ0 N2 A I 

Φ = N B A = . (10.15) 
l 

According to Eq. (10.11), the self inductance of the solenoid is given by L = Φ/I, 
which reduces to 

µ0 N2 A 
L = 

l 
. (10.16) 

Note that L is positive. Furthermore, L is a geometric quantity depending only on 
the dimensions of the solenoid, and the number of turns in the solenoid. 

Engineers like to reduce all pieces of electrical apparatus, no matter how com- 

plicated, to an equivalent circuit consisting of a network of just four different types 

of component. These four basic components are emfs, resistors, capacitors, and in- 

ductors. An inductor is simply a pure self inductance, and is usually represented a 

little solenoid in circuit diagrams. In practice, inductors generally consist of short 

air-cored solenoids wound from enameled copper wire. 

 

10.3 Energy Stored in an Inductor 

 
Suppose that an inductor of inductance L is connected to a variable DC voltage 

supply. The supply is adjusted so as to increase the current i flowing through the 

inductor from zero to some final value I. As the current through the inductor is 

ramped up, an emf      = −L di/dt is generated, which acts to oppose the increase 

in the current. Clearly, work must be done against this emf by the voltage source 

in order to establish the current in the inductor. The work done by the voltage 

source during a time interval dt is 
 

dW = P dt = −E i dt = i L 
dt 

dt = L i di. (10.17) 
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Here, P = − i is the instantaneous rate at which the voltage source performs 

work. To find the total work W done in establishing the final current I in the 
inductor, we must integrate the above expression. Thus, 

 

 
 
giving 

W = L i di, (10.18) 
0 

W = 
1 

L I2. (10.19) 
2 

This energy is actually stored in the magnetic field generated by the current flow- 

ing through the inductor. In a pure inductor, the energy is stored without loss, 

and is returned to the rest of the circuit when the current through the inductor is 

ramped down, and its associated magnetic field collapses. 

Consider a simple solenoid. Equations (10.14), (10.16), and (10.19) can be 

combined to give 

 
 
which reduces to 

1 
W = L I2 = 

2 

µ0 N2 A 

2 l 

B2 

  B l 2 

µ0 N 
, (10.20) 

W = 
2 µ0 

l A. (10.21) 

This represents the energy stored in the magnetic field of the solenoid. However, 

the volume of the field-filled core of the solenoid is l A, so the magnetic energy 

density (i.e., the energy per unit volume) inside the solenoid is w = W/(l A), or 

B2 

w = 
2 µ0 

. (10.22) 

It turns out that this result is quite general. Thus, we can calculate the energy 

content of any magnetic field by dividing space into little cubes (in each of which 

the magnetic field is approximately uniform), applying the above formula to find 

the energy content of each cube, and summing the energies thus obtained to find 

the total energy. 

When electric and magnetic fields exist together in space, Eqs. (6.23) and 

(10.22) can be combined to give an expression for the total energy stored in the 
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combined fields per unit volume: 

 

w = 

 

s0 E2 

2 

 
B2 

+ 
2 µ0 

 
 

. (10.23) 

 
 

10.4 The RL Circuit 

 
Consider a circuit in which a battery of emf V is connected in series with an 

inductor of inductance L and a resistor of resistance R.   For obvious reasons, 

this type of circuit is usually called an RL circuit. The resistance R includes the 

resistance of the wire loops of the inductor, in addition to any other resistances 

in the circuit. 

In steady-state, the current I flowing around the the circuit has the magnitude 
V 

I = (10.24) 
R 

specified by Ohm’s law. Note that, in a steady-state, or DC, circuit, zero back-emf 

is generated by the inductor, according to Eq. (10.13), so the inductor effectively 

disappears from the circuit. In fact, inductors have no effect whatsoever in DC 

circuits. They just act like pieces of conducting wire. 

L R 
 
 

 
 

 

















switch 
V

 
 

Figure 10.2: An RL circuit with a switch. 
 

Let us now slightly modify our RL circuit by introducing a switch. The new 
circuit is shown in Fig. 10.2. Suppose that the switch is initially open, but is 
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suddenly closed at t = 0. Obviously, we expect the instantaneous current i which 
flows around the circuit, once the switch is thrown, to eventually settle down 

to the steady-state value I = V/R. But, how long does this process take? Note 
that as the current flowing around the circuit is building up to its final value, a 
non-zero back-emf is generated in the inductor, according to Eq. (10.13). Thus, 
although the inductor does not affect the final steady-state value of the current 
flowing around the circuit, it certainly does affect how long after the switch is 
closed it takes for this final current to be established. 

If the instantaneous current i flowing around the circuit changes by an amount 

di in a short time interval dt, then the emf generated in the inductor is given by 
[see Eq. (10.13)] 

E = −L 
dt

. (10.25) 

Applying Ohm’s law around the circuit, we obtain 

V + E = i R, (10.26) 

which yields 

 

Let 

 

— L 
di 

= i R − V. (10.27) 
dt 

iJ = i − I, (10.28) 

where I = V/R is the steady-state current. Equation (10.27) can be rewritten 

diJ 

dt 
= −iJ 

R
, (10.29) 

L 

since diJ = di (because I is non-time-varying). At t = 0, just after the switch is 

closed, we expect the current i flowing around the circuit to be zero. It follows 
from Eq. (10.28) that 

iJ(t = 0) = −I. (10.30) 
 

Integration of Eq. (10.29), subject to the initial condition (10.30), yields 

iJ(t) = −I e−R t/L. (10.31) 
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Figure 10.3: Sketch of the current rise phase in an RL circuit switched on at t = 0. 

 
Thus, it follows from Eq. (10.28) that 

i(t) = I (1 − e−R t/L). (10.32) 

The above expression specifies the current i flowing around the circuit a time 

interval t after the switch is closed (at time t = 0). The variation of the current 
with time is sketched in Fig. 10.3. It can be seen that when the switch is closed the 

current i flowing in the circuit does not suddenly jump up to its final value, I = 

V/R. Instead, the current increases smoothly from zero, and gradually asymptotes 

to its final value. The current has risen to approximately 63% of its final value a 
time 

τ = 
L 

(10.33) 
R 

after the switch is closed (since e−1 0.37). By the time t = 5 τ, the current 

has risen to more than 99% of its final value (since e−5 < 0.01). Thus, τ = L/R 
is a good measure of how long after the switch is closed it takes for the current 

flowing in the circuit to attain its steady-state value. The quantity τ is termed the 
time-constant, or, somewhat unimaginatively, the L over R time, of the circuit. 

Suppose that the current flowing in the circuit discussed above has settled 

down to its steady-state value I = V/R. Consider what would happen if we were 

to suddenly (at t = 0, say) switch the battery out of the circuit, and replace it by 

a conducting wire. Obviously, we would expect the current to eventually decay 

away to zero, since there is no longer a steady emf in the circuit to maintain a 

steady current. But, how long does this process take? 

->
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Applying Ohm’s law around the circuit, in the absence of the battery, we obtain 

E = i R, (10.34) 

where = −L di/dt is the back-emf generated by the inductor, and i is the 
instantaneous current flowing around the circuit. The above equation reduces to 

 

di 
= −i 

dt 

R
. (10.35) 

L 

At t = 0, immediately after the battery is switched out of the circuit, we expect 

the current i flowing around the circuit to equal its steady-state value I, so that 

i(t = 0) = I. (10.36) 

 
Integration of Eq. (10.35), subject to the boundary condition (10.36), yields 

i(t) = I e−R t/L. (10.37) 

According to the above formula, once the battery is switched out of the circuit, 

the current decays smoothly to zero. After one L/R time (i.e., t = L/R), the 

current has decayed to 37% of its initial value. After five L/R times, the current 

has decayed to less than 1% of its initial value. 

We can now appreciate the significance of self inductance. The back-emf gen- 

erated in an inductor, as the current flowing through it tries to change, effectively 

prevents the current from rising (or falling) much faster than the L/R time of the 

circuit. This effect is sometimes advantageous, but is often a great nuisance. All 

circuits possess some self inductance, as well as some resistance, so all have a 

finite L/R time. This means that when we power up a DC circuit, the current 

does not jump up instantaneously to its steady-state value. Instead, the rise is 

spread out over the L/R time of the circuit. This is a good thing. If the current 

were to rise instantaneously then extremely large inductive electric fields would 

be generated by the sudden jump in the magnetic field, leading, inevitably, to 

breakdown and electric arcing. So, if there were no such thing as self inductance 

then every time we switched a DC electric circuit on or off there would be a big 

blue flash due to arcing between conductors. Self inductance can also be a bad 

thing. Suppose that we possess a fancy power supply, and wish to use it to send 
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Figure 10.4: Typical difference between the input wave-form (top) and the output wave-form (bot- 
tom) when a square-wave is sent down a line with finite L/R time, τ. 

 
an electric signal down a wire. Of course, the wire will possess both resistance 

and inductance, and will, therefore, have some characteristic L/R time. Suppose 

that we try to send a square-wave signal down the wire. Since the current in the 

wire cannot rise or fall faster than the L/R time, the leading and trailing edges of 

the signal get smoothed out over an L/R time. The typical difference between the 

signal fed into the wire (upper trace) and that which comes out of the other end 

(lower trace) is illustrated in Fig. 10.4. Clearly, there is little point in us having 

a fancy power supply unless we also possess a low inductance wire, so that the 

signal from the power supply can be transmitted to some load device without 

serious distortion. 

 

10.5 The RC Circuit 

 
Let us now discuss a topic which, admittedly, has nothing whatsoever to do with 

inductors, but is mathematically so similar to the topic just discussed that it seems 

sensible to consider it at this point. 

Consider a circuit in which a battery of emf V is connected in series with 

a capacitor of capacitance C, and a resistor of resistance R. For fairly obvious 

reasons, such a circuit is generally referred to as an RC circuit. In steady-state, 

the charge on the positive plate of the capacitor is given by Q = C V, and zero 
current flows around the circuit (since current cannot flow across the insulating 
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Figure 10.5: An RC circuit with a switch. 

 
gap between the capacitor plates). 

Let us now introduce a switch into the circuit, as shown in Fig. 10.5. Suppose 

that the switch is initially open, but is suddenly closed at t = 0. It is assumed 
that the capacitor plates are uncharged when the switch is thrown. We expect a 

transient current i to flow around the circuit until the charge q on the positive 

plate of the capacitor attains its final steady-state value Q = C V. But, how long 
does this process take? 

The potential difference v between the positive and negative plates of the ca- 
pacitor is given by 

v = V − i R. (10.38) 

In other words, the potential difference between the plates is the emf of the 

battery minus the potential drop across the resistor. The charge q on the positive 
plate of the capacitor is written 

q = C v = Q − i R C, (10.39) 

where Q = C V is the final charge. Now, if i is the instantaneous current flowing 

around the circuit, then in a short time interval dt the charge on the positive plate 

of the capacitor increases by a small amount dq = i dt (since all of the charge 

which flows around the circuit must accumulate on the plates of the capacitor). 

It follows that 

i = 
dq

. (10.40) 
dt 



i 
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Thus, the instantaneous current flowing around the circuit is numerically equal 

to the rate at which the charge accumulated on the positive plate of the capacitor 

increases with time. Equations (10.39) and (10.40) can be combined together to 

give 

 

where 

dqJ 

dt 
= − 

qJ 

, (10.41) 
R C 

qJ = q − Q. (10.42) 

At t = 0, just after the switch is closed, the charge on the positive plate of the 
capacitor is zero, so 

qJ(t = 0) = −Q. (10.43) 

Integration of Eq. (10.41), subject to the boundary condition (10.43), yields 

qJ(t) = −Q e−t/R C. (10.44) 

It follows from Eq. (10.42) that 

q(t) = Q (1 − e−t/R C). (10.45) 

The above expression specifies the charge q on the positive plate of the capacitor 

a time interval t after the switch is closed (at time t = 0). The variation of the 
charge with time is sketched in Fig. 10.6. It can be seen that when the switch is 

closed the charge q on the positive plate of the capacitor does not suddenly jump 

up to its final value, Q = C V.  Instead, the charge increases smoothly from zero, 
and gradually asymptotes to its final value. The charge has risen to approximately 

63% of its final value a time 
τ = R C (10.46) 

after the switch is closed. By the time t = 5 τ, the charge has risen to more than 

99% of its final value. Thus, τ = R C is a good measure of how long after the 

switch is closed it takes for the capacitor to fully charge up. The quantity τ is 

termed the time-constant, or the RC time, of the circuit. 

According to Eqs. (10.40) and (10.41), 

dq dqJ 
i = = 

dt dt 

= − 
qJ 

. (10.47) 

R C 
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Figure 10.6: Sketch of the charging phase in an RC circuit switched on at t = 0. 
 

It follows from Eq. (10.44) that 

i(t) = I e−t/R C, (10.48) 

where I = V/R.   The above expression specifies the current i flowing around 

the circuit a time interval t after the switch is closed (at time t = 0). It can be 

seen that, immediately after the switch is thrown, the current I = V/R which 

flows in the circuit is that which would flow if the capacitor were replaced by 

a conducting wire. However, this current is only transient, and rapidly decays 

away to a negligible value. After one RC time, the current has decayed to 37% of 

its initial value. After five RC times, the current has decayed to less than 1% of 

its initial value. It is interesting to note that for a short instant of time, just after 

the switch is closed, the current in the circuit acts as if there is no insulating gap 

between the capacitor plates. It essentially takes an RC time for the information 

about the break in the circuit to propagate around the circuit, and cause the 

current to stop flowing. 

Suppose that we take a capacitor of capacitance C, which is charged to a 

voltage V, and discharge it by connecting a resistor of resistance R across its 

terminals at t = 0. How long does it take for the capacitor to discharge? By 

analogy with the previous analysis, the charge q on the positive plate of the 

capacitor at time t is given by 

q(t) = Q e−t/R C, (10.49) 

where Q = C V is the initial charge on the positive plate. It can be seen that it 

takes a few RC times for the capacitor to fully discharge.  The current i which 

->
 



10 INDUCTANCE 10.6 Transformers 

177 

 

 

 

flows through the resistor is 

i(t) = I e−t/R C, (10.50) 

where I = V/R is the initial current. It can be seen that the capacitor initially acts 

like a battery of emf V (since it drives the current I = V/R across the resistor), 
but that, as it discharges, its effective emf decays to a negligible value on a few 

RC times. 

 

10.6 Transformers 

 
A transformer is a device for stepping-up, or stepping-down, the voltage of an 

alternating electric signal. Without efficient transformers, the transmission and 

distribution of AC electric power over long distances would be impossible. Fig- 

ure 10.7 shows the circuit diagram of a typical transformer. There are two cir- 

cuits. Namely, the primary circuit, and the secondary circuit. There is no direct 

electrical connection between the two circuits, but each circuit contains a coil 

which links it inductively to the other circuit. In real transformers, the two coils 

are wound onto the same iron core. The purpose of the iron core is to channel the 

magnetic flux generated by the current flowing around the primary coil, so that 

as much of it as possible also links the secondary coil. The common magnetic flux 

linking the two coils is conventionally denoted in circuit diagrams by a number 

of parallel straight lines drawn between the coils. 

Let us consider a particularly simple transformer in which the primary and 

secondary coils are solenoids sharing the same air-filled core. Suppose that l 

is the length of the core, and A is its cross-sectional area. Let N1 be the total 

number of turns in the primary coil, and let N2 be the total number of turns in 
the secondary coil. Suppose that an alternating voltage 

v1 = V1 cos(ω t) (10.51) 

is fed into the primary circuit from some external AC power source. Here, V1 is 

the peak voltage in the primary circuit, and ω is the alternation frequency (in 
radians per second). The current driven around the primary circuit is written 

i1 = I1 sin(ω t), (10.52) 
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Figure 10.7: Circuit diagram of a transformer. 

 

where I1 is the peak current. This current generates a changing magnetic flux, in 
the core of the solenoid, which links the secondary coil, and, thereby, inductively 
generates the alternating emf 

 

v2 = V2 cos(ω t) (10.53) 

in the secondary circuit, where V2 is the peak voltage. Suppose that this emf 
drives an alternating current 

 

i2 = I2 sin(ω t) (10.54) 

around the secondary circuit, where I2 is the peak current. 

The circuit equation for the primary circuit is written 
 

v − L di1 
− M 

di2 = 0, (10.55) 
1 1 dt dt 

assuming that there is negligible resistance in this circuit. The first term in the 

above equation is the externally generated emf. The second term is the back-emf 

due to the self inductance L1 of the primary coil. The final term is the emf due to 

the mutual inductance M of the primary and secondary coils. In the absence of 

any significant resistance in the primary circuit, these three emfs must add up to 

zero. Equations (10.51), (10.52), (10.54), and (10.55) can be combined to give 

V1 = ω (L1 I1 + M I2), (10.56) 
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since  

d sin(ω t) 

dt 

 

= ω cos(ω t). (10.57) 

The alternating emf generated in the secondary circuit consists of the emf 

generated by the self inductance L2 of the secondary coil, plus the emf generated 
by the mutual inductance of the primary and secondary coils. Thus, 

 

di2 di1 v = L + M . (10.58) 
2 2 dt dt 

Equations (10.52), (10.53), (10.54), (10.57), and (10.58) yield 

V2 = ω (L2 I2 + M I1). (10.59) 

 
Now, the instantaneous power output of the external AC power source which 

drives the primary circuit is 

P1 = i1 v1. (10.60) 

Likewise, the instantaneous electrical energy per unit time transfered inductively 

from the primary to the secondary circuit is 

P2 = i2 v2. (10.61) 

If resistive losses in the primary and secondary circuits are negligible, as is as- 

sumed to be the case, then, by energy conservation, these two powers must equal 

one another at all times. Thus, 
 

 
 

which easily reduces to 

i1 v1 = i2 v2, (10.62) 

 
I1 V1 = I2 V2. (10.63) 

Equations (10.56), (10.59), and (10.63) yield 

I1 V1 = ω (L1 I 2 + M I1 I2) = ω (L2 I 2 + M I1 I2) = I2 V2, (10.64) 

 
which gives 

1 2 
 

 
ω L1 I 2 = ω L2 I 

2, (10.65) 
1 2 
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and, hence, 

I1   
= 

‚
.
, L2 

. (10.66) 
 

Equations (10.63) and (10.66) can be combined to give 

V1   
= 

‚
.
, L1 

. (10.67) 
 

Note that, although the mutual inductance of the two coils is entirely responsible 

for the transfer of energy between the primary and secondary circuits, it is the 

self inductances of the two coils which determine the ratio of the peak voltages 

and peak currents in these circuits. 

Now, from Sect. 10.2, the self inductances of the primary and secondary coils 

are given by L1 = µ0 N 2 A/l and L2 = µ0 N 2 A/l, respectively. It follows that 
1 

 
 
 
 

and, hence, that 

2 

L1 N1  2 
= 

L2 N2 

 

, (10.68) 

V1 
= 

I2 

V2 I1 

= 
N1 

. (10.69) 
N2 

In other words, the ratio of the peak voltages and peak currents in the primary 

and secondary circuits is determined by the ratio of the number of turns in the 

primary and secondary coils. This latter ratio is usually called the turns-ratio of 

the transformer. If the secondary coil contains more turns than the primary coil 

then the peak voltage in the secondary circuit exceeds that in the primary circuit. 

This type of transformer is called a step-up transformer, because it steps up the 

voltage of an AC signal. Note that in a step-up transformer the peak current in 

the secondary circuit is less than the peak current in the primary circuit (as must 

be the case if energy is to be conserved). Thus, a step-up transformer actually 

steps down the current. Likewise, if the secondary coil contains less turns than 

the primary coil then the peak voltage in the secondary circuit is less than that 

in the primary circuit. This type of transformer is called a step-down transformer. 

Note that a step-down transformer actually steps up the current (i.e., the peak 

current in the secondary circuit exceeds that in the primary circuit). 
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AC electricity is generated in power stations at a fairly low peak voltage (i.e., 

something like 440 V), and is consumed by the domestic user at a peak voltage of 

110 V (in the U.S.). However, AC electricity is transmitted from the power station 

to the location where it is consumed at a very high peak voltage (typically 50 kV). 

In fact, as soon as an AC signal comes out of a generator in a power station it is 

fed into a step-up transformer which boosts its peak voltage from a few 

hundred volts to many tens of kilovolts. The output from the step-up 

transformer is fed into a high tension transmission line, which typically 

transports the electricity over many tens of kilometers, and, once the electricity 

has reached its point of consumption, it is fed through a series of step-down 

transformers until, by the time it emerges from a domestic power socket, its peak 

voltage is only 110 V. But, if AC electricity is both generated and consumed at 

comparatively low peak voltages, why go to the trouble of stepping up the 

peak voltage to a very high value at the power station, and then stepping down 

the voltage again once the electricity has reached its point of consumption? Why 

not generate, transmit, and distribute the electricity at a peak voltage of 110 V? 

Well, consider an electric power line which transmits a peak electric power P 

between a power station and a city. We can think of P, which depends on the 

number of consumers in the city, and the nature of the electrical devices which 

they operate, as essentially a fixed number. Suppose that V and I are the peak 

voltage and peak current of the AC signal transmitted along the line, 

respectively. We can think of these numbers as being variable,  since we can 

change them using a transformer.  However,  since P = I V, the product of the 

peak voltage and the peak current must remain constant. Suppose that the 

resistance of the line is R. The peak rate at which electrical energy is lost due 

to ohmic heating in the line is PR  = I2 R, which can be written 

PR = 
P2 R 

. (10.70) 
V2 

Thus, if the power P transmitted down the line is a fixed quantity, as is the resis- 

tance R of the line, then the power lost in the line due to ohmic heating varies like 
the inverse square of the peak voltage in the line. It turns out that even at very 

high voltages, such as 50 kV, the ohmic power losses in transmission lines which 

run over tens of kilometers can amount to up to 20% of the transmitted power. It 

can readily be appreciated that if an attempt were made to transmit AC electric 
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power at a peak voltage of 110 V then the ohmic losses would be so severe that 

virtually none of the power would reach its destination. Thus, it is only possible 

to generate electric power at a central location, transmit it over large distances, 

and then distribute it at its point of consumption, if the transmission is performed 

at a very high peak voltages (the higher, the better). Transformers play a vital 

role in this process because they allow us to step-up and step-down the voltage 

of an AC electric signal very efficiently (a well-designed transformer typically has 

a power loss which is only a few percent of the total power flowing through it). 

Of course, transformers do not work for DC electricity, because the magnetic 

flux generated by the primary coil does not vary in time, and,  therefore,  does 

not induce  an emf in the  secondary coil.   In fact,  there  is  no efficient method 

of stepping-up or stepping-down the voltage of a DC electric signal. Thus, it is 

impossible to efficiently transmit DC electric power over larger distances. This is 

the main reason why commercially generated electricity is AC, rather than DC. 

 

10.7 Impedance Matching 

 
The principle use of transformers is in the transmission and distribution of com- 

mercially generated electricity. However, a second, very important use of trans- 

formers is as impedance matching devices. Recall, from Sect. 7.9, that for max- 

imum power delivery from a source to a load, the load must have the same re- 

sistance as the internal resistance of the source. This can be accomplished by 

using a transformer to match the two resistances. Suppose that the power source 

is connected to the primary circuit, and the load to the secondary. If the resis- 

tance of the load is R, then R = V2/I2. However, from the transformer equation, 

(10.69), we have 

 
 
and 

V = 
N1 

V 
1 

N2 
2 , (10.71) 

I = 
N2 

I 
1 

N1   
2 . (10.72) 
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Now the effective resistance RJ of the load in the primary circuit is given by 

RJ = 
V1

 
 
N1 

!2   V2
  
, (10.73) 

 
which easily reduces to 

I1 
 

RJ = 

N2 

 
N1   

2 

N2 

I2 
 

R. (10.74) 

Thus, by choosing the appropriate turns ratio, the effective load resistance R J can 
be made equal to the internal resistance of the source, no matter what value the 

actual load resistance R takes. This process is called impedance matching. 

 

10.8 Worked Examples 

 
Example 10.1: Mutual induction 

 
Question: Suppose that two insulated wires are wound onto a common cylindri- 

cal former of length l = 0.1 m and cross-sectional area A = 0.05 m2. The number 

of turns in the first wire is N1 = 100, and the number of turns in the second wire 

is N2 = 300. What is the mutual inductance of the two wires? If the current I1 

flowing in the first wire increases uniformly from 0 to 10 A in 0.1 s, what emf is 

generated in the second wire? Does this emf act to drive a current in the second 

wire which circulates in the same sense as the current in the first wire, or the 

opposite sense? 

 
Answer: From Eq. (10.10), the mutual inductance of the two wires is 

 

M = 
µ0 N1 N2 A 

=
 

l 

(1.26 × 10−6) (100) (300) (0.05) 

0.1 
= 0.0188 H. 

From Eq. (10.6), the emf generated around the second loop by the changing 

current in the first loop is 
 

E2 = −M 
dI1 

= −(0.0188) 

dt 

(10 − 0) 
= −1.88 . 

(0.1) 

= 
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The minus sign indicates that this emf acts so as to drive a current in the second 

wire which circulates in the opposite sense to the current flowing in the first wire, 

in accordance with Lenz’s law. If the current in the first wire were decreased, 

instead of increased, then the emf in the second wire would act to drive a current 

which circulates in the same sense as the former current. 

 

Example 10.2: Energy density of electric and magnetic fields 

 
Question: In a certain region of space, the magnetic field has a value of 1.0 

10−2 T, and the electric field has a value of 2.0 106 V m−1. What is the combined 
energy density of the electric and magnetic fields? 

 
Answer: For the electric field, the energy density is 

 

1 
wE =  s0 

2 
E2 = (0.5) (8.85 × 10−12) (2.0 × 106)2 = 18 J m−3. 

For the magnetic field, the energy density is 
 

1 B2 
 

  

(0.5) (1.0 × 10−2)2 −3 
 

wB = = 
2 µ0 

= 40 J m . 
(4π × 10−7) 

The net energy density is the sum of the energy density due to the electric field 

and the energy density due to the magnetic field: 

w = wE + wB = (18 + 40) = 58 J m−3. 

 
Example 10.3: The RL circuit 

 
Question: A coil has a resistance of R = 5.0 Ω and an inductance of L = 100 mH. 
At a particular instant in time after a battery is connected across the coil, the 

current is i = 2.0 A, and is increasing at a rate of di/dt = 20 A s−1. What is the 

voltage V of the battery? What is the time-constant of the circuit? What is the 
final value of the current? 
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Answer: Application of Ohm’s law around the circuit gives [see Eq. (10.27)] 

di 
V = i R + L 

dt 
= (2.0) (5.0) + (0.1) (20) = 12 V. 

The time-constant of the circuit is simply 
 

L 
τ = = 

R 

(0.1) 
 

(5.0) 
= 0.020 s. 

The final steady-state current I is given by Ohm’s law, with the inductor acting 
like a conducting wire, so 

 

V 
I = = 

R 

(12) 
 

(5) 
= 2.4 A. 

 

Example 10.4: The RC circuit 

 
Question: A capacitor of capacitance C = 15 µF is charged up to a voltage of 

V = 800 V, and then discharged by connecting a resistor of resistance R = 8 MΩ 
across its terminals. How long does it take for the charge on the positive plate of 

the capacitor to be reduced to 10% of its original value? 

Answer: Suppose that the resistor is first connected across the capacitor at t = 0. 

The charge q on the positive plate of the capacitor is given by 

q(t) = Q e−t/R C, 

which can be rearranged to give 
 

Q 
= e t/R C. 

q 

Taking the natural logarithm of both sides, we obtain 

ln 

 
Q
! 

= 
  t  

. 

q R C 
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q 

(1 × 10 ) 

= 

× 

 

Hence, 

 
 
where 

t = τ ln 

 
Q
! 

, 

τ = R C = (8) (15) = 120 s 

is the RC time. Since q/Q = 0.1, in this case, it follows that 

t = (120) (ln 10) = 276.3 s. 

 
Example 10.5: The step-up transformer 

 
Question: An electric power plant produces P = 1 GW of AC electric power at a 

peak voltage of V1 = 500 V. If it is desired to transmit this power at a peak volt- 

age of V2 = 50 kV, what is the appropriate turns-ratio of the step-up transformer? 

What peak current I1 would be sent over the transmission line if the peak voltage 

were V1 = 500 V? What peak current I2 would be sent over the transmission line 

if the peak voltage were V2 = 50 kV? What is the ratio of the ohmic powers losses 
in the line in the two cases? 

 
Answer: The appropriate turns-ratio is 

 

N2 (5 × 104) 

N1 (500) 
= 100. 

Since the peak power is given by P = I1 V1, it follows that 

P 
I1 = 

1 

(1 109) 
= 

(500) 

 

= 2 MA. 

Since the peak power remains unchanged after the signal passes through the 

transformer (assuming that there are no power losses in the transformer), we 

have 
P 

I2 = 
2 

9 

= = 20 kA. 
(5 × 104) 

V 

V 
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.
,

 

1 

 

The ratio of the power lost to ohmic heating in the two cases is 
P1 I 2 R 

 
2 × 106  

2 
  

P 
= 

I 2 R 
=  

2 × 104  

= 10000, 

where R is the resistance of the transmission line. Note that the ohmic power loss 
is much greater at low peak voltage than at high peak voltage. 

 

Example 10.6: Impedance matching 

 
Question: An audio amplifier with an internal resistance of 2.0 kΩ is used to drive 

a loudspeaker with a resistance of R = 5.0 Ω. A transformer is used to connect 

the amplifier to the loudspeaker. What is the appropriate turns-ratio of the trans- 

former for optimal power transfer between the amplifier and the loudspeaker? 

 
Answer: We require the transformer to convert the actual resistance R of the 

loudspeaker into an effective resistance RJ which matches the internal resistance 

2.0 kΩ of the amplifier. Thus, from Eq. (10.74), 

N1 
= 

‚ 

RJ 

N2 

‚
.
, 2 × 103 

 

 

= 20. 5 R 
= 
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11 Electromagnetic Waves 

 
11.1 Maxwell’s Equations 

 
In the latter half of the nineteenth century, the Scottish physicist James Clerk 

Maxwell demonstrated that all previously established experimental facts regard- 

ing electric and magnetic fields could be summed up in just four equations. Nowa- 

days, these equations are generally known as Maxwell’s equations. 

The first equation is simply Gauss’ law (see Sect. 4). This equation describes 

how electric charges generate electric fields. Gauss’ law states that: 

The electric flux through any closed surface is equal to the total charge 

enclosed by the surface, divided by s0. 
 

This can be written mathematically as 

E dS = 
Q 

, (11.1) 
S s0 

where S is a  closed surface  enclosing the charge Q. The above expression can 
also be written 

E dS =
 1

 
S s0 

ρ dV, (11.2) 
V 

where V is a volume bounded by the surface S, and ρ is the charge density: i.e., 
the electric charge per unit volume. 

The second equation is the magnetic equivalent of Gauss’ law (see Sect. 8.10). 

This equation describes how the non-existence of magnetic monopoles causes 

magnetic field-lines to form closed loops. Gauss’ law for magnetic fields states 

that: 

The magnetic flux through any closed surface is equal to zero. 

 
This can be written mathematically as 

∫ 

B · dS = 0, (11.3) 
S 
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where S is a closed surface. 

The third equation is Faraday’s law (see Sect. 9.3). This equation describes 

how changing magnetic fields generate electric fields. Faraday’s law states that: 

 
The line integral of the electric field around any closed loop is equal to minus 

the time rate of change of the magnetic flux through the loop. 

 
This can be written mathematically as 

E dS = −
 d

 

C dt 

∫

SJ

 

B · dSJ, (11.4) 

where S J is a surface attached to the loop C. 

The fourth,  and final,  equation is Ampère’s circuital law (see Sect.  8.7).  This 

equation  describes  how  electric  currents  generates  magnetic  fields.    Ampère’s 

circuital law states that: 

 
The line integral of the magnetic field around any closed loop is equal to µ0 
times the algebraic sum of the currents which pass through the loop. 

 
This can be written mathematically as 

I  

B · dr = µ0 I, (11.5) 
 

where I is the net current flowing through loop C. This equation can also be 

written 

I 

B · dr = µ0 

∫ 

j · dSJ, (11.6) 
where SJ is a surface attached to the loop C, and j is the current density: i.e., the 
electrical current per unit area. 

When Maxwell first wrote Eqs. (11.2), (11.3), (11.4), and (11.6) he was basi- 

cally trying to summarize everything which was known at the time about electric 

and magnetic fields in mathematical form. However, the more Maxwell looked at 

I 

C 

C SJ 
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his equations, the more convinced he became that they were incomplete. Even- 

tually, he proposed adding a new term, called the displacement current, to the 

right-hand side of his fourth equation. In fact, Maxwell was able to show that 

(11.2), (11.3), (11.4), and (11.6) are mathematically inconsistent unless the dis- 

placement current term is added to Eq. (11.6). Unfortunately, Maxwell’s demon- 

stration of this fact requires some advanced mathematical techniques which lie 

well beyond the scope of this course. In the following, we shall give a highly 

simplified version of his derivation of the missing term. 
 
 
 
 
 
 
 
 
 

 

switch 
V

 
 

Figure 11.1: Circuit containing a charging capacitor. 
 

Consider a circuit consisting of a parallel plate capacitor of capacitance C in 

series with a resistance R and an steady emf V, as shown in Fig. 11.1. Let A be 

the area of the capacitor plates, and let d be their separation. Suppose that the 

switch is  closed at t = 0.  The current i flowing around  the circuit starts from 

an initial value of I = V/R, and gradually decays to zero on the RC time of the 

circuit (see Sect. 10.5). Simultaneously, the charge q on the positive plates of the 

capacitor starts from zero, and gradually increases to a final value of Q = C V. 

As the charge q varies, so does the potential difference v between the capacitor 

plates, since v = q/C. 

The electric field in the region between the plates is approximately uniform, 
directed perpendicular to the plates (running from the positively charged plate 

to the negatively charged plate), and is of magnitude E = v/d. It follows that 

q = C v = C d E. (11.7) 

In a time interval dt, the charge on the positive plate of the capacitor increases by 

C R 



i 
E 
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an amount dq = C d dE, where dE is the corresponding increase in the electric 

field-strength between the plates. Note that both C and d are time-independent 
quantities. It follows that 

dq 
= C d 

dt 

dE
. (11.8) 

dt 

Now, dq/dt is numerically equal to the instantaneous current i flowing around 
the circuit (since all of the charge which flows around the circuit must accumulate 

on the plates of the capacitor). Also, C = s0 A/d for a parallel plate capacitor. 
Hence, we can write 

dq dE 
i = = C d 

dt dt 
= s0 A 

dE
. (11.9) 

dt 

Since the electric field E is normal to the area A, we can also write 
 

i = s0 
A 

dE⊥ 
. (11.10) 

dt 
 

Equation (11.10) relates the instantaneous current flowing around the circuit 

to the time rate of change of the electric field between the capacitor plates. Ac- 

cording to Eq. (11.6), the current flowing around the circuit generates a magnetic 

field. This field circulates around the current carrying wires connecting the vari- 

ous components of the circuit. However, since there is no actual current flowing 

between the plates of the capacitor, no magnetic field is generated in this region, 

according to Eq. (11.6). Maxwell demonstrated that for reasons of mathematical 

self-consistency there must, in fact, be a magnetic field generated in the region 

between the plates of the capacitor. Furthermore, this magnetic field must be the 

same as that which would be generated if the current i (i.e., the same current as 

that which flows around the rest of the circuit) flowed between the plates. Of 

course, there is no actual current flowing between the plates. However, there is a 

changing electric field. Maxwell argued that a changing electric field constitutes 

an effective current (i.e., it generates a magnetic field in just the same manner 

as an actual current). For historical reasons (which do not particularly interest 

us at the moment), Maxwell called this type of current a displacement current. 

Since the displacement current ID flowing between the plates of the capacitor 

must equal the current i flowing  around the rest of the circuit, it  follows from 
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Eq. (11.10) that  

ID = s0 
A 

dE⊥ 
. (11.11) 

dt 

Equation (11.11) was derived for the special case of the changing electric field 

generated in the region between the plates of a charging parallel plate capaci- 

tor.   Nevertheless,  this equation turns out to be completely general.   Note that 

A E⊥ is equal to the electric flux ΦE between the plates of the capacitor. Thus, 

the most general expression for the displacement current passing through some 

closed loop is 

ID = s0 
dΦE 

, (11.12) 
dt 

where ΦE is the electric flux through the loop. 

According to Maxwell’s argument, a displacement current is just as effective at 

generating a magnetic field as a real current.  Thus, we need to modify Ampère’s 

circuital law to take displacement currents into account. The modified law, which 

is known as the Ampère-Maxwell law, is written 

 

The line integral of the electric field around any closed loop is equal to µ0 
times the algebraic sum of the actual currents and which pass through the 

loop plus µ0 times the displacement current passing through the loop. 
 
This can be written mathematically as 

I  

B · dr = µ0 (I + ID), (11.13) 

where C is a loop through which the electric current I and the displacement 

current ID pass. This equation can also be written 

I 

B · dr = µ0 

∫

SJ

 

j · dSJ + µ0 
 d 

s0 
dt 

∫

SJ

 

E · dSJ, (11.14) 

where S J is a surface attached to the loop C. 

Equations (11.2), (11.3), (11.4), and (11.14) are known collectively as Maxwell’s 

equations. They constitute a complete and mathematically self-consistent descrip- 

tion of the behaviour of electric and magnetic fields. 

C 

C 
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11.2 Electromagnetic Waves 

 
One of the first things that Maxwell did with his four equations, once he had 

obtained them, was to look for wave-like solutions. Maxwell knew that the wave- 

like solutions of the equations of gas dynamics correspond to sound waves, and 

the wave-like solutions of the equations of fluid dynamics correspond to gravity 

waves in water, so he reasoned that if his equations possessed wave-like solutions 

then these would correspond to a completely new type of wave, which he called 

an electromagnetic wave. 

Maxwell was primarily interested in electromagnetic waves which can propa- 

gate through a vacuum (i.e., a region containing no charges or currents). Now, 

in a vacuum, Maxwell’s equations reduce to 

I 

E · dS,  =  0, (11.15) 

I 

B · dS  =  0, (11.16) 

E dr = −
 d

 
C dt 

∫

SJ

 
B · dSJ, (11.17) 

I 

B · dr  = µ0 

 d 
s0 

dt 

∫

SJ

 
E · dSJ, (11.18) 

where S is a closed surface, and S J a surface attached to some loop C. Note 

that, with the addition of the displacement current term on the right-hand side of 

Eq. (11.18), these equations exhibit a nice symmetry between electric and mag- 

netic fields. Unfortunately, Maxwell’s mathematical proof that the above equa- 

tions possess wave-like solutions lies well beyond the scope of this course. We 

can, nevertheless, still write down these solutions, and comment on them. 

Consider a plane electromagnetic wave propagating along the z-axis. Accord- 
ing to Maxwell’s calculations, the electric and magnetic fields associated with 
such a wave take the form 

Ex = E0 cos[2π (z/λ − f t)], (11.19) 

By = B0 cos[2π (z/λ − f t)]. (11.20) 

S 

C 
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Note that the fields are periodic in both time and space. The oscillation frequency 

(in hertz) of the fields at a given point in space is f. The equation of a wave crest 
is 

z
 
— f t = N, (11.21) 

λ 

where N is an integer. It can be seen that the distance along the z-axis between 

successive wave crests is given by λ. This distance is conventionally termed the 

wavelength. Note that each wave crest propagates along the z-axis. In a time inter- 

val dt, the Nth wave crest moves a distance dz = λ f dt, according to Eq. (11.21). 

Hence, the velocity c = dz/dt with which the wave propagates along the z-axis 
is given by 

c = f λ. (11.22) 
 

Maxwell was able to establish that electromagnetic waves possess the follow- 

ing properties: 

 
1. The magnetic field oscillates in phase with the electric field. In other words, 

a wave maximum of the magnetic field always coincides with a wave maxi- 

mum of the electric field in both time and space. 

2. The electric field is always perpendicular to the magnetic field, and both 

fields are directed at right-angles to the direction of propagation of the wave. 

In fact, the wave propagates in the direction E B. Electromagnetic waves 

are clearly a type of transverse wave. 

3. For a z-directed wave, the electric field is free to oscillate in any direction 

which lies in the x-y plane. The direction in which the electric field oscillates 

is conventionally termed the direction of polarization of the wave.  Thus, 

Eqs. (11.19) represent a plane electromagnetic wave which propagates along 

the z-axis, and is polarized in the x-direction. 

4. The maximum amplitudes of the electric and the magnetic fields are related 

via 

E0 = c B0. (11.23) 
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5. There is no constraint on the possible frequency or wavelength of elec- 

tromagnetic waves. However, the propagation velocity of electromagnetic 

waves is fixed, and takes the value 
 

1 
c = 

 

µ0 s0 
. (11.24) 

 

According to Eqs. (11.17) and (11.18), a changing magnetic field generates 

an electric field, and a changing electric field generates a magnetic field.  Thus, 

we can think of the propagation of an electromagnetic field through a vacuum as 

due to a kind of “leap-frog” effect, in which a changing electric field generates a 

magnetic field, which, in turn, generates an electric field, and so on. Note that the 

displacement current term in Eq. (11.18) plays a crucial role in the propagation 

of electromagnetic waves.  Indeed,  without this  term,  a  changing electric field 

is incapable of generating a magnetic field, and so there can be no leap-frog 

effect. Electromagnetic waves have many properties in common with other types 

of wave (e.g., sound waves). However, they are unique in one respect: i.e., they 

are able to propagate through a vacuum. All other types of waves require some 

sort of medium through which to propagate. 

Maxwell deduced that the speed of propagation of an electromagnetic wave 

through a vacuum is entirely determined by the constants µ0 and s0 [see Eq. (11.24)]. 
The former constant is related to the strength of the magnetic field generated by 

a steady current, whereas the latter constant is related to the strength of the elec- 

tric field generated by a stationary charge. The values of both constants were 

well known in Maxwell’s day.    In modern units, µ0 = 4π     10−7 N s2 C−2 and 

s0 = 8.854 10−12 C2 N−1 m−2. Thus, when Maxwell calculated the velocity of 

electromagnetic waves he obtained 
 

1 8 

c = q

(4π × 10−7) (8.854 × 10−12) 
= 2.998 × 10

 

m s−1 
. (11.25) 

Now, Maxwell knew [from the work of Fizeau (1849) and Foucault (1850)] that 

the velocity of light was about 3 108 m s−1. The remarkable agreement be- 
tween this experimentally determined velocity and his theoretical prediction for 
the velocity of electromagnetic waves immediately lead Maxwell to hypothesize 

√ 
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that light is a form of electromagnetic wave.   Of course, this hypothesis turned 

out to be correct. We can still appreciate that Maxwell’s achievement in identify- 

ing light as a form of electromagnetic wave was quite remarkable. After all, his 

equations were derived from the results of bench-top laboratory experiments in- 

volving charges, batteries, coils, and currents, etc., which apparently had nothing 

whatsoever to do with light. 

Maxwell was able to make another remarkable prediction. The wavelength of 

light was well known in the late nineteenth century from studies of diffraction 

through slits, etc. Visible light actually occupies a surprisingly narrow range of 

wavelengths. The shortest wavelength blue light which is visible has a wave- 

length of λ = 0.40 microns (one micron is 10−6 meters). The longest wavelength 

red light which is visible has a wavelength of λ = 0.76 microns. However, there is 

nothing in Maxwell’s analysis which suggested that this particular range of wave- 

lengths is special. In principle, electromagnetic waves can have any wavelength. 

Maxwell concluded that visible light forms a small element of a vast spectrum of 

previously undiscovered types of electromagnetic radiation. 

Since Maxwell’s time, virtually all of the non-visible parts of the electromag- 

netic spectrum have been observed. Table 11.1 gives a brief guide to the electro- 

magnetic spectrum. Electromagnetic waves are of particular importance because 

they are our only source of information regarding the Universe around us. Radio 

waves and microwaves (which are comparatively hard to scatter) have provided 

much of our knowledge about the centre of the Galaxy. This is completely unob- 

servable in visible light, which is strongly scattered by interstellar gas and dust 

lying in the galactic plane. For the same reason, the spiral arms of the Galaxy can 

only be mapped out using radio waves. Infrared radiation is useful for detecting 

proto-stars which are not yet hot enough to emit visible radiation. Of course, 

visible radiation is still the mainstay of astronomy. Satellite based ultraviolet 

observations have yielded invaluable insights into the structure and distribution 

of distant galaxies. Finally, X-ray and γ-ray astronomy usually concentrates on 

exotic objects in the Galaxy such as pulsars and supernova remnants. 
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Radiation Type Wavelength Range (m) 

Gamma Rays < 10−11 

X-Rays 10−11–10−9 

Ultraviolet 10−9–10−7 

Visible 10−7–10−6 

Infrared 10−6–10−4 

Microwave 10−4–10−1 

TV-FM 10−1–101 

Radio > 101 

Table 11.1: The electromagnetic spectrum. 

 
11.3 Effect of Dielectric Materials 

 
It turns out that electromagnetic waves cannot propagate very far through a con- 

ducting medium before they are either absorbed or reflected. However, elec- 

tromagnetic waves are able to propagate through transparent dielectric media 

without difficultly. The speed of electromagnetic waves propagating through a 

dielectric medium is given by 

cJ = √
K

, (11.26) 

where K is the dielectric constant of the medium in question, and c the velocity 

of light in a vacuum. Since K > 1 for dielectric materials, we conclude that: 

 
The velocity with which electromagnetic waves propagate through a dielectric 

medium is always less than the velocity with which they propagate through 

a vacuum. 

 

 
11.4 Energy in Electromagnetic Waves 

 
From Sect. 10.3, the energy stored per unit volume in an electromagnetic wave 

is given by 
s0 E

2 
w = 

2 

B2 
+ 

2 µ0 
. (11.27) 



11 ELECTROMAGNETIC WAVES 11.4 Energy in Electromagnetic Waves 

198 

 

 

Since, B = E/c, for an electromagnetic wave, and c = 1/
√

µ0 s0, the above 
expression yields 

s0 E
2 

w = 
2 

or 

E2 
+ 

2 µ0 c2 

s0 E
2 

= 
2 

s0 E
2 

+ 
2 

, (11.28) 

w = s0 E
2. (11.29) 

It is clear, from the above, that half the energy in an electromagnetic wave is 

carried by the electric field, and the other half is carried by the magnetic field. 

As an electromagnetic field propagates it transports energy. Let P be the power 

per unit area carried by an electromagnetic wave: i.e., P is the energy transported 

per unit time across a unit cross-sectional area perpendicular to the direction in 

which the wave is traveling. Consider a plane electromagnetic wave propagating 

along the z-axis. The wave propagates a distance c dt along the z-axis in a time 

interval dt. If we consider a cross-sectional area A at right-angles to the z-axis, 

then in a time dt the wave sweeps through a volume dV of space, where dV = 

A c dt. The amount of energy filling this volume is 

dW = w dV = s0 E2 A c dt. (11.30) 

It follows, from the definition of P, that the power per unit area carried by the 
wave is given by 

 
 
so that 

dW 
P = = 

A dt 

s0 E
2 A c dt 

A dt 
, (11.31) 

P = s0 E
2 c. (11.32) 

Since half the energy in an electromagnetic wave is carried by the electric field, 
and the other half is carried by the magnetic field, it is conventional to convert 
the above expression into a form involving both the electric and magnetic field 

strengths. Since, E = c B, we have 

 

 
Thus, 

P = s0 c E (c B) = s0 
c2 E B = 

E B
. (11.33) 

µ0 

P = 
E B

. (11.34) 
µ0 
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Equation (11.34) specifies the power per unit area transported by an electro- 

magnetic wave at any given instant of time. The peak power is given by 

P = 
E0 B0 

, (11.35) 
0 

µ0
 

 

where E0 and B0 are the peak amplitudes of the oscillatory electric and magnetic 
fields, respectively. It is easily demonstrated that the average power per unit area 
transported by an electromagnetic wave is half the peak power, so that 

S = P̄  = 
E0 B0 

2 µ0 

s0 c E 2 
= = 

2 

2 
0 . (11.36) 

2 µ0 

The quantity S is conventionally termed the intensity of the wave. 

 

11.5 Worked Examples 

 
Example 11.1: Electromagnetic waves 

 
Question: Consider electromagnetic waves of wavelength λ = 30 cm in air. What 
is the frequency of such waves? If such waves pass from air into a block of quartz, 

for which K = 4.3, what is their new speed, frequency, and wavelength? 
 

Answer: Since, f λ = c, assuming that the dielectric constant of air is approxi- 
mately unity, it follows that 

c 
f = = 

λ 

(3 108) 9 

(0.3) 
= 1 × 10 Hz. 

The new speed of the waves as they pass propagate through the quartz is 

cJ = 
c 

√
K 

= 

(3 108) 8 

√
4.3 

= 1.4 × 10 m s−1. 

The frequency of electromagnetic waves does not change when the medium 

through which the waves are propagating changes. Since c J = f λ for electro- 
magnetic waves propagating through a dielectric medium, we have 

 

λquartz = 
cJ (1.4 108) 

= 
f (1 × 109) 

 c B 

= 14 cm. 
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Example 11.2: Intensity of electromagnetic radiation 

 
Question: Suppose that the intensity of the sunlight falling on the ground on a 

particular day is 140 W m−2. What are the peak values of the electric and mag- 
netic fields associated with the incident radiation? 

 
Answer: According to Eq. (11.36), the peak electric field is given by 

E  = 

‚
.
.
,  2 S 

= 

‚

  (2) (140)  

(8.85 × 10−12) (3 × 108) 

 

= 324.7 V m−1. 
 

Likewise, the peak magnetic field is given by 

.

‚ 

−6 2 µ0 S (2) (4π × 10−7) (140) 
 

B0 = 
c 

= , 

(3 × 108) 
= 1.083 × 10 T. 

 

Note, of course, that B0 = E0/c. 
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12 Geometric Optics 

 
12.1 Introduction 

 
Optics deals with the propagation of light through transparent media, and its in- 

teraction with mirrors, lenses, slits, etc. Optical effects can be divided into two 

broad classes. Firstly, those which can be explained without reference to the fact 

that light is fundamentally a wave phenomenon, and, secondly, those which can 

only be explained on the basis that light is a wave phenomenon. Let us, for the 

moment, consider the former class of effects. It might seem somewhat surprising 

that any optical effects at all can be accounted for without reference to waves. 

After all, as we saw in Sect. 11, light really is a wave phenomenon. It turns out, 

however, that wave effects are only crucially important when the wavelength 

of the wave is either comparable to, or much larger than, the size of the objects 

with which it interacts (see Sect. 14). When the wavelength of the wave becomes 

much smaller than the size of the objects with which it interacts then the inter- 

actions can be accounted for in a very simple geometric manner, as explained in 

this section. Since the wavelength of visible light is only of order a micron, it 

is very easy to find situations in which its wavelength is very much smaller than 

the size of the objects with which it interacts. Thus, “wave-less” optics, which is 

usually called geometric optics, has a very wide range of applications. 

In geometric optics, light is treated as a set of rays, emanating from a source, 

which propagate through transparent media according to a set of three simple 

laws. The first law is the law of rectilinear propagation, which states that light 

rays propagating through a homogeneous transparent medium do so in straight- 

lines. The second law is the law of refiection, which governs the interaction of 

light rays with conducting surfaces (e.g., metallic mirrors). The third law is the 

law of refraction, which governs the behaviour of light rays as they traverse a 

sharp boundary between two different transparent media (e.g., air and glass). 
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12.2 History of Geometric Optics 

 
Let us first consider the law of rectilinear propagation. The earliest surviving opti- 

cal treatise, Euclid’s Catoptrics1 (280 BC), recognized that light travels in straight- 

lines in homogeneous media. However, following the teachings of Plato, Euclid 

(and all other ancient Greeks) thought that light rays emanate from the eye, and 

intercept external objects, which are thereby “seen” by the observer. The ancient 

Greeks also thought that the speed with which light rays emerge from the eye is 

very high, if not infinite. After all, they argued, an observer with his eyes closed 

can open them and immediately see the distant stars. 

Hero of Alexandria, in his Catoptrics (first century BC), also maintained that 

light travels with infinite speed. His argument was by analogy with the free fall 

of objects.  If we throw an object horizontally with a relatively small velocity 

then it manifestly does not move in a straight-line. However, if we throw an 

object horizontally with a relatively large velocity then it appears to move in a 

straight-line to begin with, but eventually deviates from this path. The larger the 

velocity with which the object is thrown, the longer the initial period of apparent 

rectilinear motion. Hero reasoned that if an object were thrown with an infinite 

velocity then it would move in a straight-line forever. Thus, light, which travels 

in a straight-line, must move with an infinite velocity. The erroneous idea that 

light travels with an infinite velocity persisted until 1676, when the Danish as- 

tronomer  Olaf  Römer  demonstrated  that  light  must  have  a  finite  velocity,  using 

his timings of the successive eclipses of the satellites of Jupiter, as they passed 

into the shadow of the planet. 

The first person to realize that light actually travels from the object seen to the 

eye was the Arab philosopher “Alhazan” (whose real name was Abu’ali al-hasan 

ibn al-haytham), who published a book on optics in about 1000 AD. 

The law of refiection was correctly formulated in Euclid’s book. Hero of Alexan- 

dria demonstrated that, by adopting the rule that light rays always travel between 

two points by the shortest path (or, more rigorously, the extremal path), it is pos- 

sible to derive the law of reflection using geometry. 

1Catoptrics is the ancient Greek word for reflection. 
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The law of refraction was studied experimentally by Claudius Ptolemy (100- 

170 AD), and is reported in Book V of his Catoptrics. Ptolemy formulated a very 

inaccurate version of the law of refraction, which only works when the light rays 

are almost normally incident on the interface in question. Despite its obvious 

inaccuracy, Ptolemy’s theory of refraction persisted for nearly 1500 years. The 

true law of refraction was discovered empirically by the Dutch mathematician 

Willebrord  Snell  in 1621.  However,  the French philosopher  René Descartes was 

the first to publish, in his La Dioptrique (1637), the now familiar formulation of 

the law of refraction in terms of sines. Although there was much controversy at 

the time regarding plagiarism, Descartes was apparently unaware of Snell’s work. 

Thus, in English speaking countries the law of refraction is called “Snell’s law”, 

but in French speaking countries it is called “Descartes’ law”. 

In 1658, the French mathematician Pierre de Fermat demonstrated that all 

three of the laws of geometric optics can be accounted for on the assumption that 

light always travels between two points on the path which takes the least time 

(or, more rigorously, the extremal time). Fermat’s ideas were an extension of 

those of Hero of Alexandria. Fermat’s (correct) derivation of the law of refraction 

depended crucially on his (correct) assumption that light travels more slowly in 

dense media than it does in air. Unfortunately, many famous scientists, including 

Newton, maintained that light travels faster in dense media than it does in air. 

This erroneous idea held up progress in optics for over one hundred years, and 

was not conclusively disproved until the mid-nineteenth century. Incidentally, 

Fermat’s principle of least time can only be justified using wave theory. 

 

12.3 Law of Geometric Propagation 

 
According to geometric optics, an opaque object illuminated by a point source of 

light casts a sharp shadow whose dimensions can be calculated using geometry. 

The method of calculation is very straightforward. The source emits light-rays 

uniformly in all directions. These rays can be represented as straight lines ra- 

diating from the source. The light-rays propagate away from the source until 

they encounter an opaque object, at which point they stop. This is illustrated in 
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Figure 12.1: An opaque object illuminated by a point light source. 

 
Fig. 12.1. 

For an extended light source, each element of the source emits light-rays, just 

like a point source. Rays emanating from different elements of the source are 

assumed not to interfere with one another. Figure 12.2 shows how the shadow 

cast by an opaque sphere illuminated by a spherical light source is calculated us- 

ing a small number of critical light-rays. The shadow consists of a perfectly black 

disk called the umbra, surrounded by a ring of gradually diminishing darkness 

called the penumbra.  In the umbra,  all of the light-rays emitted by the source 

are blocked by the opaque sphere, whereas in the penumbra only some of the 

rays emitted by the source are blocked by the sphere. As was well-known to the 

ancient Greeks, if the light-source represents the Sun, and the opaque sphere the 

Moon, then at a point on the Earth’s surface which is situated inside the umbra 

the Sun is totally eclipsed, whereas at a point on the Earth’s surface which is 

situated in the penumbra the Sun is only partially eclipsed. 

In the wave picture of light, a wave-front is defined as a surface joining all 

adjacent points on a wave that have the same phase (e.g., all maxima, or minima, 

of the electric field). A light-ray is simply a line which runs perpendicular to 

the wave-fronts at all points along the path of the wave. This is illustrated in 
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Figure 12.2: An opaque object illuminated by an extended light source. 
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Figure 12.3: Relationship between wave-fronts and light-rays. 
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Figure 12.4: The law of refiection 

 
Fig. 12.3. Thus, the law of rectilinear propagation of light-rays also specifies how 

wave-fronts propagate through homogeneous media. Of course, this law is only 

valid in the limit where the wavelength of the wave is much smaller than the 

dimensions of any obstacles which it encounters. 

 

12.4 Law of Reflection 

 
The law of reflection governs the reflection of light-rays off smooth conducting 

surfaces, such as polished metal or metal-coated glass mirrors. 

Consider a light-ray incident on a plane mirror, as shown in Fig. 12.4. The law 
of reflection states that the incident ray, the reflected ray, and the normal to the 
surface of the mirror all lie in the same plane. Furthermore, the angle of reflection 

r is equal to the angle of incidence i. Both angles are measured with respect to 
the normal to the mirror. 

The law of reflection also holds for non-plane mirrors, provided that the nor- 

mal at any point on the mirror is understood to be the outward pointing normal 

to the local tangent plane of the mirror at that point.   For rough surfaces,  the 

law of reflection remains valid. It predicts that rays incident at slightly different 

points on the surface are reflected in completely different directions, because the 
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normal to a rough surface varies in direction very strongly from point to point on 

the surface. This type of reflection is called diffuse refiection, and is what enables 

us to see non-shiny objects. 

 

12.5 Law of Refraction 

 
The law of refraction, which is generally known as Snell’s law, governs the be- 

haviour of light-rays as they propagate across a sharp interface between two 

transparent dielectric media. 

Consider a light-ray incident on a plane interface between two transparent 

dielectric media, labelled 1 and 2, as shown in Fig. 12.5. The law of refraction 

states that the incident ray, the refracted ray, and the normal to the interface, all 

lie in the same plane. Furthermore, 

n1 sin θ1 = n2 sin θ2, (12.1) 

where θ1 is the angle subtended between the incident ray and the normal to 

the interface, and θ2 is the angle subtended between the refracted ray and the 

normal to the interface. The quantities n1 and n2 are termed the refractive indices 

of media 1 and 2, respectively. Thus, the law of refraction predicts that a light-ray 

always deviates more towards the normal in the optically denser medium: i.e., 

the medium with the higher refractive index. Note that n2 > n1 in the figure. The 

law of refraction also holds for non-planar interfaces, provided that the normal 

to the interface at any given point is understood to be the normal to the local 

tangent plane of the interface at that point. 

By definition, the refractive index n of a dielectric medium of dielectric con- 

stant K is given by 
n = 

√
K. (12.2)

 

Table 12.1 shows the refractive indices of some common materials (for yellow 

light of wavelength λ = 589 nm). 

The law of refraction follows directly from the fact that the speed v with which 
light propagates through a dielectric medium is inversely proportional to the re- 



12 GEOMETRIC OPTICS 12.5 Law of Refraction 

208 

 

 

medium 1 

1 

interface 

medium 2 
2

 

refracted ray 

 
 
 
 

 

incident ray normal 

 

Figure 12.5: The law of refraction. 
 
 
 
 
 
 
 
 
 

Material n 

Air (STP) 1.00029 
Water 1.33 
Ice 1.31 
Glass: 

Light flint 1.58 
Heavy flint 1.65 
Heaviest flint 1.89 

Diamond 2.42 

Table 12.1: Refractive indices of some common materials at λ = 589 nm. 
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fractive index of the medium (see Sect. 11.3). In fact, 
c 

v = , (12.3) 
n 

where c is the speed of light in a vacuum. Consider two parallel light-rays, a and 

b, incident at an angle θ1 with respect to the normal to the interface between two 

dielectric media, 1 and 2.  Let the refractive indices of the two media be n1  and 

n2 respectively, with n2 > n1. It is clear from Fig. 12.6 that ray b must move from 

point B to point Q, in medium 1, in the same time interval, ∆t, in which ray a 

moves between points A and P, in medium 2. Now, the speed of light in medium 
1 is v1 = c/n1, whereas the speed of light in medium 2 is v2 = c/n2. It follows 

that the length BQ is given by v1 ∆t, whereas the length AP is given by v2 ∆t. By 
trigonometry, 

and 

sin θ1 = 
AQ 

= 
v1 ∆t

, (12.4) 
AQ 

Hence, 

sin θ2 = 
AQ 

= 
v2 ∆t

. (12.5) 
AQ 

sin θ1 

sin θ2 
= 

v1 

v2 
= 

n2 

n1 
, (12.6) 

which can be rearranged to give Snell’s law. Note that the lines AB and PQ 

represent wave-fronts in media 1 and 2, respectively, and, therefore, cross rays a 

and b at right-angles. 

When light passes from one dielectric medium to another its velocity v changes, 

but its frequency f remains unchanged. Since, v = f λ for all waves, where λ is the 

wavelength, it follows that the wavelength of light must also change as it crosses 

an interface between two different media. Suppose that light propagates from 

medium 1 to medium 2. Let n1 and n2 be the refractive indices of the two media, 

respectively. The ratio of the wave-lengths in the two media is given by 

λ2 
= 

v2/f 

λ1 v1/f 
= 

v2 

v1 
= 

n1 
. (12.7) 

n2 

Thus, as light moves from air to glass its wavelength decreases. 

BQ 

AP 
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Figure 12.6: Derivation of Snell’s law. 

 
12.6 Total Internal Reflection 

 
An interesting effect known as total internal refiection can occur when light at- 
tempts to move from a medium having a given refractive index to a medium hav- 
ing a lower refractive index.  Suppose that light crosses an interface from medium 

1 to medium 2, where n2 < n1. According to Snell’s law, 

sin θ2 = 
n1 

n2 
sin θ1 . (12.8) 

Since n1/n2 > 1, it follows that θ2 > θ1. For relatively small angles of incidence, 

part of the light is refracted into the less optically dense medium, and part is 

reflected (there is always some reflection at an interface). When the angle of 

incidence θ1 is such that the angle of refraction θ2 = 90◦, the refracted ray runs 

along the interface between the two media. This particular angle of incidence is 

called the critical angle, θc. For θ1 > θc, there is no refracted ray. Instead, all of 

the light incident on the interface is reflected—see Fig. 12.7. This effect is called 

total internal refiection, and occurs whenever the angle of incidence exceeds the 

critical angle. Now when θ1 = θc, we have θ2 = 90◦, and so sin θ2 = 1. It follows 

b 
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a 
medium 1 

 
B 
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Figure 12.7: Total internal refiection. 
 

from Eq. (12.8) that  
sin θc 

= 
n2 

. (12.9) 
n1 

 

Consider a fish (or a diver) swimming in a clear pond. As Fig. 12.8 makes 

clear, if the fish looks upwards it sees the sky, but if it looks at too large an angle 

to the vertical it sees the bottom of the pond reflected on the surface of the water. 

The critical angle to the vertical at which the fish first sees the reflection of the 

bottom of the pond is, of course, equal to the critical angle θc for total internal 

reflection at an air-water interface. From Eq. (12.9), this critical angle is given 

by 

θc = sin−1(1.00/1.33) = 48.8◦, (12.10) 

since the refractive index of air is approximately unity, and the refractive index 

of water is 1.33. 

When total internal reflection occurs at an interface the interface in question 

acts as a perfect refiector. This allows 45◦ crown glass prisms to be used, in place 
of mirrors, to reflect light in binoculars. This is illustrated in Fig. 12.9. The angles 
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Figure 12.8: A fish’s eye view. 

 
of incidence on the sides of the prism are all 45◦, which is greater than the critical 

angle 41◦ for crown glass (at an air-glass interface). 

 

Figure 12.9: Arrangement of prisms used in binoculars. 

 

Diamonds, for which n = 2.42, have a critical angle θc which is only 24◦. The 

facets on a diamond are cut in such a manner that much of the incident light on 

the diamond is reflected many times by successive total internal reflections before 

it escapes. This effect gives rise to the characteristic sparkling of cut diamonds. 

air 


surface 

c 

bottom 
water 
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Total internal reflection enables light to be transmitted inside thin glass fibers. 

The light is internally reflected off the sides of the fiber, and, therefore, follows 

the path of the fiber. Light can actually be transmitted around corners using a 

glass fiber, provided that the bends in the fiber are not too sharp, so that the 

light always strikes the sides of the fiber at angles greater than the critical angle. 

The whole field of fiber optics, with its many useful applications, is based on this 

effect. 

 

12.7 Dispersion 

 
When a wave is refracted into a dielectric medium whose refractive index varies 

with wavelength then the angle of refraction also varies with wavelength. If the 

incident wave is not monochromatic, but is, instead, composed of a mixture of 

waves of different wavelengths, then each component wave is refracted through 

a different angle. This phenomenon is called dispersion. 

Figure 12.10 shows the refractive indices of some common materials as func- 

tions of wavelength in the visible range. It can be seen that the refractive index 

always decreases with increasing wavelength in the visible range. In other words, 

violet light is always refracted more strongly than red light. 

Suppose that a parallel-sided glass slab is placed in a beam of white light. 

Dispersion takes place inside the slab,  but,  since the rays which emerge from 

the slab all run parallel to one another, the dispersed colours recombine to form 

white light again, and no dispersion is observed except at the very edges of the 

beam. This is illustrated in Fig. 12.11. It follows that the dispersion of white light 

through a parallel-sided glass slab is not generally a noticeable effect. 

Suppose that a glass prism is placed in a beam of white light.   Dispersion 

takes place inside the prism, and, since the emerging rays are not parallel for 

different colours, the dispersion is clearly noticeable, especially if the emerging 

rays are projected onto a screen which is placed a long way from the prism. This 

is illustrated in Fig. 12.12. It is clear that a glass prism is far more effective at 

separating white light into its component colours than a parallel-sided glass slab 
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Figure 12.10: Refractive indices of some common materials as functions of wavelength. 
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Figure 12.11: Dispersion of light by a parallel-sided glass slab. 
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Figure 12.12: Dispersion of light by a glass prism. 

 
(which explains why prisms are generally employed to perform this task). 

 

12.8 Rainbows 

 
The most well-known, naturally occurring phenomenon which involves the dis- 
persion of light is a rainbow. A rainbow is an arc of light, with an angular radius 

of 42◦, centred on a direction which is opposite to that of the Sun in the sky (i.e., 
it is centred on the direction of propagation of the Sun’s rays)—see Fig. 12.13. 
Thus, if the Sun is low in the sky (i.e., close to the horizon) we see almost a 
full semi-circle.  If the Sun is higher in the sky we see a smaller arc,  and if the 

Sun is more than 42◦ above the horizon then there is no rainbow (for viewers on 
the Earth’s surface). Observers on a hill may see parts of the rainbow below the 
horizontal: i.e., an arc greater than a semi-circle. Passengers on an airplane can 
sometimes see a full circle. 

The colours of a rainbow vary smoothly from red on the outside of the arc to 

violet on the inside. A rainbow has a diffuse inner edge, and a sharp outer edge. 

Sometimes a secondary arc is observed. This is fainter and larger (with an angular 

radius of 50◦) than the primary arc, and the order of the colours is reversed (i.e., 

red is on the inside, and violet on the outside). The secondary arc has a diffuse 

outer edge, and a sharp inner edge. The sky between the two arcs sometimes 

R 

air glass prism 
V 
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Figure 12.13: A rainbow. 

 
appears to be less bright than the sky elsewhere. This region is called Alexander’s 

dark band, in honour of Alexander of Aphrodisias who described it some 1800 

years ago. 

Rainbows have been studied since ancient times. Aristotle wrote extensively 

on rainbows in his De Meteorologica,2 and even speculated that a rainbow is 

caused by the reflection of sunlight from the drops of water in a cloud. 

The first scientific study of rainbows was performed by Theodoric, professor of 

theology at Freiburg, in the fourteenth century. He studied the path of a light-ray 

through a spherical globe of water in his laboratory, and suggested that the globe 

be thought of as a model of a single falling raindrop. A ray, from the Sun, entering 

the drop, is refracted at the air-water interface, undergoes internal reflection from 

the inside surface of the drop, and then leaves the drop in a backward direction, 

after being again refracted at the surface. Thus, looking away from the Sun, 

towards a cloud of raindrops, one sees an enhancement of light due to these rays. 

Theodoric did not explain why this enhancement is concentrated at a particular 

angle from the direction of the Sun’s rays, or why the light is split into different 

colours. 
2“On Weather”. 
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The first person to give a full explanation of how a rainbow is formed was 

René Descartes.  He showed mathematically that if one traces the path through a 

spherical raindrop of parallel light-rays entering the drop at different points on 

its surface, each emerges in a different direction, but there is a concentration of 

emerging rays at an angle of 42◦ from the reverse direction to the incident rays, in 

exact agreement with the observed angular size of rainbows. Furthermore, since 

some colours are refracted more than others in a raindrop, the “rainbow angle” 

is slightly different for each colour, so a raindrop disperses the Sun’s light into a 

set of nearly overlapping coloured arcs. 

Figure 12.13 illustrated Descartes’ theory in more detail. It shows parallel light-

rays entering a spherical raindrop. Only rays entering the upper half con- tribute to 

the rainbow effect. Let us follow the rays, one by one, from the top down to the 

middle of the drop. We observe the following pattern. Rays which enter near the 

top of the drop emerge going in almost the reverse direction, but a few degrees 

below the horizontal. Rays entering a little further below the top emerge at a greater 

angle below the horizontal. Eventually, we reach a critical ray, called the rainbow 

ray, which emerges in an angle 42◦ below the horizontal. Rays entering the drop 

lower than the rainbow ray emerge at an angle less than 42◦. Thus, the rainbow 

ray is the one which deviates most from the reverse di- rection to the incident rays. 

This variation, with 42◦ being the maximum angle of deviation from the reverse 

direction, leads to a bunching of rays at that angle, and, hence, to an unusually 

bright arc of reflected light centred around 42◦ from the reverse direction. The 

arc has a sharp outer edge, since reflected light cannot deviate by more than 42◦ 

from the reverse direction, and a diffuse inner edge, since light can deviate by less 

than 42◦ from the reverse direction: 42◦ is just the most likely angle of deviation. 

Finally, since the rainbow angle varies slightly with wavelength (because the 

refractive index of water varies slightly with wave- length), the arcs corresponding 

to each colour appear at slightly different angles relative to the reverse direction to 

the incident rays. We expect violet light to be refracted more strongly than red 

light in a raindrop. It is, therefore, clear, from Fig. 12.14, that the red arc 

deviates slightly more from the reverse direction to the incident rays than the 

violet arc. In other words, violet is concentrated on the inside of the rainbow, and 

red is concentrated on the outside. 
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Figure 12.14: Descarte’s theory of the rainbow. 

 
Descartes was also able to show that light-rays which are internally reflected 

twice inside a raindrop emerge concentrated at an angle of 50◦ from the reverse 

direction to the incident rays. Of course, this angle corresponds exactly to the 

angular size of the secondary rainbow sometimes seen outside the first. This 

rainbow is naturally less intense than the primary rainbow, since a light-ray loses 

some of its intensity at each reflection or refraction event. Note that 50◦ repre- 

sents the angle of maximum deviation of doubly reflected light from the reverse 

direction (i.e., doubly reflected light can deviate by more than this angle, but not 

by less). Thus, we expect the secondary rainbow to have a diffuse outer edge, 

and a sharp inner edge. We also expect doubly reflected violet light to be re- 

fracted more strongly in a raindrop than doubly reflected red light. It follows, 

from Fig. 12.15, that the red secondary arc deviates slightly less from the reverse 

direction to the incident rays than the violet secondary arc.  In other words, red 

is concentrated on the inside of the secondary rainbow, and violet on the outside. 

Since no reflected light emerges between the primary and secondary rainbows 

(i.e., in the angular range 42◦ to 50◦, relative to the reverse direction), we nat- 

urally expect this region of the sky to look slightly less bright than the other 
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Figure 12.15: Rainbow rays for the primary and secondary arcs of a rainbow. 

 
surrounding regions of the sky, which explains Alexander’s dark band. 

 

12.9 Worked Examples 

 
Example 12.1: The corner-cube refiector 

 
Question: Two mirrors are placed at right-angles to one another. Show that a 
light-ray incident from any direction in the plane perpendicular to both mirrors 

is reflected through 180◦. 

Answer:  Consider the diagram.  We are effectively being asked to prove that 

α = i1, for any value of i1. Now, from trigonometry, 

i2 = 90◦ − r1. 

But, from the law of reflection, r1 = i1 and i2 = r2, so 

r2 = 90◦ − i1. 
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Trigonometry also yields 

mirror 

 

 

α = 90◦ − r2. 

It follows from the previous two equations that 

α = 90◦ − (90◦ − i1) = i1. 

Hence, α = i1, for all values of i1. 

It can easily be appreciated that a combination of three mutually perpendic- 

ular mirrors would reflect a light-ray incident from any direction through 180◦. 
Such a combination of mirrors is called a corner-cube refiector. Astronauts on the 
Apollo 11 mission (1969) left a panel of corner-cube reflectors on the surface of 
the Moon. These reflectors have been used ever since to measure the Earth-Moon 
distance via laser range finding (basically, a laser beam is fired from the Earth, 
reflects off the corner-cube reflectors on the Moon, and then returns to the Earth. 
The time of travel of the beam can easily be converted into the Earth-Moon dis- 

tance). The Earth-Moon distance can be measured to within an accuracy of 3 cm 
using this method. 
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Example 12,2: Refraction 

 
Question: A light-ray of wavelength λ1 = 589 nm traveling through air is inci- 
dent on a smooth, flat slab of crown glass (refractive index 1.52) at an angle of 

θ1 = 30.0◦ to the normal. What is the angle of refraction? What is the wave- 

length λ2 of the light inside the glass? What is the frequency f of the light inside 
the glass? 

 

Answer: Snell’s law can be written 

sin θ2 

 

= 
n1 

n2 

 

sin θ1. 

In this case, θ1 = 30◦, n1 1.00 (here, we neglect the slight deviation of the 

refractive index of air from that of a vacuum), and n2 = 1.52. Thus, 
 

 

 
giving 

sin θ2 
(1.00) 

= (0.5) = 0.329, 
(1.52) 

 

θ2 = 19.2◦ 

as the angle of refraction (measured with respect to the normal). 

The wavelength λ2 of the light inside the glass is given by 

λ = 
n1 

λ 
2 

n2 
1 

(1.00) 
= (589) = 387.5 . 

(1.52) 
 

The frequency f of the light inside the glass is exactly the same as the frequency 
outside the glass, and is given by 

 

c 
f = 

n1 λ1 

(3 108) 14 

= 
(1.00) (589 × 10−9) 

= 5.09 × 10
 

Hz. 
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13 Paraxial Optics 

 
13.1 Spherical Mirrors 

 
A spherical mirror is a mirror which has the shape of a piece cut out of a spherical 

surface. There are two types of spherical mirrors: concave, and convex. These 

are illustrated in Fig. 13.1. The most commonly occurring examples of concave 

mirrors are shaving mirrors and makeup mirrors. As is well-known, these types 

of mirrors magnify objects placed close to them. The most commonly occurring 

examples of convex mirrors are the passenger-side wing mirrors of cars. These 

type of mirrors have wider fields of view than equivalent flat mirrors, but objects 

which appear in them generally look smaller (and, therefore, farther away) than 

they actually are. 

reflecting surface 

 
 
 

light 

reflecting surface 

 
 
 

light 
 
 

  
 
 
 

Figure 13.1: A concave (left) and a convex (right) mirror 
. 

 

Let us now introduce a few key concepts which are needed to study image 

formation by a concave spherical mirror.  As illustrated in Fig. 13.2, the normal 

to the centre of the mirror is called the principal axis. The mirror is assumed 

to be rotationally symmetric about this axis. Hence, we can represent a three- 

dimensional mirror in a two-dimensional diagram, without loss of generality. The 

point V at which the principal axis touches the surface of the mirror is called the 
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vertex. The point C, on the principal axis, which is equidistant from all points on 

the reflecting surface of the mirror is called the centre of curvature. The distance 

along the principal axis from point C to point V is called the radius of curvature 

of the mirror, and is denoted R. It is found experimentally that rays striking a 

concave mirror parallel to its principal axis, and not too far away from this axis, 

are reflected by the mirror such that they all pass through the same point F on 

the principal axis. This point, which is lies between the centre of curvature and 

the vertex, is called the focal point, or focus, of the mirror. The distance along the 

principal axis from the focus to the vertex is called the focal length of the mirror, 

and is denoted f. 
 
 
 
 
 
 

 

V 
 
 
 
 
 
 

f 
 

R 

Figure 13.2: Image formation by a concave mirror. 

 

In our study of concave mirrors, we are going to assume that all light-rays 

which strike a mirror parallel to its principal axis (e.g., all rays emanating from a 

distant object) are brought to a focus at the same point F. Of course, as mentioned 

above, this is only an approximation. It turns out that as rays from a distant 

object depart further from the principal axis of a concave mirror they are brought 

to a focus ever closer to the mirror, as shown in Fig. 13.3. This lack of perfect 

focusing of a spherical mirror is called spherical aberration. The approximation 

in which we neglect spherical aberration is called the paraxial approximation.3 
3“Paraxial” is derived from ancient Greek roots, and means “close to the axis”. 

reflecting surface 

light−ray 

principal axis C F 
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Figure 13.3: Spherical aberration in a concave mirror. 

 
Likewise, the study of image formation under this approximation is known as 

paraxial optics. This field of optics was first investigated systematically by the 

famous German mathematician Karl Friedrich Gauss in 1841. 

It can be demonstrated, by geometry, that the only type of mirror which does 

not suffer from spherical aberration is a parabolic mirror (i.e., a mirror whose 

reflecting surface is the surface of revolution of a parabola). Thus, a ray traveling 

parallel to the principal axis of a parabolic mirror is brought to a focus at the 

same point F, no matter how far the ray is from the axis. Since the path of a light-

ray is completely reversible, it follows that a light source placed at the focus F of 

a parabolic mirror yields a perfectly parallel beam of light,  after the light has 

reflected off the surface of the mirror. Parabolic mirrors are more difficult, and, 

therefore, more expensive, to make than spherical mirrors. Thus, parabolic 

mirrors are only used in situations where the spherical aberration of a conven- 

tional spherical mirror would be a serious problem. The receiving dishes of radio 

telescopes are generally parabolic. They reflect the incoming radio waves from 

(very) distant astronomical sources, and bring them to a focus at a single point, 

where a detector is placed.  In this case, since the sources are extremely faint, it 

is imperative to avoid the signal losses which would be associated with spheri- 

cal aberration. A car headlight consists of a light-bulb placed at the focus of a 
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parabolic reflector. The use of a parabolic reflector enables the headlight to cast 

a very straight beam of light ahead of the car. The beam would be nowhere near 

as well-focused were a spherical reflector used instead. 

 

13.2 Image Formation by Concave Mirrors 

 
There are two alternative methods of locating the image formed by a concave 

mirror. The first is purely graphical, and the second uses simple algebraic analy- 

sis. 

The graphical method of locating the image produced by a concave mirror con- 

sists of drawing light-rays emanating from key points on the object, and finding 

where these rays are brought to a focus by the mirror. This task can be accom- 

plished using just four simple rules: 

 
1. An incident ray which is parallel to the principal axis is reflected through the 

focus F of the mirror. 

2. An incident ray which passes through the focus F of the mirror is reflected 
parallel to the principal axis. 

3. An incident ray which passes through the centre of curvature C of the mirror 
is reflected back along its own path (since it is normally incident on the 
mirror). 

4. An incident ray which strikes the mirror at its vertex V is reflected such that 
its angle of incidence with respect to the principal axis is equal to its angle 
of reflection. 

 
The validity of these rules in the paraxial approximation is fairly self-evident. 

Consider an object ST which is placed a distance p from a concave spherical 
mirror, as shown in Fig. 13.4. For the sake of definiteness, let us suppose that the 

object distance p is greater than the focal length f of the mirror. Each point on 
the object is assumed to radiate light-rays in all directions. Consider four light- 

rays emanating from the tip T of the object which strike the mirror, as shown 
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Figure 13.4: Formation of a real image by a concave mirror. 

 
in the figure. The reflected rays are constructed using rules 1–4 above, and the 

rays are labelled accordingly. It can be seen that the reflected rays all come 

together at some point T J. Thus, T J is the image of T (i.e., if we were to place 

a small projection screen at T J then we would see an image of the tip on the 

screen). As is easily demonstrated, rays emanating from other parts of the object 

are brought into focus in the vicinity of T J such that a complete image of the 

object is produced between SJ and T J (obviously, point SJ is the image of point 

S). This image could be viewed by projecting it onto a screen placed between 

points SJ and T J. Such an image is termed a real image. Note that the image SJT J 

would also be directly visible to an observer looking straight at the mirror from 

a distance greater than the image distance q (since the observer’s eyes could not 

tell that the light-rays diverging from the image were in anyway different from 

those which would emanate from a real object). According to the figure, the 

image is inverted with respect to the object, and is also magnified. 

Figure 13.5 shows what happens when the object distance p is less than the 

focal length f. In this case, the image appears to an observer looking straight at 
the mirror to be located behind the mirror. For instance, rays emanating from 

3 

T 1 

S’ C F 

S 
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T’ 2 
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Figure 13.5: Formation of a virtual image by a concave mirror. 

 
the tip T of the object appear, after reflection from the mirror, to come from a 

point T J which is behind the mirror. Note that only two rays are used to locate 

T J, for the sake of clarity. In fact, two is the minimum number of rays needed to 

locate a point image. Of course, the image behind the mirror cannot be viewed 

by projecting it onto a screen, because there are no real light-rays behind the 

mirror. This type of image is termed a virtual image. The characteristic difference 

between a real image and a virtual image is that, immediately after reflection 

from the mirror, light-rays emitted by the object converge on a real image, but 

diverge from a virtual image. According to Fig. 13.5, the image is upright with 

respect to the object, and is also magnified. 

The graphical method described above is fine for developing an intuitive un- 

derstanding of image formation by concave mirrors, or for checking a calculation, 

but is a bit too cumbersome for everyday use. The analytic method described be- 

low is far more flexible. 

Consider an object ST placed a distance p in front of a concave mirror of radius 

of curvature R. In order to find the image SJT J produced by the mirror, we draw 

two rays from T to the mirror—see Fig. 13.6. The first, labelled 1, travels from T 

to the vertex V and is reflected such that its angle of incidence θ equals its angle 

  2    T’ 

T 
3 

C F V 

S S’ 
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Figure 13.6: Image formation by a concave mirror. 

 
of reflection.  The second ray, labelled 2, passes through the centre of curvature 

C of the mirror, strikes the mirror at point B, and is reflected back along its own 

path. The two rays meet at point T J. Thus, SJT J is the image of ST, since point SJ 
must lie on the principal axis. 

In the triangle STV, we have tan θ = h/p, and in the triangle SJT JV we have 

tan θ = −hJ/q, where p is the object distance, and q is the image distance. Here, 

h is the height of the object, and h J is the height of the image. By convention, h J 
is a negative number, since the image is inverted (if the image were upright then 

hJ would be a positive number). It follows that 

tan θ = 
h
 

p 

−hJ 
= . (13.1) 

q 

Thus, the magnification M of the image with respect to the object is given by 

M = 
hJ

 

h 
= − . (13.2) 

p 

By convention, M is negative if the image is inverted with respect to the object, 
and positive if the image is upright. It is clear that the magnification of the image 
is just determined by the ratio of the image and object distances from the vertex. 

T 

1 
h 
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→ ∞ 

 

From triangles STC and SJT JC, we have tan α = h/(p − R) and tan α = 

−hJ/(R − q), respectively. These expressions yield 
 

tan α =  
h 

p − R 

hJ 
= − 

R − q 

 

. (13.3) 

Equations (13.2) and (13.3) can be combined to give 
 

 
 

which easily reduces to 

−hJ 
 

h 

R − q 
= 

p − R 

= 
q

, (13.4) 

p 

1 1 2 
+ = 

p q R 
. (13.5) 

This expression relates the object distance, the image distance, and the radius of 

curvature of the mirror. 
 

For an object which is very far away from the mirror (i.e., p ), so that 
light-rays from the object are parallel to the principal axis, we expect the image 

to form at the focal point F of the mirror. Thus, in this case, q = f, where f is the 
focal length of the mirror, and Eq. (13.5) reduces to 

 

 

 
The above expression yields 

1 
0 + = 

f 
 

R 

2 
. (13.6) 

R 

f = . (13.7) 
2 

In other words, in the paraxial approximation, the focal length of a concave 

spherical mirror is half of its radius of curvature.  Equations (13.5) and (13.7) 

can be combined to give 
1 1 1 

+ = 
p q f 

. (13.8) 

 

The above expression was derived for the case of a real image. However, as is 
easily demonstrated, it also applies to virtual images provided that the following 
sign convention is adopted. For real images, which always form in front of the 

mirror, the image distance q is positive. For virtual images, which always form 
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Position of object Position of image Character of image 
 

At At F Real, zero size 
Between and C Between F and C Real, inverted, diminished 
At C  At C Real, inverted, same size 
Between C and F Between C and Real, inverted, magnified 
At F At 
Between F and V From − to V Virtual, upright, magnified 
At V At V  Virtual, upright, same size 

Table 13.1: Rules for image formation by concave mirrors. 

 
behind the mirror, the image distance q is negative. It immediately follows, from 

Eq. (13.2), that real images are always inverted, and virtual images are always 

upright.  Table 13.1 shows how the location and character of the image formed 

in a concave spherical mirror depend on the location of the object, according to 

Eqs. (13.2) and (13.8). It is clear that the modus operandi of a shaving mirror, or 

a makeup mirror, is to place the object (i.e., a face) between the mirror and the 

focus of the mirror. The image is upright, (apparently) located behind the mirror, 

and magnified. 

 

13.3 Image Formation by Convex Mirrors 

 
The definitions of the principal axis, centre of curvature C, radius of curvature R, 

and the vertex V, of a convex mirror are analogous to the corresponding defini- 
tions for a concave mirror. When parallel light-rays strike a convex mirror they 

are reflected such that they appear to emanate from a single point F located be- 
hind the mirror,  as shown in Fig.  13.7.  This point is called the virtual focus of 

the mirror. The focal length f of the mirror is simply the distance between V and 
F. As is easily demonstrated, in the paraxial approximation, the focal length of a 
convex mirror is half of its radius of curvature. 

There are, again, two alternative methods of locating the image formed by a 

convex mirror. The first is graphical, and the second analytical. 

According to the graphical method, the image produced by a convex mirror 

can always be located by drawing a ray diagram according to four simple rules: 
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Figure 13.7: The virtual focus of a convex mirror. 

 
1. An incident ray which is parallel to the principal axis is reflected as if it came 

from the virtual focus F of the mirror. 

2. An incident ray which is directed towards the virtual focus F of the mirror is 
reflected parallel to the principal axis. 

3. An incident ray which is directed towards the centre of curvature C of the 
mirror is reflected back along its own path (since it is normally incident on 
the mirror). 

4. An incident ray which strikes the mirror at its vertex V is reflected such that 
its angle of incidence with respect to the principal axis is equal to its angle 
of reflection. 

 
The validity of these rules in the paraxial approximation is, again, fairly self- 

evident. 

In the example shown in Fig. 13.8, two rays are used to locate the image SJT J 

of an object ST placed in front of the mirror. It can be seen that the image is 
virtual, upright, and diminished. 

light-ray 

V F C 

f 
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Figure 13.8: Image formation by a convex mirror. 
 

Position of object Position of image Character of image 
At At F Virtual, zero size 
Between and V Between F and V Virtual, upright, diminished 
At V  At V Virtual, upright, same size 

Table 13.2: Rules for image formation by convex mirrors. 

 
As is easily demonstrated, application of the analytical method to image for- 

mation by convex mirrors again yields Eq. (13.2) for the magnification of the 

image, and Eq. (13.8) for the location of the image, provided that we adopt the 

following sign convention. The focal length f of a convex mirror is redefined to 

be minus the distance between points V and F.  In other words, the focal length 

of a concave mirror, with a real focus, is always positive, and the focal length of a 

convex mirror, with a virtual focus, is always negative. Table 13.2 shows how the 

location and character of the image formed in a convex spherical mirror depend 

on the location of the object, according to Eqs. (13.2) and (13.8) (with f < 0). 

In summary, the formation of an image by a spherical mirror involves the 

crossing of light-rays emitted by the object and reflected off the mirror. If the 

light-rays actually cross in front of the mirror then the image is real. If the light- 

rays do not actually cross, but appear to cross when projected backwards behind 

the mirror, then the image is virtual. A real image can be projected onto a screen, 

T 1 
 
3 

T’ 

S S’ F C 
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a virtual image cannot. However, both types of images can be seen by an observer, 

and photographed by a camera. The magnification of the image is specified by 

Eq. (13.2), and the location of the image is determined by Eq. (13.8). These 

two formulae can be used to characterize both real and virtual images formed by 

either concave or convex mirrors, provided that the following sign conventions 

are observed: 

 

1. The height h J of the image is positive if the image is upright, with respect to 
the object, and negative if the image is inverted. 

2. The magnification M of the image is positive if the image is upright, with 
respect to the object, and negative if the image is inverted. 

3. The image distance q is positive if the image is real, and, therefore, located 
in front of the mirror, and negative if the image is virtual, and, therefore, 
located behind the mirror. 

4. The focal length f of the mirror is positive if the mirror is concave, so that 

the focal point F is located in front of the mirror, and negative if the mirror 

is convex, so that the focal point F is located behind the mirror. 

 
Note that the front side of the mirror is defined to be the side from which the 

light is incident. 

 

13.4 Image Formation by Plane Mirrors 

 
Both concave and convex spherical mirrors asymptote to plane mirrors in the 

limit in which their radii of curvature R tend to infinity. In other words, a plane 
mirror can be treated as either a concave or a convex mirror for which R 

Now, if R → ∞, then f = ±R/2 → ∞, so 1/f → 0, and Eq. (13.8) yields 
 
 

1 1 1 + = 
p q f 

or 

= 0, (13.9) 

q = −p. (13.10) 

. → ∞ 
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Figure 13.9: The optic axis of a lens. 

 
Thus, for a plane mirror the image is virtual, and is located as far behind the 

mirror as the object is in front of the mirror. According to Eq. (13.2), the magni- 

fication of the image is given by 

q 
M = − 

p 
= 1. (13.11) 

Clearly, the image is upright, since M > 0, and is the same size as the object, since 

|M| = 1.  However, an image seen in a plane mirror does differ from the original 
object in one important respect:  i.e., left and right are swapped over.  In other 
words, a right-hand looks like a left-hand in a plane mirror, and vice versa. 

 

13.5 Thin Lenses 

 
A lens is a transparent medium (usually glass) bounded by two curved sur- 
faces (generally either spherical,  cylindrical,  or plane surfaces).  As illustrated 
in Fig. 13.9, the line which passes normally through both bounding surfaces of 

a lens is called the optic axis. The point O on the optic axis which lies midway 
between the two bounding surfaces is called the optic centre. 

There are two basic kinds of lenses: converging, and diverging. A converging 

lens brings all incident light-rays parallel to its optic axis together at a point F, 

behind the lens, called the focal point, or focus, of the lens. A diverging lens 

spreads out all incident light-rays parallel to its optic axis so that they appear to 

diverge from a virtual focal point F in front of the lens.  Here,  the front side of 

the lens is conventionally defined to be the side from which the light is incident. 

lens O 

optic axis 
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Figure 13.10: The focii of converging (top) and diverging (bottom) lens. 

 
The differing effects of a converging and a diverging lens on incident light-rays 

parallel to the optic axis (i.e., emanating from a distant object) are illustrated in 

Fig. 13.10. 

Lenses, like mirrors, suffer from spherical aberration, which causes light-rays 

parallel to the optic axis, but a relatively long way from the axis, to be brought 

to a focus, or a virtual focus, closer to the lens than light-rays which are relatively 

close to the axis. It turns out that spherical aberration in lenses can be completely 

cured by using lenses whose bounding surfaces are non-spherical. However, such 

lenses are more difficult, and, therefore, more expensive, to manufacture than 

conventional lenses whose bounding surfaces are spherical. Thus, the former sort 

of lens is only employed in situations where the spherical aberration of a conven- 

tional lens would be a serious problem. The usual method of curing spherical 

aberration is to use combinations of conventional lenses (i.e., compound lenses). 

In the following, we shall make use of the paraxial approximation, in which spher- 

ical aberration is completely ignored, and all light-rays parallel to the optic axis 

light−ray O 
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f 
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Figure 13.11: A thin lens. 

 

are assumed to be brought to a focus, or a virtual focus, at the same point F. This 
approximation is valid as long as the radius of the lens is small compared to the 
object distance and the image distance. 

The focal length of a lens, which is usually denoted f, is defined as the distance 

between the optic centre O and the focal point F, as shown in Fig. 13.10. How- 

ever, by convention, converging lenses have positive focal lengths, and diverging 

lenses have negative focal lengths. In other words, if the focal point lies behind 

the lens then the focal length is positive, and if the focal point lies in front of the 

lens then the focal length is negative. 

Consider a conventional lens whose bounding surfaces are spherical.  Let Cf 

be the centre of curvature of the front surface, and Cb the centre of curvature of 

the back surface. The radius of curvature Rf of the front surface is the distance 

between the optic centre O and the point Cf.  Likewise, the radius of curvature 

Rb of the back surface is the distance between points O and Cb. However, by 

convention, the radius of curvature of a bounding surface is positive if its centre 

of curvature lies behind the lens, and negative if its centre of curvature lies in front 

of the lens. Thus, in Fig. 13.11, Rf is positive and Rb is negative. 

In the paraxial approximation, it is possible to find a simple formula relating 

the focal length f of a lens to the radii of curvature, Rf and Rb, of its front and 

R 
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back bounding surfaces. This formula is written 

1 
= (n − 1) 

1
 

f Rf 

—
 1 

, (13.12) 

Rb 

where n is the refractive index of the lens. The above formula is usually called the 

lens-maker’s formula, and was discovered by Descartes. Note that the lens-maker’s 

formula is only valid for a thin lens whose thickness is small compared to its focal 

length. What Eq. (13.12) is basically telling us is that light-rays which pass from 

air to glass through a convex surface are focused, whereas light-rays which pass 

from air to glass through a concave surface are defocused. Furthermore, since 

light-rays are reversible, it follows that rays which pass from glass to air through 

a convex surface are defocused, whereas rays which pass from air to glass through 

a concave surface are focused. Note that the net focusing or defocusing action of a 

lens is due to the difference in the radii of curvature of its two bounding surfaces. 

Suppose that a certain lens has a focal length f. What happens to the focal 
length if we turn the lens around, so that its front bounding surface becomes 
its back bounding surface, and vice versa?  It is easily seen that when the lens 

is turned around Rf −Rb and Rb −Rf.  However, the focal length f of the 
lens is invariant under this transformation, according to Eq. (13.12). Thus, the 

focal length of a lens is the same for light incident from either side. In particular, a 

converging lens remains a converging lens when it is turned around, and likewise 

for a diverging lens. 

The most commonly occurring type of converging lens is a bi-convex, or double- 

convex, lens, for which Rf > 0 and Rb < 0. In this type of lens, both bounding 
surfaces have a focusing effect on light-rays passing through the lens. Another 

fairly common type of converging lens is a plano-convex lens, for which Rf > 0 and 
Rb = . In this type of lens, only the curved bounding surface has a focusing 

effect on light-rays. The plane surface has no focusing or defocusing effect. A 

less common type of converging lens is a convex-meniscus lens, for which Rf > 0 

and Rb > 0, with Rf < Rb. In this type of lens, the front bounding surface has a 
focusing effect on light-rays, whereas the back bounding surface has a defocusing 

effect, but the focusing effect of the front surface wins out. 

The most commonly occurring type of diverging lens is a bi-concave, or double- 
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concave, lens, for which Rf < 0 and Rb > 0. In this type of lens, both bounding 
surfaces have a defocusing effect on light-rays passing through the lens. Another 

fairly common type of converging lens is a plano-concave lens, for which Rf < 
0 and Rb  = . In this type of lens, only the curved bounding surface has a 
defocusing effect on light-rays. The plane surface has no focusing or defocusing 
effect. A less common type of converging lens is a concave-meniscus lens, for 

which Rf  < 0 and Rb  < 0, with Rf  < |Rb|.  In this type of lens, the front bounding 
surface has a defocusing effect on light-rays, whereas the back bounding surface 
has a focusing effect, but the defocusing effect of the front surface wins out. 

Figure 13.12 shows the various types of lenses mentioned above.  Note that, 

as a general rule, converging lenses are thicker at the centre than at the edges, 

whereas diverging lenses are thicker at the edges than at the centre. 
 

bi-convex plano-convex convex-meniscus 
 
 
 
 

 

bi-concave plano-concave concave-meniscus 
 

Figure 13.12: Various different types of thin lens. 
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13.6 Image Formation by Thin Lenses 

 
There are two alternative methods of locating the image formed by a thin lens. 

Just as for spherical mirrors, the first method is graphical, and the second analyt- 

ical. 

The graphical method of locating the image formed by a thin lens involves 

drawing light-rays emanating from key points on the object, and finding where 

these rays are brought to a focus by the lens. This task can be accomplished using 

a small number of simple rules. 

Consider a converging lens. It is helpful to define two focal points for such a 

lens. The first, the so-called image focus, denoted Fi, is defined as the point behind 

the lens to which all incident light-rays parallel to the optic axis converge after 

passing through the lens. This is the same as the focal point F defined previously. 

The second, the so-called object focus, denoted Fo, is defined as the position in 

front of the lens for which rays emitted from a point source of light placed at 

that position would be refracted parallel to the optic axis after passing through 

the lens. It is easily demonstrated that the object focus Fo is as far in front of the 

optic centre O of the lens as the image focus Fi is behind O. The distance from 

the optic centre to either focus is, of course, equal to the focal length f of the lens. 

The image produced by a converging lens can be located using just three simple 

rules: 

 
1. An incident ray which is parallel to the optic axis is refracted through the 

image focus Fi of the lens. 

2. An incident ray which passes through the object focus Fo of the lens is re- 
fracted parallel to the optic axis. 

3. An incident ray which passes through the optic centre O of the lens is not 
refracted at all. 

 
The last rule is only an approximation. It turns out that although a light-ray 

which passes through the optic centre of the lens does not change direction, it is 
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displaced slightly to one side. However, this displacement is negligible for a thin 

lens. 

Figure 13.13 illustrates how the image SJT J of an object ST placed in front 

of a converging lens is located using the above rules.   In fact,  the three  rays, 1–

3, emanating from the tip T of the object, are constructed using rules 1–3, 

respectively. Note that the image is real (since light-rays actually cross), inverted, 

and diminished. 
 

 

f f 

Figure 13.13: Image formation by a converging lens. 

 
 

Consider a diverging lens.  It is again helpful to define two focal points for 

such a lens. The image focus Fi is defined as the point in front of the lens from 
which all incident light-rays parallel to the optic axis appear to diverge after 

passing through the lens. This is the same as the focal point F defined earlier. 

The object focus Fo is defined as the point behind the lens to which all incident 
light-rays which are refracted parallel to the optic axis after passing through the 

lens appear to converge. Both foci are located a distance f from the optic centre, 

where f is the focal length of the lens. The image produced by a diverging lens 
can be located using the following three rules: 

 
1. An incident ray which is parallel to the optic axis is refracted as if it came 

from the image focus Fi of the lens. 
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Figure 13.14: Image formation by a diverging lens. 

 

2. An incident ray which is directed towards the object focus Fo of the lens is 
refracted parallel to the optic axis. 

3. An incident ray which passes through the optic centre O of the lens is not 
refracted at all. 

 
Figure 13.14 illustrates how the image SJT J of an object ST placed in front of 

a diverging lens is located using the above rules. In fact, the three rays, 1–3, em- 

anating from the tip T of the object, are constructed using rules 1–3, respectively. 

Note that the image is virtual (since light-rays do not actually cross), upright, and 

diminished. 

Let us now investigate the analytical method. Consider an object of height h 

placed a distance p in front of a converging lens. Suppose that a real image of 

height h J is formed a distance q behind the lens. As is illustrated in Fig. 13.15, 
the image can be located using rules 1 and 3, discussed above. 

Now, the right-angled triangles SOT and SJOT J are similar, so 

−hJ 

h 

OSJ 
= 

OS 

= 
q

. (13.13) 

p 
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Figure 13.15: Image formation by a converging lens. 

 

Here, we have adopted the convention that the image height h J is negative if the 
image is inverted. The magnification of a thin converging lens is given by 

M = 
hJ

 

h 
= − . (13.14) 

p 

This is the same as the expression (13.2) for the magnification of a spherical 

mirror. Note that we are again adopting the convention that the magnification is 

negative if the image is inverted. 

The right-angled triangles OPF and SJT JF are also similar, and so 

SJT J 
 

 

OP 
or 

FSJ 
= 

OF 
, (13.15) 

−hJ 

h 

q q − f 
= = 

p f 
. (13.16) 

The above expression can be rearranged to give 

1 1 1 
+ = 

p q f 
. (13.17) 

Note that this is exactly the same as the formula (13.8) relating the image and 

object distances in a spherical mirror. 
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Position of object Position of image Character of image 
 

At + At F Real, zero size 

Between + and Vo Between F and Vi Real, inverted, diminished 
At Vo  At Vi Real, inverted, same size 

Between Vo and F Between Vi and − Real, inverted, magnified 
At F At − 
Between F and O From + to O Virtual, upright, magnified 
At O At O  Virtual, upright, same size 

Table 13.3: Rules for image formation by converging lenses. 
 

Position of object Position of image Character of image 
 

At 
Between and 

At Fi 
and 

Virtual, zero size 
Virtual, upright, diminished 

   
 

Table 13.4: Rules for image formation by diverging lenses. 

 
Although formulae (13.14) and (13.17) were derived for the case of a real 

image formed by a converging lens, they also apply to virtual images, and to 
images formed by diverging lenses, provided that the following sign conventions 

are adopted. First of all, as we have already mentioned, the focal length f of 
a converging lens is positive, and the focal length of a diverging lens is negative. 

Secondly, the image distance q is positive if the image is real, and, therefore, 
located behind the lens, and negative if the image is virtual, and, therefore, located 
in front of the lens. It immediately follows, from Eq. (13.14), that real images are 
always inverted, and virtual images are always upright. 

Table 13.3 shows how the location and character of the image formed by a 

converging lens depend on the location of the object. Here, the point Vo is located 

on the optic axis two focal lengths in front of the optic centre, and the point Vi 

is located on the optic axis two focal lengths behind the optic centre. Note the 

almost exact analogy between the image forming properties of a converging lens 

and those of a concave spherical mirror. 

Table 13.4 shows how the location and character of the image formed by a di- 

verging lens depend on the location of the object. Note the almost exact analogy 

between the image forming properties of a diverging lens and those of a convex 

spherical mirror. 

Virtual, upright, same size O At 
i O 
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Finally, let us reiterate the sign conventions used to determine the positions 

and characters of the images formed by thin lenses: 

 

1. The height h J of the image is positive if the image is upright, with respect to 
the object, and negative if the image is inverted. 

2. The magnification M of the image is positive if the image is upright, with 
respect to the object, and negative if the image is inverted. 

3. The image distance q is positive if the image is real, and, therefore, located 
behind the lens, and negative if the image is virtual, and, therefore, located 
in front of the lens. 

4. The focal length f of the lens is positive if the lens is converging, so that 
the image focus Fi is located behind the lens, and negative if the lens is 

diverging, so that the image focus Fi is located in front of the lens. 

 
Note that the front side of the lens is defined to be the side from which the light 

is incident. 

 

13.7 Chromatic aberration 

 
We have seen that both mirrors and lenses suffer from spherical aberration, an ef- 

fect which limits the clarity and sharpness of the images formed by such devices. 

However, lenses also suffer from another type of abberation called chromatic ab- 

beration. This occurs because the index of refraction of the glass in a lens is 

different for different wavelengths. We have seen that a prism refracts violet 

light more than red light. The same is true of lenses. As a result, a simple lens 

focuses violet light closer to the lens than it focuses red light. Hence, white light 

produces a slightly blurred image of an object, with coloured edges. 

For many years, chromatic abberation was a sufficiently serious problem for 

lenses that scientists tried to find ways of reducing the number of lenses in scien- 

tific instruments, or even eliminating them all together. For instance, Isaac New- 

ton developed a type of telescope, now called the Newtonian telescope, which 
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uses a mirror instead of a lens to collect light.   However,  in 1758,  John Dol- 

lond, an English optician, discovered a way to eliminate chromatic abberation. 

He combined two lenses, one converging, the other diverging, to make an achro- 

matic doublet. The two lenses in an achromatic doublet are made of different 

type of glass with indices of refraction chosen such that the combination brings 

any two chosen colours to the same sharp focus. 

Modern scientific instruments use compound lenses (i.e., combinations of sim- 

ple lenses) to simultaneously eliminate both chromatic and spherical aberration. 

 

13.8 Worked Examples 

 
Example 13.1: Concave mirrors 

 
Question: An object of height h = 4 cm is placed a distance p = 15 cm in front of 

a concave mirror of focal length f = 20 cm. What is the height, location, and na- 
ture of the image? Suppose that the object is moved to a new position a distance 

p = 25 cm in front of the mirror. What now is the height, location, and nature of 
the image? 

 

Answer: According to Eq. (13.8), the image distance q is given by 

1 
q = 

1/f − 1/p 

1 
= 

(1/20 − 1/15) 
= −60 cm. 

Thus, the image is virtual (since q < 0), and is located 60 cm behind the mirror. 

According to Eq. (13.2), the magnification M of the image is given by 
 

q 
M = − 

p 

(−60) 
= − 

(15) 
= 4. 

Thus, the image is upright (since M > 0), and magnified by a factor of 4. It 

follows that the height h J of the image is given by 

hJ = M h = (4) (4) = 16 cm. 
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If the object is moved such that p = 25 cm then the new image distance is 
given by 

1 
q = 

1/f − 1/p 

1 
= 

(1/20 − 1/25) 
= 100 cm. 

Thus, the new image is real (since q > 0), and is located 100 cm in front of the 
mirror. The new magnification is given by 

 

q 
M = − 

p 

(100) 
= − 

(15) 
= −6.67. 

Thus, the image is inverted (since M < 0), and magnified by a factor of 6.67. It 
follows that the new height of the image is 

h J = M h = −(6.67) (4) = −26.67 cm. 

Note that the height is negative because the image is inverted. 

 

Example 13.2: Convex mirrors 

 
Question: How far must an object be placed in front of a convex mirror of radius 

of curvature R = 50 cm in order to ensure that the size of the image is ten times 
less than the size of the object? How far behind the mirror is the image located? 

 

Answer: The focal length f of a convex mirror is minus half of its radius of cur- 
vature (taking the sign convention for the focal lengths of convex mirrors into 

account). Thus, f = −25 cm. If the image is ten times smaller than the object 

then the magnification is M = 0.1. We can be sure that M = +0.1, as opposed to 
−0.1, because we know that images formed in convex mirrors are always virtual 

and upright. According to Eq. (13.2), the image distance q is given by 

q = −M p, 

where p is the object distance. This can be combined with Eq. (13.8) to give 

p = f 1 −
 1

 

M 
! = −(25) (1 − 10) = 225 cm. 
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Thus, the object must be placed 225 cm in front of the mirror. The image distance 
is given by 

q = −M p = −(0.1) (225) = −22.5 cm. 

Thus, the image is located 22.5 cm behind the mirror. 

 

Example 13.3: Converging lenses 

 
Question: An object of height h = 7 cm is placed a distance p = 25 cm in front 

of a thin converging lens of focal length f = 35 cm. What is the height, location, 
and nature of the image? Suppose that the object is moved to a new location a 

distance p = 90 cm in front of the lens. What now is the height, location, and 
nature of the image? 

 

Answer: According to Eq. (13.17), the image distance q is given by 
1 

q = 
1/f − 1/p 

1 
= 

(1/35 − 1/25) 
= −87.5 cm. 

Thus, the image is virtual (since q < 0), and is located 87.5 cm in front of the 

lens. According to Eq. (10.24), the magnification M of the image is given by 
q 

M = − 
p 

(−87.5) 
= − 

(25) 
= 3.5. 

Thus, the image is upright (since M > 0), and magnified by a factor of 3.5. It 

follows that the height h J of the image is given by 

hJ = M h = (3.5) (7) = 24.5 cm. 

If the object is moved such that p = 90 cm then the new image distance is 
given by 

1 
q = 

1/f − 1/p 

1 
= 

(1/35 − 1/90) 
= 57.27 cm. 

Thus, the new image is real (since q > 0), and is located 57.27 cm behind the 
lens. The new magnification is given by 

q 
M = − 

p 

(57.27) 
= − 

(90) 

 

= −0.636. 



13 PARAXIAL OPTICS 13.8 Worked Examples 

248 

 

 

  

 

Thus, the image is inverted (since M < 0), and diminished by a factor of 0.636. It 
follows that the new height of the image is 

h J = M h = −(9.636) (7) = −4.45 cm. 

Note that the height is negative because the image is inverted. 

 

Example 13.4: Diverging lenses 

 
Question: How far must an object be placed in front of a diverging lens of focal 

length 45 cm in order to ensure that the size of the image is fifteen times less than 
the size of the object? How far in front of the lens is the image located? 

 
Answer: The focal length f of a diverging lens is negative by convention,  so 

f = −45 cm, in this case. If the image is fifteen times smaller than the object 

then the magnification is M = 0.0667. We can be sure that M = +0.0667, as 

opposed to −0.0667, because we know that images formed in diverging lenses 

are always virtual and upright. According to Eq. (13.14), the image distance q is 
given by 

q = −M p, 

where p is the object distance. This can be combined with Eq. (13.17) to give 

p = f 1 −
 1

 

M 
! = −(45) (1 − 15) = 630 cm. 

Thus, the object must be placed 630 cm in front of the lens. The image distance 
is given by 

q = −M p = −(0.0667) (630) = −42 cm. 

Thus, the image is located 42 cm in front of the lens. 
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14 Wave Optics 

 
14.1 Introduction 

 
Geometric optics is an incredibly successful theory. Probably its most important 

application is in describing and explaining the operation of commonly occurring 

optical instruments: e.g., the camera, the telescope, and the microscope. Al- 

though geometric optics does not make any explicit assumption about the nature 

of light, it tends to suggest that light consists of a stream of massless particles. 

This is certainly what scientists, including, most notably, Isaac Newton, generally 

assumed up until about the year 1800. 

Let us examine how the particle theory of light accounts for the three basic 

laws of geometric optics: 

 

1. The law of geometric propagation: This is easy. Massless particles obviously 

move in straight-lines in free space. 

2. The law of reflection: This is also fairly easy. We merely have to assume 

that light particles bounce elastically (i.e., without energy loss) off reflecting 

surfaces. 

3. The law of refraction: This is the tricky one. Let us assume that the speed of 

light  particles  propagating  through  a  trans√parent  dielectric  medium  is  pro- 

portional to the index of refraction, n ≡ K. Let us further assume that 
at a general interface between two different dielectric media, light particles 

crossing the interface conserve momentum in the plane parallel to the in- 

terface. In general, this implies that the particle momenta normal to the 

interface are not conserved: i.e., the interface exerts a normal reaction force 

on crossing particles, but no parallel force. From Fig. 14.1, parallel momen- 

tum conservation for light particles crossing the interface yields 

v1 sin θ1 = v2 sin θ2. (14.1) 

However, by assumption, v1 = n1 c and v2 = n2 c, so 

n1 sin θ1 = n2 sin θ2. (14.2) 
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Figure 14.1: Descartes’ model of refraction 

 
This highly contrived (and incorrect) derivation of the law of refraction was 

first proposed by Descartes in 1637. Note that it depends crucially on the 

(incorrect) assumption that light travels faster in dense media (e.g., glass) 

than in rarefied media (e.g., water). This assumption appears very strange 

to us nowadays, but it seemed eminently reasonable to scientists in the 17th 

and 18th centuries. After all, they knew that sound travels faster in dense 

media (e.g., water) than in rarefied media (e.g., air). 

 
The wave theory of light, which became established in the first half of the 

19th century, initially encountered tremendous resistance. Let us briefly examine 

the reasons why scientists in the early 1800s refused to think of light as a wave 

phenomenon? Firstly, the particle theory of light was intimately associated with 

Isaac Newton, so any attack on this theory was considered to be a slight to his 

memory.  Secondly, all of the waves that scientists were familiar with at that 

time manifestly did not travel in straight-lines. For instance, water waves are 

diffracted as they pass through the narrow mouth of a harbour, as shown in 

Fig. 14.2.   In other words,  the “rays” associated with such waves are bent as 

they traverse the harbour mouth. Scientists thought that if light were a wave 

phenomenon then it would also not travel in straight-lines: i.e., it would not 

cast straight, sharp shadows, any more than water waves cast straight, sharp 

“shadows.” Unfortunately, they did not appreciate that if the wavelength of light 

normal 
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Figure 14.2: Refraction of water waves through the entrance of a harbour. 

 
is much shorter than that of water waves then light can be a wave phenomenon 

and still propagate in a largely geometric manner. 

 

14.2 Huygens’ principle 

 
The first person to explain how wave theory can also account for the laws of 

geometric optics was Christiaan Huygens in 1670. At the time, of course, no- 

body took the slightest notice of him. His work was later rediscovered after the 

eventual triumph of wave theory. 

Huygens had a very important insight into the nature of wave propagation 

which is nowadays called Huygens’ principle. When applied to the propagation of 

light waves, this principle states that: 

 
Every point on a wave-front may be considered a source of secondary spherical 

wavelets which spread out in the forward direction at the speed of light. The 

new wave-front is the tangential surface to all of these secondary wavelets. 

 
According to Huygens’ principle, a plane light wave propagates though free 
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Figure 14.3: Huygen’s principle. 

 

space at the speed of light, c. The light rays associated with this wave-front 
propagate in straight-lines, as shown in Fig. 14.3. It is also fairly straightforward 
to account for the laws of reflection and refraction using Huygens’ principle. 

 

14.3 Young’s Double-Slit Experiment 

 
The first serious challenge to the particle theory of light was made by the English 

scientist Thomas Young in 1803. Young possessed one of the most brilliant minds 

in the history of science.  A physician by training, he was the first to describe 

how the lens of the human eye changes shape in order to focus on objects at 

differing distances. He also studied Physics, and, amongst other things, definitely 

established the wave theory of light, as described below. Finally, he also studied 

Egyptology, and helped decipher the Rosetta Stone. 

Young knew that sound was a wave phenomenon, and, hence, that if two 

sound waves of equal intensity, but 180◦ out of phase, reach the ear then they 
cancel one another out, and no sound is heard. This phenomenon is called in- 
terference. Young reasoned that if light were actually a wave phenomenon, as he 
suspected, then a similar interference effect should occur for light. This line of 
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Figure 14.4: Young’s double-slit experiment. 

 
reasoning lead Young to perform an experiment which is nowadays referred to as 

Young’s double-slit experiment. 

In Young’s experiment, two very narrow parallel slits, separated by a distance 

d, are cut into a thin sheet of metal. Monochromatic light, from a distant light- 
source, passes through the slits and eventually hits a screen a comparatively large 

distance L from the slits. The experimental setup is sketched in Fig. 14.4. 

According to Huygens’ principle, each slit radiates spherical light waves. The 
light waves emanating from each slit are superposed on the screen. If the waves 

are 180◦ out of phase then destructive interference occurs, resulting in a dark patch 
on the screen. On the other hand, if the waves are completely in phase then 
constructive interference occurs, resulting in a light patch on the screen. 

The point P on the screen which lies exactly opposite to the centre point of 

the two slits, as shown in Fig. 14.5, is obviously associated with a bright patch. 

This follows because the path-lengths from each slit to this point are the same. 

The waves emanating from each slit are initially in phase, since all points on the 

incident wave-front are in phase (i.e., the wave-front is straight and parallel to 

the metal sheet). The waves are still in phase at point P since they have traveled 

screen 

metal sheet 

narrow slits 

L 
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Figure 14.5: Interference of light in Young’s double-slit experiment. 

 
equal distances in order to reach that point. 

From the above discussion, the general condition for constructive interference 

on the screen is simply that the difference in path-length ∆ between the two 
waves be an integer number of wavelengths. In other words, 

∆ = m λ, (14.3) 

where m = 0, 1, 2,   .   Of course, the point P corresponds to the special case 

where m = 0. It follows, from Fig. 14.5, that the angular location of the mth 
bright patch on the screen is given by 

 

sin θm = 
d 

= . (14.4) 
d 

 

Likewise, the general condition for destructive interference on the screen is 

that the difference in path-length between the two waves be a half-integer number 

of wavelengths. In other words, 

∆ = (m + 1/2) λ, (14.5) 

where m = 1, 2, 3, · · ·.   It follows that the angular coordinate of the mth dark 

∆ 
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patch on the screen is given by 

sin θm
J   = 

d
 

 
(m + 1/2) λ 

= . 
d 

 

Usually, we expect the wavelength λ of the incident light to be much less than 

the perpendicular distance L to the screen. Thus, 
 

sin θm ' 
L 

, (14.7) 

where ym measures position on the screen relative to the point P. 

It is clear that the interference pattern on the screen consists of alternating 
light and dark bands, running parallel to the slits. The distances of the centers of 

the various light bands from the point P are given by 
m λ L 

ym = , (14.8) 
d 

where m = 0, 1, 2, . Likewise, the distances of the centres of the various dark 

bands from the point P are given by 

ym
J 

(m + 1/2) λ L 
= , 

d 

where m = 1, 2, 3, . The bands are equally spaced, and of thickness λ L/d. Note 

that if the distance from the screen L is much larger than the spacing d between 

the two slits then the thickness of the bands on the screen greatly exceeds the 

wavelength λ of the light. Thus, given a sufficiently large ratio L/d, it should 

be possible to observe a banded interference pattern on the screen, despite the 

fact that the wavelength of visible light is only of order 1 micron. Indeed, when 

Young performed this experiment in 1803 he observed an interference pattern of 

the type described above. Of course, this pattern is a direct consequence of the 

wave nature of light, and is completely inexplicable on the basis of geometric 

optics. 

It is interesting to note that when Young first presented his findings to the 

Royal Society of London he was ridiculed. His work only achieved widespread 

acceptance when it was confirmed, and greatly extended, by the French physicists 

(14.6) 

(14.9) 
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Augustin Fresnel and Francois Argo in the 1820s. The particle theory of light was 

dealt its final death-blow in 1849 when the French physicists Fizeau and Foucault 

independently demonstrated that light propagates more slowly though water than 

though air. Recall (from Sect. 14.1), that the particle theory of light can only 

account for the law of refraction on the assumption that light propagates faster 

through dense media, such as water, than through rarefied media, such as air. 

 

14.4 Interference in Thin Films 

 
In everyday life, the interference of light most commonly gives rise to easily ob- 

servable effects when light impinges on a thin film of some transparent material. 

For instance, the brilliant colours seen in soap bubbles, in oil films floating on 

puddles of water, and in the feathers of a peacock’s tail, are due to interference 

of this type. 

Suppose that a very thin film of air is trapped between two pieces of glass, as 

shown in Fig. 14.6. If monochromatic light (e.g., the yellow light from a sodium 

lamp) is incident almost normally to the film then some of the light is reflected 

from the interface between the bottom of the upper plate and the air, and some 

is reflected from the interface between the air and the top of the lower plate. 

The eye focuses these two parallel light beams at one spot on the retina.   The 

two beams produce either destructive or constructive interference, depending 

on whether their path difference is equal to an odd or an even number of half- 

wavelengths, respectively. 

Let t be the thickness of the air film. The difference in path-lengths between 

the two light rays shown in the figure is clearly ∆ = 2 t. Naively, we might 

expect that constructive interference, and, hence, brightness, would occur if ∆ = 

m λ, where m is an integer, and destructive interference, and, hence, darkness, 

would occur if ∆ = (m + 1/2) λ. However, this is not the entire picture, since an 

additional phase difference is introduced between the two rays on reflection. The 

first ray is reflected at an interface between an optically dense medium (glass), 

through which the ray travels, and a less dense medium (air). There is no phase 

change on reflection from such an interface, just as there is no phase change when 
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eye 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Glass plates 
 

 

Figure 14.6: Interference of light due to a thin film of air trapped between two pieces of glass. 

 
a wave on a string is reflected from a free end of the string. (Both waves on strings 

and electromagnetic waves are transverse waves, and, therefore, have analogous 

properties.) The second ray is reflected at an interface between an optically less 

dense medium (air), through which the ray travels, and a dense medium (glass). 

There is a 180◦ phase change on reflection from such an interface, just as there is 

a 180◦ phase change when a wave on a string is reflected from a fixed end. Thus, 

an additional 180◦ phase change is introduced between the two rays, which is 

equivalent to an additional path difference of λ/2. When this additional phase 

change is taken into account, the condition for constructive interference becomes 

2 t = (m + 1/2) λ, (14.10) 

where m is an integer. Similarly, the condition for destructive interference be- 
comes 

2 t = m λ. (14.11) 
 

For white light, the above criteria yield constructive interference for some 

wavelengths, and destructive interference for others. Thus, the light reflected 

back from the film exhibits those colours for which the constructive interference 

occurs. 

Air t 
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If the thin film consists of water, oil, or some other transparent material of 

refractive index n then the results are basically the same as those for an air film, 

except that the wavelength of the light in the film is reduced from λ (the vacuum 

wavelength) to λ/n. It follows that the modified criteria for constructive and 
destructive interference are 

 

 
 
and 

respectively. 

14.5 Worked Examples 

2 n t = (m + 1/2) λ, (14.12) 

 
2 n t = m λ, (14.13) 

 

Example 14.1: Double slit experiment 

 
Question: Coherent light of wavelength 633 nm from a He-Ne laser falls on a dou- 

ble slit with a slit separation of 0.103 mm. An interference pattern is produced on 

a screen 2.56 m from the slits. Calculate the separation on the screen of the two 
fourth-order bright fringes on either side of the central image. 

 
Solution: The easiest way to handle this problem is to calculate the distance y4 

of the fourth-order bright fringe on one side from the central image, and then 

double this value to obtain the distance between the two fourth-order images. 

From Eq. (14.8), 
 

y4 = 
4 λ L 

= 
d 

4 (633 × 10−9) (2.65) 

(0.103 × 10−3) 

The distance between the two fourth-order fringes is therefore 

2 y4 = 12.6 cm. 

= 6.29 cm. 
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Example 14.2: Interference in thin films 

 
Question: A soap bubble 250 nm thick is illuminated by white light. The index 

of refraction of the soap film is 1.36. Which colours are not seen in the reflected 
light? Which colours appear strong in the reflected light? What colour does the 
soap film appear at normal incidence? 

 

Solution: For destructive interference, we must have n t = m λ/2. Thus, the 
wavelengths that are not reflected satisfy 

2 n t 

λm = 
m 

, 

where m = 1, 2, 3, · · ·. It follows that 

 

 
and 

λ1 = 

 
λ2 = 

(2) (1.36) (250 × 10−9) 

(1) 
 

(2) (1.36) (250 × 10−9) 

(2) 

= 680 nm, 

 
= 340 nm. 

These are the only wavelengths close to the visible region of the electromagnetic 

spectrum for which destructive interference occurs. In fact, 680 nm lies right in 

the middle of the red region of the spectrum, whilst 340 nm lies in the ultraviolet 

region (and is, therefore, invisible to the human eye). It follows that the only 

non-reflected colour is red. 

For constructive interference, we must have n t = (m + 1/2) λ/2. Thus, the 
wavelengths that are strongly refiected satisfy 

λm
J 

2 n t 
= , 

m + 1/2 

where m = 0, 1, 2, · · ·. It follows that 

 

 
and 

λ1
J = 

 
λ2

J = 

(2) (1.36) (250 × 10−9) 

(1/2) 
 

(2) (1.36) (250 × 10−9) 

(3/2) 
= 453 nm, 

= 1360 nm, 
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and  
λ3

J = 

 

(2) (1.36) (250 × 10−9) 

(5/2) 

A wavelength of 272 nm lies in the ultraviolet region whereas 1360 nm lies in 

the infrared. Clearly, both wavelengths correspond to light which is invisible to 

the human eye. The only strong reflection occurs at 453 nm, which corresponds 

to the blue-violet region of the spectrum. 

The reflected light is weak in the red region of the spectrum and strong in 

the blue-violet region. The soap film will, therefore, possess a pronounced blue 

colour. 

= 272 nm. 


