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1
The Propositional Calculus

1.1  Propositional Connectives: Truth Tables

Sentences may be combined in various ways to form more complicated sen-
tences. We shall consider only truth-functional combinations, in which the 
truth or falsity of the new sentence is determined by the truth or falsity of its 
component sentences.

Negation is one of the simplest operations on sentences. Although a sen-
tence in a natural language may be negated in many ways, we shall adopt a 
uniform procedure: placing a sign for negation, the symbol ¬, in front of the 
entire sentence. Thus, if A is a sentence, then ¬A denotes the negation of A.

The truth-functional character of negation is made apparent in the follow-
ing truth table:

	

A A¬
T F
F T

When A is true, ¬A is false; when A is false, ¬A is true. We use T and F to 
denote the truth values true and false.

Another common truth-functional operation is the conjunction: “and.” The 
conjunction of sentences A and B will be designated by A ∧ B and has the 
following truth table:

	

A B A B∧
T T T
F T F
T F F
F F F

A ∧ B is true when and only when both A and B are true. A and B are called 
the conjuncts of A ∧ B. Note that there are four rows in the table, correspond-
ing to the number of possible assignments of truth values to A and B.

In natural languages, there are two distinct uses of “or”: the inclusive and 
the exclusive. According to the inclusive usage, “A or B” means “A or B or 
both,” whereas according to the exclusive usage, the meaning is “A or B, but 
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not both,” We shall introduce a special sign, ∨, for the inclusive connective. 
Its truth table is as follows:

	

A B A B∨
T T T
F T T
T F T
F F F

Thus, A ∨ B is false when and only when both A and B are false. “A ∨ B” is 
called a disjunction, with the disjuncts A and B.

Another important truth-functional operation is the conditional: “if A, then 
B.” Ordinary usage is unclear here. Surely, “if A, then B” is false when the 
antecedent A is true and the consequent B is false. However, in other cases, 
there is no well-defined truth value. For example, the following sentences 
would be considered neither true nor false:

	 1.	 If 1 + 1 = 2, then Paris is the capital of France.
	 2.	 If 1 + 1 ≠ 2, then Paris is the capital of France.
	 3.	 If 1 + 1 ≠ 2, then Rome is the capital of France.

Their meaning is unclear, since we are accustomed to the assertion of some 
sort of relationship (usually causal) between the antecedent and the conse-
quent. We shall make the convention that “if A, then B” is false when and 
only when A is true and B is false. Thus, sentences 1–3 are assumed to be 
true. Let us denote “if A, then B” by “A ⇒ B.” An expression “A ⇒ B” is called 
a conditional. Then ⇒ has the following truth table:

	

A B A B⇒
T T T
F T T
T F F
F F T

This sharpening of the meaning of “if A, then B” involves no conflict with 
ordinary usage, but rather only an extension of that usage.*

*	 There is a common non-truth-functional interpretation of “if A, then B” connected with 
causal laws. The sentence “if this piece of iron is placed in water at time t, then the iron will 
dissolve” is regarded as false even in the case that the piece of iron is not placed in water at 
time t—that is, even when the antecedent is false. Another non-truth-functional usage occurs 
in so-called counterfactual conditionals, such as “if Sir Walter Scott had not written any nov-
els, then there would have been no War Between the States.” (This was Mark Twain’s conten-
tion in Life on the Mississippi: “Sir Walter had so large a hand in making Southern character, as 
it existed before the war, that he is in great measure responsible for the war.”) This sentence 
might be asserted to be false even though the antecedent is admittedly false. However, causal 
laws and counterfactual conditions seem not to be needed in mathematics and logic. For a 
clear treatment of conditionals and other connectives, see Quine (1951). (The quotation from 
Life on the Mississippi was brought to my attention by Professor J.C. Owings, Jr.)
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A justification of the truth table for ⇒ is the fact that we wish “if A and 
B, then B” to be true in all cases. Thus, the case in which A and B are true 
justifies the first line of our truth table for ⇒, since (A and B) and B are both 
true. If A is false and B true, then (A and B) is false while B is true. This cor-
responds to the second line of the truth table. Finally, if A is false and B is 
false, (A and B) is false and B is false. This gives the fourth line of the table. 
Still more support for our definition comes from the meaning of statements 
such as “for every x, if x is an odd positive integer, then x2 is an odd positive 
integer.” This asserts that, for every x, the statement “if x is an odd positive 
integer, then x2 is an odd positive integer” is true. Now we certainly do not 
want to consider cases in which x is not an odd positive integer as coun-
terexamples to our general assertion. This supports the second and fourth 
lines of our truth table. In addition, any case in which x is an odd positive 
integer and x2 is an odd positive integer confirms our general assertion. 
This corresponds to the first line of the table.

Let us denote “A if and only if B” by “A ⇔ B.” Such an expression is called 
a biconditional. Clearly, A ⇔ B is true when and only when A and B have the 
same truth value. Its truth table, therefore is:

	

A B A B⇔
T T T
F T F
T F F
F F T

The symbols ¬, ∧, ∨, ⇒, and ⇔ will be called propositional connectives.* Any 
sentence built up by application of these connectives has a truth value that 
depends on the truth values of the constituent sentences. In order to make 
this dependence apparent, let us apply the name statement form to an expres-
sion built up from the statement letters A, B, C, and so on by appropriate appli-
cations of the propositional connectives.

	 1.	All statement letters (capital italic letters) and such letters with 
numerical subscripts† are statement forms.

	 2.	If B and C are statement forms, then so are (¬B), (B ∧ C), (B ∨ C), 
(B ⇒ C), and (B ⇔ C).

*	 We have been avoiding and shall in the future avoid the use of quotation marks to form 
names whenever this is not likely to cause confusion. The given sentence should have quota-
tion marks around each of the connectives. See Quine (1951, pp. 23–27).

†	 For example, A1, A2, A17, B31, C2, ….
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	 3.	Only those expressions are statement forms that are determined 
to be so by means of conditions 1 and 2.* Some examples of state-
ment forms are B, (¬C2), (D3 ∧ (¬B)), (((¬B1) ∨ B2) ⇒ (A1 ∧ C2)), and 
(((¬A) ⇔ A) ⇔ (C ⇒ (B ∨ C))).

For every assignment of truth values T or F to the statement letters that occur 
in a statement form, there corresponds, by virtue of the truth tables for the 
propositional connectives, a truth value for the statement form. Thus, each 
statement form determines a truth function, which can be graphically repre-
sented by a truth table for the statement form. For example, the statement 
form (((¬A) ∨ B) ⇒ C) has the following truth table:

	

A B C A A B A B C( ) (( ) ) ((( ) ) )¬ ¬ ∨ ¬ ∨ ⇒
T T T F T T
F T T T T T
T F T F F T
F F T T T T

F F F
F
T T T

TT T T
T T

T T

F F
F F F F

F F F F

Each row represents an assignment of truth values to the statement letters 
A, B, and C and the corresponding truth values assumed by the statement 
forms that appear in the construction of (((¬A) ∨ B) ⇒ C).

The truth table for ((A ⇔ B) ⇒ ((¬A) ∧ B)) is as follows:

	

A B A B A A B A B A B( ) ( ) (( ) ) (( ) (( ) ))⇔ ¬ ¬ ∧ ⇔ ⇒ ¬ ∧
T T T F F F
F T F T T T
T F F F F T
F F T T F FF

If there are n distinct letters in a statement form, then there are 2n possible 
assignments of truth values to the statement letters and, hence, 2n rows in 
the truth table.

*	 This can be rephrased as follows: C  is a statement form if and only if there is a finite sequence 
B1, …, Bn (n ≥ 1) such that Bn = C  and, if 1 ≤ i ≤ n, Bi is either a statement letter or a negation, con-
junction, disjunction, conditional, or biconditional constructed from previous expressions in 
the sequence. Notice that we use script letters A, B, C, … to stand for arbitrary expressions, 
whereas italic letters are used as statement letters.
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A truth table can be abbreviated by writing only the full statement form, 
putting the truth values of the statement letters underneath all occurrences 
of these letters, and writing, step by step, the truth values of each component 
statement form under the principal connective of the form.* As an example, 
for ((A ⇔ B) ⇒ ((¬A) ∧ B)), we obtain

	

(( ) (( ) ))A B A B⇔ ⇒ ¬ ∧
T T T F FT F T
F F T T TF T T
T F F T FT F F
F T F F TF F F

Exercises

1.1	 Let ⊕ designate the exclusive use of “or.” Thus, A ⊕ B stands for “A or 
B but not both.” Write the truth table for ⊕.

1.2	 Construct truth tables for the statement forms ((A ⇒ B) ∨ (¬A)) and 
((A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))).

1.3	 Write abbreviated truth tables for ((A ⇒ B) ∧ A) and ((A ∨ (¬C)) ⇔ B).
1.4	 Write the following sentences as statement forms, using statement let-

ters to stand for the atomic sentences—that is, those sentences that are 
not built up out of other sentences.

	 a.	 If Mr Jones is happy, Mrs Jones is not happy, and if Mr Jones is not 
happy, Mrs Jones is not happy.

	 b.	 Either Sam will come to the party and Max will not, or Sam will not 
come to the party and Max will enjoy himself.

	 c.	 A sufficient condition for x to be odd is that x is prime.
	 d.	 A necessary condition for a sequence s to converge is that s be 

bounded.
	 e.	 A necessary and sufficient condition for the sheikh to be happy is 

that he has wine, women, and song.
	 f.	 Fiorello goes to the movies only if a comedy is playing.
	 g.	 The bribe will be paid if and only if the goods are delivered.
	 h.	 If x is positive, x2 is positive.
	 i.	 Karpov will win the chess tournament unless Kasparov wins 

today.

*	 The principal connective of a statement form is the one that is applied last in constructing the 
form.
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1.2  Tautologies

A truth function of n arguments is defined to be a function of n arguments, the 
arguments and values of which are the truth values T or F. As we have seen, 
any statement form containing n distinct statement letters determines a cor-
responding truth function of n arguments.*

A statement form that is always true, no matter what the truth values of its 
statement letters may be, is called a tautology. A statement form is a tautol-
ogy if and only if its corresponding truth function takes only the value T, 
or equivalently, if, in its truth table, the column under the statement form 
contains only Ts. An example of a tautology is (A ∨ (¬A)), the so-called law 
of the excluded middle. Other simple examples are (¬(A ∧ (¬A))), (A ⇔ (¬(¬A))), 
((A ∧ B) ⇒ A), and (A ⇒ (A ∨ B)).

B is said to logically imply C (or, synonymously, C is a logical consequence of B ) 
if and only if every truth assignment to the statement letters of B and C that 
makes B true also makes C true. For example, (A ∧ B) logically implies A, A 
logically implies (A ∨ B), and (A ∧ (A ⇒ B)) logically implies B.

B and C are said to be logically equivalent if and only if B and C receive the 
same truth value under every assignment of truth values to the statement 
letters of B and C. For example, A and (¬(¬A)) are logically equivalent, as are 
(A ∧ B) and (B ∧ A).

*	 To be precise, enumerate all statement letters as follows: A, B, …, Z; A1, B1, …, Z1; A2, …,.  If a 
statement form contains the i in1th th, ,…  statement letters in this enumeration, where i1 < ⋯ < in, 
then the corresponding truth function is to have x xi in1 , ,… , in that order, as its arguments, 
where xij corresponds to the ijth statement letter. For example, (A ⇒ B) generates the truth 
function:

	

x x f x x1 2 1 2,( )
T T T
F T T
T F F
F F T

	 whereas (B ⇒ A) generates the truth function:

	

x x x x1 2 1 2g ,( )
T T T
F T F
T F T
F F T
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Proposition 1.1

	 a.	B logically implies C if and only if (B ⇒ C) is a tautology.
	 b.	B and C are logically equivalent if and only if (B ⇔ C) is a tautology.

Proof

	 a.	(i) Assume B logically implies C. Hence, every truth assignment 
that makes B true also makes C true. Thus, no truth assignment 
makes B true and C false. Therefore, no truth assignment makes 
(B ⇒ C) false, that is, every truth assignment makes (B ⇒ C) true. 
In other words, (B ⇒ C) is a tautology. (ii) Assume (B ⇒ C) is a 
tautology. Then, for every truth assignment, (B ⇒ C) is true, and, 
therefore, it is not the case that B is true and C false. Hence, every 
truth assignment that makes B true makes C true, that is, B logi-
cally implies C.

	 b.	 (B ⇔ C) is a tautology if and only if every truth assignment makes (B ⇔ C) 
true, which is equivalent to saying that every truth assignment gives 
B and C the same truth value, that is, B and C are logically equivalent.

By means of a truth table, we have an effective procedure for determining 
whether a statement form is a tautology. Hence, by Proposition 1.1, we have 
effective procedures for determining whether a given statement form logi-
cally implies another given statement form and whether two given statement 
forms are logically equivalent.

To see whether a statement form is a tautology, there is another method 
that is often shorter than the construction of a truth table.

Examples

	 1.	Determine whether ((A ⇔ ((¬B) ∨ C)) ⇒ ((¬A) ⇒ B)) is a tautology.

Assume that the statement form 
sometimes is F (line 1). Then (A ⇔ 
((¬B) ∨ C)) is T and ((¬A) ⇒ B) is F 
(line 2). Since ((¬A) ⇒ B) is F, (¬A) 
is T and B is F (line 3). Since (¬A)is 
T, A is F (line 4). Since A  is F and 
(A ⇔ ((¬B) ∨ C)) is T, ((¬B) ∨ C) is F 
(line 5). Since ((¬B) ∨ C) is F, (¬B) 
and C are F (line 6). Since (¬B) is F, 
B is T (line 7). But B is both T and F 
(lines 7 and 3). Hence, it is impos-
sible for the form to be false.	

((A ⇔ ((¬B) ∨ C)) ⇒ ((¬A) ⇒ B))
F 1

T F 2
T	 F 3

F F 4
F 5

F F 6
T 7
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	 2.	Determine whether ((A ⇒ (B ∨ C)) ∨ (A ⇒ B)) is a tautology.

Assume that the form is F 
(line 1). Then (A ⇒ (B ∨ C)) and 
(A ⇒ B) are F (line 2). Since 
(A  ⇒ B) is F, A  is T and B is F 
(line 3). Since (A ⇒ (B ∨ C)) is F, 
A is T and (B ∨ C) is F (line 4). 
Since (B  ∨ C) is F, B and C are 
F (line 5). Thus, when A is T, B 
is F, and C is F, the form is F. 
Therefore, it is not a tautology.

((A ⇒ (B ∨ C)) ∨ (A ⇒ B))
F 1

F F 2
T	 F 3

T F 4
F F 5

Exercises

1.5	 Determine whether the following are tautologies.
	 a.	 (((A ⇒ B) ⇒ B) ⇒ B)
	 b.	 (((A ⇒ B) ⇒ B) ⇒ A)
	 c.	 (((A ⇒ B) ⇒ A) ⇒ A)
	 d.	 (((B ⇒ C) ⇒ (A ⇒ B)) ⇒ (A ⇒ B))
	 e.	 ((A ∨ (¬(B ∧ C))) ⇒ ((A ⇔ C) ∨ B))
	 f.	 (A ⇒ (B ⇒ (B ⇒ A)))
	 g.	 ((A ∧ B) ⇒ (A ∨ C))
	 h.	 ((A ⇔ B) ⇔ (A ⇔ (B ⇔ A)))
	 i.	 ((A ⇒ B) ∨ (B ⇒ A))
	 j.	 ((¬(A ⇒ B)) ⇒ A)
1.6	 Determine whether the following pairs are logically equivalent.
	 a.	 ((A ⇒ B) ⇒ A) and A
	 b.	 (A ⇔ B) and ((A ⇒ B) ∧ (B ⇒ A))
	 c.	 ((¬A) ∨ B) and ((¬B) ∨ A)
	 d.	 (¬(A ⇔ B)) and (A ⇔ (¬B))
	 e.	 (A ∨ (B ⇔ C)) and ((A ∨ B) ⇔ (A ∨ C))
	 f.	 (A ⇒ (B ⇔ C)) and ((A ⇒ B) ⇔ (A ⇒ C))
	 g.	 (A ∧ (B ⇔ C)) and ((A ∧ B) ⇔ (A ∧ C))
1.7	 Prove:
	 a.	 (A ⇒ B) is logically equivalent to ((¬A) ∨ B).
	 b.	 (A ⇒ B) is logically equivalent to (¬(A ∧ (¬B))).
1.8	 Prove that B is logically equivalent to C if and only if B logically implies 

C and C logically implies B.
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1.9	 Show that B and C are logically equivalent if and only if, in their truth 
tables, the columns under B and C are the same.

1.10	 Prove that B and C are logically equivalent if and only if (¬B) and (¬C) 
are logically equivalent.

1.11	 Which of the following statement forms are logically implied by (A ∧ B)?
	 a.	 A

	 b.	 B

	 c.	 (A ∨ B)
	 d.	 ((¬A) ∨ B)
	 e.	 ((¬B) ⇒ A)
	 f.	 (A ⇔ B)
	 g.	 (A ⇒ B)
	 h.	 ((¬B) ⇒ (¬A))
	 i.	 (A ∧ (¬B))
1.12	 Repeat Exercise 1.11 with (A ∧ B) replaced by (A ⇒ B) and by (¬(A ⇒ B)), 

respectively.
1.13	 Repeat Exercise 1.11 with (A ∧ B) replaced by (A ∨ B).
1.14	 Repeat Exercise 1.11 with (A ∧ B) replaced by (A ⇔ B) and by (¬(A ⇔ B)), 

respectively.

A statement form that is false for all possible truth values of its statement 
letters is said to be contradictory. Its truth table has only Fs in the column 
under the statement form. One example is (A ⇔ (¬A)):

	

A A A A( ) ( ( ))¬ ⇔ ¬
T F F
F T F

Another is (A ∧ (¬A)).
Notice that a statement form B is a tautology if and only if (¬B) is contra-

dictory, and vice versa.
A sentence (in some natural language like English or in a formal theory)* 

that arises from a tautology by the substitution of sentences for all the state-
ment letters, with occurrences of the same statement letter being replaced by 
the same sentence, is said to be logically true (according to the propositional 
calculus). Such a sentence may be said to be true by virtue of its truth-func-
tional structure alone. An example is the English sentence, “If it is raining or 
it is snowing, and it is not snowing, then it is raining,” which arises by substi-
tution from the tautology (((A ∨ B) ∧ (¬B)) ⇒ A). A sentence that comes from 

*	 By a formal theory we mean an artificial language in which the notions of meaningful expres-
sions, axioms, and rules of inference are precisely described (see page 27).
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a contradictory statement form by means of substitution is said to be logically 
false (according to the propositional calculus).

Now let us prove a few general facts about tautologies.

Proposition 1.2

If B and (B ⇒ C) are tautologies, then so is C.

Proof

Assume that B and (B ⇒ C) are tautologies. If C took the value F for some 
assignment of truth values to the statement letters of B and C, then, since B  
is a tautology, B would take the value T and, therefore, (B ⇒ C) would have 
the value F for that assignment. This contradicts the assumption that (B ⇒ C) 
is a tautology. Hence, C never takes the value F.

Proposition 1.3

If T     is a tautology containing as statement letters A1, A2, …, An, and B 
arises from T   by substituting statement forms S1, S2, …, Sn for A1, A2, …, An, 
respectively, then B is a tautology; that is, substitution in a tautology yields 
a tautology.

Example
Let T   be ((A1 ∧ A2) ⇒ A1), let S1 be (B ∨ C) and let S2 be (C ∧ D). Then B is 
(((B ∨ C) ∧ (C ∧ D)) ⇒ (B ∨ C)).

Proof

Assume that T   is a tautology. For any assignment of truth values to the state-
ment letters in B, the forms S1, …, Sn  have truth values x1, …, xn (where each 
xi is T or F). If we assign the values x1, …, xn to A1, …, An, respectively, then 
the resulting truth value of T     is the truth value of B for the given assign-
ment of truth values. Since T   is a tautology, this truth value must be T. Thus, 
B always takes the value T.

Proposition 1.4

If C1 arises from B1 by substitution of C for one or more occurrences of B, then 
((B ⇔ C) ⇒ (B1 ⇔ C 1)) is a tautology. Hence, if B and C are logically equivalent, 
then so are B1 and C 1.
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Example
Let B1 be (C  ∨ D), let B   be C , and let C   be (¬(¬C )). Then C 1 is ((¬(¬C )) ∨ D). Since 
C  and (¬(¬C )) are logically equivalent, (C  ∨ D) and ((¬(¬C )) ∨ D) are also logi-
cally equivalent.

Proof

Consider any assignment of truth values to the statement letters. If B and 
C have opposite truth values under this assignment, then (B ⇔ C) takes the 
value F, and, hence, ((B ⇔ C) ⇒ (B1 ⇔ C 1)) is T. If B and C take the same truth 
values, then so do B1 and C 1, since C 1 differs from B1 only in containing 
C in some places where B 1 contains B. Therefore, in this case, (B ⇔ C) is T, 
(B1 ⇔ C1) is T, and, thus, ((B ⇔ C) ⇒ (B1 ⇔ C1)) is T.

Parentheses

It is profitable at this point to agree on some conventions to avoid the use 
of so many parentheses in writing formulas. This will make the reading of 
complicated expressions easier.

First, we may omit the outer pair of parentheses of a statement form. (In the 
case of statement letters, there is no outer pair of parentheses.)

Second, we arbitrarily establish the following decreasing order of strength 
of the connectives: ¬, ∧, ∨, ⇒, ⇔. Now we shall explain a step-by-step process 
for restoring parentheses to an expression obtained by eliminating some or 
all parentheses from a statement form. (The basic idea is that, where possible, 
we first apply parentheses to negations, then to conjunctions, then to disjunc-
tions, then to conditionals, and finally to biconditionals.) Find the leftmost 
occurrence of the strongest connective that has not yet been processed.

	 i.	 If the connective is ¬ and it precedes a statement form B, restore left 
and right parentheses to obtain (¬B).

	 ii.	 If the connective is a binary connective C and it is preceded by a state-
ment form B and followed by a statement form D , restore left and right 
parentheses to obtain (B C D).

	 iii.	 If neither (i) nor (ii) holds, ignore the connective temporarily and find 
the leftmost occurrence of the strongest of the remaining unprocessed 
connectives and repeat (i–iii) for that connective.

Examples
Parentheses are restored to the expression in the first line of each of the fol-
lowing in the steps shown:

	 1.	 A ⇔ (¬B) ∨ C ⇒ A
		  A ⇔ ((¬B) ∨ C) ⇒ A
		  A ⇔ (((¬B) ∨ C) ⇒ A)
		  (A ⇔ (((¬B) ∨ C) ⇒ A))
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	 2.	 A ⇒ ¬B ⇒ C
		  A ⇒ (¬B) ⇒ C
		  (A ⇒ (¬B)) ⇒ C
		  ((A ⇒ (¬B)) ⇒ C)
	 3.	 B ⇒ ¬¬A

		  B ⇒ ¬(¬A)
		  B ⇒ (¬(¬A))
		  (B ⇒ (¬(¬A)))
	 4.	 A ∨ ¬(B ⇒ A ∨ B)
		  A ∨ ¬(B ⇒ (A ∨ B))
		  A ∨ (¬(B ⇒ (A ∨ B)))
		  (A ∨ (¬(B ⇒ (A ∨ B))))

Not every form can be represented without the use of parentheses. For exam-
ple, parentheses cannot be further eliminated from A ⇒ (B ⇒ C), since A ⇒ 
B ⇒ C stands for ((A ⇒ B) ⇒ C). Likewise, the remaining parentheses cannot 
be removed from ¬(A ∨ B) or from A ∧ (B ⇒ C).

Exercises

1.15	 Eliminate as many parentheses as possible from the following forms.
	 a.	 ((B ⇒ (¬A)) ∧ C)
	 b.	 (A ∨ (B ∨ C))
	 c.	 (((A ∧ (¬B)) ∧ C) ∨ D)
	 d.	 ((B ∨ (¬C)) ∨ (A ∧ B))
	 e.	 ((A ⇔ B) ⇔ (¬(C ∨ D)))
	 f.	 ((¬(¬(¬(B ∨ C)))) ⇔ (B ⇔ C))
	 g.	 (¬((¬(¬(B ∨ C))) ⇔ (B ⇔ C)))
	 h.	 ((((A ⇒ B) ⇒ (C ⇒ D)) ∧ (¬A)) ∨ C)
1.16	 Restore parentheses to the following forms.
	 a.	 C ∨ ¬A ∧ B
	 b.	 B ⇒ ¬¬¬A ∧ C
	 c.	 C ⇒ ¬(A ∧ B ⇒ C) ∧ A ⇔ B
	 d.	 C ⇒ A ⇒ A ⇔ ¬A ∨ B
1.17	� Determine whether the following expressions are abbreviations of 

statement forms and, if so, restore all parentheses.
	 a.	 ¬¬A ⇔ A ⇔ B ∨ C
	 b.	 ¬(¬A ⇔ A) ⇔ B ∨ C
	 c.	 ¬(A ⇒ B) ∨ C ∨ D ⇒ B
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	 d.	 A ⇔ (¬A ∨ B) ⇒ (A ∧ (B ∨ C)))
	 e.	 ¬A ∨ B ∨ C ∧ D ⇔ A ∧ ¬A
	 f.	 ((A ⇒ B ∧ (C ∨ D) ∧ (A ∨ D))
1.18	� If we write ¬B instead of (¬B), ⇒B C instead of (B ⇒ C), ∧B C instead of 

(B ∧ C), ∨B C instead of (B ∨ C), and ⇔B C instead of (B ⇔ C), then there 
is no need for parentheses. For example, ((¬A) ∧ (B ⇒ (¬D))), which is 
ordinarily abbreviated as ¬A ∧ (B ⇒ ¬D), becomes ∧ ¬A ⇒ B ¬D. This 
way of writing forms is called Polish notation.

	 a.	 Write ((C ⇒ (¬A)) ∨ B) and (C ∨ ((B ∧ (¬D)) ⇒ C)) in this notation.
	 b.	� If we count ⇒, ∧, ∨, and ⇔ each as +1, each statement letter as −1 

and ¬ as 0, prove that an expression B in this parenthesis-free nota-
tion is a statement form if and only if (i) the sum of the symbols of 
B is −1 and (ii) the sum of the symbols in any proper initial segment 
of B is nonnegative. (If an expression B can be written in the form 
CD, where C ≠ B, then C is called a proper initial segment of B.)

	 c.	 Write the statement forms of Exercise 1.15 in Polish notation.
	 d.	� Determine whether the following expressions are statement forms 

in Polish notation. If so, write the statement forms in the standard 
way.

		  i.	 ¬⇒ ABC ∨ AB ¬C
		  ii.	 ⇒⇒ AB ⇒⇒ BC ⇒¬AC
		  iii.	 ∨ ∧ ∨ ¬A¬BC ∧ ∨ AC ∨ ¬C ¬A
		  iv.	 ∨ ∧ B ∧ BBB
1.19	� Determine whether each of the following is a tautology, is contradic-

tory, or neither.
	 a.	 B ⇔ (B ∨ B)
	 b.	 ((A ⇒ B) ∧ B) ⇒ A
	 c.	 (¬A) ⇒ (A ∧ B)
	 d.	 (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))
	 e.	 (A ⇔ ¬B) ⇒ A ∨ B
	 f.	 A ∧ (¬(A ∨ B))
	 g.	 (A ⇒ B) ⇔ ((¬A) ∨ B)
	 h.	 (A ⇒ B) ⇔ ¬(A ∧ (¬B))
	 i.	 (B ⇔ (B ⇔ A)) ⇒ A
	 j.	 A ∧ ¬A ⇒ B
1.20	� If A and B are true and C is false, what are the truth values of the fol-

lowing statement forms?
	 a.	 A ∨ C
	 b.	 A ∧ C
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	 c.	 ¬A ∧ ¬C

	 d.	 A ⇔ ¬B ∨ C
	 e.	 B ∨ ¬C ⇒ A
	 f.	 (B ∨ A) ⇒ (B ⇒ ¬C)
	 g.	 (B ⇒ ¬A) ⇔ (A ⇔ C)
	 h.	 (B ⇒ A) ⇒ ((A ⇒ ¬C) ⇒ (¬C ⇒ B))
1.21	� If A ⇒ B is T, what can be deduced about the truth values of the 

following?
	 a.	 A ∨ C ⇒ B ∨ C
	 b.	 A ∧ C ⇒ B ∧ C
	 c.	 ¬A ∧ B ⇔ A ∨ B

1.22	� What further truth values can be deduced from those shown?
	 a.	 ¬A ∨ (A ⇒ B)

	 F
	 b.	 ¬(A ∧ B) ⇔ ¬A ⇒ ¬B

	 T
	 c.	 (¬A ∨ B) ⇒ (A ⇒ ¬C)

	 F
	 d.	 (A ⇔ B) ⇔ (C ⇒ ¬A)

	 F	 T

1.23	� If A ⇔ B is F, what can be deduced about the truth values of the 
following?

	 a.	 A ∧ B
	 b.	 A ∨ B
	 c.	 A ⇒ B
	 d.	 A ∧ C ⇔ B ∧ C

1.24	� Repeat Exercise 1.23, but assume that A ⇔ B is T.

1.25	� What further truth values can be deduced from those given?
	 a.	 (A ∧ B) ⇔ (A ∨ B)

	 F	 F
	 b.	 (A ⇒ ¬B) ⇒ (C ⇒ B)

	 F
1.26	 a.	� Apply Proposition 1.3 when T   is A1 ⇒ A1 ∨ A2, S1 is B ∧ D, and S2 

is ¬B.
	 b.	� Apply Proposition 1.4 when B1 is (B ⇒ C) ∧ D, B  is B ⇒ C, and C  

is ¬B ∨ C.
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1.27	� Show that each statement form in column I is logically equivalent to 
the form next to it in column II.

I II 
a.	 A ⇒ (B ⇒ C) (A ∧ B) ⇒ C
b.	 A ∧ (B ∨ C) (A ∧ B) ∨ (A ∧ C) (Distributive law)
c.	 A ∨ (B ∧ C) (A ∨ B) ∧ (A ∨ C) (Distributive law)
d.	 (A ∧ B) ∨ ¬ B A ∨ ¬ B
e.	 (A ∨ B) ∧ ¬ B A ∧ ¬ B
f.	 A ⇒ B ¬ B ⇒ ¬A (Law of the contrapositive)
g.	 A ⇔ B B ⇔ A (Biconditional commutativity)
h.	 (A ⇔ B) ⇔ C A ⇔ (B ⇔ C) (Biconditional associativity)
i.	 A ⇔ B (A ∧ B)  ∨ (¬A ∧¬B)
j.	 ¬(A ⇔ B) A ⇔ ¬ B
k.	 ¬(A ∨ B) (¬A) ∧ (¬B) (De Morgan’s law)
l.	 ¬(A ∧ B) (¬A) ∨ (¬B) (De Morgan’s law)
m.	 A ∨ (A ∧ B) A
n.	 A ∧ (A ∨ B) A
o.	 A ∧ B B ∧ A (Commutativity of conjunction)
p.	 A ∨ B B ∨ A (Commutativity of disjunction)
q.	 (A ∧ B) ∧ C A ∧ (B  ∧ C) (Associativity of conjunction)
r.	 (A ∨ B) ∨ C A ∨ (B  ∨ C) (Associativity of disjunction)
s.	 A ⊕ B B ⊕ A (Commutativity of exclusive “or”)
t.	 A ⊕ B) ⊕ C A ⊕ (B ⊕ C) (Associativity of exclusive “or”)
u.	 A ∧ (B ⊕ C) (A ∧ B) ⊕ (A ∧ C) (Distributive law)

1.28	 Show the logical equivalence of the following pairs.
	 a.	 T  ∧ B and B, where T   is a tautology.
	 b.	 T   ∨ B and T, where T   is a tautology.
	 c.	 F  ∧ B and F, where F   is contradictory.
	 d.	 F  ∨ B and B, where F   is contradictory.
1.29	 a.	 Show the logical equivalence of ¬(A ⇒ B) and A ∧ ¬B.
	 b.	 Show the logical equivalence of ¬(A ⇔ B) and (A ∧ ¬B) ∨ (¬A ∧ B).
	 c.	� For each of the following statement forms, find a statement form 

that is logically equivalent to its negation and in which negation 
signs apply only to statement letters.

	 i.	 A ⇒ (B ⇔ ¬C)
	 ii.	 ¬A ∨ (B ⇒ C)
	 iii.	 A ∧ (B ∨ ¬C)
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1.30	 (Duality)
	 a.	� If B   is a statement form involving only ¬, ∧, and ∨, and B ′ results 

from B  by replacing each ∧ by ∨ and each ∨ by ∧, show that B  is a 
tautology if and only if ¬B ′ is a tautology. Then prove that, if B  ⇒ C 
is a tautology, then so is C ′ ⇒ B ′, and if B  ⇔ C  is a tautology, then so 
is B ′ ⇔ C ′. (Here C  is also assumed to involve only ¬, ∧, and ∨.)

	 b.	� Among the logical equivalences in Exercise 1.27, derive (c) from (b), 
(e) from (d), (l) from (k), (p) from (o), and (r) from (q).

	 c.	� If B is a statement form involving only ¬, ∧, and ∨, and B* results 
from B by interchanging ∧ and ∨ and replacing every statement let-
ter by its negation, show that B* is logically equivalent to ¬B. Find a 
statement form that is logically equivalent to the negation of (A ∨ B 
∨ C) ∧ (¬A ∨ ¬B ∨ D), in which ¬ applies only to statement letters.

1.31	 a.	� Prove that a statement form that contains ⇔ as its only connective 
is a tautology if and only if each statement letter occurs an even 
number of times.

	 b.	� Prove that a statement form that contains ¬ and ⇔ as its only con-
nectives is a tautology if and only if ¬ and each statement letter 
occur an even number of times.

1.32	� (Shannon, 1938) An electric circuit containing only on–off switches 
(when a switch is on, it passes current; otherwise it does not) can be 
represented by a diagram in which, next to each switch, we put a letter 
representing a necessary and sufficient condition for the switch to be on 
(see Figure 1.1). The condition that a current flows through this network 
can be given by the statement form (A ∧ B) ∨ (C ∧ ¬A). A statement form 
representing the circuit shown in Figure 1.2 is (A ∧ B) ∨ ((C ∨ A) ∧ ¬B), 
which is logically equivalent to each of the following forms by virtue 
of the indicated logical equivalence of Exercise 1.27.

A B

C A

Figure 1.1

A

A

B

C
B

Figure 1.2
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	 (( ) ( )) (( ) )A B C A A B B∧ ∨ ∨ ∧ ∧ ∨¬ 	 (c)

	 (( ) ( )) ( )A B C A A B∧ ∨ ∨ ∧ ∨¬ 	 (d)

	 (( ) ( )) ( )A B A C A B∧ ∨ ∨ ∧ ∨¬ 	 (p)

	 ((( ) ) ) ( )A B A C A B∧ ∨ ∨ ∧ ∨¬ 	 (r)

	 ( ) ( )A C A B∨ ∧ ∨¬ 	 (p), (m)

	 A C B∨ ∧¬( ) 	 (c)

	� Hence, the given circuit is equivalent to the simpler circuit shown 
in Figure 1.3. (Two circuits are said to be equivalent if current flows 
through one if and only if it flows through the other, and one circuit is 
simpler if it contains fewer switches.)

	 a.	� Find simpler equivalent circuits for those shown in Figures 1.4 
through 1.6.

	 b.	� Assume that each of the three members of a committee votes yes on 
a proposal by pressing a button. Devise as simple a circuit as you 
can that will allow current to pass when and only when at least 
two of the members vote in the affirmative.

	 c.	� We wish a light to be controlled by two different wall switches in a 
room in such a way that flicking either one of these switches will 
turn the light on if it is off and turn it off if it is on. Construct a 
simple circuit to do the required job.

A

BC

Figure 1.3

C

A

A

C

B

C
B

C

Figure 1.4
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1.33	� Determine whether the following arguments are logically correct by 
representing each sentence as a statement form and checking whether 
the conclusion is logically implied by the conjunction of the assump-
tions. (To do this, assign T to each assumption and F to the conclusion, 
and determine whether a contradiction results.)

	 a.	� If Jones is a communist, Jones is an atheist. Jones is an atheist. 
Therefore, Jones is a communist.

	 b.	� If the temperature and air pressure remained constant, there was 
no rain. The temperature did remain constant. Therefore, if there 
was rain, then the air pressure did not remain constant.

	 c.	� If Gorton wins the election, then taxes will increase if the deficit 
will remain high. If Gorton wins the election, the deficit will remain 
high. Therefore, if Gorton wins the election, taxes will increase.

	 d.	� If the number x ends in 0, it is divisible by 5. x does not end in 0. 
Hence, x is not divisible by 5.

	 e.	� If the number x ends in 0, it is divisible by 5. x is not divisible by 5. 
Hence, x does not end in 0.

	 f.	 If a = 0 or b = 0, then ab = 0. But ab ≠ 0. Hence, a ≠ 0 and b ≠ 0.
	 g.	� A sufficient condition for f to be integrable is that ɡ be bounded. 

A necessary condition for h to be continuous is that f is integrable. 
Hence, if ɡ is bounded or h is continuous, then f is integrable.

	 h.	� Smith cannot both be a running star and smoke cigarettes. Smith is 
not a running star. Therefore, Smith smokes cigarettes.

	 i.	� If Jones drove the car, Smith is innocent. If Brown fired the gun, 
then Smith is not innocent. Hence, if Brown fired the gun, then 
Jones did not drive the car.

A

C C
D

D

B
A A
B

Figure 1.6

A

C

C

C

B

B

BA

Figure 1.5


