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xiv Author’s Preface 
 

characteristics of travelling waves and their mathematical description and intro- 

duces the fundamental wave equation. Chapter 6 deals with standing waves that 

are seen to be the normal modes of a vibrating system. A consideration of the 

general motion of a vibrating string as a superposition of normal modes leads to 

an introduction of the powerful technique of Fourier analysis. Chapter 7 deals with 

some of the most dramatic phenomena produced by waves, namely interference 

and diffraction. Finally, Chapter 8 describes the superposition of a group of waves 

to form a modulated wave or wave packet and the behaviour of this group of waves 

in a dispersive medium. Throughout the book, the fundamental principles of waves 

and vibrations are emphasised so that these principles can be applied to a wide 

range of oscillating systems and to a variety of waves including electromagnetic 

waves and sound waves. There are some topics that are not required for other parts 

of the book and these are indicated in the text. 

Waves and vibrations are beautifully and concisely described in terms of the 

mathematical equations that are used throughout the book. However, emphasis is 

always placed on the physical meaning of these equations and undue mathematical 

complication and detail are avoided. An elementary knowledge of differentiation 

and integration is assumed. Simple differential equations are used and indeed waves 

and vibrations provide a particularly valuable way to explore the solutions of these 

differential equations and their relevance to real physical situations. Vibrations and 

waves are well described in complex representation. The relevant properties of 

complex numbers and their use in representing physical quantities are introduced 

in Chapter 3 where the power of the complex representation is also demonstrated. 

Each chapter is accompanied by a set of problems that form an important part 

of the book. These have been designed to deepen the understanding of the reader 

and develop their skill and self-confidence in the application of the equations. 

Some solutions and hints to these problems are given at the end of the book. It 

is, of course, far more beneficial for the reader to try to solve the problems before 

consulting the solutions. 

I am particularly indebted to Dr Franz Mandl who was my editor throughout the 

writing of the book. He read the manuscript with great care and physical insight 

and made numerous and valuable comments and suggestions. My discussions with 

him were always illuminating and rewarding and indeed interacting with him was 

one of the joys of writing the book. I am very grateful to Dr Michele Siggel-King, 

my wife, who produced all the figures in the book. She constructed many of the 

figures depicting oscillatory and wave motion using computer simulation programs 

and she turned my sketches into suitable figures for publication. I am also grateful to 

Michele for proofreading the manuscript. I am grateful to Professor Fred Loebinger 

who made valuable comments about the figures and to Dr Antonio Juarez Reyes 

for working through some of the problems. 

George C. King 



 

 

 

 

1 
Simple Harmonic Motion 

 
In the physical world there are many examples of things that vibrate or oscillate, i.e. 

perform periodic motion. Everyday examples are a swinging pendulum, a plucked 

guitar string and a car bouncing up and down on its springs. The most basic form 

of periodic motion is called simple harmonic motion (SHM). In this chapter we 

develop quantitative descriptions of SHM. We obtain equations for the ways in 

which the displacement, velocity and acceleration of a simple harmonic oscillator 

vary with time and the ways in which the kinetic and potential energies of the 

oscillator vary. To do this we discuss two particularly important examples of SHM: 

a mass oscillating at the end of a spring and a swinging pendulum. We then extend 

our discussion to electrical circuits and show that the equations that describe the 

movement of charge in an oscillating electrical circuit are identical in form to those 

that describe, for example, the motion of a mass on the end of a spring. Thus if 

we understand one type of harmonic oscillator then we can readily understand 

and analyse many other types. The universal importance of SHM is that to a 

good approximation many real oscillating systems behave like simple harmonic 

oscillators when they undergo oscillations of small amplitude. Consequently, the 

elegant mathematical description of the simple harmonic oscillator that we will 

develop can be applied to a wide range of physical systems. 

 

 
1.1 PHYSICAL CHARACTERISTICS OF SIMPLE HARMONIC 

OSCILLATORS 

Observing the motion of a pendulum can tell us a great deal about the gen- 

eral characteristics of SHM. We could make such a pendulum by suspending an 

apple from the end of a length of string. When we draw the apple away from its 

equilibrium position and release it we see that the apple swings back towards the 

equilibrium position. It starts off from rest but steadily picks up speed. We notice 

that it overshoots the equilibrium position and does not stop until it reaches the 
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other extreme of its motion. It then swings back toward the equilibrium position 

and eventually arrives back at its initial position. This pattern then repeats with 

the apple swinging backwards and forwards periodically . Gravity is the restoring 

force that attracts the apple back to its equilibrium position. It is the inertia of 

the mass that causes it to overshoot. The apple has kinetic energy because of its 

motion. We notice that its velocity is zero when its displacement from the equilib- 

rium position is a maximum and so its kinetic energy is also zero at that point. The 

apple also has potential energy. When it moves away from the equilibrium position 

the apple’s vertical height increases and it gains potential energy. When the apple 

passes through the equilibrium position its vertical displacement is zero and so all 

of its energy must be kinetic. Thus at the point of zero displacement the velocity 

has its maximum value. As the apple swings back and forth there is a continuous 

exchange between its potential and kinetic energies. These characteristics of the 

pendulum are common to all simple harmonic oscillators: (i) periodic motion; (ii) 

an equilibrium position; (iii) a restoring force that is directed towards this equilib- 

rium position; (iv) inertia causing overshoot; and (v) a continuous flow of energy 

between potential and kinetic. Of course the oscillation of the apple steadily dies 

away due to the effects of dissipative forces such as air resistance, but we will 

delay the discussion of these effects until Chapter 2. 

 

1.2 A MASS ON A SPRING 

1.2.1 A mass on a horizontal spring 

Our first example of a simple harmonic oscillator is a mass on a horizontal spring 

as shown in Figure 1.1. The mass is attached to one end of the spring while the other 

end is held fixed. The equilibrium position corresponds to the unstretched length 

of the spring and x is the displacement of the mass from the equilibrium position 

along the x-axis. We start with an idealised version of a real physical situation. 

It is idealised because the mass is assumed to move on a frictionless surface and 

the spring is assumed to be weightless. Furthermore because the motion is in the 

horizontal direction, no effects due to gravity are involved. In physics it is quite 

usual to start with a simplified version or model because real physical situations are 

normally complicated and hard to handle. The simplification makes the problem 

tractable so that an initial, idealised solution can be obtained. The complications, 

e.g. the effects of friction on the motion of the oscillator, are then added in turn and 

at each stage a modified and improved solution is obtained. This process invariably 

provides a great deal of physical understanding about the real system and about 

the relative importance of the added complications. 

 

x 

 

 

 
 

Figure 1.1 A simple harmonic oscillator consisting of a mass m on a horizontal spring. 
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Figure 1.2 Variation of displacement x with time t for a mass undergoing SHM. 

 

Experience tells us that if we pull the mass so as to extend the spring and then 

release it, the mass will move back and forth in a periodic way. If we plot the 

displacement x of the mass with respect to time t we obtain a curve like that 

shown in Figure 1.2. The amplitude of the oscillation is A, corresponding to the 

maximum excursion of the mass, and we note the initial condition that x     A at 

time t  0. The time for one complete cycle of oscillation is the period T . The 

frequency ν is the number of cycles of oscillation per unit time. The relationship 

between period and frequency is 
1 

ν = 
T 

. (1.1) 

The units of frequency are hertz (Hz), where 
 

1 Hz ≡ 1 cycle per second ≡ 1 s−1
. 

For small displacements the force produced by the spring is described by Hooke’s 

law which says that the strength of the force is proportional to the extension (or 

compression) of the spring, i.e. F x where x is the displacement of the mass. The 

constant of proportionality is the spring constant k which is defined as the force 

per unit displacement. When the spring is extended, i.e. x is positive, the force acts 

in the opposite direction to x to pull the mass back to the equilibrium position. 

Similarly when the spring is compressed, i.e. x is negative, the force again acts 

in the opposite direction to x to push the mass back to the equilibrium position. 

This situation is illustrated in Figure 1.3 which shows the direction of the force at 

various points of the oscillation. We can therefore write 
 

F = −kx (1.2) 

where the minus sign indicates that the force always acts in the opposite direction 

to the displacement. All simple harmonic oscillators have forces that act in this 

way: (i) the magnitude of the force is directly proportional to the displacement; 

and (ii) the force is always directed towards the equilibrium position. 

A 

T 



= 

= 
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Figure 1.3 The direction of the force acting on the mass m at various values of displace- 

ment x. 

 
The system must also obey Newton’s second law of motion which states that 

the force is equal to mass m times acceleration a, i.e. F ma. We thus obtain the 

equation of motion of the mass 
 

F = ma = −kx. (1.3) 

Recalling that velocity v and acceleration a are, respectively, the first and second 

derivatives of displacement with respect to time, i.e. 

dv d
2
x 

a = 
dt 

= 
dt 2 

, (1.4) 

we can write Equation (1.3) in the form of the differential equation 

d
2
x 

m 
dt 2   

= −kx (1.5) 

or 

 
 

 

where 

 

 

ω2 k 

m 

(1.6) 

 

 

 
(1.7) 

is a constant. Equation (1.6) is the equation of SHM and all simple harmonic 

oscillators have an equation of this form. It is a linear second-order differential 

equation; linear because each term is proportional to x or one of its derivatives and 

second order because the highest derivative occurring in it is second order. The 

reason for writing the constant as ω
2
 will soon become apparent but we note that 

ω
2
 is equal to the restoring force per unit displacement per unit mass. 

d
2
x 

dt 2 
= −ω  x 2 
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1.2.2 A mass on a vertical spring 
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Figure 1.4 An oscillating mass on a vertical spring. (a) The mass at its equilibrium position. 

(b) The mass displaced by a distance x from its equilibrium position. 

 

If we suspend a mass from a vertical spring, as shown in Figure 1.4, we have 

gravity also acting on the mass. When the mass is initially attached to the spring, 

the length of the spring increases by an amount ∆l. Taking displacements in the 

downward direction as positive, the resultant force on the mass is equal to the 

gravitational force minus the force exerted upwards by the spring, i.e. the resultant 

force is given by mg    k∆l. The resultant force is equal to zero when the mass is 

at its equilibrium position. Hence 
 

k∆l = mg. 

When the mass is displaced downwards by an amount x, the resultant force is 

given by 

 

 

i.e. 

d
2
x 

F = m 
dt 2 

= mg − k(∆l + x) = mg − k∆l − kx 

 

d
2
x 

m 
dt 2   

= −kx. (1.8) 
 

Perhaps not surprisingly, this result is identical to the equation of motion (1.5) of the 

horizontal spring: we simply need to measure displacements from the equilibrium 

position of the mass. 

 

1.2.3 Displacement, velocity and acceleration in simple harmonic motion 

To describe the harmonic oscillator, we need expressions for the displacement, 

velocity and acceleration as functions of time: x(t), v(t) and a(t). These can be 

obtained by solving Equation (1.6) using standard mathematical methods. However, 



y = sin q 

 2 3 4

y = cos q 

= 

T 

= 
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we will use our physical intuition to deduce them from the observed behaviour of 

a mass on a spring. 

 

y 

1 

 
 

0 q (rad) 

 

 
1 

 

Figure 1.5  The functions y = cos θ and y = sin θ plotted over two complete cycles. 

 
Observing the periodic motion shown in Figure 1.2, we look for a function x(t) 

that also repeats periodically. Periodic functions that are familiar to us are sin θ and 

cos θ . These are reproduced in Figure 1.5 over two complete cycles. Both functions 

repeat every time the angle θ changes by 2π. We can notice that the two functions 

are identical except for a shift of π/2 along the θ axis. We also note the initial 

condition that the displacement x of the mass equals A at t 0. Comparison of the 

actual motion with the mathematical functions in Figure 1.5 suggests the choice of 

a cosine function for x(t). We write it as 

x = A cos 

   
2πt

 

(1.9) 

which has the correct form in that (2πt/T ) is an angle (in radians) that goes from 

0 to 2π as t goes from 0 to T , and so repeats with the correct period. Moreover 

x equals A at t = 0 which matches the initial condition. We also require that 

x = A cos (2πt/T ) is a solution to our differential equation (1.6). We define 

2π 
ω (1.10) 

T 

where ω is the angular frequency of the oscillator, with units of rad s−1
, to obtain 

x = A cos ωt. (1.11) 
 

Then 

 

 

 
and 

 
 

dx 

dt 
= v = −ωA sin ωt, (1.12) 

d
2
x 2 2 

dt 2 
= a = −ω A cos ωt = −ω x. (1.13) 



= 

= 

= ± 

A Mass on a Spring 7 

So, the function x A cos ωt is a solution of Equation (1.6) and correctly describes 

the physical situation. The reason for writing the constant as ω
2
 in Equation (1.6) 

is now apparent: the constant is equal to the square of the angular frequency of 

oscillation. We have also obtained expressions for the velocity v and acceleration 

a of the mass as functions of time. All three functions are plotted in Figure 1.6. 

Since they relate to different physical quantities, namely displacement, velocity and 

acceleration, they are plotted on separate sets of axes, although the time axes are 

aligned with respect to each other. 

turning points 

 

x 

 
 

(a) 
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(b) 
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(c) 

 

 

 
x = A cos wt 
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v = Aw sin wt 

t 

 

 

 

 
a = Aw cos wt 

t 

 

 

Figure 1.6 (a) The displacement x, (b) the velocity v and (c) the acceleration a of a mass 

undergoing SHM as a function of time t . The time axes of the three graphs are aligned. 

 

Figure 1.6 shows that the behaviour of the three functions (1.11)–(1.13) agree 

with our observations. For example, when the displacement of the mass is great- 

est, which occurs at the turning points of the motion (x A), the velocity is 

zero. However, the velocity is at a maximum when the mass passes through its 

equilibrium position, i.e. x 0. Looked at in a different way, we can see that 

the maximum in the velocity curve occurs before the maximum in the displace- 

ment curve by one quarter of a period which corresponds to an angle of π/2. 

We can understand at which points the maxima and minima of the acceleration 

occur by recalling that acceleration is directly proportional to the force. The force 

is maximum at the turning points of the motion but is of opposite sign to the 

displacement. The acceleration does indeed follow this same pattern, as is readily 

seen in Figure 1.6. 

 

1.2.4 General solutions for simple harmonic motion and the phase angle φ 

In the example above, we had the particular situation where the mass was released 

from rest with an initial displacement A, i.e. x equals A at t = 0. For the more 
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A cos wt A cos (wt  f) 
 

Figure 1.7 General solution for displacement x in SHM showing the phase angle θ, where 

x = A cos(ωt + θ). 

general case, the motion of the oscillator will give rise to a displacement curve 

like that shown by the solid curve in Figure 1.7, where the displacement and 

velocity of the mass have arbitrary values at t 0. This solid curve looks like the 

cosine function x A cos ωt, that is shown by the dotted curve, but it is displaced 

horizontally to the left of it by a time interval θ/ω θT /2π. The solid curve is 

described by 
 

(1.14) 

 
where again A is the amplitude of the oscillation and θ is called the phase angle 

which has units of radians. [Note that changing ωt to (ωt   θ) would shift the curve 

to the right in Figure 1.7.] Equation (1.14) is also a solution of the equation of 

motion of the mass, Equation (1.6), as the reader can readily verify. In fact Equation 

(1.14) is the general solution of Equation (1.6). We can state here a property of 

second-order differential equations that they always contain two arbitrary constants. 

In this case A and θ are the two constants which are determined from the initial 

conditions, i.e. from the position and velocity of the mass at time t 0. 

We can cast the general solution, Equation (1.14), in the alternative form 
 

x = a cos ωt + b sin ωt, (1.15) 

where a and b are now the two constants. Equations (1.14) and (1.15) are entirely 

equivalent as we can show in the following way. Since 

A cos(ωt + θ) = A cos ωt cos θ − A sin ωt sin θ (1.16) 

and cos θ and sin θ have constant values, we can rewrite the right-hand side of this 

equation as 

 
 

where 

a cos ωt + b sin ωt, 

 
a = A cos θ and b = −A sin θ. (1.17) 

 

We see that if we add sine and cosine curves of the same angular frequency ω, 

we obtain another cosine (or corresponding sine curve) of angular frequency ω. 

x = A cos(ωt + θ) 



4 

= 

Worked example 

In the example of a mass on a horizontal spring (cf. Figure 1.1) m has a value 

of 0.80 kg and the spring constant k is 180 N m−1
. At time t = 0 the mass 

is observed to be 0.04 m further from the wall than the equilibrium position 
and is moving away from the wall with a velocity of 0.50 m s−1

. Obtain an 
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This  is  illustrated  in  Figure  1.8  where  w√e  plot  A cos ωt  and  A sin ωt ,  and  also 

(A cos ωt + A sin ωt) which is equal to 2A cos(ωt − π/4). As the motion of a 

simple harmonic oscillator is described by sines and cosines it is called harmonic 

and because there is only a single frequency involved, it is called simple harmonic. 
 
 

x 

A A cos wt 

t 

A sin wt 

x 



4 

 
2 A 

t 
 

A cos wt + A sin wt 

= 2A cos (wt – ) 

 

Figure 1.8 The addition of sine and cosine curves with the same angular frequency ω. The 

resultant curve also has angular frequency ω. 

 
There is an important difference between the constants A and θ in the gen- 

eral solution for SHM given in Equation (1.14) and the angular frequency ω. 

The constants are determined by the initial conditions of the motion. However, 

the angular frequency of oscillation ω is determined only by the properties of 

the oscillator: the oscillator has a natural frequency of oscillation that is inde- 

pendent of the way in which we start the motion. This is reflected in the fact 

that the SHM equation, Equation (1.6), already contains ω which therefore has 

nothing to do with any particular solutions of the equation. This has important 

practical applications. It means, for example, that the period of a pendulum clock 

is independent of the amplitude of the pendulum so that it keeps time to a high 

degree of accuracy.
1
 It means that the pitch of a note from a piano does not 

depend on how hard you strike the keys. For the example of the mass on a 

spring, ω 
√

k/m. This expression tells us that the angular frequency becomes 
lower as the mass increases and becomes higher as the spring constant increases. 

 
 

 

1 This assumes that the pendulum is operating as an ideal harmonic oscillator which is a good approx- 

imation for oscillations of small amplitude. 
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kx dx = 
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kx . (1.18) 
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expression for the displacement of the mass in the form x A (cos ωt θ), 

obtaining numerical values for A, ω and θ. 

Solution 

The angular frequency ω depends only on the oscillator parameters k and m, 

and not on the initial conditions. Substituting their values gives 

ω = 
,

k/m = 15.0 rad s−1
 

To find the amplitude A: From x = A cos(ωt + θ) we obtain 

v = −Aω sin(ωt + θ). 

Substituting the initial values (i.e. at time t 0), of x and v into these equations 

gives 

0.04 = A cos θ, 0.50 = −15A sin θ. 

From cos
2
 θ sin

2
 θ 1, we obtain A 0.052 m. 

To find the phase angle θ: Substituting the value for A leads to two equations 

for θ: 
 

cos θ = 0.04/0.052, giving θ = 39.8◦ or 320◦, 

sin θ = −0.50/(15 × 0.052), giving θ = −39.8◦ or 320◦. 

Since θ must satisfy both equations, it must have the value θ 320◦. 

The angular frequency ω is given in rad s−1
. To convert θ to radians: 

θ = (π/180) × 320 rad = 5.59 rad. Hence,x = 0.052 cos(15t + 5.59) m. 

 
1.2.5 The energy of a simple harmonic oscillator 

Consideration of the energy of a system is a powerful tool in solving physical 

problems. For one thing, scalar rather than vector quantities are involved which 

usually simplifies the analysis. For the example of a mass on a spring, (Figure 1.1), 

the mass has kinetic energy K and potential energy U . The kinetic energy is due 

to the motion and is given by K     
1
 mv

2
. The potential energy U is the energy 

stored in the spring and is equal to the work done in extending or compressing it, 

i.e. ‘force times distance’. The work done on the spring, extending it from xr to 

xr dxr, is kxrdxr. Hence the work done extending it from its unstretched length 
by an amount x, i.e. its potential energy when extended by this amount, is 

∫ x 
r r 1 2 

Similarly, when the spring is compressed by an amount x the stored energy is again 

equal to 
1
 kx

2
. 

U = 



= + 

2 

2 2 

2 2 

2 2 2 
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Conservation of energy for the harmonic oscillator follows from Newton’s second 

law, Equation (1.5). In terms of the velocity v, this becomes 

dv 
m 

dt 
= −kx. 

Multiplying this equation by dx = vdt gives 

mvdv = −kxdx 

and since d(x
2
) = 2xdx and d(v

2
) = 2vdv, we obtain 

d 

  
1 

mv
2

    

= −d 

   
1 

kx
2

   

. 

2 2 
 

Integrating this equation gives 
 

1 
mv

2
 + 

1 
kx

2
 = constant, 

 

where the right-hand term is a constant of integration. The two terms on the left-

hand side of this equation are just the kinetic energy K and the potential 

energy U of the oscillator. It follows that the constant on the right-hand side is the 

total energy E of the oscillator, i.e. we have derived conservation of energy for 

this case: 

 

(1.19) 

 
Equation (1.19) enables us to calculate the energy E of the harmonic oscillator for 

any solution of the oscillator. If we take the general solution x   A cos(ωt   θ), 

we obtain the velocity 

dx 
v = 

dt 
= −ωA sin(ωt + θ) (1.20) 

and the potential and kinetic energies 
 

U = 
1 

kx
2
 = 

1 
kA

2
 cos

2
(ωt + θ) (1.21) 

K = 
1 

mv
2
 = 

1 
mω

2
A

2
 sin

2
(ωt + θ) = 

1 
kA

2
 sin

2
(ωt + θ) (1.22) 

 

where we substituted ω
2
 = k/m. Hence the total energy E is given by 

E = K + U = 
1 

kA
2
[sin

2
(ωt + θ) + cos

2
(ωt + θ)] 

1 2 

= 
2 

kA . (1.23) 

E = K + U = 
2 

mv + 
2 

kx 
1 2 1 2 
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Equation (1.23) shows that the energy of a harmonic oscillator is proportional 

to the square of the amplitude of the oscillation: the more we initially extend 

the spring the more potential energy we store in it. The first line of Equation 

(1.23) also shows that the energy of the system flows between kinetic and 

potential energies although the total energy remains constant. This is illustrated 

in Figure 1.9, which shows the variation of the potential and kinetic energies 

with time. We have taken θ 0 in this figure. We can also plot the kinetic 

and potential energies as functions of the displacement x. The potential energy 

U 
1
 kx

2
 is a parabola in x as shown in Figure 1.10. We do not need to work 

out the equivalent expression for the variation in kinetic energy since this must be 

equal to (E − 1 kx
2
) and is also shown in the figure. 

 

E = K  U = constant 

 

 
 

K = 1 mv2 

 

U = 1 kx2 

 

0 t 

 

Figure 1.9 The variations of kinetic energy K and potential energy U with time t for a 

simple harmonic oscillator. The total energy of the oscillator E is the sum of the kinetic 

and potential energies and remains constant with time. 

 

 

E = constant 

 

U = 1 kx2 

 

 

(E – 1 kx2) 

x 

A A 
 

Figure 1.10 The variation of kinetic energy K and potential energy U with displacement 

x for a simple harmonic oscillator. 

 
 

1.2.6 The physics of small vibrations 

A mass on a spring is an example of a system in stable equilibrium. When the 

mass moves away from its equilibrium position the restoring force pulls or pushes 

it back. We found that the potential energy of a mass on a spring is proportional 

to x
2
 so that the potential energy curve has the shape of a parabola given by 

E
n

er
g

y
 

E
n

e
rg

y
 



2 

= 
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U(x) 
1
 kx

2
 (cf. Figure 1.10). This curve has a minimum when x 0, which 

corresponds to the unstretched length of the spring. The movement of the mass is 

constrained by the spring and the mass is said to be confined in a potential well. 

The parabolic shape of this potential well gives rise to SHM. Any system that is in 

stable equilibrium will oscillate if it is displaced from its equilibrium state. We may 

think of a marble in a round-bottomed bowl. When the marble is pushed to one 

side it rolls back and forth in the bowl. The universal importance of the harmonic 

oscillator is that nearly all the potential wells we encounter in physical situations 

have a shape that is parabolic when we are sufficiently close to the equilibrium 

position. Thus, most oscillating systems will oscillate with SHM when the amplitude 

of oscillation is small as we shall prove in a moment. This situation is illustrated in 

Figure 1.11, which shows as a solid line the potential energy of a simple pendulum 

as a function of the angular displacement θ . (We will discuss the example of the 

simple pendulum in detail in Section 1.3.) Superimposed on it as a dotted line is 

a parabolic-shaped potential well, i.e. proportional to θ 
2
. Close to the equilibrium 

position (θ      0), the two curves lie on top of each other. So long as the amplitude 

of oscillation falls within the range where the two curves coincide the pendulum 

will execute SHM. 
 
 

 

 
 

 

 
 

 
q 

 

potential energy curve 
of a simple pendulum 

 

Figure 1.11 The solid curve represents the potential energy U of a simple pendulum as a 

function of its angular displacement θ . The dotted line represents the potential energy U(θ) 

of a simple harmonic oscillator for which the potential energy is proportional to θ 2. For 

small angular amplitudes, where the two curves overlap, a simple pendulum behaves as a 

simple harmonic oscillator. 

 
We can see the above result mathematically using Taylor’s theorem which says 

that any function f(x) which is continuous and possesses derivatives of all orders 

at x = a can be expanded in a power series in (x − a) in the neighbourhood of the 

point x = a, i.e. 

(x − a) 
  

df
 

(x − a)
2
 
  

d
2
f 
 

 
f(x) = f (a) + 

1!
 

dx   x=a 

+ 
2! 

dx2 x=a 

+ · · ·  (1.24) 

where the derivatives df/dx, etc., are evaluated at x a. (In practice all the poten- 
tial wells that we encounter in physical situations can be described by functions 

that can be expanded in this way.) We see that Taylor’s theorem gives the value 

of a function f(x) in terms of the value of the function at x = a and the values of 

U U (q)  q 2 



= 
= 

    

x
2
 
  

d
2
U 
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the first and higher derivatives of x evaluated at x = a. If we expand f (x) about 

x = 0, we have 

 
df

 
x

2
 
 
d

2
f 
 

 
f(x) = f(0) + x 

dx   x=0 

+ 
2 dx2 

x=0 

+ · · ·   

In the case of a general potential well U(x), we expand about the equilibrium 

position x = 0 to obtain 

 
dU 

  x
2
  

  
d

2
U 
 

 
 

  

U(x) = U(0) + x 

dx   x=0 

+ 
2 

dx2 
x=0 

+ · · ·  (1.25) 

The first term U (0) is a constant and has no physical significance in the sense 

that we can measure potential energy with respect to any position and indeed we 

can choose it to be equal to zero. The first derivative of U with respect to x is 

zero because the curve is a minimum at x 0. The second derivative of U with 

respect to x, evaluated at x 0, will be a constant. Thus if we retain only the first 

non-zero term in the expansion, which is a good approximation so long as x is 

small, we have 

 

U(x) =  
2

 
 

dx2 
 

x=0 

(1.26) 

This is indeed the form of the potential energy for the mass on a spring with 

d
2
U/dx

2
 playing the role of the spring constant. Then the force close to the equi- 

librium position takes the general form 
 

dU 
F =− 

dx 
= −x 

d
2
U 

dx2 

 
 

x=0 

 
(1.27) 

The force is directly proportional to x and acts in the opposite direction which is 

our familiar result for the simple harmonic oscillator. 

The fact that a vibrating system will behave like a simple harmonic oscillator 

when its amplitude of vibration is small means that our physical world is filled with 

examples of SHM. To illustrate this diversity Table 1.1 gives examples of a variety 

of physical systems that can oscillate and their associated periods of oscillation. 

These examples occur in both classical and quantum mechanics. Clearly the more 

massive the system, the greater is the period of oscillation. For the case of a 

vibrating tuning fork, we can tell that the ends of the fork are oscillating at a single 

frequency because we hear a pure note that we can use to tune musical instruments. 

A plucked guitar string will also oscillate and indeed musical instruments provide a 

wealth of examples of SHM. These oscillations, however, will in general be more 

complicated than that of the tuning fork but even here these complex oscillations 

are a superposition of SHMs as we shall see in Chapter 6. The balance wheel of a 

mechanical clock, the sloshing of water in a lake and the swaying of a sky scraper 

in the wind provide further examples of classical oscillators. 
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TABLE 1.1 Examples of systems that can oscillate 

and the associated periods of oscillation. 
 

System Period (s) 

Sloshing of water in a lake ∼102 − 104 

Large bridges and buildings ∼1 − 10 

A clock pendulum or balance wheel ∼1 
String instruments ∼10−3 − 10−2 

Piezoelectric crystals ∼10−6 

Molecular vibrations ∼10−15 

 

A good example of SHM in the microscopic world is provided by the vibrations 

of the atoms in a crystal. The forces between the atoms result in the regular lattice 

structure of the crystal. Furthermore, when an atom is slightly displaced from its 

equilibrium position it is subject to a net restoring force. The shape of the resultant 

potential well approximates to a parabola for small amplitudes of vibration. Thus 

when the atoms vibrate they do so with SHM. Einstein used a simple harmonic 

oscillator model of a crystal to explain the observed variation of heat capacity with 

temperature (see also Mandl,
2
 Section 6.2). He assumed that the atoms were har- 

monic oscillators that vibrate independently of each other but with the same angular 

frequency and he used a quantum mechanical description of these oscillators. As 

we have seen, in classical mechanics the energy of an oscillator is proportional 

to the square of the amplitude and can take any value, i.e. the energy is continu- 

ous. A fundamental result of quantum mechanics is that the energy of a harmonic 

oscillator is quantised, i.e. only a discrete set of energies is possible. Einstein’s 

quantum model predicted that the specific heat of a crystal, such as diamond, goes 

to zero as the temperature of the crystal decreases, unlike the classical result that 

the specific heat is independent of temperature. Experiment shows that the specific 

heat of diamond does indeed go to zero at low temperatures. 

Another example of SHM in quantum physics is provided by the vibrations of 

the two nuclei of a hydrogen molecule. The solid curve in Figure 1.12 represents 

the potential energy U of the hydrogen molecule as a function of the separation r 

between the nuclei, where we have taken the potential energy to be zero at infinite 

separation. This potential energy is due to the Coulomb interaction of the electrons 

and nuclei and the quantum behaviour of the electrons. The curve exhibits a min- 

imum at ro     0.74    10−10
 m. At small separation (r       0) the potential energy 

tends to infinity, representing the strong repulsion between the nuclei. The nuclei 

perform oscillations about the equilibrium separation. The dotted line in Figure 1.12 

shows the parabolic form of the potential energy of a harmonic oscillator, centred 

at the equilibrium seperation ro. For small amplitudes of oscillation (i.e. when the 

nuclei are not too highly excited) the vibrations occur within the range where the 

two curves coincide. Again, according to quantum mechanics, only a discrete set 

of vibrational energies is possible. For a simple harmonic oscillator with angular 
frequency ω the only allowed values of the energy are 

1
 kω, 

3
 kω, 

5
 kω, . . .  , where 

   

2 2 2 

 
2 Statistical Physics, F. Mandl, Second Edition, 1988, John Wiley & Sons, Ltd. 
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U 

 
 

r 

 

 

 

 
 

equilibrium 
separation, ro 

 

Figure 1.12 The solid curve represents the variation of potential energy of a hydrogen 

molecule as a function of the separation of the two hydrogen nuclei. The dotted curve 

represents the potential energy of a simple harmonic oscillator centred on the equilibrium 

separation ro of the two nuclei. 

k is Planck’s constant divided by 2π. The observed vibrational line spectra of 

molecules correspond to transitions between these energy levels with the emission 

of electromagnetic radiation that typically lies in the infrared part of the electro- 

magnetic spectrum. These spectra provide valuable information about the properties 

of the molecule such as the strength of the molecular bond. 

 

Worked example 

The H2 molecule has a vibrational frequency ν of 1.32    10
14

 Hz. Calculate 

the strength of the molecular bond, i.e. the ‘spring constant’, assuming that the 

molecule can be modelled as a simple harmonic oscillator. 

Solution 

In previous cases, we considered a mass vibrating at one end of a spring 

while the other end of the spring was connected to a rigid wall. Now we 

have two nuclei vibrating against each other, which we model as two equal 

masses connected by a spring. We can solve this new situation by realising 

that there is no translation of the molecule during the vibration, i.e. the centre 

of mass of the molecule does not move. Thus as one hydrogen nucleus moves 

in one direction by a distance x the other must move in the opposite direction 

by the same amount and of course both vibrate at the same frequency. The 

total extension is 2x and the tension in the ‘spring’ is equal to 2kx where k 

represents the ‘spring constant’ or bond strength. The equation of motion of 

each nucleus of mass m is then given by 

 
d

2
x 

m 
dt 2 

= −2kx 

or 
m d

2
x 

2 dt 2   
= −kx. (1.28) 

U(r) = k (r – ro)
2
 

r 



− 

This equation is analogous to Equation (1.5) where m has been replaced by m/2 

of vibration ω of the molecule is then equal to 
√

2k/m. The frequency of 

vibration ν = 1/T = ω/2π and m = 1.67 × 10−27
 kg. Therefore 

which is called the reduced mass of the system. The classical angular frequency 

k = 4π ν 
2 

= 2   2 m 4π2
(1.32 × 10

14
)
2
1.67 × 10−27

 

2 
= 574 N m   . 

−1 
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1.3 THE PENDULUM 

1.3.1 The simple pendulum 

Timing the oscillations of a pendulum has been used for centuries to measure 

time accurately. The simple pendulum is the idealised form that consists of a point 

mass m suspended from a massless rigid rod of length l, as illustrated in Figure 1.13. 

For an angular displacement θ , the displacement of the mass along the arc of the 

circle of length l is lθ . Hence the angular velocity along the arc is ldθ/dt and the 

angular acceleration is ld
2
θ/dt 

2
. At a displacement θ there is a tangential force on 

the mass acting along the arc that is equal to mg sin θ , where as usual the minus 

sign indicates that it is a restoring force. Hence by Newton’s second law we obtain 

 

d
2
θ g 

dt 2 
= − 

l 
sin θ. (1.29) 

 

 

 

 

 

 

 

 

 

 

 
m 

 

 
mg 

 

Figure 1.13   The simple pendulum of mass m and length l. 

 

This equation does not have the same form as the equation of SHM, Equation (1.6), 

as we have sin θ on the right-hand side instead of θ . However we can expand sin θ 



l 

mg sin q 
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√ 

18 Simple Harmonic Motion 
 

in a power series in θ :  
 

θ 3 θ 5 

sin θ = θ − 
3! 

+ 
5! 

+ · · ·  . (1.30) 

 

 

y 

y = q y = sin q 

 
 
 
 
 

 
q (rad) 

0 0.4 0.8 1.2 1.6 2.0 
 

Figure 1.14 A comparison of the functions y = θ and y = sin θ plotted against θ . 

 
For small angular deflections the second and higher terms are much smaller than 

the first term. For example, if θ is equal to 0.1 rad (5.7◦), which is typical for 
a pendulum clock, then the second term is only 0.17% of the first term and the 
higher terms are much smaller still. We can see this directly by plotting the functions 
y sin θ and y θ on the same set of axes, as shown in Figure 1.14. The two 

curves are indistinguishable for values of θ below about 
1
 rad ( 15◦). Thus for 

small values of θ , we need retain only the first term in the expansion (1.30) and 
replace sin θ with θ (in radians) to give 

d
2
θ g 

dt 2 
= − 

l 
θ. (1.31) 

This is the equation of SHM with ω 
√

g/ l and T 2π
√

l/g, and we can imme- 

diately write down an expression for the angular displacement θ of the pendulum: 

 

θ = θ0 cos(ωt + θ) (1.32) 

where θ0 is the angular amplitude of oscillation. The period is independent of 

amplitude for oscillations of small amplitude and this is why the pendulum is 

so useful as an accurate time keeper. The period does, however, depend on the 

acceleration due to gravity and so measuring the period of a pendulum provides a 

way of determining the value of g. (In practice real pendulums do not have their 

mass concentrated at a point as in the simple pendulum as will be described in 

Section 1.3.3. So for an accurate determination of g a more sophisticated pendulum 

has been developed called the compound pendulum.) We finally note that for l = 
1.00 m and for a value of g = 9.87 m s−2

, the period of a simple pendulum is 
 

equal to 2π 1.00/9.87 = 2.00 s and indeed the second was originally defined as 
equal to one half the period of a 1 m simple pendulum. 



  
= 

= 
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1.3.2 The energy of a simple pendulum 

We can also analyse the motion of the simple pendulum by considering its 

kinetic and potential energies. The geometry of the simple pendulum is shown in 

Figure 1.15. (The horizontal distance x l sin θ is not exactly the same as the 

distance along the arc, which is equal to lθ . However, since sin θ θ for small θ , 

the difference is negligible.) From the geometry we have 

l
2
 = (l − y)

2
 + x2

 (1.33) 

which gives  
2ly = y2

 + x2
. (1.34) 

 

 

 

 

l–y 

 

 

 

 

 

 

 
Figure 1.15 The geometry of the simple pendulum. 

 
For small displacements of the pendulum, i.e. x l, it follows that y x, so that 

the term y
2
 can be neglected and we can write, 

x2 

y = 
2l 

. (1.35) 

As the mass is displaced from its equilibrium position its vertical height increases 

and it gains potential energy. This gain in potential energy is equal to mgy 

mgx
2
/2l. The total energy of the system E is given by the sum of the kinetic and 

potential energies: 

1 2 1 mgx
2
 

E = K + U = 
2 

mv + 
2

 
. (1.36) 

l 

At the turning point of the motion, when x equals A, the velocity v is zero giving 

1 mgA
2
 

E = 
2

 . (1.37) 
l 

From conservation of energy, it follows that 

mgA
2 

2 

l 
= mv + 

mgx
2
 

(1.38) 
l 

q 
l 

y 

x 



, 

−
 

√ 

l 

= = 

− 
= 

2 2 

2 2 l 

2 2 
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is true for all times. We can use Equation (1.38) to obtain expressions for velocity 

v and displacement x: 

 
 

dx 
v = 

dt 
= 

g(A2 x2) 
. (1.39) 

l 
 

This expression describes how the velocity changes with the displacement x in 
SHM in contrast to Equation (1.12) which describes how the velocity changes with 

time t . Since v = dx/dt we have 
∫ 

dx 
= 

, 
g 
∫ 

dt. (1.40) 

A2 − x2 l 

The integral on the left-hand side can be evaluated using the substitution x 

A sin θ , giving 

sin−1
 
  x   

= 

, 
g 

t + θ, (1.41) 

A l 
 

where θ is the constant of integration, and 

x = A sin 

  , 
g 

t + θ

   

.  (1.42) 

Equation (1.42) describes SHM with ω 
√

g/ l and T 2π
√

l/g as before. 

At this point we note the similarity in the expressions for the total energy of the 

two examples of SHM that we have considered. 

 

For the mass on a spring: E = 
1 

mv
2
 + 

1 
kx

2
. (1.43a) 

For the simple pendulum: E = 
1 

mv
2
 + 

1 mg 
x

2
. (1.43b) 

Both expressions have the form: E = 
1 

αv
2
 + 

1 
βx

2
, (1.43c) 

 

where α and β are constants. It is a universal characteristic of simple harmonic 

oscillators that their total energy can be written as the sum of two parts, one 

involving the (velocity)
2
 and the other the (displacement)

2
. Just as md

2
x/dt 

2
 

kx, Equation (1.5), is the signature of SHM in terms of forces, Equation (1.43) is 

the signature of SHM in terms of energies. If we obtain either of these equations in 

the analysis of a system then we know we have SHM. We stress that the equations 

are the same for all simple harmonic oscillators: only the labels for the physical 

quantities change. We do not need to repeat the analysis again: we can simply 

take over the results already obtained. The constant α corresponds to the inertia of 

the system through which it can store kinetic energy. The constant β corresponds 

to the restoring force per unit displacement through which the system can store 

= 



5 

r dt r dt 
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potential energy. When we differentiate the conservation of energy equation for 

SHM, Equation (1.43c), with respect to time we obtain 

dE dv dx 

giving 

dt 
= αv 

dt 
+ βx 

dt 
= 0 

d
2
x β 

dt 2 
= − 

α 
x. 

Comparing this with Equation (1.6), it follows that the angular frequency of oscil- 

lation ω is equal to 
√

β/α. 

Worked example 

A marble of radius r rolls back and forth without slipping in a spherical dish of 

radius R. Use energy considerations to show that the motion is simple harmonic 

for small displacements of the marble from its equilibrium position and deduce 

an expression for the period of the oscillations. The moment of inertia I of a 

solid sphere of mass m about an axis through its centre is equal to 
2
 mr

2
. 

Solution 

The equilibrium and displaced positions of the marble are shown in Figure 1.16, 

where the arrows indicate the rotation of the marble when it rotates through 

an angle θ. If the marble were rotating through an angle θ on a flat surface 

it would roll a distance rθ. However on a spherical surface as in Figure 1.16, 

it rolls a distance l along the arc of radius R given by l = r(θ + θ ). Since 

l = Rθ , 

θ = 
(R − r)

θ and 
dθ 

= 
(R − r) 

  
dθ 

   

.
 

 

 

 
 

q 

R 

 

r 
f q 

 
 

l 

 

Figure 1.16 A marble of radius r that rolls back and forth without slipping in a 

spherical dish of radius R. 

 
The total kinetic energy of the marble, as it moves along the surface of the 

dish, is equal to the kinetic energy of the translational motion of its centre of 



mass plus the kinetic energy of its rotational motion about the centre of mass. 

Hence 

K = 
2 

mv  + 
2 

I 
1 2 1 dθ 

  

dt 

  2 

. 

The translational kinetic energy is given by 

2 
mv   = 

2 
m(R − r) 

1 2 1 2 

  
dθ 

dt 

  2 

. 

Therefore, 

K = 
2 

m (R − r) 
1 7 

     
2 

5 

  
dθ 

dt 

  2 

where we have substituted for I . The potential energy is 

U = mg(R − r)(1 − cos θ) = mg(R − r)θ 
2
 

1 

2 

for small θ . Thus 

E = 
2 

m (R − r) 
1 7 

     
2 

  
dθ 

dt 

  2 
1 2 

5 
+ 

2 
mg(R − r)θ . 

This has the general form of the energy equation (1.43c) of a harmonic oscil- 

lator 

E = 
2 

α 
1 dθ 

  

dt 

  2 1 
+ 

2 
βθ 2 

where now θ represents the displacement coordinate. Hence 

ω = = 

, 
β   5g  

α 7(R − r) 

, 

and T = 2π 

, 
7(R  −  r) 

5g 
. 

This example would be much more difficult to solve from force considerations. 
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1.3.3 The physical pendulum 

In a physical pendulum the mass is not concentrated at a point as in the simple 

pendulum, but is distributed over the whole body. It is thus more representative 

of real pendulums. An example of a physical pendulum is shown in Figure 1.17. 

It consists of a uniform rod of length l that pivots about a horizontal axis at its 

upper end. This is a rotating system where the pendulum rotates about its point 

of suspension. For a rotating system, Newton’s second law for linear systems, 



3 

2 

2 

rod pivots about 
one end 

q 

l centre 
of 

mass 
mg sinq 

mg 
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Figure 1.17 A rod that pivots about one of its ends, which is an example of a physical 

pendulum. 

 

md
2
x/dt 

2
 = F , becomes 

d
2
θ 

I 
dt 2  

= η (1.44) 

where I is the moment of inertia of the body about its axis of rotation and η is the 

applied torque. The moment of inertia of a uniform rod of length l about an end 

is equal to 
1
 ml

2
 and its centre of mass is located at its mid point. The resultant 

torque η on the rod when it is displaced through an angle θ is given by the product 

of the torque arm 
1
 l and the component of the force normal to the torque arm 

(mg sin θ ), i.e. 

 

 

Hence we obtain 

η = 

  
1 

l

   

× (−mg sin θ). 

1 2 d
2
θ 1 

 
giving 

3 
ml 

dt 2   
= − 

2 
mgl sin θ (1.45) 

 

d
2
θ 3g 

dt 2 
= − 

2l 
sin θ. (1.46) 

Again we can use the small-angle approximation to obtain 
 

d
2
θ 3g 

dt 2 
= − 

2l 
θ. (1.47) 

This is SHM with ω = 
√

3g/2l and T = 2π
√

2l/3g. 



∼ 
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In a simple model we can describe the walking pace of a person in terms of a 

physical pendulum. We model the human leg as a solid rod that pivots from the 

hip. Furthermore, when we walk we do so at a comfortable pace that coincides 

with the natural period of oscillation of the leg. If we assume a value of 0.8 m for 

l, the length of the leg, then its natural period is 1.5 s. One complete period of 

the swinging leg corresponds to two strides. Try this yourself. If the length of a 

stride is, say, 1 m then we would walk at a speed of approximately 2/1.5 m s−1
 

which corresponds to 4.8 km h−1
 or about 3 mph which is in good agreement with 

reality. 

 
1.3.4 Numerical solution of simple harmonic motion

3
 

When solving the equation of motion for an oscillating pendulum we made use of 

the small-angle approximation, sin θ   θ when θ is small. This made the equation 

of motion much easier to solve. However an alternative way, without resorting to 

the small-angle approximation, is to solve the equation numerically. The essential 

idea is that if we know the position and velocity of the mass at time t and we know 

the force acting on it then we can use this knowledge to obtain good estimates of 

these parameters at time (t δt). We then repeat this process, step by step, over 

the full period of the oscillation to trace out the displacement of the mass with 

time. We can make these calculations as accurate as we like by making the time 

interval δt sufficiently small. To demonstrate this approach we apply it to the simple 

pendulum. Figure 1.18 shows a simple pendulum and the angular position of the 

mass at three instants of time each separated by δt, i.e. at t , (t + δt) and (t + 2δt ). 
Using the notation θ̇ (t) and θ̈(t) for dθ(t)/dt  and d

2
θ(t)/dt 

2
, respectively, we can 

write the equation of motion of the mass, Equation (1.29), 

θ̈ (t) = − 
l  

sin θ(t). (1.48) 

 

 

 

 
q(t) 

q(t +dt) 

q(t +2dt) 

 
 

dt) 

 

 

 

 
 

Figure 1.18 A simple pendulum showing the position of the mass at three instants of time 

separated by time interval δt. 

 

 
3 This section may be omitted as it is not required later in the book. 

(t +2  

(t +dt) 

(t) 
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If the angular position of the mass is θ(t) at time t , then its position at time (t   δt) 
will be different by an amount equal to the angular velocity of the mass times the 

time interval δt (cf. the familiar expression x = vt for linear motion). We might 
be tempted to use θ̇ (t) for this angular velocity. However, as we know, the angular 
velocity varies during the time δt. A better estimate for the angular velocity is its 

average  value  between the  times  t  and  (t δt),  i.e.  θ̇ (t δt/2).  Thus  to  a  good 

approximation we have 

θ(t + δt) = θ(t) + δt × θ̇ (t + δt/2). (1.49) 

In a similar way we can relate the angular velocities of the mass at times separated 

by time δt, i.e. the new velocity will be different from the old value by an amount 

equal to δt     θ̈ (t), where θ̈ (t) is the angular acceleration (cf. the familiar expression 

v     u     at for linear motion). The acceleration also varies with time and so again 

we will use its average value during the time interval δt. For the evaluation of 

θ̇ (t + δt/2) this translates to 

θ̇ (t + δt/2) = θ̇ (t − δt/2) + δt × θ̈(t) (1.50) 

where  θ̈ (t)  is  the  average  value  of  the  angular  acceleration  between  the  times 

(t     δt/2) and (t     δt/2) which we know from Equation (1.48). For the first step 

of this calculation we need the value of the angular velocity at time t      δt/2. For 

this particular case we use the expression 

θ̇ (δt/2) = (δt/2) × θ̈ (0). (1.51) 

Armed with these expressions for angular position, velocity and acceleration we 

can trace the angular displacement of the mass step by step. 

We proceed by building up a table of consecutive values of θ(t), θ̇(t) and θ̈ (t). 

As an example we chose the length of the simple pendulum to give T    2.0 s and 

ω π. We also chose a time interval δt of 0.02 s (equal to one hundredth of the 

period) and an angular amplitude θ0 of 0.10 rad (5.7◦). The values obtained in the 
first 10 steps of the calculation are shown in Table 1.2 and were obtained using 
a hand calculator. For comparison the final column of Table 1.2 shows the values 

obtained from the analytic solution θ(t) θ0 cos ωt. We see that the numerically 

calculated values of the displacement are in agreement with the analytic values up to 

the third significant figure. These two sets of values for a complete period of oscil- 

lation are plotted in Figure 1.19 and show the familiar variation of displacement 

with time. The solid curve corresponds to the values of displacement obtained from 

the analytic solution θ(t)  θ0 cos ωt, while the dots ( ) correspond to the numeri- 

cally computed values. The agreement is so good that the dots lie exactly on top of 

the analytic curve. These results demonstrate that the small-angle approximation 

is valid in this case and that the numerical method gives accurate results. 

This numerical method allows us to explore what happens for large-amplitude 
oscillations where the small angle approximation is no longer valid. Figure 1.20 

shows the results for a very large angular amplitude of 1.0 rad (57◦) which were 
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TABLE 1.2 Computed values of angular displacement, velocity and acceleration of a 

simple pendulum. The last column on the right shows the values obtained from the 

analytic solution. 

Time (s) Angular displacement, Angular acceleration, Angular velocity, θ(t) = 0.1 cos πt 

θ(t) (rad) θ̈ (t ) (rad s−2) θ̇ (t ) (rad s−1) (rad) 
 

 

0.00 0.1000 −0.985 −0.0099 0.1000 

0.02 0.0998 −0.983 −0.0295 0.0998 

0.04 0.0992 −0.978 −0.0491 0.0992 

0.06 0.0982 −0.968 −0.0685 0.0982 

0.08 0.0968 −0.954 −0.0876 0.0969 

0.10 0.0950 −0.937 −0.106 0.0951 

0.12 0.0929 −0.915 −0.124 0.0930 

0.14 0.0904 −0.891 −0.142 0.0905 

0.16 0.0876 −0.863 −0.159 0.0876 

 

q (rad) 
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Figure 1.19  The angular displacement θ , plotted against time, for a simple pendulum with a 

small amplitude of oscillation; θ0     0.1 rad. The solid curve corresponds to the values of 

displacement obtained from the analytic solution θ(t) θ0 cos ωt , while the dots ( ) correspond 

to the numerically computed values. The agreement is so good that the computed values lie 

on top of the analytical curve. 
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Figure 1.20  The angular displacement θ , plotted against time, of a simple pendulum for 

a large amplitude of oscillation; θ0 1.0 rad. The solid curve corresponds to the values of 

displacement obtained from the solution θ(t)   θ0 cos ωt , while the dotted curve is obtained 

from the numerically computed results. For large-amplitude oscillations the period of the 

pendulum is no longer independent of amplitude and increases with amplitude. 
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obtained using a spreadsheet program. The solid curve corresponds to the values 

of displacement obtained from the solution θ(t)  θ0 cos ωt while the dotted curve 

is the one obtained from the numerically computed values. There is a significant 

difference between the two curves: the actual angular displacement of the mass, 

which is given by the numerical values, no longer closely matches the analytic 

solution. In particular the time period for the actual oscillations has increased to a 

value of 2.13 s: an increase of 6.5%. We see that for large-amplitude oscillations the 

period of the pendulum is no longer independent of amplitude and that it increases 

with amplitude. 

 
 

1.4 OSCILLATIONS IN ELECTRICAL CIRCUITS: SIMILARITIES 

IN PHYSICS 

In this section we consider oscillations in an electrical circuit. What we find is 

that these oscillations are described by a differential equation that is identical in 

form to Equation (1.6) and so has an identical solution: only the physical quantities 

associated with the differential equation are different. This illustrates that when we 

understand one physical situation we can understand many others. It also means that 

we can simulate one system by another and in this way build analogue computers, 

i.e. we can build an electrical circuit consisting of resistors, capacitors and inductors 

that will exactly simulate the operation of a mechanical system. 

 
1.4.1 The LC circuit 

The simplest example of an oscillating electrical circuit consists of an inductor L 

and capacitor C connected together in series with a switch as shown in Figure 1.21. 

 

 

 

 
C L 

 

 

I 

 

Figure 1.21 An electrical oscillator consisting of an inductor L and a capacitor C connected 

in series. 

 
 

As usual we start with an idealised situation where we assume that the resistance 

in the circuit is negligible. This is analogous to the assumption for mechanical 

systems that there are no frictional forces present. Initially, the switch is open and 

the capacitor is charged to voltage VC. The charge q on the capacitor is given 

by q     VCC where C is the capacitance. When the switch is closed the charge 

begins to flow through the inductor and a current I      dq/dt flows in the circuit. 

This is a time-varying current and produces a voltage across the inductor given 
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by VL    LdI /dt . We can analyse the LC circuit using Kirchhoff’s law , which 

states that ‘the sum of the voltages around the circuit is zero’, i.e. VC VL 0. 

Therefore 

q dI 

 
 

giving 

C 
+ L 

dt 
= 0 (1.52) 

q d
2
q 

 
 

and 

C 
+ L 

dt 2   
= 0 (1.53) 

d
2
q 1 

dt 2   
= − 

LC 
q. (1.54) 

This equation describes how the charge on a plate of the capacitor varies with time. 

It is of the same form as Equation (1.6) and represents SHM. The frequency of the 

oscillation is given directly by, ω         1/LC. Since we have the initial condition 

that the charge on the capacitor has its maximum value at t   0, then the solution 

to Equation (1.54) is q   q0 cos ωt, where q0 is the initial charge on the capacitor. 

The variation of charge q with respect to t is shown in Figure 1.22 and is analogous 

to the way the displacement of a mass on a spring varies with time. 

q 

0 t 

Figure 1.22 The variation of charge q with time on the capacitor in a series LC circuit. 

The charge oscillates in time in an analogous way to the displacement of a mass oscillating 

at the end of a spring. 

We can also consider the energy of this electrical oscillator. The energy stored 

in a capacitor charged to voltage VC is equal to 
1
 CV 

2
. This is electrostatic energy. 2 C 

The energy stored in an inductor is equal to 
1
 LI 

2
 and this is magnetic energy. 

Thus the total energy in the circuit is given by 

E = 
1 

LI 
2
 + 

1 
CV 

2
 

  

 

 
(1.55) 
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. (1.56) 
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kx , E = 
2 

L + 
2 C 

, (1.57b) 

α 
dt 2   

= −βZ, E = 
2 

α + 
2 

βZ , (1.58) 
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For these electrical oscillations the charge flows between the plates of the capac- 

itor and through the inductor, so that there is a continuous exchange between 

electrostatic and magnetic energy. 

 

1.4.2 Similarities in physics 

We note the similarities between the equations for the mechanical and electrical 

cases 

d
2
x d

2
q 1 

and 

m 
dt 2   

= −kx, L 
dt 2   

= − 
C 

q (1.57a) 
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where we have written dx/dt for the velocity v and dq/dt for the current I , in 

order to bring out more sharply the similarity of the two cases. In both cases we 

have the identical forms 

d
2
Z 

 
 

1 
 

dZ 
  2 

1 2 

 
 

where α and β are constants and Z Z(t) is the oscillating quantity (see also 

Equations 1.43). In the mechanical case Z stands for the displacement x, and in 

the electrical case for the charge q. Thus all we have learned about mechanical 

oscillators can be carried over to electrical oscillators. Moreover we can see a direct 

correspondence between the two sets of physical quantities involved: 

 

• q takes the place of x; 

• L takes the place of m; 

• 1/C takes the place of k. 

For example, the inductance L is the electrical analogue of mechanical inertia m. 

These analogies enable us to build an electrical circuit that exactly mimics the 

operation of a mechanical system. This is useful because in the development of a 

mechanical system it is much easier to change, for example, the value of a capacitor 

in the analogue circuit than to manufacture a new mechanical component. 

 
 

PROBLEMS 1 

1.1 A mass of 0.50 kg hangs from a light spring and executes SHM so that its position x 
is given by x      A cos ωt . It is found that the mass completes 20 cycles of oscillation 
in 80 s. (a) Determine (i) the period of the oscillations, (ii) the angular frequency of 
the oscillations and (iii) the spring constant k. (b) Using a value of A 2 mm, make 
sketches of the variations with time t of the displacement, velocity and acceleration of 
the mass. 

dt 

dt dt 



= 
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1.2 The ends of a tuning fork oscillate at a frequency of 440 Hz with an amplitude of 
0.50 mm. Determine (a) the maximum velocity and (b) the maximum acceleration of 
the ends. 

1.3 A platform oscillates in the vertical direction with SHM. Its amplitude of oscillation 
is 0.20 m. What is the maximum frequency (Hz) of oscillation for a mass placed on 

the platform to remain in contact with the platform? (Assume g = 9.81 m s−2.) 

1.4 A mass executes SHM at the end of a light spring. (a) What fraction of the total 
energy of the system is potential and what fraction is kinetic at the instant when the 
displacement of the mass is equal to half the amplitude? (b) If the maximum amplitude 
of the oscillations is doubled, what will be the change in (i) the total energy of the 
system, (ii) the maximum velocity of the mass and (iii) the maximum acceleration of 
the mass. Will the period of oscillation change? 

1.5 A mass of 0.75 kg is attached to one end of a horizontal spring of spring constant 

400 N m−1. The other end of the spring is attached to a rigid wall. The mass is pushed 
so that at time t    0 it is 4.0 cm closer to the wall than the equilibrium position and 

is travelling towards the wall with a velocity of 0.50 m s−1. (a) Determine the total 
energy of the oscillating system. (b) Obtain an expression for the displacement of the 

mass in the form x = A cos(ωt + θ) m, giving numerical values for A, ω and θ. 
 

1.6  

 

 

 

 

 

 

 

 

 
 

(a) 

 
(b) 

 
(c) 

 

The figure shows three systems of a mass m suspended by light springs that all have the 

same spring constant k. Show √that the f√requencies of oscillation for the three systems 

are in the ratio ωa : ωb : ωc = 2 : 1 : 1/2. 

1.7 A test tube is weighted by some lead shot and floats upright in a liquid of density 
ρ. When slightly displaced from its equilibrium position and released, the test tube 
osc√illates with SHM. (a) Show that the angular frequency of the oscillations is equal 
to Aρg/m where g is the acceleration due to gravity, A is the cross-sectional area 
of the test tube and m is its mass. (b) Show that the potential energy of the system 
is equal to 1 Aρgx2 where x is the displacement from equilibrium. Hence give an 
expression for the total energy of the oscillating system in terms of the instantaneous 
displacement and velocity of the test tube. 

1.8 We might assume that the period of a simple pendulum depends on the mass m, the 

length l of the string and g the acceleration due to gravity, i.e. T ∝ mαlβgγ , where α, 
β  and γ  are constants. Consider the dimension√s of the quantities involved to deduce 

the values of α, β and γ and hence show T ∝ l/g. 

1.9 A simple pendulum has a length of 0.75 m. The pendulum mass is displaced hor- 
izontally from its equilibrium position by a distance of 5.0 mm and then released. 
Calculate (a) the maximum speed of the mass and (b) the time it takes to reach this 

speed. (Assume g = 9.81 m s−2.) 

k 
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k k 
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1.10  

q 
 
 
 
 
 
 
 
 

 

The figure shows a thin uniform rod of mass M and length 2L that is pivoted without 
friction about an axis through its mid point. A horizontal light spring of spring constant 
k is attached to the lower end of the rod. The spring is at its equilibrium length when the 
angle θ with respect to the vertical is zero. Show√that for oscillations of small amplitude, 
the rod will undergo SHM with a period of 2π M/3k. The moment of inertia of the 

rod about its mid point is ML2/3. (Assume the small angle approximations: sin θ     θ 
and cos θ  1.) 

1.11 The potential energy U(x) between two atoms in a diatomic molecule can be expressed 
approximately by 

 

a b 
U(x) = − 

x6 
+ 

x12
 

where x is the separation of the atoms and a and b are constants. (a) Obtain an 
expression for the force between the two atoms and hence show that the equilibrium 

separation xo of the atoms is equal to (2b/a)1/6. (b) Show that the system will o√scillate 
with SHM when slightly displaced from equilibrium with a frequency equal to 

where m is the reduced mass and k = 36a(a/2b)4/3. 

k/m, 

1.12 A mass M oscillates at the end of a spring that has spring constant k and finite mass 
m. (a) Show that the total energy E of the system for oscillations of small amplitude 
is given by 

E = 
1 

(M + m/3)v2 + 
1 

kx2 
 

where v and x are the velocity and displacement of the mass M, respectively. (Hint: 
To find the kinetic energy of the spring, consider it to be divided into infinitesimal 
elements of length dl and find the total kinetic energy of these elements, assuming 
that the mass of the spring is evenly distributed along its length. The total energy E 
of the system is the sum of the kinetic energies of the spring and the mass M and 

the potential energy of t√he extended spring.) (b) Hence show that the frequency of the 

oscillations is equal to k/(M + m/3). 

1.13 A particle oscillates with amplitude A in a one-dimensional potential U(x) that is 
symmetric about x      0, i.e. U(x)     U(  x). (a) Show, from energy considerations, 
that the velocity v of the particle at displacement x from the equilibrium position 

(x = 0), is given by 
 

v =    2[U(A) − U(x)]/m. 

(b) Hence show that the period of oscillation T is given by 

,
 m     

∫ A
 dx  

k 

T = 4 
0 
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(c) If the potential U(x) is given by  
U(x) = αxn 

where α is a constant and n = 2, 4, 6, . . .  , obtain the dependence of the period T on 
the amplitude A for different values of n = 2, 4, ........ (Hint: Introduce the new variable 

of integration ξ = x/A in the above expression for the period T .) 



 

 

 

 

2 
The Damped Harmonic 
Oscillator 

 
In our description of an apple swinging back and forth at the end of a string (Section 

1.1) we noted that this oscillating system is not ideal. After we set the apple in 

motion, the amplitude of oscillation steadily reduces and the apple eventually comes 

to rest. This is because there are dissipative forces acting and the system steadily 

loses energy. For example, the apple will experience a frictional force as it moves 

through the air. The motion is damped and such damped oscillations are the subject 

of this chapter. All real oscillating systems are subject to damping forces and will 

cease to oscillate if energy is not fed back into them. Often these damping forces 

are linearly proportional to velocity. Fortunately, this linear dependence leads to an 

equation of motion that can be readily solved to obtain solutions that describe the 

motion for various degrees of damping. Clearly the rate at which the oscillator loses 

energy will depend on the degree of damping and this is described by the quality of 

the oscillator. At first sight, damping in an oscillator may be thought undesirable. 

However, there are many examples where a controlled amount of damping is used 

to quench unwanted oscillations. Damping is added to the suspension system of a 

car to stop it bouncing up and down long after it has passed over a bump in the 

road. Additional damping was installed on London’s Millennium Bridge shortly 

after it opened because it suffered from undesirable oscillations. 

 

 
2.1 PHYSICAL CHARACTERISTICS OF THE DAMPED HARMONIC 

OSCILLATOR 

A tuning fork is an example of a damped harmonic oscillator. Indeed we hear the 

note because some of the energy of oscillation is converted into sound. After it is 

struck the intensity of the sound, which is proportional to the energy of the tuning 

fork, steadily decreases. However, the frequency of the note does not change. The 

Vibrations and Waves George C. King 

 2009 John Wiley & Sons, Ltd 
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ends of the tuning fork make thousands of oscillations before the sound disappears 

and so we can reasonably assume that the degree of damping is small. We may 

suspect, therefore, that the frequency of oscillation would not be very different if 

there were no damping. Thus we infer that the displacement x of an end of the 

tuning fork is described by a relationship of the form 

x = (amplitude that reduces with t) × cos ωt 

where the angular frequency ω is about but not necessarily the same as would be 

obtained if there were no damping. We shall assume that the amplitude of oscillation 

decays exponentially with time. The displacement of an end of the tuning fork will 

therefore vary according to 

x = A0 exp(−βt) cos ωt (2.1) 

where A0 is the initial value of the amplitude and β is a measure of the degree 

of damping. The minus sign indicates that the amplitude reduces with time. As 

we shall see, this expression correctly describes the motion of a damped harmonic 

oscillator when the degree of damping is small and so the assumptions we have 

made above are reasonable. 

 
2.2 THE EQUATION OF MOTION FOR A DAMPED HARMONIC 

OSCILLATOR 

An example of a damped harmonic oscillator is shown in Figure 2.1. It is similar 

to the simple harmonic oscillator described in Section (1.2.2) but now the mass 

is immersed in a viscous fluid. When an object moves through a viscous fluid 

it experiences a frictional force. This force dampens the motion: the higher the 

velocity the greater the frictional force. So as a car travels faster the frictional 

force increases thereby reducing the fuel economy, while the velocity of a falling 

raindrop reaches a limiting value because of the frictional force. The damping force 

Fd acting on the mass in Figure 2.1 is proportional to its velocity v so long as v 

is not too large, i.e. 

Fd = −bv (2.2) 

 

 

 

 

 

 

 

viscous fluid 

 

 

 

 
Figure 2.1 An example of a damped mechanical oscillator showing an oscillating mass 

immersed in a viscous fluid. 

k 

m 



− 

o 

o = 

= − 

The Equation of Motion for a Damped Harmonic Oscillator 35 

where the minus sign indicates that the force always acts in the opposite direction 

to the motion. The constant b depends on the shape of the mass and the viscosity 

of the fluid and has the units of force per unit velocity. When the mass is displaced 

from its equilibrium position there will be the restoring force due to the spring 

and in addition the damping force bv due to the fluid. The resulting equation of 

motion is 

ma = −kx − bv (2.3a) 

or 

d
2
x dx 

We introduce the parameters 

m 
dt 2 

+ b 
dt 

+ kx = 0. (2.3b) 

ω
2
 = k/m, γ = b/m. (2.4) 

In terms of these, Equation (2.3b) becomes 

 

(2.5) 

 

This is the equation of a damped harmonic oscillator. The relationship k/m ω
2
 is 

familiar from our discussion of the simple harmonic oscillator. Now we designate 

this angular frequency ωo and describe it as the natural frequency of oscillation, 

i.e. the oscillation frequency if there were no damping. This allows the possibility 

that the damping does change the frequency of oscillation. In the present example 

the damping force is linearly proportional to velocity. This linear dependence is 

very convenient as it has led to an equation that we can readily solve. A damping 

force proportional to, say, v
2
 would be much more difficult to handle. Fortunately, 

this linear dependence is a good approximation for many other oscillating systems 

when the velocity is small. Equation (2.5) has different solutions depending on 

the degree of damping  involved,  corresponding to  the cases of (i)  light damping , 

(ii) heavy or over damping and (iii) critical damping . Light damping is the most 

important case for us because it involves oscillatory motion whereas the other two 

cases do not. 

 
2.2.1 Light damping 

This condition corresponds to the mass in Figure 2.1 being immersed in a fluid 

of low viscosity like thin oil or even just air. In our previous, qualitative discus- 

sion of a lightly damped oscillator, Section 2.1, we suggested an expression for 

the displacement that had the form x A0 exp( βt) cos ωt. We adopt a similar 

functional form here. Then 

dx 

dt 
= −A0 exp(−βt)(ω sin ωt + β cos ωt) 

d
2
x 

dt 2 + γ + ω x = 0. 
dx 2 

dt 
o 
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and 
d

2
x 2 

dt 2 
= A0 exp(−βt)[2βω sin ωt + (β — ω ) cos ωt]. 

Substituting these into Equation (2.5) and collecting terms in sin ωt and cos ωt 

gives 

A0 exp(−βt)[(2βω − γω) sin ωt + (β2
 − ω2

 − γβ + ω2
) cos ωt] = 0. 

This can only be true for all times if the sin ωt and cos ωt terms are both equal to 

zero. Therefore, 

2βω − γω = 0 
 

giving β γ /2 and 

β
2
 − ω 

Substituting for β we obtain 

 
— γβ + ωo = 0. 

 

ω
2
 = ω2

 − γ 
2
/4. (2.6) 

 

So our solution for the equation of the lightly damped oscillator is 

 
(2.7) 

 

where ω (ω
2
 γ 

2
/4)

1/2
. Equation (2.7) represents oscillatory motion if ω is 

real, i.e. γ 
2
/4 < ω

2
 is the condition for light damping. Equation (2.6) shows that 

the angular frequency of oscillation ω is approximately equal to the undamped 

value ωo when γ 
2
/4      ω

2
. To obtain the general solution of Equation (2.5) we 

need to include a phase angle θ giving 

 

x = A0 exp(−γ t/2) cos(ωt + θ). (2.8) 

The parameters γ and ω are determined solely by the properties of the oscillator 

while the constants A0 and θ are determined by the initial conditions. For conve- 

nience in our following discussion we will take θ   0. If we let γ   0 we obtain, 

as expected, our previous results for the simple harmonic oscillator. 

A graph of x A0 exp( γt/2) cos ωt is shown in Figure 2.2 where the steady 

decrease in the amplitude of oscillation is apparent. The dotted lines represent the 
exp( γt/2) term which forms an envelope for the oscillations. The zeros in x 

occur when cos ωt is zero and so are separated by π/ω. Therefore the period of 

the oscillation T , equal to twice this separation, is 2π/ω. Successive maxima are 

also separated by T . We consider successive maxima An and An+1. If An occurs 
at time to then 

 

 
and 

An = x(to) = A0 exp(−γ to/2) cos ωto 

 
An+1 = x(to + T) = A0 exp[−γ(to + T )/2] cos ω(to + T ). 

x = A0 exp(−γ t/2) cos ωt 

2 



− 
= − 

An+1 2 

An+1 2 
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x 

t 

 

 

 

 
 

Figure 2.2 A graph of x A0 exp(   γt/2) cos ωt illustrating the decay in amplitude of a 

damped harmonic oscillator. The dotted lines represent the exp( γt/2) term of Equation 

(2.8), which forms an envelope of the oscillations. 

 

Since cos ωto = cos ω(to + T) we have 

  An     
= exp 

  
γT 

  

. (2.9) 
 

We see that successive maxima decrease by the same fractional amount. The natural 

logarithm of An/An+1, i.e. 

ln 

 
  An   

  

= 
γT 

,
 

 

is called the logarithmic decrement and is a measure of this decrease. Note that 

the larger amplitude occurs in the numerator of this expression. 

 
2.2.2 Heavy damping 

Heavy damping occurs when the degree of damping is sufficiently large that the 

system returns sluggishly to its equilibrium position without making any oscillations 

at all. This corresponds to the mass in Figure 2.1 being immersed in a fluid of 

large viscosity like syrup. For this case the oscillatory part of our solution, cos ωt 

in Equation (2.1), is no longer appropriate. Instead we replace it with the general 

function f(t), i.e. 
 

x = exp(−βt)f(t). (2.10) 

Substituting x and its derivatives into Equation (2.5) and letting β = γ /2 gives 

d2f 2 2 

dt 2 
+ (ωo − γ 

or 

d
2
f 

 
 

/4)f = 0 (2.11) 

 
 
2 

dt 2   
= α f (2.12) 
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where α
2
   (γ 

2
/4    ω

2
). The solutions to Equation (2.12) depend dramatically 

on the sign of α
2
. The α

2
 term is negative when γ 

2
/4 < ω

2
 and this leads to an 

oscillatory solution with the complex form f(t)    A exp i(αt    θ). This solution 

is not appropriate for the case of heavy damping where there is no oscillation. In 

fact it corresponds to the case of light damping, discussed in Section 2.2.1. The 

α
2
 term is positive when γ 

2
/4 > ω

2
. In this case Equation (2.12) has the general 

solution 

 
 

giving 

f(t) = A exp(αt) + B exp(−αt), 

 

x = exp(−γ t/2)[A exp(αt) + B exp(−αt)] 

= A exp[−γ /2 + (γ 2/4 − ω2)1/2 ]t + B exp[−γ /2 − (γ 2/4 − ω2)1/2 ]t.   (2.13) 

 

This  is  the  non-oscillatory  solution  that  we  require.  The  term  (γ 
2
/4     ω

2
)
1/2

  is 

clearly less than γ /2 and so the exponents of both exponential terms are negative 

in sign. Hence the displacement reduces to zero with time and there is no oscillation. 

 
2.2.3 Critical damping 

An interesting situation occurs when γ 
2
/4 = ω2

. Then Equation (2.12) becomes 

 
d

2
f 

dt 2   
= 0. (2.14) 

This equation has the general solution 
 

f = A + Bt, (2.15) 
 

leading to  
x = A exp(−γ t/2) + Bt exp(−γ t/2) (2.16) 

 

where A has the dimension of length and B has the dimensions of velocity. This 

is the case of critical damping. Here the mass returns to its equilibrium position in 

the shortest possible time without oscillating. Critical damping has many important 

practical applications. For example, a spring may be fitted to a door to return 

it to its closed position after it has been opened. In practice, however, critical 

damping is applied to the spring mechanism so that the door returns quickly to 

its closed position without oscillating. Similarly, critical damping is applied to 

analogue meters for electrical measurements. This ensures that the needle of the 

meter moves smoothly to its final position without oscillating or overshooting so 

that a rapid reading can be taken. Springs are used in motor cars to provide a 

smooth ride. However damping is also applied in the form of shock absorbers 

as illustrated schematically in Figure 2.3. Without these the car would continue 

to bounce up and down long after it went over a bump in the road. A shock 



o 

o 

o 
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Figure 2.3 Schematic diagram of a car suspension system showing the spring and shock 

absorber. 

 
absorber consists essentially of a piston that moves in a cylinder containing a 

viscous fluid. Holes in the piston allow it to move up and down in a damped 

manner and the damping constant is adjusted so that the suspension system is close 

to the condition of critical damping. You can see the effect of a shock absorber by 

pushing down on the front of a car, just above a wheel. The car quickly returns 

to equilibrium with little or no oscillation. You may also notice that the resistance 

is greater when you push down quickly than when you push down slowly. This 

reflects the dependence of the damping force on velocity. 

In summary we find three types of damped motion and these are illustrated in 

Figure 2.4. They correspond to the conditions: 
 

(i) (γ 
2
/4 < ω

2
) Light damping; damped oscillations. 

(ii) (γ 
2
/4 > ω

2
)   Heavy damping; exponential decay of displacement. 

(iii) (γ 
2
/4 = ω

2
) Critical damping; quickest return to equilibrium position 

without oscillation. 
 

x 

 

 

 

 

t 

 

 

 

 

 

Figure 2.4 The motion of a damped oscillator for the cases of light damping, heavy damping 

and critical damping. 

critical damping heavy damping 

light damping 
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Worked example 

A mass of 2.5 kg is attached to a spring that has a value of k equal to 

600 N m−1
. (a) Determine the value of the damping constant b that is required 

to produce critical damping. (b) The mass receives an impulse that gives it 

resultant displacement and the time at which this occurs. 

Solution 

a velocity of vi = 1.5 m s−1
 at t = 0. Determine the maximum value of the 

(a) For critical damping, γ /4 = b /4m  = ω  = k/m. Therefore, 
2 2 2 2 

o 

b = 
√

4mk = 
√

4 × 2.5 × 600 = 77.5 kg s−1
. 

(b) General solution for critical damping is 

x = A exp(−γ t/2) + Bt exp(−γ t/2). 

Therefore 

v =  
dt  

= exp(−γ t/2)(B − γ Bt/2 − γ A/2). 
dx 

Initial conditions, x = 0 and v = vi at t = 0, give A = 0 and B = vi. There- 
fore, 

x(t) = vi t exp(−γ t/2). 

Maximum displacement occurs when dx/dt = 0, giving 

vi exp(−γ t/2)(1 − γ t/2) = 0. 

Hence 

t = = = 
2 2m 

γ b 

2 × 2.5 

77.5 
= 6.5 × 10−2

 s 

and 

x = = 
2vi 

eγ 

2mvi 

eb 
= 

2 × 2.5 × 1.5 

e × 77.5 
= 3.6 × 10−2

 m. 
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To appreciate the physical origin of these different types of motion, we recall 

that γ 
2
/4 is the damping term while ω

2
 is proportional to the spring constant 

k through ω
2
 k/m. When the damping term is small compared with k/m, the 

motion is governed by the restoring force of the spring and we have damped 

oscillatory motion. Conversely, when the damping term is large compared with 

k/m the damping force dominates and there is no oscillation. At the point of 

critical damping the two forces balance. We finally note that the relative size of 

γ 
2
/4 compared with ω

2
 also determines the response of the oscillator to an applied 

periodic driving force, as we shall see in Chapter 3. 
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2.3 RATE OF ENERGY LOSS IN A DAMPED HARMONIC 

OSCILLATOR 

The mechanical energy of a damped harmonic oscillator is eventually dissipated 

as heat to its surroundings. We can deduce the rate at which energy is lost by 

considering how the total energy of the oscillator changes with time. The total 

energy E is given by 

E = K + U = 
1 

mv
2
 + 

1 
kx

2
. (1.19) 

 

For the case of a very lightly damped oscillator, i.e. γ 
2
/4 ω

2
, it follows from 

Equation (2.6) that to a good approximation ω = ωo and from Equation (2.7) that 

x = A0 exp(−γ t/2) cos ωot. (2.17) 

Hence, 

dx 
v =  

dt  
= −A0ωo exp(−γ t/2)[sin ωot + (γ /2ωo) cos ωot ]. 

Since γ /2     ωo, we can neglect the second term in the square brackets and write 

dx 
v =  

dt  
= −A0ωo exp(−γ t/2)(sin ωot ). 

Then  
E = A

2
 exp(−γt)(mω

2
 sin

2
 ωot + k cos

2
 ωot). 

x is a product of a linearly increasing function and an exponentially decaying 

one. Of course the exponential function wins in the end and the displacement 

steadily reduces to zero as shown in Figure 2.5. 

4 

 

3 

 

2 

 
1 

 

0 

0 0.1 0.2 

time (s) 

0.3 

Figure 2.5   An example of critical damping showing the steady decrease of the dis- 

placement to zero following an impulse applied at time t = 0. The dashed lines indicate 
the maximum value of the displacement and the time at which it occurs. 
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Substituting for ω
2
 = k/m, we obtain 

 

E = 
1 

kA
2
 

 

exp(−γt) 

2 0 

 
giving 

 

 

 
 

(2.18) 
 

where E0 is the total energy of the oscillator at t    0. We have the important 

and simple result that the energy of the oscillator decays exponentially with time 

as shown in Figure 2.6. We also have an additional physical meaning for γ . The 

reciprocal of γ is the time taken for the energy of the oscillator to reduce by a 

factor of e. Defining η = 1/γ , we obtain 

E(t) = E0 exp(−t/η) (2.19) 

where η has the dimensions of time and is called the decay time or time constant 

of the system. There are many examples of both classical and quantum-mechanical 

systems that give rise to exponential decay of their energy with time as described 

by Equation (2.19) and for some of these η is called the lifetime. 

 
 

E 

E 

 

 

 

 

 

 

 
Figure 2.6 The exponential decay of the energy of a very lightly damped harmonic 

oscillator. 

 
 

The energy of an oscillator is dissipated because it does work against the damping 

force at the rate (damping force velocity). We can see this by differentiating 

Equation (1.19) with respect to time. Thus 

 

dE 
=

 d  
  

1 
mv

2
 + 

1 
kx

2

   

= mv 
dv 

+ kx 
dx 

= (ma + kx)v 

which, using Equation (2.3a), gives 

 
dE 

dt 
= (−bv)v. (2.20) 

E(t) = E0 exp(−γt) 



o 
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2.3.1 The quality factor Q of a damped harmonic oscillator 

It is useful to have a figure of merit to describe how good an oscillator is, where 

we imply that the smaller the degree of damping the higher the quality of the 

oscillator. Moreover we would like a figure of merit that is dimensionless and can 

readily be applied to any oscillator whether it is mechanical, electrical or otherwise. 

This is called the quality factor Q of the oscillator and is defined below. It is rea- 

sonable to expect that an oscillator with a high Q-value would make an appreciable 

number of oscillations before its energy is reduced substantially, say by a factor 

of e. Equation (2.19) shows that this reduction occurs after time η and we might 

therefore compare η with the period of oscillation T . If η is large compared with T 

we would have many oscillations and the Q-value of the oscillator would be large. 

Conversely when η approaches T in value there would be a small number of oscil- 

lations and the Q-value would be small. Thus the ratio η/T would provide us with 

a useful figure of merit. Conventionally, however, it is quantities that are related to 

the inverse of η and T that are compared. These are the damping term γ and the 

angular frequency of oscillation which is equal to ωo to a very good approximation 

under most circumstances. The quality factor Q is therefore defined as 

(2.21) 

γ and ωo have the same dimensions as each other, [time]−1
, and Q is a pure, 

dimensionless number. In Section 2.2 we compared the relative sizes of γ 
2
/4 

and ω
2
 to deduce what sort of damped motion would result. We now have 

a new physical interpretation for this comparison. The reciprocal of γ is a 

characteristic time for the exponential decay of the energy and the reciprocal of 

ωo is a characteristic of the oscillation period. Figure 2.7 shows the behaviour of 

a particular oscillator with various amounts of applied damping together with the 

respective Q-values. It is quite evident that the higher the Q-value, the greater 

the number of oscillations. Also shown for comparison is the behaviour of the 

oscillator for the condition of critical damping. 

We can define the quality factor Q in a different way by considering the rate at 

which the energy of the oscillator is dissipated. If we consider the energy of a very 

lightly damped oscillator one period apart we have from Equation (2.18), 

E1 = E0 exp(−γt), E2 = E0 exp[−γ(t + T )] 

giving 

 

 
The series expansion of e

x
 is 

 

E2 

E1 

= exp(−γT ). 

x x2 x3 

 
Thus, when x      1, 

e = 1 + x + 
2! 

+ 
3! 

· · ·  . 

 
e

x
    1 + x 

Q = 
γ 

. 
ωo 
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(a) Q = 300 

 

 
t 

 

 
(b) 

 

 

 

 

 

 
(c) 

 

 

 

 

 

 
(d)  

 

 

 

 

 

Figure 2.7 The behaviour of an oscillator with various degrees of damping. The corre- 

sponding Q-values are (a) 300, (b) 10 and (c) 3. The case of critical damping for the 

oscillator is also shown (d). 

 

to a good approximation. For a very lightly damped oscillator, we have γT 1 

and therefore 

E1 − E2  
   γT    

2πγ  
= 

2π 
 

(2.22) 
E1 ωo Q 

 

where we have substituted ωo for ω. The fractional change in energy per cycle is 

equal to 2π/Q and so the fractional change in energy per radian is equal to 1/Q. 

We then define Q by 
 

energy stored in the oscillator 
Q = 

energy dissipated per radian 
. (2.23)

 
 

We can usefully cast our previous equations in terms of the dimensionless quantity 

Q. Thus the equation of a damped oscillator, Equation (2.5), becomes 
 

d
2
x ωo dx 2 

dt 2 
+ 

Q dt 
+ ωo x = 0 (2.24) 
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Worked example 

When the E string of a guitar (frequency 330 Hz) is plucked, the sound intensity 

decreases by a factor of 2 after 4 s. Determine (i) the decay time η , (ii) the 

quality factor Q and (iii) the fractional energy loss per cycle. 

Solution 

(i) The sound intensity is proportional to the energy of oscillation. 
 

E(t) = E0 exp(−t/η) 

giving 

4 

(ii) 

t 
η = 

ln[E0/E(t)] 
= 

ln 2 
= 5.77 s.

 

Q = ωo/γ = ωoη = 2π × 330 × 5.77 = 1.2 × 10
4
. 

(iii) 
∆E 2π 

E Q 
= = 5.3 × 10− . 

4 

Worked example 

The electron in an excited atom behaves like a damped harmonic oscillator 

when the atom radiates light. The lifetime of an excited atomic state is 10−8
 s 

and the wavelength of the emitted light is 500 nm. Deduce a value for the 
quality factor. 

Solution 

The lifetime corresponds to η which is equal to 1/γ . The frequency of oscil- 
lation ν is given by ν = c/λ and so ωo = 2πc/λ. Therefore 

Q = 
γ  

= 
ωo 2π × 3 × 10

8
 × 10−8

 

500 × 10−9 
≈ 4 × 10 

7 

which is a very high value indeed. 
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and the angular frequency ω, Equation (2.6), becomes 
 

ω = ωo(1 − 1/4Q
2
)
1/2

. (2.25) 

Equation (2.25) confirms our assumption that ω is equal to ωo to a good approxi- 

mation under most circumstances. Even when Q is as low as 5, ω is different from 

ωo by just 0.5%. 
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TABLE 2.1 Typical values of Q for a variety of damped 

oscillators. 
 

Damped oscillator system Typical value of Q 

Paper weight suspended on a rubber band 10 

Clock pendulum 75 

Electrical LCR circuit 200 

Plucked violin string 103 

Microwave cavity oscillator 104 

Quartz crystal 106 

 

Typical values of Q for a variety of damped oscillators are presented in Table 2.1. 

 
 

2.4 DAMPED ELECTRICAL OSCILLATIONS 

In our mechanical example of a mass moving through a fluid we saw that the fluid 

offered a resistance that damped the motion. In the case of an electrical oscillator 

it is the resistance in the circuit that impedes the flow of current. An electrical 

oscillator is shown in Figure 2.8. It consists of an inductor L and capacitor C 

 

 

 

 

C L 

 

 

 

Figure 2.8 The circuit of a damped electrical oscillator consisting of an inductor L ,  a 

capacitor C and a resistor R connected in series. 

 
as before (see Figure 1.21) but now there is also the resistor R. We charge the 

capacitor to voltage VC = q/C, and then close the switch. Kirchoff’s law gives 

dI q 
L 

dt 
+ RI + 

C 
= 0 

or 

d
2
q dq q 

L 
dt 2 

+ R 
dt 

+ 
C 

= 0. (2.26) 

This has the identical form to Equation (2.3b), 
 

d
2
x dx 

m 
dt 2 

+ b 
dt 

+ kx = 0, (2.3b) 



= 

  

= 

= = = = 

= − 
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and we recognise the analogous quantities we met before: q is equivalent to x, 

L to m and k to 1/C. However, we see that R is analogous to the mechanical 

damping constant b and so R/L is the equivalent of γ ( b/m). Since the above 

differential equations have identical forms, their solutions also have identical forms. 

The importance of this is that we can use our results for the mechanical oscillator 

to immediately write down the corresponding results for the electrical case. Thus 

from Equation (2.7) it follows that 
 

q = q0 exp(−Rt/2L) cos[(1/LC − R2
/4L

2
)
1/2

t ] (2.27) 

where q0 is the initial charge on the capacitor. This corresponds to the case of light 

damping which now means that R
2
/4L

2
 < 1/LC . Since the voltage VC across the 

capacitor is equal to q/C 
 

VC = V0 exp(−Rt/2L) cos[(1/LC − R2
/4L

2
)
1/2

t ] (2.28) 

where V0 is the initial value of the voltage. This is an oscillating voltage at an 

angular frequency ω given by 

2 1 R
2
 

ω = 
LC 

− 
4L2 

(2.29) 
 

which is essentially equal to 1/LC when R
2
/4L

2
 1/LC . The amplitude of the 

oscillating voltage decays exponentially with a time constant of R/2L and so R/L 

has the dimensions of [time]−1
. For R

2
/4L

2
 > 1/LC we have the case of heavy 

damping and for R
2
/4L

2
 1/LC we have critical damping. Similarly we find that 

the quality factor Q of the circuit is given by 

Q = 
1 
, 

L
. (2.30) 

 

For example, with L     10 mH, C     2.5 nF and R     10 ▲, Q     200, which is 

a typical value for an electrical oscillator. Again we emphasise the exact corre- 

spondence between the equations and solutions that describe the mechanical and 

electrical systems, so that mechanical systems can be simulated by electrical cir- 

cuits. Such analogue computers can greatly facilitate the design and development 

of mechanical systems. 

 
PROBLEMS 2 

2.1 A spring balance consists of a pan that hangs from a spring. A damping force Fd        bv 
is applied to the balance so that when an object is placed in the pan it comes to rest in 
the minimum time without overshoot. Determine the required value of b for an object 

of mass 2.5 kg that extends the spring by 6.0 cm. (Assume g = 9.81 m s−2.) 

2.2 A mass of 0.50 kg hangs from the end of a light spring. The system is damped by a light 
sail attached to the mass so that the ratio of amplitudes of consecutive oscillations is 
equal to 0.90. It is found that 10 complete oscillations takes 25 s. Obtain a quantitative 
expression for the damping force and determine the damping factor γ of the system. 
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The figure shows a graph of displacement x against time t for a damped harmonic 
oscillator. Deduce the quality factor Q of the oscillator. 

2.4 The energy of a damped harmonic oscillator is observed to reduce by a factor of 2 after 
10 complete cycles. By what factor will it reduce after 50 complete cycles? 

2.5 An undamped oscillator has a natural frequency ωo  of π rad s−1. Various amounts 
of damping are added to the system to give values of the damping factor γ equal to 

0.01, 0.30 and 1.0 s−1, respectively. (a) For each value of γ find the corresponding Q-
value and frequency ω of the damped oscillations. Comment on the change in ω 
over this range of γ . (b) For each of the values of Q, use a spreadsheet program to plot 
x    A0 exp(   γt/2) cos ωt over the time period t    0 to 10 s, using a value of 10 mm 
for A0. (c) Obtain an expression for x for the case of critical damping with the initial 

conditions, x = 10 mm and dx/dt = 0. Plot x over the time period t = 0 to 10 s. 

2.6 When damping is applied to a simple harmonic oscillator its frequency of oscillation 
changes from ωo to a different frequency ω. Show for a very lightly damped harmonic 
oscillator of quality factor Q that the fractional change in frequency is equal to 1/8Q2 
to a good approximation. 

2.7 A simple pendulum is constructed from an aluminium sphere attached to a light rod. 
A second pendulum is constructed of the same length but with a brass sphere. The 
diameters of the two spheres are the same. The two pendulums are set in motion at 
the same time with the same amplitude of oscillation. After 10 min the amplitude of 
oscillation of the aluminium pendulum has decreased to one-half its initial value. By 
what factor has the amplitude of oscillation of the brass pendulum decreased at this 
time? (Assume that the damping force acting on a pendulum is directly proportional to 

the velocity of the sphere. The densities of aluminium and brass are 2.7 × 103 kg m−3 
and 8.5 × 103 kg m−3, respectively.) 

2.8 According to classical electromagnetic theory, an accelerating electron radiates energy 
at a rate Ke2a2/c3, where a is the acceleration, e is the electronic charge, c is the 

velocity of light and K is a constant with a value of 6 109 N m2 C−2. Suppose 
that the motion of the electron can be represented by the expression x     A sin ωt dur- 
ing one cycle of its motion. (a) Show that the energy radiated during one cycle is 
Ke2πω3A2/c3. (b) Recalling that the total energy of a harmonic oscillator is 1 mω2A2 

 

where m is the mass, show that the quality factor Q is mc3/Ke2ω 
2 

. (c) Using a typ- 
ical value of ω for a visible photon, estimate the ‘lifetime’ of the radiating system 

(e = 1.6 × 10−19 C, mass of electron = 9.1 × 10−31 kg). 



 

 

 

 

3 
Forced Oscillations 

 
So far we have considered free oscillations where a system is disturbed from rest 

and then oscillates about its equilibrium position with steadily decreasing amplitude, 

as when we strike a bell. We now turn our attention to forced oscillations where 

we apply a periodic driving force to the system. We are surrounded by examples 

of such forced oscillations. We give a push to a playground swing at regular 

intervals to sustain its motion. In a pendulum clock the escapement mechanism 

gives regular impulses to the pendulum and in an analogous fashion the crystal 

in a crystal-controlled clock receives regular electrical impulses to maintain its 

oscillation. A musician uses a bow to play a note on a violin while air is driven 

into the pipes of an organ to sustain a note. (By contrast a harp and a guitar are 

plucked instruments and provide examples of free oscillations.) On a much larger 

scale the moon exerts a gravitational pull that exerts a periodic driving force on the 

oceans of the Earth that strongly influences their tidal motion. At the microscopic 

level, the radiation in a microwave oven drives the electrons of the water molecules 

in the item being cooked. 

Forced oscillations are the subject of the present chapter. We will see that the 

system always oscillates at the frequency of the applied force, apart from an ini- 

tial transient response. We will see that the frequency of the applied force has a 

dramatic effect on the amplitude of the oscillations, especially close to the nat- 

ural frequency of the system. For example, a singer can cause a wine glass to 

shatter when they produce a note that is at the resonance frequency of the glass 

(the frequency you hear when you tap the glass). The shaking of the ground in an 

earthquake may cause a building to collapse. The important point is that a peri- 

odic force can produce large and possibly catastrophic effects when applied at the 

resonance frequency. We will see that the sharpness of the response to the applied 

force depends on the quality factor Q of the oscillator. This is the same factor that 

we encountered in our discussion of damped harmonic motion in Section 2.3.1. In 

this chapter we also introduce the complex representation of oscillatory motion. 

We summarise the basic rules for manipulating complex numbers in Section 3.6.1 
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and then illustrate their use in the description and analysis of oscillatory motion in 

Sections 3.6.2 and 3.6.3, respectively. 

 
 

3.1 PHYSICAL CHARACTERISTICS OF FORCED HARMONIC 

MOTION 

We can observe the main physical characteristics of forced harmonic motion 

using a simple pendulum. We drive the pendulum by moving its point of suspension 

backwards and forwards harmonically, along a horizontal direction. At very low 

driving frequencies the pendulum mass closely follows the movement of the point 

of suspension with them both moving in the same direction as each other, i.e. 

they have the same amplitude and move in phase. As the driving frequency is 

increased the amplitude of oscillation increases dramatically and becomes much 

larger than the movement of the point of suspension. We might rightly suspect that 

the maximum amplitude occurs when the pendulum is driven close to its natural 

frequency of oscillation. The system is then said to be in resonance. We get the 

largest amplitude at resonance because this is the frequency at which the pendulum 

‘wants’ to oscillate. As the driving frequency is increased further the amplitude 

of oscillation decreases but perhaps more surprisingly the mass now moves in the 

opposite direction to the point of suspension, although still with the same frequency. 

At even higher frequencies we reach the situation where the pendulum mass hardly 

moves at all. This is because it has inertia. The simple pendulum serves as a useful 

example, but all forced oscillators behave in this manner. 

 

3.2 THE EQUATION OF MOTION OF A FORCED HARMONIC 

OSCILLATOR 

3.2.1 Undamped forced oscillations 

We begin with a mass m on a horizontal spring as shown in Figure 3.1. The 

spring constant is k and the mass moves without friction on a horizontal surface. 

The displacement x is measured from the equilibrium position of the mass. This 

system is similar to the one described in Section 1.2.1 but now we imagine that 

a periodic driving force F  F0 cos ωt is applied to it. The mass is acted upon 

by the combination of the restoring force from the spring and the applied driving 

force. From Newton’s second law we obtain 

 

(3.1) 

 

 
x 

 

F = F0 coswt 

 

Figure 3.1   Application of a periodic driving force F F0 cos ωt to a harmonic oscillator 

consisting of a mass m on the end of a spring of spring constant k. 

m 
dt 2   

+ kx = F0 cos ωt. 
d

2
x 
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This is the equation of motion for forced oscillations of a harmonic oscillator when 

there is no damping. We shall deduce a solution for Equation (3.1) and see how 

the oscillator behaves as we change the angular frequency ω of the driving force. 

First we note one limit of ω, namely ω 0. If we have a force F0 that does not 

change with time, i.e. ω    0, the acceleration term is zero. The displacement x is 

then equal to F0/k. So, at very low driving frequencies when ω tends to zero, the 

amplitude of oscillation will tend to the value F0/k. 

We deduce a solution for forced oscillations, Equation (3.1), using the 

arrangement of a mass m on a vertical spring, of spring constant k , as shown in 

Figure 3.2. Here we move the upper end s of the spring up and down harmonically 

in the vertical direction according to ξ  a cos ωt where a is the amplitude and ω 

is the applied frequency. (This simple but very informative experiment can be 

performed using a few elastic bands strung together with a small mass attached 

to the lower end.) We measure the displacement x from the equilibrium position 

of the mass and take displacements in the downward direction as positive. The 

resultant equation of motion is 

d
2
x 

m 
dt 2 

= −k(x − ξ) (3.2) 

equilibrium 

position 
s x = a cos wt 

equilibrium 

length k 

 

equilibrium 
 

position x 

m 

 

Figure 3.2 Practical realisation of forced oscillations, where the top of the spring s is 

moved up and down harmonically about its equilibrium position. 

 

or, substituting for ξ ,  
 

d
2
x 

m 
dt 2   

+ kx = ka cos ωt. (3.3) 

Equation (3.3) has exactly the same form as Equation (3.1) with 
 

ka = F0. (3.4) 

The response of the system is similar to that of the driven pendulum described 

in Section 3.1. At very low frequencies the amplitude of oscillations tends to 

the value of the amplitude a of the point of suspension. Under these conditions 

the motion is governed by the spring constant or stiffness of the spring. As ω 



o 

2 

o 

o 

= 

o 

o 
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is increased the amplitude of oscillation increases dramatically as the resonance 

frequency is approached. As ω is increased above the resonance frequency the 

amplitude decreases and the mass moves in the opposite direction to the driving 

force. At higher frequencies still, the amplitude tends to zero when the motion is 

governed by the inertia of the mass. At all frequencies, however, the mass moves 

up and down periodically at the same frequency ω as the driving force. This 

behaviour suggests that the displacement x of the mass can be written as 

x = A(ω) cos(ωt − δ). (3.5) 

In this equation, A(ω) is the physical amplitude that we observe and which we 

naturally define as a positive quantity. δ is a phase angle but has a different 

meaning to the phase angle θ in the expression given in Chapter 1: 

x = A cos(ωt + θ). (1.14) 

In Equation (1.14) θ relates to the initial conditions and along with A completely 

defines the free oscillations. In Equation (3.5), δ is the phase angle between the 

driving force and the resultant displacement. The minus sign of δ in Equation (3.5) 

implies that the displacement lags behind the driving force and this is indeed the 

case in forced oscillations. From our previous considerations, we expect δ to be zero 

at very low frequencies and equal to π at very high frequencies. Substituting x and 

its second derivative in Equation (3.3), and using ω
2
 = k/m (Equation (2.4)) gives 

2 2 2 

−ω A(ω) cos(ωt − δ) + ωo A(ω) cos(ωt − δ) = ωo a cos ωt. 

Expanding terms in cos(ωt − δ) leads to 
2 2 

— ωo A(ω)(cos ωt cos δ + sin ωt sin δ) + ωo A(ω)(cos ωt cos δ + sin ωt sin δ) 

= ωo a cos ωt. 

Then equating coefficients of cos ωt and sin ωt we obtain 

A(ω)(1 − ω2
/ω

2
) cos δ = a (3.6a) 

and  
A(ω)(1 − ω2

/ω
2
) sin δ = 0. (3.6b) 

Dividing Equation (3.6b) by Equation (3.6a) gives tan δ = 0 and so δ = 0 or π 

as expected. When δ = 0, Equation (3.6a) gives 

a 

A(ω) = 
(1 − ω2/ω2)

. (3.7) 

Since the amplitude A(ω) is defined as a positive quantity, Equation (3.7) shows 

that ω must be less than ωo when δ = 0. When δ = π, Equation (3.6a) gives 

A(ω) 
  −a 

. (3.8) 

(1 − ω2/ω2) 



= 

= 

= = 
= − 
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Now A(ω) is a positive quantity only when ω is greater than ωo. Thus we conclude 

that x      A(ω) cos(ωt     δ) is a solution for the undamped forced oscillator and that 

δ 0 for ω < ωo and δ π for ω> ωo. 

Equation (3.7) shows that A(ω) tends to a( F0/k) as ω tends to zero and 

Equation (3.8) shows that A(ω) tends to zero as ω tends to infinity, as we expect. 

However we also see that A(ω) tends to infinity as ω approaches ωo. A plot of 

A(ω) against ω, according to Equations (3.7) and (3.8), is shown in Figure 3.3. 

The behaviour of A(ω) as ω approaches ωo is clearly unphysical and arises because 

damping forces have been neglected. These are present in real systems and limit 

the maximum value of A(ω) as we shall see in Section 3.2.2. Figure 3.3 also shows 

the behaviour of the phase angle δ with respect to ω. The change of the phase angle 

from zero to π is consistent with the behaviour of the forced oscillators we have 

considered but its sharp and abrupt change at ω ωo is unphysical. This is again 

because the effects of damping have not been included. 

A(w) 

 

 

 

 

 
F0 k    

 
 

(a) 
 

d 









0 
 

(b) 

 

Figure 3.3 (a) A plot of the amplitude of oscillation A(ω) of a forced oscillator against 

driving frequency ω, when there is no damping. (b) The variation of the phase angle δ 

with driving frequency. δ is the phase angle between the driving force and the resultant 

displacement which lags behind the driving force. 

 

The amplitude A(ω) which we have defined above is the physical amplitude. It 

is always positive and is given by different expressions, (3.7) and (3.8) for ω < ωo 

and ω> ωo, respectively. An alternative description, which avoids this division and 

so allows both situations to be handled simultaneously, is sometimes convenient 

(cf. Section 4.5). Instead of Equation (3.5), we write the solution of Equation (3.3) 

in the form 
 

x = C(ω) cos ωt. (3.5a) 



o 

− = − 
= 

o 

= 
= − 

o 

= 
o 

→ 
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Comparing Equations (3.5) and (3.5a), and using Equations (3.7) and (3.8), at once 

gives 

a 

C(ω) = 
(1 − ω2/ω2) 

(3.7a) 

for both   ω < ωo   and ω> ωo. [For ω> ωo, this follows since δ    π and 

A(ω) cos(ωt   π)    A(ω) cos ωt.] We might call C(ω) the algebraic amplitude 

which, in contrast to the physical amplitude A(ω), is given by the same expression 

for all values of ω. In contrast to A(ω), which is always positive, C(ω) is positive 

for ω < ωo and negative for ω> ωo. 

 
3.2.2 Forced oscillations with damping 

We will again assume that the damping force is directly proportional to the 

velocity of the mass as we did in Section 2.2. This adds the damping term bdx/dt 

to Equation (3.1), so that the equation of motion becomes 

d
2
x dx 

m 
dt 2 

+ b 
dt 

+ kx = F0 cos ωt. (3.9) 

We make the substitutions b/m = γ and k/m = ω2
, Equation (2.4), to obtain 

 

(3.10) 

 
This is the equation for forced oscillations with damping. Again we try a solution of 

the form x A(ω) cos(ωt δ) and substitute for x and its derivatives in Equation 

(3.10), remembering that F0   ka, Equation (3.4). Then equating the coefficients 

of cos ωt and sin ωt we obtain 

A(ω)[(ω
2
 − ω2

) cos δ + ωγ sin δ] = ω2
a (3.11a) 

o o 

 

and 

 

 

giving 

(ω
2
 − ω2

) sin δ = ωγ cos δ, (3.11b) 

tan δ  
ωγ 

(ω2 − ω2) 

 
. (3.12) 

We see that the phase angle δ, as well as the amplitude A(ω), depends on the 

driving frequency ω. Using the mathematical nomenclature meaning ‘tends to’, 

inspection of Equation (3.12) shows that 

as ω → 0,     tan δ → 0, and   δ → 0, 

as ω → ∞,   tan δ → 1/(−∞),   and   δ → π, 

and when    ω = ωo,     tan δ = ∞, and δ = π/2 

d
2
x dx 2 F0 

dt 2 + γ + ω x = cos ωt. 
dt o m 



o 

= 
o 

o 

o 

= 
o 

= 

dω o 
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As the angular frequency of the applied force varies from very low to very high 

values, so tan δ varies continuously from zero to π and passes through π/2 at 

precisely the frequency ωo. It may seem surprising that the displacement lags 

behind the driving force by π/2 at resonance. However, in a harmonic oscillator, 

the velocity is always π/2 ahead of the displacement. This means that at resonance 

the mass is always moving in the same direction as the driving force, as when we 

give a push to a playground swing. From Equation (3.12) we can construct the 

right-angled triangle shown in Figure 3.4 to obtain 

wg 

(w2–w2) 

Figure 3.4 Geometrical construction for the phase angle δ. 

 

 

 

 
and 

 

sin δ 
ωγ

 

[(ω2 − ω2)2 + ω2γ 2]1/2 

 

 
 

(3.13) 

cos δ = 
(ω

2
 − ω2

) 
 

[(ω2 − ω2)2 + ω2γ 2]1/2 

 
. (3.14) 

Substituting for sin δ and cos δ in Equation (3.11) we finally obtain 
 

aω
2
 

A(ω) 
 
 

o
  

[(ω2 − ω2)2 + ω2γ 2]1/2 

 

 
 

(3.15) 

which describes the amplitude dependence on driving frequency ω for forced oscil- 

lations with damping. We note that Equation (3.15) reduces to the result for the 

undamped case, when γ is zero. Inspection of Equation (3.15) shows that 

as ω → 0, A(ω) → a(=F0/k), 

as ω → ∞,  A(ω) → 0, 

and when    ω = ωo, A(ω) = aωo/γ. 

These results are similar to the undamped case except that the amplitude does not 

go to infinity at ω ωo. Furthermore, the maximum amplitude of oscillation no 

longer occurs at ωo. For A(ω) to be a maximum, the denominator in Equation 

(3.15) must be a minimum. This occurs when 

d 
[(ω

2
 − ω2

)
2
 + ω2

γ 
2
]

1/2
 = 0, 

d 



o 

o 

o 
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from which  
ω = ωo(1 − γ 

2
/2ω

2
)
1/2

 ≡ ωmax (3.16) 
 

follows. The frequency ωmax at which the maximum amplitude occurs is a lower 

frequency than ωo although we will see that the difference is usually very small. 

We can find the maximum value of the amplitude Amax by substituting ωmax in 

Equation (3.15). The result is 

  aωo/γ  

Amax = 
(1 − γ 2/4ω2)1/2 

. (3.17) 

The dependences of the amplitude A(ω) and the phase angle δ on the driving 

frequency ω are shown in Figure 3.5. (We recall that δ is the phase angle by which 

the displacement lags behind the driving force.) These curves are similar to those 

for the undamped case (Figure 3.3). With damping, however, the phase angle varies 

continuously; the maximum amplitude remains finite although large and occurs at 

a lower frequency than ωo. Finally, in order to make Equation (3.15) more general, 

we make use of the substitution F0 = ka, Equation (3.4), to obtain 

  F0/m  

A(ω) = 
[(ω2 − ω2)2 + ω2γ 2]1/2 

. (3.18) 
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Figure 3.5 (a) A plot of the amplitute A(ω) of a forced oscillator against the driving 

frequency ω for the case where damping is present. (b) The variation of the phase angle δ 

with driving frequency. 



= 

= 

  = = 

Worked example 

A mass of 1.5 kg rests on a horizontal table and is attached to one end of a 

spring of spring constant 150 N m−1
. The other end of the spring is moved 

in the horizontal direction according to x = a cos ωt where a = 5 × 10−3
 m 

amplitude and relative phase of the steady state oscillations of the mass. Show 
that if the applied frequency were adjusted for resonance, the mass would 

oscillate with an amplitude of approximately 2.5 × 10−2
 m. 

Solution 

and ω = 6π rad s−1
. The damping constant b = 3.0 N m−1

 s. Determine the 

ωo = 
,

k/m = 
,

150/1.5 = 10 rad s−1
,  and γ  = b/m = 2.0 s−1

. 
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The amplitude A(ω) is proportional to the amplitude F0 of the applied force and 

depends on the applied frequency. We emphasise that a periodic driving force can 

produce oscillations of large amplitude when applied at the resonance frequency. 

It may then be desirable to add damping to limit the amplitude. For example, 

sky scrapers will sway in a strong wind. To ensure that the induced oscillations 

do not reach dangerously high levels, damping mechanisms are included in the 

construction of such buildings. 

In our discussion of damped free oscillations, Section 2.3.1, we defined the 

quality factor Q of the system by 

Q 
ωo 

, (2.21) 
γ 

 

i.e. as the ratio of the natural frequency ωo to the damping term γ , essentially a 

measure of the number of complete oscillations before the oscillations die away. 

Q also has important significance in the description of forced oscillations as we 

will see in Section 3.3. In the meantime we use the substitution Q ωo/γ in the 

equations for ωmax and Amax. Equation (3.16) leads to 

ωmax = ωo(1 − 1/2Q
2
)
1/2

, (3.19) 
 

and Equation (3.17) to 
 

aQ 

Amax = 
(1 − 1/4Q2)1/2 

. (3.20) 

For the case of light damping, when Q 1, ωmax ωo and Amax aQ to good 

approximations. Thus under this condition, the maximum amplitude of oscillation, 

i.e. resonance, occurs for all practical purposes at the natural frequency of free 

oscillations ωo. Moreover, at this frequency we see that the forced oscillator acts 

like an amplifier with an amplification factor equal to Q. 
 



A(ω) = 
ak/m 

[ (ω − ω ) + ω γ ] o 
2 2  2 2   2  1/2 

= 
1.5{[102 − (6π)2]2 + 22(6π)2}1/2 

= 1.9 × 10
 

150 × 5 × 10−3
 −3 m. 

tan δ = 
ωγ 

(ω − ω ) (10 − (6π) ) 

6π × 2 
0.15. 

o 
2 2 = 2 2 = − 

At resonance ω     ωo and A = Amax     aωo/γ , as follows from Equation 

Since ω> ωo, the phase angle must lie between π/2 and π. Then δ = 3.0 rad. 

(3.17), since ωo/γ = 5. Hence Amax      2.5 × 10−2
 m. 

Worked example 

Figure 3.6 shows a schematic diagram of a system that is used to isolate 

a platform from floor vibrations. The mass of the platform is m, the spring 

constant of the system is k and there is a damping mechanism (called a dashpot) 

with respect to its equilibrium position, obtain an expression for the maximum 

value of the displacement x of the platform from its equilibrium position in 

terms of A and ω. 

with damping constant b. If the floor is vibrating according to ξ = A cos ωt 

platform 

x 
damping 

mechanism 
equilibrium 

position 

floor 

equilibrium position 
x = A cos wt 

Figure 3.6 Vibration-isolation system showing a platform mounted on springs with a 

damping mechanism (called a dashpot) with damping factor b. 

Solution 

The spring force acting on the platform is proportional to the spring extension 

relative velocity of the platform with respect to the floor, which is given by 
(x − ξ ). The damping force produced by the dashpot is proportional to the 
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dt 

o 

− 

o 

o 

o 

= 
(ω2 − 2 2 2   

2ω ) + ω γ 

  o  

  o  + 

(i) C(ω) = A when ω = 2ω . 

o 

o 

o o 

o o 

+ 
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 d (x − ξ ). Thus the equation of motion of the platform is 

d
2
x d 

m 
dt 2 

= −k(x − ξ) − b 
dt 

(x − ξ)  

or 

d
2
x d 2 

dt 2 
+ γ 

dt 
(x − ξ) + ωo (x − ξ) = 0 

where ω
2
 = k/m and γ = b/m. To solve this equation we introduce the vari- 

able X = x − ξ in place of x, giving the equation 

d
2
X dX 2 d

2
y 2 

dt 2 
+ γ 

dt 
+ ωo X = −  

dt 2 
= ω A cos ωt 

since ξ = A cos ωt. We assume a steady state solution of this equation of the 

form X = B(ω) cos(ωt − δ) to obtain 

ω
2
A cos(ωt δ) 

x = 
[(ω2 − ω2)2 + ω2γ 2]1/2 

+ A cos ωt. 

Since x is a superposition of two cosine terms in ωt, we can write it as 
 

x = C(ω) cos(ωt − α), 
 

where 

 

 

 

Thus 

 
[C(ω)]

2
 = 

 
A

2
(ω

4
 ω

2
γ 

2
) 

. 
(ω2 − ω2)2 + ω2γ 2 

  
C(ω)

 2
 

 

 

 

(ω
4
 + ω2

γ 
2
) 

o 

(ω
4
 ω

2
γ 

2
) 

= 
(ω4 + ω2γ 2) + ω2(ω2 − 2ω2)

.
 

The maximum value of x is equal to C(ω). Inspection of this expression 
shows that the ratio of C(ω) to A depends on the relative sizes of the terms 

(ω
4
 + ω2

γ 
2
) and ω

2
(ω

2
 − 2ω

2
): 

 
2 2 

o 

(ii) C(ω) > A when ω
2
 < 2ω

2
. 

(iii) C(ω) < A when ω
2
 > 2ω

2
. 

A 



= 
o 

We see that the system does attenuate the floor vibrations when ω
2
 > 2ω

2
. How- 

ever, the vibrations of the floor are amplified when ω
2
 < 2ω

2
. It is thus impor- 

o 

o 

tant to make the resonance frequency ωo of the system as low as possible by, for 
example, having a platform of large mass. In practical systems, ωo is chosen to 

be about 1 Hz. Of course, damping can be used to reduce C(ω) to an acceptable 

value. For example, at ω = ωo, C(ω) = A[(ωo/γ)
2
 + 1]

1/2
 and increasing the 

damping factor γ can be seen to reduce C(ω). Such vibration-isolation sys- 

tems find many practical applications, such as in tables to support sensitive 

apparatus like lasers. 
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3.3 POWER ABSORBED DURING FORCED OSCILLATIONS 

In Section 3.2.1 we described the application of a periodic driving force to a 

mass on the end of a spring, for the ideal situation where there is no damping. The 

applied force drives the mass back and forth, but if there is no damping there is 

no dissipation of energy. During steady state oscillations, energy must be provided 

to stretch or compress the spring but this energy is recovered as the spring returns 

to its equilibrium length. Consequently, the total power delivered to the oscillator 

over each complete cycle is zero. However, a real oscillator loses energy because 

of the frictional damping forces that are invariably present. The driving force has to 

restore this lost energy. The power absorbed by the oscillator to sustain its motion 

is exactly equal to the rate at which the energy is dissipated . As usual we will 

assume that the damping force is proportional to the velocity of the mass and so 

we begin by considering how the velocity varies during forced oscillations. The 

displacement x of the mass is given by 

x = A(ω) cos(ωt − δ) (3.5) 

where 

   aω
2
 

A(ω)  
o
 , (3.15) 

[(ω2 − ω2)2 + ω2γ 2]1/2 

and so the velocity v is given by 

dx 
v = 

dt 
= −A(ω)ω sin(ωt − δ). (3.21) 

We write this as 

 

 

where 

 
v = −v0(ω) sin(ωt − δ), (3.22) 

 
v0(ω) = A(ω)ω. (3.23) 



o 

o 

=0 

= 

∫ 

  
ω

 
ω 

  2 

ω2 + γ 2 

1 
∫ to+T 

o 
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We can think of v0(ω) as the ‘amplitude’ of the velocity just as A(ω) is the 

amplitude of displacement. Substituting for A(ω) in Equation (3.23) gives 
 

aω
2
ω 

v (ω) 
 
 

o
 . (3.24) 

[(ω2 − ω2)2 + ω2γ 2]1/2 

Rewriting (ω
2
 − ω2

) in Equation (3.24) as 

(ω
2
 − ω2

) =

 
ωo 

−
 ω

  

(ωoω), 

 

we obtain 

o
 ω ωo 

 
 

aω
2
 

v0(ω) =             . (3.25) 
 

 

Inspection of Equation (3.25) shows that 

 

as   ω → 0, v0(ω) → 0, 

as ω → ∞, v0(ω) → 0, 

and the value of v0(ω) passes through a maximum at exactly ω    ωo, when it is 

equal to aω
2
/γ . 

The rate of energy loss due to damping is equal to the damping force times 

the velocity of the mass, cf. Equation (2.20). Since the damping force and the 

velocity are time-dependent, we must define the instantaneous power absorbed at 

time t by 
 

P (t) = bv(t) × v(t) = b[v(t)]
2
. 

Substituting v(t) from Equation (3.22) gives 
 

P (t) = b[vo(ω)]
2
 sin

2
(ωt − δ). (3.26) 

Furthermore, since the instantaneous power varies it is more appropriate to talk 
in terms of the average power P (ω) absorbed over a complete cycle of oscil- 

lation between times to and to + T , where T is the period. P (ω) is given by 

 

 
 

 

 
Thus 

P (ω) 
to 

P (t)dt. (3.27) 

P (ω) = 
b[vo(ω)]

2
 

to+T
 

 
 

T to 
sin

2
(ωt − δ)dt. (3.28) 

o 
− 

1/2 

ω ωo 

o 

= 
T

 



− 

o 

= 
o 

o 
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The integral of sin
2
(ωt δ) over any complete period of oscillation T is equal to 

T /2. Hence 

 

P (ω) = 
b[vo(ω)]

2
 

2 
. (3.29) 

Substituting Equation (3.24) for v0(ω) and using b = mγ , ω
2
 = k/m and a = 

F0/k, we obtain  

ω
2
F 

2
γ 

P (ω) 
 
 

0
 . (3.30) 

2m[(ω2 − ω2)2 + ω2γ 2] 

 
 

A plot of P (ω) against ω gives the power resonance curve of the oscillator, which 

shows how the power absorbed by the oscillator varies with the driving frequency. 

An example of such a power resonance curve is shown in Figure 3.7. Inspection 

of Equation (3.30) shows that 

 

as   ω → 0, P (ω) → 0, 

as ω → ∞, P (ω) → 0 

and the maximum value of P (ω) occurs exactly when ω = ωo. 
 

– 
P(w) 
– 
Pmax 

 

 

 

– 
Pmax 

2 

 

 

 
w 

 

Figure 3.7 The power resonance curve of a forced oscillator. The full width at half height 

ωfwhh is equal to γ . 

 
An important parameter of a power resonance curve is its full width at half height 

ωfwhh (see Figure 3.7). This width characterises the sharpness of the response of the 

oscillator to an applied force. When the driving frequency is close to the resonance 

frequency ωo, i.e. ω ≈
2  

ωo, we can replace ω by ωo everywhere in Equation (3.30) 

except in the term (ωo − ω2
) which is replaced by 

(ω
2
 − ω2

) = (ωo + ω)(ωo − ω) ≈ 2ωo(−∆ω), 

wfwhh = g 

(wo  g /2) wo (wo  g /2) 



≡ − 

2mγ 

= = 
= = 

= 
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where ∆ω ω ωo. With these approximations, Equation (3.30) leads to our final 

expression for the power resonance curve: 

(3.30a) 

The maximum value of P (ω) is given by 

F 2 

P max =
    0 

 
(3.31) 

 

and occurs when ∆ω  0, i.e. exactly at ω  ωo. The half heights of the curve, 

equal to P max/2, occur when 2∆ω/γ       1, i.e. when 2∆ω      γ . Thus the full width 

at half height ωfwhh of the resonance curve is given by 

ωfwhh = 2∆ω = γ = ωo/Q, (3.32a) 

where the last step follows from the definition (2.21) of the quality factor Q. We 

see that the full width at half height ωfwhh of the resonance curve is given by the 

parameter γ . From Equation (3.32a), the quality factor can be written 

ωo ωo resonance frequency 
Q = 

γ   
= 

ωfwhh 
= 

full width at half height of power curve 
. (3.32b)

 

This relationship offers a convenient way to measure the quality factor of an oscil- 

lator. Using the relationship γ = ωo/Q, we can rewrite Equation (3.30a) as 

F 2 
P (ω) 

 
 

0
 . (3.30b) 

2mωoQ[4(∆ω/ωo)
2  + 1/Q2] 

Power resonance curves for various values of the quality factor Q are presented 

in Figure 3.8. We see that the higher the value of Q the narrower is the power 
 

– 
P(w) 

 

 

 

 

 

 

 

 

 

 
w 

wo 

 

Figure 3.8 Power resonance curves for various values of the quality factor Q. 

P (ω) = 
2mγ(4∆ω2/γ 2 + 1)

.
 

  
F 2 

0  

Q = 10 

Q = 5 

Q = 2.5 



× 

= 

64 Forced Oscillations 
 

resonance curve. Moreover, the curves are symmetric about their maxima except 

for low Q values. 

Power resonance curves are common in physical situations. Apart from mechan- 

ical and electrical systems, they show up, for example, in atomic and nuclear 

physics. When an atom is bathed in radiation it may under certain circumstances 

absorb this radiation. In a classical picture, the oscillating electric field of the radia- 

tion interacts with the atom which behaves like a forced oscillator. As for any oscil- 

lator of high Q, the atom will only absorb energy over a narrow range of frequencies 

close to the resonance frequency. This results in a spectral peak in the absorption 

spectrum of the atom where the peak corresponds to a power resonance curve. 

 

Worked example 

A spectral peak in the absorption spectrum of an atom occurs at a wavelength 

of 550 nm and has a measured width of 1.2     10−5
 nm. Deduce the lifetime 

of the excited atom. 

Solution 

Q = ωo/γ = ωo/ωfwhh, where here ωfwhh is the frequency width of the spectral 

peak. Then the lifetime of the excited state is given by 1/γ = 1/ωfwhh. We are 

given the width in terms of wavelength λ, where ω = 2πc/λ. Since dω = 

−2πcdλ/λ
2
, 

ωfwhh    
2πcλfwhh 

λ2 

where λfwhh is the width of the spectral peak in wavelength. Therefore the 

lifetime of the excited state is equal to 

λ
2
 (550 × 10−9

)
2
 −8 

2πcλfwhh 
= 

2π × 3 × 108 × 1.2 × 10−14 
= 1.3 × 10 s.

 

This is the basis of an experimental technique to measure atomic lifetimes. It 

requires very high photon resolution to determine the widths of the spectral 

peaks. In practice there are other effects which broaden spectral peaks such as 

Doppler broadening due to the finite velocity of the atoms, and these need to 

be taken into account. 

 

 

 
 

3.4 RESONANCE IN ELECTRICAL CIRCUITS 

The phenomenon of resonance is also of great importance in electrical cir- 

cuits. An example of a resonance circuit is shown in Figure 3.9. It consists of an 

inductor L, a capacitor C and a resistor R connected in series, which are driven 

by an alternative (AC) voltage, V (t) V0 cos ωt. Since there is resistance in the 

circuit we are dealing with forced oscillations with damping. Applying Kirchoff’s 

law to the circuit gives the equation 
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L 

V(t) = V0 cos wt C 

Figure 3.9  An LCR resonance circuit that is driven by an alternating voltage V0 cos ωt . 

d
2
q dq q 

Comparing this with 

L 
dt 2 

+ R 
dt 

+ 
C 

= V0 cos ωt. (3.33) 

d
2
x dx 

m 
dt 2 

+ b 
dt 

+ kx = F0 cos ωt, (3.9) 

we see that the alternating voltage, V0 cos ωt, plays the role of the driving force 

F0 cos ωt, and that m, b and k for the mechanical system are replaced by L, R and 

1/C for the electrical system. Corresponding replacements in Equations (2.4) and 

(2.21) give 

ω
2
 = 

1
 ,  γ = 

R
, Q = 

ωo  
= 

1 
, 

L
, (3.34) 

in agreement with our earlier result (2.30). Similarly from the solution, Equations 

(3.5) and (3.18), of Equation (3.9), it follows that the solution of Equation (3.33) is 

where 

q = q0(ω) cos(ωt − δ) (3.35) 

  V0/L  
q0(ω) = 

[(ω2 − ω2)2 + (Rω/L)2]1/2 

V0 

= 
ω[(1/ωC − ωL)2 + R2]1/2 

(3.36)
 

where we have used ω
2
 = 1/LC. The current I flowing in the circuit is given by 

dq 
I = 

dt 
= −q0(ω)ω sin(ωt − δ) 

  −V0 sin(ωt − δ) 
. (3.37) 

[(1/ωC − ωL)2 + R2]1/2 
= 
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The maximum current amplitude in the circuit will occur when ω
2
 = ω2

, i.e. at the 

resonance frequency and has the value V0/R. 

An important application of electrical resonance is found in radio receivers. 

Equation (3.36) shows how the charge varies with time in a resonance circuit. 

The resultant alternating voltage VC across the capacitor is equal to q/C. Hence, 

substituting Equations (3.35) and (3.36) for q(t), we obtain 

VC = VC(ω) cos(ωt − δ), 

where 

  V0/LC  

VC(ω) = 
[(ω2 − ω2)2 + (Rω/L)

2
]1/2 

. (3.38)
 

At resonance when ω = ωo, we have 

   V0  V (ω ) = = QV . 
C o 

RωoC 
0

 

We see that the resonance circuit has amplified the AC voltage applied to the circuit 

by the Q-value of the circuit. A typical value of Q might be 200. Moreover, the cir- 

cuit has been selective in amplifying only those frequencies close to the resonance 

frequency of the circuit. This makes the circuit ideal for selecting a radio station and 

amplifying the oscillating radio signal. Figure 3.10 shows a schematic diagram of 

the input stage of a radio receiver employing an LCR resonance circuit. The variable 

capacitor in Figure 3.10 allows the circuit to be tuned to different radio stations. 

 

Figure 3.10 A schematic diagram of the input stage of a radio receiver containing an LCR 

resonance circuit. This circuit amplifies the incoming radio signal by a factor equal to the 

quality factor Q of the circuit. Moreover it amplifies the signal over a narrow range of 

frequencies which is again determined by the value of Q. 

 

3.5 TRANSIENT PHENOMENA 

Our discussion so far has emphasised that the oscillation frequency of a forced 

oscillator is the same as the frequency ω of the applied driving force. As indicated 

at the beginning of this chapter, this is not the whole story. When the driving 

force is first applied and the system is disturbed from its equilibrium position the 

system will be inclined to oscillate at the frequency of its free oscillations. For 



+ 

o 
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the case of light damping, this is essentially the natural frequency ωo. During this 

initial period we thus have the sum of two oscillations of frequencies ω and ωo, 

respectively. However, as in the case of damped free oscillations (see Section 2.2.1), 

the oscillations of frequency ωo die away. The rate at which they do this depends 

on the degree of damping. The system is then left oscillating at the frequency of 

the applied force and this is the steady state condition. The initial behaviour of the 

oscillator, before it settles down to the steady state, is referred to as its transient 

response. We can see this mathematically as follows. The equation for damped 

forced oscillations is 

d
2
x dx 2 F0 

dt 2 
+ γ 

dt 
+ ωo x = 

If x1 is a solution of this equation then 

cos ωt. (3.10) 

m 

d2x1 dx1 2 F0 

dt 2   
+ γ 

dt 
+ ωo x1 = 

cos ωt. 

m 

The equation for damped free oscillations is 

d
2
x dx 2 

dt 2 
+ γ 

dt 
+ ωo x = 0. (2.5) 

If x2 is a solution of this equation then 

d
2
x2 dx2 2 

 
Hence 

dt 2   
+ γ 

dt 
+ ωo x2 = 0. 

d
2
(x1 + x2) d(x1 + x2) 2 F0 

dt 2 
+ γ 

dt 
+ ωo (x1 + x2) = cos ωt 

m 

and so (x1 x2) is also a solution of Equation (3.10). If for x1 and x2 in Equations 

(3.10) and (2.5) we take the solutions given by Equations (3.5) and (2.7), respec- 

tively, we obtain as the general solution of Equation (3.10) 

x = x1 + x2 = A(ω) cos(ωt − δ) + B exp(−γ t/2) cos[(ω
2
 − γ 

2
/4)

1/2
t + θ] 

(3.39) 
 

x 

 

 
 

t 

 

 

 

 

Figure 3.11 An example of the transient response of a forced oscillator. Eventually the 

oscillations settle down to the steady state condition. 
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for the case of light damping. The amplitude A(ω) and the phase angle δ are both 

functions of driving frequency ω, see Equations (3.13 – 3.15), and the constants 

B and θ are determined by the initial conditions, as usual. An example of forced 

oscillations that start at time t 0 is shown in Figure 3.11. After an initial transient 

response, the system settles down to its steady state condition. Analogous effects 

occur in AC circuits. When the AC voltage is first applied to the circuit there will 

be a transient response. This may produce dangerously high voltages and currents, 

which require special provision in engineering design. 

 

3.6 THE COMPLEX REPRESENTATION OF OSCILLATORY MOTION 

Oscillatory motion can also be described using complex numbers. This provides 

an elegant and concise representation and has important advantages, as we shall see. 

We start by summarising the relevant mathematical aspects of complex numbers 

in Section 3.6.1. In Section 3.6.2 we describe how complex numbers are used to 

represent physical quantities and in Section 3.6.3 we apply complex numbers to 

the case of forced oscillations with damping. 

 
3.6.1 Complex numbers 

A complex number, which is often denoted by z, can be written 

z = x + iy (3.40) 

where x and y are real numbers (i.e. ordinary numbers as we have used so far), 

while i is defined as the square root of −1: 

i = 
√

−1. (3.41) 

i is called an imaginary number because the square of no real number equals minus 

one. It follows at once that 

i
2
 = −1. (3.42) 

We see that a complex number z has two components; a real part x and an imaginary 

part y, often denoted, respectively, by 

x = Re(z), y = Im(z). (3.43) 

Complex numbers are an extension of real numbers and the rules of operating with 

them are exactly the same as those for real numbers plus the proviso that i
2 1. 

For example if z1 and z2 are two complex numbers 

z1 = x1 + iy1, z2 = x2 + iy2, (3.44) 

then addition, subtraction and multiplication are given, respectively, by 

z1 ± z2 = (x1 + iy1) ± (x2 + iy2) = (x1 ± x2) + i(y1 ± y2) (3.45) 
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and 

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1). (3.46) 

 
The equation z1   z2 means x1    x2 and y1    y2, i.e. the real parts of z1 and z2 

are equal and so are the imaginary parts. In particular, z    x     iy     0 means that 

x      0 and y      0. (We can think of the right-hand side of x     iy      0 as standing 

for 0 i0.) 

A frequently useful quantity of a complex number is its complex conjugate, 

which is denoted by an asterisk. It is obtained by changing i to −i throughout. 

Thus the complex conjugate of z = x + iy is 

z∗ = x − iy (3.47) 
 

and the complex conjugate of z
2
 is 

 

(z
2
)∗ = [(x2

 − y2
) + i2xy]∗ = (x2

 − y2
) − i2xy. 

Using the complex conjugate, it is straightforward to obtain division of complex 

numbers. To find z1/z2 we multiply both the numerator and denominator by the 

complex conjugate of z2: 

 

z1  
= 

z1z2
∗  

= 
(x1 + iy1)(x2 − iy2) 

 

z2 z2z2
∗
 x

2
 + y2

 

(x1x2 + y1y2) + i(x2y1 − x1y2) 
. (3.48)

 

x
2
 + y2

 
 

The frequently occurring quantity zz∗, i.e. the product of a complex number with 
its complex conjugate 

 

zz∗ = x2
 + y2

 (3.49) 

is seen to be real and positive and is denoted by 

 

zz∗ = |z|2. (3.50) 

The real positive quantity z 
√

zz∗ is called the modulus of z. 

The above summarises the basic rules for manipulating complex numbers. Their 

meaning is brought out by their geometrical interpretation. We can interpret the 

components (x, y) of the complex number z      x     iy as the coordinates of a point 

P in a rectangular Cartesian coordinate system (Figure 3.12). The point P is 

then specified by the Cartesian coordinates (x, y) or equivalently by the complex 

number z. The x- and y-axes are called the real and imaginary axes and the whole x-

y plane the complex z-plane. Figure 3.12 is referred to as the Argand diagram 

of z. From Figure 3.12 we see that the distance OP = (x2 + y2) is just the 

= 
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y 

 

 

 

 

 

 

 

 
O real axis 

 

Figure 3.12 The complex plane containing the complex number z. 

 

modulus of z. The angle θ is the angle that the line OP makes with the positive x 

direction, measured in the anticlockwise sense, and is given by 

cos θ = , 
x 

(x2 + y2) 
, sin θ = , 

y 

(x2 + y2) 

 

. (3.51) 

Figure 3.12 and these relations suggest the introduction of polar coordinates 

x = r cos θ, y = r sin θ (3.52) 

with r being the distance OP : 

r = (x2 + y2). (3.53) 

The real breakthrough comes through employing the important relation due to 

Euler
1
 

 

e
iθ

 = cos θ + i sin θ 

It follows from this relation and Equations (3.40) and (3.51) that 

(3.54) 

z = x + iy = r(cos θ + i sin θ) = re
iθ

 . (3.55) 

The polar coordinate r is the modulus z of the complex number z and θ is called 

the argument of z. If we multiply re
iθ

 by e
iθ

 we obtain 

zr = ze
iθ

 = re
i(θ+θ)

. (3.56) 

In the Argand diagram, Figure 3.13, this corresponds to rotating the line OP through 

an angle θ in the anticlockwise direction to the new position OP r. If θ π/2 the 
line is rotated through π/2. However, 

e
iπ/2

 = cos(π/2) + i sin(π/2) = i. 
 

1 A formal verification of this relation is afforded by substituting the power series expansions for cos θ 

and sin θ in Equation (3.54). In this way, one obtains the power series expansion of the exponential 

function eiθ . 
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Figure 3.13   Multiplication of the complex number z by the factor eiθ. 

 

Thus multiplying a complex number by e
iπ/2

 is equivalent to multiplying the 

number by i. Similarly multiplying a complex number by e
iπ is equivalent to 

multiplying the number by  1. If θ varies with time as θ  (ωt   θ) then the line 

OP rotates in the complex plane with angular frequency ω in the anticlockwise 

direction. As the expression x A cos θ contains both amplitude and angular (or 

phase) information, so re
iθ

 also contains these two kinds of information; amplitude 

information is given by r and phase information is given by θ . 

 

3.6.2 The use of complex numbers to represent physical quantities 

The essential idea is that we represent physical quantities such as displacement, 

velocity and acceleration by the real part of a complex number z. We will illustrate 

this by considering the motion of a simple harmonic oscillator. The complex form 

of the equation of SHM is 
 

d
2
z 2 

dt 2 
= −ω z, (3.57) 

where z x iy . Since x and y are real quantities, taking the real part of this 

equation, at once gives 
 

d
2
x 2 

dt 2 
= −ω x, (1.6) 

which is our result from Section 1.2.1. From the solution z of the complex equation 
(Equation (3.57)) we can take the real part of z to obtain x which is the physically 
significant quantity.

2
 Obtaining a solution of Equation (3.57) in terms of the polar 

coordinate form re
iθ

 , rather than the equivalent form z = x + iy , simplifies the 
 

2 It should be noted that this procedure of solving a differential equation for a complex variable z, 
instead of for a real variable x, only works if the equation is linear, i.e. each term in the equation 
is either independent of z or depends on z or one of its derivatives dz/dt , d2z/dt 2, . . . in first order 

only. For example, if the right-hand side of Equation (3.57) is replaced by −ω2z2, then Re(−ω2z2) = 
−ω2(x2 − y2), and taking real parts of the modified equation would lead to d2x/dt 2 = −ω2(x2 − y2) 

and not to d2x/dt 2 = −ω2x2, the equation we are trying to solve. 
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analysis and brings out the physical meaning more clearly. Taking for z the polar 

coordinate form, 
 

 

 
then 

 

 

 
and 

z = Ae
i(ωt+θ)

, (3.58) 

 

dz 
iωAe

i(ωt+θ)
 iωz (3.59) 

dt 

d
2
z d 2 

dt 2 
= 

dt 
(iωz) = −ω z, (3.60) 

showing that z Ae
i(ωt+θ)

 is indeed a solution of the SHM equation (3.57). Taking 
the real parts of Equations (3.58), (3.59) and (3.60) at once gives 

 

x = Re(z) = A cos(ωt + θ), 

dx 

dt 
= Re(iωz) = Re[iω(x + iy)] = −ωy = −ωA sin(ωt + θ) 

and 

d2x 2 2 
 

 

dt 2 
= Re (−ω z) = −ω A cos(ωt + θ). 

These are our familiar results for the displacement, velocity and acceleration of a 

simple harmonic oscillator, cf. Equations (1.11), (1.12) and (1.13). 

The geometrical interpretation of complex numbers also provides a representation 

of physical quantities. Figure 3.14(a) shows z     Ae
i(ωt+θ)

 in the complex z-plane. 
The length of the line OP corresponds to A, the amplitude of the motion, and 
this line rotates anticlockwise in the complex plane with angular frequency ω. The 

phase angle θ is the angle that the line OP makes with the horizontal axis at 

time t 0. The projection of OP onto the real axis is equal to A cos(ωt θ) and 

corresponds to the physical quantity of displacement x. If we plot this projection 

as a function of time we obtain the familiar periodic variation of x as shown, for 

example, in Figure 1.7. Since i = eiπ/2
, Equation (3.59) can be written 

dz 
ωAei(ωt +θ+π/2). (3.59a) 

dt 

Figure 3.14(b) shows dz/dt in the complex plane at point P r. Equation (3.59a) 

shows that the length of the line OP r is ωA and lies at an angle of π/2 with 
respect to the line OP . The physical significance of this is that the velocity in 

SHM leads the displacement by π/2, as we saw in Section 1.2.3. The projection 

of OP r on the real axis is equal to ωA cos(ωt     θ     π/2) and gives the value of 
the velocity at time t . Writing Equation (3.60) as 
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Figure 3.14 Representation of (a) displacement, (b) velocity and (c) acceleration in their 

respective complex planes. The three lines OP , OP r and OP rr rotate with angular frequency 
ω maintaining constant phase differences between them. 

 

 

d
2
z 

 
 

2 i(ωt +θ+π) 

dt 2 
= ω Ae , (3.60a) 

 

it follows that the acceleration leads the velocity by π/2 and leads the displace- 

ment by π. The acceleration, given by the projection of OP rr on the real axis, 
Figure 3.14(c), is equal to ω

2
A cos(ωt   θ    π). The complete picture, then, is of 

three lines OP , OP r and OP rr rotating anticlockwise at angular frequency ω and 
maintaining constant relative phases, with their projections on the real axes giving 

the values of displacement, velocity and acceleration, respectively, as functions 

of t . This analysis also demonstrates that the mathematical operation of differenti- 

ation with respect to time has been replaced by multiplication by iω. This makes 

the mathematical manipulation of complex variables much easier than for functions 

containing sines and cosines. 
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3.6.3 Use of the complex representation for forced oscillations with damping 

The equation for forced oscillations with damping is 

d
2
x dx 2 F0 

dt 2 
+ γ 

dt 
+ ωo x = 

cos ωt. (3.10) 

m 

In Section 3.2.2 we solved this equation by assuming a solution of the form x 

A(ω) cos(ωt δ) and determined the behaviour of A(ω) and δ as functions of 

ω. In the complex representation we have the corresponding complex differential 

equation 

d
2
z 

 
 

dz 2 
 

 

F0    iωt 
 

 

dt 2 
+ γ 

dt 
+ ωo z = 

m 
e . (3.61) 

We note that Equation (3.10) is the real part of Equation (3.61). In particular 
(F0/m) cos ωt is the real part of (F0/m)e

iωt
 . We assume a solution of the form 

z = A(ω)e
i(ωt−δ)

 and substitute this in Equation (3.61) giving 

[−ω
2
A(ω) + iγωA(ω) + ω2

A(ω)]e
i(ωt−δ)

 = 
F0 

e
iωt

 . 
o m 

Dividing through by e
i(ωt−δ)

 we obtain 

(ω
2
 − ω2

)A(ω) + iγωA(ω) = 
F0 

e
iδ
. (3.62) 

 

Taking real and imaginary parts of this equation gives 

(ω
2
 − ω2

)A(ω) = 
F0 

cos δ 

 
and 

 

 
 

from which we readily obtain 

 

 

 
and 

o m 

 

γωA(ω) 
F0 

sin δ 
m 

 

 

tan δ  
γω 

(ω2 − ω2) 

 

 

 

 

 

 

 
(3.12) 

  F0/m  

A(ω) = 
[(ω2 − ω2)2 + ω2γ 2]1/2 

. (3.18) 

These are the same results we obtained in Section 3.2.2 using sines and cosines. 

However, these results have been obtained more readily using the complex repre- 

sentation. 

 

PROBLEMS 3 

3.1 A mass of 0.03 kg rests on a horizontal table and is attached to one end of a spring of 

spring constant 12 N m−1. The other end of the spring is attached to a rigid support. 
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The mass is subjected to a harmonic driving force F  =
− 

F0 cos ωt , where F0 = 0.15 N 
and a damping force Fd = −bv, where b = 0.06 kg s 1. Determine the amplitude of 
oscillation and the phase angle between the driving force and the displacement of the 

mass for steady-state oscillations at frequencies of (a) 2 rad s−1, (b) 20 rad s−1 and 

(c) 100 rad s−1. 

3.2 A damped harmonic oscillator, driven by a force F0 cos ωt , vibrates with an amplitude 
A(ω) given by 

 

  aωo/ω  
A(ω) = 

[(ωo/ω − ω/ωo)2 + 1/Q2]1/2 

where a is the amplitude as ω     0, ωo is the natural frequency of oscillation and Q 
is the quality factor. Show that the amplitude A(ω) is a maximum for a frequency 

 

ωmax = ωo(1 − 1/2Q2)1/2 

and that at ωmax the amplitude is equal to 

aQ 
. 

(1 − 1/4Q2)1/2 

(Hint: Let ωo/ω u, divide the denominator and numerator by u and investigate the 
resulting expression inside the square root.) 

3.3 For a value of Q 10 in Problem 3.2, find (a) the percentage difference between the 
natural frequency of oscillation ωo and the frequency ωmax at which the maximum 
amplitude of oscillation would occur and (b) the percentage difference between the 
amplitudes at these two frequencies. 

3.4 A driven oscillator has a natural frequency ωo of 100 rad s−1, a Q-value of 25 and an 
average input power P max at resonance of 50 W. Plot the power resonance curve of 

the oscillator over the frequency range 92 to 108 rad s−1. 

3.5 A series LCR circuit (cf. Figure 3.9) has C     8.0    10−6 F, L     2.0    10−2 H and 
R 75 ▲ and is driven by a voltage V (t) 15 cos ωt V. Determine (a) the resonance 
frequency (Hz) of the circuit and (b) the amplitude of the current at this frequency. 

3.6 Determine the numerical value of ii where i = 
√

−1. 
3.7 The displacement x of a simple harmonic oscillator is given by the real part of the 

complex number z     Aei(ωt+θ). Derive the phase difference between x and dx/dt , and 
say which of these is in advance of the other. 

3.8 A simple pendulum consists of a mass m attached to a light string of length l. When 
at rest it lies in a vertical line at x   0. The pendulum is driven by moving its point 
of suspension harmonically in the horizontal direction as ξ a cos ωt about its rest 
position (x     0). There is a damping force Fd       bv due to friction as the mass 
moves through the air with velocity v. (a) Show that the horizontal displacement x 
of the mass, with respect to its equilibrium position (x 0), is the real part of the 
complex quantity z where 

 

d2z dz 2 
 

  

 
2     iωt 

m 
dt 2 

+ b 
dt 

+ mωo z = mωo ae 

and ω2 g/l. (b) Assuming a solution of the form z Aei(ωt−δ), show that the phase 
angle δ between the driving force and the displacement of the mass is given by 

 

tan δ  
γω 

ω2 − ω2 
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where γ = b/m and that the amplitude is given by 

ω2 

A(ω) a o . 
[(ω2 − ω2)2 + ω2γ 2]1/2 

3.9 When the pendulum in Problem 3.8 is vibrating freely in unforced oscillation, the 
amplitude of its swing decreases by a factor of e after 75 cycles of oscillation. (a) 
Determine the Q-value of the pendulum. (b) The point of suspension of the pendulum 

is moved according to ξ = a cos ωt at the resonance frequency ωo with a = 0.5 mm. 
What  will  be  the  amplitude  of  swing  of  the  pendulum?  (√c)   Show  that  the  width  of 
the amplitude resonance curve at half height is equal to γ    3 and determine its value 

if the length of the pendulum is 1.5 m. (Assume g  9.81 m s−2.) (Hint: Follow the 
approach of Section 3.3 that was used to determine the frequencies at which the half 
heights of a power resonance curve occur.) 

3.10 The equation of motion of a forced harmonic oscillator with damping is given by 

 
d2x dx 

m 
dt 2 

+ b 
dt 

+ kx = F0 cos ωt. 

Assuming a solution x = A(ω) cos(ωt − δ): 

(a) Give expressions for (i) the instantaneous kinetic energy K, (ii) the instantaneous 
potential energy U and (iii) the instantaneous total energy E of the oscillator. 

(b) For what value of ω is the total energy constant with respect to time? What is the 
total energy of the oscillator at this frequency? 

 

(c) Obtain an expression for the ratio of the average kinetic energy K to the average 
total energy E of the oscillator in terms of the dimensionless quantity ωo/ω. Sketch 
this expression over an appropriate range of ω. For what value of ω are the average 
values of the kinetic and potential energies equal? 

(d) Show that the average total energy of the oscillator varies with angular frequency 
ω according to 

F 2(ω2 + ω2) 
 

 
 E(ω) = . 

4m[(ω2 − ω2)2 + ω2b2/m2] 

3.11 (a) For a driven oscillator show that the energy dissipated per cycle by a frictional 
force Fd bv at frequency ω and amplitude A is equal to πbωA2. 

(b) Hence show 

energy dissipated/cycle 2πb 

stored energy 
= 

mω 
.
 

(c) Show that at the resonance frequency of a lightly damped oscillator 

energy dissipated/cycle  2π 

stored energy 
= 

Q 

where Q is the quality factor. 

3.12 The pendulum of a clock consists of a mass of 0.20 kg hanging from a thin rod. The 
amplitude of the pendulum swing is 3.0 cm. The clock is driven by a weight of mass 
4.5 kg that falls a distance of 0.95 m over a period of 8 days. Assuming the pendulum 
to be a simple pendulum of length 0.75 m, show that the Q-value of the clock is 
approximately 70. 

(Assume g = 9.81 m s−2.) 



 

 

 

 

4 
Coupled Oscillators 

 
So far we have considered simple harmonic oscillators such as a mass on a spring 

or a simple pendulum that have only one way of oscillating. These are characterised 

by a single natural frequency of oscillation. In this chapter we consider systems 

that consist of two (or more) oscillators that are coupled together in some way and 

that have more than one frequency of oscillation. We will see that this coupling 

produces new and important physical effects. Each of the frequencies relates to a 

different way in which the system can oscillate. These different ways are called 

normal modes and the associated frequencies are called normal frequencies . The 

normal modes of a system are characterised by the fact that all parts of the system 

oscillate with the same frequency. Coupled motion is important because oscillators 

rarely exist in complete isolation and real physical systems are usually capable of 

oscillating in many different ways. For example a noisy old car will have many 

coupled components that may be heard vibrating and rattling when the engine is 

running! At the microscopic level, vibrating atoms in a crystal provide an example 

of coupled oscillators. Coupled oscillators are also important because they pave 

the way to the understanding of waves in continuous media like taut strings. Wave 

motion depends on neighbouring vibrating systems that are coupled together and 

so can transmit their energy from one to another. 

 
 

4.1 PHYSICAL CHARACTERISTICS OF COUPLED OSCILLATORS 

We can see the main physical characteristics of coupled oscillators by observing 

the motion of two simple pendulums that are coupled together. They can be coupled 

by attaching their points of suspension to a supporting string as shown in Figure 4.1. 

This is a simple experiment that is well worth doing. Both pendulums have the 

same length l and so their periods of oscillation are equal. The supporting string 

provides the coupling between the two pendulums. As each pendulum oscillates 

it pulls on the supporting string and causes the point of suspension of the other 
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Figure 4.1 Two simple pendulums of length l coupled together by a supporting string. The 

displacements of the two pendulum masses are considered in the direction perpendicular to 

the plane of the page. 

 
pendulum to be driven back and forth. The motion of each pendulum affects the 

other and so their motions cannot be considered in isolation. We consider the motion 

of the two pendulums in the direction at right angles to the plane of the page. (i) 

First we displace both pendulum masses by the same amount and in the same 

direction. When released we observe that the two masses move back and forth in 

the same directions as each other with the same frequency and the same amplitude. 

(In this example and for the rest of this chapter we will assume that damping forces 

can be neglected.) (ii) Next we displace the two masses by the same amount but 

now in opposite directions. When released the two masses move back and forth 

in opposite directions. Again they both oscillate with the same frequency as each 

other but at a frequency that is slightly different from when they move in the same 

directions. These two distinctly different ways of oscillation are the normal modes 

of the system. We observe that once the system is put into one or other of these 

normal modes it stays in that mode and does not evolve into the other. (iii) Now we 

displace just one mass leaving the other at its equilibrium position. When released 

the displaced mass moves back and forth but it does so with a steadily decreasing 

amplitude. At the same time the mass that was initially at rest starts to oscillate 

and gradually the amplitude of its oscillation increases. Eventually the first mass 

momentarily stops oscillating having transferred all of its energy to the second mass 

that now oscillates with the amplitude initially given to the first mass. This process 

then repeats with the amplitude of the second mass steadily decreasing and that of 

the first steadily increasing. The cycle continues with the energy repeatedly being 

transferred between the two masses. This behaviour seems to be strange at first 

sight and indeed is sometimes used by conjurors to mystify their audience; they 

might use coconuts as the pendulum masses! However, there is nothing mysterious 

about the observations. What we are observing is the superposition of the two 

normal modes described above, as we shall see. 

 

4.2 NORMAL MODES OF OSCILLATION 

To obtain a mathematical description of coupled oscillations we start again with 

a pair of simple pendulums but now the coupling is provided by a light horizontal 



= 
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spring that connects them, as shown in Figure 4.2. The spring is at its unstretched 

length when the two pendulums are at their equilibrium positions. The mass and 

length of each pendulum are m and l, respectively, and the spring constant is k. 

Displacements of the two masses from their equilibrium positions are xa and xb, 

respectively, and now, in contrast to Section 4.1, we consider oscillations in the 

plane of the page. 

 

 

 

 

 

 

 

 

 
 

xa 

 
Figure 4.2 Two simple pendulums coupled together by a light horizontal spring of spring 

constant k. The displacements of the two pendulum masses from their equilibrium positions 

are xa and xb, respectively, and these lie in the plane of the page. 

 

Case (i). We first displace each mass in the same direction by an equal amount 

as shown in Figure 4.3 and then release them. Since the pendulums have the same 

period the spring retains its unstretched length and so plays no role in the motion. 

The two pendulums might just as well be unconnected as they both oscillate at the 

frequency of a simple pendulum 
√

g/ l. We can then write the displacements of the 
two masses, respectively, as 

 

xa = A cos ω1t, xb = A cos ω1t (4.1) 

 

 

 

 

 

 

 

 
a 

 

xa 

 

Figure 4.3    The first normal mode of oscillation of the coupled system in which xa = xb. 

where A is the initial displacement and ω1 
√

g/ l. The phase angles are zero 

because the masses start from rest (cf. Section 1.2.4). The variations of xa and xb 

l l 

k 

b a 

xb 

b 

xb 
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with time are shown in Figure 4.4. The masses oscillate in phase with the same 

frequency and amplitude. This is the first normal mode of oscillation. 
 

xa 

A 
 

t 

 

xb 

A 
 

t 

 
 

Figure 4.4 Oscillations of the two masses in the first normal mode. These oscillations have 

the same frequency and amplitude and are in phase with each other. 
 

Case (ii). We now displace each mass by an equal amount but in opposite 

directions, as shown in Figure 4.5, and then release them. As the two pendulums 

swing back and forth the spring is alternately stretched and compressed and this 

exerts an additional restoring force on the masses. The symmetry of the arrangement 

tells us that the motions of the masses will be mirror images of each other, i.e. 

xa = −xb. The resultant equation of motion of mass a is then 

d
2
xa mgxa 

m 
d2t 

=− 
l 

− 2kxa. (4.2) 

 

 

 

 

 

 

 

 

 
xa 

 
Figure 4.5 The second normal mode of oscillation of the coupled system in which 

xa = −xb. 

The first term on the right-hand side of this equation is the usual restoring force 

term for a simple pendulum with small amplitude oscillations [see Equation (1.31) 

with xa lθa for small θa]. The second term is the restoring force due to the spring 

extension of 2xa. Hence 

d
2
xa 2 

d2t 
+ ω2 xa = 0 (4.3) 

where ω
2
 (g/ l 2k/m). The action of the spring is to increase the restoring force 

acting on each mass and this increases the frequency of oscillation, i.e. ω2 > ω1. 

qa 

b a 

xb 
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The solution of Equation (4.3) is 

xa = B cos ω2t, (4.4) 

where B is the initial displacement. Again the phase angle is zero because the mass 

started from rest. Since xa = −xb, 

xb = −B cos ω2t. (4.5) 

The variations of xa and xb with time are shown in Figure 4.6. The masses oscillate 

with the same frequency and amplitude but now they are 180◦ out of phase. We 
could write xb as xb     B cos(ω2t     π) to emphasise this phase relationship. This 

is the second normal mode of oscillation. We see that in each normal mode: 
 

xa 
B 

 

t 

 
xb 
B 

 

t 

 

 

Figure 4.6 Oscillations of the two masses in the second normal mode. These oscillations 

have the same frequency and amplitude but are in anti-phase, i.e. are 180◦ out of phase with 
each other. 

 

Both the masses oscillate at the same frequency. 

Each of the masses performs SHM with constant amplitude. 

There is a well defined phase difference between the two masses; either zero 

or π. 

Once started in a particular normal mode, the system stays in that mode and 

does not evolve into the other one. 

 

The importance of normal modes, as we shall see, is that they are entirely inde- 

pendent of each other. 

 
 

4.3 SUPERPOSITION OF NORMAL MODES 

In general the motion of a coupled oscillator will be much more complicated 

than in cases (i) and (ii) above. Those cases were special in that the motion was 

confined to a single normal mode, i.e. either xa     xb or xa     xb at all times. In 

general this is not so. The general case is illustrated in Figure 4.7 which shows 

the displacements of the two masses at some instant in time and xa /= ±xb. This 

gives a spring extension (xa − xb) and produces a tension T = k(xa − xb) in the 

• 
• 
• 

• 



+ 
= 

(x + x )a

 b 

dt 2 
+

 l 
+ 

m 
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Figure 4.7   General case for the superposition of normal modes where xa /= ±xb. 

 
spring. The directions of the spring force acting on the masses are as indicated by 

the arrow heads on the springs. The restoring force on mass a is 
 

mgxa 
— 

l 
− k(xa − xb) 

 

and the restoring force on mass b is 
 

mgxb 
— 

l 
+ k(xa − xb). 

 

The resultant equations of motion are 

 
 

 

and 

(xa − xb) = 0 (4.6) 

 

(xa − xb) = 0. (4.7) 

Equations (4.6) and (4.7) each contain both xa and xb. Thus they cannot be solved 

separately but must be solved simultaneously. We can do this as follows. Adding 

them gives 
 

d
2
(xa xb) 

dt 2 
+

 

g(xa + xb) 
0. (4.8) 

l 
 

It is striking that this is the equation of SHM where the variable is . 

Moreover the frequency of oscillation 
√

g/ l is the frequency ω1 of the first normal 
mode. Subtracting Equation (4.7) from Equation (4.6) gives 

d
2
(xa − xb) g 2k 

 
 

 

b 

xb xa 

(xa − xb) = 0. (4.9) 

d
2
xa  gxa  k 

dt 2 

 
 

d
2
xb 

+ l 
 
 
 

gxb 

+ m 
 
 
 

k 

dt 2 
+ l − m 

 



(x − x )a

 b + 

− 

= 
= = − = 
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This again is the equation of SHM but now in the variable . Moreover, 

the oscillation frequency 
√

(g/ l 2k/m) is the same as the frequency ω2 of the 
second normal mode. We introduce the new variables q1 and q2 where 

 

q1 = (xa + xb) and q2 = (xa − xb). (4.10) 
 

Then 

d
2
q1 2 

 
 

 

and 

dt 2  
+ ω1 q1 = 0 (4.11) 

d
2
q2 2 

dt 2   
+ ω2 q2 = 0. (4.12) 

We now have another description of the normal modes. We have two independent 

oscillations in which each normal mode is represented by the oscillation of a single 

variable: each of Equations (4.11) and (4.12) involves just one coordinate, q1 or 

q2, and describes SHM, with frequencies ω1 and ω2, respectively. These equations 

do not involve, for example, a product q1q2: there is no coupling between the two 

normal modes. This is in contrast to Equations (4.6) and (4.7) which contain both 

position coordinates xa and xb. The terms in those equations involving (xa xb) 

represent the effect that each mass has on the other via the connecting spring. They 

couple the oscillations of the two masses: the oscillations are not independent. The 

general solutions of Equations (4.11) and (4.12) can be written, respectively, 

 

q1 = C1 cos(ω1t + θ1), q2 = C2 cos(ω2t + θ2), (4.13) 

as we know from Section 1.2.4. C1 and C2 are amplitudes and θ1 and θ2 are phase 

angles. The variables q1 and q2 are called normal coordinates and ω1 and ω2 are 

called normal frequencies . If q1     0 then xa         xb at all times, and if q2     0 then 

xa xb at all times. It is useful to describe coupled motion in terms of the normal 

coordinates because the resulting equations of motion depend on only one variable, 

either q1 or q2, so that they can be considered separately; changes in q1 do not 

affect q2 and vice versa. For example, the amplitude and hence energy of each 

normal mode remains constant; energy never flows between one normal mode and 

another as will be demonstrated shortly. 

We can express the displacements of the two masses in terms of the normal 

coordinates. Equation (4.10) leads to 
 

1 1 

 

 
and 

xa = 
2 

(q1 + q2) = 
2 

[C1 cos(ω1t + θ1) + C2 cos(ω2t + θ2)] (4.14) 

1 1 
xb = 

2 
(q1 − q2) = 

2 
[C1 cos(ω1t + θ1) − C2 cos(ω2t + θ2)]. (4.15) 



= = + 

E = 
2 

m + 
2 

m + 
2

 
l 

(xa + xb ) + 
2 

k(xa − xb) . (4.17a) 

4 
m + 

4
 q1 + 

4 
m + 

4
 

l 
+ 2k q2 

dt l dt 

Worked example 

Consider the system of two identical simple pendulums connected by a light 

horizontal spring. Deduce expressions for the displacement of the two masses 

in terms of the normal modes of the system for the following sets of initial 

conditions, (at t = 0). In all cases the masses are released from rest. (i) xa = 
A, xb = A, (ii) xa = A, xb = −A and (iii) xa = A, xb = 0. 
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We see that the apparently complicated motion of a coupled oscillator (see 

Section 4.1) can be broken down into a combination of two independent harmonic 

oscillations (normal modes). The variables of these harmonic motions are the 

normal coordinates. Equations (4.14) and (4.15) demonstrate that any solution of 

Equations (4.6) and (4.7), i.e. any motion of the two masses, can be written as a 

superposition of the two normal modes. It follows that there are just two normal 

modes for our system. The four constants C1, C2, θ1 and θ2 are determined by 

the initial positions and velocities of the two masses, i.e. at time t = 0. If the two 

masses are released from rest at t = 0, the appropriate solutions for q1 and q2, 

obtained by taking θ1 = θ2 = 0 in Equation (4.13), are 

q1 = C1 cos ω1t and q2 = C2 cos ω2t. (4.16) 

The independence of the two normal modes is clearly demonstrated if we write 

down the energy of the system. In terms of the position coordinates xa and xb the 

energy is given by 

1 dxa 
 2

 
 

 

1 dxb 
 2

 
 

 

1 mg 2 2 1 2 

The first two terms in this expression are the kinetic energies of the two masses, 

the third term is their potential energies due to gravity [see Equation (1.36)] and 

the last term is the energy stored in the spring [see Equation (1.18)]. Expressed in 

terms of the normal coordinates q1 and q2 (Equation (4.10)) the energy E becomes 

  
1 dq1 

  2 
1   mg     2

 

1 dq2 
  2 

1   mg 2

 
 

(4.17b) 

 
This equation represents the energy of two independent simple harmonic oscillators 

with frequencies ω1      
√

g/ l and ω2      
√

(g/ l     2k/m) (see also the discussion in 
Section 1.3.2). Each of the expressions in square brackets in this equation contains 

only one of the normal coordinates and represents the energy of a single isolated 

harmonic oscillator. There are no ‘cross terms’ involving both q1 and q2, which 

would indicate coupling between them. This is in contrast to the energy expressed 

in terms of the position coordinates xa and xb (Equation (4.17a)) where the last 

term, involving (xa − xb), represents a coupling between the two masses. 
 

dt dt 

E = . 



= = = = 

= = = = − 

2 2 

2 2 
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Solution 

We have xa = 1 (C1 cos ω1t + C2 cos ω2t) and xb = 1 (C1 cos ω1t − C2 cos ω2t). 

(i) Substituting for xa = A, xb = A at t = 0 gives 

1 1 
A = 

2 
(C1 + C2) and A = 

2 
(C1 − C2). 

Hence C1     2A and C2     0, giving xa      A cos ω1t and xb     A cos ω1t . 

We recognise this as the first normal mode with all the motion in this 

mode with frequency ω1. 

(ii) Substituting for xa = A, xb = −A at t = 0 gives 

1 1 
A = 

2 
(C1 + C2) and − A = 

2 
(C1 − C2). 

Hence C1     0 and C2     2A, giving xa     A cos ω2t and xb       A cos ω2t . 

We recognise this as the second normal mode with all the motion in this 

mode with frequency ω2. 

(iii) Substituting for xa = A, xb = 0 at t = 0 gives 

1 1 
A = 

2 
(C1 + C2) and 0 = 

2 
(C1 − C2). 

Hence C1 = A and C2 = A, giving 

1 1 
xa = 

2 
(A cos ω1t + A cos ω2t) and xb = 

2 
(A cos ω1t − A cos ω2t). 

These equations for xa and xb combine equal amounts of the two normal 

modes. We can visualise these results in a different way by recasting the 

solutions for xa and xb as follows. Recalling the trigonometrical identities: 

cos(α ± β) = cos α cos β ∓ sin α sin β, 
 

we obtain  
cos(α − β) + cos(α + β) = 2 cos β cos α. 

 

Letting (α − β) = ω1 and (α + β) = ω2 we obtain 

α = 
(ω2 + ω1) 

and β = 
(ω2 − ω1) 

.
 

2 2 

Thus 

cos ω1t + cos ω2t = 2 cos 
(ω2 − ω1)t 

cos 
(ω2 + ω1)t

 



2 2 

2 2 2 2 
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giving  
xa = A cos 

(ω2 − ω1)t 
cos 

(ω2 + ω1)t 
.
 

 

This product represents a high frequency oscillation at the mean of the 

two normal frequencies whose amplitude is modulated by a low frequency 

term at half the difference in frequency. This is completely analogous to 

the phenomena of beating that occurs when two sound waves of slightly 

different frequency combine (see also Section 8.1.1). The beats that we 

hear arise from the low frequency modulation term. In a similar way we 

find 

xb = A sin 
(ω2 − ω1)t 

sin 
(ω2 + ω1)t 

,
 

2 2 

which we can write as 

xb = A cos

 
(ω2 − ω1)t  − 

π
 

cos

 
(ω2 + ω1)t  − 

π
 

.
 

 

Again we have a high frequency oscillation modulated by a low frequency 

term. We see, however, that both cosine terms in the expression for xb 

are exactly π/2 out of phase with respect to the corresponding terms for 

xa. The variations of xa and xb with time are plotted in Figure 4.8. These 

results explain the behaviour of the two coupled pendulums in Section 4.1, 

where one pendulum was given an initial displacement and the other was 

initially at its equilibrium position. The important point in all of these 

examples, with different initial conditions, is that the subsequent motion 

is always a superposition of the normal modes. 

 

 

xa 
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t 

 

xb 
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Figure 4.8 Oscillations of the coupled pendulums which, occur when one mass was 

initially (t = 0) at xa = A and the other at xb = 0. 
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4.4 OSCILLATING MASSES COUPLED BY SPRINGS 

We now consider the case of oscillating masses coupled together by springs. 

Figure 4.9 shows two identical but independent mass-spring oscillators with mass 

m and spring constant k attached to two rigid walls, cf. Figure 1.1. The two 

oscillators are coupled together by a third spring also of spring constant k as 

shown in Figure 4.10. This third spring provides the coupling so that the motion 

of one mass influences the motion of the other. This coupled system has two 

normal modes of oscillation. We wish to determine the two frequencies at which 

the system will oscillate, i.e. the normal frequencies and the relative displacements 

of the masses in the two normal modes. We could exploit the symmetry of the 

system to spot the two normal modes as we did in Section 4.2 for the coupled 

pendulums. Our physical intuition would suggest that the normal modes would be 

(i) where both masses move in the same direction and (ii) where they move in 

opposite directions. These two modes are indicated by the arrows in Figure 4.10. 

We might also expect that mode (ii) would have the higher frequency of oscillation 

since all three springs are having an effect rather than just two as in mode (i). 

Instead of spotting the normal modes we adopt a more general approach where we 

make use of the characteristics of normal modes, namely that in a normal mode 

all of the masses oscillate at the same frequency and each mass performs SHM 

with constant amplitude. For the sake of simplicity we will assume that the two 

masses are initially at rest, i.e. they have zero velocity at t = 0. Figure 4.11 shows 

 

 
 

Figure 4.9 Two uncoupled mass-spring oscillators. 

} 

} 

 

Figure 4.10 Two mass-spring oscillators coupled together by a third spring. The arrows 

indicate the directions of the displacements of the two masses expected in the two normal 

modes. 

equilibrium positions 
 

Figure 4.11 Two mass-spring oscillators coupled together by a third spring. The masses 

are at arbitrary displacements, xa and xb, respectively, from their equilibrium positions. 
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the two masses a and b displaced by arbitrary values xa and xb, respectively, from 

their equilibrium positions at some instant in time. In order to see more easily the 

directions of the forces acting on the masses we let xb > xa. The left-hand spring 

is extended by xa, the middle spring is stretched by (xb   xa) and the right-hand 

spring is compressed by xb. The directions of the resultant forces on the masses 

are shown by the directions of the arrow heads. To obtain the equation of motion 

for each mass we need to consider only the forces exerted by the springs on either 

side of the mass. The resultant equations of motion are 

 
d

2
xa 

m 
dt 2    

= −kxa + k(xb − xa) = kxb − 2kxa (4.18) 
 

and  
d

2
xb 

m 
dt 2    

= −k(xb − xa) − kxb = kxa − 2kxb. (4.19) 
 

We are looking for normal mode solutions of these equations, where both masses 

oscillate at the same frequency ω, i.e. solutions of the form xa = A cos ωt and 

xb = B cos ωt. Substituting for xa in Equation (4.18) yields 

−Amω cos ωt = kB cos ωt − 2kA cos ωt, 
 

giving 
A k 

B 
= 

(2k − mω2)
. (4.20) 

Substituting for xb in Equation (4.19) yields 

 

−Bmω cos ωt = kA cos ωt − 2kB cos ωt, 
 

giving  
A (2k mω

2
) 
. (4.21) 

B k 

So long as A and B are not both zero, the right-hand sides of Equations (4.21) and 

(4.22) must be equal, i.e. we require 
 

A (2k − mω
2
) k 

B 
= 

k 
= 

(2k − mω2)
. (4.22) 

Multiplying across leads to 

 

(2k − mω
2
)

2
 = k2

. (4.23) 
 

This is a quadratic equation in ω
2
 which is seen at once to have the solutions 

(2k − mω
2
) = ±k, i.e. ω

2
 = k/m or 3k/m. These are the two normal frequencies 

of the coupled system. Putting ω
2
 = k/m in Equation (4.20) gives A = B. This is 



1 

2 = 

= = = − 

= 

Worked example 

Figure 4.12 shows two equal masses of mass m suspended from two identical 

springs of spring constant k. Determine the normal frequencies of this system 
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Figure 4.12 Two equal masses m suspended from two identical springs of spring 

constant k. The displacements of the two masses from their equilibrium positions are 

xa and xb respectively, measured in the downward direction. 
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the first normal mode in which the two masses move in the same direction as each 

other and with the same amplitude. Then 

xa = A cos ω1t, xb = A cos ω1t, (4.24) 

where ω
2
     k/m. Putting ω

2
     3k/m in Equation (4.20) gives A     B. This is 

the second normal mode where the minus sign tells us that the masses move in 

opposite directions. Thus 

xa = A cos ω2t, xb = −A cos ω2t, (4.25) 

where ω
2
 3k/m. All of these results are in agreement with our physical intuition. 

Since most coupled oscillators do not have a symmetry that allows us to spot the 

normal modes, the approach described here is normally essential. As usual the 

general motion will be a superposition of the two normal modes, i.e. 

xa = C1 cos ω1t + C2 cos ω2t 

and  
xb = C1 cos ω1t − C2 cos ω2t. 

If the masses did not have zero velocity at t 0, we would also need to include 

phase angles as in Equations (4.14) and (4.15). 
 



− 

= = 

m m 
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for vertical oscillations and the ratios of the amplitudes of oscillation of the 

masses at these frequencies. 

Solution 

Let xa and xb be arbitrary displacements of the masses from their respective 

equilibrium positions and let xb be greater than xa. Then the extensions of the 

upper and lower springs are xa and (xb   xa), respectively, and the directions 

of the forces acting upon the two masses are as indicated by the arrow heads. 

The resultant equations of motion are 

d
2
xa 

m 
dt 2   

= −kxa + k(xb − xa) = k(xb − 2xa) 

and 

d
2
xb 

m 
dt 2   

= −k(xb − xa). 
 

This time we try complex solutions of the form, xa Ae
iωt

 and xb Be
iωt

 . 

Substituting for xa and xb into the equations of motion and dividing through 

by e
iωt

 leads to 

 

 

and 

A(2k − mω
2
) = Bk (4.26a) 

 
Ak = B(k − mω

2
). (4.26b) 

Equation  (4.26)  leads  to  the  quadratic  equati√on   (mω
2
)
2
 − 3kmω

2
 + k2

 = 0, 

which   has   the   solutions   ω
2
 = (k/2m)(3 ± 

frequencies. √Substituting for ω
2
 = (k/2m)(3 − 

√5),   giving   the   two   normal 
5) in Equation (4√.26a) gives 
2 

A/B = 1/2(   √5 − 1),   while   substituting   for   ω   = (k/2m)(3 + 5)   gives 

A/B = −1/2(   5 + 1)  where  the  minus  sign  indicates that  the  masses move 
in opposite directions, i.e. in anti-phase. 

 

 
A powerful way to handle the simultaneous equations that arise for coupled 

oscillators is to use a matrix representation.
1
 This works as follows for the example 

above. Equation (4.26) can be written, respectively, as 

 

2k 
A − 

k 
B = ω2

A, (4.27a) 

 

 
1 This matrix approach can be omitted by the reader without detriment, although it is extremely powerful 

in more complicated cases. 



m 

m m 

− + = = ± 

m 

m 
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and 

k k 2 

− 
m 

A + 
m 

B = ω B. (4.27b) 

In matrix form these equations become 

 
2k 

, − 
k 

 
A

 
A

 

 

 
 

 

  

 = ω   . (4.28) 

— 
k 

, 
k    

This is an eigenvalue equation. The solutions of this equation for ω
2
 are called the 

eigenvalues . The column vector with components A and B is an eigenvector of 

the matrix. We can rewrite Equation (4.28) in the following form 
 

2k 
− ω2

 

, − 
k
 

 

 

 
A

 

 k 
  

k 2

 
 
  = 0. (4.29) 

− 
m

, 
m 

− ω 
B

 
 

This equation has non-zero solutions if and only if the determinant vanishes, i.e. if 

  
2k 

− ω
 2

    
k 

− ω2

    
k 

  2 
 

 
 

 

 
= 0, 

giving   m
2
ω

4
   3kmω

2
   k

2
    0   and   the   solutions   ω

2
    (k/2m)(3    

√
5)   as 

before. Substituting for these solutions in Equation (4.28) yields the two values 

of A/B. The power of this approach is not obvious for the case of two coupled 

oscillators but it quickly becomes apparent when more than two are involved. 

In this section we have discussed the example of two masses connected by 

springs where the masses oscillate in one dimension, i.e. along the x-axis. We 

found that this system has two normal modes of oscillation and that each mode has 

an associated normal coordinate q and normal angular frequency ω. These results 

can be generalised to N masses interconnected by springs and moving in three 

dimensions. As for the case of two masses the N masses do not move indepen- 

dently. When one mass is set oscillating the other masses will feel the disturbance 

and will start to oscillate. For N coupled masses there are 3N normal modes of 

oscillation where the factor of 3 corresponds to the three perpendicular directions 

along which each mass can move. Again each normal mode has a normal coor- 

dinate and normal frequency, so that we have normal coordinates q1, q2, . . .  , q3N 

with corresponding normal frequencies ω1, ω2, . . .  , ω3N . For each normal mode 

we have independent SHM in the coordinate q with frequency ω. A good example 

of this is provided by a crystal lattice. In Section 1.2.6 we described how an atom 

in a crystal can be modelled as a simple harmonic oscillator and how Einstein 

used this model to explain the variation of the specific heat of a crystal with 

m 

m 

m m 

2 

B 
B 

− 



92 Coupled Oscillators 
 

temperature. Although Einstein’s model had great success in explaining the main 

features of this behaviour, the model is a great oversimplification and has limita- 

tions. This is because it assumes that the atoms vibrate totally independently of 

each other about fixed lattice sites. In reality, they do not because the atoms are 

coupled together. A macroscopic mechanical analogue of a crystal lattice would 

consist of billiard balls connected together with identical springs. Figure 4.13 shows 

a two-dimensional picture of this. If one ball is set vibrating, say the one labelled 

A in Figure 4.13, a disturbance will propagate throughout the whole system until 

all the balls are vibrating. Similarly, the atoms in a crystal are coupled rather than 

independent oscillators. Einstein’s theory can be improved by describing the N 

atoms in a crystal in terms of the 3N normal modes of vibration of the whole crys- 

tal, each with its own characteristic angular frequency ω1, ω2, . . .  , ω3N . In terms 

of these normal modes, the lattice vibrations are equivalent to 3N independent 

harmonic oscillators with these angular frequencies (see also Mandl,
2
 Section 6.3). 

 

 

 

A 

 

 

 

 

 

 

 

 

Figure 4.13 Two-dimensional analogue of a crystal lattice, consisting of billiard balls con- 

nected by springs. 

 

Coupling can also occur in oscillating electrical circuits (cf. Figure 1.21). An 

electrical version of a coupled oscillator is shown in Figure 4.14. A mutual (shared) 

inductor M couples together the two electrical circuits where the magnetic flux 

arising from the current in one circuit threads the second circuit. Any change of 

flux induces a voltage in both circuits. A transformer, which is used to change the 

amplitude of an AC voltage, depends upon mutual inductance for its operation. 
 

   M    

 

C 

 

 

 

Figure 4.14 Example of a coupled electrical oscillator, where the coupling is provided by 

the mutual inductance M. 

 
 

2 Statistical Physics, F. Mandl, Second Edition, 1988, John Wiley & Sons, Ltd. 
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4.5 FORCED OSCILLATIONS OF COUPLED OSCILLATORS 

We saw in Chapter 3 that the amplitude of oscillation of a harmonic oscillator 

becomes very large when a periodic driving force is applied at its natural frequency 

of oscillation. At other driving frequencies the amplitude is relatively small. For 

the case of two oscillators coupled together we may expect similar behaviour. 

Now, however, there are two natural frequencies corresponding to the two nor- 

mal frequencies. Thus we may expect that the system will exhibit large amplitude 

oscillations when the driving frequency is close to either of these two normal fre- 

quencies. This is indeed the case. We can explore forced oscillations by considering 

the arrangement of two masses connected by springs as shown in Figure 4.15. This 

is similar to the arrangement shown in Figure 4.10 but now the end s of one of 

the outer springs is moved harmonically as ξ     a cos ωt. The displacements ξ, xa 

and xb of the masses from equilibrium are shown in Figure 4.15 at some instant 

 

Figure 4.15 Forced oscillations of a coupled oscillator. The end s of the spring is moved 

harmonically as ξ = a cos ωt . 

of time. The resulting equation of motion for mass a is 

d
2
xa 

m 
dt 2    

= −k(xa − ξ) + k(xb − xa) (4.30) 

giving 
 

d
2
xa 2k k F0 

dt 2   
+ 

m 
xa − 

m
xb = cos ωt, (4.31) 

m 

where F0 = ka. Similarly, the equation of motion for mass b is 

d
2
xb k 2k 

dt 2   
− 

m
xa + 

m 
xb = 0. (4.32) 

We can solve these two simultaneous equations by, respectively, adding and sub- 

tracting them. Thus 

d
2
(xa + xb) k F0 

 
and 

dt 2 
+ 

m
(xa + xb) = cos ωt (4.33) 

m 

d
2
(xa − xb) 3k F0 

dt 2 
+ 

m 
(xa − xb) = cos ωt. (4.34) 

m 

We now change variables to the normal coordinates 

q1 = (xa + xb) and q2 = (xa − xb) (4.35) 



1 

2 

= = 

= 
√ 

≈ − 

= 
√ 

| |  | | ≈ 
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94 Coupled Oscillators 
 

giving  
 

d
2
q1 k F0 

 
 

and 

dt 2    
+ 

m
q1 =

 
cos ωt (4.36) 

m 

d
2
q2 3k F0 

dt 2 
+ 

m 
q2 =

 
cos ωt. (4.37) 

m 

This is a striking result and illustrates the power and simplicity of describing the 

coupled motion in terms of the normal coordinates. For each of the independent 

coordinates q1 and q2 we have the equation for forced oscillations of a simple 

harmonic oscillator, i.e. an equation of the same form as Equation (3.1) in Section 

3.2.1, and we can at once take over the solutions, Equations (3.5a) and (3.7a), 

from that section. We can describe the steady state solutions by the equations 

q1 = C1 cos ωt and q2 = C2 cos ωt, where 

    F0/m  

C1 = 
(ω2 − ω2)

, (4.38) 

    F0/m 
C2 = 

(ω
2
 − ω2) 

 

(4.39) 

and where ω
2
 = k/m and ω

2
 = 3k/m. The maximum values of C1 and C2 given by 

these equations are infinitely large when ω    ω1 and ω     ω2, respectively, so that 

the amplitudes of oscillation would become infinite if the system were driven at one 

of its normal frequencies. (We had a similar situation when considering a driven 

oscillator in Section 3.2.1.) This is, of course, because we have neglected damping 

that would limit their values in real situations. Nevertheless we can conclude that 

a coupled oscillator will oscillate with large amplitude when it is driven at either 

of its normal frequencies. At other driving frequencies the masses will oscillate at 

the driving frequency but with much smaller amplitude. From Equation (4.35) we 

have 

1 1 

 
 

and 

xa = 
2 

(q1 + q2) = 
2 

(C1 + C2) cos ωt 

1 1 
xb = 

2 
(q1 − q2) = 

2 
(C1 − C2) cos ωt. 

It follows from Equations (4.38) and (4.39) that when the driving frequency ω is 

near the first normal frequency ω1 k/m, we have C1 C2 , and xa xb, 

i.e. the two masses oscillate in phase. When the driving frequency ω is near the 

second normal frequency ω2        3k/m, one similarly obtains xa         xb, i.e. the 

two masses oscillate in anti-phase. 

Since a coupled system oscillates with large amplitude when driven at one of 

its normal frequencies this provides a way of determining these frequencies exper- 

imentally. A good example of this is provided by the vibrations of molecules that 



O C O 

O C O 

× 

× × 
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contain more than two atoms. For example, the molecule carbon dioxide (CO2) can 

be modelled by three masses connected by two springs in a linear configuration 

(see Figure 4.16). The central mass represents the carbon atom and the other 

two masses represent the oxygen atoms while the springs represent the molecular 

bonds. This system has two normal modes of vibration for displacements along the 

line connecting the masses. These are called the symmetric stretch mode and the 

asymmetric stretch mode as illustrated in Figure 4.16(a) and (b), respectively. In 

the symmetric stretch mode the central mass remains fixed in position while the two 

outer masses vibrate against it. In the asymmetric stretch mode the two outer masses 

move in the same direction and maintain the same distance apart. However, since 

there is no net translational motion, the central mass moves in the opposite direc- 

tion to keep the position of the centre of mass stationary. The normal frequencies 

of molecular vibrations are determined experimentally by absorption spectroscopy . 

In this technique, radiation of tunable frequency is passed through a cell containing 

the molecules of interest. The oscillating electric field of the radiation interacts 

with the molecule, which behaves like a driven oscillator (see also Section 3.3). 

The intensity of the radiation, after it has passed through the cell, is measured as 

a function of its frequency. This gives the absorption spectrum of the molecule. 

When the frequency of the radiation matches a normal frequency, the radiation is 

strongly absorbed by the molecules. (We are effectively observing the power reso- 

nance curve, see also Section 3.3.) The frequencies at which this absorption occurs 

give directly the normal mode frequencies of the molecule. The measured values 

of the frequency ν for the symmetric stretch and the asymmetric stretch modes of 

the CO2 molecule are 4.0 10
13

 s−1
 and 7.0 10

13
 s−1

, respectively. The CO2 
molecule also has a bending mode of vibration as illustrated in Figure 4.16(c). The 

frequency of this mode is 2.0 10
13

 s−1
. This bending motion can occur in two 

orthogonal planes and since these have the same frequency of vibration they are 

said to be degenerate in frequency. These frequencies lie in the far infrared region 

of the electromagnetic spectrum, with corresponding wavelengths of ∼10 µm. 
 

 
 

(a) 

 

 
 

(b) 
 

 

(c) 

 

 

 

Figure 4.16 A model of the normal modes of vibration of the CO2 molecule: (a) the 

symmetric stretch mode; (b) the asymmetric stretch mode; and (c) the bending mode. 
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Vibrations of CO2 molecules and some other molecules in the Earth’s atmosphere 

play a key role in global warming because they strongly absorb radiation in the far 

infrared. The surface temperature of the Sun is 5800 K and the radiation emitted 

by the Sun peaks at about 500 nm. However, the surface of the Earth is at a 

much lower temperature, 300 K, and its radiation peaks at 10 µm. The Earth’s 

atmosphere is largely transparent at visible and near infrared wavelengths and the 

Sun’s radiation passes through. However, the global-warming molecules absorb 

the Earth’s far infrared radiation and act to trap its energy. This effect leads to an 

increase in the surface temperature of the Earth. 

 

4.6 TRANSVERSE OSCILLATIONS 

In our discussion of the oscillations of masses coupled by springs (Section 4.4) 

the periodic displacements of the masses took place along a line connecting them. 

These are called longitudinal oscillations. It is also possible to have periodic dis- 

placements in a direction perpendicular to this line. These are called transverse 

oscillations and will be discussed further in Chapter 5. In the meantime we will 

first consider the transverse oscillations of a single mass m connected by two 

springs as shown in Figure 4.17. These have a spring constant k, and the length 

l of each spring is greater than the unstretched length so that there is a tension 

T in the springs. The mass is displaced in the transverse direction by a distance 

y, where upward displacements are taken as positive. We first note that for small 

displacements the tension in the springs remains constant, which we can see as 

follows. For a displacement y, each spring will be extended by an amount ∆l 

given by 

∆l l 
1 

1 
cos θ 

 

 

 

 

 

 

l l 
 

 

Figure 4.17 Transverse displacement of a single mass m coupled by two springs of spring 

constant k. 

 

where θ     arctan(y/ l). For small angles, cos θ     (1     θ 
2
)

1/2
, and so ∆l      lθ 

2
/2. 

If θ is small then θ 
2
 is very small and so terms in θ 

2
 can be neglected. Then 

to a good approximation the spring extension is negligibly small and the tension 

in the spring T can be considered to be constant. The springs do, however, exert 

a restoring force on the mass that is equal to 2T sin θ . The resultant equation of 

motion is 

d
2
y y 

m 
dt 2 

= −2T sin θ   −2Tθ  −2T 
l 

(4.40) 

m 
T T 

k k 

y 

q q 



= = 

  

l 

a 
yb 

ya 
q2 

q1 q3 
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for small θ , giving to a good approximation: 

d
2
y 2T 

dt 2 
= − 

ml 
y (4.41) 

This is the equation of SHM with frequency 
√

2T /ml. The system has this one 

normal mode of vibration. 

We now extend our discussion to a coupled oscillator consisting of two equal 

masses connected by three identical springs of length l and under tension T , as 

shown in Figure 4.18. The masses are displaced in the transverse direction by 

distances of ya and yb, respectively. The directions of the forces acting on the 

masses are indicated by the arrow heads and the resultant equations of motion for 

the two masses are derived as follows. For mass a, we have 
 

d
2
ya 

m 
dt 2  

= −T sin θ1 + T sin θ2 (4.42) 

 

b 

l l l 
 

Figure 4.18 Transverse displacements of two masses connected by springs. 

 
giving, for small displacements, 

 

d
2
ya T T T 

m 
dt 2 

= − 
l 

ya + 

Similarly, we have for mass b 

 
d

2
yb 

l 
(yb − ya) = 

l 
(yb − 2ya). (4.43) 

 

 
giving 

m 
dt 2  

= −T sin θ2 − T sin θ3 

 

d
2
yb 

m 
dt 2  

= 
T 

l 
(ya − 2yb). (4.44) 

 

Substituting ya Ae
iωt

  and yb Be
iωt

 into Equations (4.43) and (4.44) and divid- 

ing through by e
iωt

 leads to 

A 
 2T 

l 
— mω

2

  

= 
T 

B (4.45) 



l 

= 
= = 

= = − 
= 

l l 

b 
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and 

T 
A = B 

  
2T 

— mω
2

 

. (4.46) 
 

Equations (4.45) and (4.46) give two expressions for A/B, and equating these leads 

to the quadratic equation in ω
2
: 

  
2T 

− mω 
2

   2   
T 

  2 

 

 

 
(4.47) 

 

with the solutions ω
2
 T /ml and 3T /ml. Substituting for ω

2
   T /ml in Equation 

(4.45) gives A B. This corresponds to the first normal mode of the system 

where both masses move in the same directions as each other as illustrated in 

Figure 4.19(a) and each performs SHM at the normal frequency ω1     
√

T /ml. 

Substituting for ω
2
      3T /ml in Equation (4.45) gives A         B. This corresponds 

to the second normal mode of the system where the two masses move in opposite 

directions to each other as illustrated in Figure 4.19(b) and each performs SHM at 

the normal frequency ω2 = 
√

3T /ml. a b 

(a) 

 

 
a 

(b) 
 

Figure 4.19 The two normal modes for transverse oscillations of two masses connected by 

springs where (a) the masses move in the same directions as each other and (b) they move 

in opposite directions. 

 

We see that the frequency of oscillation depends on the particular normal mode. It 

is also proportional to the square root of the tension T  and inversely proportional 

to the square root of the mass m. We will encounter similar relationships for 

standing waves on taut strings in Chapter 5. Indeed the normal modes shown in 

Figure 4.19 are already starting to resemble standing waves on a taut string. This 

similarity is even more striking when we have a larger number N of masses. To 

emphasise this similarity we show in Figure 4.20 an arrangement of nine masses 

connected by elastic strings of equal length l. The figure shows schematically three 

of the possible modes of oscillation of this arrangement. Without pursuing the 

l 
= 



→ ∞ → → 

= 

= + 
= + 

= 
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details of the mathematics, we note that in each normal mode all the individual 

masses oscillate in SHM at the same frequency, equal to the normal frequency. The 

amplitude of the oscillations will, however, vary from mass to mass as indicated by 

Figure 4.20. The number of normal modes is equal to the number of masses and 

the highest possible normal mode will occur when alternate masses are moving 

in opposite directions, as shown in Figure 4.20(c). This gives an upper limit to 

the highest normal frequency that is possible. If we simultaneously take the limits 

N ,m 0 and l 0, in such a way that Nm remains finite, we indeed 

obtain the situation of standing waves on a taut string. Thus we see that coupled 

oscillators are the bridge between vibrations and waves. Our discussion of coupled 

oscillators has also seen the repeated appearance of SHM again and again, and this 

further emphasises the importance and diversity of this form of motion. 

 

(a) 

 

(b) 

 

(c) 
 

Figure 4.20 Some normal modes of transverse oscillations for nine masses connected by 

elastic strings: (a) the first normal mode; (b) the second normal mode; and (c) the highest 

normal mode. 

 

PROBLEMS 4 

4.1 Two simple pendulums, each of length 0.300 m and mass 0.950 kg, are coupled by 

attaching a light, horizontal spring of spring constant k 1.50 N m−1 to the masses. 
(a) Determine the frequencies of the two normal modes. (b) One of the pendulums is 
held at a small distance away from its equilibrium position while the other pendulum is 
held at its equilibrium position. The two pendulums are then released simultaneously. 
Show that after a time of approximately 12 s the amplitude of oscillation of the first 

pendulum will become equal to zero momentarily. (Assume g = 9.81 m s−2.) 

4.2 Two simple pendulums, each of length 0.50 m and mass 5.0 kg, are coupled by 

attaching a light, horizontal spring of spring constant k 20 N m−1 to the masses. 
(a) One of the masses is held at a horizontal displacement xa 5.0 mm while the 
other mass is held at a horizontal displacement xb       5.0 mm. The two masses are 
then released from rest simultaneously. Using the expressions 

1 1 
xa = 

2 
(C1 cos ω1t + C2 cos ω2t) and xb = 

2 
(C1 cos ω1t − C2 cos ω2t)  



2 2 2 2 

Eb = 
2 

mA 
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where ω1 and ω2 are the normal frequencies, find the values of C1 and C2. Plot xa and 

xb as a function of time t over the time interval t = 0 to 10 s. (b) Repeat part (a) for 
initial conditions: (i) xa = +5.0 mm, xb = −5.0 mm, (ii) xa = +

− 
10 mm, xb = 0 mm 

and (iii) xa = +10 mm, xb = +5.0 mm. (Assume g = 9.81 m s 2.) 

4.3 Consider the example of two identical masses connected by three identical springs as 
shown in Figure 4.11. Combine the equations of motion of the two masses to obtain 
a pair of equations of the form 

 

d2q1 2 d2q2 2 

dt 2 
+ ω1 q1 = 0 and 

dt 2  
+ ω2 q2 = 0 

 

and hence obtain the normal coordinates q1 and q2 and the respective normal frequen- 
cies ω1 and ω2. 

4.4 Two identical pendulums of the same mass m are connected by a light spring. The 
displacements of the two masses are given, respectively, by 

xa = A cos 
(ω2 − ω1)t 

cos 
(ω2 + ω1)t 

, xb = A sin 
(ω2 − ω1)t 

sin 
(ω2 + ω1)t 

.
 

 

Assume that the spring is sufficiently weak that its potential energy can be neglected 
and that the energy of each pendulum can be considered to be constant over a cycle 
of its oscillation. (a) Show that the energies of the two masses are 

1 2 

  
ω2 + ω1

 2 
2 (ω2 − ω1)t 

 

 
and 

Ea = 
2 

mA 
2 

cos 
2

 

1 2

  
ω2 + ω1

 2
 

 
2 (ω2 − ω1)t 

 
 

and that the total energy of the system remains constant. (b) Sketch Ea and Eb over 
several cycles on the same graph. What is the frequency at which there is total exchange 
of energy between the two masses? 

4.5  

 

 

 

 

 

 

 

 

 

 

 

 
m 

 

Two identical masses of mass m are suspended from a rigid support by two strings of 
length l and oscillate in the vertical plane as illustrated by the figure. The oscillations 
are of sufficiently small amplitude that any changes in the tensions of the two strings 

2 2 

q1 

l 

x1 
m 

q2 
l 

x2 

sin 



m M m 

x1 x2 

 

 

4k 

3m 
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k 

m 

Problems 4 101 

from their values when the system is in static equilibrium can be neglected. In addition 
the small-angle approximation sin θ θ can be made. (a) Show that the equations of 
motions of the upper and lower masses, respectively, are 

d2x1 3g g 

and 

dt 2  
+

 l 
x1 − 

l 
x2 = 0 

d2x2 g g 

dt 2 
+ 

l 
x2 − 

l 
x1 = 0. 

(b) Assuming solutions of the form x1√= A co√s ωt  and x2 = B cos ωt , show that the two 
 

normal frequencies of the system are (2 ±   2)g/ l and find the corresponding ratios, 

 

 
4.6  

B/A. (c) Determine the periods of the two normal modes for l = 1.0 m and compare 
these with the period of a simple pendulum of this length. (Assume g = 9.81 m s−2.) 

k k 

 

x3 

 
The figure shows two identical masses of mass m connected to a third mass of mass M 
by two identical springs of spring constant k. Consider vibrations of the masses along 
the line joining their centres where x1, x2 and x3 are their respective displacements 
from equilibrium. (a) Without any mathematical detail, use your physical intuition 
to deduce the normal frequency for symmetric-stretch vibrations. (b) Show that the 
equations of motion of the three masses are: 

 

x2 = 0, 

2 

 
 

and 
d2x3 2 

 
 

x2 − ω2 x3 = 0 

 
2 

dt 2 
− ω1 x2 + ω1 x3 = 0, 

where ω2 = k/m and ω2 = k/M. (c) Show that the normal frequencies of the system 

are 
√   1 √ 2 k/m and k(2m + M)/Mn. (d) Determine the ratio of normal frequencies for 

m/M 16/12 and compare with the vibrational frequencies of the CO2 molecule 
given in the text. 

4.7  

 

 

 

 

d2x1 2 2 
 

dt 2 

d2x2 

+ ω1 x1 − ω1 

2 

 

 
2 

dt 2 
— ω2 x1 + 2ω 2 

 



2 

= 
2 
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The figure shows two masses of mass 3m and m hanging from springs of spring 

cons√tants 4k  and√k ,  respectively. (a) Show that the normal  frequencies of oscillation 

 
4.8  

are 2k/m and 2k/3m. (b) Describe the two normal modes. 

 
 

Five identical masses are connected by six identical springs between two rigid walls, 
as illustrated in the figure, and move without friction on a horizontal surface. How 
many normal modes of vibration in the transverse direction does the system have? 
Sketch these normal modes bearing in mind that the transverse positions of the masses 
pass through sinusoidal curves (cf. Figure 4.20). 

4.9  

 

 

 

 

 

 

F0coswt 

 

 

 

 

 

The figure shows two masses M and m suspended from a rigid ceiling by springs of 
spring constant k1 and k2. (a) If the mass M is subjected to a driving force F0 cos ωt 
in the downward direction, show that the equations of motion of the masses are 

 
d2x1 

M 
dt 2   

+ (k1 + k2)x1 − k2x2 = F0 cos ωt 

 

and 

 
d2x2 

m 
dt 2   

− k2x1 + k2x2 = 0, 

where x1 and x2 are the displacements of the masses M and m, respectively, from 

their equilibrium positions. (b) Assuming solutions of the form x1 = A cos ωt and 

x2 = B cos ωt show that 

F0(k2 − mω2) 

 
 

and 

A = 
(k

 + k2 — Mω2)(k2 − mω2) − k2 

B 
  F0k2 

.
 

(k1 + k2 − Mω2)(k2 − mω2) − k2 

(c) For ω = 
√

k1/M show that the amplitude of vibration of mass M will be zero if 

k2/k1 = m/M. 

k 
m m m m m 

k k k k k 

k1 

M 

k2 

m 

1 
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4.10  

Three identical masses of mass m are connected by four identical springs of spring 
constant k between two rigid walls, as shown in the figure, and move without friction 
on a horizontal surface. They vibrate along√the line joinin√g their√centres. (a) Show that 

 

the normal frequencies of the system are 
the three normal modes of vibration. 

2k/m and (2 ± 2)k/m. (b) Describe 

 

a11   a12   a13 

[Hint: The determinant a21  a22  a23 
a31   a32   a33 

a11(a22a33 − a32a23) + a21(a32a13 − a12a33) + a31(a12a23 − a22a13).] 

k k k k 
m m m 



 



 

 

 

 

5 
Travelling Waves 

 
Waves arise in a wide range of physical phenomena. They occur as ripples on a pond 

and as seismic waves following an earthquake. Music is carried by sound waves and 

most of what we know about the Universe comes from electromagnetic waves that 

reach the Earth. Furthermore, we communicate with each other through a variety 

of different waves. At the microscopic level, the particles of matter have a wave 

nature as expressed by quantum wave mechanics. At the other end of the scale, 

scientists are trying to detect gravitational waves that are predicted to occur when 

massive astronomical objects like black holes move rapidly. Even a Mexican wave 

travelling around a sports arena has many of the characteristics of wave motion. It is 

not surprising therefore that waves are at the heart of many branches of the physical 

sciences including optics, electromagnetism, quantum mechanics and acoustics. 

In this chapter we begin to explore the physical characteristics of waves and their 

mathematical description. We distinguish between travelling waves and standing 

waves. Ripples on a pond are an example of travelling waves. A plucked guitar 

string provides an example of a standing wave. The present chapter is devoted to 

travelling waves while standing waves will be discussed in Chapter 6. Travelling 

waves may be either transverse waves or longitudinal waves . We have already seen 

the difference between these two types of motion in Chapter 4. In transverse waves 

the change in the corresponding physical quantity, e.g. displacement, occurs in the 

direction at right angles to the direction of travel of the wave, as for the outgoing 

ripples on a pond. For longitudinal waves, the change occurs along the direction 

of travel. An example of this is the longitudinal compressions and rarefactions 

of the air that occur in the propagation of a sound wave. It is easier to see the 

physical processes going on in a transverse wave and so we will concentrate on 

them in the present chapter. However, both transverse and longitudinal waves are 

solutions of the wave equation, which is one of the most fundamental equations 

in physics. We will deal with mechanical waves that travel through some material 

or medium. However, not all waves are mechanical waves: electromagnetic waves 

can propagate even in a vacuum. We will discuss the energy carried by a wave 

Vibrations and Waves George C. King 

 2009 John Wiley & Sons, Ltd 
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and the behaviour of a wave when it encounters a boundary in passing from one 

medium to another. Most of our discussion will be devoted to waves travelling in 

one dimension but we will introduce waves that move in two or three dimensions. 

These have much in common with one-dimensional waves. 

 
 

5.1 PHYSICAL CHARACTERISTICS OF WAVES 

When we observe a wave it is clear that something, that we may call a dis- 

turbance, travels or propagates from one region of a medium to another. This 

disturbance travels at a definite velocity v that is usually determined by the mechan- 

ical properties of the medium. For a taut string these are the mass per unit length 

and the tension in the string. However, the medium does not travel with the wave. 

For example, if we tap one end of a solid metal rod, a sound wave propagates 

along the rod but the rod itself does not travel with the wave. (For this reason, 

waves can travel at high velocities.) In fact, the particles of the rod move about 

their equilibrium positions to which they are bound. We saw such behaviour for 

the transverse oscillations of masses connected by springs in Section 4.6. There 

the equilibrium position was the straight line along which the masses lie when at 

rest and the springs provide the restoring force. We also saw in Chapter 4 that an 

oscillator can transfer all of its energy to another oscillator to which it is coupled 

under appropriate conditions. A simplified picture of a wave travelling through a 

medium is therefore a long line of oscillators coupled together in some way, just 

like the atoms in a one-dimensional crystal. Then if the end oscillator is displaced 

from its equilibrium position it exerts a force on its neighbour. In turn this force 

and the resultant displacement propagate down the line of oscillators. Energy must 

be put into the system to cause the initial disturbance and it is this energy that 

is transmitted by the wave. This energy is evident as the destructive power of a 

tsunami and in the warmth of the Sun’s rays. On a sunny day the solar energy 

deposited on the Earth’s surface is about 1 kJ m−2
 s−1

; a power of 1 kW m−2
. 

This is a substantial amount of power that is an increasingly important source of 

energy for the World’s needs. 

 
 

5.2 TRAVELLING WAVES 

A common experience is to take the end of a long rope like a clothesline and 

move one end of it up and down rapidly to launch a wave pulse down the rope. 

A schematic diagram of this is shown in Figure 5.1. The pulse roughly holds 

its shape and travels with a definite velocity along the rope. Here we will use a 

Gaussian function to model this travelling wave pulse. The Gaussian function can 

be represented by 
 

y = A exp[−(x
2
/a

2
)], (5.1) 

where A and a are constants. This function appears in many branches of the physical 

sciences and is plotted in Figure 5.2. When x = 0,y = A and when x = ±a, 



= − 

= − = − − 

velocity 
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Figure 5.1 A wave pulse can be launched down a long rope by moving the end of the rope 

rapidly up and down. 

 

y = Aexp[x
2
 / a

2
] y = Aexp[(x  b)

2
 / a

2
] 

 

 

 

 

 

 

 

x 

0 b 
 

Figure 5.2     The Gaussian functions y     A exp[    (x2/a2)] and y(x)     A exp[    (x      b)2/a2]. 

A is the height of the Gaussian and a characterises its width. These two Gaussians have the 

same shape but are separated by distance b. 

 

y = A/e. A corresponds to the height of the Gaussian and a is a measure of its 

width. If we now change the variable x to (x − b) we obtain 

y = A exp[−(x − b)
2
/a

2
]. (5.2) 

This function is also plotted in Figure 5.2. We see that the shape of the function, 

as characterised by its height and width, is the same as before. We have simply 

moved the Gaussian a distance b to the left, so that now it has its maximum value 

A at x b. Suppose we now change the variable x to (x   vt) where t is time 

and v is a constant with the dimensions of distance/time. Then we obtain 
 

y(x, t) = A exp[−(x − vt)
2
/a

2
]. (5.3) 

The value of vt increases linearly with time. Consequently, Equation (5.3) describes 

a Gaussian that moves in the positive x-direction at a constant rate just like the 

wave pulse on the rope. This is illustrated in Figure 5.3 where the Gaussian is 

plotted at three different instants of time that are separated by equal time intervals 

of δt. The rate at which it moves is the velocity v. 

We can generalise the above by saying that when a wave is going in the posi- 

tive x-direction, the dependence of the shape of the rope on x and t must be of 

y 
b 

A 

a a a a 



= − − 

− = 
− 

— − − 
— − 
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v(to  2dt) 

 
Figure 5.3    The Gaussian y    A exp[   (x     vt)2/a2] plotted as a function of position x, at 

three different instants of time, separated by equal time intervals of δt. 

 

the general form f(x  vt), where f is some function of (x vt). Examples of 

f(x    vt) are the Gaussian function A exp[   (x      vt)
2
/a

2
] that we saw above, and 

the travelling sinusoidal wave A sin[2π(x vt)/λ] that we will discuss in the next 

section. The shape of the wave is given by f(x   vt) at t    0, i.e. by f(x) as 

illustrated in Figure 5.4(a). At time t , the wave has moved a distance vt to the 

right. However it has retained its shape, as shown in Figure 5.4(b). This is the 

important characteristic of wave motion: the wave retains its shape as it travels 

along. Clearly, we could determine the shape of the wave by taking a snapshot 

of the rope at a particular instant of time. However, we could also find this shape 

by measuring the variation in the displacement of a given point on the rope as 

the wave passes by. A wave travelling in the negative x-direction must be of the 

general form g(x + vt) where g is some function of (x + vt). Again at t = 0, g(x) 

 
y 

 

(a) 

 

 

y 

 

(b) 

 

 

Figure 5.4 A wave travelling in the positive x-direction, defined by the function y = 
f(x − vt). (a) f (x − vt) ≡ f (x) at time t = 0, which gives the shape of the wave. (b) 

f(x − vt) at time t when the wave has moved a distance vt to the right. 

        v 

t = to 

x 

vto v 

t = to  dt 

x 

v(to dt) v 

t = to  2dt 

x 

v 
t = 0 

 
f (x) 

x 

vt    
v 

t = t 

f (xvt) 

x 
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y 

(a) 

x 

y 

(b) 

 
x 

 

Figure 5.5   A wave travelling in the negative x-direction, defined by the function y 

g(x     vt). (a) g(x     vt)     g(x) at time t      0. (b) g(x     vt) at time t when the wave has 

moved a distance vt to the left. 

 
gives the shape of the wave as illustrated in Figure 5.5(a). At time t , the wave has 

moved to the left by a distance vt but its shape remains the same, as shown in 

Figure 5.5(b). The general form of any wave motion of the rope can be written as 
 

y = f(x − vt) + g(x + vt) (5.4) 

and can be considered as a superposition of two waves, each of speed v, travelling 

in opposite directions. In Chapter 6 we will see that the superposition of waves 

travelling in opposite directions is of great physical importance. 

 
5.2.1 Travelling sinusoidal waves 

Sinusoidal waves are important because they occur in many physical situations, 

such as in the propagation of electromagnetic radiation. They are also important 

because more complicated wave shapes can be decomposed into a combination 

of sinusoidal waves. Consequently, if we understand sinusoidal waves we can 

understand these more complicated waves. We return to this important principle 

in Chapter 6. A travelling sinusoidal wave is illustrated in Figure 5.6, at various 

instants of time. The dotted parts of the curves indicate that the wave extends a 

large distance in both directions to avoid any effects due to reflections of the wave 

at a fixed end. Such reflections will be discussed in Section 5.7. A sinusoidal wave 

is a repeating pattern. The length of one complete pattern is the distance between 

two successive maxima (crests), or between any two corresponding points. This 

repeat distance is the wavelength λ of the wave. The sinusoidal wave propagates 

along the x-direction and the displacement is in the y-direction, at right angles to 

the propagation direction. We could generate such a sinusoidal wave by moving 

the end of a long rope up and down in simple harmonic motion. The displacements 

lie in a single plane, i.e. in the x-y plane, and so we describe the waves as linearly 

polarised in that plane. We represent the travelling sinusoidal wave by 

2π 
y(x, t) = A sin  

λ 
(x − vt) (5.5) 

v 

t = 0 

 

g(x) 

vt 

v 

t = t 

 
g(x+vt) 



= 

= = 
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xo xo  l 

 

Figure 5.6 Schematic representation of a travelling sinusoidal wave of wavelength λ and 

period T , at the different times as indicated. Each point on the wave travels at velocity v. 

The open circles denote points on the wave that are separated by wavelength λ. These points 

move in phase with each other in the transverse direction. 

 

where A is the amplitude and λ is the wavelength. This function repeats itself each 

time x increases by the distance λ. At t     0, we have y      A sin(2πx/λ) which 

shows the sinusoidal shape of the wave. The transverse displacement y given by 

Equation (5.5) is a function of two variables x and t and it is interesting to see what 

happens if we keep either x or t fixed. Keeping x fixed is like watching a leaf on a 

pond that bobs up and down with the motion of the water ripples. Keeping t fixed 

is like taking a snapshot of the pond that fixes the positions of the water ripples in 

time. The sinusoidal wave travels at a definite velocity v in the positive x-direction, 

as can be seen from the progression of a wave crest with time in Figure 5.6. The 

number of times per unit time that a wave crest passes a fixed point, at say x      xo, 

is the frequency ν of the wave. The frequency ν is equal to the velocity v of the 

wave divided by the wavelength λ. Hence we obtain 
 

(5.6) 
 

We see that the important parameters of the wave (wavelength, frequency and 

velocity) are related by this simple equation. The time T that a wave crest takes 

to travel a distance λ is equal to λ/v, i.e. the reciprocal of the frequency. Hence, 

1 

 
where T is the period of the wave. 

ν = 
T 

, (5.7) 

v 
l 

t = 0 

x 

v t = T /4  

x 

v t = T /2  

x 

v t = 3T /4  

x 

v t = T 

x 

νλ = v. 



= 

− = − − 

λ 

= 

= = + 

— − = = 
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Figure 5.6 also illustrates how the displacement of a point on the wave, at x xo, 

changes with time. The point moves up and down as the wave passes by and 

indeed its motion is simple harmonic. We can see this mathematically as follows. 

We have 

y(x, t) = A sin 

2π 

λ 
(x − vt). (5.8) 

Then at the fixed position, x = xo, we have 

2π 
y(xo,t) = A sin  

λ 
(xo − vt). (5.9) 

Now since x has a fixed value and we want to see how y varies with t it is useful 

to write this equation in the equivalent form 

2π 
y(xo,t) = −A sin  

λ 
(vt − xo), (5.10) 

using the relationship sin(α β) sin(β α). Equation (5.10) shows that the 

displacement varies sinusoidally with time t with an angular frequency ω where 

2πv 
ω =  

λ   
= 2πν. (5.11) 

Each point on the wave completes one period of oscillation in time period T , and 

we emphasise that all points along the wave oscillate at the same frequency ω. 

We can consider the term 2πxo/λ in Equation (5.10) as a phase angle. Thus, as 

illustrated in Figure 5.6, points at x    xo and x     xo     λ, denoted by the open 

circles, oscillate in phase with each other. As the wave propagates, any particular 

point on it, for example the wave crest denoted by the bold dots in Figure 5.6, 

maintains a constant value of transverse displacement y, and hence a constant value 

of (x    vt). Since (x    vt)     constant, dx/dt     v, which of course is the wave 

velocity. 

We can use Equation (5.8) to obtain alternative mathematical expressions for the 

wave. Substituting for v = νλ in Equation (5.8) we obtain 

y(x, t) = A sin 

   
2πx 

− 2πνt

   

. (5.12) 

We define the quantity 2π/λ as the wavenumber k, i.e. 

k = 2π/λ. (5.13) 

Substituting for ω 2πν from Equation (5.11) and k from Equation (5.13) in 

Equation (5.12), we obtain 
 

y(x, t) = A sin(kx − ωt). (5.14) 

In addition, using the relationships νλ = v and 2πν = ω, we have 

ω 
v = 

k 
. (5.15) 



= 

λ 

− = − 

y 

A t = 0 

x 

l = 2p /k  
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The wave velocity is equal to the angular frequency divided by the wavenumber. 

Although we have used sine functions, we can equally well use cosine functions 

such as 

y(x, t) = A cos(kx − ωt), (5.16) 

since the cosine function is simply the sine function with a phase difference of 

π/2. This is illustrated in Figure 5.7, which shows snapshots of Equations (5.14) 

and (5.16) at t 0. We simply need to choose the solution that fits the initial 

conditions. Finally, in Section 3.6 we saw that it can be advantageous to use a 

complex representation of periodic motion. This is also the case for wave motion, 

remembering that, as usual, the real part of the complex form is the physical 

quantity. Thus we can write the following alternative mathematical expressions for 

travelling sinusoidal waves: 

y(x, t) = A exp 

2π 

λ 
i(x − vt) (5.17) 

y(x, t) = A exp 2πi 
   x 

− νt
 

(5.18) 

y(x, t) = A exp i(kx − ωt). (5.19) 
 

y = Asin(kx – wt) y = Acos(kx – wt) 

 

Figure 5.7 Representation of the functions y = A sin(kx − ωt) and y = A cos(kx − ωt) at 

time t = 0, showing the phase relationship between the two functions. 

 
5.3 THE WAVE EQUATION 

In Section 5.2 we saw that the general form of any wave motion is given by 

y = f(x − vt) + g(x + vt). (5.4) 

We now show that this is the general solution of the wave equation. We start with 

the function f(x  vt) and change variables to u  (x  vt) to obtain the function 

f(u). Notice that f(u) is a function only of u. Then 

∂f df ∂u 

∂x 
= 

du ∂x 



+ 
− 

+ 

∂x2   
= 

∂x 
= 

du2 
+ 

du 
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and 

∂
2
f 

 
 

 
 ∂  

 
df ∂u

 
 

 

 

d
2
f  

  
∂u

  2
 

 
 

 

 

 
df 

 
∂

2
u 
 

 
 

 
 

Since ∂u/∂x = 1 and ∂
2
u/∂x

2
 = 0, we have 

∂
2
f d

2
f 

 

 
Similarly, 

∂x2   
= 

du2 
. (5.20) 

 

∂
2
f 

∂t2  
= v 

2 d
2
f 

du2 
. (5.21) 

Combining Equations (5.20) and (5.21) we obtain 
 

∂
2
f 

∂t2  
= v 

2 ∂
2
f 

∂x2 
. (5.22a) 

Similarly, we can readily see that g(x + vt) satisfies the equation 

∂
2
g 

∂t2  
= v 

2 ∂
2
g 

∂x2 
. (5.22b) 

[It does not matter that the sign of the velocity has changed between f (x vt) 

and g(x vt) since only the square of the velocity occurs in Equation (5.22).] 

Thus 

 

 

 
and hence we can write 

∂
2
(f g) 

∂t2 
= v 

2 ∂
2
(f + g) 

 

∂x2 

∂
2
y 

∂t2  
= v 

2 ∂
2
y 

∂x2 
. (5.23) 

This is a fundamental result. Equation (5.23) is the one-dimensional wave equation. 

(The position of the velocity v in Equation (5.23) is consistent with the dimen- 

sions of the quantities involved.) The general solution of it is Equation (5.4), 

namely 
 

y = f(x − vt) + g(x + vt). (5.4) 

The wave equation (5.23) and its general solution apply to all waves that travel in 

one dimension. For example, they describe sound waves in a long tube where the 

relevant physical parameter is the local air pressure P (x, t). They describe voltage 

∂x2 ∂x du ∂x 
. 



= − 

+ 

+ + 

∂t2 
=−  A sin 

λ 
(x − vt). (5.25) 
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waves V (x, t) on a transmission line and temperature fluctuations T (x, t) along a 

metal rod. Consequently we write the wave equation more generally as 

 
 

 

and its general solution as 

 

 

where ψ represents the relevant physical quantity. 

(5.23a) 

 

 

 
(5.4a) 

As a specific example of the above discussion, we have the travelling sinusoidal 

wave y      A sin[2π(x     vt)/λ]. First, differentiating with respect to x and keeping 

t constant, we obtain 

∂y 
= 

  
2π

  

A cos 
2π 

(x − vt) 

 

and 

∂x λ λ 
 

 

∂
2
y 2π

 2 
2π 

 
 

 

Similarly, 

∂x2  
=− 

λ 

A sin 
λ 

(x − vt). (5.24) 

 

∂
2
y 

 
 

  
2πv 

  2 
2π 

 

 

Finally, dividing Equation (5.25) by Equation (5.24) we obtain the expected result, 
 

∂
2
y 

∂t2  
= v 

2 ∂
2
y 

∂x2 
.
 

 

5.4 THE EQUATION OF A VIBRATING STRING 

We now derive the equation of motion for transverse vibrations on a taut string. 

We will find that this is just the wave equation (5.23) and it will give us the 

velocity v in the latter equation in terms of the physical parameters of the system. 

We consider a short segment of the string and the forces that act upon it as the 

wave passes by. The string has mass per unit length µ and is under tension T . 

The wave propagates in the x-direction and the transverse displacements are in 

the y-direction. For small values of y the tension in the string can be assumed to 

be constant (cf. Section 4.6). Figure 5.8 shows the segment of the string between 

positions x and x     δx. Since there is a wave travelling along the string, the slopes 

of the string at these two positions will be different as indicated in Figure 5.8. The 

angles that the string makes with the x-axis are θ and θ δθ at x and x δx, 

respectively. The segment of the string will be subject to a restoring force due to the 

tension T in the string. We can resolve this force into its components in the x- and 

λ 

ψ = f(x − vt) + g(x + vt), 

∂
2
ψ 2 ∂

2
ψ 

∂t2   
= v 

∂x2 



+ 

∂x 

+ 

+ 
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Figure 5.8    Segment of a taut string between x and x    δx, carrying a wave. The forces 

acting on the segment and the directions of these forces are indicated. 

 
 

y-directions. We deal first with the y-component of the force, the transverse force 

that causes the segment to return to its equilibrium position. At x the y-component 

of the force Fy is equal to T sin θ . For small values of θ we have 

sin θ   θ   tan θ = 
∂y 

. (5.26) 

We see that under this condition, the transverse force at a given point is equal to 

the tension in the string times the slope of the string at that point, i.e. 
 

∂y 
Fy = T 

∂x 
. (5.27) 

Similarly, the transverse force at x   δx is equal to the tension T times the slope 

at that point. The slope of the string varies smoothly and slowly from positions x 

to x δx, under the assumption of small θ . Hence to a good approximation, we 

can say that 
 

(slope at x + δx) = (slope at x) + (rate of change of slope) × δx, 
 

i.e. 

  
∂y 
 

 
= 

  
∂y 
 

 
+

 ∂  
   

∂y 
   

δx
 

∂x  x+δx ∂x  x ∂x ∂x 

∂y 

= 
∂x   x 

+
 

∂
2
y 

 
 

∂x2 

 
δx. 

Hence, the transverse force at x + δx is 

   
∂y 
  

 

  

  
∂2y 

  
 

 ∂x2 
x ∂x 

Tsin(q  dq) T 

q dq  

T 

q Tsinq 

 
x x  dx 

x 

T + δx . (5.28) 



∂x 

               

+ 

− + + 

    

µ 
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This acts in the opposite direction to the transverse force at x (see Figure 5.8). 

Thus the resultant transverse force on the segment of the string is 

T 

     
∂y 

     

+

 

 

∂
2
y 

 
 

∂x2 

 

δx − 

 

∂y 
T 

∂x  x 

∂
2
y 

 
 

∂x2 

 
δx. (5.29) 

We now consider the forces acting on the segment in the x-direction. The two ends 

of the segment experience opposing forces in this direction. The x-component of 

the force at position x is T cos θ and the x-component at x δx is T cos(θ   δθ). 

Hence the resultant force on the segment is 
 

T cos(θ + δθ) − T cos θ. (5.30) 

Since θ is small, both cos θ and cos(θ δθ) are both approximately equal to unity. 

Hence, to a good approximation, the resultant force in the x-direction is zero and 

there is no movement of the segment in that direction. We now use Newton’s 

second law and Equation (5.29) to deduce the equation of motion of the segment 

in the y-direction. Since the mass of the segment is µδx, we have 

∂
2
y 

µδx 
∂t2  

= T 

or 

∂
2
y 

∂x2 
δx 

∂
2
y T ∂

2
y 

∂t2  
= 

µ ∂x2 
. (5.31) 

This is the equation that describes wave motion on a taut string. By comparing this 

with the one-dimensional wave equation 

∂
2
y 

∂t2  
= v 

2 ∂
2
y 

∂x2 
, (5.23) 

we see that the velocity v of the wave along the string is given by 

v = 

, 
T 

. (5.32) 

The velocity depends on the mass per unit length of the string and also on the 

tension in the string. The dimensions of 
√

T /µ are [length][time]−1
 as required. 

 
5.5 THE ENERGY IN A WAVE 

In this section we turn our attention to the energy that is contained in a wave. 

(In Section 5.6 we will consider the rate at which this energy is transported in a 

travelling wave.) We again consider the case of transverse waves on a taut string 

and imagine the string to be divided into short segments of width δx and mass 

µδx, where µ is the mass per unit length. As the wave moves along the string, 

x 
= 



    

    

1 + 
2
 

∂x 
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these segments will oscillate in the transverse direction and so will have kinetic 

energy K given by 

1 
K = 

2 
µδx 

∂y  
2
 

∂t 
. (5.33) 

In addition, the segments will be slightly stretched when they are not at their equi- 

librium positions. Since the string is under tension, the segments will therefore also 

have potential energy U . This potential energy is equal to the extension times the 

tension T in the string, which we assume to be constant. To a good approximation, 

the extended length of a segment δs is related to the unstretched length δx (see 

Figure 5.9) by 

δx δx 

δs = 
cos θ 

= 
(1 − sin

2
 θ)1/2 

.
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Figure 5.9 The equilibrium length δx and stretched length δs of a segment of a taut string 

carrying a wave. 

 

Since θ is small, 

 δs δx 

  

1 +   θ 
2

   

. (5.34) 
  δx   1 

(1 − θ 2)1/2 2 

For small θ , we also have θ = ∂y/∂x. Thus 

1 
  

∂y 
  2
 

 

 

To a good approximation the potential energy is therefore given by 
 

1 
U = T (δs − δx) = 

2 
T δx 

∂y  
2
 

∂x 

 
. (5.36) 

ds 



dx 

δs     δx . (5.35) 
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∂y 

∂t 

K 
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K = 
2 

µδx = 
2 

µδxω A cos (kx − ωt). (5.38) 

dx 
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We can use Equations (5.33) and (5.36) to write down the energy in a portion 

a ≤ x ≤ b of a string at time t , which is given by 
 

1 b 

E = 
2

 dx 

 

µ 
∂y  

2
 

∂t 
+ T 

  
∂y 

  2
 

 
 

 

 
1 

= 
2 

µ 

b ∂y 
  2

 
 

  

2 
  

∂y 
  2
 

 
 

 
(5.37) 

where we have used the result v 
√

T /µ, Equation (5.32). These are general 

results that apply to any transverse wave on the string. 

As an example of the above discussion, we consider the sinusoidal wave 

 

y = A sin(kx − ωt). (5.14) 

In particular we consider a length of the string equal to one wavelength λ. 

Figure 5.10(a) is a snapshot of the string between x xo and x xo λ, at a 

particular instant of time. It shows the variation of the instantaneous displacement 

y with distance x. The velocity ∂y/∂t ωA cos(kx  ωt) and Figure 5.10(b) 

shows the variation of the instantaneous velocity with x. From Equation (5.33) 

the kinetic energy of a segment δx of  the string at  position x and  time t is 

given by 

1 ∂y 
  2 

1 
 

 

 
 

2    2 2 
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(b) x 

 

 

 
(c)  
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(d)  
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xo xo  l 
 

Figure 5.10 (a) Snapshot of a portion of a string carrying a travelling sinusoidal wave 

over one complete wavelength λ. (b) Variation of instantaneous transverse velocity of the 

wave ∂y/∂t . (c) Variation of instantaneous kinetic energy K. (d) Variation of instantaneous 

potential energy U . 

∂t 

∂x ∂t  a ∂x 
a 

∫ 

+ v 



4 

= 

4 

2 

Ktotal = 
2 

µω A cos (kx − ωt)dx. (5.39) 

U = 
2 

v µδx = 
2 

v µδxk A cos (kx − ωt) 

0 

0 
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The resultant variation of the kinetic energy is shown in Figure 5.10(c). The total 

kinetic energy contained within the wavelength λ is given by 

1 2   2 

∫ λ 
2 

At any given instant of time, t has a fixed value and so t is a constant in the 

integration of Equation (5.39). Then 

∫ λ 
2 λ

 

 

giving cos (kx − ωt)dx = 
2 

, 

 
Ktotal = 

1 
µω

2
A

2
λ. (5.40) 

 

The total kinetic energy in a wavelength is constant and does not change with 

time. [The total kinetic energy is, of course, equal to the area under the curve 

of Figure 5.10(c).] Similarly, we find from Equation (5.36) that the instantaneous 

potential energy U of a string segment at position x and time t is given by 

1 2 ∂y 
  2 

1 2 
 

 

 
 

2    2 2 

1 2    2 2 

= 
2 

µδxω A cos (kx − ωt) (5.41) 
 

using v ω/k, Equation (5.15). The variation of the instantaneous potential energy 

with x is shown in Figure 5.10(d). The total potential energy is obtained by inte- 

grating Equation (5.41) over the complete wavelength. The result is 

Utotal = 
1 

µω
2
A

2
λ. (5.42) 

Comparing Equations (5.40) and (5.42) we see that the total kinetic energy and the 

total potential energy contained in a wavelength of the string are equal. The total 

energy in a wavelength is then given by 

Etotal = 
1 

µω
2
A

2
λ. (5.43) 

The total energy varies as the square of the amplitude of the wave and the square of 

the frequency of the wave. Thus the energy quadruples if we double the amplitude 

or double the frequency of the wave. These equations for the energies hold for all 

values of t . 

 
 

5.6 THE TRANSPORT OF ENERGY BY A WAVE 

In Section 5.5 we saw that a travelling wave contains both kinetic and potential 

energy and we obtained a general expression for the total energy E in a portion 

∂x 



v 

  v 

2 

= 

dx 
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a ≤ x ≤ b of a string: 

1 
E = 

2 
µ 

b ∂y 
  2

 
 

  

2 
   

∂y 
  2
 

 
 

 

 
. (5.37) 

This equation tells us that energy is associated with a derivative of the displacement 

with respect to either time or position, i.e. ∂y/∂t or ∂y/∂x, respectively. For a wave 

pulse, such as the Gaussian pulse shown in Figure 5.3, the displacement y is zero 

except within the finite spatial extent of the pulse. It follows from Equation (5.37) 

that all the energy must therefore be contained within the pulse and this energy is 

transported at the velocity of the pulse. 

For the case of a sinusoidal wave, Figure 5.10 showed how the energy is dis- 

tributed along a wavelength, at a particular instant of time. Figure 5.11 shows the 

displacement y and the energy distribution of part of a sinusoidal wave travelling 

with velocity v to the right. This figure serves to illustrate how this energy dis- 

tribution is carried along with the wave at the velocity v. The total energy in a 

wavelength λ is given by 

Etotal = 
1 

µω
2
A

2
λ. (5.43) 

 

 
y 

 

(a) x 

 

 

E 
 

(b)  
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Figure 5.11 Part of a sinusoidal wave travelling at velocity v towards the right. (a) The 

displacement of the wave and (b) the energy distribution in the wave. The energy is carried 

along with the wave at velocity v. 
 

The distance travelled by the wave in unit time is equal to v. The energy contained 

within this length is therefore 

E 
v 1 2   2 

total × 
λ 

= 
2 

µω A v. 

This is the energy carried by the wave across any line at right angles to the direction 

of propagation in unit time, i.e. the power P of the wave. Hence 

P 
1 

µω
2
A

2
v. (5.44) 

2 

The power of a wave depends on the square of its frequency, the square of its 

amplitude and its velocity. 

∂x ∂t  a 
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+ v 
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5.7 WAVES AT DISCONTINUITIES 

When a wave encounters a discontinuity at the boundary between two different 

media, some fraction of the wave will in general be reflected. We experience such 

reflections in many physical situations. If we jiggle a rope that is fixed at its other 

end, we observe a wave reflected travelling back towards us. We hear an echo if 

we clap our hands near a wall and we see that when light strikes a glass surface 

some of the light is reflected. In general therefore, there will be an incident wave, 

a transmitted wave and a reflected wave at a discontinuity. We shall now consider 

how the relative amplitudes and phases of these three waves can be determined. We 

approach this problem by considering the arrangement of two long strings smoothly 

joined at x 0 with a constant tension along the strings. The strings have different 

values of mass per unit length µ, which gives rise to the discontinuity. Since the 

wave velocity from Equation (5.32) is given by v       T /µ, the wave will travel 

at different velocities in the two strings. The following conditions exist at the 

boundary between the two strings: 

 
1. Since the two ends of the strings are joined they must move up and down 

together, i.e. the displacements of the strings at the boundary must be the same 

at x   0 for all times. This leads to the important result that the frequency ω 

of the waves on both sides of the boundary must be the same. However, as the 

velocities of the wave are different in the two strings, the wavelengths must 

also be different since λ 2πv/ω and ω is constant. 

2. There must be continuity in the transverse restoring force at the boundary. 

Otherwise a finite difference in the force would act on an infinitesimally small 

mass of the string giving an infinite acceleration, which is unphysical. The 

transverse force is equal to T (∂y/∂x) (cf. Section 5.4). Since the tension T is 

constant, the slopes (∂y/∂x) of the strings on either side of the join must be 

the same at x = 0 for all times. 

We now use these boundary conditions to determine the relative amplitudes 

and phases of the incident, transmitted and reflected waves. We let the incident 

wave be 

yI = A1 cos(ωt − k1x), (5.45) 

where k1 is the wavenumber in the left-hand string. We chose the cosine form so 

that the incident wave has its maximum value at the boundary, x 0 when t 0. 

We write the transmitted wave as 

 

yT = A2 cos(ωt − k2x), (5.46) 

where k2 is the wavenumber in the right-hand string and the reflected wave as 

yR = B1 cos(ωt + k1x). (5.47) 

These waves are shown schematically in Figure 5.12. The resultant wave on the 

left-hand string y1 is the sum of the incident and reflected waves while the resultant 
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x = 0 
 

Figure 5.12 The incident, reflected and transmitted waves at the boundary of two strings 

of different mass per unit length. The incident wave yI is shown as the dashed line on the 

left-hand side of the boundary, while the transmitted wave yT is shown as the solid line 

on the right-hand side of the boundary. The reflected wave yR is shown as the dotted line. 

The solid line on the left-hand side of the boundary is the sum of the incident and reflected 

waves, y1 = yI + yR. 

 
wave on the right-hand string y2 is just the transmitted wave, i.e., 

 

y1 = yI + yR and y2 = yT, (5.48) 

as shown in Figure 5.12. Thus 

y1 = A1 cos(ωt − k1x) + B1 cos(ωt + k1x) 
 

and  
y2 = A2 cos(ωt − k2x). 

 

Condition 1 gives y1 = y2 at x = 0. Hence 

A1 cos(ωt − k1x) + B1 cos(ωt + k1x) = A2 cos(ωt − k2x), 

where x 0. Since this equation must be true for all times we can take t 0 to 

obtain 
 

A1 + B1 = A2. (5.49) 

Condition 2 gives ∂y1/∂x = ∂y2/∂x at x = 0, for all times. Hence 

k1A1 sin(ωt − k1x) − k1B1 sin(ωt + k1x) = k2A2 sin(ωt − k2x), 

where x = 0. This time we choose t = π/2ω, which gives 

k1A1 − k1B1 = k2A2. (5.50) 

yI 
boundary 

yR 

yT 

y1 
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We want to find the ratio of amplitudes A2/A1 for the transmitted and incident 

waves and also the ratio B1/A1 for the reflected and incident waves. Manipulating 

Equations (5.49) and (5.50) to eliminate B1 gives 

A2 2k1 

A1 

= 
k1 + k2 

= T12, (5.51) 

where T12 is the transmission coefficient of amplitude. Similarly,  manipulating 

Equations (5.49) and (5.50) to eliminate A2 gives 

B1 
= 

k1 − k2 
= R12, (5.52) 

A1 k1 + k2 

where R12 is the reflection coefficient of amplitude. The transmission coefficient 
T12 is always a positive quantity and can have a value within the range 0 to 2. 

The reflection coefficient R12 can have both positive and negative values within 

the range +1 to −1. It also readily follows from Equations (5.51) and (5.52) that 

T12 = 1 + R12. (5.53) 

Equation (5.52) shows that the sign of B1/A1 depends on whether k2 is less or 

greater than k1. If k2 < k1, the ratio B1/A1 is positive and the reflected wave is in 

phase with the incident wave. This is the situation shown in Figure 5.12. If k2 > k1, 

the ratio B1/A1 is negative. A change of sign between B1 and A1 is equivalent to a 

phase difference of π between the reflected and incident waves. However, Equation 

(5.51) shows that the ratio A2/A1 will always be positive and so the transmitted 

wave will always be in phase with the incident wave. 

We can see the physical meaning of Equations (5.51) and (5.52) more easily 

if we write them in terms of mass per unit length µ. Using Equations (5.15) and 

(5.32) we have v     ω/k         T /µ. Since the tension T and the frequency ω of 

the waves are the same in both strings, the wavenumber k is directly propor- 

tional to the square root of the mass per unit length 
√

µ. Hence, Equation (5.51) 
becomes 

A2 2
√

µ1 

 

 
and Equation (5.52) becomes 

A1  

= √
µ1 + 

√
µ2 

, (5.54) 

 
B1 

= 

√
µ1 − 

√
µ2 

. (5.55) 
 

 

A1 
√

µ1 + 
√

µ2 

As the mass per unit length of the right-hand string increases, we have in the limit 

µ2 , the situation of the wave encountering a rigid wall. In that case, Equation 

(5.54) shows that A2      0 and Equation (5.55) shows that B1         A1. Physically 

this means that if the wave encounters a rigid wall, there is no transmitted wave 

and the wave is totally reflected with a phase change of π between the incident 

and reflected waves. 



Worked example 

Light of wavelength 584 nm in air is incident upon a block of glass of refractive 

index equal to 1.50. Determine (a) the velocity, (b) the frequency and (c) the 

wavelength of the light within the glass block. 

Solution 

(a) The velocity of the light in the glass v is related to the velocity of the light 
in air c by the refractive index n of the glass, where n = c/v. Hence, 

v = 
3.0 × 10

8
 8 

1.50 
= 2.0 × 10 m s   . 

−1 

(b) The frequency of the light in the glass ν is the same as in air. Hence, 

ν = 
λ 

= 
584 × 10−9 

= 5.14 × 10 Hz. 
c 3.0 × 10

8
 14 

(c) λglass = = 
λair 

n 

584 × 10−9
 

1.50 
= 389 nm. 

Worked example 

The reflection of a wave at the boundary of two strings with different values 

of mass per unit length can be reduced by inserting between them, a third 

piece of string of appropriate length and mass per unit length. Assume that 

the wavenumbers in the three strings are k1, k2 and k3, respectively, and that 

k3 > k2 > k1. Deduce an expression for the required length L of the intermediate 

string and find an expression for k2 in terms of k1 and k3. 

Solution 

When a wave encounters the discontinuity at the boundary between two dif- 

ferent strings, there will be a reflected wave. However, by inserting a third 

string between them, there will be two discontinuities each of which produces 

a reflection. By suitable choice of the length L of the intermediate string, it 

is possible to arrange for the two reflected waves to cancel each other by 

destructive interference. In Figure 5.13 the incident wave y1, and transmitted 

waves y2 and y3 are represented. Also represented are the wave y4 reflected 

at the first boundary (x = 0), the wave y5 reflected at the second boundary 

y4 and y5 suffer a phase change of π upon reflection since k3 > k2 > k1. How- 

ever, wave y5 (and hence wave y6) has to travel the additional distance 2L 
before the two waves y4 and y6 meet again at x = 0. Hence there will be a 

(x = L) and the subsequently transmitted wave y6. Both the reflected waves 
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R12, T12, T21      R23 

y1  y2 y3 

y4 

y6 

 

 

string 1 string 2 string 3 
 

x = 0 x = L 

 

Figure 5.13 Two long strings of different mass per unit length connected by an inter- 

mediate piece of string. Also indicated are the incident, transmitted and reflected waves 

at the two boundaries of the three strings. 

 
phase difference of 2π 2L/λ2 between them, where λ2 is the wavelength 

in the middle string. Maximum destructive interference will occur when this 

phase difference is equal to π (see also Section 7.1), giving L λ2/4. For 

complete cancellation, the amplitudes of waves y4 and y6 should be equal. If the 

amplitude of incident wave y1 is A1, the amplitude A4 of reflected wave y4 will 

be A4 R12A1, where R12 is the reflection coefficient at the first boundary. The 

amplitude A5 of reflected wave y5 will be A5      R23A2       R23T12A1, where R23 

is the reflection coefficient at the second boundary and T12 is the appropriate 

transmission coefficient at the first boundary. The amplitude A6 of wave y6 

will be A6 T21A5 T21R23T12A1, where T21 is the appropriate transmission 

coefficient at the first boundary. Hence 
 

A6 

A4 

= 
T12R23T21 

.
 

R12 

If we make the assumption that the transmission coefficients T12 and T21 are 

equal to unity, which is a good assumption in many practical situations, then 
 

A6 R23 

A4 

= 
R12 

.
 

Putting  A6 = A4  as  required  and  substitutin√g  for  R12 = (k1 − k2)/(k1 + k2) 

and R23 = (k2 − k3)/(k2 + k3) leads to k2 = k1k3. (In this analysis we have 

neglected the contributions of waves that suffer further reflections. When all 

of these contributions are taken into account identical solutions are obtained.) 

 

 
 

Analogous results of the above example have importance in many practical 

applications. For example, a camera lens will contain a number of different glass 

components and therefore many surfaces, i.e. boundaries through which the light 

has to pass. In order to minimise losses due to reflection, each surface is coated 



= 

= 

∝ 

126 Travelling Waves 
 

with a layer of appropriate thickness and refractive index. The refractive index 

of a medium is defined as n   c/v, where c and v are the velocities of the light 

in vacuum and in the medium, respectively. (In practice, the velocity of light in 

vacuum can be replaced by the velocity of light in air.) Since v    ω/k and ω 

is constant, the wavenumber k is directly proportional to the refractive index, i.e. 

k     n. In an analogous way to the worked example above, the thickness of the 

anti-reflection coating should be λ/4, where λ is the wavelength of the light in 

the coating , and its refractive index should be equal to 
√

nairnglass. The value 
of  nair  is  1.0  and  a  typical  value  √of  nglass  is  1.5.  Hence  the  refractive  index  of 

the coating should hav√e  the  value 1.5, and for  light  of wavelength 550  nm, its 

width should be 550/   1.5 = 450 nm. Another practical application of reducing 

reflection occurs in the use of ultrasonic waves to probe the human body for 

medical investigation. Here, the source of the ultrasonic waves is not placed in 

direct contact with the patient’s skin. Instead a layer of suitable medium is placed 

between the two. The width of this intermediate layer is chosen to be equal to one-

quarter of the wavelength of the ultrasonic waves in the medium and this acts to 

maximise the transmission of the waves into the body tissue. 

 

5.8 WAVES IN TWO AND THREE DIMENSIONS 

So far we have considered waves that propagate in one dimension. We now 

turn our attention to waves that propagate in two or three dimensions. An 

example of a two-dimensional wave is a ripple on a pond while an example of a 

three-dimensional wave is the sound wave produced by a fired gun. We start by 

considering waves on a taut membrane which is the two-dimensional analogue 

of the taut string. The membrane has a mass per unit area ζ and is stretched 

uniformly under surface tension S. This tension is the force that would appear 

on either side of a cut in the membrane and acts in the direction at right angles 

to the cut. The surface tension S has units of force per unit length. Figure 5.14 

shows a small element of the membrane with sides of length δx and δy. At 

equilibrium this element lies in the x-y plane. The forces acting at each end of 
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Figure 5.14  An element δxδy of a taut membrane, showing the element at its equilibrium 

position and at a displaced position when a wave passes by. 
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the element are either Sδx or Sδy with directions as indicated in Figure 5.14. 

This figure also shows the element at some instant of time as the wave passes by. 

The element is displaced in the z-direction and becomes curved. As for the taut 

string case (Section 5.4), it is assumed that the element of the membrane only 

moves transversely and not sideways which is a good approximation for small 

displacements. We follow an analogous treatment to that of the taut string. If the 

displacement of the membrane element is small, the surface tension S can be 

assumed to be constant. Hence the magnitudes of the forces acting at each end of 

the element remain the same although the directions of these forces will change. 

This can be seen more clearly when we take a side view of the membrane element 

as in Figure 5.15, which shows the curvature of the element in the x-z plane. 

From comparison with the one-dimensional result (5.29), we see that the resultant 

force acting on the element in the x-z plane is given by 

Sδy 
   

∂z 
     

+

 

 

 

∂
2
z 

 
 

∂x2 

 
δx − 

 

∂z 

∂x  x 

 
= Sδy 

 
∂

2
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∂x2 

 

δx, (5.56) 
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Figure 5.15 A side view, in the x-z plane, of the displaced element of the taut membrane 

of Figure 5.14, showing the forces acting upon it and the directions of the forces. 

 

where we take θ (∂z/∂x). This force acts in the z-direction. The membrane is 

also curved in the y-z plane and the resultant force due to this curvature is given by 

 

 

Sδx 
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∂y  y 

+
 

 

∂
2
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∂y2 

 
δy − 

 

∂z 

∂y  y 

 
= Sδx 

 
∂

2
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∂y2 

 

δy. (5.57) 

 

Thus the total force acting on the element in the z-direction is equal to 
 

∂
2
z ∂

2
z 

Sδy 
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δx + Sδx 
∂y2 

δy. 
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Since the mass of the element is ζδxδy, we have as the equation of motion 

∂
2
z ∂

2
z ∂

2
z 

 

 
giving 

ζδxδy 
∂t2  

= Sδy 
∂x2 

δx + Sδx 
∂y2 

δy, (5.58) 

 

∂
2
z ∂

2
z ζ ∂

2
z 1 ∂

2
z 

∂x2 
+ 

∂y2 
= 

S ∂t2  
= 

v2 ∂t2 
. (5.59) 

Equation (5.59) is the two-dimensional wave equation and we identify v as the 

velocity of the wave, where v
2
 S/ζ . 

For the case of a sinusoidal wave travelling in one dimension, we can express 

the wave in the form 
 

y(x, t) = A cos(kx − ωt). (5.16) 

For a sinusoidal wave travelling in two dimensions, the corresponding solution of 

Equation (5.59) is 
 

z(x, y, t) = A cos(k1x + k2y − ωt). (5.60) 

Substituting this solution into Equation (5.59) gives 

2 2 ω2
 

 
and hence 

k1 + k2 = 
v2 

, (5.61) 

ω ω 

v = 
(k2 + k2)1/2  

= 
k 

, (5.62) 

where k = (k2
 + k2

)
1/2

 and is called the wavenumber. The wave velocity is equal 

to the angular frequency divided by the wavenumber. 

We now explore the physical meaning of the solution (5.60) and the two- 

dimensional wave that it represents. Figure 5.16 is a pictorial representation of 

 

Figure 5.16 Pictorial representation of a two-dimensional wave showing the crests and 

troughs. 
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a portion of this travelling wave at some instant of time, and shows its crests and 

troughs. Figure 5.17 is a another view of the wave, this time from above looking 

down onto the x-y plane. Again it is a snapshot taken at a particular instant of time 

which we shall take to be t    0 for convenience. The displacement z is at right 

angles to the x-y plane. Clearly, z varies with the independent variables x and y. 

However, Equation (5.60) shows that z(x, y)t=0 will have the same value for all 

combinations of x and y for which (k1x     k2y)      constant. Moreover, z(x, y)t=0 
will have its maximum value when (k1x     k2y)     2πn, when n     1, 2, 3, . . .  . 

Therefore, along the x-axis (where y   0) in Figure 5.17, there will be a series 

of maxima at x     2πn/k1, separated by a distance of 2π/k1. Similarly along the y-

axis (where x   0), there will be a series of maxima at y    2πn/k2, separated by 

a distance of 2π/k2. We can join up these sets of maxima matching the val- ues 
of n as shown in Figure 5.17. Along each of these straight lines we have the 

condition (k1x      k2y)      2πn, for the respective value of n. Hence, z(x, y)t=0 has 
a constant value (and a constant phase) along each of these straight lines, which 

are called wavefronts . In this case they correspond to the maxima of the wave. 

(Halfway between these maxima lay the minima or troughs of the wave.) Since 

the wavefronts are straight, such a wave is called a plane wave. As time increases, 

these wavefronts travel at velocity v given by Equation (5.62). The direction of 

travel is indicated in Figure 5.17 and is at right angles to the wavefronts. We can 

find the direction of travel in the following way. A wavefront from Figure 5.17 is 

reproduced in Figure 5.18, and is denoted by the line PQ . For a wavefront we have 

the condition k1x + k2y = 2πn. We rearrange this into the form of the equation of 

a straight line y = mx + c. Then, 

k 
= − 

k2 

x + 
2πn 

. (5.63) 
k2 

Since m = tan θ, where θ is given in Figure 5.18, we have 

 
tan θ 

k1 
= − 

k2 

. 

 

 
2 

2p / k2 

1 

 
 

 
n = 0 

 
x 

1 2 

2p/k1 
 

Figure 5.17   Snapshot of a two-dimensional wave, looking from above onto the xy plane. 

The solid lines indicate the maxima (crests) of the wave while the dotted lines indicate 

the minima (troughs). Along these lines, which are called wavefronts, the amplitude and 

phase of the wave are constant. The direction of travel of the wave is at right angles to the 

wavefronts. 
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Figure 5.18 A wavefront of a two-dimensional wave showing the direction of travel of the 

wave characterised by the angle α. 

 
The direction of travel, as indicated by the angle α in Figure 5.18, is at right angles 

to the wavefront and hence, α = (θ − π/2). Since 

tan(θ π/2) 
1 

, 
tan θ 

tan α 
k2 

. (5.64) 
k1 

 

We see that k1 and k2 determine the direction of travel as well as the velocity v. 

 
5.8.1 Waves of circular or spherical symmetry 

In our discussion of two-dimensional waves in Section 5.8 we defined the posi- 

tion of the membrane element in terms of its x- and y-coordinates. We considered 

the displacement z of this element in a direction at right angles to the x-y plane, 

describing the wave as z z(x, y, t). Moreover, we considered waves with straight 

wavefronts. In some situations the wavefronts are circular as in outgoing ripples on 

a pond. Then it is more appropriate to use the polar coordinate system illustrated 

in Figure 5.19. In this coordinate system  a point P is specified  in terms of r, θ 
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x 
 

Figure 5.19 The cylindrical polar coordinate system used to describe waves with circular 

wavefronts. The point P is specified in terms of r, θ and z, which are independent variables. 
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and z, which are independent variables. Again, we specify the displacement of the 

element by z. For the particular case of circular waves, z has the same value for all 

values of θ and so we only need to consider how z depends on r and t . Hence we 

can express the displacement as z = z(r, t). We can obtain the wave equation for 
circular waves from Equation (5.59) in the following way. We have z(r) = z(x, y) 

with the condition that r
2
 = x2

 + y2
. Then 

∂z 
= 

  
∂z

     
∂r 

   

,
 

 

and  

 
∂

2
z 

 
 

  
∂

2
z 

      
∂r 

  2
 
  

∂z  
      

∂
2
r 
 

 

 
 

 
 

We have 
 

∂r x x 

 

 
and 

∂x 
= 

(x2 + y2)1/2  
= 

r 
,
 

 

∂
2
r y2 y2 

 

 
Thus 

∂x2  
= 

(x2 + y2)3/2  
= 

r3 
.
 

 
∂

2
z 

 
 

  
∂2z 

     
x 

  2 
y2          ∂z 

  
 

    

 

Similarly, 

∂x2   
=

 ∂r
2
 r 

+ 
r

3
 ∂r 

.
 

 
∂

2
z 

 
 

  
∂2z 

     
y 

  2   
x2          ∂z 

  

 

 
Substituting for ∂

2
z/∂x

2
,∂

2
z/∂y

2
 and ∂

2
z/∂t 

2
 in Equation (5.59) we obtain 

 

∂
2
z 1 ∂z 1 ∂

2
z 

∂r2 
+ 

r ∂r 
= 

v2 ∂t2 
. (5.65) 

This is the wave equation for two-dimensional waves of circular symmetry. Its 

solutions are special functions called Bessel functions . However, at sufficiently 

large values of r the second term on the left-hand side of Equation (5.65) becomes 

negligible compared with the first. The equation then approximates to 
 

∂
2
z 1 ∂

2
z 

∂r2  
= 

v2 ∂t2 
. (5.66) 

∂r2 ∂x 
+ 

∂r ∂x2 
. 

∂r2 r 
+ 

r3 ∂r 
. 



= 

= + + = 

1 2 3 

∂r ∂r ∂r r ∂r 
− 

r 

∂r2 
= r 

∂r2 
+ 2 

∂r 
, giving 

∂r2  
= 

r ∂r2 
− 

r ∂r 
− 

r 
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This equation has the same form as the one-dimensional wave equation and has 

analogous solutions such as 
 

z(r, t) = A cos(kr − ωt), (5.67) 

where v now corresponds to the radial velocity dr/dt . Hence, circular waves ema- 

nating from a point source become plane waves at large distances from the source. 

For the case of a wave propagating in a three-dimensional medium, e.g. sound 

waves in air, the wave equation becomes 
 

∂
2
ψ ∂

2
ψ ∂

2
ψ 1  ∂

2
ψ 

∂x2   
+ 

∂y2   
+

 ∂z2   
= 

v2  ∂t2 
, (5.68) 

 

cf. Equation (5.59). Here ψ represents the change in the relevant physical quantity 

that occurs as the wave passes by. For example, in the case of a sound wave ψ 

would correspond to changes in the local pressure of the gas. ψ is a function of 

the independent variables x, y, z and t , i.e. ψ ψ(x, y, z, t). Equation (5.68) has 

solutions such as 
 

ψ = A sin(k1x + k2y + k3z − ωt), (5.69) 

where k1, k2 and k3 are constants, cf. Equation (5.60), and the velocity v is given 

by 
ω 

v = 
(k2 + k2 + k2)1/2 

, (5.70) 

 

cf. Equation (5.62). Again we can have situations where there is a high degree 

of symmetry. For example, we produce spherical outgoing sound waves when we 

clap our hands. For such spherical waves ψ depends only on the radial distance 

r     (x
2
     y

2
     z

2
)

1/2
 and the time t . Hence we can write ψ      ψ(r, t) for which 

it can be shown that the wave equation (5.68) is 
 

∂
2
ψ 2 ∂ψ 1 ∂

2
ψ 

∂r2  
+ 

r ∂r 
= 

v2 ∂t2 
. (5.71) 

To find solutions of Equation (5.71), we consider the quantity 

 

u(r, t) = rψ(r, t) (5.72) 
 

instead of ψ(r, t). Then 

 

∂u 
= r 

∂ψ 
+ ψ, giving 

∂ψ 
= 

1 
   

∂u u 
 

 

 
 
 

(5.73a) 
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2
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2
ψ ∂ψ 

 
 

∂
2
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∂
2
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∂u u 
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; (5.73b) 
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and 

∂
2
ψ 1 ∂

2
u 

∂t2  
= 

r ∂t2 
. (5.73c) 

Substituting Equation (5.73) into the wave equation (5.71) gives 

∂
2
u 1 ∂

2
u 

∂r2  
= 

v2 ∂t2 
. (5.74) 

This is the one-dimensional wave equation in the variable u. It is satisfied by 

solutions of the form u = A cos(ωt − kr), giving 

A 
ψ =  

r 
cos(ωt − kr). (5.75) 

This expression for ψ shows that the amplitude of the wave (A/r) decreases as 

1/r. For a one-dimensional wave the rate of energy flowing across a line at right 

angles to the direction of travel is proportional to the square of the wave amplitude, 

cf. Equation (5.43). For a spherical wave, the energy flow crossing unit area, is 

again proportional to the square of the amplitude, and hence is proportional to 

1/r
2
. We can see this result in a different way. As a spherical wavefront expands, 

the energy in the wave is spread over an increasingly large area. The area of a 

spherical wavefront is proportional to r
2
 and hence the energy flow crossing unit 

area is proportional to 1/r
2
. 

 
PROBLEMS 5 

5.1 A transverse wave travelling along a string is described by the function y 
15 cos(0.25x 75t), where x and y are in millimetres and t is in seconds. Find the 
amplitude, wavelength, frequency and velocity of the wave. In what direction is the 
wave travelling? 

5.2 One end of a long taut string is moved up and down in SHM with an amplitude of 
0.15 m and a frequency of 10 Hz. At time t   0 the end of the string (at x    0) has 
its maximum upward displacement. The resultant wave travels down the string in the 

positive x-direction with a velocity of 50 m s−1. Obtain an equation describing the 
wave. 

5.3 (a) Show that the following are solutions to the one-dimensional wave equation 
 

∂2y 

∂t 2 
= v 

2 ∂
2y 

∂x2 
.
 

(i) y    A sin 2πν(t     x/v),  (ii)  y      A sin(2π/λ)(x     vt),  (iii)  y      A sin 2π(x/ 

λ    t/T ), (iv) y    Aei(ωt+kx), and (v) y    A cos(ω1t    k1x)    B cos(ω2t    k2x), 
where ω1/k1 ω2/k2 v. 

(b) Show that ψ    A sin(k1x    k2y    k3z    ωt) is a solution to the three-dimensional 
wave equation 

 

∂2ψ ∂2ψ ∂2ψ 1 ∂2ψ 

∂x2 
+ 

∂y2   
+ 

∂z2   
= 

v2   ∂t 2 
,
 

obtaining the relationship between k1, k2, k3,ω and v. 



= − − 
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× 

× 
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5.4 What, if any, are the differences between the waves described by: 

(a) y1 = A cos(ωt − kx) and y2 = A cos(kx − ωt); 

(b) y1 = A sin(ωt − kx) and y2 = A sin(kx − ωt)? 

5.5 A travelling wave has the profile described by y(x, t)     A exp[    (x      vt)2/a2], where 
A and a are constants. Show that the profile of the wave remains unchanged a time δt 

later where v = dx/dt δx/dt . Show that this is a general result for any function of 
(x − vt) or (x + vt), i.e. f (x − vt) or g(x + vt). 

5.6 (a) Calculate the frequencies of: 
(i) a radio wave of wavelength 1500 m; 
(ii) a visible photon of wavelength 500 nm; 
(iii) an X-ray of wavelength 0.1 nm; 

(iv) an electromagnetic wave of wavenumber 2.1 m−1; 
(v) an ultrasonic sound wave that has a wavelength of 5.0 mm. 
(b) Calculate the wavelengths of sound waves of frequencies 20 Hz and 15 kHz which 

are typical limits of a person’s hearing. Compare the wavelength of a musical note 
of frequency 440 Hz with the typical size of a musical instrument. (Take the 

velocity of sound in air to be 340 m s−1.) 

5.7 (a) The velocity v of a wave travelling along a wire depends on the mass M of the wire 
and its length L√and on the tension T  applied to it. Use the method of dimensions to 
show that v ∝ T L/M. (b) Given that the six strings of a guitar have the same length 
and are held under similar tensions, say which of the strings will have the largest wave 
velocity. 

5.8 (a) A horizontal wire that is 25 m long and has a mass of 100 g is held under a tension 
of 10 N. A sinusoidal wave of frequency 25 Hz and amplitude 15 mm travels along the 
wire. Calculate (i) the wave velocity along the wire and (ii) the maximum transverse 
velocity of any particle of the wire. (b) A square of elastic sheet of dimensions 0.75 m 
by 0.75 m has a mass of 125 g. A force of 2.5 N is applied to each of the four edges. 
What is the velocity of waves on the sheet? 

5.9 A rope of length L hangs from a ceiling. (a) Show that the velocity v of a transverse 
wave at any point on the rope is independent of the mass and length of the rope 
but does depend on the distance y of the point from the bottom of the rope and that 

v(y)    
√

gy. (b) A rope of length 2.5 m hangs from a ceiling. A transverse wave is 
initiated at the bottom of the rope. Calculate the total time it takes for the wave to 

travel to the top of the rope and back to the bottom. (Assume g = 9.81 m s−2.) 
5.10 A long string is connected to an electrically driven oscillator so that a transverse 

sinusoidal wave is propagated along the string. The string has a mass per unit length 

of 30 g m−1 and is held under a tension of 12 N. (a) Calculate the power that must be 
supplied to the oscillator to sustain the propagation of the wave if it has a frequency 
of 150 Hz and an amplitude of 1.5 cm. (b) What will be the power required (i) if the 
frequency is doubled and (ii) if the amplitude is halved? 

5.11 (a) A source emits waves isotropically. If the wave intensity is I1 at a radial distance 
r1 from the source, what will be the intensity I2 at a distance r2? 

(b) The intensity of sound waves from a siren is 25 W m−2 at distance of 1.0 m 
from the siren. Assuming that the sound waves are emitted isotropically, at what 

distance will the sound intensity be equal to 1.0 W m−2 which is close to the 
‘threshold of pain’? 

5.12 The total energy radiated by the Sun is approximately 4 1026 W. Estimate the solar 
power falling on a square metre of the Earth’s surface at midday, neglecting any 
absorption in the atmosphere. (Take the distance from the Earth to the Sun to be 
1.5 108 km.) What is the corresponding value at the surface of Jupiter which you 
can assume is five times further away from the Sun? 

5.13 A long string of mass 1.0 g cm−1 is joined to a long string of mass 4.0 g cm−1 and the 
combination is held under constant tension. A transverse sinusoidal wave of amplitude 
3.0 cm and wavelength 25 cm is launched along the lighter string. (a) Calculate the 



= 
= 

≈ → 

∂t 2  
= 

m a 
− 

∂t 2 
= 

m δx 
−

 

Taylor expansion : y(x ± δx) = y(x) ± δx 
∂x 

+ 
2 

(±δx) 
∂x2 

. 
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wavelength and amplitude of the wave when it is travelling along the heavier string. 
(b) Calculate the fraction of wave power reflected at the boundary of the two strings. 

5.14 (a) Light falls normally on a glass surface. What fraction of the incident light intensity 
is reflected if the refractive index n of the glass is 1.5? (b) Magnesium fluoride (MgF2) 
is used as an anti-reflection coating for glass lenses and has a refractive index of 1.39. 
What thickness of MgF2 would be required at a wavelength λ of 550 nm for glass 
with n 1.5? Explain why camera lenses usually have a characteristic purple colour. 
(c) Suppose that you wanted to maximise reflection at λ 550 nm. What thickness of 
MgF2 would be required for this purpose? 

5.15 m 

 

a a 

 

(a) The figure shows three masses that lie within a long line of identical masses of 
mass m connected by identical elastic strings under constant tension T with separation 
a. Show that the equation of motion of the central mass can be written as 

 
∂2yr 

 
 

T  
  

 (yr+1 − yr ) (yr − yr−1) 
 
 

 

 
 

where y is the transverse displacement from equilibrium which is assumed to be small. 
(b) Suppose that the separation becomes infinitesimally small, a δx with δx 0, 
so that x becomes a continuous variable and the above equation can be written as 

 
∂2y 

 
 

T  
  
 y(x + δx) − y(x) y(x) − y(x − δx) 

 
 

 

 
 

Apply a Taylor expansion to the right-hand side of this equation to show that 
 

∂2y T ∂2y 

 
where µ = m/δx. 
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µ ∂x2 
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6 
Standing Waves 

 
In this chapter we turn our attention to standing waves. These are the kind of 

waves that occur when we pluck a guitar string. Indeed musical instruments provide 

a rich variety of standing waves. String instruments are plucked or bowed to set 

up standing waves on the strings. Blowing into the mouthpiece of a woodwind 

or brass instrument sets up a standing sound wave in the tubes that form the 

instrument. Timpani are struck to form standing waves on the drum skins. The 

musical instrument transforms the vibrations of the standing waves into sound 

waves that then propagate through the air. We will find that a standing wave can 

be considered as the superposition of two travelling waves of the same frequency 

and amplitude travelling in opposite directions. We will see that standing waves 

are the normal modes of a vibrating system and that the general motion of the 

system is a superposition of these normal modes. This will give us the energy of 

a vibrating string. It will also introduce us to the powerful technique of Fourier 

analysis. 

 
 

6.1 STANDING WAVES ON A STRING 

We shall explore the physical characteristics of standing waves by considering 

transverse waves on a taut string. The string is stretched between two fixed points, 

which we take to be at x     0 and x     L, respectively. The transverse displacement 

of the string is in the y-direction. An example of such a standing wave is illustrated 

in Figure 6.1. Snapshots of the string at successive instants of time are shown in 

Figure 6.1(a)–(e), while Figure 6.1(f) shows these individual snapshots on a single 

set of axes. The displacement y is always zero at x 0 and x L since the 

string is held fixed at those points. However, midway between the fixed ends we 

can see that the displacement of the string is also zero at all times. This point is 

called a node. Midway between this node and each end point the wave reaches its 

maximum displacement. These points are called antinodes . The positions of these 
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Figure 6.1    An example of a standing wave on a taut string. (a)–(e) Snapshots of the string 

at successive instants of time, while (f) shows these individual snapshots on a single set of 

axes. The displacement y is always zero at x      0 and x      L, since the string is held fixed 

at those points. Midway between the fixed ends the displacement of the string is also zero 

at all times and this point is called a node. Midway between the node and each end point 

the wave reaches its maximum displacement and these points are called antinodes. 

 
maxima and minima do not move along the x-axis with time and hence the name 

standing or stationary waves. When the string vibrates, all particles of the string 

vibrate at the same frequency. Moreover they do so in SHM about their equilibrium 

positions, which is the line along which the string lies when at rest. However, as 

shown in Figure 6.1, the amplitude of vibration of the particles varies along the 

length of the string. These characteristics suggest that the displacement y can be 

represented by 
 

y(x, t) = f (x) cos(ωt + θ). (6.1) 

x 



+ 

= = 

    

= 

v v 

Standing Waves on a String 139 

The function f(x) describes the variation of the amplitude of vibration along the 
x-axis. The function cos(ωt θ) describes the SHM that each particle of the string 

undergoes. If we choose the maximum displacements of the particles to occur at 

t = 0, then the phase angle θ is zero and 

y(x, t) = f (x) cos ωt. (6.2) 

[Imposing the condition θ    0 is equivalent to saying that initially, at t     0, the 

string has zero velocity, i.e. from Equation (6.1) 
 

∂y 

∂t  t =0 

= −ωf (x) sin θ = 0 (6.3) 

implies θ   0.] Importantly, we have written the displacement y as the product of 

two functions in Equation (6.2): one that depends only on x and one that depends 

only on t . We now substitute this solution into the one-dimensional wave equation 
 

∂
2
y 

∂t2  
= v 

2 ∂
2
y 

∂x2 
. (5.23) 

 

Differentiating Equation (6.2) twice with respect to t and twice with respect to x, 

we obtain 

∂
2
y 2 

 
 

∂
2
y 

 
 

∂
2
f (x) 

 
 

∂t2  
= −ω f(x) cos ωt, 

∂x2 
=

 ∂x2 
cos ωt, 

and substituting these expressions into the one-dimensional wave equation 

leads to 

∂
2
f (x) ω

2
 

∂x2 
=− 

v2 
f(x). (6.4) 

We can compare this result with the equation of SHM: 
 

d
2
x 2 

 

which has the general solution 

dt 2 
= −ω x, (1.6) 

 

x = A cos ωt + B sin ωt. cf. (1.15) 

Equations (6.4) and (1.6) have the same form except the variable t in Equation 

(1.6) is replaced by the variable x in Equation (6.4) and x has been replaced by 

f(x). Thus it follows that the general solution of Equation (6.4) is 

f (x) = A sin 
  ω

x
  

+ B cos 
  ω

x
  

, (6.5) 
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where A and B are constants that are determined by the boundary conditions. In 

this case the boundary conditions are f(x) = 0 at x = 0 and at x = L. The first 

condition gives B = 0. The second condition gives 

A sin 

  
ωL 

   

= 0, (6.6) 
 

which is satisfied if 
 
 

ωL 

v   
= nπ, (6.7) 

where n    1, 2, 3, . . .  . [Since we are not interested in the trivial solution f (x)    0, 

we exclude the value n 0.] Thus, ω must take one of the values given by Equation 

(6.7), and so we write it as 

ωn = 
nπv 

, (6.8) 
L 

where for each value of n we have an associated ωn. Substituting for ω = ωn in 

Equation (6.5) and recalling that B = 0, we obtain 

f (x) = A  sin 
  nπ 

x
  

. (6.9) 

For each value of n we have an associated function fn(x) that is sinusoidal in 
shape with an associated amplitude An. Substituting the solution (6.9) for f(x) 

and Equation (6.8) for ω = ωn in Equation (6.2) we finally obtain 
 

(6.10) 

 
This equation describes the standing waves on the string, where each value of 

n corresponds to a different standing wave pattern. The standing wave patterns 

are alternatively called the modes of vibration of the string. As we will see in 

Section 6.4 these are the normal modes of the vibrating string. 

The functions fn(x)    An sin (nπx/L) for n     1 to 4 are plotted in Figure 

6.2(a)–(d), respectively. For the purpose of these figures the amplitudes of the 

four standing waves have been taken to be the same. For n = 1 we have 

f1(x) = A1 sin 
 π 

x
  

, 

which gives the amplitude variation shown in Figure 6.2(a). This is the fundamental 

mode or first harmonic of the string; n    2 corresponds to the second harmonic, 

n     3 corresponds to the third harmonic, etc. We see that the number of antinodes 

in the nth harmonic is equal to n. The corresponding angular frequencies ωn of 

the standing waves are given by Equation (6.8) and are πv/L, 2πv/L, 3πv/L and 

4πv/L, respectively. The time period T for a standing wave pattern to exactly to 

reproduce its shape is given by 

2π 
T = 

ω
 

2L 
= 

nv 
. (6.11) 

y (x, t) = A  sin n n 

  nπ 

L 
x   cos ω t. 
  

n 

n 
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x = 0 x = L 
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Figure 6.2 The first four harmonics for standing waves on a taut string. The first harmonic 

is also called the fundamental. These standing waves are described by the function fn(x) 

An sin(nπ x/L) with n 1 4. The number of antinodes in each standing wave is equal to 

the respective value of n. 

 
 

We again define the wavelength λ of a standing wave as the repeat distance of 

the wave pattern. Since v   νλ and ω    2πν, we can substitute for v and ω in 

Equation (6.11) to obtain 
 

λn = 
2L 

(6.12) 
n 

 

where λn is the wavelength of the nth standing wave. If we write this equation as 

 
nλn 

2   
= L, (6.13) 

we see that we will obtain a standing wave only if an integral number of half-

wavelengths fits between the two fixed ends of the string, as shown in Figure 

6.2. Each standing wave with wavelength λn has a wavenumber kn, which 



n 

µ 

2L µ 
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from Equation (5.13) is given by  
 

2π 
kn = 

λ 
. 

 

Since λn = 2L/n, Equation (6.13), we also have 

nπ 

kn = . (6.14) 
L 

Using this last relationship we can write Equation (6.10) as 
 

yn(x, t) = An sin knx cos ωnt, (6.15) 

which is an alternative expression for a standing wave. The angular frequency of 

the fundamental, with n = 1, is 

 

and its frequency, ν1 = ω1/2π, is 

ω1 = 
πv 

, (6.16) 
L 

 

 
v 

ν1 = 
2L

. (6.17) 

Since the velocity of a wave on a taut string is given by 

v = 

, 
T 

, (5.32) 

 

Equation (6.17) gives 

ν1 =
  1 

, 
T 

. (6.18) 

 

This equation shows how the fundamental frequency of a taut string depends on its 

length L, the tension T in the string and its mass per unit length µ. We can readily 

relate these results to stringed instruments. For example, a guitar has six strings of 

the same length and these are held under approximately the same tension. However, 

the strings have different values of mass per unit length and so their fundamental 

frequencies are different: the larger the mass per unit length the lower the note. 

Each of the strings is tuned by slightly varying the tension in the strings. The 

musician then plays the different notes by pressing the strings against the frets 

on the fingerboard to vary the length of the vibrating string. Clearly the size of a 

musical instrument affects the frequency or pitch of the sound it produces. This 

is very evident from the violin family: violin, viola, cello and double bass. These 

instruments steadily increase in size and produce notes of progressively lower pitch. 

In an analogous way the pipes of an organ steadily increase in size to produce notes 

of lower frequency. 



Worked example 

The Pirastro Eudoxa A string of a cello has a linear density µ = 1.70 g m−1
 

fundamental frequency is 220 Hz. (i) What is the tension in the string? (ii) 

A weight of mass m is suspended from the string. What mass would produce 

the same tension? (iii) What is the wavelength of the sound from the string? 

(Take the velocity of sound in air to be 340 m s−1
 and the acceleration due to 

gravity to be 9.81 m s−2
.) 

Solution 

and a length L = 0.70 m. The tension in the string is adjusted so that the 

(i) λν = v and λ/2 = L for the fundamental frequency, giving v = 2Lν. 

T = µv  = µ(2Lν)  = 
2 2 1.70(2 × 0.70 × 220)

2
 

1000 
= 161 N. 

ments are subject to large forces. 

(iii) The frequency of the sound wave is the same as the frequency of the 

vibrating string. Hence, the wavelength of the sound wave is equal to 

(ii) m = T /g = 16.4 kg. This result illustrates the fact that stringed instru- 
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As we see from Equation (6.8), the frequencies of all the harmonics of a taut 

string are exact multiples of the fundamental frequency and form a harmonic series . 

For most vibrating systems this is not the case. These will also vibrate at a series of 

higher frequencies in addition to the fundamental frequency. These higher frequen- 

cies are called overtones . However, in general, the frequencies of these overtones 

will not be an exact multiple of the fundamental: they are not harmonic. A bell, 

for example, will have overtones whose frequencies are not exact multiples of 

the fundamental. When the bell is struck, the overtone frequencies will be heard 

in addition to the fundamental. The skill of the bell maker is to ensure that the 

combination of the fundamental and the overtones produces a sound that is not 

discordant to the ear. (Of course, the term overtone can also be applied to a taut 

string but in this case the overtones are harmonic.) 

We have used the example of a taut string to explore the physical characteristics 

of standing waves. However, standing waves occur in many different physical 

situations and the ideas we have been discussing are important to a wide range of 

physical phenomena. In a microwave oven, electromagnetic waves reflect from the 

walls of the oven to form standing wave patterns in the oven compartment. This 

means that there will inevitably be places in the compartment where the intensity 

of the microwave radiation is reduced and the food will not be properly cooked. To 

reduce the effects of these ‘cold spots’ the food is placed on a rotating turntable. In 

a laser, the light forms a standing wave between the two mirrors placed at the ends 

of the laser tube. In this way the wavelength of the laser light is well defined, i.e. 

monochromatic. In a very different example, in the realm of quantum mechanics, 

the discrete energy levels of atoms can be thought of as the standing-wave solutions 

of the Schrödinger equation. 

 



of the string (= 2L = 1.40 m) because of the different wave velocities in 

340/220 = 1.54 m. This is different to the wavelength of the fundamental 

the string and in air. 

Worked example 

A helium-neon laser tube has a length of 0.40 m and operates at a wavelength 

of 633 nm. What is the difference in frequency between adjacent standing 

waves in the tube? 

Solution 

The light in a laser tube forms a standing wave between two mirrors that 

are placed at either end of the tube, which acts as a resonant cavity . Then 

nλ/2 = L, where n is the number of the standing wave (mode), λ is the 
wavelength and L is the length of the tube. Since λ   L, n will be very large, 

≈ 1 × 10
6
. Using λν = c, 

νn = 
2L 

and νn+1 = 
nc (n + 1)c 

2L 
. 

Hence 

νn+1 − νn = 
2L 

= 
c 3 × 10

8
 8 

0.80 
= 3.75 × 10 Hz. 
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6.2 STANDING WAVES AS THE SUPERPOSITION OF TWO 

TRAVELLING WAVES 

In Section 5.3, we saw that the general solution of the one-dimensional wave 

equation is 

 
 

A specific example is 

y = f(x − vt) + g(x + vt). (5.4) 

A 2π A 2π 
y = 

2 
sin 

λ 
(x − vt) + 

2 
sin 

λ 
(x + vt) (6.19) 

or, in terms of wavenumber k = 2π/λ and angular frequency ω = kv, 

A A 
y = 

2 
sin(kx − ωt) + 

2 
sin(kx + ωt). (6.20) 

The first term in the right-hand side of this equation represents a sinusoidal wave of 

amplitude A/2 travelling in the positive x-direction and the second term represents 

a sinusoidal wave of amplitude A/2 travelling in the negative x-direction. Both 
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waves have the same angular frequency. Using the identity 

sin(α + β) + sin(α − β) = 2 sin α cos β (6.21) 

we obtain 

A A 
y = 

2 
sin(kx − ωt) + 

2 
sin(kx + ωt) = A sin kx cos ωt. (6.22) 

The right-hand side of Equation (6.22) has an identical form to Equation (6.15), 

which we obtained for a standing wave on a taut string. Hence, we have the 

important result that a standing wave is the superposition of two travelling waves 

of the same frequency and amplitude travelling in opposite directions. This is 

illustrated in Figure 6.3, which shows the two travelling waves at successive instants 

of time separated by T /8 where T is the period of the wave. The wave travelling 

towards the right is represented by the thin continuous curve and the wave travelling 

towards the left is represented by the dotted curve. The arrows attached to these 

curves indicate the directions of travel. (At some instants of time the two waves lie 

on top of each other.) The thick continuous curve is the sum or superposition of the 

two travelling waves, i.e. the resultant standing wave. Its overall shape is just like 
 

 
 

 
t = 0 

 

 

 
 

t = T/8 

 

 

 
 

t = T/4 

 

 
 
 

t = 3T/8 

 

 
 
 

t = T/2 

 

 

 
Figure 6.3 Two travelling waves of the same frequency and amplitude travelling in opposite 

directions, at successive instants of time. The wave travelling towards the right is represented 

by the thin continuous curve and the wave travelling towards the left is represented by the 

dotted curve. The thick continuous curve corresponds to the result of summing the two 

travelling waves together, i.e. the resultant standing wave. The overall shape of this curve is 

just like that of the standing wave corresponding to the fourth harmonic shown in Figure 6.2. 

As time increases, the resultant standing wave evolves as shown. 



= 

= ±∞ 
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that of the standing wave corresponding to the fourth harmonic shown in Figure 6.2. 

As time increases the resultant standing wave evolves as shown in Figure 6.3. Any 

point on the standing wave is described by Equation (6.22), i.e. y A sin kx cos ωt. 

The transverse displacement of every point on the standing wave varies with SHM 

as cos ωt and the amplitude of this motion varies as A sin kx, i.e. the nodes and 

antinodes occur at fixed points on the x-axis, cf. discussion of Equation (6.1). 

The two travelling sinusoidal waves that we have considered above extend to 

large distances in both directions (in principle to x ). A string stretched 

between two rigid walls has a finite length. However, it can still support standing 

waves. In this case it is reflections at the two walls that produce the two waves 

travelling in opposite directions. This is illustrated in Figure 6.4, which shows the 

formation of a standing wave on a string stretched between two rigid walls. The 

figure represents snapshots of the waves, at successive instants of time, separated 

by T /8, where T is the period of the waves. Again the thin continuous curve 

represents a wave travelling towards the right and the dotted curve represents a 

wave travelling towards the left. (At some instants of time, the incident and reflected 

waves lie on top of each other.) These waves are reflected at each of the walls. 

Inspection of Figure 6.4 shows that the waves obey the rules of reflection that we 

 
x = 0 x = L 

 
t = 0 

 

 

 

t = T/8 

 

 

 

t = T/4 

 

 

 

 
t = 3T/8 

 
 

 

 
t = T/2 

 

 

Figure 6.4 The formation of a standing wave on a string stretched between two rigid walls, 

at successive instants of time. The thin continuous curve represents a wave travelling towards 

the right and the dotted curve represents a wave travelling towards the left. These waves 

are reflected at each of the rigid walls. The thick continuous curve represents the result of 

adding the two travelling curves together, i.e. the superposition of the two waves and the 

resultant shape of the string. 
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n n 
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dx 

∂t  
n n 

L 
n 

(6.23) 

∂x 
n 

L L 
n 

The Energy in a Standing Wave 147 

discussed in Section 5.7 [below Equation (5.53)]: the waves reflected at a rigid 

boundary have the same amplitude as the incident waves but suffer a phase shift 

of π upon reflection. The thick continuous curve in Figure 6.4 is the superposition 

of the two waves and the resultant shape of the string. The formation of a standing 

wave and its evolution with time are apparent. Indeed the travelling waves and 

the resultant shape of the string shown in Figure 6.4 are identical in form to the 

waves shown within one wavelength on the left-hand side of Figure 6.3. We see 

from Figure 6.4 that the displacement of the string is always zero at the two walls, 

as it must be. Of course, a wave of any wavelength will be reflected at the walls. 

However, we can see from Figures 6.3 and 6.4 that, for a standing wave to be 

produced, the length of the string must be an integral multiple of half-wavelengths: 

n(λ/2)     L. This is just our earlier condition, Equation (6.13). If the wavelength 

does not meet this requirement the two travelling waves will interfere destructively 

and a standing wave will not result. 

 
6.3 THE ENERGY IN A STANDING WAVE 

In Section 5.5 we considered the energy of a travelling wave and found that this 

energy is carried along with the wave at the wave velocity. The situation for a 

standing wave is different. As we have seen, a standing wave is a superposition of 

two waves of the same frequency and amplitude travelling in opposite directions. 

The energies of these two waves are also transported in opposite directions and so 

there is no net transport of energy. Clearly, however, there is energy in a standing 

wave: a vibrating string is in motion and it stretches in moving away from its 

equilibrium position. Thus the string has both kinetic and potential energies. In 

Section 5.5 we obtained a general expression for the total energy E contained in a 

portion a ≤ x ≤ b of a string that carries a transverse wave: 

1 
E = 

2 
µ 

b ∂y 
  2

 
 

  

2 
   

∂y 
  2
 

 
 

 

 
, (5.37) 

where µ is the mass per unit length of the string and v is the wave velocity. The 

first term in the integral relates to the kinetic energy of the string and the second 

term to its potential energy. We now use this expression to find the total energy 

associated with a standing wave, i.e. the energy of a string of length L vibrating 

in a single mode. (The more general case where several modes are present will be 

considered in Section 6.4.4.) The standing wave solution for this case is given by 

y (x, t) = A  sin 
  nπ 

x
  

cos ω t, (6.10) 
 

where ωn v(nπ/L), Equation (6.8). Differentiating this expression with respect 

to t and x gives 

= −A ω sin
 

x
 
sin ω t,  

∂yn nπ 

= A
 

cos
 

x
 
cos ω t. 

∂yn nπ nπ 

∂x ∂t  a 

∫ 

+ v 



2 

= 

x 
L 

dx sin x 
L 

= x 
L 

= 
2 

. (6.25) 

dx sin x 
L 

dx 
2
 x 

L 

dx cos x 
L 

= x 
L 

= L − 
2 

= 
2 

. 

0 
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Substituting the squares of these expressions into Equation (5.37), we obtain for 

the energy En of a string, of length L, vibrating in the nth mode 

1 2 

      

2 2 

∫ L
 2 

  nπ 
En = 

2 
µAn ωn sin 

2 
  nπ 2 

 

 

ωnt 
0 

 
2 

dx sin 

∫ L 

 
 

x 
L 

2
  nπ 

The two integrals have the same value L/2: 

∫ L 
2 

   nπ 
∫ L 

 

  

2
  nπ L 

To show this we use the trigonometric identity 

sin
2
 α = 

1 
[1 − cos 2α] (6.26) 

 

from which it follows that 

∫ L 
2 

  nπ 
 

 

∫ L 
1 
  

 

 

  
2nπ 

1
 

L   
  

2nπ   L 
L

 

 

and hence 
= 

2   
x − 

2nπ 
sin 

L  
x = 

2
 

∫ L 
2 

   nπ 
∫ L 

 

  

2
  nπ L L 

Substituting the value L/2 for the two integrals in Equation (6.24) and writing 

v(nπ/L)     ωn, we obtain our final expression for the energy En of the vibrating 

string in the nth mode: 

1 2    2 2 2 E  = µLA ω (sin ω t + cos ω t)  
n 

4 
n   n n n 

1 2   2 

= 
4 

µLAnωn. (6.27) 

The first term in the brackets in Equation (6.27) results from the kinetic energy of 

the string while the second term results from its potential energy. This equation 

shows that the energy of the system flows continuously between kinetic and poten- 

tial energies although the total energy remains constant. This is a characteristic 

feature of oscillating systems, as we similarly found for the simple harmonic oscil- 

lator, Equation (1.23). When the string is at its maximum displacement, the string 

is instantaneously at rest and all the energy is in the form of potential energy. 

When the string passes through its equilibrium position, all the energy is in the 

form of kinetic energy. Equation (6.27) also shows that the total energy contained 

in the standing wave is proportional to the square of the vibration frequency and 

the square of the amplitude of vibration. 

0 0 

0 0 

0 0 

0 L 
+ v cos ωn

t 
dx cos . (6.24) 

dx cos 

= 1 − cos 

dx 1 − sin 



A1  
∂x2   

+ A2  
∂x2 ∂x2 

(A1y1 + A2y2), 
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6.4 STANDING WAVES AS NORMAL MODES 

OF A VIBRATING STRING 

In Chapter 4 we discussed the normal modes of a coupled oscillator. The striking 

characteristic of a normal mode is that all the masses move in SHM at the same 

frequency: indeed this defined the normal modes. We also saw that these normal 

modes are completely independent of each other and the general motion of the 

system is a superposition of the normal modes. All of these properties are shared 

by standing waves on a vibrating string; all the particles of the string perform 

SHM with the same frequency. Indeed the standing waves are the normal modes 

of the vibrating string and from now on we shall generally refer to them as normal 

modes. So far we have only considered the case in which a single normal mode of 

the string is excited. In Section 6.4.2 we shall deal with the case in which several 

normal modes are excited simultaneously. We shall discuss their superposition and 

independence and again we will see much similarity with our discussion of normal 

modes in Section 4.3. The methods and results that we shall demonstrate for a 

vibrating string admit generalisation to a huge range of physics – for example to 

quantum mechanics – and are therefore of great importance. We shall begin by 

describing the superposition principle. 

 
6.4.1 The superposition principle 

The superposition principle states that, if y1(x, t) and y2(x, t) are any two solu- 

tions of the wave equation (5.23), then so is any linear combination 

y(x, t) = A1y1(x, t) + A2y2(x, t) (6.28) 

where A1 and A2 are arbitrary constants. This result follows at once from the 

linearity of the wave equation (5.23), i.e. each term in the wave equation is pro- 

portional to y or one of its derivatives: it does not contain quadratic or higher-power 

terms or product terms such as y(∂y/∂x). (Equations of this type are known as 

linear equations.) We can see this as follows. Multiplying the first of the following 

equations 

∂
2
y1 

∂t2  
= v 

2 ∂
2
y1 

∂x2 
,
 

∂
2
y2 

∂t2  
= v 

2 ∂
2
y2 

 
 

∂x2 

by A1 and the second by A2, and adding the resulting equations gives 

∂
2
y1 

 
 

∂
2
y2 

 
 

2

 
∂

2
y1 

 
 

∂
2
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Since 

A1 
∂t2  

+ A2 
∂t2   

= v A1 
∂x2   

+ A2 
∂x2 

. 

∂2y1 ∂2y2 ∂2
 

A1 
∂t2  

+ A2 
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∂
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it follows that the linear superposition y(x, t), Equation (6.28), is also a solution 

of the wave equation (5.23). This result clearly generalises to the superposition of 

any number of solutions of the wave equation. These can be any solutions: they 

do not have to be normal modes. However, for reasons that will become clearer in 

the course of the following discussions we now choose a general superposition of 

normal modes. 

 
6.4.2 The superposition of normal modes 

In Section 6.1 we found the expression for the nth normal mode of a vibrating 

string of length L: 

y (x, t) = A  sin 
  nπ 

x
  

cos ω t. (6.10) 
 

In general, the motion of the string will be a superposition of normal modes given 

by 

y(x, t) = 
    

y (x, t) = 
    

A  sin 
  nπ 

x
  

cos ω t (6.29) 

where ωn nπv/L. An example of this is presented in Figure 6.5, which shows 

the superposition of the third normal mode with a relative amplitude of 1.0 and 

the thirteenth normal mode with a relative amplitude of 0.5. (We choose such a 

high normal mode to demonstrate the superposition of the waves more clearly.) 

The third normal mode is 

y3(x, t) = 1.0 sin 

  
3π 

x

   

cos ω3t, 

 

 
 

(a) 

 






(b) 

 








(c) 

 

 

Figure 6.5    (a) Snapshot of the third harmonic y3(x, 0) of a taut string at t    0. (b) Snapshot 

of the thirteenth harmonic y13(x, 0) of a taut string at t      0 where the wave amplitude is 

equal to one half that of (a). (c) The superposition of the two harmonics to give the resultant 

shape of the string at t = 0. 



L 

= 

= 

= 

L L 
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and the thirteenth normal mode is 

y13(x, t) = 0.5 sin 

   
13π 

x

   

cos ω13t. 

Snapshots of these two normal modes at t 0, i.e. y3(x, 0) and y13(x, 0), are 

shown in Figure 6.5(a) and (b), respectively. The superposition of the two normal 

modes is given by 

y(x, t) = 1.0 sin 

   
3π 

x

   

cos ω3t + 0.5 sin 

   
13π 

x

   

cos ω13t (6.30) 
 

and describes the motion of the vibrating string. This is illustrated in Figure 6.5(c) 

which again is a snapshot of the string at t 0. As time increases the shape of the 

string evolves according to Equation (6.30). In particular it would take 13 complete 

periods of the higher frequency ω13 before the exact shape shown in Figure 6.5(c) 

is repeated. 

To excite the two normal modes in this way, we would somehow have to con- 

strain the shape of the string as in Figure 6.5(c) and then release it at time t 0. 

Of course, it is impractical to do this and in practice we pluck a string to cause 

it to vibrate. The action of plucking a string is illustrated in Figure 6.6(a). In this 

example the string is displaced a distance d at one quarter of its length. Initially, 

the string has a triangular shape and this shape clearly does not match any of the 

shapes of the normal modes shown in Figure 6.2. For one thing the triangle has 

a sharp corner while the sinusoidal shapes of the normal modes vary smoothly. 
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Figure 6.6 (a) The action of plucking a string is illustrated where the string is displaced 

a distance d at one quarter of its length. (b) The first three excited normal modes of the 

string. The amplitudes of these normal modes are given in the text. (c) The superposition 

of the first three normal modes gives a good reproduction of the initial triangular shape of 

the string except for the sharp corner. For all the above cases, t = 0. 

 

 

y(x,0) = y1(x,0)  y2(x,0)  y3(x,0) 

y1(x,0) 

y2(x,0) 

y3(x,0) 
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The remarkable thing is, however, that it is possible to reproduce this triangular 

shape by adding together the normal modes of the string with appropriate ampli- 

tudes. This is illustrated by Figure 6.6. In Figure 6.6(b) the first three normal 

modes  y1(x, 0),  y2(x, 0)  and  y3(x, 0)  are  shown√.  [These  are  given  by  Equation 
(6.10) with t 

2

= 0.] Their amplitudes are A, A/2   2 and A/9, respectively, where 

A 32d/3π . (The general procedure for finding the values of these amplitudes 

is developed in Section 6.4.3.) Figure 6.6(c) shows the superposition of these three 

normal modes, i.e. 
 

y(x, 0) = y1(x, 0) + y2(x, 0) + y3(x, 0) 

and enables a comparison with the initial shape of the string. Even using just the first 

three normal modes we get a surprisingly good fit to the triangular shape. By adding 

more normal modes, we would achieve even better agreement, especially with 

respect to the sharp corner. The corresponding frequencies of the normal modes 

are given by the usual expression ωn     (nπv/L), Equation (6.8). Thus when we 

pluck a string we excite many of its normal modes and the subsequent motion of the 

string is given by the superposition of these normal modes according to Equation 

(6.29). A vivid way to represent the composition of the normal modes is to make a 

plot of their amplitudes against their frequencies which gives a frequency spectrum. 

The frequency spectrum for the example of Figure 6.6 is shown in Figure 6.7. 
 

An 

d 

 

 

 

 

 

 
n 

0 1 2 3 4 
 

Figure 6.7 The frequency spectrum showing the first four harmonics of the plucked string 

shown in Figure 6.6, where the amplitudes of the normal modes are plotted against the mode 

number. The amplitude of the n = 4 normal mode is zero. 

Even before we see how to evaluate the amplitudes of the excited normal modes 

(Section 6.4.3), we can say something about excitation of the fourth normal mode 

in the above example. This normal mode has a node at one quarter the length of 

the string. Hence, plucking the string at that point will not excite that mode which 

is therefore missing from the superposition as is consistent with the frequency 

spectrum in Figure 6.7. 

Examples of the superposition of normal modes come from the sounds produced 

by musical instruments. The note A played on an oboe sounds distinctly different 

to the same note played on a flute, although both are wind instruments. In each 

case, the fundamental frequency or pitch of the note is the same. However, the 

relative amounts of the different normal modes (harmonics) that are produced 

by the two instruments are different. It is this harmonic composition that affects 
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dx sin x 
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= 
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, (6.33) 
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the musical quality or timbre of the note. The clarinet is rich in harmonics while 

the flute has much less harmonic content. Even different instruments of the same 

type may exhibit different harmonic content and so sound somewhat different. 

For example, the harmonic content produced by a Stradivarius violin is one of the 

factors that make it a very desirable instrument. We can turn this situation around 

and synthesise musical instruments. For this we use a set of oscillators to generate 

sinusoidal waves with the frequencies of all the harmonics we wish to include. 

We then add these together with appropriate relative amplitudes to synthesise the 

musical instrument of choice. 

 
6.4.3 The amplitudes of normal modes and Fourier analysis 

In Section 6.4.2 we saw that the general motion of a vibrating string is a super- 
position of normal modes, Equation (6.10). In particular, the initial shape of the 

string f(x), i.e. at t = 0, is from Equation (6.29) given by 

y(x, 0) = 
    

An sin
 

x
  

= f(x). (6.31) 
nπ 

n 

 

We now state a remarkable result: any shape f(x) of the string with fixed end 

points [f (0)    f(L)     0] can be written as a superposition of these sine functions 

with appropriate values for the coefficients A1, A2, . . .  , i.e. in the form: 

 

(6.32) 

 
 

This result is due to Fourier. The expansion (6.32) is known as a Fourier series 

and the amplitudes A1, A2, . . .  as Fourier coefficients. The idea that an essentially 

arbitrary function f (x) can be expanded in a Fourier series can be generalised and 

is of great importance in much of theoretical physics and technology. 

The Fourier expansion theorem, Equation (6.32), involves some difficult mathe- 

matics and we will simply assume its validity. In contrast, its application in practice 

is quite straightforward. Given f(x), i.e. the shape of the string, the amplitudes An 

(n   1, 2, . .  .) are easily found. It is this that makes Fourier analysis such a pow- 

erful tool. The determination of the amplitudes depends on two integrals involving 

sine functions: 

∫ L 
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   nπ L 

L 

dx sin 
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mπ 
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sin 
nπ 

x 
L = 0, m /= n (6.34) 

where m and n are integers throughout. The first of these results we obtained 

earlier, Equation (6.25). For the second, we use the trignometric identity 

sin α sin β = 
1 

[cos(α − β) − cos(α + β)], (6.35) 

f(x) = A sin 
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  nπ 

L 
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(m − n)π L 
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(m + n)π 
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Worked example 

A string of length L is displaced at its mid-point by a distance d and released 

at t = 0. Find the first three normal modes that are excited and their amplitudes 
in terms of the initial displacement d. 
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from which it follows that 
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for m n, since sin N π 0 for N 1,  2, . . .  . 

Multiplying Equation (6.32) with sin(mπx/L) and integrating the resulting 

equation with respect to x over the range x = 0 to x = L gives 

 

L 

dx sin 
0 

mπ 
x 

L f(x) = An 
n 

L 

dx sin 
0 

mπ 
x 

L 

 

sin 
nπ 

x 
L 

 

. (6.36) 

 

It follows from Equation (6.34) that, of the terms in the series on the right-hand 

side of Equation (6.36), only the term with m n is different from zero, and on 

account of Equation (6.33) has the value L/2. In this way we obtain the final 

expression for the Fourier amplitude 

 

 

(6.37) 

 

 
Equations (6.32) and (6.37) are our final result: a statement of the Fourier theorem. 

For any specific function f (x), i.e. the shape of the string at t 0, Equation 

(6.37) gives us the Fourier amplitudes A1, A2,         Substituting these amplitudes 

into Equation (6.32) gives us the initial shape of the string, expressed in its Fourier 

components and, from Equation (6.29), the shape of the string at subsequent times. 

The situation we have described here is essentially that of classical mechanics. 

To solve Newton’s equations of motion for a system of particles, we must specify 

their initial positions and velocities. For a string we have a continuum of particles, 

and the initial conditions become the initial position and initial velocity of each 

point on the string. We have treated the particular case of a string that is initially at 

rest, [∂y(x, t)/∂t ]t=0    0, cf. Equation (6.3), and with initial shape y(x, 0)    f(x). 
Other initial conditions are possible leading to different forms of Fourier series. 
We illustrate Fourier analysis by means of the following worked example. 
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Solution 

The situation is illustrated in Figure 6.8. We represent the shape of the string 

at time t = 0 by the function y = f(x). Inspection of Figure 6.8 shows that 

2d 
f(x) = 

L 
x, 0 ≤ x ≤ L/2, 

2d 
f(x) = 2d − 

L 
x L/2 ≤ x ≤ L. 

 

y 

 

d 
 

x 
0 L /2 L 

 

Figure 6.8  A plucked string, where its midpoint is displaced by a distance d . 

 
To cope with the ‘kink’ in f (x) at x L/2, we split the integral (6.37) into 

two parts, so that 

2 L/2 

An = 
L

 

 
dxf (x) sin 

 

nπ 
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dxf (x) sin 

 

nπ 
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L 

Substituting for f(x) over the appropriate ranges of x, the right-hand side of 

this equation becomes 
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We leave the evaluation of these integrals and the tidying up of the resulting 

expressions to the reader.
1
 The final result is 

   A  =
   8d   

sin 
  nπ 

. (6.38) 

 

1 This involves simple algebra that the reader may be inclined to follow through. The following 

formulae are useful for the indefinite integrals: ∫ 

dx sin ax 
1 

cos ax, 

∫ 

dxx sin ax =
 1 

sin ax − 
x 

cos ax, 

 
 

where a is a constant. 
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4 n n n n 

4 n n 

n n 
L 

n 

dx 

It follows that when we pluck a string at its mid point we excite many normal 

modes (in principle an infinite number). From Equation (6.38), we have An = 0 
for even values of n: we only excite those modes that have odd values of n, 

since modes with even n have a node at the mid-point of the string and so 

will not be excited. Equation (6.38) gives the amplitudes An of these normal 

modes: 

n = 1, 

n = 3, 

n = 5, 

8d 
A1 = 

(π)2 

8d 
A3 = − 

(3π)2 

8d 
A5 = 

(5π)2 

(6.39) 

these values of the amplitudes and frequencies given by ωn = (nπ/L)(
√

T /µ) 

and the corresponding normal modes yn(x, t) are given by Equation (6.10) with 

[cf. Equations (6.8) and (5.32)]. Notice that the combination of normal modes 

that are excited in this example is different to that for the case of plucking the 

string one quarter of the way along its length, see Section (6.4.2). This has 

the consequence that, when plucking a violin string (playing ‘pizzicato’), the 

timbre of the sound depends on where along the string it is plucked. 

n n 
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6.4.4 The energy of vibration of a string 

In Section 6.3 we considered a string vibrating in a single normal mode, given 

by 

y (x, t) = A  sin 
  nπ 

x
  

cos ω t (6.10) 
 

and we derived the energy En of the string vibrating in this mode: 

1 2    2 2 2 1 2    2 

E  = µLA ω (sin ω t + cos ω t) = µLA ω . (6.27) 
 

We now want to obtain the energy E of the vibrating string when there are several 

modes present. The general superposition of normal modes is given by 

y(x, t) = 
    

y (x, t) = 
    

A  sin 
  nπ 

x
  

cos ω t, (6.29) 

and we must use this expression, instead of Equation (6.10), for calculating the 

energy E of the wave from Equation (5.37): 
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The expressions for the derivatives ∂y/∂t and ∂y/∂x required in Equation (5.37) 

now do not consist of single terms as in Equation (6.23) for a single mode, but of 

sums of terms over the n modes: 

∂y 
= − 

   
A ω sin 

  nπ 
x

  
sin ω t,  

with a similar sum over modes for ∂y/∂x. It is the squares of these derivatives 

that occur in Equation (5.37), and squaring these derivatives, as in 
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−

  
Anωn sin 
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cos ωnt , 

will lead to ‘cross terms’ containing the products 

sin 
  mπ 

x
  

sin 
  nπ 

x
  

, cos 
  mπ 

x
  

cos 
  nπ 

x
 

(6.40) 
 

with m     n. [The cross terms containing products of cosines stem from (∂y/∂x)
2
.] 

As a consequence, the expression for the energy E will contain integrals over these 

product terms, Equation (6.40), in addition to the quadratic terms which occur in 

Equation (6.24) for the single-mode case. However, the integrals involving the 

cross terms have the value 0, since for m /= n 
 

L 

dx sin 
0 

mπ 
x 

L 

 
sin 

nπ 
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L 

 

L 

dx cos 
0 

mπ 
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cos 

nπ 
x 

L = 0. (6.41) 

The first of these results was obtained in Equation (6.34), and the second is derived 

in exactly the same way using the trigonometric identity 

cos α cos β = 
1 

[cos(α − β) + cos(α + β)] (6.42) 

instead of Equation (6.35). Hence the cross terms with m n vanish in the inte- 

gration and the total energy E is given by a sum of terms like Equation (6.27): 

 

E = 
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µL  
     

A
2
ω

2
(sin

2
 ω t + cos

2
 ω t) = 

1 
µL  

     
A

2
ω

2
. (6.43) 

The most interesting feature of this result is that each normal mode contributes an 

energy 

1 2   2 

E  = µLA ω 

 
(6.44) 

 

quite independently of the other normal modes. This is quite typical of normal 

modes as we discussed in Chapter 4. They are independent of each other and there 

is no coupling between them. Consequently their energies are additive. [Mathemat- 

ically, this independence results from Equation (6.41) which ensures that no ‘cross 
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= + − − 
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terms’ involving products of amplitudes AmAn, with m      n, survive.] An analo- 

gous result was obtained in Section 4.3 for the energy of two simple pendulums 

coupled by a spring. In terms of their position coordinates xa and xb, their motions 

are coupled, but in terms of their normal coordinates q1 and q2 they perform SHM 

independently of each other. 

 
PROBLEMS 6 

(Take the velocity of sound in air to be 340 m s−1.) 

6.1 A wire hangs vertically from a ceiling with a mass of 10 kg attached to its lower end. 
The wire is 0.50 m long and weighs 25 g. (a) Calculate the wave velocity along the 
wire and the wavelength and frequency of the fundamental mode of vibration. (b) If the 
maximum transverse displacement of the wire in the fundamental mode of vibration is 
3.0 cm, calculate the largest values of velocity and acceleration that a particle of the 
wire can have. 

(Assume g = 9.81 m s−2.) 

6.2 (a) A wave of frequency 262 Hz travels down a long wire that has a mass per unit 

length of 0.04 kg m−1 and a tension of 200 N. Calculate the wavelength of the wave. 
(b) A length L of the wire is held at a tension of 200 N between two fixed points. 
What value of L is required to obtain a fundamental frequency of 262 Hz (middle C) 
when the wire is plucked? (c) What are the frequency and wavelength of the sound 
wave produced by the wire when it is vibrating in its fundamental mode? Explain any 
differences. 

6.3 (a) A taut string fastened at both ends has successive normal modes with wavelengths 
of 0.44 m and 0.55 m, respectively. Identify the mode numbers and determine the 
length of the string. (b) The cold spots in a microwave oven are found to have a 
separation of 0.5 cm. What is the frequency of the microwaves? 

6.4 The   travelling   wave   y1    A cos(ωt    kx)   combines   with   the   reflected   wave 
y2    RA cos(ωt    kx) to produce a standing wave. Show that the standing wave 
can   be   represented   by   y    2RA cos ωt cos kx    (1    R)A cos(ωt    kx).   Hence, 
show that the ratio of the maximum and minimum amplitudes of the standing wave 

is (1 + R)/(1 − R). 

6.5 The tension in the A string of a violin is adjusted to produce a fundamental frequency 
of 440 Hz. (a) What are the frequencies of the second and third harmonics? Does 
the wave velocity change in going to these harmonics? (b) The hearing range of the 
violinist extends to 15 kHz. What is the total number of harmonics of the string the 
violinist can hear? (c) If the violin string is 32 cm long, how far from the end of the 
string should the violinist place their finger to play the note of C (523 Hz)? 

6.6 An octave is an increase in frequency by a factor of two. (a) Estimate the number 
of octaves over which you can hear. (b) Estimate the number of octaves covered by 
the spectrum of electromagnetic radiation from a radio frequency wave of wavelength 

1500 m to a γ -ray of energy 1.0 MeV. (Planck’s constant h = 4.14 × 10−15 eV s.) 

6.7 A violin string is held under tension T . What will be the fractional change in the 
frequency of its fundamental mode of vibration if the tension is increased by the 
amount δT ? 

6.8 The six strings of a guitar are tuned to the notes E (lowest frequency), A, D, G, B and 
E (highest frequency) with a range of two octaves between the two E strings. All the 
strings should be held under the same tension to avoid distortion of the neck of the 
guitar. (a) If the high-frequency E string has a diameter of 0.30 mm, what should be 
the diameter of the low-frequency E string, assuming that both strings are made from 
the same material? (b) The fundamental frequency of the high-frequency E string is 
330 Hz. If the distance between the nut and bridge of the guitar, i.e. the two fixed 
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ends, is 65 cm and the strings are made of steel with a density of 7.7     103 kg m−3, 
find the total force acting on the neck of the guitar. (c) If the high-frequency E string 
is made of nylon instead of steel what should be its diameter, assuming that the same 
tension is applied to it? (Take the density of steel to be six times the density of nylon.) 

6.9 Three particles of mass M/3 are connected by four identical elastic strings of length 
L/4 between two rigid supports. The tension in the strings is T . (a) Show that the 
angular frequencies of the three normal modes for transverse oscillations are ω2 = √ 

2 2 
√ 1 

(2 − 2)α, ω2 = 2α and ω3 = (2 +   2)α, where α = 12T /LM. (b) Compare the 
frequencies ω1/2π, ω2/2π and ω3/2π with the frequencies of the first three harmonics 
of a string of total mass M stretched under tension T between two fixed points a 
distance L apart. 

6.10  

 

 

 

 

 
 

v 

vo 
 

The excited atoms in the optical cavity of a laser emit light over a narrow range of 
frequencies and not at a single frequency. This is mainly because the atoms have a 
range of thermal energies and therefore a range of velocities. This is called Doppler 
broadening . The resulting spectral line profile is illustrated by the figure in which the 
vertical bars indicate the mode frequencies of the optical cavity. Light amplification 
occurs at light frequencies that coincide with a mode frequency, and that lie within a 
certain frequency range ∆ν, also indicated on the figure. (a) If the spectral line profile 
has a central frequency νo     4.74     1014 Hz and ∆ν      4.55     109 Hz and the length 
of the optical cavity is 100 cm, how many normal frequencies will occur within the 
range ∆ν? (b) How long would the cavity have to be so that only one mode frequency 
occurred within the range ∆ν? 

6.11 A string is plucked one-third along its length. Give three examples of normal modes 
that will not be excited. 

6.12 The function f (x)    αx over the range x    0 to x      L, where α is a constant, can 
be represented by a Fourier series, 

f(x) = 
    

An sin
 

x
 
. 

nπ 
n 

 

Show that the series is given by 

f(x) = 
2αL

 

sin
 πx 

− 
1 

sin

  
2πx

  

+ 
1 

sin

  
3πx

  

−· · ·

 

. 
 

6.13 Consider a string held under tension T between two fixed points a distance L apart. (a) 
If the string is displaced by a distance d at its centre show that it acquires an energy 
equal to 2T d2/L, assuming the tension in the string remains constant. (b) Using the 
results from the worked example in the text, show that the three harmonics of lowest 
frequency contain 93.5% of the energy when the string is released. 

6.14 A function f (x) is defined by the series 
 

f(x) = 
4
 

cos x 
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cos 3x 
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cos 5x 
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cos 7x 
+· · ·
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Use a spreadsheet program to plot f (x) over the range x 0 to x 4π. How would 
you describe the shape of the function f(x)? 

6.15  



Energy 

 
 

x 
0 

L 

An important example in quantum mechanics is that of a particle confined between 
the walls of an infinite-well potential. Such a potential is illustrated in the figure. The 
particle has an associated wavelength λ that is subject to the same condition as that 
of a vibrating string, i.e. nλ/2 L, where L is the length of the well. Moreover, the 
classical momentum p of a particle of mass m is related to its wavelength λ by the 

de Broglie relation λ = h/p, where h is Planck’s constant. (a) Show that the allowed 
energies En of the particle are given by En = n2h2/8mL2. (b) Evaluate En for n = 1, 
when L = 2 × 10−10 m, and m is the mass of the electron. 

(Planckrs constant = 6.6 × 10−34 J s and the mass of an electron = 9.1 × 10−31 kg.) 
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7 
Interference and Diffraction 
of Waves 

 
Interference and diffraction are some of the most striking phenomena produced by 

waves. Interference is evident in the rainbow of colours produced by a thin film 

of oil on a wet road, where the light reflected off the surface of the oil interferes 

with the light reflected off the water surface underneath. Diffraction is evident 

when water waves are incident upon the narrow mouth of a harbour. The waves 

spread out in a semicircular fashion after passing through the harbour mouth. We 

shall begin by discussing interference and later turn our attention to diffraction. 

However, there is no fundamental physical difference between interference and 

diffraction; they both result from the overlap and superposition of waves. 

 
 

7.1 INTERFERENCE AND HUYGEN’S PRINCIPLE 

Suppose that we have two monochromatic waves ψ1 and ψ2 with wavelength 

λ that have been derived from the same source: this avoids any random phase 

changes from two separate sources. These waves follow different paths and are 

recombined at a particular point in space. The difference in their path lengths 

from the common source is s. If this path difference is equal to an integral num- 

ber of wavelengths, the crests and the troughs of one wave line up exactly with 

the crests and the troughs of the other wave, as shown in Figure 7.1(a): the two 

waves are said to be in phase. There is constructive interference and the amplitude 

of the superposition (ψ1 ψ2) is equal to 2A where A is the amplitude of the 

individual waves. If the path difference is an odd number of half wavelengths, 

the crests of one wave line up with the troughs of the other wave as shown in 

Figure 7.2(b): the two waves are said to be out of phase. There is destructive inter- 

ference and the amplitude of their superposition is zero. We write these interference 
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Figure 7.1     (a) Two monochromatic waves ψ1 and ψ2 at a particular point in space where 

the path difference from their common source is equal to an integral number of wavelengths. 

There is constructive interference and their superposition (ψ1   ψ2) has an amplitude that 

is equal to 2A where A is the amplitude of the individual waves. (b) The two waves ψ1 

and ψ2 where the path difference is equal to an odd number of half wavelengths. There is 

destructive interference and the amplitude of their superposition is zero. 

 

conditions as: 

(7.1) 
 

(7.2) 

 

For other values of path difference s the resulting amplitude will lie between 
these two extremes of total constructive and destructive interference. Since phase 

difference θ = 2πs/λ, we can also write the interference conditions as: 
 

(7.3) 

(7.4) 

 

These are the basic results for the interference of waves. They are of fundamental 

importance and can be applied to a wide range of physical phenomena. We 

shall apply them to various physical situations and in particular to an archetypal 

example of interference, namely Young’s double-slit experiment. This experiment 

incorporates all the essential physical principles of wave interference and we shall 

discuss it in some detail. However, before doing so, we first describe Huygen’s 

principle, which is named after the Dutch physicist Christian Huygen. This 

s  nl,   n  0,  1,  2, . . .  : constructive interference. 

s  n  
1   

l,  n  0,  1,  2, . . .  : destructive interference. 
2 

f  2n , n  0,  1,  2, . . .  : constructive interference. 

f  (2n  1) , n  0,  1,  2, . . .  : destructive interference. 
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Figure 7.2 The application of Huygen’s principle to the progression of a plane wave. Each 

point on the primary wavefront acts as a source of secondary wavelets. These secondary 

wavelets combine and their envelope represents the new wavefront, which is also a plane 

wave. 

 

principle provides an empirical approach to predicting the progression of waves 

and we will use it to explain interference and, later, diffraction. 

Huygen postulated that each point on a primary wavefront acts as a source of 

secondary wavelets such that the wavefront at some later time is the envelope 

of these wavelets. Huygen’s principle is illustrated in Figure 7.2 for the example 

of a plane wave. To construct the wavefront at a time interval ∆t later, arcs are 

drawn in the forward direction from points across the primary wavefront. The 

radius of each arc is equal to v∆t where v is the wave velocity. These secondary 

wavelets combine and their envelope represents the new wavefront, which is also 

a plane wave as illustrated in Figure 7.2. If a wavefront encounters an aperture 

in an opaque barrier, the points on the wavefront across the aperture act like 

sources of secondary wavelets. When the aperture is very narrow, i.e. its width is 

comparable with the wavelength, the aperture acts like a point source and wavelets 

spread out in a semicircular fashion, as illustrated in Figure 7.3. The effect of 

the barrier is to suppress all propagation of the primary wave except through the 

aperture. Huygen’s principle is successful in describing, at least qualitatively, the 

behaviour of the waves in these two examples. It is important to note, however, 

that Huygen’s principle is an empirical approach. It provides only a qualitative 

description of the progression of a wave and it has shortcomings. In particular, 

we would expect the secondary sources on the primary wavefront to also produce 

a wave that propagates in the backward direction. In reality this does not occur 

and Huygen’s principle ignores this other wavefront. However, a full and rigorous 

treatment of wave propagation, subsequently developed by G. Kirchhoff, finds that 

the secondary wavelets do in fact lie in the forward direction. 

 

7.1.1 Young’s double-slit experiment 

Young’s double-slit experiment was crucially important in confirming the wave 

nature of light. However, it remains of fundamental importance as an archetypal 
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Figure 7.3 When a wavefront encounters an aperture in an opaque barrier, the barrier 

suppresses all propagation of the wave except through the aperture. Following Huygen’s prin- 

ciple, the points on the wavefront across the aperture act as sources of secondary wavelets. 

When the width of the aperture is comparable with the wavelength, the aperture acts like a 

point source and the outgoing wavefronts are semicircular. 

 
example of interference and arises, for example, in discussions of the quantum 

mechanical wave properties of matter. The arrangement of Young’s double-slit 

experiment is illustrated in Figure 7.4, where the vertical scale has been greatly 

expanded for the sake of clarity. A monochromatic plane wave of wavelength λ is 

incident upon an opaque barrier that contains two very narrow slits S1 and S2. Each 

of these slits acts as a source of secondary wavelets according to Huygen’s principle 

and the disturbance beyond the barrier is the superposition of all the wavelets 

spreading out from the two slits. Since these secondary wavelets are driven by the 

same incident wave there is a well defined phase relationship between them. This 

condition is called coherence and implies a systematic phase relationship between 

the secondary wavelets when they are superposed at some distant point P . It is 

this phase relationship that gives rise to the interference pattern, which is observed 

on a screen a distance L beyond the barrier. The separation of the slits is a. The 

slits have a long length (    a) in the direction normal to the page and this reduces 

the problem to two dimensions. (If we used pin holes instead of slits it would 

be a three-dimensional problem.) The value of a is typically 0.5 mm while the 

distance L to the screen is typically of the order of a few metres. Hence L a 

and this allows us to make some useful approximations as we shall see. 

We consider the secondary wavelets from S1  and S2 arriving at an arbitrary 

point P on the screen. P is at a distance x from the point O that coincides with 

the mid-point of the two slits. The distances of S1 and S2 from P are l1 and l2, 

respectively. Since L      a it can be assumed that the secondary wavelets arriving 

at P have the same amplitude A. The superposition of the wavelets at P gives the 

resultant amplitude 

R = A[cos(ωt − kl1) + cos(ωt − kl2)], (7.5) 
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Figure 7.4 Schematic diagram of Young’s double-slit experiment. The vertical scale has 

been enlarged for the sake of clarity. A monochromatic plane wave of wavelength λ is 

incident upon an opaque barrier containing two slits S1 and S2. These slits are very narrow 

but have a long length in the direction normal to the page, making this a two-dimensional 

problem. The resultant amplitude at point P is due to the superposition of secondary wavelets 

from the two slits. 

 

where ω and k are the angular frequency and wavenumber, respectively. This result 

can be rewritten as 

R = 2A cos[ωt − k(l2 + l1)/2)] cos[k(l2 − l1)/2]. (7.6) 

The line joining P to the mid-point of the slits makes an angle θ with respect to 

the horizontal axis. Since L     a, the lines from S1 and S2 to P can be assumed to 

be parallel and also to make the same angle θ with respect to the horizontal axis. 

Hence 
 

 

 
and so 

l1     L/cos θ     l2 

 

(l2 + l1)    2L/cos θ.  

When the two slits are separated by many wavelengths, which is the case in prac- 

tice, θ is very small [cf. Equation (7.12)] and cos θ 1. Hence, we can write the 

resultant amplitude as 
 

R = 2A cos(ωt − kL) cos(k∆l/2) (7.7) 

where ∆l (l2 l1) is the path difference of the secondary wavelets. The intensity 

I at point P is equal to the square of the resultant amplitude R: 

I = 4A
2
 cos

2
(ωt − kL) cos

2
(k∆l/2). (7.8) 
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This equation describes the instantaneous intensity at P . The variation of the inten- 

sity with time is described by the cos
2
(ωt     kL) term. The frequency of oscillation 

of visible light is of the order of 10
15

 Hz, which is far too high for the human eye 

to follow. Indeed it is too fast for any laboratory apparatus. What we observe is a 

time average of the intensity. Since the time average of cos
2
(ωt kL) over many 

cycles is equal to 1/2, the time average of the intensity is given by 

 

I = Io cos
2
(k∆l/2), (7.9) 

where Io 2A
2
 is the intensity observed at a maximum of the interference pattern. 

The term cos
2
(k∆l/2) shows how the observed intensity varies with the path 

difference ∆l. The intensity is a maximum whenever ∆l is an integral number 

of wavelengths and it is zero whenever ∆l is an odd number of half-wavelengths, 

illustrating the general interference conditions (7.1 and 7.2). We see from Figure 7.4 

that ∆l a sin θ . Substituting for ∆l in Equation (7.9) we obtain 

I(θ) = Io cos
2
(ka sin θ/2). (7.10) 

When θ is small so that sin θ θ , we can write 

I(θ) = Io cos
2
(kaθ/2) 

= Io cos (πaθ/λ) (7.11) 

using k 2π/λ. A plot of I(θ) against θ is shown in Figure 7.5. We see that the 

resulting interference pattern on the screen consists of alternate bright and dark 

interference fringes. 
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Figure 7.5 The interference pattern observed in Young’s double-slit experiment. The light 

intensity I(θ) is plotted as a function of the angle θ shown in Figure 7.4. The small angle 

approximation, sin θ  θ , has been made and the separation of the bright fringes is equal 

to λL/a. If there were no interference, the intensity would be uniform and equal to Io/2 as 

indicated by the horizontal dashed line. 

 

The important parameter that determines the general appearance of the interfer- 

ence pattern is the dimensionless ratio of the slit separation a to the wavelength λ. 
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Intensity maxima occur when 

nλ 
θ = 

a 
, n = 0, ±1, ±2 , . . . ,  (7.12) 

and so the bright fringes occur at distances from the point O given by 
 

λL 
x = Lθ = n 

a 
, n = 0, ±1, ±2 , . . . .  (7.13) 

Similarly, minima occur when 
 

x = 

 

n + 
1 

   
λL

, n = 0, ±1, ±2 , . . . .  (7.14) 
 

The distance between adjacent bright fringes is 
 

xn+1 − xn = 

λL 
(7.15) 

a 

and is independent of the value of n. For example, for values of λ 550 nm, 

L 2.0 m and a 0.5 mm, the fringe separation is 2.2 mm. If there were more 

than a single wavelength in the incident light beam, each wavelength component 

would give rise to a set of bright and dark fringes. However, these would occur 

at different positions to those of the other wavelength components and this would 

cause the interference pattern to become washed out. Consequently we must use 

monochromatic light to obtain a clear set of interference fringes with high visibility . 

We emphasise that there would be no interference pattern if the two sources of 

secondary wavelets S1 and S2 were not coherent. Instead the resultant intensity 

would be uniform across the screen with a value equal to Io/2, as indicated by 

the horizontal dashed line in Figure 7.5. Of course, energy must be conserved, and 

when we have interference there is a redistribution of intensity from the regions of 

destructive interference to those of constructive interference. We also note that the 

phase difference of the secondary wavelets arriving at a point P is much more sensi- 

tive to path difference ∆l than is their amplitudes. A change in ∆l of λ/2 can cause 

the resultant intensity to go from maximum to minimum, while the wave amplitudes 

(   1/l, for a two-dimensional wave) would change by a negligible amount. 

We could ensure that the secondary wavelets from the two slits S1 and S2 are 

coherent, i.e. have a well defined phase relationship, by illuminating them with a 

point source. In practice, however, real sources are not ideal point sources because 

they have a finite width. Such real sources will, in general, consist of many individ- 

ual point sources spread across this finite width. Moreover, these individual point 

sources are not coherent with each other.
1
 For example, the source could be a slit 

in the jacket surrounding a sodium discharge lamp. The light from such a lamp 

comes from excited atoms that decay randomly and independently and therefore 

act as individual point sources that are not coherent with each other. However, 

 
1 This discussion relates to conventional light sources like sodium lamps and not to lasers, which are 

essentially coherent across the width of the light beam. 
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Figure 7.6 An extended source of width w that is used to illuminate the two slits in a 

Young’s double-slit experiment. 

 
we can still obtain an interference pattern with such a source if its spatial extent is 

smaller than a critical value, as we shall now show. Figure 7.6 shows an extended 

source of width w that is used to illuminate the two slits S1 and S2. The slits have a 

separation a and the source is at a distance l from the opaque barrier containing the 

slits. We consider the extended source to be made up of independent point sources 

that are not coherent with each other. Each of these individual point sources will 

produce secondary wavelets at S1 and S2 that have a well defined phase relation- 

ship. Hence, these wavelets will produce an interference pattern on a screen placed 

beyond the slits. However, the interference patterns produced by different point 

sources will be displaced relative to each other by an amount that depends on their 

position in the extended source. This is because the phase relationship between the 

secondary wavelets at S1 and S2 due to a particular point source depends on the 

path difference between that source and the two slits. In turn, the position of say a 

maximum in the interference pattern depends on the phase between these secondary 

wavelets. Clearly, if the range of phase differences between secondary wavelets at 

S1 and S2 arising from different point sources is too large, the interference pattern 

will become washed out. The smallest path difference is zero, which results from a 

point source at the centre of the extended source. (In that case the phase difference 

between the wavelets at S1 and S2 is zero.) The largest path difference will be for 

a point source at the end of the extended source, as illustrated in Figure 7.6, where 

the respective path lengths are l1 and l2. We have 

 
l
2
 = l2

 + (a/2 − w/2)
2
, l

2
 = l2

 + (a/2 + w/2)
2
, 

1 

 

giving, 

2 

 

 

 

l
2
 − l2

 = aw. 
2 1 

 

Since l     a and l      w, 
 

l
2
 − l2

 = (l2 − l1)(l2 + l1)    2l(l2 − l1). 
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Hence, 

(l2 − l1)   
aw 

2l 
. (7.16) 

To obtain a clear interference pattern the range of the phase differences for the 

wavelets produced at S1 and S2 must be sufficiently small. In terms of path 

difference, this means that (l2   l1) must be much less than the wavelength 

λ, i.e. 

and hence, 

aw 

2l  
  λ (7.17) 

 
2lλ 

w . (7.18) 
a 

Thus an extended source of width w behaves like a coherent light source so long 

as Equation (7.18) is satisfied. The extended source subtends an angle θ at each 

slit where 

θ    

Thus, from Equation (7.18), we have 

 
θ    

w 
. (7.19) 

l 
 

 
2λ 

(7.20) 
a 

which gives the maximum divergence angle that the source can have to produce 
clear interference fringes. If, for example, a 0.5 mm, then θ must be much 

less than 10−3
 rad at a wavelength of 500 nm. Hence, if we used a discharge 

lamp that operated at this wavelength and it was placed a distance of 1 m from 

the two slits, we would have to place the lamp behind a slit of width less than 

1 mm. These consideration apply more generally to systems containing many slits. 

For the example of a diffraction grating, a is the distance between the outermost 

slits, i.e. the size of the diffraction grating. Hence, Equation (7.20) relates the size 

of the diffraction grating to the angle subtended at the grating by the extended 

source. 

Interference occurs in many other physical situations as, for example, with sound 

waves. This is illustrated in Figure 7.7, which shows two loudspeakers that are 

connected to the same amplifier. Since the loudspeakers are driven by the same 

amplifier, the sound waves are coherent and will produce an interference pattern. 

The resulting sound intensity is plotted as a function of distance along the line AB 

which is at a large distance from the loudspeakers compared to their separation. If 

we were to move along that line we would hear the sound intensity rise and fall. In 

contrast, there would no interference if the loudspeakers were driven by different 

amplifiers, since there would be nothing to maintain a constant phase relationship 

between the sound waves. This means we would not experience interference effects 

in front of the stage at a rock concert if there were two guitarists using separate 
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Figure 7.7 (Not to scale.) Two loudspeakers connected to the same amplifier produce 

coherent sound waves. These waves superpose to produce an interference pattern along the 

line AB . The intensity of the sound is proportional to the square of the amplitude of the 

superposition and the variation in intensity along the line AB is shown. This line is at a 

large distance from the loudspeakers compared to their separation. 

 
amplifiers even if they were playing the same note. Interference is also exploited in 

a range of practical applications. For example, when a beam of X-rays is shone onto 

a crystal it is found that the intensity of the reflected rays becomes intense at certain 

values of the angle θ that the incident beam makes with the atomic planes of the 

crystal. This occurs because the X-rays are reflected off successive atomic planes 

and if the resultant path difference is equal to an integral number of wavelengths, 

there is constructive interference. The angles for constructive interference are given 

by the Bragg law: 
 

2d sin θ = nλ, n = ±1, ±2 ,.. .   

where d is the separation of the atomic planes and λ is the wavelength. X-ray 

crystallography is widely used to determine the structure of matter and Crick and 

Watson famously got their idea for the double-helix structure of DNA from looking 

at Rosalind Franklin’s X-ray interference patterns from DNA. 

 
7.1.2 Michelson spectral interferometer 

Young’s double-slit experiment is an example of interference by division of 

wavefront , where we take two portions of the wavefront to obtain the two coher- 

ent wave sources. We can also have interference by division of amplitude where 
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the primary wave itself is divided into two parts by, for example, a semi-silvered 

mirror. An important example of division of amplitude is the Michelson spectral 

interferometer . This interferometer provided one of the key experimental observa- 

tions underpinning the theory of relativity. It is also a powerful research tool with 

many applications including the determination of the emission spectra of atoms 

and molecules, i.e. the wavelengths of their emitted radiations. In particular, it 

can do this with very high spectral resolution. The principle of operation of the 

Michelson spectral interferometer is illustrated in Figure 7.8. A beam of light from 

 
 

 

Figure 7.8 Schematic diagram of the Michelson spectral interferometer. 

 
 

a monochromatic source is split into two equal beams by the semi-reflecting front 

face of the beam splitter . The two separate beams travel to mirrors M1 and M2, 

respectively, and then return to the beamsplitter from where they travel along 

the same path to the detector. The presence of the compensator plate ensures 

that the beams transverse the same total thickness of glass in both arms of the 

interferometer. The two superposed beams have the same intensity at the detector 

since each undergoes one transmission and one reflection at the semi-reflecting 

surface of the beamsplitter. Mirror M1 is fixed in position. The position of mirror 

M2 can be adjusted with a very fine micrometer screw. If the path lengths of the 

two beams are the same or are different by an integral number of wavelengths, the 

beams will interfere constructively at the detector and there will be a maximum in 

the detected light intensity. However, if the path lengths are different by an odd 

number of half-wavelengths, there will be destructive interference and the detected 

light intensity will be zero. When the detected light intensity is plotted as a function 

of the displacement x of mirror M2 an interference pattern is obtained, as shown in 

Figure 7.9. The separation of adjacent interference maxima is equal to λ/2 where 

λ is the wavelength and hence the value of λ may be determined. 
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Figure 7.9 The interference pattern observed with a Michelson spectral interferometer. The 

measured light intensity is plotted as a function of the displacement x of the moveable mirror 

M2. The separation of the maxima in the measured intensity is equal to λ/2, where λ is the 

wavelength of the light. 

 
 

7.2 DIFFRACTION 

A wave spreads out from its source becoming a plane wave at large distances, 

as we saw in Section 5.8. Any obstacle in the path of the wave affects the way it 

spreads out; the wave appears to ‘bend’ around the obstacle. Similarly, the wave 

spreads out beyond any aperture that it meets. Such bending or spreading of the 

wave is called diffraction. The effects of diffraction are evident in the shadow of 

an object that is illuminated by a point source. The edges of the shadow are not 

sharp but are blurred due to the bending of the light at the edges of the object. For 

the same reason the letters on a car number plate become blurred when we view 

the car from a distance of more than a few hundred metres or so. The light striking 

our eye bends at the iris so that the image on the retina becomes blurred. On a 

larger scale, waves from the Atlantic Ocean spread out after passing through the 

gap between Gibraltar and Spain. This is visible on satellite images of the Strait 

of Gibraltar, an example of which is shown in Figure 7.10. (This image was taken 

by a satellite of the European Space Agency.) 

We shall see that the degree of spreading of a wave after passing through an 

aperture depends on the ratio of the wavelength λ of the wave to the size d of the 

aperture. The angular width of the spreading is approximately equal to λ/d; the 

bigger this ratio, the greater is the spreading. We begin by discussing diffraction 

at a single slit. This is the archetypal example of diffraction and displays all the 

essential physical principles. 

 

7.2.1 Diffraction at a single slit 

In our discussion of Young’s double-slit experiment, we considered the width 

of each slit to be very narrow. This allowed us to assume that the path lengths 

from all points across a slit to a distant point P were equal. In practice a real 

slit is not arbitrarily narrow but has a finite extent. Hence, the path lengths from 

different points across the slit to the point P will be different and consequently the 

secondary wavelets arriving at P will have a variation in phase. This variation in 

phase gives rise to the diffraction pattern of the slit. 
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Figure 7.10 A satellite image of the Strait of Gibraltar showing the spreading of Atlantic 

Ocean waves after passing through the gap between Spain and Gibraltar. Image courtesy of 

the European Space Agency. 
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Figure 7.11 Diffraction at a single slit. The vertical scale has been enlarged for the sake 

of clarity. A monochromatic plane wave of wavelength λ is incident upon an opaque barrier 

containing a single slit. The slit has a width d and a long length (     d) in the direction 

normal to the page, reducing this to a two-dimensional problem. The resultant amplitude at 

point P is due to the superposition of secondary wavelets from the slit. 

 

Figure 7.11 shows a monochromatic plane wave of wavelength λ that is incident 

on a single slit in an opaque barrier. The slit has width d and a long length (   d) 

in the direction normal to the page, making this a two-dimensional problem. The 

centre of the slit is at x 0. We divide the slit into infinitely narrow strips of 

width dx. Following Huygen’s principle, each of these strips acts as a source of 

secondary wavelets and the superposition of these wavelets gives the resultant 

amplitude at point P . We consider the case in which P is very distant from the 
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slit. Consequently, all the wavelets arriving at P can be assumed to be plane waves 

and to have the same amplitude. In addition, we can assume that the lines joining 

P to all points on the slit make the same angle θ to the horizontal axis. 

The amplitude dR of the wavelet arriving at P from the strip dx at x is pro- 

portional to the width dx of the strip, and its phase depends on the distance of P 

from the strip, i.e. on (l  x sin θ ), where l is the distance of P from the midpoint 

of the slit. Hence dR is given by 

 

dR = αdx cos[ωt − k(l − x sin θ )], (7.21) 

where ω and k are the angular frequency and wavenumber, respectively, and α is 

a constant. The resultant amplitude at P due to the contributions of the secondary 

wavelets from all the strips is 

∫ d/2 

 
  

We can evaluate this integral to obtain 
 

αd 
R = 

(kd/2) sin θ 
sin[(kd/2) sin θ ] cos(ωt − kl). (7.23) 

The instantaneous intensity I at P is equal to the square of the amplitude R and 

thus 

I = α2
d

2
 cos

2
(ωt − kl) 

sin
2
[(kd/2) sin θ ] 

[(kd/2) sin θ ]2    
. (7.24)

 
 

Since the time average over many cycles of cos
2
(ωt kl) is equal to 1/2, the time 

average of the intensity is given by 
 

I(θ) = Io 
sin

2
[(kd/2) sin θ ] 

[(kd/2) sin θ ]2    
, (7.25)

 
 

where Io α
2
d

2
/2 is equal to the maximum intensity of the diffraction pattern. 

This equation describes how an incident plane wave of wavelength λ spreads out 

from a single slit of width d in terms of the angle θ . The resulting diffraction 

pattern is shown in Figure 7.12. This figure is a plot of I(θ) against θ for a value 

of kd/2 = 10π. The function 

sin
2
[(kd/2) sin θ ] 

[(kd/2) sin θ ]2 
=

 

sin
2
 β 

β2 
(7.26) 

 

with β (kd/2) sin θ is the square of a sinc function. It has its maximum value of 

unity when β 0. The maximum intensity Io thus occurs when θ 0. The physical 

interpretation of this is that the secondary wavelets from pairs of strips at positions 

±x, respectively, will be in phase for θ = 0, resulting in maximum intensity. The 

αdx cos[ωt − k(l − x sin θ )]. (7.22) 
−d/2 

R = 
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Figure 7.12 The diffraction pattern of a single slit. The intensity I(θ) is plotted against the 

angle θ that a line joining P to the centre of the slit makes with the horizontal as shown in 

Figure 7.11. The value of λ/d     0.1. The zeros of intensity in the diffraction pattern occur at 

θ         nλ/d, where n        1,    2, . . .  , under the small angle approximation sin θ      θ , which 

is valid in this example. 

 
intensity I(θ) will be zero whenever the numerator of Equation (7.26), sin

2
 β, is 

zero but the denominator, β, is not. The first zeros in the intensity occur when 

β = (kd/2) sin θ = ±π 

and hence, using k = 2π/λ, when 

 
sin θ 

λ 
= ± 

d 
. (7.27) 

Importantly, we see that the degree of spreading depends upon the ratio λ/d. It 

also depends on the wavelength which explains why we can hear sounds around 

a corner but we cannot see around a corner. When λ     d, as in the case of light, 

sin θ is essentially equal to θ , giving the first zeros in the diffraction pattern at 

λ 
θ = ± 

d 
. (7.28) 

In general, zeros in intensity occur when 

λ 
θ = n

d 
,n = ±1, ±2 , . . . .  (7.29) 

These zeros are shown in Figure 7.12 where the small angle approximation can be 

assumed since kd/2 10π, which gives λ/d 0.1. 

The first zeros in intensity occur for values of θ such that the path difference 

between the two ends of the slit is equal to one complete wavelength. We can 

understand this in the following way. Imagine the single slit to be composed of 

two slits, each of width d/2, placed side by side. Then the path difference between 

wavelets from the centres of the two slits is λ/2, which is the condition for destruc- 

tive interference. Similarly, other corresponding pairs of points on the two slits will 

lead to destructive interference. 
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We have considered the case of a plane wave incident upon a single slit. More- 

over, the point P was sufficiently far from the slit that the secondary wavelets had 

become plane waves by the time they reached P . When these conditions are satis- 

fied we have Fraunhofer diffraction. If, however, the source of the primary waves 

or P is so close to the slit that we have to take into account the curvature of the 

incoming or outgoing wavefronts we have Fresnel diffraction. The case of Fresnel 

diffraction is illustrated in Figure 7.13. Although we have an incident plane wave, 

the point P is so close to the slit that we have to take into account the curvature 

of the wavefront converging on P . (For convenience, we take P to be in line with 

the centre of the slit.) Clearly, the path lengths from different points across the slit 

to P will be different. Moreover, the path-length difference s at a distance x from 
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Figure 7.13 A plane wave is incident on a single slit. Point P is so close to the slit that 

the curvature of the wave converging on P has to be taken into account in determining the 

resultant amplitude at that point. This is an example of Fresnel diffraction. 

 
the centre of the slit is not linearly proportional to x. It is easy to show that s is 

given by 
 

x2 

s     
2R

, (7.30) 

when x
2
/R

2
      1. Hence the phase difference θ(x) for a point at x is 

2π x2
 

θ(x)      
λ  2R

, (7.31) 

where λ is the wavelength. The phase difference has a quadratic dependence on 

position x, which is a characteristic of Fresnel diffraction. This is in contrast to 

Fraunhofer diffraction where we found that the path difference is linearly propor- 

tional to x. [The path difference is equal to x sin θ , where θ is the direction of 

the secondary wavelets, cf. Equation (7.21).] There is no sharp division between 

Fraunhofer and Fresnel diffraction, the pattern changes continuously from one to 

the other as the distance from the slit to P reduces. To illustrate the transition 

R 
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Figure 7.14   In Fraunhofer diffraction we require the curvature of the wavefront at a slit to 

be sufficiently large that the wavefront can be considered to be planar, i.e. that the distance 

L is sufficiently large that b λ. 

 
from Fraunhofer to Fresnel diffraction, Figure 7.14 shows a circular wavefront that 

converges on a point P that is at a distance L from the slit. It is easy to show that 

 

d2 

b      
8L 

(7.32) 

for d
2
/L

2
 1, where b is the distance between the circular wavefront and the 

plane of the slit as shown. For Fraunhofer diffraction we require the curvature of 

the wavefront to be sufficiently large that the wavefront can be considered to be 

planar, i.e. that b be much less than the wavelength λ. Hence, we must have 

 

d2 

L      
8λ

. (7.33) 

When L reduces, so that it becomes comparable with d
2
/8λ, we have Fresnel 

diffraction. 

 

7.2.2 Circular apertures and angular resolving power 

A circular aperture will also produce a diffraction pattern. This pattern will, of 

course, have circular symmetry. For a plane wave that falls normally on a small 

circular aperture, the diffraction pattern appears as a central bright disc surrounded 

by a series of bright and dark rings. This central disc is called the Airy disc in 

honour of Sir George Airy, a former Astronomer Royal of England, and contains 

84% of the integrated light intensity. The dark rings correspond to the zeros of 

intensity in the diffraction pattern. For an aperture of diameter d, the first zeros on 

either side of the central maximum occur at angles ±θR, where 

λ 
θR = 1.22 

d 
. (7.34) 
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This equation has the same form as Equation (7.28) but with the multiplying factor 

1.22. The angular diameter of the central bright disc is equal to the angular distance 

between these two zeros on either side of the central maximum, i.e. 2.44λ/d. 

Consequently, when a lens or mirror images a point-like object such as a distant star, 

it does not produce a point-like image even when lens aberrations can be discounted. 

Instead the light is spread out into a diffraction pattern. This has important practical 

consequences for image formation by lenses and mirrors since it limits their ability 

to resolve closely spaced objects, like two stars that are close together in our field 

of view. We are able to just resolve their images if the maximum of the diffraction 

pattern from one object falls at the first minimum of the pattern from the other, 

accordingly to the Rayleigh criterion. This is illustrated in Figure 7.15, which 

shows the two diffraction patterns arising from two point objects. The dotted line 

is the sum of the two diffraction patterns and illustrates that we can just distinguish 

the two diffraction maxima. It follows that we would just be able to distinguish the 

two point images. The angular separation of two objects is the same as the angular 

separation of their images . Hence, two point objects are just resolvable by a lens 

or mirror of diameter d when their angular separation θ satisfies 
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Figure 7.15 Two overlapping diffraction patterns at the image plane of a lens or mirror, 

arising from two point objects. The dotted line is the sum of the two diffraction patterns. 

The Rayleigh criterion states that the images of the two point objects can be just resolved 

when the maximum of one diffraction pattern overlaps the first minimum of the other. This 

is the case shown. 

 
If two objects with a spatial separation b are at a large distance L from a lens 

or mirror, then we can write θ b/L. Hence we can just resolve them if b 

1.22λL/d. For example, if we assume a size of 3 mm for a human pupil and an 

optical wavelength of 550 nm, we have 
 

b λ 550 × 10−9 1 
θ = 

L 
= 1.22 

d 
= 1.22 

3 × 10−3  
≈ 

5000 
.
 

This suggests that we can read a car number plate at a distance of 100 m, assuming 

that we need to resolve features    2 cm apart. In radio astronomy the wavelengths 

of interest are much longer than for visible light. For example, atomic hydrogen 

θ = 1.22 
d 

. 
λ 
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produces what is known as 21 centimetre radiation and this is used extensively 
in radio astronomy. The diameter of the Lovell telescope at Jodrell Bank, UK, is 
76 m. At the wavelength of 21 cm, it has an angular resolution   1/300 for which 

θ 0.2◦. Similar considerations apply to microscopy. In an electron microscope 
the wavelengths associated with the electrons may be 100,000 times shorter than 

for visible light and so sharp images of extremely small objects can be obtained. 

Diffraction also limits the amount of information that can be stored on optical 

recording media like compact discs. There is no point in making the dimensions 

of the pattern printed on the disc smaller than the diffraction limit of the optical 

imaging system that is used to read it. 

 

7.2.3 Double slits of finite width 

We are now in a position to take into account the finite width of the slits in a real 

Young’s double-slit experiment. As for the analysis of diffraction at a single slit, 

we consider each of the two slits to be composed of infinitely narrow strips that 

act as sources of secondary wavelets. Then the resultant amplitude R at a point P 

is the superposition of the secondary wavelets from both slits. This is given by 

∫ −a/2+d/2 

 
 

a/2+d/2 

+ 
a/2−d/2 

αdx cos[ωt − k(l − x sin θ )], (7.36) 

 

where d is the width of each slit and a is their separation, cf. Equation (7.22). 

Evaluating these integrals gives 
 

R = 2αd cos(ωt − kl) 

sin[(kd/2) sin θ ] 
cos[(ka/2) sin θ ]. (7.37) 

(kd/2) sin θ 
 

The resultant intensity is 

 
I(θ) = Io 

 

sin
2
[(kd/2) sin θ ] 2 

[(kd/2) sin θ ]2     
cos [(ka/2) sin θ ], (7.38) 

 

where Io is the maximum intensity of the pattern. This result is the product of 

two functions. The first is the square of a sinc function corresponding to diffrac- 

tion at a single slit, cf. Equation (7.25). The second is the cosine-squared term 

of the double-slit interference pattern, cf. Equation (7.10). These two functions 

are displayed separately in Figure 7.16(b) and (a), respectively. The physical 

interpretation of Equation (7.38) is that the double-slit interference pattern is mod- 

ulated by the intensity pattern due to diffraction of the incoming plane wave at 

each slit. The result of this modulation is shown in Figure 7.16(c), which is the 

interference pattern for two slits of finite width. Both of the above functions, 

i.e. the cosine squared and sinc squared functions, have maxima and minima 

at particular values of θ . In particular, and for the small angle approximation 

−a/2−d/2 

R = αdx cos[ωt − k(l − x sin θ )] 
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Figure 7.16 (a) The cosine squared term appearing in Equation (7.38) corresponding to 

interference fringes in a Young’s double-slit experiment with infinitely narrow slits, cf. 

Equation (7.10). (b) The sinc squared function appearing in Equation (7.38) corresponding 

to diffraction at a single slit, cf. Equation (7.25). (c) The observed interference pattern from 

a Young’s double-slit experiment with slits of finite width; corresponding to the modulation 

of the cosine squared term in (a) by the sinc squared function in (b). The small angle 

approximation, sin θ θ , has been used. 

 
sin θ θ used in Figure 7.16, double-slit interference maxima occur at angles 

given by 
 

nλ 
θ = 

a 
, n = 0, ±1, ±2 , . . . ,  cf. (7.12) 

while zeros in the diffraction pattern occur at angles given by 
 

nλ 
θ = 

d 
,n = 0, ±1, ±2 , . . . .  cf. (7.29) 

Clearly if an interference maximum occurs at a zero in the diffraction pattern, 

that bright fringe will be absent from the observed pattern. In the example shown 

in Figure 7.16 the ratio a : d 4 : 1 and consequently the n   4 bright fringe is 

missing. 

We obtained Equation (7.38) by considering the diffraction pattern observed for 

two slits of finite width. However, it is an example of a more general result: the 

diffraction pattern from a system consisting of any number of slits will always 

have an envelope corresponding to single slit-diffraction modulating the multi-slit 

interference pattern. This occurs, for example, in the case for a diffraction 

grating. 
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PROBLEMS 7 

(Take the velocity of sound in air to be 340 m s−1.) 

7.1 (a) In a Young’s double-slit experiment, it is found that ten bright interference fringes 
span a distance of 1.8 cm on a screen placed 1.0 m away. The separation of the two 
slits is 0.30 mm. Determine the wavelength of the light. (b) Light from a helium-neon 
laser with wavelength 633 nm is incident upon two very narrow slits spaced 0.50 mm 
apart. The viewing screen is placed a distance of 1.5 m beyond the slits. What are the 

distances between (i) the two n = 2 bright fringes and (ii) the two n = 2 dark fringes? 

7.2 In a Young’s double-slit experiment, the angular separation of the interference fringes 

on a distance screen is 0.04◦. What would be the angular separation if the entire 
apparatus were immersed in a liquid of refractive index 1.33? 

7.3 Plane waves of monochromatic light of wavelength 500 nm are incident upon a pair of 
very narrow slits producing an interference pattern on a screen. When one of the slits 
is covered by a thin film of transparent material of refractive index 1.60 the central 
(n 0) bright fringe moves to the position previously occupied by the n   15 bright 
fringe. What is the thickness of the film? 

7.4 (a) Estimate the divergence angle of the sunlight we receive on Earth given that the 
diameter of the Sun is 1.4 106 km and its distance from the Earth is 1.5 108 km. 
(b) In a Young’s double-slit experiment, the slit spacing is 0.75 mm and the wavelength 
of the incident light is 550 nm. What should be the maximum divergence angle of the 
source for the interference fringes to be clearly visible? Compare this value with your 
answer from (a). 

7.5 The two slits in a Young’s double-slit experiment each have a width of 0.06 mm and 
are separated by a distance a. If an n 15 bright fringe of the double-slit interference 
pattern falls at the first minimum of the diffraction pattern due to each slit, what is the 
value of the separation of the slits a? 

7.6 Two loudspeakers are separated by a distance of 1.36 m. They are connected to the 
same amplifier and emit sound waves of frequency 1.0 kHz. How many maxima 
in sound intensity would you hear if you walked in a complete circle around the 
loudspeakers at a large distance from them? Assume that the sound waves are emitted 
isotropically. 

7.7 (a) Monochromatic light is directed into a Michelson spectral interferometer. It is 
observed that 4001 maxima in the detected light intensity span exactly 1.0 mm of mir- 
ror movement. What is the wavelength of the light? (b) Light from a sodium discharge 
lamp is directed into a Michelson spectral interferometer. The light contains two wave- 
length components having wavelengths of 589.0 nm and 589.6 nm, respectively. The 
interferometer is initially set up with its two arms of equal length so that a maximum 
in the detected light is observed. How far must the moveable mirror be moved so that 
the 589.0 nm component produces one more maximum in the detected intensity than 
the 589.6 nm component? 

7.8 A gas cell of length 8.0 cm is inserted into the light path in one of the arms of a 
Michelson spectral inteferometer. Light from a helium-neon laser with wavelength 
633 nm is directed into the interferometer. Initially the gas cell is evacuated of air and 
the interferometer is adjusted for maximum intensity at the detector. Air is then slowly 
leaked into the gas cell until the pressure reaches atmospheric pressure. As this is done 
it is found that the light intensity at the detector passes from maximum to minimum 
intensity and back to maximum intensity exactly 90 times. Use these data to determine 
the refractive index of air at atmospheric pressure. 

7.9 If you clap your hands at the centre of a Roman amphitheatre, you may hear a sound 
similar to that produced by a plucked string. Explain this phenomenon and estimate 
the frequencies involved. 
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7.10 (a) A car is travelling towards you on a long straight road at night. Estimate the 
distance at which you can just resolve its headlights into two separate sources of light. 
Would the light from the two separate headlights produce any interference effects? (b) 
The Hubble Space Telescope has a diameter of 2.4 m. Determine its diffraction-limited 
angular resolution at a wavelength of 550 nm in radians and in degrees. 

7.11  

 

inverted 
image 

 

 

object 
 

The figure illustrates the principle of operation of a pin-hole camera, which produces 
an inverted image of an object at the plane of the film. This image becomes blurred if 
the diameter d of the pin hole is too large or too small. (a) Explain why this blurring 
occurs for both the above cases. (b) The pin hole has an optimum diameter when 

the two effects above give rise to th√e same amount of blurring. Show that for distant 
objects, the optimum value of d ≈ 2.44λl, where λ is the wavelength and l is the 
distance between the pin hole and the plane of the film. (c) Using an appropriate value 

of λ, evaluate the optimum value of d for l = 15 cm. 

plane of film 

pin hole 
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8 
The Dispersion of Waves 

 
In our discussion of waves so far, we have considered the velocity of a wave to be 

independent of its frequency. In some important cases this is true. The velocity of 

electromagnetic waves in a vacuum is independent of frequency. To a very good 

approximation, the velocity of sound waves in air is also independent of frequency. 

This is just as well since otherwise the members of the audience sitting at the back 

of an auditorium would have a very different musical experience to those sitting 

at the front. And, in our discussion of transverse waves on a taut string, we found 

that the velocity of the waves, v     
√

T /µ is independent of frequency. In general, 
however, the velocity of a wave in a medium does depend on its frequency. This is 

called dispersion and the medium in which the wave travels is called a dispersive 

medium. A familiar example of this is the separation of white light into the colours 

of the rainbow by a glass prism. The light is dispersed because the velocity of light 

in glass varies with frequency. In many situations, we do not deal with a single wave 

but rather with a group of waves having different frequencies. The superposition 

of these waves leads to a modulated wave. In a dispersive medium, the individual 

waves in the group travel at different velocities and change their relative positions 

as they propagate. Consequently, the modulation of the wave travels at a velocity, 

called the group velocity , which is different from the velocities of the waves in 

the group. We first consider, in Section 8.1, the superposition of waves and their 

propagation in non-dispersive media. In Section 8.2 we extend our discussion to 

the propagation of waves in dispersive media. 

 

 
8.1 THE SUPERPOSITION OF WAVES IN NON-DISPERSIVE MEDIA 

The travelling wave ψ     A cos(kx     ωt) is described as monochromatic because 

it has a single frequency ω and a single wavelength λ (    2π/k). Moreover, it 

extends to infinity along the x-axis. (In practice this is unrealistic and a real wave 

has a beginning and an end, although its length may be considerable. For example, 

Vibrations and Waves George C. King 
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researchers have used lasers to produce monochromatic light waves many kilome- 

tres long.) A monochromatic wave cannot carry any information since its amplitude 

and frequency do not vary. To send information we need to modulate the wave in 

some way as is done, for example, in the transmission of Morse code. A modulated 

wave consists of the superposition of a group of waves of different frequencies. 

We have already met the superposition of waves in, for example, the formation of 

standing waves. There the waves travelled in opposite directions. Here we consider 

the superposition of waves travelling in the same direction. We shall consider the 

phenomenon of beats and also the amplitude modulation of radio waves where it 

is clearly the intention to transmit information. 

 
8.1.1 Beats 

The simplest superposition we can have consists of two monochromatic waves 
 

ψ1 = A cos(k1x − ω1t), ψ2 = A cos(k2x − ω2t), (8.1) 

that have the same amplitude A but different frequencies ω1 and ω2, respectively. 

In a non-dispersive medium, the two waves travel at the same velocity: 

v = 
ω1 

= 
ω2 

. (8.2) 
k1 k2 

The superposition of the two waves gives 
 

ψ = ψ1 + ψ2 = A cos(k1x − ω1t) + A cos(k2x − ω2t). (8.3) 

Using the identity 

 

 
and letting 

 

 
 

we obtain 

cos(α + β) + cos(α − β) = 2 cos α cos β (8.4) 

 

(α + β) = (k2x − ω2t), (α − β) = (k1x − ω1t) (8.5) 

ψ = 2A cos

 
(k2 − k1) 

x − 
(ω2 − ω1) 

t

 

cos

 
(k2 + k1) 

x − 
(ω2 + ω1) 

t

 

. (8.6) 
 

We consider how ψ varies at a fixed value of position x. This would be the situation, 

for example, where a superposition of two sound waves impinges on our eardrum. 

For convenience we take x = 0, so that Equation (8.6) becomes 

ψ = 2A cos

 
(ω2 − ω1) 

t

 

cos

 
(ω2 + ω1) 

t

 

. (8.7) 
 

The result is the product of two cosine terms with frequencies of (ω2 − ω1)/2 

and (ω2 + ω1)/2, respectively. This is a general result that applies to any two 
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frequencies ω2 and ω1. However, this result is particularly interesting when the 

two frequencies are nearly the same, i.e. ω1 ω2. We then have a wave of fre- 

quency (ω2 ω1)/2 that is multiplied, i.e. modulated, by a term that varies much 

more slowly, since (ω2 ω1)/2 (ω2   ω1)/2. This situation is illustrated by 

Figure 8.1(a) which shows the two monochromatic waves, and Figure 8.1(b) which 

shows their superposition. We see that the waves sometimes add constructively and 

sometimes destructively because of their different frequencies. This phenomenon 

is called beats . The resultant wave is contained within an envelope shown by the 

dotted lines in Figure 8.1(b). The envelope is periodic as given by Equation (8.7) 

with the two dotted lines being defined by 2A cos[(ω2 ω1)t/2]. We can rewrite 

Equation (8.7) in the form 

ψ = A(t) cos ωot, (8.8) 

where ωo = (ω2 + ω1)/2 and the amplitude A(t) is given by 

A(t) = 2A cos 

  
(ω2 − ω1) 

t 

  

. (8.9) 

 

 
ψ1 

t 

(a) 

ψ2 

t 

 

ψ = ψ1  ψ2 

 

(b) t 

 

 

 

A(t)
2
 

 

(c) 
 

t 

 

Figure 8.1   (a) Two monochromatic waves ψ1 and ψ2, having the same amplitude but 

slightly different frequencies. (b) The superposition ψ of the two waves showing the resulting 

beat pattern. (c) The square of the amplitude of the modulation A(t)2, which reaches a 

maximum value twice during each period of the beat pattern. 

 
The wave described by Equation (8.8) is not a true sinusoidal wave since its 

amplitude varies. However, under the condition that ω1 ω2, the variation will 

be slow and there will be many high frequency oscillations within each period of 

the envelope, as in the example of Figure 8.1(b). It is reasonable then to describe 

Equation (8.8) as a sinusoidal wave of frequency ωo, although one with a slowly 

varying amplitude. 

1 beat 
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An example of beats occurs when we simultaneously strike two tuning forks 

that have slightly different frequencies. We hear a note with a well defined pitch 

but with a sound intensity that rises and falls periodically. In this example ψ1 

and ψ2 represent the two sound waves emitted by the tuning forks where each is a 

measure of the pressure variation in the air. ψ is the superposition of the two sound 

waves. The intensity, or loudness, of the sound is proportional to ψ
2
 and hence 

is proportional to A(t)
2
, which is shown in Figure 8.1(c). The frequency of the 

modulation is (ω2    ω1)/2, Equation (8.7). However, A(t)
2
 reaches a maximum 

twice during each period of the modulating term. It follows that the sound will 

reach maximum intensity at twice the frequency of the modulation and so the beat 

frequency is just the difference between the frequencies of the two tuning forks. For 

example, if we had one fork tuned to 439 Hz and the other to 401 Hz, we would 

hear a note of frequency 440 Hz and a beat frequency of 2 Hz. The method of beats 

is commonly used to tune string instruments. A string of the instrument is plucked 

while a tuning fork of the required frequency is struck simultaneously. Beats are 

heard if the two are slightly out of tune. Tuning is accomplished by adjusting the 

tension in the string until the beat frequency reduces to zero. A person can discern 

beats up to a maximum frequency of about 5 – 10 Hz. Above this, the sound is 

heard as two separate notes. 

There are many examples of physical phenomena where two harmonic oscilla- 

tions of slightly different frequency combine together. The system of two pendu- 

lums coupled by a weak spring posseses two normal modes with slightly different 

frequencies. Consequently, the general motion of the system exhibits a pattern of 

beats, cf. Section 4.3. Twin-engined, turbo-prop aeroplanes may also produce beats 

if the two engines run at nearly the same frequency. This produces loud throbbing 

sounds that can lead to passenger sickness. In practice this is avoided by slightly 

changing the frequency of one of the engines. 

 
8.1.2 Amplitude modulation of a radio wave 

Electromagnetic waves are widely used for the purpose of communication as 

in radio transmissions and mobile telephones. One method of radio transmission 

employs amplitude modulation (AM). Here, the amplitude of a sinusoidal electro- 

magnetic wave, called the carrier wave, is varied to carry the required information 

which might be speech or music. The principle of AM is illustrated in Figure 8.2(a). 

Here, the amplitude of the carrier wave of frequency ωc is modulated by a sinusoidal 

wave of much lower frequency ωm. The resultant wave can be represented by 

ψ = (A + B cos ωmt) sin ωct. (8.10) 

B is called the depth of modulation, which must be less than A to avoid distortion 

of the signal at the receiver. Using the trigonometric identity 

sin α cos β = 
1 

[sin(α + β) + sin(α − β)] (8.11) 

we can rewrite Equation (8.10) as 

B 
ψ = A sin ωct + 

2 
[sin(ωc + ωm)t + sin(ωc − ωm)t]. (8.12) 
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Figure 8.2 (a) The principle of AM radio transmission. A carrier wave of frequency ωc is 

modulated by a sinusoidal wave of frequency ωm, where ωm     ωc. The resultant waveform 

ψ is shown for x     0. (b) The frequency spectrum of the modulated carrier wave showing 

the frequency components present. 

 

Inspection of Equation (8.12) shows that there are three frequency components 

present in the modulated wave. These are the carrier frequency ωc and the 

frequencies (ωc ωm) and (ωc ωm). We can represent these components as a 

frequency spectrum as shown in Figure 8.2(b). In this spectrum the heights of the 

lines represent the amplitudes of the frequency components and in this particular 

example, B A/3. Of course a real audio signal contains a continuous range of 

frequencies, typically 10 Hz to 10 kHz, and so ωm will have this range also. (This 

compares with the carrier frequency which is typically 1 MHz, i.e. ωc ωm.) 

Consequently there is a band of frequencies on either side of the central frequency 

ωc, which are called side bands . It follows that adjacent radio stations must have 

carrier frequencies that differ by more than 2ωm. (In more sophisticated AM 

transmission systems, only the frequencies of a single side band are transmitted 

so that more radio stations can fit into the available frequency range.) 

 
8.2 THE DISPERSION OF WAVES 

In a non-dispersive medium, the velocity of a wave is independent of the 

wavenumber k, i.e. v = ω/k = constant, and 

ω = constant × k. 

In a dispersive medium the velocity v      ω/k does depend on the wavenumber k, 

and so also will the frequency ω   vk. The relationship between the frequency 

ω and the wavenumber k is called the dispersion relation of the medium. The 

dispersion relation is determined by the physical properties of the medium. Different 

media will, in general, have different dispersion relations and these will lead to 

different wave behaviours. In Section 8.3 we shall illustrate these different types of 
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behaviour. Here we want to discuss the general case and in particular to illustrate 
the difference between phase velocity and group velocity . For this it will suffice to 
note that in a dispersive medium the frequency ω is a function of the wavenumber 

k: ω = ω(k). 

8.2.1 Phase and group velocities 

We again consider the superposition of two monochromatic waves: 

ψ1 = A cos(k1x − ω1t), ψ2 = A cos(k2x − ω2t), (8.1) 

that have the same amplitude but slightly different frequencies, so that ω1     ω2. 

The analysis is similar to that of Section 8.1.1. The superposition of ψ1 and ψ2 is 

given by the same Equation (8.6) as before: 

ψ = 2A cos

 
(k2 − k1) 

x − 
(ω2 − ω1) 

t

 

cos

 
(k2 + k1) 

x − 
(ω2 + ω1) 

t

 

. (8.6) 
 

The difference here is that the medium is dispersive and so the two waves have 

different velocities given by v1 = ω1/k1 and v2 = ω2/k2, respectively. We let 

ko = 
(k2 + k1)

, ωo = 
(ω2 + ω1) 

 

(8.13) 

where ko and ωo are the mean values of the wave numbers and frequencies, respec- 

tively. Since the differences between ω1 and ω2 and between k1 and k2 are small, 

we write 

(k2 − k1) 
= ∆k, 

(ω2 − ω1) 
= ∆ω. (8.14) 

2 2 

In this case, Equation (8.6) can be written as 

 

 
where 

ψ = A(x, t) cos(kox − ωot) (8.15a) 

 
A(x, t) = 2A cos(x∆k − t∆ω). (8.15b) 

Equation (8.15a) represents a wave that has a frequency ωo, a wavenumber ko and 

velocity v given by 

v 
ωo 

. (8.16) 
ko 

The velocity v is called the wave or phase velocity. The amplitude of the wave 

A(x, t) is modulated according to Equation (8.15b) and this modulation forms an 

envelope that contains the wave. This envelope is represented by the dotted lines in 

Figure (8.3). The envelope also travels forward with the wave but it does so with 

a velocity that, in general, is different from the phase velocity of the wave. A crest 

of the envelope will travel at the envelope velocity, as depicted by the bold dots in 

Figure (8.3). The amplitude of this crest remains constant as the envelope travels 

along, i.e. the crest maintains a constant value of modulation amplitude A(x, t). 
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Figure 8.3 The propagation of the modulated wave ψ in a dispersive medium. ψ is plotted 

against x at successive, equal intervals of time δt. The wave is shown as a solid line and 

is contained within the envelope of the modulation, which is represented by the dotted 

lines. The vertical arrows indicate a particular crest of the wave that travels at the phase 

velocity v. The bold black dots indicate a particular crest of the envelope that travels at the 

group velocity vg. In this example v> vg and so the wave crest moves forward through the 

envelope as the wave propagates, as can be seen from the changing relative positions of the 

bold dots and arrows. 

From Equation (8.15b), the condition A(x, t) = constant, reduces to 

x∆k − t∆ω = constant 

Differentiating this equation with respect to t , we obtain the velocity at which the 

envelope travels: 

v ≡ 
dx 

  
∆ω 

= 
ω2 − ω1 

. (8.17) 
g 

dt ∆k k2 − k1 

This velocity vg is called the group velocity. Since ω is a function of wavenumber 

k in a dispersive medium, we write Equation (8.17) as 

v 
ω(k2) − ω(k1) 

. (8.18)
 

k2 − k1 



dω 
vg = 

dk 
. 

= − 

dk 
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Using Taylor’s theorem, Equation (1.24), we have 

ω(ko ± ∆k) = ω(ko) ± (∆k) 

  
dω 

 

 

dk  k=ko 
2 3 

+ terms proportional to (∆k) , (∆k) , . . .  , (8.19) 

where ∆k   (k2    k1)/2, Equation (8.14). When ∆k is small compared with ko, 

we need only retain linear terms in Equation (8.19). Hence in Equation (8.18), we 

can write 

ω(k2) − ω(k1) = (k2 − k1) 

  
dω 

 

 
 

(8.20) 
dk  k=ko 

and the equation for the group velocity, Equation (8.18), becomes 

v =

 
dω 

 
 

 
. (8.21) 

k=ko 

We see that the group velocity is equal to the derivative of ω with respect to k, 

evaluated at the mean wavenumber ko. 

The difference between phase and group velocity is illustrated by Figure 8.3 

which represents the propagation of the modulated wave ψ, Equation (8.15a), in 

a dispersive medium. The figure shows ψ plotted against x at successive instants 

of time separated by equal time intervals δt. The wave is shown as a solid line 

contained within the envelope of the modulation, which is shown as the dotted 

lines. The vertical arrows indicate a particular crest of the wave which travels at 

the phase velocity v = ωo/ko. The bold black dots indicate a particular crest of the 

envelope which travels at the group velocity, vg (dω/dk)k=ko . In this example 
v> vg and so the wave crest moves forward through the envelope as the modulated 

wave propagates. This can be discerned from the changing relative positions of the 

bold dots and arrows.
1
 

We have obtained expressions for the phase and group velocities using the 

example of the superposition of just two monochromatic waves. These expres- 

sions, however, apply to any group of waves so long as their frequency range is 

narrow compared to their mean frequency. Thus for the general case, we define 

the phase velocity v as 
 

 

and the group velocity vg as 

 

 
 

(8.22) 

 

 

 

(8.23) 
 

A good way to observe the behaviour of a group of waves and to appreciate the 

difference between phase and group velocities is to make water ripples by throwing 
 

1 Figure 8.3 was generated using a spreadsheet program where it is straightforward to change the ratio 

of phase and group velocities. The reader is strongly encouraged to try this exercise. 

v = 
k 

, 
ω 



Worked example 

The yellow light from a sodium lamp has two components with wavelengths 

of 589.00 nm and 589.59 nm. The refractive index n of a particular glass at 

these wavelengths has the values 1.6351 and 1.6350, respectively. Determine 

(i) the phase velocities of the light at these two wavelengths in the glass and 

(ii) the velocity of a narrow pulse of sodium light that is transmitted through 

the glass. 

Solution 

 

(i) Since n = c/v: 

At 589.00 nm, v = c/1.6351 = 0.61158c, and at 589.00 nm, v = 0.61162c. 

(ii) The light pulse travels at the group velocity. From n = c/v: 

dλ 
= 

dn dλ 
= − 

n2 dλ 
= − 

n dλ
.
 

Hence from Equation (8.24) 

dv dv dn c dn v dn 

v = v − λ − g 

  
v dn 

n dλ 

  

= v   1 + 

  
λ dn 

n dλ 

  

. 
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a stone into a still pond. What we observe is a group of ripples expanding outwards. 

For such water waves, the phase velocity is greater than the group velocity. Thus 

each ripple appears at the rear of the envelope of the group, proceeds through it and 

then disappears at the front with a new ripple appearing at the rear, cf. Figure 8.3. 

The expression for the group velocity, Equation (8.23), may be rewritten in 

various different forms. For example, since v = ω/k, Equation (8.22), we have 

dω d(kv) dv dv dλ 

Since k = 2π/λ, 

vg = 
dk 

= 
dk 

= v + k 
dk 

= v + k 
dλ dk 

. 

dλ λ 

and hence 

dk 
= − 

k 
. 

 

dv 
vg = v − λ 

dλ
. (8.24) 

 

Usually dv/dλ is positive and so vg < v. This is called normal dispersion. Anoma- 
lous dispersion occurs when dv/dλ is negative so that vg > v. If there is no 

dispersion, dv/dλ = 0 and the group and phase velocities are equal. 
 



= 

Taking 

v = 
(0.61162 + 0.61158)c 

, 

v   = 0.61160 g c 1 + 

  
2 

589.295 0.0001 

1.63505 0.59 

  

− 

   

= 0.5742c. 

When we measure the velocity of light with experimental methods using 

mechanical choppers, we are in fact measuring the group velocity since 

these methods modulate the light. 

192 The Dispersion of Waves 

 

 

8.3 THE DISPERSION RELATION 

The dispersion relation for a medium describes how the frequency of a wave ω 

depends on the wavenumber k. Various dependencies of ω upon k are shown in 

Figure 8.4. If there is no dispersion a plot of ω against k is a straight line as shown 

by curve (b), corresponding to: 

ω dω 
v = 

k 
= constant, vg = 

dk 
= v. 

w 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.4 Plots of frequency ω against wavenumber k for various dispersion relations, 

ω ω(k). The straight line, curve (b), corresponds to the non-dispersive case. Curve (a) 

corresponds to anomalous dispersion while curve (c) corresponds to normal dispersion, 

where the slope dω/dk is always less than the gradient ω/k at any point on the curve. 

 

In a dispersive medium a plot of ω against k is nonlinear. For example, curve (c), 

for a particular dispersive medium, bends ‘downwards’ as k increases. As illustrated 

by Figure 8.4, the slope dω/dk of this curve at any point, e.g. point P , is always 

less than the gradient ω/k at that point so that the group velocity vg is always 

less than the phase velocity v. This is the case of normal dispersion, cf. Equation 

(8.24). The slope of curve (a), however, bends ‘upwards’ with increasing k and so 

vg is always greater than v. This is the case of anomalous dispersion, cf. Equation 

(8.24). 

(a) 

(b) 

(c) 
P 

0 
k 



= 

= = 

o 

o 

= 
v 

= 
µoε
o 

r r 

g 
dλ 2εr dλ 
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We can apply these considerations to the propagation of electromagnetic waves. 

In vacuum, electromagnetic waves propagate with a velocity 

1 
v = √

εoµo  

= constant, (8.25) 

where εo and µo are the permittivity and permeability of free space, respectively. 

The velocity, which is the velocity of light, is independent of frequency and the 

dispersion relation is linear. Consequently, the phase and group velocities are equal. 

In a dielectric material electromagnetic waves travel with a velocity 

1 
v = √

εµ 
(8.26) 

where ε and µ are the permittivity and permeability of the material, respectively. 

The refractive index n is given by 

n 
c 

,
 µε   

= 
√

µ ε , (8.27) 
 

where εr ε/εo and µr µ/µo are the relative permittivity and permeability of 

the material, respectively. For most materials µr is constant and approximately 

equal to 1, but εr does vary with frequency giving, v constant/
√

εr . We find the 
group velocity of the electromagnetic waves from Equation (8.24) using 

dv dv dεr 
= =

 

− 
1 v 

    
dεr 

,
 

 

to obtain 

dλ dεr dλ 2 εr dλ 

v   = v − λ 
dv 

= v 

  

1 +
 λ dεr  

    

. (8.28) 
 

In a medium for which dεr /dλ < 0, it follows that vg < v and we have normal 

dispersion. In a medium for which dεr /dλ> 0, vg >v and we have anomalous 

dispersion. Dispersion of electromagnetic waves also occurs in the propagation of 

radio waves in the ionosphere. The ionosphere consists of a gas with some of 

the molecules ionised by ultraviolet radiation from the sun. Each singly ionised 

molecule yields a positively charged ion and a free electron. The charged particles 

affect the velocity of electromagnetic waves that pass through the ionosphere and 

the resulting dispersion relation is 

ω
2
 = ω2

 + c2
k

2
 (8.29) 

for frequencies greater than ωo where ωo is a constant called the plasma oscillation 

frequency . From Equation (8.29), the phase velocity is given by 

ω c 

v =  
k  

= ,
(1 − ω2/ω2)

. (8.30) 



× × 

  

k 

  

ρ 

g 
dk o 

2 
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Differentiating Equation (8.29) gives 

2ωdω = c2
2kdk. 

Hence the group velocity is given by 

dω 2 k 
v = = c = c

,

(1 − ω2/ω2). (8.31) 
 

Equation (8.30) shows that the phase velocity exceeds the velocity of light c, which 

appears to violate the special theory of relativity. This theory, however, says that 

a signal cannot propagate at a speed greater than c. Signals travel at the group 

velocity and Equation (8.31) shows that this is always less than c. We see from 

Equations (8.30) and (8.31) that 

v × vg = c2
. (8.32) 

 

 
Worked example 

When a wave is present on the surface of water there are two types of restoring 

force that tend to flatten the surface; these forces are gravity and surface tension. 

The relative strengths of these forces depend upon the wavelength of the waves. 

For waves on deep water, where the wavelength is small compared with the 

depth of the water, the angular frequency ω and wavenumber k are related by 

the dispersion relation 

ω = gk + 
Sk

3
 
, 

ρ 

where g is the acceleration due to gravity, and S and ρ are the density and 

surface tension of water, respectively. Deduce the ratio of the group and phase 

velocities for (i) the limit of short wavelength and (ii) the limit of long wave- 

length. At what wavelength are the two velocities equal? (The density and 

surface tension of water are 1.0 10
3
 kg m−3

 and 7.2   10−2
 N m−1

, respec- 

tively; the acceleration due to gravity is 9.81 m s−2
.) 

Solution 

Since 

ω =

 

gk + 
Sk3     1/2 

ρ 

 
, (8.33) 

ω 
v = 

k 
= 

  
g 

+

 Sk  1/2 

ρ 

 
. (8.34) 

 

(i) In the limit of short wavelength, λ → 0 and k → ∞, and 

Sk 1/2 

v = 

 
ω 

= 
k 

, giving ω = 

  
Sk3   1/2 

 

 ρ 

ω 

. 



Hence, 

vg = 
dk 

= 
2 ρ 

dω 3 Sk 
    1/2 3 

= 
2 

v. 

(ii) In the limit of long wavelength, k → 0, and 

v = 

      g 1/2 
1/2 

k 
giving ω = (gk) . 

Hence, 

v  = 
1   g 

g 
2   k 

      1/2 

= v. 
1 

2 

To find the wavelength at which the two velocities are equal, we have from 

Equation (8.34), 

dω 1  
vg = 

dk 
= 

2ω 

  

g + 
3Sk 

ρ 

2   

= 
2   

gk + 
1 
  

Sk 

ρ 

3     −1/2 

g + 
3Sk 

ρ 

2   

. 

Putting vg = v, using Equation (8.34) for v, and simplifying, we obtain 

  gρ 

S 

  1/2 

k = , 

giving, 

λ = = 2π 
2π 

k 

  
7.2 × 10 −2 

9.81 × 103 

  1/2 

= 1.7 × 10−2
 m. 

For wavelengths much greater than this value, the wave motion is dominated 

by gravity. For wavelengths much less than this, it is dominated by surface 

tension. 
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8.4 WAVE PACKETS 

When we superpose i.e. sum two monochromatic waves with nearly equal fre- 

quencies we obtain a pattern of beats as shown in Figure 8.1. Of course, we can 

have a group of many waves having different frequencies and in most physical 

situations this is usually the case. The different frequencies may be discrete or they 

may cover a continuous range. (We are familiar with the concept of a continuous 

frequency distribution in the case of white light that contains a continuous range of 

frequencies from blue to red light.) Figure 8.5(a) illustrates an important example 

of a continuous frequency distribution that occurs in many physical situations. 

This distribution lies symmetrically about a central frequency ωo and has a width 



= 

≈ 
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Figure 8.5 (a) An important example of a continuous frequency distribution that occurs in 

many physical situations. This distribution lies smoothly and symmetrically about a central 

frequency ωo. The width ∆ω of the distribution is small compared with ωo. (b) The wave 

packet, of temporal width ∆t, resulting from the superposition of the frequency components 

of the distribution in (a). 

 
∆ω that is small compared with ωo. It also has a smooth profile. The result of 

superposing the frequency components of this distribution is shown on a time axis 

in Figure 8.5(b). We obtain a pulse of waves or wave packet that is highly localised 

in time with a width ∆t. The wave packet travels at the group velocity which is 

given by the same equation (8.23), vg dω/dk, that we had for the case of just 

two monochromatic waves. The energy is concentrated around the amplitude maxi- 

mum and travels at the group velocity as does any information carried by the wave 

packet. In Section 8.4.1 we will show that the width ∆ω of the frequency distribu- 

tion and the temporal width ∆t of the wave packet are related by ∆t∆ω      2π. This 

is called the bandwidth theorem. This is a very important and general result that 

applies to a wide range of physical phenomena where there is a disturbance ψ(t) 

that is localised in time, i.e. some sort of wave pulse. This relationship between 

∆t and ∆ω does not depend on the specific shape of ψ(t) so long as it has the 

characteristic that defines a pulse, i.e. that ψ(t) is different from zero only over 

the limited time interval ∆t. It follows that to obtain pulses of shorter duration ∆t, 

we have to increase the range of frequencies ∆ω. 

There are many examples of wave pulses and packets in physical situations. For 

example, narrow pulses of light are passed down optical fibres for communication 

purposes. Higher data transmission rates require pulses of very short duration ∆t. 

Consequently, the sending and receiving equipment needs to operate over corre- 

spondingly high frequency bandwidths. On the research side, scientists are making 

wave packets of light that contain just a few cycles of optical oscillation, cor- 

responding to pulse lengths of femtoseconds (∼10−15
 s). Wave packets also have 

t 

w 



  

= 

= 
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special significance in quantum mechanics. There they are interpreted as probability 

waves that describe the position of a particle. 

 

8.4.1 Formation of a wave packet 

To illustrate the formation of a wave packet we first consider the superposition 
of a group of monochromatic waves having a set of discrete wavenumbers. Each 

wave has the form ψn = an cos(knx − ωnt) and their superposition is given by 

ψ = an cos(knx − ωnt). (8.35) 
n 

 

Figure 8.6(b) shows the superposition of a group of eleven such waves and is a 

snapshot of the resultant wave packet at time t      0. Figure 8.6(a) shows some of 

the individual waves making up the superposition. [For the sake of clarity only 

alternate waves are shown and note that Figure 8(a) and (b) have different vertical 

scales.] These waves have the same amplitude a but their wavenumbers kn range 

from ko − 5δk to ko + 5δk in steps δk where δk  ko. All the individual waves 

are in phase at x = 0 and the amplitude of the superposition at that point is equal 

 

ko  4k 

ko  2k 

ko, wo 

 

ko  k 

 
ko  k 

(a) 

 
 

ψ 

 

x 

 

 

 

x  

(b) 
 

Figure 8.6 (a) Some of the eleven monochromatic waves, contributing to the superposition 

shown in (b). (Only alternate waves are shown for the sake of clarity.) The eleven waves 

have the same amplitude but their wavenumbers increase steadily in small steps δk about 

a mean wavenumber ko. (b) The wavepacket resulting from the superposition of the eleven 

waves. The amplitude of the superposition is 11a at x 0 when all the eleven waves are in 

phase with each other. The wavenumber of the wave is equal to the mean ko of the eleven 

waves. Note that (a) and (b) have different vertical scales. 



= 
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to 11a. As we go away from x 0 in either direction, however, the waves go 

increasingly out of phase and this leads to a reduction in the amplitude of the 

superposition, i.e. the formation of a localised wave packet. Equation (8.35) can 

be recast in the following form: 

ψ = A(x, t) cos(kox − ωot), (8.36) 
 

where  
A(x, t) a 

sin[n(xδk − tδω)/2] 

sin[(xδk − tδω)/2] 

 

 
(8.37) 

and n is the number of waves in the group. In analogy to the case of just two 

monochromatic waves (see Section 8.2.1), the wave travels at the phase velocity 

ωo/ko with a wavenumber equal to the mean ko of the eleven monochromatic waves 

while the wave packet travels at the group velocity dω/dk. 

Suppose now that we have a group of waves that have a continuous distribution 

of wavenumbers. Then, the summation of Equation (8.35) is replaced by an integral 

of the form 

ψ = 

∫ 

a(k) cos(kx − ωt)dk. (8.38) 

Figure 8.7(a) represents such a continuous distribution of wavenumbers, centred 

at wavenumber ko with a width ∆k that is small compared with ko. The wave 

amplitude a(k) in Equation (8.38) is given by 

a(k) 
a, if |k − ko| ≤ ∆k/2 

0, if |k − ko| > ∆k/2, 

and we are assuming that ∆k       ko. The superposition of the corresponding group 

of waves is 

ψ = a 

ko+∆k/2 

ko−∆k/2 
cos(kx − ωt)dk. (8.39) 

Using Taylor’s theorem and assuming that the range of wavenumbers is sufficiently 

small so that we need retain only the linear term, cf. Equation (8.19), we have 
 

ω = ωo + α(k − ko), (8.40) 
 

where ωo = ω(ko) and 

α ≡ 

  
dω 

  

 
 

. (8.41) 
dk  k=ko 

Hence, substituting Equation (8.40) for ω in (kx − ωt): 

kx − ωt = kx − [ωo + α(k − ko)]t = k(x − αt) − βt 

∫ 



≡ − = − − 

ξ1 (x − αt) 
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a(k) 

 

 

 

 

 
(ko   k/2) 

 

 

 

 

 
 

ko 

(a) 

 

 

 

 

 
k 

(ko   k/2) 

 

 

y 

 

      x 

 

 

 

 

 
 

2k 0 2k 

(b) 

 

Figure 8.7 (a) A continuous distribution of wavenumbers, centred at wavenumber ko with 

a width ∆k that is small compared with ko and a constant amplitude a. (b) The wave packet 

that results from the superposition of the continuous distribution in (a). The width of the 

wave packet is taken to be equal to 2π/∆k. 

 

where β ωo αko. We introduce ξ k(x αt)   βt as the new variable of 

integration. Hence 
 

dξ = (x − αt)dk, 

and we can rewrite Equation (8.39) as 

∫ ξ2 cos ξ dξ  

with the range of integration from ξ1 = (ko − ∆k/2)(x − αt) − βt to ξ2 = (ko + 

∆k/2)(x − αt) − βt. Hence, 

a 

ψ = 
(x − αt)

(sin ξ2 − sin ξ1). 

Using the trigonometric identity 

 

sin ξ2 − sin ξ1 = 2 sin [(ξ2 − ξ1)/2] cos [(ξ2 + ξ1)/2], (8.42) 

a 

 

 
k 

    x 

ψ = a 



= 
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we obtain 

 

 
 

where 

 
ψ = A(x, t) cos(kox − ωot) (8.43) 

 
A(x, t) a∆k 

sin[∆k(x − αt)/2] 
, (8.44) 

∆k(x − αt)/2 

cf. Equations (8.36) and (8.37). Equation (8.43) represents a wave of wavenumber 

ko, frequency ωo and phase velocity ko/ωo, that is contained within an envelope 

given by A(x, t). A snapshot of ψ is shown in Figure 8.7(b), for t     0, and we 

can see that its amplitude is localised in time, i.e. we have a wave packet. The 

velocity of the envelope is, i.e. the wave packet, obtained from A(x, t) = constant, 

i.e. (x − αt) = constant, cf. Equation (8.17), giving the familiar result, 

v  = 
dx 

= α ≡ 

  
dω

 

. 
g
 dt dk   k=ko 

We have assumed that the spread in wavenumbers ∆k is small compared with ko so 

that we need only retain the linear term in the expansion of the dispersion relation, 

Equation (8.40). Under this condition, the envelope of the wavepacket retains its 

shape as it propagates.
2
 This shape is found by taking t = 0 in Equation (8.44): 

sin(x∆k/2) 

A(x) = a∆k . (8.45) 
x∆k/2 

The function [sin(x∆k/2)]/(x sin ∆k/2) is the now familiar sinc function. At x = 

0, it has the value unity. It first becomes equal to zero when x∆k/2 = ±π, giving 

 

2π 
x = ± 

∆k 
. (8.46) 

∆k is the width of the wavenumber distribution, see Figure 8.7(a). For a measure 

of the width ∆x of the wave packet we could chose the distance between the first 

two zeros of A(t), i.e. the first two zeros of the sinc function. However, in practice 

it is more usual to take one half of this value, i.e. ∆x      2π/∆k. We thus find that 

the product of the wavenumber spread ∆k and the width ∆x of the resultant wave 

packet is given by 
 

(8.47) 
 

where the symbol ≈ indicates the imprecision in the measure of the wave packet 

width. This is an example of the bandwidth theorem that we introduced in 

Section 8.4. Here it says that the shorter the length of the wave packet, the greater 
 

2 If this condition does not hold, we must retain higher terms in (k ko) in the expansion of the 

dispersion relation, and the shape of the envelope will change as it propagates. 

∆x∆k ≈ 2π 
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is the range of wavenumbers that is necessary to represent it. For a monochromatic 

wave ∆k is zero and so the wave is infinitely long, as we have noted before. We 

can also express the bandwidth theorem in terms of frequency and time. A wave 

packet that is ∆x long and travels at velocity vg     dω/dk takes time ∆t to pass a 

fixed point where 

Hence we can write 

and so 

∆x 
∆t = 

dω/dk 
. (8.48) 

 

∆t∆ω = ∆x∆k, (8.49) 

 

(8.50) 
 

This is the relationship given in Section 8.4. The bandwidth theorem expresses the 

fact that a wave packet (or pulse) of duration ∆t is the superposition of frequency 

components over the range ∆ω and the shorter the duration of the wave packet, 

the wider the range of frequencies required to represent it, cf. Figure 8.5. These 

concepts are closely related to the Heisenberg Uncertainty Principle in quantum 

wave mechanics where particles are described in terms of waves. The position of 

a particle in the one-dimensional case is defined as ‘somewhere’ within a wave 

group of length ∆x. The wavelength λ of a particle is related to its momentum p 

by de Broglie’s relationship 

h 
λ = 

p
, (8.51) 

where h is Planck’s constant. From Equation (8.47) and using λ 2π/k, it readily 

follows that 
 

∆x∆p ≈ h. (8.52) 

This is an expression of the Uncertainty Principle. It says that the wave nature of 

a particle makes it impossible to know, at the same time, both its position and 

momentum beyond the condition imposed by Equation (8.52). 

 
PROBLEMS 8 

8.1 Two laser beams that have nearly the same wavelength can produce a beat frequency 
if they are incident on a photodetector with a sufficiently fast response time. One 
laser has a wavelength of 766.49110 nm while a second laser has a slightly shorter 
wavelength. They produce a beat frequency of 462 MHz. What is the wavelength of 
the second laser? 

8.2 The A and E strings of a violin are tuned to frequencies of 440 Hz and 660 Hz, 
respectively. A musician finds that the E string on her violin is sharp. By playing the 
A and E strings simultaneously she hears a beat frequency of 4 Hz. (a) Why do the 
beats arise? (b) What is the actual frequency of the E string? 

∆t∆ω ≈ 2π. 



= 

    o 

o 

= + 

2 

202 The Dispersion of Waves 
 

8.3 The velocity of a wave pulse on a taut string can be determined by measuring the 
time it takes the pulse to travel the distance between the two fixed ends. Alternatively, 
the velocity of a wave on the string can be determined from a measurement of the 
frequency of the fundamental mode of the vibrating string. Does each of these methods 
determine phase velocity or group velocity? 

8.4 (a) Find the relationship between the group velocity vg and the phase velocity v for 
(i) a medium for which v is inversely proportional to wavelength λ and (ii) a medium 

for which v is proportional to (λ)−1/2. (b) The dispersion relation for electromagnetic 
waves in vacuum is ω ck, where c is the velocity of light. Determine the phase 
and group velocities of such waves, showing that they are equal. (c) The relative 
permittivity εr of an ionised gas is given by 

 

c2     

εr = 
v2

 
ω2 

= 1 − 
ω2 

, 

 

where ωo is the plasma oscillation frequency. Show that this leads to the dispersion 
relation 

 

ω2 = ω2 + c2k2. 

8.5 (a) Calculate (i) the phase velocity and (ii) the group velocity for deep ocean waves 
at a wavelength of 100 m. (b) Determine the minimum value of the phase velocity of 

water waves  on deep water. (The density and surface tension of water are 1.0 × 103 
kg m−3 and 7.2 × 10−2 N m−1, respectively; assume g = 9.81 m s−2.) 

8.6 A rectangular dish containing mercury is connected to the cone of a loudspeaker so that 
when the loudspeaker is driven by an oscillating voltage a standing wave is set up on 
the surface of the mercury. When a beam of light is shone on the surface, the standing 
wave acts like a diffraction grating and the observed diffraction pattern enables the 
spacings of the antinodes of the standing wave to be determined. It is found that the 
spacing of the antinodes for a standing wave of frequency 1.35 kHz is 0.25 mm. (a) 
Use these data to obtain a value for the surface tension S of mercury. Assume the 
dispersion relation 

 

ω = gk + 
Sk3 

, 
ρ 

 

where ρ is the density and assume also that the wavelength is sufficiently small that 
the wave properties are determined by surface tension and not by gravity. (b) What is 
the value of the group velocity? 

(The density of mercury = 13.6 × 103 kg m−3; assume g = 9.81 m s−2.) 

8.7 Cauchy’s formula is an empirical relationship that relates the refractive index n of a 
transparent medium to wavelength λ, where λ is the wavelength of the light in vacuum. 
The formula is n A B/λ2, where A and B are constants for the particular medium. 
(a) Show that the ratio of group and phase velocities at wavelength λ is given by 

 

vg (A − B/λ2) 

v 
= 

(A + B/λ2)
.
 

(b) Evaluate this ratio at a wavelength of 600 nm for a particular type of glass for 

which A = 1.45 and B = 3.6 × 10−14 m2. 
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8.8 When a transverse wave travels down a real wire there are forces acting on each 
portion of the wire in addition to the force resulting from the tension in the wire. An 
equation that gives an improved description of a wave on a real wire is 

∂2y 
 

 

T  
   

∂2y 
 

 
 

 
 

where T is the tension, µ is the mass per unit length and α is a constant. (a) Show 

that y = A cos(ωt − kx) is a solution to this equation subject to the condition 

ω2 = 
T 

k2 + α. 

(b) What is the lowest angular frequency that the wire can support according to this 
condition? (c) Obtain the relationship between the group and phase velocities for waves 
on the wire. 

8.9 An amplifier is used to increase the amplitude of a voltage pulse that has a tempo- 

ral width of 5 10−8 s. Estimate the required frequency bandwidth (in Hz) of the 
amplifier. 

8.10 A free electron laser is a device that can produce a very short pulse of light. If the 

width of the light pulse is 100 fs ( 100   10−15 s) and the central wavelength of the 
pulse is 500 nm, estimate the spread of wavelengths in the light pulse. 

8.11 A group of n monochromatic waves of equal amplitude a have wavenumbers that 
span the range ∆k in steps δk. The superposition of these waves is given by Equations 
(8.36) and (8.37): 

ψ A(x, t) cos(k x ω t), where A(x, t) a 
sin[n(xδk − tδω)/2] 

. 

sin[(xδk − tδω)/2] 

(a) Obtain an expression for A(x, t) for the case where n 2. (b) Consider the situation 
where n becomes very large but the product (n     1)δk     ∆k remains constant. Show 
that for this case, we can write 

 

A(x, t) na 
sin[∆k(x − αt)/2] 

,
 

∆k(x − αt)/2 

where α δω/δk. Compare the expressions from (a) and (b) with Equations (8.15b) 
and (8.44), respectively. 

∂x2 
— αy, 
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Appendix: Solutions 
to Problems 

 

 
SOLUTIONS 1 

1.1 (a) (i) 4.0 s, (ii) π/2 rad s−1
, (iii) 1.23 N m−1

. 

1.2 (a) 1.38 m s−1
, (b) 3.82 10

3
 m s−2

. 
1.3 amax < g, giving νmax    1.1 Hz. 

1.4 (a) Potential energy is 25% of total energy and hence kinetic energy is 75% 

of total energy. (b) (i) Total energy is quadrupled, (ii) maximum velocity is 

doubled and (iii) maximum acceleration is doubled. 

1.5 (a) 0.41 J. (b) x    0.045 cos(23t     2.7)m. 

1.6 For the system of two springs connected in parallel, the force on the 
mass i√s  the sum of the forces due to the separate springs, giving ωa = 
√

2k/m = 

2ωb. For the system of two springs connected in para√llel the tension in both 
 

springs must be the same, giving ωc = 
√

k/2m = ωb/ 2. 1.7 (a) When the test tube is displaced a distance x into the liquid, the restoring 

force due to buoyancy is −Aρgx. Hence, equation of motion is 

d
2
x 

m 
dt 2 

= −Aρgx. 

This is SHM with frequency ω 
√

Aρg/m. 1 

(b) F = −Aρgx, giving U = 
¸ x 

Aρgxrdxr = Aρgx
2
. 

 
Hence, E = mv

2
 

2 
Aρgx

2
, where v is the velocity of the test tube. 

2 
1.8 We denote the fundamental quantities mass, length and time by M, L and T, 

respectively. Since the dimensions of g are L T−2
 we have, 

T ≡ Mα
L

β
 [LT−2

]
γ
 . 
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The dimensions of both sides of this equation must be the same and equating 

indices of M, L and T we obtain 

α = 0,β + γ = 0, −2γ = 1, 

giving, T ∝ 
√

l/g. 

1.9 Starting from Equation (1.36), obtain: (a) 1.81 × 10−2
 m s−1

, (b) 0.43 s. 
1.10 Couple acting on rod = −kL sin θ × L cos θ = −kL

2
θ for small θ . Hence, 

d
2
θ 2 

I 
dt 2 

= −kL θ . 
(a) F 

dU
 

 
 

6a 12b 
 

  

1.11  = −  
dx 

= − 
x7 

+ 
x13 

. 

At equilibrium, F 0, giving xo (2b/a)
1/6

. 

(b) For displacement ∆x from equilibrium, Taylor’s theorem gives 

F (xo + ∆x) = F (xo) + ∆x 

  
dF 

 

 + · · ·  · 
dx 

F (xo) = 0, and  

  
dF 

 

 

x=xo 

42a 156b 
= − . 

 

  
 

Hence, neglecting higher terms, 
dx   x=xo 

8 14 

F (xo + ∆x) = −36a(a/2b)
4/3

∆x. 

This gives SHM with frequency 
√

k/m where m is reduced mass and 

k = −36a(a/2b)
4/3

. 

1.12 (a) Consider an elemental length dl of spring at a distance l from the support. 

Mass of element = mdl/lo where lo is the equilibrium length of the spring. 

Velocity of element = vl/ lo. 

Hence kinetic energy of spring 
1 mv 

= 
2 3

 

 
2 l0 

 
0 

 
l
2
d 

1 2 

l = 
6 

mv . 

Kinetic energy of mass M   1/2Mv
2
 and potential energy of extended 

spring 1/2kx
2
. Hence the total energy of the system (i.e. of spring plus 

mass M) is 

E = 
1 

(M + m/3)v
2
 + 

1 
kx

2
. 

 

(b) Since the total energy E of the system is conserved, 
dE 

= 0, from 
 

dv 
dt 

which it follows that (M + m/3) 
dt 

= −kx. This is SHM with ω = 

k/(M + m/3). 

1.13 (a) From conservation of energy, 

1 
mv

2
 + U(x) = constant = U(A) and hence, 

v = 
√

2[U(A) − U(x)]/m. 

x x o o 



∫ 

= −   
  ωot

=

  =0  o 

= 

√
(1 − U(x)/U(A))

.
 

,
 m   

∫ 1  
     Adξ  

This gives b = 2m g/spring extension. 

2U(A) 
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(b) From v = dx/dt, dt = dx/v and hence 

period T = 

period 

dt = 2 

A
 dx 

4 
−A 

A
 dx 

for symmetric potential 
0 v 

,
 m 

∫ A
 dx  

(c) For U(x) = αx
n
 and letting ξ = x/A, obtain 

 

T = 4 
2αAn 

1 

0 
√

[1 − ξn] 

= 
A(n/2)−1 

× (factor independent of A). 

Hence, for n = 2 : T is independent of amplitude A, 

for n = 4 : T ∝ 1/A, etc. 

 

SOLUTIONS 2 

2.1 We require the con,dition of critical damping for which b/2m = ωo = 
√

k/m. 

Hence b = 64 kg s−1
. 

2.2 Using Equation (2.9) and γ = b/m, obtain 

b = (2m/T )ln(1/0.90) = 0.042 kg s−1
, taking T = 2.5 s. 

Hence, damping force = −0.042v N, where v is the velocity. 

γ = 0.084 s−1
. 

2.3 Using A(t) A  exp(  γt/2) and Q ω /γ , obtain Q  . 
2ln[A0/A(t)] 

Inspection of graph shows 20 complete cycles of oscillation take 600 s and 

amplitude falls by a factor of approximately 2.8 during this time. Using ωo = 

2π/T and with t = 20T , 

Q 
2π × 20T 

2T ln(2.8) 
≈ 60. 

 

2.4 Using Equation (2.18): 
 

E(t = 10T) = Eo exp(−10γT ) = Eo/2, giving exp(−10γT ) = 1/2. 

E(t = 50T) = Eo exp(−50γT ) = Eo exp(−10γT )
5
 = Eo(1/2)

5
. 

Hence, energy after 50 cycles is reduced by a factor of 32. 

2.5 (a) Q-values: 314, 10.5 and 3.14, respectively. 

ω-values: 3.142, 3.138 and 3.102, respectively, which do not change appre- 

ciably. 

∫ 

=
v
 

∫ 

= 4 
0 



— −   
= − 

∫ 

× 

  

stored energy Q 
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(c) Using 

 

 
 

and 

 
x = A exp(−γ t/2) + Bt exp(−γ t/2) 

 
dx 

dt  
= exp(−γ t/2)[B − γ Bt/2 − γ A/2] 

with initial conditions at t = 0 : x = 10 and dx/dt = 0, obtain 

x = 10 exp(−πt)(1 + πt), since γ = 2ωo = 2π. 

2.6 Use Equations (2.6) and (2.21) to obtain ω ωo(1 1/4Q
2
)
1/2

 and the 

approximation (1 α)
1/2

 1 α/2 for α 1. 

2.7 For pendulums we have 
 

d
2
x dx mg 

m 
dt 2 

+ b 
dt 

+ 

Since A(t) = A0exp( − b/2m)t, 

ln[A(t)/A0]brass 

l   
= 0, where b is a constant. 

 
ρalum. 

 
 

ln[A(t)/A0]alum. 
= 

ρbrass 
, where ρ is the density. 

Hence, ln[A(t)/A0]brass = ln(0.5) 
2.7 

, and the amplitude of the brass pendulum 
 

is reduced by a factor of 0.80. 
8.5 

2.8 (a) Energy loss per cycle = 
Ke

2
A

2
ω

4
 

T
 

 
 

c3 
0
 

sin
2
 ωtdt . 

(b) Use 
energy loss per cycle 

= 
2π

.
 

(c) η ≡ 1/γ = Q/ω = mcλ
2
/Ke

2
4π2

. For λ = 500 nm,η ≈ 1 × 10−8
 s. 

 
SOLUTIONS 3 

3.1 Use Equations (3.18) and (3.12). 

(a) 0.013 m, 0.58◦, (b) 0.13 m, 90◦, (c) 5.2 10−4
 m, 179◦. 

3.2 Follow the hints to obtain 

a 

A = 
(1 + 1/u4 − 2/u2 + 1/u2Q2)1/2 

.
 

For A to be a maximum, the denominator must be a minimum. 

3.3 (a) 
ωo − ωmax 

ωo 
= 1 − 

   1   1/2 

1 − 
2Q2

 

   1 2 

  
4Q2  

for 2Q   1. Answer: 0.25%. 

(b) Similarly,
 Amax − A(ωo)

 
1
 for 4Q

2
      1. Answer: 0.125%. 

A(ωo) 8Q2 



= 
= = = 

= =  =0
  o 

  = 
= 

= 
o 

o 

width = 2γ = γ 
√

3 = 
3 

Q 

g 
which is equal to 0.019 rad s−1

. 
l 
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3.4 Close to the resonance frequency and for the given parameters, 

50 

P (ω) = 
[(ω − 100)2/4] + 1 

W.
 

3.5 (a) 398 Hz. 

(b) At resonance frequency, impedance of circuit = R giving I0 = 0.2 A. 

3.6 e
iπ/2

     i  and hence i
i
      e−π/2

     0.208. 

3.7 dz/dt   iωz, where the factor i implies a phase difference of π/2 between 

z and dz/dt and indeed between x and dx/dt . The sign of the phase shift 

shows that dx/dt is in advance of x. 

3.8 (a) When the pendulum mass is at a distance x from its equilibrium position 

and the point of suspension is at a distance ξ from its equilibrium position, 

the restoring force on the mass is 
 

−mg sin[(x − ξ)/l] = −mg(x − a cos ωt)/ l. 

Using the small-angle approximation, this leads to the equation of motion: 
 

d
2
x dx 2 2 

m 
dt 2 

+ b 
dt 

+ mωo x = mωo a cos ωt 

which is the real part of the complex equation 
 

d
2
z dz 2 

 
  

 
2 iωt 

m 
dt 2 

+ b 
dt 

+ mωo z = mωo ae . 

3.9 (a)  Using  A(t) A  e−γ t/2
  and  Q ω  /γ  obtain  Q 

nπ
 

ln[A0/A(t)] 

 

where 

n is the number of complete cycles in time t . 

Hence Q 75π. 

(b) Resonance amplitude Qa 0.12 m. 

(c) Starting with: 
 

ω2 
A(ω) a 

o
 , 

[(ω2 − ω2)2 + ω2γ 2]1/2 

half height points will occur at frequencies where 
 

[(ω
2
 − ω2

)
2
 + ω2

γ 
2
]
1/2

 = 2[ω
2
γ 

2
]
1/2

. 
o o 

 

Hence, 
 

[(ωo − ω)(ωo + ω)]
2
 + ω2

γ 
2
 = 4ω

2
γ 

2
. 

Letting  ωo − ω = ∆ω  and  making  the  appro√ximation  that  ω = ωo  near 

to  the  resonance  freque√ncy,,  obtain  ∆ω = γ    3/2  and  hence  resonance 
 

  



= 
o 

o 

∫ 
o 2 

1 2 

h = rT /T 

= 

2 o 

4 o 

2 2 

0 

1 2 2 
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3.10 (a) (iii) 

E = 
1 

mA
2
ω

2
 sin

2
(ωt − δ) + 

1 
kA

2
 cos

2
(ωt − δ) 

  

2 2 
1 2 2 2 2 2 

= 
2 

mA [ω sin (ωt − δ) + ωo cos (ωt − δ)]. 
 

(b) Differentiate E with respect to t and equate the result to zero to obtain 

ω = ωo when E = 
1 

mA
2
ω

2
 where A is the amplitude at resonance. 

 

(c) 
K 

= 
1 

. 
  

E 1 + (ωo/ω)2 

(d) E = K + U = 
1 

mA
2
(ω

2
 + ω2

). 

Then,  substitute  for  A 
  F0/m 

, cf.  Equation 
[(ω2 − ω2)2 + ω2b2/m2]1/2 

 

3.11  

(3.18). 
 

(a) Energy loss/cycle = bv
2
 

 
 

T 

sin
2
(ωt − δ)dt = 

 
bv

2
T 

2 

 
= πbA ω. 

(b) Recall that energy of a simple harmonic oscillator = 
1 

mω
2
A

2
. 

 

2 
(c) Take ω = ωo at resonance. 

3.12 Total energy dissipated Mgh, where M is mass of winding weight and 

is the distance it falls in 8 days. Total number of cycles where 

T r = 8 days and T = 2π
√

l/g is the period of the pendulum. Stored energy = 
mgA /l. 

2 

 
Using 

energy dissipated/cycle 

stored energy 
=

 

2π 

Q 
, obtain Q = 

πmA
2
T r 

MlhT 
70. 

 

 

 
SOLUTIONS 4 

4.1 (a)  ω1 = 5.72 rad s−1
 and ω2 = 5.99 rad s−1

. 

(b) Using xa = A cos
 (ω2 − ω1)t 

cos
 (ω2 + ω1)t 

, we have a high frequency 

oscillation whose amplitude is modulated at the lower frequency 
(ω2 − ω1)/2. Amplitude  becomes zero after  one  quarter of the  lower 

frequency, cf. Figure 4.8, = 
1 2π 

= 11.6 s. 
 

4.2 (a) At time t = 0, xa = 
4 (ω2 − ω1)/2 

/  (C1 + C2), xb = 1/  (C1 − C2) . Hence, C1 = 10 

mm, C2 = 0 mm. 

(b) C1 = 0 mm, C2 = 10 mm, (ii) C1 = 10 mm, C2 = 10 mm, (iii) C1 = 15 

mm, C2 = 5 mm. 

4.3 q1 = (xa + xb) with ω1 = 
   

k/m, q2 = (xb − xa) with ω2 = 
   
3k/m. 

√ √ 



, 

m 

= − 
= − 

− 

= = 

= = − 

1 1 
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4.4 Energy   of   a   simple   harmonic   oscillator = (1/2)mω
2
(amplitude)

2
.   In 

this   case    ω = (ω2 + ω1)/2    and    amplitude = A cos [(ω2 − ω1)t]/2    or 

A sin[(ω2 − ω1)t]/2. Frequency of exchange of energy = (ω2 − ω1). 

4.5 (a) Tensions in upper and lower strings are 2mg and mg , respectively, and 

are assumed to be constant during oscillations. 

Take sin θ1 = x1/l and sin θ2 = (x2 − x1)/ l. 
d

2
x1 2mg mg 

Then, m 
dt 2   

=− 
l   

x1 + 
l 

(x2 − x1), etc. 

(b) B/A = 1 ± 
√

2 for ω =    (2 ± 
√

2)g/ l, respectively. 

(c) 1.1 s, 2.6 s and 2.0 s, respectively. 

4.6 (a) The centre of mass of the system remains stationary during the vibrations. 

In the symmetric-stretch mode the central mass also remains stationary. 

The other two masses vibrate against the central mass (moving in opposite 

directions) at the same frequency which is that of a mass on a spring 

of spring constant k, i.e. 
√

k/m. 
(b) The tensions in the left-hand and right-hand springs are T1    k(x2     x1) 

and T2 k(x3   x2), respectively. This leads to the stated equations of 

motion. 

(c) Assuming solutions of the form of normal coordinates, i.e. x1 = 
A cos ωt, x2 = B cos ωt and x3 = C cos ωt, the equations of motion lead 

to A(ω
2
 − ω2

) = C(ω
2
 − ω2

). 
The solutions for ω of this equation give the normal frequencies: 

(i) ω = ω1 = 
√

k/m, the first normal mode frequency; 

(ii) A = C gives the second normal mode frequency 

ω2 = 
√

k(2 m + M)/Mn. 

(d) Ratio
 ω2 

= 

,
 2m 

+ 1 = 1.91 which compares with the value of 7/4 = 

1. 
ω1 M 

75 from the text. 

4.7 (a) Letting the downward displacements of the upper and lower masses be 

x1 and x2, respectively, the tensions in the upper and lower springs are 

4kx1 and k(x2   x1), respectively. This leads to the following equations 

of motion: 

d
2
x1 d

2
x2 

3m 
dt 2   

+ 5kx1 − kx2 = 0; m 
dt 2 

− kx1 + kx2 = 0. 

Assuming  solutions  of  the  form,  x1 = Ae
iωt

 , x2√= Be
iωt

   and  solving 
 

resulting equations for ω gives normal frequencies 2k/m and 
√

2k/3m. 

(b) For ω 
√

2k/m, B A. This means that at any instance, the masses 

are equidistant from their equilibrium positions and are on opposite sides 

of them. For ω 
√

2k/3m, B 3A. At any instance, the masses are both 
either above or below their equilibrium positions, the displacement of the 

lower mass being three times that of the higher mass. 



− 

− = − 
= = 

= = = 

ω = k  /M B ω =1 

o o 

o o 

o o o 

equation for ω gives the normal frequencies 
√

2k/m and (2 ± 
√

2)k/m. 

o 
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4.8 There are five normal modes, as illustrated. 
 

 

 

 

 

 

4.9 (a) For downward displacements x1 of mass M and x2 of mass m, tensions in 

the top and bottom springs are k1x1 and k2(x2      x1), respectively, leading 

to the stated equations of motion. 
(c) Substituting 

√ 
in equation for gives the desired result. 

√
k1/M is, of course, the resonance frequency of a mass M connected to 

a spring of spring constant k1. 

4.10 (a) From  left  to  right,  the  tensions  in  the  springs  are  T1 kx1, T2 

k(x2 x1), T3 k(x3 x2), etc. 

This leads to equations of motion, 

 
d

2
x1 

m 
dt 2   

= −2kx1 + kx2, etc. 

Use of usual substitutions, e.g., x1 A cos ωt, x2 B cos ωt and x3 

C cos ωt, leads to: 

 
(2ω

2
 − ω2

), −ω
2
, 0 

 

  

  
A 

 

 

−ω
2
, (2ω

2
 − ω2

), −ω
2
   B  = 0 

  

where ωo = 
√

k/m. For non-zero solutions we require the determinant 
to   vanish,   giving   (2ω

2
 − ω2

)(ω
4
 − 4ω

2
ω

2
 + 2ω

2
) = 0,.   Solving   this 

C 0, −ω
2
, (2ω

2
 − ω2

) 

o o 



− = − 

= 
× × × × 

1 2 3 

− 

— 
a2

 

= A exp 
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(b) For ω = 
√

2k/m, A = −C, B = 0. 

For ω = 

,

(2 + 
√

2)k/m, A = C, B = −
√

2A. 

For ω = 

,

(2 − 
√

2)k/m, A = C, B = 
√

2A. 

SOLUTIONS 5 

5.1 Amplitude = 15 mm, wavelength = 8π mm, frequency = 11.9 Hz and 

velocity = 300 mm s−1
. The wave travels in the negative x-direction. 

5.2 Amplitude A = 0.15 m, ω = 20π rad s−1
, λ = 5.0 m, and k = 2π/5. Cosine 

solution   is   the   appropriate   one,   since   displacement = A   at   x = 0, 

t = 0. Wave travels in the positive x-direction. Hence equation is y = 
0.15 cos(0.4πx − 20πt) m. 

5.3 (a) (iii) Make use of T = λ/v. (iv) Make use of k = 2π/λ, ω = 2πν and 
λν = v. 

ω
 

(b) v = 
(k

2
 + k2

 + k2
)1/2 

.
 

5.4 Make use of trignometric relations 
 

cos(α − β) = cos α cos β + sin α sin β 

sin(α − β) = sin α cos β − cos α sin β. 

(a) A cos(ωt kx) A cos(kx ωt), i.e. no difference between the waves 

they describe. 

(b) A sin(ωt − kx) = −A sin(kx − ωt) = A sin(ωt − kx ± π), i.e. a phase 

difference of ±π between the waves. 

5.5  
 

y(x + δx, t + δt) = A exp 

 
 

    
[x + δx − v(t + δt)]

2
 

 

    
[x − vt]

2
 
 

 

 
 

5.6 (a) (i) 2.0 10
5
 Hz, (ii) 6.0 10

14
 Hz, (iii) 3.0 10

18
 Hz, (iv) 1.0 10

8
 

Hz, (v) 68 kHz. (b) 17 m and 2.3 cm, respectively. λ440 0.77 m, a typical 

size of a musical instrument. 

5.7 (a) We denote the fundamental quantities mass, length and time by M, L and 

T, respectively. Since the dimensions of v are LT−1
 we have, 

[LT−1
] ≡ Mα

L
β
[MLT−2

]
γ
 . 

a2 

  

, since vδt = δx. 



, 

√
yMg/Lµ, where µ = 

√
M/L. 

Hence v(y) =  gy. 

,

=

 

2 

× 

= ∝ 

= = 

× = × 

ζ 0.125/0.752 

√
gy 

= 2 , 
g 
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Equating indices of M, L and T we obtain 

α + γ  = 0,  β + γ  = 1,  γ  = 1/2,  giving v ∝ 
,

T L/M. 

(b) The string with the largest wave velocity will be the thinnest string. 

5.8 (a) (i) Using Equation (5.32) find wave velocity = 50 m s−1
. 

(ii) Describing the wave as for example, y = A sin(ωt − kx), the maxi- 

mum value of ∂y/∂t = ωA = 2πνA = 2.4 m s−1
. 

(b) Wave velocity v = 
S 

= 

,
 2.5/0.75   

= 3.9 m s−1
. 

5.9 (a) At position y, tension T (y) in rope = yMg/L, giving velocity v(y) = 
 

 

(b) The time it takes the wave to travel a distance δy at y is 
 

δy δy 
δt = 

v(y) 
= √

gy 
.
 

Hence time taken to travel from the bottom to the top of the rope is 

∫ L   dy 
, 

L 

 

 

and time for the return trip 4 
L 

which is 2.0 s. 
g 

5.10 (a) Using Equations (5.44) and (5.32), 
 

P  = 
1 

µω
2
A

2
,

T /µ which gives P  = 60 W. 

(b) (i) If frequency is doubled, power must increase by a factor of 4 to 

240 W. 

(ii) If amplitude is halved, power decreases by a factor of 4 to 15 W. 

5.11 (a) I2 I1(r1/r2)
2
, since intensity 1/r

2
. 

(b) 5.0 m. 

5.12 Total surface area of sphere of radius 1.5 10
11

 m 4π(1.5 10
11

)
2
 m

2
. 

4 10
26

 

Hence, solar power per square metre on Earth ≈ 
4π(1.5 × 1011)2 

≈ 1.4 kW. 

Solar power per square metre on Jupiter ≈ 1.4/5
2
 kW ≈ 56 W. 

5.13 (a) From Equations (5.32) and (5.6) obtain λ2/λ1 
√

µ1/µ2,  giving  λ2 

12.5 cm. 

Using Equation (5.54), find A2 = 2.0 cm. 

(b)  Using  Equation  (5.55),  find  B1/A1 = −1/3,  and  hence  the  fraction  of 

power reflected at the boundary = 1/9. 

0 



   

= 

− 

 

    

= = 

    

= 
= = 

is the wavelength of the light in the 

∂t2  
= 

m a 
− 

∂t2  
= 

m δx 
−
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5.14 (a) Using Equation (5.52) and the relationship k ∝ n, obtain ratio of reflected 

to incident amplitudes = 
B1 

= 
n1 − n2 

. 

A1 n1 + n2    2 

Hence, the fraction of intensity reflected = 

(b) Require a thickness of λ/4, where λ 

n1 − n2 

n1 + n2 
= 0.04. 

MgF2 coating. λMgF 
  nair 1.0 

= λair = 550 = 396 nm. 
2
 nMgF 1.39 

Hence, required thickness 99 nm. 

(c) For maximum reflection the wave reflected at the glass surface should 
reinforce the wave reflected at the MgF2 surface which occurs when the 

thickness of the MgF2 coating is λMgF2 
/2 = 198 nm. 

5.15 (a) Equation of motion of central mass, is 

∂
2
yr 

m 
∂t2 

= −T sin θ1 − T sin θ2  −T 
(yr − yr−1) 

T
 

a 

 

(yr − yr+1) 
. 

a 

∂
2
yr T  

   
(yr+1 − yr ) 

 

(yr − yr−1) 
 
 

 

 

∂
2
y T  

   
y(x + δx) − y(x) y(x) − y(x − δx) 

 
 

 

 

Applying Taylor expansions to the right-hand side of the equation gives, 
 

∂y 1 
2 ∂

2
y 

 
 

 
∂y 1 2 ∂

2
y  

 
 

 
∂

2
y T δx 

∂x 
+ 

2 
(δx)  ∂x2 δx 

∂x 
− 

2 
(δx) ∂x2 T ∂

2
y 

∂t2 
= 

m  

∂
2
y 

 
 

T ∂
2
y 

δx 
−

 δx  = 
m

δx 
∂x2 

Hence 
∂t2  

= 
µ ∂x2 

, where µ = m/δx. 

(Note: As δx → 0, δm → 0 so that µ remains finite.) 

 
SOLUTIONS 6 

6.1 (a) v = 44.3 m s−1
, λ = 1.0 m and ν = 44.3 Hz. 

(b) Maximum value of 
∂y 

Aω 8.35 m s−1
. 

∂t 

Maximum value of 

6.2 (a) λ = 0.27 m. 

∂
2
y 

 
 

∂t2 
= Aω

2
 = 2.32 × 10

3
 m s−2

. 

(b) L λ/2 0.135 m. 

(c) Same frequency, 262 Hz, but λair 1.3 m, since velocities in wire and 

air are different. 

6.3 (a)  (n + 1)λn+1 = nλn = 2L. 

Hence, n = 4,n + 1 = 5,L = 1.1 m. 

δx 

a 

    

Hence, . 

(b) . 

2 

   



= = 
× = 

= = 
= − + 
= − 

+ + − = 

   

them. 

≈ 
= 

= = 

Hence, n 
1

 
log 2 

ν

2 

ν

1 

2L µ 

2L µ 

≤ log , giving n = 9 complete octaves for ν1 = 
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(b) Separation   of   cold   spots = λ/2,   giving   ν = 3 × 10
10

   Hz   for   c = 

3 × 10
8
 m s−1

. 

6.4 Make use of cos(α β) cos(α β) 2 cos α cos β. 

Minimum amplitude  (1  R)A at node of 2RA cos ωt cos kx. 

Maximum amplitude (1 R)A 2AR at antinode of 2RA cos ωt cos kx. 

6.5 (a) ν2 880 Hz, ν3 1320 Hz; velocity remains the same. 

(b) Number of harmonics n 440 < 15 000, giving n 34. 

(c) From Equations (5.6) and (6.12) obtain, L2 L1ν1/ν2 26.9 cm and so 

string should be fingered at 5.1 cm from the end of the string. 

6.6 (a) One octave corresponds to a factor of 2 increase in frequency and n 

octaves correspond to a factor of 2
n
. For frequency range ν1 to ν2, 

ν2/ν1 = 2n
.         

20 Hz and ν2 = 15 kHz. 

(b) ν1 = 2 × 10
5
 Hz, ν2 = E/h = 2.4 × 10

20
 Hz, giving 50 octaves between 

6.7 From Equations (5.6) and (6.12) we have ν =
 1 

,
 T 

. 

 

δν dν ν δν 1 δT 

δT  
   

dT 
= 

2T 
, giving ν 

= 
2 T 

.
 

6.8 (a) From ν =
 1 

,
 T 

and µ = πρ(d/2)
2
, where ρ is density of material, 

obtain d2 d1ν1/ν2, giving d2 1.2 mm. 
(b) Using Equation (6.18) obtain total force on neck 600 N for six strings. 

(c) From above, d2 d1

√
ρ1/ρ2, giving a diameter of 0.73 mm for nylon 

string. 
6.9  M d

2
y1 

 
 

  y1   (y2 − y1) 

(a) 
3 dt 2  

= −T sin θ1 + T sin θ2 = −T 
L/4 

+ T , etc. 
L/4 

Assuming y1 = A cos ωt, y2 = B cos ωt and y3 = C cos ωt, obtain 

A(ω
2
 − 2α) + Bα = 0, 

Aα + (ω2
 − 2α)B + Cα = 0, 

Bα + C(ω
2
 − 2α) = 0, 

where α = 12T /LM. Hence, 

 
(ω

2
 − 2α), α, 0 

 

  
A 

 

 α, (ω − 2α), α 
2

 
  B  = 0 

 

  

For non-zero solutions we require the determinant to vanish, giving 

 

(ω
2
 − 2α)(ω

4
 − 4αω

2
 + 2α

2
) = 0. 

C — 2α) 

2 

0, α, (ω 



ω = 
± 

= 

∫   

− 
= 

= − 
Lnπ 

cos nπ. 

π L 2 L 3 L 

xdx = d . 
L 

4 L 

1 + 
32 

+ 
52 

+ . . .   . 
L 
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Hence, 2 
1,3 

4α 
√

8α2 

2 
= (2 ± 

√
2 )α, ω2 = 2α. 

This gives the frequencies, 

ν1 = 0.42
,

T /LM, ν2 = 0.78
,

T /LM  and ν3 = 1.02
,

T /LM. 
 

(b) For a string we obtain from Equations (5.6) and (6.12), ν 

= 
n 
,
 T  

,
 √  √   √ 

n 
2 LM 

 

giving ν1 = 0.5   T /LM, ν2 = T /LM  and ν3 = 1.5  T /LM, which 
can be compared with the normal frequencies of the three-mass system. 

6.10 (a) ∆ν = c/2L = 1.5 × 10
8
 Hz. 

Therefore number of modes = 4.5 × 10
9
/1.5 × 10

8
 = 30. 

(b) L = 3.3 cm for just one mode to exist. 

6.11 Modes that will not be excited are those with a node at one-third the length 

of the string, e.g. n 3, 6 and 9. 

6.12 From Equation (6.37) we have 

2 L 

An = 
L

 

 
dx αx sin 

 

nπ 
x 

L 
1 

 
,  n = 1, 2 , . . . .  

x 

Using standard integral 
¸ 

dxx sin ax = 
a2 

sin ax − 
a 

cos ax, find 

2α 
    

  L  
 2

 
 

  

  nπx   
 

 

  
xL
  

 

 

  nπx  
  L

 
 

 
 

 

  2α   

Hence, A1 = 2αL/π,  A2 = −2αL/2π and A3 = 2αL/3π, giving 

f (x) = 
2αL

 

sin
 nπ 

− 
1 

sin

 
2nπ

 

+ 
1 

sin

  
3nπ

 

− ·· ·

 

. 
 

6.13 (a) If string is displaced a distance x, the force acting at the mid point is 

−2T sin θ  −4T x/L. 

Work done in moving the mid point a further distance dx is 4T xdx/L. 

4T 
∫ d 2T   2 

 0 1 n
2π2

T A
2
 

(b) Using Equations (6.27), (6.8) and (5.32) obtain En =
 n 

. 

The lowest three excited modes are n   1, 3 and 5 with amplitudes of 

8d/π2
, 8d/(3π2

) and 8d/(5π2
), respectively. Hence, the sum of the 

energies of these three modes is 

T (8d)
2
 
 

 
 

 

 

1 1 T d
2
 

 
 

Hence, the fraction of the total energy = 1.87/2 = 93.5%. 

4Lπ2 

L 

0 
L nπ L nπ L 

0 

An = sin − cos 

Hence total work done for displacement d is 

= 1.87 



= 
= 

= 

= 

= 
= = 

= 
= 

    × 
≈ × × ≈ × 

≈ 

= 

= 

= = = 
= ≤ ≤ = 

d a 
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6.14 The function is often described as a square wave function. The more terms 

that are included in the series, the better the approximation to a square 

wave. 
√  n

2
h

2
 

6.15 (a) Using de Broglie, λn = 2L/n = h/pn = h/ 

(b) Putting n = 1, En = 1.5 × 10−18
 J ≈ 10 eV. 

2mEn, giving En = 
8mL2 

. 

 

 
 

SOLUTIONS 7 

7.1 (a) Since 10 bright fringes span 1.8 cm, fringe separation 0.20 cm and 

hence using Equation (7.15), λ 600 nm. 

(b) (i) Using Equation (7.13), the distance between the two nth bright fringes 

= 2nλL/a which is equal to 7.6 mm for n = 2. (ii) Similarly, the distance 

between the two n = 2 dark fringes is 9.5 mm. 

7.2 Angular separation of fringes θ λ/a. 

Wavelength of light in medium with refractive index n is given by 

 

λmedium 

λair 
. 

n 

Hence, 
θmedium 

= 
λmedium 

= 
1 

, giving θmedium = 0.03◦. 
θair λair n 

7.3 Before the film is inserted, the n 15 bright fringe occurs at distance d 
15λL/a from the central (n 0) bright fringe. After the film is inserted, the 

optical path of wavelets from the covered slit is increased by an amount 

equal to (n − 1)t, where n is the refractive index of the film and t is its 

thickness. At the new position of the central fringe, the amount (n − 1)t 
must be compensated by the distance a sin θ     ad/L, cf. Figure 7.4. Hence 

ad 
t = 

(n − 1)L with the value 1.25 × 10−5
 m. 

7.4 (a) Angular divergence of sunlight on Earth angle subtended by Sun at the 

Earth 1.4 10
6
/1.5 10

8
 1 10−2

 rad. 
(b) From Equation (7.20), divergence of light from source    2λ/a    1.5 

10−3
 rad. This value is much smaller than the divergence of sunlight. 

7.5 First minimum of diffraction pattern from slit of width d occurs at angle θ 

given by sin θ    λ/d. The nth bright fringe from the two-slit interference 

pattern occurs at angle θ given by sin θ nλ/a, where a is slit separation. 

Hence, 
λ 

= 
15λ 

, which gives a = 0.90 mm. 
7.6 Constructive interference occurs when path difference    nλ, cf. Equation 

(7.1). For this problem, use of Equation (7.10) leads to constructive inter- 
ference when sin θ nλ/a, where a is the separation of the loudspeakers, cf. 

Figure 7.4. The full circle corresponds to the angle θ going from 0 to 360◦. 

In the first quadrant θ 0◦ to 90◦. Since sin θ 1, nλ/a 1 giving n 0, 
1, 2, 3 or 4 since a/λ 4, with λ 0.34 m and a 1.36 m. It follows that 

there will be a total of 16 maxima around the complete circle. 



λ2. 

= 

= 
= 

≈ 

≈ 
  

∝ 

≈ 

2 2 
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7.7 (a) Distance between   successive   maxima = λ/2 = (1.0 × 10−3
/4000) m, 

giving λ = 500 nm. 
λ λ

 

(b) For given conditions, m 
1
 = (m + 1) 

2
 = x, where x is movement of 

mirror and m takes integer values. This leads to x =
     λ1λ2 

, which 

has the value of 0.29 mm for given values of λ1 and 
2(λ1 − λ2) 

7.8 The gas, of refractive index n, in the gas cell increases the optical path 
length in one arm of the interferometer by an amount equivalent to a mirror 

movement of t(n − 1), where t is the length of the gas cell. 

∴ t(n + 1) = 
λ 

m 
2 

, where m = 90. 

This gives n    1.00036 for given values of t and λ. 

7.9 Sound waves are reflected off successive steps of the amphitheatre and they 

interfere constructively when nλ 2L, where L is the length of the step 

and n 1, 2, 3, This is the same expression as for standing waves on a 

stretched string. 

nv 
νn = 

2L 
= 340 Hz, 680 Hz, 1020 Hz, etc., for a value of L = 0.5 m. 

7.10 (a) From Equation (7.35) find L 4 km for typical values of the parameters 

involved. There would be no interference effects since the light sources 

are independent and not coherent with each other. 

(b) 2.8 × 10−7
 rad or 1.6 × 10−5◦ 

. 
7.11 plane of film 

point 
object 

blurred 
image 

 
 

d 

 

L l 
 

(a) A point source should produce a point image. However, if the pin hole 

has a finite diameter d, rays of light from the source will produce a 

blurred image of finite extent as illustrated by the figure. When L l, 

the diameter of this blurred image d and the larger the value of d 

the greater the amount of blurring. However, the pin hole will produce 

a diffraction pattern at the film plane whose width 1/d, cf. Equation 

(7.35), i.e. the smaller the value of d the greater the amount of blurring 

due to diffraction at the pin hole. 

(b) For the total amount of blurring to be minimised, the two effects should 

each produce about the same amount of blurring. This means: diameter 

of pin hole width of diffraction pattern. 

This gives d ≈ 
2.44λl 

and hence, d ≈ 
√

2.44λl. 
d 

(c) d ≈ 0.45 mm. 



1 

= 
= 

= − = − 

    o 

= 

    

   

2 

λ
2 

λ
1 

λ1λ
2 

λ2 

dk 2 

(b) Starting with Equation (8.34), obtain v = 2π 
+

 

dλ 2v 2π λ2ρ 
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SOLUTIONS 8 

8.1 Beat frequency ∆ν = ν2 − ν1 = c 

 
  1

 —
 1

  

= c

  
λ1 − λ2

  

  
c∆λ 

 

 
to a 

1 

very good approximation, giving ∆λ = λ2
∆ν/c. 

∴ λ2    λ1    ∆λ    (766.49110    0.00090) nm,   for  given   values  of   λ1 
and ∆ν. 

8.2 (a) The second harmonic of the E string has the same frequency (1320 Hz) as 

the third harmonic of the A string. If one string is slightly out of tune, beats 

are produced. (b) A beat frequency of 4 Hz means the frequency of the sec- 

ond harmonic of the (sharp) E string 1324 Hz and hence, the fundamental 

frequency 662 Hz. 

8.3 A wave pulse travels at the group velocity. The frequencies of the modes of 

vibration of a taut string depend on the phase velocity, cf. Equation (6.8). 
ω α αk αk

2
 

8.4 (a) (i) 
k 

= 
λ 

= 
2π

, giving ω = 
2π 

, where α is a constant. 

Hence, 
dω 

= 
2αk 

= 2v. 
  

ω 
dk

α 
2π 

αk1/2
 

αk3/2 

(ii) = = 
(2π) 

, giving ω = 
(2π) 

, where α is a constant. 
k λ1/2 1/2 1/2 

Hence, 
dω 

= 
3 

v. 

(b) For ω = ck, 
ω 

= c and 
dω 

= c. 
  

k dk 
c2 ω2 

(c) = 1 − 
ω 

. 
v2 2 

∴ 
ω2c2 

2 2 
 

 

 2 2 2 2 

v2     
= ω − ωo and substituting for v = ω/k, obtain ω = ωo + c k . 

8.5 (a) At long wavelengths, the wave properties are determined by gravity. 

(i) v = 
ω    g  1/2 

 

  

  
gλ 

 1/2 

 

 
with the value of 12.5 m s−1

, 

(ii) v = 
dω 

= 
1   g 1/2 

= 
1 

v = 6.25 m s−1
. 

g
 dk 2   k 2   

gλ 2πS 
 1/2 

 

 

Then 
dv 

=
 1  

 
  g 

− 
2πS 

  

, and minimum phase velocity occurs at 

λ = 2π 
 S   1/2 

ρg which equals 1.7 × 10−2
 m, for given values. Using 

this value of λ, the minimum value of v is 0.23 m s−1
. 

8.6 (a) Spacing of antinodes = λ/2 giving λ = 0.5 mm. 

Using Equation (5.6), obtain v = 0.675 m s−1
.     

   
v

2
ρλ −1 

giving S = 
2π 

= 0.49 N m . 

(b) In the limit of short wavelength, vg = 
3 

v = 1.0 m s−1
. 

, 
Sk 

ρ 
Since wave properties are determined by surface tension, v = 

λρ 

2π k k 

. 

1/2 

= 



2 

= 

= 

dk 
= 

ck2 
A − 

λ2
 = 

n
 A − 

λ2
 

∂t2  
= 

µ 
= 

µ
k 

µ dk µ ω 
g 

with ∆ν ≈  
1
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(a) n 
c B

 
 

  

 
c A Bk 

 
   8.7  = 

v 
= A + 

λ2 
, giving 

ω 
= 

k 
+ 

(2π)2 
from which we obtain 

dω ω
2
  
 

 
 

 

B
 

v
 

B 
  

 
2 

∴ 
vg (A − B/λ ) 

v 
= 

(A + B/λ2)
.
 

(b) For given values, vg/v = 0.87. 

8.8 (a) y = A cos(ωt − kx). 

∂
2
y 2 ∂

2
y 2 

∂t2 
= −ω A cos(ωt − kx); 

∂x2 
= −k A cos(ωt − kx). 

 
∂

2
y 

 
 

T  
   

∂
2
y 
 

 
 

 

 

2 
T   2 

 

(b) The lowest angular frequency is when k = 0, giving ω = 
√

α. 

(c) From ω
2
 = 

T 
k

2
 + α, find 

dω 
= 

T k 
and hence v v = T /µ. 

8.9 From bandwidth theorem, Equation (8.50), obtain 

∆ω 1 
∆ν = 

2π 
≈ 

∆t 
≈ 20 MHz. 

 

∆λ dλ c 
 

 

. λ . 
 

 

8.10 From Equation (5.6) obtain, 
∆ν  

   
dν 

= − 
ν2 

, leading to ∆λ     . c 
∆ν. and 

 
8.11 (a) Taking ∆t 

n = 2 and using the trignometric relation sin 2β = 2 sin β cos β, 

(b) 
obtain, A(x, t) = 2a cos[(xδk − tδω)/2]. 

 

A(x, t) a 
sin[nδk(x − αt)/2] 

.
 

sin[δk(x − αt)/2] 

Using the approximation ∆k = (n − 1)δk    nδk when n is very large: 

A(x, t) a
 sin[∆k(x − αt)/2]  

sin[∆k(x − αt)/2n] 

na 
sin[∆k(x − αt)/2] 

,
 

∆k(x − αt)/2 

using the small-angle approximation with n very large. 

from bandwidth theorem, obtain ∆λ ≈ 8 nm. 

∂x2 

= 

. 

Substitution into — αy gives ω + α. 



 



 

 

 

 

 

 

 

Index 

References to figures are given in italic type; those to tables are given in bold type. 

 

absorption spectroscopy 95 

acceleration 

complex representation 68 

simple harmonic oscillator 7 

addition 

complex numbers 68 

see also constructive interference; 

superposition 

Airy disc 177 

amplitude 

damped harmonic oscillator, decay 

36–37 

envelopes 36, 37, 185 

forced damped harmonic motion 

55–56 

normal modes 153 – 156 

simple harmonic motion 3, 12 

large amplitudes 24 – 26 

amplitude modulation 186 – 187 

analogue computers 27 – 29, 46 – 47 

angular displacement 

simple harmonic oscillator 24 – 25, 

26 

see also displacement 

angular frequency 

simple harmonic oscillator 6 – 7, 21 

traveling waves 111 

angular velocity, simple 25 

antinodes 137, 138 

Argand diagram 69, 71 

argument (of a complex number) 70 

astronomy 177, 178 – 179 

asymmetric stretch 95 

 
bandwidth theorem 196, 200 

beam splitter 170 

beats 86, 184 – 186 

Bessel functions 131 

Bragg’s law 170 

bridges 15 

buildings 15, 57 

 
camera lenses 125 – 126 

capacitors, oscillation  27 – 29 

car suspension 38– 39 

carbon dioxide 95 

clocks 9, 15 

coherence 164, 167 – 168 

compensator plate 171 

complex conjugate 69 

complex numbers 68 – 71 

representation of physical quantities 

71–74 

constructive interference 161, 162 

in crystals 170 

coupled oscillators 77 

forced oscillations 93 – 96 

matrix representation 90 – 91 

normal modes 78 – 81 

physical characteristics 77 – 78 

spring-coupled 87 – 89 

transverse 96 – 99 

 
 

Vibrations and Waves George C. King 

 2009 John Wiley & Sons, Ltd 



224 Index 
 

critical damping 38 – 41 

crystals 

Bragg’s law 170 

as coupled oscillator system 91 – 92 

vibration 15 

 

damped harmonic motion 33 

decay time 42 

electrical circuits 46 – 47 

energy loss 41– 46 

quality factor 43 – 46 

equation of motion 34 – 35 

forced 54 – 60, 60 – 64 

lifetime 42 

light damping 35 – 37, 39 

energy loss 41– 42 

heavy damping 37 – 38, 39 

critical damping 38 – 41 

physical characteristics 33 – 34 

physical examples 46 

see also forced oscillations, damped 
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numerical solutions 24 – 27 

computed values 26 
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forced harmonic oscillator 53, 

54 – 55, 56 
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potential energy 
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single wave peak 106 – 109 
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quantization 15 

equation of motion 4, 8 
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large amplitudes 25 – 27 
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solutions 7 – 9 
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normal modes and 82 – 83 

numerical solution 24 – 27 
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ideal 17– 22 
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physical 22– 24 
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see also forced oscillations, 
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small-angle approximation 18 

solar energy 106 

sound waves, interference 

169 – 170 

spherical waves 132 – 133 

spring constant 3, 50 

springs 

coupling oscillators 87 – 89 
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multiple masses 98 – 99 
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forced 51 – 54 

stable equilibrium 12 – 13 

standing waves 137 

energy 147 – 149, 156 – 158 

as normal modes 149 – 158 

as superposition of traveling waves 

144 – 147 

vibrating strings 137 – 144 

Strait of Gibraltar 172, 173 

strings 114 – 116 

energy state 156 – 158 

Fourier analysis 153 – 154 

guitar 14, 45, 142 

harmonics (normal modes) 

140 – 143, 141 

superposition 150 – 153 

plucking 151 – 152 

standing waves 137 – 144 

superposition 

normal modes 78, 149 – 153 

traveling waves to form standing 

waves 144 – 147 

waves of similar frequency 

184 – 186 

see also Fourier transform; 

interference; wave packets 

superposition principle 149 – 150 

symmetric stretch 95 

synthesis (musical) 153 

 
Taylor’s theorem 13 

timbre 153 

transient response 49, 66 – 68 

transmission (at a discontinuity) 122, 

123 

transverse oscillations 96 – 99 

see also strings 

traveling waves 105 – 106 

complex notation 112 

energy state 116 – 119 

reflection 121 – 126 

transport 119 – 120 

physical characteristics 106 

sinusoidal 109 – 112 

two and three dimensions 126 – 130 

circular and spherical symmetry 

130 – 133 

vibrating strings 114 – 116 

wave equation 112 – 114 

wave pulses 106 – 109 

wavelength 109 

tuning forks 14, 33 – 34 

turning point 7 

 
ultrasonic scanning 126 

uncertainty principle 201 

 
velocity 

complex representation 73 

simple harmonic oscillator 7, 11 

pendulum 20 

see also dispersion 

vibrating strings see strings 

voltage oscillations 47 

 

walking 24 

water waves 194 – 195 

wave equation 

one-dimensional 112 – 114 

three-dimensional, spherical 132 

two-dimensional, circular 131 

wave packets 195 – 201 

continuous frequency range 

199 – 201 

wave pulses (single peak) 106 – 109 

wavefronts 129 

Huygen’s principle 162 
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wavelength 109 

light 171 

wavenumber 111 

dispersion relation 192 – 194 

waves, traveling see traveling waves 

X-ray crystallography 170 

 
Young double-slit experiment 

164 – 170, 

179 – 180 


