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PRELIMINARIES

Number was born in superstition and reared in mystery, . . . numbers were once
made the foundation of religion and philosophy, and the tricks of figures

have had a marvellous effect on a credulous people.

F. W. PARKER

1.1 MATHEMATICAL INDUCTION

The theory of numbers is concerned, at least in its elementary aspects, with properties
of the integers and more particularly with the positive integers 1, 2, 3,...(also
known as the natural numbers). The origin of this misnomer harks back to the
early Greeks for whom the word number meant positive integer, and nothing else.
The natural numbers have been known to us for so long that the mathematician
Leopold Kronecker once remarked, “God created the natural numbers, and all the
rest is the work of man.” Far from being a gift from Heaven, number theory has
had a long and sometimes painful evolution, a story that is told in the ensuing
pages.

We shall make no attempt to construct the integers axiomatically, assuming
instead that they are already given and that any reader of this book is familiar with
many elementary facts about them. Among these is the Well-Ordering Principle,
stated here to refresh the memory.

Well-Ordering Principle. Every nonempty set S of nonnegative integers contains a
least element; that is, there is some integer a in S such thata < b for all b’s belonging
toS.
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Because this principle plays a critical role in the proofs here and in subsequent
chapters, let us use it to show that the set of positive integers has what is known as
the Archimedean property.

Theorem 1.1 Archimedean property. If a and b are any positive integers, then
there exists a positive integer n such that na > b.

Proof. Assume that the statement of the theorem is not true, so that for some a and b,
na < b for every positive integer n. Then the set

= {b — na | n a positive integer}

consists entirely of positive integers. By the Well-Ordering Principle, S will possess a
least element, say, b — ma. Notice that b — (m 4 1)a also lies in S, because .S contains

P of thic fo Thyetlhn o hown
aw uu.csCla Of thnis 101, rur ACImore, we nave

—(m+1la=(hb—ma)—a<b—ma

contrary to the choice of b — ma as the smallest integer in S. This contradiction arose
out of our original assumption that the Archimedean property did not hold; hence, this
property is proven true.

With the Well-Ordering Principle available, it is an easy matter to derive the First

Pri (‘1n]P of Finite Tndnr‘hnn which nrnv1df=e a basis for a method of nrnnf called

mathematzcal induction. Loosely speakmg, the First Principle of F1n1te Induction
asserts that if a set of positive integers has two specific properties, then it is the set
of all positive integers. To be less cryptic, we state this principle in Theorem 1.2.

Theorem 1.2  First Principle of Finite Induction. Let S be a set of positive integers
with the following properties:

(a) The integer 1 belongs to S.
(b) Whenever the integer k is in S, the next integer k + 1 must aiso be in S.

Then S is the set of all positive integers.

Proof. Let T be the set of all positive integers notin S, and assume that T is nonempty.
The Well-Ordering Principle tells us that T possesses a least element, which we denote
by a. Because 1 isin S, certalnly > 1,andso 0 < a — 1 < a. The choice of a as the

smallest positive integer in T 1mp11es that a — 1 is not a member of T, or equivalently
that a — 1 belongs to S. By hypothesis, S must also contain (@ — 1) + 1 = a, which
contradicts the fact that a lies in 7. We conclude that the set T is empty and in
consequence that S contains all the positive integers.

Here is a typical formula that can be established by mathematical induction:

2 1 1
12+22+32+_“+n2=”(”+6)(”l+ ) (0
forn=1,2,3,.... In anticipation of using Theorem 1.2, let S denote the set of

all positive integers n for which Eq. (1) is true. We observe that when n = 1, the
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This means that 1 is in S. Next, assume that k& belongs to S (where & is a fixed but
unspecified integer) so that

12 1

I, LG Y M i ; (2)
To obtain the sum of the first k 4 1 squares, we merely add the next one, (k + 1)2,
to both sides of Eq. (2). This gives

k(2k + Dk + 1)

P42+ P+ k+ 1) = + (k + 1)

After some algebraic manipulation, the right-hand side becomes

k(2k + 1 1 2k2 4+ 7k +6
(2k + )6+6(k+ )}Z(kH)[ +6 +]

(k+1)[

_ (k + D2k + 3)(k +2)
6

which is precisely the right-hand member of Eq. (1) when n = k + 1. Our reasoning
shows that the set S contains the integer kK + 1 whenever it contains the integer k.
By Theorem 1.2, S must be all the positive integers; that is, the given formula is true
forn=1,2,3,....

Although mathematical induction provides a standard technique for attempting
to prove a statement about the positive integers, one disadvantage is that it gives no
aid in formulating such statements. Of course, if we can make an “educated guess”
at a property that we believe might hold in general, then its validity can often be
tested by the induction principle. Consider, for instance, the list of equalities

1=1
1+2=3
14+2+2%=

1+2+22+23=15
1+2+22+23424=31
1+2+22+224+2+2°=63
We seek a rule that gives the integers on the right-hand side. After a little reflection,
the reader might notice that
1=2-1 3=22-1 7=22-1
15=2*-1 31=2°-1 63=20-1

(How one arrives at this observation is hard to say, but experience helps.) The pattern
emerging from these few cases suggests a formula for obtaining the value of the
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An—1,

expression 1 + 2 + 22 + 2% + ... + 2*7!; namely,
1424224224 2l =20—1 (3)

for every positive integer n.
To confirm that our guess is correct, let S be the set of positive integers n for
which Eq. (3) holds. For n = 1, Eq. (3) is certainly true, whence 1 belongs to the set

C YWa agqn mao that B {’2\ iq trmia far a Avad intagar I on that for thiq I
D . VYO dd3SUINC uldt L. (O) 18 iUl 10T a 1xXea HItCECT 1, 5O Widt 101 ulisS ]

1+2 422 4. 42102k

and we attempt to prove the validity of the formula for £ 4+ 1. Addition of the term
2% to both sides of the last-written equation leads to

14+24+22 4. 4201y ok =0k 1 4 0k
=2.2Fk—1=21_1

But this says that Eq. (3) holds when n = k + 1, putting the integer k + 1 in S so
that k + 1 is in S whenever k is in S. According to the induction principle, S must
be the set of all positive integers.

Remark. When giving induction proofs, we shall usually shorten the argument by

A o~ P Py o o

eliminating ail reference to the set S, and proceed to show simply that the result in
questlon is true for the 1nteger 1, and if true for the 1nteger k is then aiso true for & + 1.

We should inject a word of caution at this point, to wit, that one must be careful
to establish both conditions of Theorem 1.2 before drawing any conclusions; neither
is sufficient alone. The proof of condition (a) is usually called the basis for the
induction, and the proof of (b) is called the induction step. The assumptions made in

carrving nnt tha indiietinn getan ara Lnnauwn ag tha sunduntinm bunnthoese Tha indnetinn
U“ll]llls vuL l.ll\.z uluuvuuu Dl.\/l.l alv DIVYYLL ad Lll\.« LILMWL LI IL)‘I/ULILCJ Coy. 1 ll\.« uluuvuuu

situation has been likened to an infinite row of dominoes all standing on edge and
arranged in such a way that when one falls it knocks down the next in line. If either
no domino is pushed over (that is, there is no basis for the induction) or if the spacing
is too large (that is, the induction step fails), then the complete line will not fall.

The validity of the induction step does not necessarily depend on the truth of
the statement that one is endeavoring to prove. Let us look at the false formula

14345+ -+@2n—1=n*+3 (4)
Assume that this holds for n = k; in other words,

143454+ +Qk—1)=k*+3
Knowing this, we then obtain

1+3+54+ - +Qk—D+Qk+1)=k>*+3+2k+1
=k+172+3
which is precisely the form that Eq. (4) should take when n = k + 1. Thus, if

Eq. (4) holds for a given integer, then it also holds for the succeeding integer. It
is not possible, however, to find a value of n for which the formula is true.
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There is a variant of the induction princi p le that is often used when Theorem 1.2
alone seems ineffective. As with the first version, th1s Second Principle of Finite In-
duction gives two conditions that guarantee a certain set of positive integers actually
consists of all positive integers. This is what happens: We retain requirement (a), but
(b) is replaced by

(b") Ifkis a positive integer such that 1, 2, .. ., k belong to S, then k + 1 must also
bein S.

The proof that S consists of all positive integers has the same flavor as that of
Theorem 1.2. Again, let T represent the set of positive integers not in §. Assuming
that 7 is nonempty, we choose n to be the smallest integer in 7. Then n > 1,
by supposition (a). The minimal nature of n allows us to conclude that none of the
integers 1, 2, ..., n — lliesin T, or, if we prefer a positive assertion, 1,2, ..., n — 1
all belong to S. Property (b’) then puts n = (n — 1) 4+ 1 in §, which is an obvious
contradiction. The result of all this is to make T empty.

The First Principle of Finite Induction is used more often than is the Second;
however, there are occasions when the Second is favored and the reader should be
familiar with both versions. It sometimes happens that in attempting to show that
k + 1 is a member of S, we require proof of the fact that not only k, but all positive
integers that precede k, lie in S. Our formulation of these induction principles has
been for the case in which the induction begins with 1. Each form can be generalized
to start with any positive integer ng. In this circumstance, the conclusion reads as
“Then S is the set of all positive integers n > ng.”

Mathematical induction is often used as a method of definition as well as a
method of proof. For example, a common way of introducing the symbol n! (pro-
nounced “n factorial”) is by means of the inductive definition

(a) ii =1,
b)yn!l=n-(n—1N!forn > 1.
This pair of conditions provides a rule whereby the meaning of n! is specified for
each positive integer n. Thus, by (a), 1! = 1; (a) and (b) yield
21=2-11=2-1
while by (b), again,
31=3.21=3.2.1

Continuing in this manner, using condition (b) repeatedly, the numbers 1!, 2!, 3!, ...,
n! are defined in succession up to any chosen #. In fact,

ntl=n-n—-1)---3.2.1

Induction enters in showing that !, as a function on the positive integers, exists and
is unique; however, we shall make no attempt to give the argument.

It will be convenient to extend the definition of n! to the case in which n =0
by stipulating that 0! = 1.
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tion, consider the so-called Lucas sequence:

1,3,4,7,11,18,29,47,76,. ..

Except for the first two terms, each term of this sequence is the sum of the preceding
two, so that the sequence may be defined inductively by

a, = 1
a =3
an, = an—1 +an—2 foralln > 3

We contend that the inequality
a, < (1/4)"

holds for every positive integer n. The argument used is interesting because in the
inductive step, it is necessary to know the truth of this inequality for two successive
values of n to establish its truth for the following value.

First of all, for n = 1 and 2, we have

a=1< /' =7/4 and a; =3 < (7/4)*=49/16

whence the inequality in question holds in these two cases. This provides a basis for
the induction. For the induction step, choose an integer k > 3 and assume that the
inequality is valid forn = 1, 2, ..., k — 1. Then, in particular,

ag—1 < (7/4)F1 and  ap_o < (7/4)F2

By the way in which the Lucas sequence is formed, it follows that

a e - 7 Iak—1 7 7ANK—2
Uy — U] T G2 < \//%) TA\//)

= (7/4*1/4+ 1)
= (7/4)*(11/4)
< (/2T = (/4

Because the inequality is true for n = k whenever it is true for the integers 1, 2, .. .,
k — 1, we conclude by the second induction principle that a, < (7/4)" foralln > 1.

COULINAC WY C oL 1 VCLTONT DI IDIE A4l 4

Among other things, this example suggests that if objects are defined inductively,
then mathematical induction is an important tool for establishing the properties of
these objects.

PROBLEMS 1.1

1. Establish the formulas below by mathematical induction:

1
(a) 1+2+3+...+n:@forallnzl.

M) 1+3+5+---+02n—1=nforalln > 1.
1 2
(c) 1-2+2-3+3-4+---+n(n+1)=Egl—i—a?—(-’—l——j—-——lforallnzl.
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@ 124+324+52 4+ +Qn—12 ="

foralln > 1.

2
(e P+22+33+ ] foralln > 1.

. If r # 1, show that for any positive integer n,

a+ar+ar*+---+ar" =

. Use the Second Principle of Finite Induction to establish that for alln > 1,

a"—l=@—-D@ ' +a" 2 +a" 3+ +a+1)

[Hint: a™' — 1 =(a+ 1)@" — 1) —a@ ! —1)]
Prove that the cube of any integer can be written as the difference of two squares. [Hint:
Notice that

P=P+ 24— P+ 2P (= 1))

. (a) Find the values of n < 7 for which n! 4 1 is a perfect square (it is unknown whether

n!+ 1is a square for any n > 7).
(b) True or false? For positive integers m and n, (mn)! = m !n! and(m +n)! =m! +n!

. Prove that n! > n? for every integer n > 4, whereas n! > n> for every integer n > 6.

Tlga mathe cal induection to derive tha fall Ano formula farall o > 1.

e UOWL 11 lalll\/l l L \/al uluuvuuu W ULlive uiv LUIIUWlllé 1U11uu1a 11Ul all 1 < 1.

1AH+2@2H +3@N+---+amEh=n+ 1! -1

. (a) Verify that foralln > 1,

2:6-10-14-----(4n —2) =

foralln > 1.
For all n > 1, prove the following by mathematical induction:
(a) i+i+i+=n+i<2:l‘
12 22 32 n? — n
1 2 3 n n—+2
b) -+ = 4+ — 4...4 _ =2_
()2+22+23+ +2" 2n

Show that the expression (2r)!/2"n! is an integer for all n > 0.
Consider the function defined by

3n + 1
T(n) ={

n

2

The 3n 4 1 conjecture is the claim that starting from any integer n > 1, the sequence
of iterates T'(n), T(T (n)), T(T (T (n))), ..., eventually reaches the integer 1 and subse-
quently runs through the values 1 and 2. This has been verified for all » < 10'¢, Confirm
the conjecture in the cases n = 21 and n = 23.

for n odd

for n even
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13. Suppose that the numbers «, are defined inductively by a; = 1,a; =2, a3 = 3, and
a, = an—1 + a,—y + a,_3 for all n > 4, Use the Second Principle of Finite Induction to
show that a, < 2" for every positive integer 7.

14. If the numbers a,, are defined by a; = 11, a; = 21, and a, = 3a,-1 — 2a,., forn > 3,
prove that

a,=5-2"+1 n>1

1.2 THE BINOMIAL THEOREM

Closely connected with the factorial notation are the binomial coefficients (). For
any positive integer n and any integer k satisfying 0 < k < n, these are defined by

/n n!

ll,)_

\kJ " kln— 0!

By canceling out either k! or (n — k)!, (;) can be written as

ny nm—1)--(k+1) nmn—-1---(n—k+1)
<k>_ (n —k)! B k!

For example, with n = 8 and k = 3, we have

G) 8 8.7-6-5-4 8.7-6

3)7 3151 51 -3 36

Also observe that if k = 0 or k = n, the quantity 0! appears on the right-hand side
of the definition of (7 ); because we have taken 0! as 1, these special values of k give

(5)-()-

There are numerous useful identities connecting binomial coefficients. One that we
require here is Pascal’s rule:

/o \ / " /o 1\
(“Y+(, " ) =("T") l<k<n
\kJ k=1 k)

Its proof consists of multiplying the identity

L, 1 a4l
k n—k+1 k(n—k+1

by n!/{(k — 1){(n — k)! to obtain
n! n!
k(k — Dl(n — k)! + (k—DIn —k+ D(n —k)!
(n+ Dn!

T kk—D'(n —k+ D(n —k)!
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Kk G- Dn—k+ D! K+ 1—h)
from which Pascal’s rule follows.
This relation gives rise to a configuration, known as Pascal s triangle, in which
+ t

the binomial effic T\ annears ac the (&
€ bimomial coeffic «)ap <

v o nld u SRR S S AVEY

"

QW *
LAY

AV

1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

The rule of formation should be clear. The borders of the triangle are composed of
1’s; a number not on the border is the sum of the two numbers nearest it in the row
immediately above.

The so-called binomial theorem is in reality a formula for the complete expansion
of (a + b)*, n > 1, into a sum of powers of a and b. This expression appears with

1 S
X

araat frantianay ;n rx]] nha nf nivmhar tha nd 1t 1g vwall von A1 f1m o i lnnl-
SLU(.I.L 11\/\1\1\/11\4)’ 111 A1l lJllaD\aD UL llulllUbl Lll\.«Ul)’ auu ll, 10 ¥YYUIll vWuUllll Ul Lliliv WV 1IVUN
at it now. By direct multiplication, it is easy to verify that

@a+b) =a+b

(a + b)? = a? + 2ab + b*

b =a® +3a%*b + 3ab* + b3
(a+b)’ =a’ + 3a°b + 3ab” +
A 4 4 31 212 4 ALL3 1 14 aan
\uTU} =d T 44d -ruuu T Uy T U, ClL.

The question is how to predict the coefficients. A clue lies in the observation that
the coefficients of these first few expansions form the successive rows of Pascal’s
triangle. This leads us to suspect that the general binomial expansion takes the form

aror=(g)ar+ (7)o (5) o
\ / \ / N/

h bn——-l n bn
o (n —1 ) (ﬂ )
or, written more compactly,

(a+b)' = i (Z) a"*p*

Mathematical induction provides the best means for confirming this guess. When
n = 1, the conjectured formula reduces to

1
(a+b)' =Z<i)al“kbk= (é)aleG)aObl =a+b

k=0
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(a+by""! =a(a+b)" + ba + b)"

Under the induction hypothesis,

ala +b)" = z (r;{’z) an kI pk

k=0

— m+l — (m mA1—k pk
=a -I—;(k)a b

(7)o
(s

and

b(a + b)"

IMS EMS

m \ m+1— kbk pmtl

P
I
y._l

1

Upon adding these expressions, we obtain

(a +b)m+1 — g"t! + Z |:<II?€1> + (klil 1)] gtk pk +bm+1
k=1

m—+1

L1\
m T 1 —
— 2 :( am+1 kbk

which is the formula in the case n = m + 1. This establishes the binomial theorem

by induction.
Before abandoning these ideas, we might remark that the first acceptable for-

mulation of the method of mathematical induction appears in the treatise Traité du

lation of the method of mathematical induction appears in the treatise Trairé du
T iangte Arlmme[lque, Dy the 17th LCHLUI)’ FICI](.«H IIldUlCIIld[lleIl dﬂu p[lllUbUpl’lCI'
Blaise Pascal. This short work was written in 1653, but not printed until 1665 be-
cause Pascal had withdrawn from mathematics (at the age of 25) to dedicate his
talents to religion. His careful analysis of the properties of the binomial coefficients
helped lay the foundations of probability theory.

PROBLEMS 1.2

1. (a) Derive Newton’s identity

C)-()6) mtere
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(b) Use part (a) to express (}:‘) in terms of its predecessor:

(1) === (20)  mzem
. If2 <k <n -2, show that

1\ (0 — 2\ fn—=2\ {(n-—
W) = le=2) 7 20e-1) 7 U
. For n > 1, derive each of the identities below:

o (D) () e () or (1)

[Hint: Let a = b = 1 in the binomial theorem.]

(b) (’8) - (’{)+(’;> — (-1 (Z) =0.
© (’f)+2(’;)+3(§)+-.-+n(’;) = 2",

) n>4

11

[Hint: After expanding n(1 + b)"~! by the binomial theorem, let b = 1; note also

that

n(n;1)=(k+l)(kil).]

) (g)+2(’f)+22(g)+ ~+2"(Z)=3"

a (N (Y (7 (P

o) \2) 4] " \6)
()+()+(0)+ -

[Hint: Use parts (a) and (b).]
o (5)-5(1)+(a)-+E2 (1) ==
\Y/ «\Y/ 2\“/

n+i1\%t;, n+1

[Hint: The left-hand side equals

1 n+1 n+1 n+1 (n+1
A (1)) (1) e (G
. Prove the following for n > 1:

(a) (Z) < (ril) ifand only if 0 < r < %(n —1).

n n . . 1
b) ( )> (r+1)1fandonly1fn—lzr> E(n—l).

.
@ (" )=(_",)ifand onlyifn is an odd integer, and r = l(n —1)
r)] o \r+1 y get, ) :
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Pythagoras divided those who attended his lectures into two groups: the Pro-
bationers (or listeners) and the Pythagoreans. After three years in the first class, a
listener could be initiated into the second class, to whom were confided the main
discoveries of the school. The Pythagoreans were a closely knit brotherhood, hold-
ing all worldly goods in common and bound by an oath not to reveal the founder’s
secrets. Legend has it that a talkative Pythagorean was drowned in a shipwreck as
st punishment for publicly boasting tha

mber of chulcu solids enumerated y’ yt é

Pythagoreans succeeded in dommatmg the local govemmen in Croton, but a pop-
ular revolt in 501 B.C. led to the murder of many of its prominent members, and
Pythagoras himself was killed shortly thereafter. Although the political influence of
the Pythagoreans thus was destroyed, they continued to exist for at least two centuries
more as a philosophical and mathematical society. To the end, they remained a secret
order, publishing nothing and, with noble self-denial, ascribing all their discoveries
to the Master.

The Pythagoreans believed that the key to an explanation of the universe lay in
number and form, their general thesis being that “Everything is Number.” (By num-
ber, they meant, of course, a positive integer.) For a rational understanding of nature,
they considered it sufficient to analyze the properties of certain numbers. Pythagoras
himself, we are told “seems to have attached supreme importance to the study of
arithmetic, which he advanced and took out of the realm of commercial utility.”

The Pythagorean doctrine is a curious mixture of cosmic philosophy and number
mysticism, a sort of supernumerology that assigned to everything material or spiritual
a definite integer. Among their writings, we find that 1 represented reason, for reason
could produce only one consistent body of truth; 2 stood for man and 3 for woman;
4 was the Pythagorean symbol for justice, being the first number that is the product
of equals; 5 was identified with marriage, because it is formed by the union of 2 and
3; and so forth. All the even numbers, after the first one, were capable of separation
into other numbers; hence, they were prolific and were considered as feminine and
earthy—and somewhat less highly regarded in general. Being a predominantly male
society, the Pythagoreans classified the odd numbers, after the first two, as masculine
and divine.

Although these speculations about numbers as models of “things” appear friv-
olous today, it must be borne in mind that the intellectuals of the classical Greek
period were largely absorbed in philosophy and that these same men, because they
had such intellectual interests, were the very ones who were engaged in laying the
foundations for mathematics as a system of thought. To Pythagoras and his followers,
mathematics was largely a means to an end, the end being philosophy. Only with
the founding of the School of Alexandria do we enter a new phase in which the

mathamatice was nnrenniead faor ite nwn qealka
""“‘Vatle“ Cf mamematics wa O PULBULAL LUL 1S UWIL Sanv.

It was at Alexandria, not Athens, that a science of numbers divorced from mystic
philosophy first began to develop. For nearly a thousand years, until its destruction
by the Arabs in 641 A.D., Alexandria stood at the cultural and commercial center of
the Hellenistic world. (After the fall of Alexandria, most of its scholars migrated to
Constantinople. During the next 800 years, while formal learning in the West all but
disappeared, this enclave at Constantinople preserved for us the mathematical works
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the modern university, brought together the leading poets and scholars of the day;
adjacent to it there was established an enormous library, reputed to hold over 700,000
volumes—hand-copied—at its height. Of all the distinguished names connected with
the Museum, that of Euclid (fl. ¢.300 B.c.), founder of the School of Mathematics,
is in a special class. Posterity has come to know h1m as the author of the Elements,
the oldest Greek treatise 0O 1t

s AF il
is a u.uupuat ion of much o

organized into 13 parts or Books, as they are ¢ alled The name of Euclid is so often
associated with geometry that one tends to forget that three of the Books, VII, VIII,
and IX, are devoted to number theory.

Euclid’s Elements constitutes one of the great success stories of world literature.
Scarcely any other book save the Bible has been more widely circulated or stud-
ied. Over a thousand editions of it have appeared since the first printed version in
1482, and before its printing, manuscript copies dominated much of the teaching of
mathematics in Western Europe. Unfortunately, no copy of the work has been found
that actually dates from Euclid’s own time; the modern editions are descendants of

a revision prepared by Theon of Alexandria, a commentator of the 4th century A.D.
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the numbers

1=1,3=142,6=14+2+4+3,10=14+2+3+4,...

represents the number of dots that can be arranged evenly in an equilateral triangle:

O

This led the ancient Greeks to call a number triangular if it is the sum of consecutive

integers, beginning with 1. Prove the following facts concerning triangular numbers:

(a) A number is triangular if and only if it is of the form n(n + 1)/2 for some n > 1.
(Pythagoras, circa 550 B.C.)

(b) Theinteger n is a triangular number if and only if 8n + 1 is a perfect square. (Plutarch,
circa 100 AD)

(c) The sum of any two consecutive trianguiar numbers is a perfect square. (Nicomachus,
circa 100 AD.)

(d) If n is a triangular number, then so are 9n + 1, 25x# + 3, and 49n + 6. (Euler, 1775)

2. If ¢, denotes the nth triangular number, prove that in terms of the binomial coefficients,

n+1)
t, = 9 n>1
N\ T/

3. Derive the following formula for the sum of triangunlar numbers, attributed to the Hindu
mathematician Aryabhata (circa 500 AD.):

1 2
t1+;2+t3+...+;n=w n>1

[Hint: Group the terms on the left-hand side in pairs, noting the identity #;_; + #; = k°.]
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(3)+ )+ (2) == (5)=("3")

[Hint: Use induction, and Pascal’s rule.]
(b) From part (a), and the relation m* = 2(% ) + m for m > 2, deduce the formula

nin+ DH2n+1)
6

12+22+32+"'+.”l2;

(c) Apply the formula in part (a) to obtain a proof that
nn+ n+2)

1-242-34+---+n(n+1)= 3

[\
(NI

I Hint- Ohcarve that (33 — 1N — (71
paini; Joserve tnat (m i)ym Un )il

. Derive the binomial identity

v
)

2 4 6 2n n(n 4+ 1)(4n —1)
()9 ()

[Hint: Form > 2, (%) = 2(3) + m?.]

. For n > 1, verify that

) [} 3 ) /.”.
1‘—|—3‘+5‘+---+(2n—1)‘=k

. Show that, forn > 1,
2n\ _ 1-3-5---2n — 1)22n
nj) o 2.4-6---2n
Fcotahlich tha inaanality 90 (2n\ -~ O2n Ar o~ 1
A sOLALUILI 011 LRI lll\/\:luulll.)' P S~ \ n } Y £y AL v o~ L.
[Hint: Put x =2-4.-6---(2n), y=1-3-5---2n—1),and z=1-2-3---n; show

o

that x > y > z, hence x* > xy > xz.]

The Catalan numbers, defined by
1 2n)!
. @M 612,
n+1\ n nl(n + 1)!

form the sequence 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, .. .. They first appeared in
1838 when Eugeéne Catalan (1814-1894) showed that there are C,, ways of parenthesizing
a nonassociative product of  + 1 factors. [For instance, when n = 3 there are five ways:
((ab)c)d, (a(be))d, a((be)d), a(b(cd)), (ab)ac).] For n > 1, prove that C, can be given
inductively by

_2m-1,

Cr —
n+1

n—1
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DIVISIBILITY THEORY IN THE INTEGERS

Integral numbers are the fountainhead of all mathematics.
H. MINKOWSKI

2.1 EARLY NUMBER THEORY

Before becoming weighted down with detail, we should say a few words about
the origin of number theory. The theory of numbers is one of the oldest branches
of mathematics; an enthusiast, by stretching a point here and there, could extend
its roots back to a surprisingly remote date. Although it seems probable that the
Greeks were largely indebted to the Babylonians and ancient Egyptians for a core
of information about the properties of the natural numbers, the first rudiments of an
actual theory are generally credited to Pythagoras and his disciples.

Our knowledge of the life of Pythagoras is scanty, and little can be said with any
certainty. According to the best estimates, he was born between 580 and 562 B.C. on
the Aegean island of Samos. It seems that he studied not only in Egypt, but may even
have extended his journeys as far east as Babylonia. When Pythagoras reappeared
after years of wandering, he sought out a favorable place for a school and finally
settled upon Croton, a prosperous Greek settlement on the heel of the Italian boot.
The school concentrated on four mathemata, or subjects of study: arithmetica (arith-
metic, in the sense of number theory, rather than the art of calculating), harmonia
(music), geometria (geometry), and astrologia (astronomy). This fourfold division
of knowledge became known in the Middle Ages as the quadrivium, to which was
added the trivium of logic, grammar, and rhetoric. These seven liberal arts came to
be looked upon as the necessary course of study for an educated person.

13
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. Prove that the square of any odd IIlUlllplC of 3 is the difference of two lIldIlgUldr IlUIIlDCFb

specifically, that
921 + 1)* = tog4a — 3t

In the sequence of triangular numbers, find the following:

(a) Two triangular numbers whose sum and difference are also triangular numbers.
{b) Three successive triangular numbers whose prodiict is a perfect square.

(c) Three successive trianguiar numbers whose sum is a perfect square.

(a) If the triangular number ¢, is a perfect square, prove that #4,(,1) 18 also a square.

(b) Use part (a) to find three examples of squares that are also triangular numbers.

. Show that the difference between the squares of two consecutive triangular numbers is

always a cube.

. Prove that the sum of the reciprocals of the first n triangular numbers is less than 2; that

is,

! + ! + = ! + ! 4+ ! 2
-+ = — —_ <
1 3 6 10 t,
1
[Hint: Observe that —=— (n = 2(; — - +1).]

. (a) Establish the identity ¢, = ¢, + ¢,, where

n(n+3) ; , N nin +3)
mETo 7= — 2

+1 y .
2 2

Il
b
—

LV pp—
X =

and n > 1, thereby proving that there are infinitely many triangular numbers that are
the sum of two other such numbers.
(b) Find three examples of triangular numbers that are sums of two other triangular
numbers.
Each of the numbers

1,5=144,12=1+4+7,22=14+4+7+10,...
represents the number of dots that can be arranged evenly in a pentagon:

DN
Voo

o o wl

The ancient Greeks called these pentagonal numbers. If p, denotes the nth pentagonal
number, where p; = 1 and p, = p,—1 + 3r — 2) for n > 2, prove that

For n > 2, verify the following relations between the pentagonal, square, and triangular
numbers:

(a) Pn =1ltn—1+ n?

(b) Pn = i +tn=2t_1+1t,



DIVISIBILITY THEORY IN THE INTEGERS 17

We have been exposed to relationships between integers for several pages and, as
yet, not a single divisibility property has been derived. It is time to remedy this
situation. One theorem, the Division Algorithm, acts as the foundation stone upon
which our whole development rests. The result is familiar to most of us; roughly, it
asserts that an integer a can be “divided” by a positive integer b in such a way that
the remainder is smaller than is b. The exact statement of this fact is Theorem 2.1.

Theorem 2.1 Division Algorithm. Given integers a and b, with b > 0, there exist
unique integers g and r satisfying

S ={a — xb | x an integer; a — xb > 0}

is nonempty. To do this, it suffices to exhibit a value of x making a — xb nonnegative.
Because the integer b > 1, we have |a | b > |a |, and so

a—(—japp=a+jajv=a+|a|=0
For the choice x = —| a |, then, a — xb lies in S. This paves the way for an application

of the Well-Ordering Principle (Chapter 1), from which we infer that the set § contains
a smallest integer; call it . By the definition of S, there exists an integer ¢ satisfying

r=a—gqgb O0<r

a—(@@+Db=@—qgb)—b=r—-5b=>0

The implication is that the integer a — (g + 1)b has the proper form to belong to the
set S. Buta — (¢ 4+ 1)b =r — b < r, leading to a contradiction of the choice of r as
the smallest member of S. Hence, r < b.
Next we turn to the task of showing the uniqueness of ¢ and ». Suppose that a has
two represeniations of the desired form, say,
a=gb+r=qb+7r

where 0 <r < b,0 <r’ < b. Thenr' —r = b(q — q’) and, owing to the fact that the
absolute value of a product is equal to the product of the absolute values,

|r'—r|=blg—q'l

Upon adding the two inequalities —b < —r <0 and 0 <r' < b, we obtain
—b <r' —r < b or, in equivalent terms, |’ —r | < b. Thus, b|q — g’ | < b, which
yields

0<lg—q'l<l

Because | g — ¢’ | is a nonnegative integer, the only possibility is that |g — g’ | =0,
whence g = ¢’; this, in turn, gives r = r/, ending the proof.
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restriction that b must be positive by the simple requirement that b # 0.

Corollary. If a and b are integers, with b # 0, then there exist unique integers g and
r such that
a=qgb+r 0<r<|b|
Proof. 1t is enough to consider the case in which b is negative. Then || > 0, and
Theorem 2.1 produces unique integers ¢’ and r for which
a=q |b|+r O0<r<|b]|
Noting that | b | = —b, wemaytakeq = —g’toarriveata = gb + r,withO <r < | b|.

To illustrate the Division Algorithm when b < 0, let us take b = —7. Then, for
the choices of a = 1, —2, 61, and —59, we obtain the expressions

1 =0(=7) + 1
2 =1(=7)+5

61 = (=8)(=7)+5
—59 =9(—7)+4

We wish to focus our attention on the applications of the Division Algorithm,
and not so much on the algorithm itself. As a first illustration, note that with b = 2
the possible remainders are r = O and r = 1. When r = 0, the integer a has the form
a = 2q and is called even; whenr = 1, the integera has the forma = 2g 4+ 1 and is

called odd. Now a? is either of the form (2¢)* = 4k or (2¢g + 1)* = 4(¢> —}—a)—l—] =

/Il L1 Tha tta h Aa that tha
K T 1. 10C p\’)lﬂt t0 OC Imaac "S tnat the s

or 1 upon division by 4.

We also can show the following: The square of any odd integer is of the form
8k + 1. For, by the Division Algorithm, any integer is representable as one of the
four forms: 4q, 4g + 1, 4q + 2, 4g + 3. In this classification, only those integers of
the forms 4q + 1 and 4qg + 3 are odd. When the latter are squared, we find that

(4g+1P*=8Q2¢* +q)+1=8k+1

nara laave
udilv vl adll llll.\.«sbl Ivdvied UL 1udlialiiuvcl v

o)

and similarly
(49 + 3% =8¢ +3¢g+ 1)+ 1=8k+1
As examples, the square of the odd integer 7 is 72 = 49 = 8 - 6 + 1, and the square

of 13i 132 =169 =8.21 +1,
L a1

As these remarks lIlUlLdLC the dUVdIlldgC of the Division ﬂlgUIlulIIl lb that it
allows us to prove assertions about all the integers by considering only a finite
number of cases. Let us illustrate this with one final example.

Example 2.1. We propose to show that the expression a(a? + 2)/3 is an integer for
all a > 1. According to the Division Algorithm, every a is of the form 3q, 3q + 1, or
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3g + 2. Assume the first of these cases. Then
a(a* +2)

3
which clearly is an integer. Similarly, if a = 3q + 1, then

(Bg +D(Bg +1)*+2)
3

-

= q(9q* +2)

=(3g + 1D)Bg> +29 + 1)

and a(a® + 2)/3 is an integer in this instance also. Finally, for a = 3¢ + 2, we obtain

(3g +2)((3q +2)° +2)
3
an integer once more. Consequently, our result is established in all cases.

= (3g +2)Bq> +49 +2)

T W ot

PROBLEMS 2.2

1.

2.
3.

~1

o

-t
QD

Prove that if a and b are integers, with b > 0, then there exist unique integers ¢ and r
satisfying a = gb + r, where 2b < r < 3b.

Show that any integer of the form 6k 4 5 is also of the form 3 + 2, but not conversely.
Use the Division Algorithm to establish the following:

(a) The square of any integer is either of the form 3k or 3k + 1.
lay Thha ~Anilha AF ccxr dimbagar hao Ara ~AF ¢ha Fawmenss O 1 or Q

(D) 11€ CUpC O any iiCger rias O OI uiC 10imis: »K, ok + 1, Ok + 8
(C) The fourth power of any 1nteger is either of the form 5k or 5k + 1.

. Prove that 3a® — 1 is never a perfect square.

[Hint: Problem 3(a).]

. Forn > 1, prove that n(n 4+ 1)(2r + 1)/6 is an integer.

[Hint: By the Division Algorithm, n has one of the forms 6k, 6k + 1, ..., 6k 4+ 5; estab-
lish the result in each of these six cases.]

. Show that the cube of any integer is of the form 7k or 7k + 1.
. Obtain the following version of the Division Algorithm: For integers a and b, with b # 0,

there exist unique integers ¢ and r that satisfy a = gb + r, where ——| bl <r < 2| b|.
[Hint: First writea = ¢'b + r’, where0 < r’ < |b|. When0 <r’ < 2|b|,letr = " and
q:q’;whenélbl <r <|bl,letr=r"—|blandg =q'+ 1ifb>00rqg =¢q" — 1
ifb <0.]

. Prove that no integer in the following sequence is a perfect square:

11,111, 1111, 11111, ...
[Hint: A typical term 111--- 111 can be written as
111--- 111 =111---108 + 3 = 4k + 3.]

. Verify that if an integer is simultaneously a square and a cube (as is the case with

64 = 82 = 43), then it must be either of the form 7k or 7k + 1.

T 2 o~ 1 cctallicl eb s dbon Soun o .2 | N2 L alap £ £1
. COr 71 =~ 1, €8taniisn tnat e intCger 7 /71~ + 5) 18 O1 inc 10rm OK.
. If n is an odd integer, show that n* + 4n% + 11 is of the form 16k.

2.3 THE GREATEST COMMON DIVISOR

Of special significance is the case in which the remainder in the Division Algorithm
turns out to be zero. Let us look into this situation now.
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a | b, if there exists some integer ¢ such that » = ac. We write a f b to indicate that b

is not divisible by a.

Thus, for example, —12 is divisible by 4, because —12 = 4(—3). However, 10
is not divisible by 3; for there is no integer ¢ that makes the statement 10 = 3¢ true.
There is other language for expressing the divisibility relation a | b. We could

coy that a IS a d"v’lﬁ()r nf b’ Lhat a 10 o fnnfnr n{“ k or thf l’\ 1sa vlnulﬁplo r\Fn ]\Tnhr‘n

that in Definition 2.1 there is a restrlctlon on the divisor a: Whenever the notation
a | b is employed, it is understood that a is different from zero.

If a is a divisor of b, then b is also divisible by —a (indeed, b = ac implies that
b = (—a)(—c)), so that the divisors of an integer always occur in pairs. To find all
the divisors of a given integer, it is sufficient to obtain the positive divisors and then
adjoin to them the corresponding negative integers. For this reason, we shall usually
limit ourselves to a consideration of positive divisors.

It will be helpful to list some immediate consequences of Definition 2.1. (The
reader is again reminded that, although not stated, divisors are assumed to be
Nonzero.)

Theorem 2.2, For integers a, b, ¢, the following hold:

(a) a|0,1]a,a]a.

(b) a|lifandonlyifa = +£1.
(¢) Ifa|band c|d, then ac|bd.
(d) fa|band b|c,thena|c.
(e) a|band b|aif and only if a = +b.
() Ifa|band b #O0,then |a] < |b]|.
(0\ Tfnlhnndnlr fhpnnl(hr-Lr‘v)

Ifalbandalc,thena or arbitrary integers x

and v
T

Proof. We shall prove assertions (f) and (g), leaving the other parts as an exercise. If
a | b, then there exists an integer ¢ such that b = ac; also, b # 0 implies that ¢ # 0.
Upon taking absolute values, we get |b | = |ac| = |a||c|. Because ¢ # 0, it follows
that |c| > 1, whence |b| = |allc| > |a].

As regards (g), the relations a | b and a | ¢ ensure that b = ar and ¢ = as for
suitable integers » and s. But then whatever the choice of x and y,

bx +cy =arx +asy = a(rx + sy)
Because rx + sy is an integer, this says that a | (bx + cy), as desired.

I is worth pointing out that property (g) of Theorem 2.2 extends by induction
ms of more than two terms. That is, ifa | b, fork = 1,2, ..., n, then

D, 21 Uk AL A

!—b
Q

a I (bl-xl + b2x2 +---+ bnxn)

for all integers x1, x2, .. ., x,,. The few details needed for the proof are so straight-
forward that we omit them.

If a and b are arbitrary integers, then an integer d is said to be a common
divisor of a and b if both d | a and d | b. Because 1 is a divisor of every integer,
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nonempty. Now every integer divides zero, so that if a = b = 0, then every integer
serves as a common divisor of a and b. In this instance, the set of positive common
divisors of a and b is infinite. However, when at least one of a or b is different from
zero, there are only a finite number of positive common divisors. Among these, there
is a largest one, called the greatest common divisor of a and . We frame this as
Definition 2.2.

Definition 2.2. Let a and b be given integers, with at least one of them different from
zero. The greatest common divisor of a and b, denoted by gcd(a , b), is the positive
integer d satisfying the following:

Example 2.2, The positive divisors of —12 are 1, 2, 3, 4, 6, 12, whereas those of 30
are 1, 2, 3, 5, 6, 10, 15, 30; hence, the positive common divisors of —12 and 30 are 1,
2,3, 6. Because 6 is the largest of these integers, it follows that gcd(—12,30) = 6. In
the same way, we can show that

ged(—5,5)=5 ged(8,17) =1 ged(—8, —36) =4

The next theorem indicates that gcd(a , b) can be represented as a linear com-
bination of a and b. (By a linear combination of a and b, we mean an expression of
the form ax + by, where x and y are integers.) This is illustrated by, say,

cd(—12,30) =6 = (—12)2+ 30 - 1

or
ged(—8, —36) =4 = (—8)4 + (—36)(—1)

Now for the theorem.

Theorem 2.3. Given integers a and b, not both of which are zero, there exist integers
x and y such that

ged(a, b) = ax + by

Proof. Consider the set S of all positive linear combinations of a and b:

S=lau+bviau+bv > 0;u,vinteg
Notice first that S is not empty. For example, if a # 0, then the integer |a | = au + b - 0
lies in S, where we choose #u = 1 or u = —1 according as a is positive or negative.
By virtue of the Well-Ordering Principle, S must contain a smallest element d. Thus,
from the very definition of S, there exist integers x and y for whichd = ax + by. We
claim that d = ged(a, b).
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Taking stock of the Division Algorithm, we can obtain integers ¢ and r such that

a =qd+r,where 0 <r < d. Then r can be written in the form
r=a—qd =a—q(ax + by)
= a(l —gx)+b(—qy)

If r were positive, then this representation would imply that r is a member of §,
contradicting the fact that d is the least integer in S (recall that r < d). Therefore,
r =0, and so a = gd, or equivalently d | a. By similar reasoning, d | b, the effect of
which is to make d a common divisor of a and b.

Now if ¢ is an arbitrary positive common divisor of the integers a and b, then part
(g) of Theorem 2.2 allows us to conclude that ¢ | (ax + by); that is, ¢ | d. By part (f) of

the same theorem, ¢ = | ¢ | < | d | = d, so that d is greater than every positive common
divisor of a and b. Piecing the bits of information together, we see thatd = gcd(a, b).

+ alamaa1.d Lo

1t S11oui1a oc
and does not provide
come later.

A perusal of the proof of Theorem 2.3 reveals that the greatest common divisor
of a and b may be described as the smallest positive integer of the form ax + by.
Consider the case in which a = 6 and b = 15. Here, the set S becomes

S={6(-2)+15-1,6(-1)+15-1,6-14+15-0,...}
={3,9,6,...}
We observe that 3 is the smallest integer in S, whence 3 = gcd(6, 15).

The nature of the members of § appearing in this illustration suggests another
result, which we give in the next corollary.

ry. If a and b are éi'v’cu integers, not
T = {ax + by | x, y are integers}

is precisely the set of all multiples of d = gcd(a, b).

Proof. Because d | a and d | b, we know that d | (ax + by) for all integers x, y. Thus,

every member of T is a multiple of d. Conversely, d may be written as d = axg + byg
for suitable integers x and yg, so that any multiple nd of d is of the form

nd = n(axo + byo) = a(nxe) + b(nyo)

Hence, nd is a linear combination of a and b, and, by definition, lies in 7.

It may happen that 1 and —1 are the only common divisors of a given pair of
{r\fnn’nrc‘ 7 01‘\{1 l‘\ ‘Ill’\ﬂﬂf‘ﬂ ﬂf‘A(ﬂ l‘)\ P 1 p{\‘f‘ nvc\mn]n
llll,\./s\.llk) uw dliu e VYLV s\au\u 9 U/ L. i \./Amlll.ll\/

gcd(2,5) = ged(—9,16) = ged(—27,-35)=1

This situation occurs often enough to prompt a definition.

Definition 2.3. Two integers a and b, not both of which are zero, are said to be relatively
prime whenever ged(a, b) = 1.
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combinations.

Theorem 2.4. Let a and b be integers, not both zero. Then a and b are relatively prime
if and only if there exist integers x and y such that 1 = ax + by.

Proof. If a and b are relatively prime so that gcd(a , b) = 1, then Theorem 2.3 guar-
antees the existence of integers x and y satisfying 1 = ax + by. As for the converse,
suppose that 1 = ax + by for some choice of x and y, and thatd = gcd(a, b). Because
d|a and d | b, Theorem 2.2 yields d | (ax + by), or d | 1. Inasmuch as d is a positive
integer, this last divisibility condition forces d to equal 1 (part (b) of Theorem 2.2 plays
a role here), and the desired conclusion follows.

Corollary 1. If ged(a , b) = d, then ged(a/d , b/d) = 1.

Proof. Before starting with the proof proper, we should observe that although a/d and
b/d have the appearance of fractions, in fact, they are integers because d is a divisor
both of a and of b. Now, knowing that gcd(a, b) = d, it is possible to find integers x
and y such thatd = ax + by. Upon dividing each side of this equation by d, we obtain

the expression
1=(5)x+ i
={—lx —
d i)’

Because a/d and b/d are integers, an appeal to the theorem is legitimate. The conclu-
sion is that a/d and b/d are relatively prime.

1

n illustration of the last corollary, let us o

)
Cor ¢
and

ged(—12/6,30/6) = gcd(—2,5) =1

as it should be.
It is not true, without adding an extra condition, that a | ¢ and b | ¢ together give

ab | c. Forinstance, 6 |24 and 8|24, but 6 . 8 } 24, If 6 and 8 were relatively prime,
~L PUREE . N . gy _____1_1A PR A rl"l ...‘_;,_; _ Vg Py | DS, )
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Corollary 2. Ifa|cand b | c, with gcd(a, b) = 1, then ab | c.

Proof. Inasmuchasa | cand b | ¢, integers r and s can be found such that ¢ = ar = bs.
Now the relation ged(a, b) = 1 allows us to write 1 = ax + by for some choice of
integers x and y. Multiplying the last equation by c, it appears that

c=c-1=clax + by) =acx + bcy
If the appropriate substitutions are now made on the right-hand side, then
c =a(bs)x + blar)y = ab(sx +ry)

or, as a divisibility statement, ab | c.
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Theorem 2.5 Euclid’s lemma. If a | bc, with gcd(a, b) = 1, thena | c.

Proof. We start again from Theorem 2.3, writing 1 = ax + by, where x and y are
integers. Multiplication of this equation by ¢ produces

c=1-c=(ax + by)c =acx + bcy

Because a | ac and a | bc, it follows that a | (acx + bcy), which can be recastas a | c.

If a and b are not relatively prime, then the conclusion of Euclid’s lemma may

fail to hold. Here is a specific example: 12 |9 - 8,but 12 f 9and 12 } 8.

Tha on]‘\cnnnn ttha nftan corvoag nag a dafinitinn nf ordl(a ) 'T‘]—n: advant onn
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of using it as a definition is that order reiationship is not invoived. Thus, it may be
used in algebraic systems having no order relation.

Theorem 2.6. Let a, b be integers, not both zero. For a positive integer d,
d = gcd(a, b) if and only if

Proof. To begin, suppose that d = gcd(a, b). Certainly, d |a and d | b, so that (a)
holds. In light of Theorem 2.3, d is expressible as d = ax + by for some integers x, y.
Thus, if ¢ |a and ¢ | b, then ¢ | (ax + by), or rather ¢ | d. In short, condition (b) holds.
Conversely, let d be any positive integer satisfying the stated conditions. Given any
common divisor ¢ of a and b, we have ¢ |d from hypothesis (b). The implication is
that d > ¢, and consequently d is the greatest common divisor of a and b.

PROBLEMS 2.3

= W

. If a| b, show that (—a) | b, a | (—b), and (—a) | (—b).
. Given integers a, b, ¢, d, verify the following:

(a) If a | b, then a | be.

(b) Ifa | b and a | c, then a? | be.

(c) a| b if and only if ac | bc, where ¢ # 0.
(d) Ifa|band c|d, thenac|bd.

. Prove or disprove: If a | (b + ¢), then eithera |bora | c.
. For n > 1, use mathematical induction to establish each of the following divisibility

Statements:
(a) 85" +17.
[Hint: 52+D 17 = 5252k - 7Y 4+ (7 = 5%.7)]
(b) 15]2% — 1.
(© 5| 33n+1 + an+l
(d) 21 |4n+1 + 52n—1'
(e) 24|12-7"4+3-5"-5.
Prove that for any integer a, one of the integers a, a + 2, a + 4 is divisible by 3.
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(a) 2|a(a + 1),and 3 | a(a + 1)a + 2).
(b) 3|a2a®+ 7).
(c) If a is 0dd, then 32| (a? + 3)(a® + 7).

. Prove that if a and b are both odd integers, then 16 | a* + b* — 2.
. Prove the following:

(a) The sum of the squares of two odd integers cannot be a perfect square.
(b) The product of four consecutive integers is 1 less than a perfect square.

. Establish that the difference of two consecutive cubes is never divisible by 2.
10.
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For anonzero integer a, show that gcd(a,0) = |a|,ged(a,a) = |a|,and ged(a, 1) = 1.

If a and b are integers, not both of which are zero, verify that
gcd(a, b) = ged(—a , b) = ged(a, —b) = ged(—a, —b)

sedin A L1y — 1
gcaa.,a + 1) = 1.

. Given integers a and b, prove the following:
(a) There exist integers x and y for which ¢ = ax + by if and only if ged(a, b) | c.

. Prove that, for a positive integer » and any integer a, gcd(a, a + n) divides n; hence,

(b) If there exist integers x and y for which ax + by = gcd(a, b), then ged(x, y) = 1.

For any integer a, show the following:

(a) ged2a +1,9a+4)=1.

(b) gcdGa+2,7a+3)=1.

(c) If a is odd, then gcd(3a,3a +2) = 1.

If a and b are integers, not both of which are zero, prove that gcd(2a — 3b, 4a — 5b)

divides b; hence, gcd(2a + 3,4a +5) = 1.
Given an odd integer a, establish that

a*+@+22+@+4*+1
is divisible by 12.

17. Prove that the expression (3n)!/(3!)" is an integer for all n > 0.

19.

20.
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four consecutive integers is divisible by 24; the product of any five consecutive integers

is divisible by 120.
[Hint: See Corollary 2 to Theorem 2.4.]
Establish each of the assertions below:
(a) If a is an arbitrary integer, then 6| a(a® + 11).
(b) If a is an odd integer, then 24 | a(a® — 1).
[Hint: The square of an odd integer is of the form 8k 4 1.]
(c) If a and b are odd integers, then 8 | (a*> — b?).
(d) If a is an integer not divisible by 2 or 3, then 24 | (a® + 23).
(e) If a is an arbitrary integer, then 360 | a®(a? — 1)(a® — 4).
Confirm the following properties of the greatest common divisor:
(a) If ged(a, b) = 1, and ged(a, ¢) = 1, then ged(a , be) = 1.
[Hint: Because 1 = ax + by = au + cv for some x, y, u, v,
1 = (ax 4+ by)au + cv) = alaux + cvx + byu) + be(yv).]
(b) If ged(a, b) =1, and c| a, then ged(b, ¢) = 1.
(c) If ged(a, b) = 1, then gcd(ac, b) = ged(c, b).
(d) If ged(a,b) =1,and c|a + b, then gcd(a, c) = ged(b, c) = 1.

[Hint: Letd = ged(a, ). Then d |a, d | c implies that d | (a + b) —a, ord | b.]

(e) If gcd(a,b) = 1,d |ac, and d | be, then d | c.
(f) If gcd(a, b) = 1, then ged(a?, b?) = 1.
[Hint: First show that ged(a , b?) = ged(a?, b) = 1.]
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Ad n

21. (a) Provetihaiifd|n,then 2° — 12" —
[Hint: Use the identity

1= =D x4 x4+ 1)

(b) Verify that 2% — 1 is divisible by 31 and 127.
22, Let ¢, denote the nth triangular number. For what values of n does ¢, divide the sum

[—y

24 THE EUCLIDEAN ALGORITHM

The greatest common divisor of two integers can, of course, be found by listing
all their positive divisors and choosing the largest one common to each; but this
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cumbersome for large numbers. A more efficient process, involving
application of the Division Algorithm, is given in the seventh Book of the Elements.
Although there is historical evidence that this method predates Euclid, today it is
referred to as the Euclidean Algorithm.
The Euclidean Algorithm may be described as follows: Let a and b be two inte-
gers whose greatest common divisor is desired. Because ged(| a |, | b |) = ged(a, b),
there is no harm in assuming that a > b > 0. The first step is to apply the Division

Alaorithm to g and b to oet

Algorithm to a and b to ge
a:q1b+r1 O0<ri<b

If it happens that r; = 0, then b | a and gcd(a, b) = b. When r| # 0, divide b by r;

to produce integers g, and r, satisfying

b“]27’1+"2 0<r<n

1 = q3ry + 13 0<r<n

This division process continues until some zero remainder appears, say, at the
(n 4+ 1)th stage where r,_; is divided by r, (a zero remainder occurs sooner or
later because the decreasing sequence b > r; > rp > --- > () cannot contain more
than b integers).

The result is the following system of equations
a=qb+n O<ri<b
b=gqr +nr O<r<n
ry = qary + 13 0<r3<n

rn~2=c_h1rn——1+rn O<rn < Fp—1
'n—1 = {n+17n +0

We argue that r,,, the last nonzero remainder that appears in this manner, is equal to
gcd(a, b). Our proof is based on the lemma below.

Lemma. If a = gb + r, then gcd(a , b) = ged(b, r).
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Proof. If d = gcd(a,b), then the relations d|a and d|b together imply that
d|{(a —qgb), or d|r. Thus, d is a common divisor of both » and r. On the other
hand, if ¢ is an arbitrary common divisor of b and r, then c¢|(¢b + r), whence
c| a. This makes ¢ a common divisor of a and b, so that ¢ < d. It now follows from
the definition of gcd(b, r) that d = ged(b, 7).

Using the result of this lemma, we simply work down the displayed system of
equations, obtaining
ged(a,b) =ged(b,r) =+ = ged(r—1, rn) = ged(r, , 0) =1y,

as claimed.

Theorem 2.3 asserts that gcd(a, b) can be expressed in the form ax + by, but
the proof of the theorem gives no hint as to how to determine the integers x and y.
For this, we fall back on the Euclidean Algorithm. Starting with the next-to-last
equation arising from the algorithm, we write

Yn = Fn-2 — gnfn-1
Now solve the preceding equation in the algorithm for r,_; and substitute to obtain
(r

a a— . ¥ )
Yn\I'n-3 — 4n-1"n-2)

=1+ QnQn—l)rn—Z + (_qn)rn-3

Yy —Vr N —
‘n n—2

This represents r,, as a linear combination of r,_; and r,_3. Continuing backward
through the system of equations, we successively eliminate the remainders 7,1,
rn—2, ..., 12, rp until a stage is reached where r, = gcd(a, b) is expressed as a linear
combination of g and b.

Example 2.3. Let us see how the Euclidean Algorithm works in a concrete case
by calculating, say, gcd(12378, 3054). The appropriate applications of the Division
Algorithm produce the equations

12378 = 4 - 3054 4+ 162
3054 =18-162 + 138
162 =1-138+24
138 =5-24+18
24=1-18+46
18=3-6+0

Our previous discussion tells us that the last nonzero

equations, namely, the intege
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6 = gcd(12378, 3054)

To represent 6 as a linear combination of the integers 12378 and 3054, we start with
the next-to-last of the displayed equations and successively eliminate the remainders
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6=24—18
=24 — (138 — 5. 24)
=6-24— 138

= 6(162 — 138) — 138

—K.1682 7 .12
= U - 194 7 - 130

=6-162 —7(3054 — 18 - 162)
=132-162 — 7 - 3054

= 132(12378 — 4 - 3054) — 7 - 3054
= 132 - 12378 4 (—535)3054

6 = gcd(12378, 3054) = 12378x + 3054y

where x = 132 and y = —535. Note that this is not the only way to express the integer
6 as a linear combination of 12378 and 3054; among other possibilities, we could add
and subtract 3054 - 12378 to get

6 = (132 + 3054)12378 + (—535 — 12378)3054
= 3186 - 12378 4 (—12913)3054

The French mathematician Gabriel Lamé (1795-1870) proved that the number
of steps required in the Euclidean Algorithm is at most five times the number of
digits in the smaller integer. In Example 2.3, the smaller integer (namely, 3054)
has four digits, so that the total number of divisions cannot be greater than 20; in
actuality only six divisions were needed. Another observation of interest is that for
each n > 0, it is possible to find integers a,, and b, such that exactly n divisions are
required to compute gcd(a, , b,) by the Euclidean Algorithm. We shall prove this
fact in Chapter 14.

One more remark is necessary. The number of steps in the Euclidean Algorithm
usually can be reduced by selecting remainders . such that | ry 41 | < /2, thatis,
by working with least absolute remainders in the divisions. Thus, repeating Example
2.3, it is more efficient to write

12378 = 4 - 3054 + 162
3054 =19-162 - 24
162=7-24—-6
24 = (—4)(=6) + 0

Ac pvidanmand e, thio cat AF Amarntinme thic calhinean 20 amt t v diran thn magatic
D CVIUCIILCU Uy LD dCL Ll CLile.l.lUllb, LD DUHITILIT 15 dpPUl WU pluduLe e legatly
the value of the greatest common divisor of two integers (the last nonzero remainder
being —6), rather than the greatest common divisor itself.

An important consequence of the Euclidean Algorithm is the following theorem.

A ~f
Cul

Theorem 2.7. If &k > 0, then ged(ka , kb) = k gcd(a, b).
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page 28) is multiplied by &, we obtain

ak = q1(bk) + rik 0 < nk < bk
bk=q2(r1k)+r2k 0<l’2k <7‘1k

Tnok = gn(rn—1k) + rpk 0 <ryk <r_1k
rn—lk = Qn+1(rnk) +0

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, so that
their greatest common divisor is the last nonzero remainder r,k; that is,

ged(ka , kb) = rpk = k ged(a, b)

as stated in the theorem.
Corollary. For any integer k # 0, ged(ka , kb) = | k| gcd(a, b).

Proof. 1t suffices to consider the case in which k < 0. Then —k = | k| > 0 and, by
Theorem 2.7,

cdi—nal LI\
Ca(—dx , —UK)

d
cd(a | k|, b|kl)
=|k|ng(a,b)

An alternate proof of Theorem 2.7 runs very quickly as follows: gcd(ak , bk) is
the smallest positive integer of the form (ak)x + (bk)y, which, in turn, is equal to
k times the smallest positive integer of the form ax + by; the latter value is equal to
k gcd(a, b).

By way of illustrating Theorem 2.7, we see that

ged(12,30) =3 gcd(4,100)=3-2gcd(2,5)=6-1=6

There is a concept parallel to that of the greatest common divisor of two integers,
known as their least common multiple; but we shall not have much occasion to make
use of it. An integer c is said to be a common multiple of two nonzero integers a
and » whenever a | ¢ and b | c. Evidently, zero is a common multiple of a and b. To
see there exist common multiples that are not trivial, just note that the products ab
and —(ab) are both common multiples of a and b, and one of these is positive. By
the Well-Ordering Principle, the set of positive common multiples of a and b must
contain a smallest integer; we call it the least common multiple of a and b.

Tae tlha vamand Teawa 1o ¢
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Definition 2.4. The least common multiple of two nonzero integers a and b, denoted
by lem(a , b), is the positive integer m satisfying the following:

(@) a|mand b |m.
(b) Ifa|cand b |c, withc > 0, then m < c.
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As an the positive common multiples of the integers —12 and 30 are
60, 120, 180 hence lcm( 12, 30) = 60.

The followmg remark is clear from our discussion: Given nonzero integers a
and b, Icm(a , b) always exists and lem(a , b) < |ab|.

We lack a relationship between the ideas of greatest common divisor and least

common multiple. This gap is filled by Theorem 2.8.

Theorem 2.8. For positive integers a and »

ged(a, b) lem(a , b) = ab

Proof. To begin, put d = gcd(a, b) and write a = dr, b = ds for integers r and s. If
m = ab/d, then m = as = rb, the effect of which is to make m a (positive)} common
multiple of @ and b.

Now let ¢ be any positive integer that is a common muitipie of a and b; say,
for definiteness, ¢ = au = bv. As we know, there exist integers x and y satisfying
d = ax + by. In consequence,

£—g—c(‘1xi—|—])y)=<§)x-|—(§)y=vx+uy

This equation states that m | ¢, allowing us to conclude that m < c. Thus, in accordance
with Definition 2.4, m = Icm(a , b); that is,
ab ab

1 ==Y
em@,b) = = i@ b)

m ab ab

which is what we started out to prove.

Theorem 2.8 has a corollary that is worth a separate statement.

Corollary. For any choice of positive integers a and b, Ilcm(a , b) = ab if and only if
ged(a, b) = 1.

Perhaps the chief virtue of Theorem 2.8 is that it makes the calculation of the
least common multiple of two integers dependent on the value of their greatest

commeon divisor—which, in turn, can be calculated from the Euclidean Algorithm.
When considering the positive integers 3054 and 12378, for instance, we found that
gcd(3054, 12378) = 6; whence,
3054 - 12378
lem(3054, 12378) = — = 6300402

Before moving on to other matters, let us observe that the notion of greatest
common divisor can be extended to more than two lanQPT‘Q in an obvious way. In the

case of three integers, a, b, c, not all zero, ged(a, b, c) is defined to be the positive
integer d having the following properties:

(a) d is adivisor of each of a, b, c.
(b) If e divides the integers a, b, ¢, then e < d.
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gcd(39,42,54) =3 and ged(49,210,350) =7

The reader is cautioned that it is possible for three integers to be relatively prime as
a triple (in other words, gcd(a, b, ¢) = 1), yet not relatively prime in pairs; this is
brought out by the integers 6, 10, and 15.

PROBLEMS 2.4

1.
2.

=)

o o0

10.

11.

Find gcd(143,227), ged(306, 657), and ged(272, 1479).

Use the Euclidean Algorithm to obtain integers x and y satisfying the following:
(a) ged(56,72) = 56x + 72y.

(b) gcd(24,138) = 24x + 138y.

(c) ged(119,272) = 119x + 272y.

(d) gecd(1769,2378) = 1769x + 2378y.

. Prove that if d is a common divisor of a and b, then d = gcd(a, b) if and only if

ged(a/d ,b/d) = 1.
[Hint: Use Theorem 2.7.]

. Assuming that gcd(a , b) = 1, prove the following:

(a) gedla+b,a—b)=1or2.
[Hint: Let d =gcd(a +b,a —b) and show that d|2a, d|2b, and thus that
d < gcd(2a,2b) = 2 ged(a, b).]
(b) gcd(Ra +b,a+2b) =1or3.
(c) ged(@a +b,a’> +b*) =1o0r2.
[Hint: a* + b* = (a + b)(a — b) + 2b?%.]
(d) ged(a +b,a®> —ab+b*) =1or3.
[Hint: a* — ab + b* = (a + b)* — 3ab.]

. For n > 1, and positive integers a, b, show the following:

(a) If gcd(a , b) = 1, then ged(a™, b™) = 1.
[Hint: See Problem 20(a), Section 2.2.]

(b) The relation a” | b implies that a | b.
[Hint: Put d = gcd(a, b) and write a = rd, b = sd, where ged(r,s) = 1. By part
(a), ged(r™, s™) = 1. Show that r = 1, whence a = d.]

. Prove that if gcd(a , b) = 1, then ged(a + b, ab) = 1.
. For nonzero integers a and b, verify that the following conditions are equivalent:

(aY 21 b
\a) a|o.

(b) ged(a, b) = lal.
(¢c) icm(a,b)=|b]|.

. Find lem(143, 227), 1em(306, 657), and lcm(272, 1479).
. Prove that the greatest common divisor of two positive integers divides their least common

multiple.

Given nonzero integers a and b, establish the following facts concerning lem(a , b):

(a) gedla, b) = icmia, b) if and only if a = £b.

(b) If & > 0, then lcm(ka , kb) = k lem(a , b).

(c) If m is any common multiple of a and b, then lcm(a , b) | m.
[Hint: Putt = lcm(a , b) and use the Division Algorithm to write m = gt + r, where
0 < r < t. Show that r is a common multiple of a and 4.]

Let a, b, c be integers, no two of which are zero, and d = ged(a, b, ¢). Show that

d = ged(ged(a, b), ¢) = ged(a, ged(b, ¢)) = ged(ged(a, ¢), b)
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12. Find iniegers x, y, z satisfying
gcd(198, 288, 512) = 198x + 288y + 512z

[Hint: Put d = gcd(198, 288). Because ged(198, 288 ,512) = ged(d , 512), first find
integers u and v for which ged(d , 512) = du + 512v.]

2.5 THE DIOPHANTINE EQUATION ax + by = ¢

We now change focus somewhat and take up the study of Diophantine equations.
The name honors the mathematician Diophantus, who initiated the study of such
equations. Practically nothing is known of Diophantus as an individual, save that
he lived in Alexandria sometime around 250 A.D. The only positive evidence as to
the date of his activity is that the Bishop of Laodicea, who began his episcopate in
270, dedicated a book on Egyptian computation to his friend Diophantus. Although
Diophantus’ works were written in Greek and he displayed the Greek genius for the-
oretical abstraction, he was most likely a Hellenized Babylonian. The only personal
particulars we have of his career come from the wording of an epigram-problem
(apparently dating from the 4th century): His boyhood lasted 1/6 of his life; his
beard grew after 1/12 more; after 1/7 more he married, and his son was born 5 years
later; the son lived to half his father’s age and the father died 4 years after his son.
If x was the age at which Diophantus died, these data lead to the equation

1 1 1 1

6x+ 12x—|—7x—|—5—|—2x—+—4_x
with solution x = 84. Thus, he must have reached an age of 84, but in what year or
even in what century is not certain.

The great work upon which the reputation of Diophantus resis is his Arithmeiica,
which may be described as the earliest treatise on algebra. Only six Books of the
original thirteen have been preserved. It is in the Arithmetica that we find the first
systematic use of mathematical notation, although the signs employed are of the
nature of abbreviations for words rather than algebraic symbols in the sense with
which we use them today. Special symbols are introduced to represent frequently
occurring concepts, such as the unknown quantity in an equation and the different
powers of the unknown up to the sixth power; Diophantus also had a symbol to
express subtraction, and another for equality.

It is customary to apply the term Diophantine equation to any equation in one or
more unknowns that is to be solved in the integers. The simplest type of Diophantine
equation that we shall consider is the linear Diophantine equation in two unknowns:

ax+by=c

where a, b, c are given integers and a, b are not both zero. A solution of this equation
is a pair of integers xg, yo that, when substituted into the equation, satisfy it; that is,
we ask that axy + byy = c. Curiously enough, the linear equation does not appear
in the extant works of Diophantus (the theory required for its solution is to be found
in Euclid’s Elements), possibly because he viewed it as trivial; most of his problems
deal with finding squares or cubes with certain properties.
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A given linear Diophantine equation can have a number of solutions, as is the
case with 3x + 6y = 18, where

3.446-1=18
3(—6)+6-6 =18
3.10 +6(=2) = 18

By contrast, there is no solution to the equation 2x + 10y = 17. Indeed, the left-hand
side 1s an even integer whatever the choice of x and y, whereas the right-hand side is
not. Faced with this, it is reasonable to enquire about the circumstances under which
a solution is possible and, when a solution does exist, whether we can determine -all
solutions explicitly.

The condition for solvability is easy to state: the linear Diophantine equation
ax + b_‘y' = c admits asolutionifand o uxuy ifd | | C, whered = de’a u; We know that

there are integers r and s for whicha = dr and b = ds. If a solution of ax + by = ¢
exists, so that axy + byy = ¢ for suitable x; and yy, then

¢ =axp+ byy =drxo+dsyy = d(rxo + syo)

which simply says that d | c. Conversely, assume that d | ¢, say ¢ = d¢. Using The-
orem 2.3, integers xo and yo can be found satisfying d = axy + byo. When this

ralatinn 1
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¢ = dt = (axo + byo)t = a(txg) + b(tyo)

Hence, the Diophantine equation ax + by = ¢ has x = txg and y = ¢y as a partic-
ular solution. This proves part of our next theorem.

Theorem 2.9. The linear Diophantine equation ax + by = ¢ has a solution if and only
ifd | c, where d = ged(a, b). If x; n

a2 & waatiL & — gvuiilbe , ). 21 A

all other solutions are given by

x=x0+(

where ¢ is an arbitrary integer.
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Proof. To estabiish the second assertion of the theorem, et us suppose that a solution
Xg, Yo of the given equation is known. If x’, y’ is any other solution, then

axg + byg = ¢ = ax’' + by’
which is equivalent to
a(x’ — x0) = b(yo — )

By the corollary to Theorem 2.4, there exist relatively prime integers # and s such that
a = dr, b = ds. Substituting these values into the last-written equation and canceling
the common factor d, we find that

r(x" — x0) = s(yo — ¥

The situation is now this: 7 [ s(yo — y), with ged(r , s) = 1. Using Euclid’s lemma, it
must be the case that r | (yo — y’); or, in other words, yo — y’ = r¢ for some integer ¢.
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Substituting, we obtain
!/
x'— xg = st
This leads us to the formulas

b
x’:x0+st:x0+(2)t

7N

y/=)’o—rf=)’0—(g)t

It is easy to see that these values satisfy the Diophantine equation, regardless of the
choice of the integer ¢; for

an’+bv’:a|_xn+(é\r-|—l- Yo — g\t-l
i L \d/ | \d/
ab a
=(ax0+by0 +(7—7)
=c+0-¢
=cC

Thus, there are an infinite number of solutions of the given equation, one for each value
of t.

Example 2.4. Consider the linear Diophantine equation

172x + 20y = 1000

172 =8-20+ 12

20=1-12+8
12=1-8+4+4
8§=2-4

whence gcd(172, 20) = 4. Because 4 | 1000, a solution to this equation exists. To obtain
the integer 4 as a linear combination of 172 and 20, we work backward through the
previous calculations, as follows:

4=12-8
=12 — (20 — 12)
=2.12-20
=2(172 — 8 - 20) —
=2-172 + (—17)20

Upon multiplying this relation by 250, we arrive at

1000 = 250 - 4 = 250[2 - 172 + (—17)20]
=500 - 172 + (—4250)20
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so that x = 500 and y = —4250 provide one solution to the Diophantine equation in
question. All other solutions are expressed by
x =500 + (20/4)t = 500 + 5¢

y = —4250 — (172/4)t = —4250 — 43¢
for some integer ¢.

A little further effort produces the solutions in the positive integers, if any happen
to exist. For this, # must be chosen to satisfy simultaneously the inequalities

5t 4+500 >0 — 43t — 4250 >0

or, what amounts to the same thing,

36

—98— >t>—100

43
Because ¢t must be an integer, we are forced to conclude that r = —99. Thus. our
AL VW RAMUIW F LILUBUOC UWw ALl ALALV&VL, YYw dlw TtUuiveu LV wvUullviUuuiw A o A riuvg, Uul
Diophantine equation has a unique positive solution x = 5, y = 7 corresponding to

the value t = —99.

It might be helpful to record the form that Theorem 2.9 takes when the coeffi-
cients are relatively prime integers.

Corollary. If gcd(a , b) = 1 and if xg, yy is a particular solution of the linear Diophan-
tine equation ax + by = ¢, then all solutions are given by

X =xp+ bt y=y—at

for integral values of ¢.

Here is an example. The equation 5x + 22y = 18 has xp =
solution; from the coroliary, a compiete solution is given by =8+ 22t
y = —1 — 5t for arbitrary .

Diophantine equations frequently arise when solving certain types of traditional
word problems, as evidenced by Example 2.5.

\<A
I
[Ty
o
[72]
Q
=
o

te mara than an arancge and mare annlac tha nrangoagq
NS Uiy uldll ali uu.ulsu aiiu 1iviv appics than Uldiigos

i
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WEIC purcnasea, i each kind were bought?
setupt

up this problem as a Diophantine equatlon let x be the number of apples
and y be the number of oranges purchased; in addition, let z represent the cost (in
cents) of an orange. Then the conditions of the problem lead to

(z4+3)x+zy =132
or equivalentiy
3x +(x +y)z =132
Because x 4+ y = 12, the previous equation may be replaced by
3x + 122 =132

which, in turn, simplifies to x 4+ 4z = 44,
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Stripped of inessentials, tl
Diophantine equation

x +4z =44 (1)

Inasmuch as ged (1, 4) = 1 is a divisor of 44, there is a solution to this equation. Upon
multiplying the relation 1 = 1(—3) + 4 - 1 by 44 to get

44 = 1(—132) + 4 - 44

it follows that xg = —132, zg = 44 serves as one solution. All other solutions of
Eq. (1) are of the form

x=—132+4¢ z=44—1¢

where ¢ is an integer.

Not all of the choices for ¢ furnish solutions to the original problem. Only values
of ¢ that ensure 12 > x > 6 should be considered. This requires obtaining those values
of ¢ such that

12> —132+4t > 6

Now, 12 > —132 + 4t implies that ¢ < 36, whereas —132 4 4t > 6 gives t > 34%.
The only integrai vaiues of ¢ to satisfy both inequaiities are 1 = 35 and ¢ = 36. Thus,
there are two possible purchases: a dozen apples costing 11 cents apiece (the case
where r = 36), or 8 apples at 12 cents each and 4 oranges at 9 cents each (the case
where ¢t = 35).

Linear 1ndeterm1nat problems such as these have a long history, occurring
ma atical literature. nwmg to a lack

¥ 1 r u rhetorical puzzles or riddles.

The contents of the Mathematzcal Classic of Chang Ch’ iu-chien (6th century) attest
to the algebraic abilities of the Chinese scholars. This elaborate treatise contains one
of the most famous problems in indeterminate equations, in the sense of transmission

to other societies—the problem of the “hundred fowls.” The problem states:

g R

- y D,

If a cock is worth 5 coins, a hen 3 coins, and three chick
cocks, hens, and chicks, totaling 100, can be bought for

In terms of equations, the problem would be written (if x equals the number of cocks,
y the number of hens, z the number of chicks):

1

z =100 x+y+z=100

-

x+3y+

W —

Eliminating one of the unknowns, we are left with a linear Diophantine equation
in the two other unknowns. Specifically, because the quantity z = 100 — x — y, we
have 5x + 3y + $(100 — x — y) = 100, or

Tx + 4y = 100
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where ¢ is an arbitrary integer. Chang himself gave several answers:
x=4 y=18 z=78
x =38 y=11 z=281
x=12 y=4 z=284

=
@

A little further effort produces all solutions in the positive integers. For this,  must
be chosen to satisfy simultaneously the inequalities

4t > 0 25 -7t >0 754+3t >0

The last two of these are equivalent to the requirement —25 < ¢ < 3‘71. Because ¢
must have a positive value, we conclude that t = 1, 2, 3, leading to precisely the
values Chang obtained.

PROBLEMS 2.5

1. Which of the following Diophantine equations cannot be solved?
(a) 6x + 51y = 22.
(b) 33x + 14y = 115.
() 14x + 35y =93.

A
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(a) 56x + 72y = 40.
(b) 24x + 138y = 18.
(c) 221x + 35y =11.
3. Determine all solutions in the positive integers of the following Diophantine equations:
(a) 18x + Sy = 48.

(O

\U} 544\ T Al_y —_ 906
(¢) 123x + 360y = 99.

(d) 158x — 57y =17.

4. If a and b are relatively prime positive integers, prove that the Diophantine equation
ax — by = c has infinitely many solutions in the positive integers.

[Hint: There exist integers xo and yo such that axy + byp = ¢. For any integer ¢,

which is larger than both | xq | /b and | yo | /a, a positive solution of the given equation is

x =xp+bt,y =—(yg —at).]

5. (a) A man has $4.55 in change composed entirely of dimes and quarters. What are the
maximum and minimum number of coins that he can have? Is it possible for the
number of dimes to equal the number of quarters?

(b) The neighborhood theater charges $1.80 for adult admissions and $.75 for children.
On a particular evening the total receipts were $90. Assuming that more adults than
children were present, how many people attended?

(c) A certain number of sixes and nines is added to give a sum of 126; if the number of
sixes and nines is interchanged, the new sum is 114. How many of each were there
originally?

6. A farmer purchased 100 head of livestock for a total cost of $4000. Prices were as follow:
calves, $120 each; lambs, $50 each; piglets, $25 each. If the farmer obtained at least one
animal of each type, how many of each did he buy?

7. When Mr. Smith cashed a check at his bank, the teller mistook the number of cents for
the number of dollars and vice versa. Unaware of this, Mr. Smith spent 68 cents and then
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noticed to his surprise that he had twice the amount of the originai check. Determine the
smallest value for which the check could have been written.

[Hint: If x denotes the number of dollars and y the number of cents in the check, then
100y + x — 68 = 2(100x + y).]

. Solve each of the puzzle-problems below:

(a) Alcuin of York, 775. One hundred bushels of grain are distributed among
100 persons in such a way that each man receives 3 bushels, each woman
2 bushels, and each child % bushel. How many men, women, and children are there?

(b) Mahaviracarya, 850. There were 63 equal piles of plantain fruit put together and 7
single fruits. They were divided evenly among 23 travelers. What is the number of
fruits in each pile?

[Hint: Consider the Diophantine equation 63x 4+ 7 = 23y.]

(c) Yen Kung, 1372. We have an unknown number of coins. If you make 77 strings of
them, you are 50 coins short; but if you make 78 strings, it is exact. How many coins
are there?

[Hint: If N is the number of coins, then N = 77x +27 =78y for integers
x and y.]

(d) Christoff Rudolff, 1526. Find the number of men, women, and children in a company
of 20 persons if together they pay 20 coins, each man paying 3, each woman 2, and
each child %

(e) Euler, 1770. Divide 100 into two summands such that one is divisible by 7 and the
other by 11.
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PRIMES AND THEIR DISTRIBUTION

Mighty are numbers, joined with art resistless.
EURIPIDES

3.1 THE FUNDAMENTAL THEOREM OF ARITHMETIC

Essential to everything discussed herein—in fact, essential to every aspect of number
theory—is the notion of a prime number. We have previously observed that any
integer a > 1 is divisible by &1 and + a; if these exhaust the divisors of a, then it
is said to be a prime number. In Definition 3.1 we state this somewhat dlf_erenﬂv
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Definition 3.1. An integer p > 1 is called a prime number, or simply a prime, if its
only positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed

composite.

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4,6,8,9, 10 are
composite numbers. Note that the integer 2 is the only even prime, an d according to
our definition the integer 1 plays a special role, being neither prime nor composite.

In the rest of this book, the letters p and g will be reserved, so far as is possible,
for primes.

Proposition 14 of Book IX of Euclid’s Elements embodies the result that later

became known as the Fundamental Theorem of Arithmetic, namely, that every inte-
ger greater than 1 can. excent for the order of the factors. be renresented as a nroduct

OAVaIEL WAGRL 2 LALL, DALLT L AVL WAL VARRTE VR LAV AGLIVAS, UL AVPAVIVANTL &3 & paUe et

of primes in one and only one way. To quote the proposition itself: “If a number be
the least that is measured by prime numbers, it will not be measured by any other
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prime except those originally measuring it.” Because every number a > 1 is either
a prime or, by the Fundamental Theorem, can be broken down into unique prime

'anfnv-n and na fiirtha tha nrimag carva ag tha hitilding hlanke fram which all Athar
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integers can be made. Accordingly, the prime numbers have intrigued mathemati-
cians through the ages, and although a number of remarkable theorems relating to
their distribution in the sequence of positive integers have been proved, even more
remarkable is what remains unproved. The open questions can be counted among
the outstanding unsolved problems in all of mathematics.

To begin on a simpler note, we observe that the prime 3 divides the integer 36,

written as any one nf the nraodnete
¥ lll,l,‘.lll J Vilv Ul uiiv l.lluuu\.al-o

6-6=9-4=12-3=18.2

In each instance, 3 divides at least one of the factors involved in the product. This is
typical of the general situation, the precise result being Theorem 3.1.

Theorem and plab, then plaor plb.
Proof. If p|a, then we need go no further, so let us assume that p } a. Because
the only positive divisors of p are 1 and p itself, this implies that gcd(p,a) = 1. (In
general, ged(p,a) = p or ged(p ,a) = 1 according as p |a or p f a.) Hence, citing
Euclid’s lemma, we get p | b.

This theorem easily extends to products of more than two terms.

Corollary 1. If pisaprimeand p | aja; - - - a,, then p | a; forsome k, where 1 < k < n.

Proof. We proceed by induction on #, the number of factors. When n = 1, the stated
conclusion obviously holds; whereas when n = 2, the result is the content of Theorem

3.1. Suppose, as the induction hypothesis, that n > 2 and that whenever p divides a
nroduct of leeethan » factare it divid tlaact one ofthe factare Naow lat n | 7. 7+
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From Theorem 3.1, either p |a, or p|aja; - - - a,—1. If p|a,, then we are through. As
regards the case where p|ajaz - - - ay—1, the induction hypothesis ensures that p | a;
for some choice of k, with 1 < k < n — 1. In any event, p divides one of the integers
a,ay,...,a,.

Corollary 2. If p, q1, q2, ..., g, are all primes and p [qi1q> - - - gn, then p = g, for
some k, where 1 <k < n.

Proof. By virtue of Corollary 1, we know that p | g; for some k, with 1 < k < n. Being
a prime, gy is not divisible by any positive integer other than 1 or g itself. Because
p > 1, we are forced to conclude that p = g;.

With this preparation out of the way, we arrive at one of the cornerstones of
~rrse Adavralaceiinmsnt tlan T dnsan st ]l Mg nan ~AF A bl nbs am At d Anenliae
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this theorem asserts that every integer greater than 1 can be factored into primes
in essentially one way; the linguistic ambiguity essentially means that 2 -3 -2 is
not considered as being a different factorization of 12 from 2 - 2 - 3. We state this
precisely in Theorem 3.2.
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heorem 3.2 Fundamental Theorem of Arithmetic. Every positive integer n > 1
can be expressed as a product of primes; this representation is unique, apart from the
order in which the factors occur.

Proof. Either n is a prime or it is composite; in the former case, there is nothing
more to prove. If n is composite, then there exists an integer d satisfying d | n and
1 <d < n. Among all such integers d, choose p; to be the smallest (this is possible
by the Well-Ordering Principle). Then p; must be a prime number. Otherwise it too
would have a divisor ¢ with 1 < g < py; but then g | p; and p; | n imply that g |n,
which contradicts the choice of p; as the smallest positive divisor, not equal to 1, of n.

We therefore may writen = pjn;, where p; isprimeand 1 < n; < n.Ifn; happens
to be a prime, then we have our representation. In the contrary case, the argument is
repeated to produce a second prime number p; such that n; = p,n,; that is,

n = p|pafi 1 <np <n

If n, is a prime, then it is not necessary to go further. Otherwise, write n, = p3ns3, with
p3 a prime:

n = p1p2p3n3 1l <n3 <n;
The decreasing sequence
n>n;>ny>--->1

cannot continue indefinitely, so that after a finite number of steps 7, _; is a prime, call
it, px. This leads to the prime factorization

n=pip2-- Pk

To establish the second part of the proof—the uniqueness of the prime factoriza-
tion—Ilet us suppose that the integer n can be represented as a product of primes in two
ways; say,

nR=pip2-Pr=4q192" " 4s r=s

where the p; and g; are all primes, written in increasing magnitude so that

PL=p2=---=pr N=q=-=gs
Because p1 [ q192 - - - g5, Corollary 2 of Theorem 3.1 tells us that p; = g, for some k;
but then p; > g;. Similar reasoning gives ¢; > p;, whence p; = ¢;. We may cancel
this common factor and obtain

p2P3 - Pr=4q293 " qs
Now repeat the process to get p, = ¢, and, in turn,

P3pPa---Pr=43qs - gs

Continue in this fashion. If the inequality r < s were to hold, we would eventually
arrive at

1= qr+19r+2 " 4gs

which is absurd, because each g; > 1. Hence, r = s and
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Of course, several of the primes that appear in the factorization of a given positive
integer may be repeated, as is the case with 360 = 2 2 2-3.3.5. By collecting

like primes and replacing them by a single factor, we can rephrase Theorem 3.2 as
a corollary.

Corollary. Any positive integer n > 1 can be written uniquely in a canonical form

J— kl kZ k;
n = pl p2 PR pr
where, fori = 1,2, ..., r, each k; is a positive integer and each p; is a prime, with
1< p2 <:--<pDr.

To illustrate, the canonical form of the integer 360 is 360 = 23 - 3% - 5. As further

examples we cite
4725=13%.52.7 and  17460=2°.3%.5.7°

Theorem 3.2 should not be taken lightly because number systems do exist in
which the factorization into “primes” is not unique. Perhaps the most elemental
example is the set E of all positive even integers. Let us agree to call an even integer
an e-prime if it is not the product of two other even integers. Thus, 2, 6, 10, 14, . ..
all are e-primes, whereas 4, 8, 12, 16, ... are not. It is not difficult to see that the
integer 60 can be factored into e-primes in two distinct ways; namely,

N D) 2N __&£.1N
VU — &L " JU — U 1V

Part of the difficulty arises from the fact that Theorem 3.1 is lacking in the set E;
thatis, 6]2-30,but6 J 2and 6 f 30.

This is an opportune moment to insert a famous result of Pythagoras.
Mathematics as a science began with Pythagoras (569-500 B.C.), and much of the

content of Euclid’s Elements is due to Pythagoras and his School. The Pythagoreans
Aacnxrn #lan nandié Foe lanlon v 4lena £, ~ Alacatfe; smrrmmalanian 22t ~AAd A A Axraze  smsmiivana
aeserve the credit 10r peing tne first 0 Classily numbers into 0ad ana ¢veil, prime

and composite.

Theorem 3.3 Pythagoras. The number /2 is irrational.

Proof. Suppose, to the contrary, that /2 is a rational number, say, V2=a /b, where a
and b are both integers with ged(a , b) = 1. Squaring, we get a> = 2b?, so that b | a°.
If b > 1, then the Fundamental Theorem of Arithmetic guarantees the existence of a
prime p such that p | b. It follows that p | a? and, by Theorem 3.1, that p | a; hence,
gcd(a , b) > p. We therefore arrive at a contradiction, unless » = 1. But if this happens,
then a? = 2, which is impossible (we assume that the reader is willing to grant that
no integer can be multiplied by itself to give 2). Our supposition that 4/2 is a rational
number is untenable, and so +/2 must be irrational.

There is an interesting variation on the proof of Theorem 3.3. If /2 = a/b with
ged(a, b) = 1, there must exist integers r and s satisfying ar + bs = 1. As a result,

V2 = N2(ar + bs) = (vV2a)r + (V2b)s = 2br + as

This representation of +/2 leads us to conclude that +/2 is an integer, an obvious
impossibility.
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It has been conjectured that there are infinitely many primes of the form n? — 2. Exhibit
five such primes.

Give an example to show that the following conjecture is not true: Every positive integer
can be written in the form p + a2, where p is either a prime or 1, and a > 0.

Prove each of the assertions beIOW'
rime nf ﬂ'\p farm n _.L 1

Any prime of the form 3n + 11

} Each in nteger of the form 37n + 2 has

¢) The only prime of the form n3 — 1is 7.
[Hint: Write n> — 1 as (n — D2 +n+1).]

(d) The only prime p for which 3p + 1 is a perfect square is p = 5.

(e) The only prime of the form n? — 4 is 5.

. If p > 5 is a prime number, show that p? + 2 is composite.

Frre o0 e lone cmm Ll o £ £ 1 LT 1 £
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. (a) Given that p is a prime and p | a”, prove that p” | a”.

(b) If gcd(a, b) = p, a prime, what are the possible values of gcd(a?, b?), gcd(a?, b)
and ged(a® , b?)?

. Establish each of the following statements:

(a) Every integer of the form n* + 4, with n > 1, is composite.
[Hint: Write n* + 4 as a product of two quadratic factors.]
(b) If n > 4 is composite, then n divides (n — 1)!.
(c) Any integer of the form 8" + 1, where n > 1, is composite.
[Hint: 2" + 1123 +1.]
(d) Each integer n > 11 can be written as the sum of two composite numbers.
[Hint: If nis even, say n = 2k,thenn — 6 = 2(k — 3); for n odd, consider the integer
n—9.]

. Find all prime numbers that divide 50!.
. If p > g > 5 and p and g are both primes, prove that 24 | p? — g°.

(a) Anunanswered question is whether there are infinitely many primes that are 1 more
than a power of 2, such as 5 = 22 + 1. Find two more of these primes.

(b) A more general conjecture is that there exist infinitely many primes of the form
n? + 1; for example, 257 = 162 + 1. Exhibit five more primes of this type.

If p # 5 is an odd prime, prove that either p?> — 1 or p? + 1 is divisible by 10.

Another unproven conjecture is that there are an infinitude of primes that are 1 less than

a power of 2, such as 3 = 22 — 1.

(a) Find four more of these nrimes
(a) rir our more of these primes.
(LY TF 1 ~k 1 ic niirme chow that I 3g an ndd inteser aveoent whan - — 9
\0) U p==2 1 18 prime, Snow tnat x 18 ain 0aa integer, eXcept wien K = 2.

[Hint: 314" — 1 foralln > 1.]
Find the prime factorization of the integers 1234, 10140, and 36000.
If n > 1is an integer not of the form 6k + 3, prove that n? 4 2" is composite.
[Hint: Show that either 2 or 3 divides n? + 2".]
It has been conjectured that every even integer can be written as the difference of two

consecutive primes in infinitely many ways. For example,
> 6=29-23=137-131=599 -593 =1019 -1013 = ---
Express the integer 10 as the difference of two consecutive primes in 15 ways.

Prove that a positive integer a > 1 is a square if and only if in the canonical form of a
all the exponents of the primes are even integers.
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1€ square o any integer greater

fu—y
=)
n-»

. An integer is said to be square-free if it is not divisible by th
than 1. Prove the following:

(a) An integer n > 1 is square-free if and only if n can be factored into a product of
distinct primes.

(b) Every integer n > 1 is the product of a square-free integer and a perfect square.
(Hint: If n = p]f‘ p§2 ... p% is the canonical factorization of n, then write k; =
2q; + r; where r; = 0 or 1 according as k; is even or odd.]

17. Verify that any integer n can be expressed as n = 2*m, where k > 0 and m is an odd
integer.

18. Numerical evidence makes it plausible that there are infinitely many primes p such that
P + 50 1s also prime. List 15 of these primes.

19. A positive integer n is called square-full, or powerful, if p? | n for every prime factor p

of n (there are 992 square-full numbers less than 250,000). If n is square-full, show that

it can be written in the form n = a?b3, with a and b positive integers.

3.2 THE SIEVE OF ERATOSTHENES

Given a particular integer, how can we determine whether it is prime or composite
and, in the latter case, how can we actually find a nontrivial divisor? The most
obvious approach consists of successively dividing the integer in question by each
of the numbers preceding it; if none of them (except 1) serves as a divisor, then the
integer must be prime. Although this method is very simple to describe, it cannot
be regarded as useful in practice. For even if one is undaunted by large calculations,
the amount of time and work involved may be prohibitive.

There is a property of composite numbers that allows us to reduce materially
the necessary computations—but still the process remains cumbersome. If an in-
teger a>lis composite then it may be written as a = bc, where 1 < b < a and
1 <c<da. Abbuullllg l[ldl [} \ c, Wé gCl [}’2 \ UL =a, d.llLl SO U \ \/Lt Decause
b > 1, Theorem 3.2 ensures that b has at least one prime factor p. Then p < b < /a;
furthermore, because p | b and b | a, it follows that p | a. The point is simply this: A
composite number a will always possess a prime divisor p satisfying p < /a.

In testing the primality of a specific integer a > 1, it therefore suffices to divide
a by those primes not exceeding /a (presuming, of course, the availability of a
list of primes up to +/a). This may be clarified by considering the integer a = 509.
Inasmuch as 22 < +/509 < 23, we need only try out the primes that are not larger
than 22 as possible divisors, namely, the primes 2, 3, 5,7, 11, 13, 17, 19. Dividing
509 by each of these, in turn, we find that none serves as a divisor of 509. The
conclusion is that 509 must be a prime number.

Example 3.1. The foregoing technique provides a practical means for determlnmg the
canopical form of an integer, say a = 2093. Because 45 < /2093 < 46, it is enough
- thn smstaanns D) 2 7 11 1?2 17 10 272 2720 21 27 A1 A7 ; tmial thana

WU CA ICP HIICS 2, 0, I, /4, 11, 10y 1/, 17, &40, &7, 01, O/, F1, FT. D_)’ uildail, tnc

amine t ,
first of these to divide 2093 is 7, and 2093 = 7 - 299. As regards the integer 299, the
seven primes that are less than 18 (note that 17 < V299 < 18)are 2,3,5,7,11,13, 17.
The first prime divisor of 299 is 13 and, carrying out the required division, we obtain
299 = 13 - 23. But 23 is itself a prime, whence 2093 has exactly three prime factors,
7,13, and 23:

2093 =7

p—
(98]
o]
(O8]
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Another Greek mathematician whose work in number theor Yy remains blglllllbdlll
is Eratosthenes of Cyrene (276194 B.C.). Although posterity remembers him mainly
as the director of the world-famous library at Alexandria, Eratosthenes was gifted in
all branches of learning, if not of first rank in any; in his own day, he was nicknamed
“Beta” because, it was said, he stood at least second in every field. Perhaps the
most impressive feat of Eratosthenes was the accurate measurement of the earth’s
circumference by a simple annhm‘rmn of Euclidean geometry.

Wa have cpran + 3f an 1 Aivricilhla amy mrime o< /o
YVWE nave seen tnat il an 551 a>1i m not divisible uy any priime p = /4,

then a is of necessity a pnme. Eratosthenes used this fact as the basis of a clever
technique, called the Sieve of Eratosthenes, for finding all primes below a given
integer n. The scheme calls for writing down the integers from 2 to # in their natural
order and then systematically eliminating all the composite numbers by striking out
all multiples 2p, 3p,4p, 5p, ... of the primes p < /n. The integers that are left on
the list—those that do not fall through the “sieve”—are primes.

To see an example of how this works, suppose that we wish to find all primes
not exceeding 100. Consider the sequence of consecutive integers 2, 3, 4, ...,100.
Recognizing that 2 is a prime, we begin by crossing out all even integers from our
listing, except 2 itself. The first of the remaining integers is 3, which must be a
prime. We keep 3, but strike out all higher multiples of 3, so that 9, 15, 21, ... are
now removed (the even multiples of 3 having been removed in the previous step).
The smallest integer after 3 that has not yet been deleted is 5. It is not divisible by
either 2 or 3—otherwise it would have been crossed out—hence, it is also a prime.
All proper multiples of 5 being composite numbers, we next remove 10, 15, 20, ...
(some of these are, of course, already missing), while retaining 5 itself. The first
surviving integer 7 is a prime, for it is not divisible by 2, 3, or 5, the only primes
that precede it. After eliminating the proper multiples of 7, the largest prime less
than /100 = 10, all composite integers in the sequence 2, 3, 4, . ..,100 have fallen
through the sieve. The positive integers that remain, to wit, 2, 3, 5,7, 11, 13, 17, 19,
23,29,31,37,41,43,47,53,59,61,67,71,73,79, 83, 89, 97, are all of the primes
less than 100.

The following table represents the result of the completed sieve. The multiples
of 2 are crossed out by \; the multiples of 3 are crossed out by /; the multiples of 5
are crossed out by —; the multiples of 7 are crossed out by ~.

2 3 %, 5 X 7 3 g 1y

11 r 13 M 5 I\ 17 24 19 26

2¢ 2 23 X 25 2 2 2% 29 3¢
31 R B M O3y ¥ 37 X P 26

41 ¢ 43 M #H  d 47 K 4> S8
51 % 53 M 55 B¢ ¥ 3 59 6
61 1Y) 3 & 65 56 67 68 69 a4

71 Koo M B e TF KT 36

2 % 8 B¢ 8 8 % 3 89 o
4 R 93 4 95 9 97 A% 99 6

By this point, an obvious question must have occurred to the reader. Is there a
largest prime number, or do the primes go on forever? The answer is to be found
ina remarkably simple proof given by Euclid in Book IX of his Elements. Euclid’s

argument 1S univers ]v reocarded as a model of mathematical elecance. L.oosely
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speaking, it goes like this: Given any finite list of prime nu , One
find a prime not on the list; hence, the number of primes is infinite. The ac
appear below.

Theorem 3.4 Euclid. There is an infinite number of primes.

prnnf pur\hd’c nroof ic by contradiction Tet n. =2 ns =3 ny =5 n;, = 7, . be

Ci1G § Proe¢l 15 80y COINTraGIClon. .01 =2 =23 =2
VY J Pl s 2 s M3 s 4

the primes in ascending order, and suppose that there is a last prime, called p,. Now
consider the positive integer

P=pipy---pn+1

Because P > 1, we may put Theorem 3.2 to work once again and conclude that P
is divisible hv some nr1mf= p. Rut n:. n p. are the nn]v prime mlthrQ [s)

b} .
LAVISIVIC LY ST PRl VL Pl P2y -0 -y P /10 RAIC A (R38R EE L) |

that p must be equal to one of pi, ps,..., p,. Combining the d1V131b111ty relation
plpip2---pn With p| P, wearrive at p | P — pyp, - - - p, or, equivalently, p | 1. The
only positive divisor of the integer 1 is 1 itself and, because p > 1, a contradiction
arises. Thus, no finite list of primes is complete, whence the number of primes is
infinite.

For a prime p, define p* to be the product of all primes that are less than or equal
to p. Numbers of the form p* + 1 might be termed Euclidean numbers, because they
appear in Euclid’s scheme for proving the infinitude of primes. It is interesting to
note that in forming these integers, the first five, namely,

2#+1=2+1=3
#F+1=2-34+1=7

5 +1=2-3.5+1=231
*+1=2-3.5.7+1=211
11¥4+1=2-3.5-7-114+1=2311

are all prime numbers. However,

#

\O

SN0
©JUT

[u—
I
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—Il_
17 +1=19.97.277
19% + 1 = 347 - 27953

12
10

are not prime. A question whose answer is not known is whether there are infinitely

manv nrimesg n»n 'Fnr which n# 1 1 1i¢ aleo nrime For that ma fpr are there infinitelv
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many composite p* + 17

At present, 19 primes of the form p* + 1 have been identified. These correspond
to the values p =2, 3,5,7,11,31,379, 1019, 1021, 2657, 3229, 4547, 4787, 11549,
13649, 18523, 23801, 24029, and 42209; the largest of these, a number consisting of
18241 digits, was discovered in 2000. The integer p* + 1 is composite for all other
p < 120000.
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Euclid’s theorem is too important for us to be content with a single proof. Here
is a variation in the reasoning: Form the infinite sequence of positive 1ntegers
ny = 2
ny,=mn;+1

ng=nny---ng_;+1

Because each n; > 1, each of these integers is divisible by a prime. But no two
n; can have the same prime divisor. To see this, let d = gcd(n, , n) and suppose
that i < k. Then d divides »n; and, hence, must divide nn, - - - ny_1. Because d | ny,
Theorem 2.2 (g) tells us that d |ny —nyny---nx_yord|1. The implication is that
d = 1, and so the integers nx(k = 1, 2, . ..) are pairwise relatively prime. The point
we wish to make is that there are as many distinct primes as there are integers ny,
namely, infinitely many of them.

Let p, denote the nth of the prime numbers in their natural order. Euclid’s proof
shows that the expression p; p; - - - p, + 1 is divisibie by at least one prime. If there
are several such prime divisors, then p,; cannot exceed the smallest of these so
that p,+1 < pip2--- pn + 1 forn > 1. Another way of saying the same thing is that

DPn < pP1p2- - Pn—1+1 n>?2

With a slight modification of Euclid’s reasoning, this inequality can be improved to
give
Pn<pip2---pp1—1  n=3
For instance, when n = 5, this tells us that
11=ps<2-3-5-7—-1=209
We can see that the estimate is rather extravagant. A sharper limitation on the size
of p, is given by Bonse’s inequality, which states that

n2<mm-~~Pn-1 n>5

4 n

This inequality yields p2 < 210, or ps < 14. A somewhat better size-estimate for
ps comes from the inequality

P < p2p3 - pn—2 n=3
Here, we obtain

Ps<ps<pp3—2=3.5-2=13

To approximate the size of p, from these formulas, it is necessary to know the
values of pi, p2, ..., pn—1. For a bound in which the preceding primes do not enter
the picture, we have the following theorem.

Theorem 3.5. If p, is the nth prime number, then p, < 22".
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Proof. Let us proceed by induction on n, the asserted inequality being clearly true
when n = 1. As the hypothesis of the induction, we assume that » > 1 and that the
result holds for all integers up to n. Then

Pn+1 S p1p2Pnt 1
<2.022...077" 4 = A2 442 g

Recalling the identity 1 +2 + 22 + ... 4+2""1 = 2" — 1, we obtain
Put1 <2771+ 1
However, 1 < 22"~ for all n; whence

pri <2271 4271
=2.221 =%

compieting the induction step, and the argument.

There is a corollary to Theorem 3.5 that is of interest.

Corollary. For n > 1, there are at least n + 1 primes less than 22",
Proof. From the theorem, we know that pi, pa, ..., pn41 are all less than 22",

We can do considerably better than is indicated by Theorem 3.5. In 1845, Joseph
Bertrand conjectured that the prime numbers are well-distributed in the sense that
between n > 2 and 2n there is at least one prime. He was unable to establish his con-
jecture, but verified it for all n < 3,000,000. (One way of achieving this is to consider
a sequence of primes 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 5003, 9973,
19937, 39869, 79699, 159389, ... each of which is less than twice the preceding.)
Because it takes some real effort to substantiate this famous conjecture, let us content
ourselves with saying that the first proof was carried out by the Russian mathemati-
cian P. L. Tchebycheff in 1852. Granting the result, it is not difficult to show that

pn < 2" n>?2
and as a direct consequence, p,.1 < 2p, forn > 2. In particular,
11=p5<2-p4=14

To see that p, < 2", we argue by induction on #. Clearly, p, = 3 < 22, so that
the inequality is true here. Now assume that the inequality holds for an integer #,
whence p, < 2". Invoking Bertrand’s conjecture, there exists a prime number p
satisfying 2" < p < 2"*!; thatis, p, < p. This immediately leads to the conclusion

Primes of special form have been of perennial interest. Among these, the re-
punit primes are outstanding in their simplicity. A repunit is an integer written (in
decimal notation) as a string of 1’s, such as 11, 111, or 1111. Each such integer must
have the form (10" — 1)/9. We use the symbol R, to denote the repunit consisting
of n consecutive 1’s. A peculiar feature of these numbers is the apparent scarcity
of primes among them. So far, only R», Ry9, R23, R317, R1031, R40081, and Rgeas3
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possible repunit primes R, for all n < 45000 are the seven numbers just indicated.
No conjecture has been made as to the existence of any others. For a repunit R, to
be prime, the subscript » must be a prime; that this is not a sufficient condition is

shown by
Rs = 11111 =41-271 R; = 1111111 = 239 - 4649
PROBLEMS 3.2
1. Determine whether the integer 701 is prime by testing all primes p < +/701 as possible

2
3

L

10.

11.

12.

divisors. Do the same for the integer 1009.

Emnvlovine the Sieve of Eratosthenes. obtain all the nrimes between 100 and 2
cmpioying the sieve of Cratostienes, oblain ail the primes wee Zl

Given that p f n for all primes p < .3/n, show that n > 1 is either a prime or th
of two primes.
[Hint: Assume to the contrary that n contains at least three prime factors.]
Establish the following facts:
(a) /p is irrational for any prime p.
(b) Ifa > 0 and JE is rational, then #/a must be an integer.
(c) Forn > 2, I/n is irrational.
[Hint: Use the fact that 2" > n.]
Show that any composite three-digit number must have a prime factor less than or equal

to 31.

. Fill in any missing details in this sketch of a proof of the infinitude of primes: Assume

that there are only finitely many primes, say pi, p2, ..., pn. Let A be the product of any
r of these primes and put B = p;p; - - - p,/A. Then each p, divides either A or B, but
not both. Because A + B > 1, A 4+ B has a prime divisor different from any of the py,
which is a contradiction.

Modify Euclid’s proof that there are infinitely many primes by assuming the existence
of a largest prime p and using the integer N = p! + 1 to arrive at a contradiction.

. Give another proof of the infinitude of primes by assuming that there are only finitely many

primes, say pi, P2, - - - » Pn, and using the following integer to arrive at a contradiction:

N =pp3---pn+p1p3---pnt---+pip2- Pn-i1

bR 7 thae tha n"ﬂn-—nmmt\“n‘-n

} flUVC lhal ir7i > Ly lllCll tnere exXists a PLILIC [J dall blylllg n < 1} < IL'
[Hint: If n! — 1 is not prime, then it has a prime divisor p; and p < n implies p | n!,
leading to a contradiction.]
(b) For n > 1, show that every prime divisor of n! 4 1 is an odd integer that is greater

than n.
Let qn be the smallest prime that is strictly greater than P, = pi1p2 - p, + 1.Ithas been
buujcumcu that the difference qn — \pl 2 pn) is always a p““T Ccnﬁ‘m this for the

first five values of n.
If p, denotes the nth prime number, put d,, = p,+1 — p,. An open question is whether
the equation d,, = d,+; has infinitely many solutions. Give five solutions.
Assuming that p, is the nth prime number, establish each of the following statements:
(@ p, >2n—1forn > 5.
(b) None of the integers P, = p1p2- - pn + 1 is a perfect square.

[Hint: Each P, is of the form 4k + 3 forn > 1.]
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1 1 1
P1 P2 Pn
is never an integer.
13. For the repunits R,,, verify the assertions below:
(@) If n|m,then R, | R,,.
[Hint: If m = kn, consider the identity

m 1 7N 1\ 7 (k——l)n. ' (k-—2)rz ' ' n o 1N
xT—1={x —Dix +x 4o+ X + 1)

(b)y Ifd| R, and d | R, thend | R4 p.
[Hint: Show that R, = R,10™ + R,,.]
(c) If ged(n, m) = 1, then ged(R,, , R,y) = 1.
14. Use the previous problem to obtain the prime factors of the repunit Rjo.

3.3 THE GOLDBACH CONJECTURE

an

Although there is an infinitude of primes, their distribution within the positive inte-
gers is most mystifying. Repeatedly in their distribution we find hints or, as it were,
shadows of a pattern; yet an actual pattern amenable to precise description remains
elusive. The difference between consecutive primes can be small, as with the pairs
11 and 13, 17 and 19, or for that matter 1000000000061 and 1000000000063. At

PR, PRER S | e al P,
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are totally devoid of any primes.

It is an unanswered question whether there are infinitely many pairs of twin
primes; that is, pairs of successive odd integers p and p + 2 that are both primes.
Numerical evidence leads us to suspect an affirmative conclusion. Electronic com-
puters have discovered 152892 pairs of twin primes less than 30000000 and 20 pairs

between 1012 and 1012-1- 10000, which hints at their grow _no q(‘m‘mtv as the nnqmvp
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ate, each 51090 digits long,
33218925 - 2! + 1

integers increase
largest twins to d

were discovered in 2002.

Consecutive primes cannot only be close together, but also can be far apart; that
is, arbitrarily large gaps can occur between consecutive primes. Stated precisely:
Given any positive integer n, there exist n consecutive integers, all of which are
composite. To prove this, we simply need to consider the integers

m+ DI +2,+ DI +3,..., 0+ D+ ¢+ 1)

where (n+1)! =m+1)-n---3.2-.1. Clearly, there are n integers listed and
they are consecutive. What is important is that each integer is composite. Indeed,
(n + 1)! + 2 is divisible by 2, (n + 1)! 4 3 is divisible by 3, and so on.

Fnr ingtanca if a cannancra nf fanr cancamsmitive ~anmnngitae intagarg 1Q
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then the previous argument produces 122, 123, 124, and 125:
51+42=122=2-61
51+3=123=3-41
5'4+4=124=4.31
S'14+5=125=5.25
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Of course, we can find other sets o
27 or 32, 33, 34, 35.

As this example suggests, our procedure for constructing gaps between two con-
secutive primes gives a gross overestimate of where they occur among the integers.
The first occurrences of prime gaps of specific lengths, where all the intervening inte-

gers are composite, have been the subject of computer searches. For instance, there is
gap of fle n oth 778 (thatis, D1 — pp = T178) fn]lnwma the nrime 4284228392535
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gest effectively c
ength 1132, with a string

|
~ ThA~
111C

ween two smaller pi’ii""eS.
culated gap between consecutive prime numbers has le
1131 composites immediately after the prime
1693182318746371

Interestingly, computer researchers have not identified gaps of every possible width
up to 1132. The smallest missing gap size is 796. The conjecture is that there is a
prime gap (a string of 2k — 1 consecutive composites between two primes) for every
even integer 2k.

This brings us to another unsolved problem concerning the primes, the Gold-
bach conjecture. In a letter to Leonhard Euler in the year 1742, Christian Goldbach
hazarded the guess that every even integer is the sum of two numbers that are either
primes or 1. A somewhat more general formulation is that every even integer greater
than 4 can be written as a sum of two odd prime numbers. This is easy to confirm
for the first few even integers:

=1+1
4=2+4+2=1+3
6=3+3=1+5

Rue— 1L 8 =117
O — J 7 J )

= 1 7

10=3+7=5+5

12=54+7=1+11
14=34+11=74+7=1+13

16 =34+13=5411
1I8=54+13=7T+11=1+417
20=3+17=74+13=14+19
22=3+19=5+17=11+11
24=5419=T7+17=11+13=1+423
26=34+23=7+19=13+413
28=5423=11+17
30=74+23=11419=134+17=14+29
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Although it seems that Euler never tried to prove the result, upon writing to Goldbach
at a later date, Euler countered with a conjecture of his own: Any even integer (> 6)
of the form 4n + 2 is a sum of two numbers each being either a prime of the form
4n+1lorl.

The numerical data suggesting the truth of Goldbach’s conjecture are over-
fo rs less than 4 - 1014,

SO Liidias

or all even inteoe
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whelming. It has been verified by computers

5. YULiivu Uy VUL Y



52 ELEMENTARY NUMBER THEORY

As the mtegers become 1arger, the number of different ways in which 2n can be
expressed as the sum of two primes increases. For example, there are 219400 such
representations for the even integer 100000000. Although this supports the feeling
that Goldbach was correct in his conjecture, it is far from a mathematical proof,
and all attempts to obtain a proof have been completely unsuccessful. One of the

most famous number theorists of the last century, G. H. Hardy, in his address to the
Mathematical Soci f(“nnenhaoen in 1921, stated that the Goldbach ¢ Qn ecture

._n
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It is currently known that every even integer is the sum of six or fewer primes.

We remark that if the conjecture of Goldbach is true, then each odd number
larger than 7 must be the sum of three odd primes. To see this, take n to be an odd
integer greater than 7, so that n — 3 is even and greater than 4; if n — 3 could be
expressed as the sum of two odd primes, then n would be the sum of three.

The first real progress on the conjecture in nearly 200 years was made by Hardy
and Littlewood in 1922. On the basis of a certain unproved hypothesis, the so-
called generalized Riemann hypothesis, they showed that every sufficiently large
odd number is the sum of three odd primes. In 1937, the Russian mathematician
I. M. Vinogradov was able to remove the dependence on the generalized Riemann
hypothesis, thereby giving an unconditional proof of this result; that is to say, he
established that all odd integers greater than some effectively computable n( can be
written as the sum of three odd primes.

T‘
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n=p +p+p;3 (n odd, n sufficiently large)

Vinogradov was unable to decide how large ny should be, but Borozdkin (1956)
proved that ng < 3%”. In 2002, the bound on no was reduced to 1036, Tt follows
immediately that every even integer from some point on is the sum of either two
or four primes. Thus, it is enough to answer the question for every odd integer n
in the range 9 < n < ng, which, for a given integer, becomes a matter of tedious
computation (unfortunately, ng is so large that this exceeds the capabilities of the
most modern electronic computers).

Because of the strong evidence in favor of the famous Goldbach conjecture, we
readily become convinced that it is true. Nevertheless, it might be false. Vinogradov
showed that if A(x) is the number of even integers n < x that are not the sum of two
primes, then

lim A(x)/x =0
X—>00

This allows us to say that “almost all” even integers satisfy the conjecture. As Edmund
T andair g antlyy it 16 C“Tha 2ATAL A~ -~ falon fo + NOL ~AF a1l Avan
Laliuau suv CL}JLI'Y l.)ul. 1L, 111€ UuoI1avacn L«UllJCbLulC lb 1daiSe 101 d.L lllUDl. U770 01 au €Ven
integers; this at most 0% does not exciude, of course, the possibility that there are
infinitely many exceptions.”

Having digressed somewhat, let us observe that according to the Division Al-

gorithm, every positive integer can be written uniquely in one of the forms

4n 4n + 1 4n +2 4n +3
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for some suitable n > 0. Clearly, the integers 47 and 4n + 2 = 2(2n 4 1) are both
even. Thus, all odd integers fall into two progressions: one containing integers of
the form 4n 4 1, and the other containing integers of the form 4n 4 3.

The question arises as to how these two types of primes are distributed within the
set of positive integers. Let us display the first few odd prime numbers in consecutive
order, putting the 4n + 3 primes in the top row and the 4n + 1 primes under them:

3 7 11 19 23 31 43 47 59 67 71 79 83
5 13 17 29 37 41 53 61 73 89

At this point, one might have the general impression that primes of the form
4n + 3 are more abundant than are those of the form 4n + 1. To obtain more precise
information, we require the help of the function m, ,(x), which counts the number
of primes of the form p = an + b not exceeding x. Our small table, for instance,
indicates that 74 ;(89) = 10 and 74 3(89) = 13.

In a famous letter written in 1853, Tchebycheff remarked that 74 1 (x) < 74 3(x)
for small values of x. He also implied that he had a proof that the inequality always
held. In 1914, J. E. Littlewood showed that the inequality fails infinitely often, but
his method gave no indication of the value of x for which this first happens. It turned
out to be quite difficult to find. Not until 1957 did a computer search reveal that
x = 26861 is the smallest prime for which 74 ;(x) > 74 3(x); here, 74 1(x) = 1473
and 4 3(x) = 1472. This is an isolated situation, because the next prime at which a
reversal occurs is x = 616,841. Remarkably, 74 1(x) > w4 3(x) for the 410 million
successive integers x lying between 18540000000 and 18950000000.

The behavior of primes of the form 3n £ 1 provided more of a computa-
tional challenge: the inequality 3 ;(x) < m32(x) holds for all x until one reaches
x = 608981813029.

This furnishes a pleasant opportunity for a repeat performance of Euclid’s
method for proving the existence of an infinitude of primes. A slight modifica-
tion of his argument reveals that there is an infinite number of primes of the form
4n 4 3. We approach the proof through a simple lemma.

Lemma. The product of two or more integers of the form 4n + 1 is of the same form.

Proof. 1tis sufficient to consider the product of just two integers. Let us take k = 4n + 1
and k" = 4m + 1. Multiplying these together, we obtain

kk' = (4n + 1)(4m + 1)
=16nm+4n+4m+ 1 =4@nm+n +m) + 1

which is of the desired form.
This paves the way for Theorem 3.6.

Theorem 3.6. There are an infinite number of primes of the form 4n + 3.
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many primes of the form 4n + 3; call them qy, g2, - . . , gs. Consider the positive integer

N=4q:1q2---qs —1=4q1g2---gs — 1) +3

andlet N = ryr, - - - r; be its prime factorization. Because N is an odd integer, we have
rr # 2 for all k, so that each 7y is either of the form 4n + 1 or 4n + 3. By the lemma,
the product of any number of primes of the form 4n + 1 is again an integer of this type.
For N to take the form 4n + 3, as it clearly does, N must contain at least one prime
factor r; of the form 4n + 3. But r; cannot be found among the listing g1, g2, - - -, g5,
for this would lead to the contradiction that r; | 1. The only possible conclusion is that
there are infinitely many primes of the form 4n + 3.

Having just seen that there are infinitely many primes of the form 4n + 3, we
might reasonably ask: Is the number of primes of the form 4n + 1 also infinite? This

anqeweariq likeawice in the affirmative hit a demonctration mnet await the doavelanment
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of the necessary mathematical machinery. Both these results are special cases of a
remarkable theorem by P. G. L. Dirichlet on primes in arithmetic progressions,
established in 1837. The proof is much too difficult for inclusion here, so that we
must content ourselves with the mere statement.

Theorem 3.7 Dirichlet. If a and b are relatively prime positive integers, then the

a,a+b,a+2b,a+3b,...

contains infinitely many primes.

Dirichlet’s theorem tells us, for instance, that there are infinitely many prime
numbers ending in 999, such as 1999, 100999, 1000999, . .. for these appear in the
arithmetic progression determined by 1000n 4 999, where gcd(1000, 999) = 1.

There is no arithmetic progression a, a + b, a + 2b, . .. that consists solely of
prime numbers. To see this, suppose that a + nb = p, where p is a prime. If we put
ny =n-+kpfork =1,2,3,... then the nith term in the progression is

a+nmb=a+ n+kp)b=(a+nb)+kpb=p-+kpb

Because each term on the right-hand side is divisible by p, so is a + ngb. In other
words, the progression must contain infinitely many composite numbers.

It is an old, but still unsolved question of whether there exist arbitrarily long
but finite arithmetic progressions consisting only of prime numbers (not necessarily
consecutive primes). The longest progression found to date is composed of the 22
primes:

1410337850553 + 4609098694200 0<n<21
The prime factorization of the common difference between the terms is
2°.3.5%.7-11-13-17-19-23.1033

which is divisible by 9699690, the product of the primes less than 22. This takes
place according to Theorem 3.8.
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the arithmetic progression
p.p+d,p+2,....p+(n—-1d

are prime numbers, then the common difference d is divisible by every prime g < n.

p.p+d,p+2d,....p+(q—1d (1)

will leave different remainders when divided by g. Otherwise there exist integers j
and k, with 0 < j < k < g — 1, such that the numbers p + jd and p + kd yield the
same remainder upon division by g. Then g divides their difference (k — j)d. But
gcd(g , d) = 1, and so Euclid’s lemma leads to g | k — j, which is nonsense in light of
the inequality k — j < g — 1.

Because the g different remainders produced from Eq. (1) are drawn from the
q integers 0,1,...,g — 1, one of these remainders must be zero. This means that
g | p + td for some ¢ satisfying 0 <t < g — 1. Because of the inequality g < n <
p < p+td, we are forced to conclude that p 4 ¢td is composite. (If p were less
than n, one of the terms of the progression would be p 4+ pd = p(1 + d).) With this

contradiction, the nrnnf that q | d is complete

ReaL iV, naae I OUL uiar 1S VLI PA S,

It has been conjectured that there exist arithmetic progressions of finite (but
otherwise arbitrary) length, composed of consecutive prime numbers. Examples of
such progressions consisting of three and four primes, respectively, are 47, 53, 59,
and 251, 257, 263, 269.

Most recently aseguence of 10 con
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1
term exceeds its predecessor by just 210; the smallest of these primes has 93 digits.
Finding an arithmetic progression consisting of 11 consecutive primes is likely to
be out of reach for some time. Absent the restriction that the primes involved be
consecutive, strings of 11-term arithmetic progressions are easily located. One such
is

110437 + 13860n 0<n<10

In the interest of completeness, we might mention another famous problem that,
so far, has resisted the most determined attack. For centuries, mathematicians have
sought a simple formula that would yield every prime number or, failing this, a
formula that would produce nothing but primes. At first glance, the request seems
modest enough: Find a function f(n) whose domain is, say, the nonnegative integers
and whose range is some infinite subset of the set of all primes. It was widely believed
years ago that the quadratic polynomial

f(n)=n*+n+41

assumed only prime values. This was shown to be false by Euler, in 1772. As
evidenced by the following table, the claim is a correct one forn =0, 1,2, ..., 39.
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n f(n) n fn) n fn)

0 41 14 251 28 853
1 43 15 281 29 911
2 47 16 313 30 971
3 53 17 347 31 1033
4 61 18 383 32 1097
5 71 19 421 33 1163
6 &3 20 461 34 1231
7 97 21 503 35 1301
8 113 22 547 36 1373
9 131 23 593 37 1447
10 151 24 641 38 1523
11 173 25 691 39 1601
12 197 26 743
13 223 27 797

However, this provocative conjecture is shattered in the cases n = 40 and n = 41,
where there is a factor of 41:

f(40) = 40 - 41 + 41 = 412
and
f(41) =41-42+41 =41-43

The next value f(42) = 1847 turns out to be prime once again. In fact, for the
first 100 integer values of n, the so-called Euler polynomial represents 86 primes
AlLllUUgIl ll starts Ull ‘v‘c‘:r“y‘ ‘v‘v‘eu 1[1 I.IlC pl UUULUUII Ul leIIle, UlCIC are ULllCI quUI dllbb
such as

g(n) = n*+n+279%1

that begin to best f(n) as the values of n become larger. For example, g(n) is prime
for 286129 values of 0 < n < 10%, whereas its famous rival yields 261081 primes
in this range.

It has been shown that no po]ynomra] of he form 24n —!— g, with g a prime,

n A~ ttar than tha Fi
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Indeed, until fairly recently no other quadratlc polyn0m1al of any kind was known
to produce more than 40 successive prime values. The polynomial

h(n) = 103n® — 3945n + 34381

found in 1988, produces 43 distinct prime values forn =0, 1,2, ..., ., 42. The current

record holder in this regard

k(n) = 36n* — 8101 + 2753

does slightly better by giving a string of 45 prime values.
The failure of the previous functions to be prime-producing is no accident,
for it is easy to prove that there is no nonconstant polynomial f(n) with integral
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coefficients that takes on just prime values for integral n. We assume that such a
polynomial f(n) actually does exist and argue until a contradiction is reached. Let

f) =an* +a_n* '+ fan® +an+ap

where all the coefficients ag, a, . . ., a; are integers, and a; # 0. For a fixed value of
(ng), p = f(np)is a prime number. Now, for any integer 7, we consider the following
expression:

f(no +tp) = ar(no + tp)* + - - - + ai(no + tp) + ao
= (axnf + -+ -+ aing + ap) + pQ(t)
= f(no) + pQ()
=p+ p0(t) = p(1+ Q1))

where (J(¢) is a polynomial in ¢ having integral coefficients. Our reasoning shows
that p | f(no + tp); hence, from our own assumption that f(rn) takes on only prime
values, f(no+ tp) = p for any integer ¢. Because a polynomial of degree k can-
not assume the same value more than k times, we have obtained the required
contradiction.

Recent years have seen a measure of success in the search for prime-producing
functions. W. H. Mills nroved (1947) that there exists a nnolﬁvp raal niimber » enuch
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that the expression f(n) = [r>"] is prime for n = 1, 2, 3, ... (the brackets indicate
the greatest integer function). Needless to say, this is strlctly an existence theorem
and nothing is known about the actual value of r. Mills’s function does not produce
all the primes.

PROBLEMS 3.3
1. Verify that the integers 1949 and 1951 are twin primes.
2. (a) If 1 is added to a product of twin primes, prove that a perfect square is always
obtained.
(b) Show that the sum of twin primes p and p + 2 is divisible by 12, provided that p > 3.

3. Find all pairs of primes p and ¢ satisfying p — g = 3.

4. Sylvester (1896) rephrased the Goldbach conjecture: Every even integer 2n greater than
4 is the sum of two primes, one larger than n/2 and the other less than 3n/2. Verify this
version of the conjecture for all even integers between 6 and 76.

5. In 1752, Goldbach submitted the following conjecture to Euler: Every odd integer can
be written in the form p + 2a?, where p is either a prime or 1 and a > 0. Show that the
integer 5777 refutes this conjecture.

6. Prove that the Goldbach conjecture that every even integer greater than 2 is the sum of
two primes is equivalent to the statement that every integer greater than 5 is the sum of
three primes.

[Hint: If2n —2 = p; + pa,then2n = p1+ p,+2and2n+ 1 = p; + pr + 3.]

7. A conjecture of Lagrange (1775) asserts that every odd integer greater than 5 can be
written as a sum p; + 2p,, where p;, p, are both primes. Confirm this for all odd
integers through 75.

8. Given a positive integer n, it can be shown that there exists an even integer a that is
representable as the sum of two odd primes in » different ways. Confirm that the integers
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. (a) Forn > 3, show that the integers n, n + 2, n + 4 cannot all be prime.

(b) Three integers p, p + 2, p + 6, which are all prime, are called a prime-triplet. Find
five sets of prime-triplets.
Establish that the sequence
m+DI=2,m+D=-3,...,mn+D!'—m+1)
produces n consecutive composite integers for n > 2.
Find the smallest positive integer n for which the function f(n) = n? +n + 17 is com-
posite. Do the same for the functions g(n) = n? 4 21n + 1 and h(n) = 3n? + 3n + 23.
Let p, denote the nth prime number. For n > 3, prove that pi +3 < PnDn+1Pn+2-
[Hint: Note that p2 , < 4pZ., < 8pni1Pns2-]

. Apply the same method of proof as in Theorem 3.6 to show that there are infinitely many

primes of the form 6n + 5.

Find a prime divisor of the integer N = 4(3 - 7 - 11) — 1 of the form 4n 4 3. Do the same
forN=43-7-11-15) - 1.

Another unanswered question is whether there exist an infinite number of sets of five
consecutive odd integers of which four are primes. Find five such sets of integers.

Let the sequence of primes, with 1 adjoined, be denoted by pp =1, p1 =2, p» =3,
p3 =5,....Foreachn > 1, it is known that there exists a suitable choice of coefficients
€ = =1 such that

2n—2 2n—1
P2 = Poan—1 + Z €k Pk Pon+1 = 2pw + Z €k Pk
k=0 k=0

To illustrate:

and
17=14+2-3-54+7-11+4+2-13

Determine similar representations for the primes 23, 29, 31, and 37.

In 1848, de Polignac claimed that every odd integer is the sum of a prime and a power of
2. For example, 55 = 47 + 23 = 23 4 2°. Show that the integers 509 and 877 discredit
this claim.

(a) If pis a prime and p } b, prove that in the arithmetic progression

a,a+b,a+2b,a+30b,...

every pth term is divisible by p.
[Hint: Because gcd(p, b) = 1, there exist integers r and s satisfying pr + bs = 1.
Putn, =kp —asfork =1, 2,... and show that p | (@ 4+ n;b).]
(b) From part (a), conclude that if b is an odd integer, then every other term in the
indicated progression is even.
In 1950, it was proved that any integer n > 9 can be written as a sum of distinct odd
primes. Express the integers 25, 69, 81, and 125 in this fashion.
If p and p? + 8 are both prime numbers, prove that p* + 4 is also prime.
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any integer k > 0, establish that the arithmetic progression
a+b,a+2b,a+3b,...

where ged(a, b) = 1, contains k consecutive terms that are composite.
[Hint: Put n = (a + b)(a + 2b) - - - (a + kb) and consider the k terms a 4 (n + 1)b,
a+n+2b,...,a+m+k)b.]

(b) Find five consecutive composite terms in the arithmetic progression

Z 11 1£ 1 N 21 L
0, 11,10, 21, 20, 31, 30, ...

Show that 13 is the largest prime that can divide two successive integers of the form

n? 4 3.

(a) The arithmetic mean of the twin primes 5 and 7 is the triangular number 6. Are there
any other twin primes with a triangular mean?

(b) The arithmetic mean of the twin primes 3 and 5 is the perfect square 4. Are there any
other twin primes with a square mean?

Determine all twin primes p and ¢ = p + 2 for which pg — 2 is also prime.

Let p, denote the nth prime. For n > 3, show that

Pn<pPr+p2+---+pa

[Hint: Use induction and the Bertrand conjecture.]

Verify the following:

(a) Therc exist infinitely many prime
[Hint: Apply Dirichiet’s theorem.]

(b) There exist infinitely many primes that do not belong to any pair of twin primes.
[Hint: Consider the arithmetic progression 21k +5fork =1,2,....]

(c) There exists a prime ending in as many consecutive 1’s as desired.
[Hint: To obtain a prime ending in n consecutive 1’s, consider the arithmetic pro-
gression 10"k + R, fork =1,2,....]

(d) There exist infinitely many pr1mes that contain but do not end in the block of digits
123456789.
[Hint: Consider the arithmetic progression 101k + 1234567891 fork = 1,2, ....]

Prove that for every n > 2 there exists a prime p with p < n < 2p.

[Hinz: In the case where n = 2k 4 1, then by the Bertrand conjecture there exists a prime

psuchthatk < p < 2k.]

(a) If n > 1, show that n! is never a perfect square.

(b) Find the values of » > 1 for which

PROL LI :“ ’)’) Sii PN ﬁ’)’) A2 27 1N121
€naing in 55, sucn as 253, 435, /153, 1U35, ....

.IU)

nt4+m+ DI+ (4 2)!

is a perfect square.
[Hint: Note that n! + (n + D! + (n + 2)! = nl(n + 2)°.]
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PRIMES AND THEIR DISTRIBUTION

Mighty are numbers, joined with art resistless.
EURIPIDES

3.1 THE FUNDAMENTAL THEOREM OF ARITHMETIC

Essential to everything discussed herein—in fact, essential to every aspect of number
theory—is the notion of a prime number. We have previously observed that any
integer a > 1 is divisible by &1 and + a; if these exhaust the divisors of a, then it
is said to be a prime number. In Definition 3.1 we state this somewhat dlf_erenﬂv
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Definition 3.1. An integer p > 1 is called a prime number, or simply a prime, if its
only positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed

composite.

Among the first ten positive integers, 2, 3, 5, 7 are primes and 4,6,8,9, 10 are
composite numbers. Note that the integer 2 is the only even prime, an d according to
our definition the integer 1 plays a special role, being neither prime nor composite.

In the rest of this book, the letters p and g will be reserved, so far as is possible,
for primes.

Proposition 14 of Book IX of Euclid’s Elements embodies the result that later

became known as the Fundamental Theorem of Arithmetic, namely, that every inte-
ger greater than 1 can. excent for the order of the factors. be renresented as a nroduct
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of primes in one and only one way. To quote the proposition itself: “If a number be
the least that is measured by prime numbers, it will not be measured by any other
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prime except those originally measuring it.” Because every number a > 1 is either
a prime or, by the Fundamental Theorem, can be broken down into unique prime

'anfnv-n and na fiirtha tha nrimag carva ag tha hitilding hlanke fram which all Athar
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integers can be made. Accordingly, the prime numbers have intrigued mathemati-
cians through the ages, and although a number of remarkable theorems relating to
their distribution in the sequence of positive integers have been proved, even more
remarkable is what remains unproved. The open questions can be counted among
the outstanding unsolved problems in all of mathematics.

To begin on a simpler note, we observe that the prime 3 divides the integer 36,

written as any one nf the nraodnete
¥ lll,l,‘.lll J Vilv Ul uiiv l.lluuu\.al-o

6-6=9-4=12-3=18.2

In each instance, 3 divides at least one of the factors involved in the product. This is
typical of the general situation, the precise result being Theorem 3.1.

Theorem and plab, then plaor plb.
Proof. If p|a, then we need go no further, so let us assume that p } a. Because
the only positive divisors of p are 1 and p itself, this implies that gcd(p,a) = 1. (In
general, ged(p,a) = p or ged(p ,a) = 1 according as p |a or p f a.) Hence, citing
Euclid’s lemma, we get p | b.

This theorem easily extends to products of more than two terms.

Corollary 1. If pisaprimeand p | aja; - - - a,, then p | a; forsome k, where 1 < k < n.

Proof. We proceed by induction on #, the number of factors. When n = 1, the stated
conclusion obviously holds; whereas when n = 2, the result is the content of Theorem

3.1. Suppose, as the induction hypothesis, that n > 2 and that whenever p divides a
nroduct of leeethan » factare it divid tlaact one ofthe factare Naow lat n | 7. 7+
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From Theorem 3.1, either p |a, or p|aja; - - - a,—1. If p|a,, then we are through. As
regards the case where p|ajaz - - - ay—1, the induction hypothesis ensures that p | a;
for some choice of k, with 1 < k < n — 1. In any event, p divides one of the integers
a,ay,...,a,.

Corollary 2. If p, q1, q2, ..., g, are all primes and p [qi1q> - - - gn, then p = g, for
some k, where 1 <k < n.

Proof. By virtue of Corollary 1, we know that p | g; for some k, with 1 < k < n. Being
a prime, gy is not divisible by any positive integer other than 1 or g itself. Because
p > 1, we are forced to conclude that p = g;.

With this preparation out of the way, we arrive at one of the cornerstones of
~rrse Adavralaceiinmsnt tlan T dnsan st ]l Mg nan ~AF A bl nbs am At d Anenliae
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this theorem asserts that every integer greater than 1 can be factored into primes
in essentially one way; the linguistic ambiguity essentially means that 2 -3 -2 is
not considered as being a different factorization of 12 from 2 - 2 - 3. We state this
precisely in Theorem 3.2.
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heorem 3.2 Fundamental Theorem of Arithmetic. Every positive integer n > 1
can be expressed as a product of primes; this representation is unique, apart from the
order in which the factors occur.

Proof. Either n is a prime or it is composite; in the former case, there is nothing
more to prove. If n is composite, then there exists an integer d satisfying d | n and
1 <d < n. Among all such integers d, choose p; to be the smallest (this is possible
by the Well-Ordering Principle). Then p; must be a prime number. Otherwise it too
would have a divisor ¢ with 1 < g < py; but then g | p; and p; | n imply that g |n,
which contradicts the choice of p; as the smallest positive divisor, not equal to 1, of n.

We therefore may writen = pjn;, where p; isprimeand 1 < n; < n.Ifn; happens
to be a prime, then we have our representation. In the contrary case, the argument is
repeated to produce a second prime number p; such that n; = p,n,; that is,

n = p|pafi 1 <np <n

If n, is a prime, then it is not necessary to go further. Otherwise, write n, = p3ns3, with
p3 a prime:

n = p1p2p3n3 1l <n3 <n;
The decreasing sequence
n>n;>ny>--->1

cannot continue indefinitely, so that after a finite number of steps 7, _; is a prime, call
it, px. This leads to the prime factorization

n=pip2-- Pk

To establish the second part of the proof—the uniqueness of the prime factoriza-
tion—Ilet us suppose that the integer n can be represented as a product of primes in two
ways; say,

nR=pip2-Pr=4q192" " 4s r=s

where the p; and g; are all primes, written in increasing magnitude so that

PL=p2=---=pr N=q=-=gs
Because p1 [ q192 - - - g5, Corollary 2 of Theorem 3.1 tells us that p; = g, for some k;
but then p; > g;. Similar reasoning gives ¢; > p;, whence p; = ¢;. We may cancel
this common factor and obtain

p2P3 - Pr=4q293 " qs
Now repeat the process to get p, = ¢, and, in turn,

P3pPa---Pr=43qs - gs

Continue in this fashion. If the inequality r < s were to hold, we would eventually
arrive at

1= qr+19r+2 " 4gs

which is absurd, because each g; > 1. Hence, r = s and
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Of course, several of the primes that appear in the factorization of a given positive
integer may be repeated, as is the case with 360 = 2 2 2-3.3.5. By collecting

like primes and replacing them by a single factor, we can rephrase Theorem 3.2 as
a corollary.

Corollary. Any positive integer n > 1 can be written uniquely in a canonical form

J— kl kZ k;
n = pl p2 PR pr
where, fori = 1,2, ..., r, each k; is a positive integer and each p; is a prime, with
1< p2 <:--<pDr.

To illustrate, the canonical form of the integer 360 is 360 = 23 - 3% - 5. As further

examples we cite
4725=13%.52.7 and  17460=2°.3%.5.7°

Theorem 3.2 should not be taken lightly because number systems do exist in
which the factorization into “primes” is not unique. Perhaps the most elemental
example is the set E of all positive even integers. Let us agree to call an even integer
an e-prime if it is not the product of two other even integers. Thus, 2, 6, 10, 14, . ..
all are e-primes, whereas 4, 8, 12, 16, ... are not. It is not difficult to see that the
integer 60 can be factored into e-primes in two distinct ways; namely,

N D) 2N __&£.1N
VU — &L " JU — U 1V

Part of the difficulty arises from the fact that Theorem 3.1 is lacking in the set E;
thatis, 6]2-30,but6 J 2and 6 f 30.

This is an opportune moment to insert a famous result of Pythagoras.
Mathematics as a science began with Pythagoras (569-500 B.C.), and much of the

content of Euclid’s Elements is due to Pythagoras and his School. The Pythagoreans
Aacnxrn #lan nandié Foe lanlon v 4lena £, ~ Alacatfe; smrrmmalanian 22t ~AAd A A Axraze  smsmiivana
aeserve the credit 10r peing tne first 0 Classily numbers into 0ad ana ¢veil, prime

and composite.

Theorem 3.3 Pythagoras. The number /2 is irrational.

Proof. Suppose, to the contrary, that /2 is a rational number, say, V2=a /b, where a
and b are both integers with ged(a , b) = 1. Squaring, we get a> = 2b?, so that b | a°.
If b > 1, then the Fundamental Theorem of Arithmetic guarantees the existence of a
prime p such that p | b. It follows that p | a? and, by Theorem 3.1, that p | a; hence,
gcd(a , b) > p. We therefore arrive at a contradiction, unless » = 1. But if this happens,
then a? = 2, which is impossible (we assume that the reader is willing to grant that
no integer can be multiplied by itself to give 2). Our supposition that 4/2 is a rational
number is untenable, and so +/2 must be irrational.

There is an interesting variation on the proof of Theorem 3.3. If /2 = a/b with
ged(a, b) = 1, there must exist integers r and s satisfying ar + bs = 1. As a result,

V2 = N2(ar + bs) = (vV2a)r + (V2b)s = 2br + as

This representation of +/2 leads us to conclude that +/2 is an integer, an obvious
impossibility.
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It has been conjectured that there are infinitely many primes of the form n? — 2. Exhibit
five such primes.

Give an example to show that the following conjecture is not true: Every positive integer
can be written in the form p + a2, where p is either a prime or 1, and a > 0.

Prove each of the assertions beIOW'
rime nf ﬂ'\p farm n _.L 1

Any prime of the form 3n + 11

} Each in nteger of the form 37n + 2 has

¢) The only prime of the form n3 — 1is 7.
[Hint: Write n> — 1 as (n — D2 +n+1).]

(d) The only prime p for which 3p + 1 is a perfect square is p = 5.

(e) The only prime of the form n? — 4 is 5.

. If p > 5 is a prime number, show that p? + 2 is composite.

Frre o0 e lone cmm Ll o £ £ 1 LT 1 £
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. (a) Given that p is a prime and p | a”, prove that p” | a”.

(b) If gcd(a, b) = p, a prime, what are the possible values of gcd(a?, b?), gcd(a?, b)
and ged(a® , b?)?

. Establish each of the following statements:

(a) Every integer of the form n* + 4, with n > 1, is composite.
[Hint: Write n* + 4 as a product of two quadratic factors.]
(b) If n > 4 is composite, then n divides (n — 1)!.
(c) Any integer of the form 8" + 1, where n > 1, is composite.
[Hint: 2" + 1123 +1.]
(d) Each integer n > 11 can be written as the sum of two composite numbers.
[Hint: If nis even, say n = 2k,thenn — 6 = 2(k — 3); for n odd, consider the integer
n—9.]

. Find all prime numbers that divide 50!.
. If p > g > 5 and p and g are both primes, prove that 24 | p? — g°.

(a) Anunanswered question is whether there are infinitely many primes that are 1 more
than a power of 2, such as 5 = 22 + 1. Find two more of these primes.

(b) A more general conjecture is that there exist infinitely many primes of the form
n? + 1; for example, 257 = 162 + 1. Exhibit five more primes of this type.

If p # 5 is an odd prime, prove that either p?> — 1 or p? + 1 is divisible by 10.

Another unproven conjecture is that there are an infinitude of primes that are 1 less than

a power of 2, such as 3 = 22 — 1.

(a) Find four more of these nrimes
(a) rir our more of these primes.
(LY TF 1 ~k 1 ic niirme chow that I 3g an ndd inteser aveoent whan - — 9
\0) U p==2 1 18 prime, Snow tnat x 18 ain 0aa integer, eXcept wien K = 2.

[Hint: 314" — 1 foralln > 1.]
Find the prime factorization of the integers 1234, 10140, and 36000.
If n > 1is an integer not of the form 6k + 3, prove that n? 4 2" is composite.
[Hint: Show that either 2 or 3 divides n? + 2".]
It has been conjectured that every even integer can be written as the difference of two

consecutive primes in infinitely many ways. For example,
> 6=29-23=137-131=599 -593 =1019 -1013 = ---
Express the integer 10 as the difference of two consecutive primes in 15 ways.

Prove that a positive integer a > 1 is a square if and only if in the canonical form of a
all the exponents of the primes are even integers.
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1€ square o any integer greater

fu—y
=)
n-»

. An integer is said to be square-free if it is not divisible by th
than 1. Prove the following:

(a) An integer n > 1 is square-free if and only if n can be factored into a product of
distinct primes.

(b) Every integer n > 1 is the product of a square-free integer and a perfect square.
(Hint: If n = p]f‘ p§2 ... p% is the canonical factorization of n, then write k; =
2q; + r; where r; = 0 or 1 according as k; is even or odd.]

17. Verify that any integer n can be expressed as n = 2*m, where k > 0 and m is an odd
integer.

18. Numerical evidence makes it plausible that there are infinitely many primes p such that
P + 50 1s also prime. List 15 of these primes.

19. A positive integer n is called square-full, or powerful, if p? | n for every prime factor p

of n (there are 992 square-full numbers less than 250,000). If n is square-full, show that

it can be written in the form n = a?b3, with a and b positive integers.

3.2 THE SIEVE OF ERATOSTHENES

Given a particular integer, how can we determine whether it is prime or composite
and, in the latter case, how can we actually find a nontrivial divisor? The most
obvious approach consists of successively dividing the integer in question by each
of the numbers preceding it; if none of them (except 1) serves as a divisor, then the
integer must be prime. Although this method is very simple to describe, it cannot
be regarded as useful in practice. For even if one is undaunted by large calculations,
the amount of time and work involved may be prohibitive.

There is a property of composite numbers that allows us to reduce materially
the necessary computations—but still the process remains cumbersome. If an in-
teger a>lis composite then it may be written as a = bc, where 1 < b < a and
1 <c<da. Abbuullllg l[ldl [} \ c, Wé gCl [}’2 \ UL =a, d.llLl SO U \ \/Lt Decause
b > 1, Theorem 3.2 ensures that b has at least one prime factor p. Then p < b < /a;
furthermore, because p | b and b | a, it follows that p | a. The point is simply this: A
composite number a will always possess a prime divisor p satisfying p < /a.

In testing the primality of a specific integer a > 1, it therefore suffices to divide
a by those primes not exceeding /a (presuming, of course, the availability of a
list of primes up to +/a). This may be clarified by considering the integer a = 509.
Inasmuch as 22 < +/509 < 23, we need only try out the primes that are not larger
than 22 as possible divisors, namely, the primes 2, 3, 5,7, 11, 13, 17, 19. Dividing
509 by each of these, in turn, we find that none serves as a divisor of 509. The
conclusion is that 509 must be a prime number.

Example 3.1. The foregoing technique provides a practical means for determlnmg the
canopical form of an integer, say a = 2093. Because 45 < /2093 < 46, it is enough
- thn smstaanns D) 2 7 11 1?2 17 10 272 2720 21 27 A1 A7 ; tmial thana

WU CA ICP HIICS 2, 0, I, /4, 11, 10y 1/, 17, &40, &7, 01, O/, F1, FT. D_)’ uildail, tnc

amine t ,
first of these to divide 2093 is 7, and 2093 = 7 - 299. As regards the integer 299, the
seven primes that are less than 18 (note that 17 < V299 < 18)are 2,3,5,7,11,13, 17.
The first prime divisor of 299 is 13 and, carrying out the required division, we obtain
299 = 13 - 23. But 23 is itself a prime, whence 2093 has exactly three prime factors,
7,13, and 23:

2093 =7

p—
(98]
o]
(O8]
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Another Greek mathematician whose work in number theor Yy remains blglllllbdlll
is Eratosthenes of Cyrene (276194 B.C.). Although posterity remembers him mainly
as the director of the world-famous library at Alexandria, Eratosthenes was gifted in
all branches of learning, if not of first rank in any; in his own day, he was nicknamed
“Beta” because, it was said, he stood at least second in every field. Perhaps the
most impressive feat of Eratosthenes was the accurate measurement of the earth’s
circumference by a simple annhm‘rmn of Euclidean geometry.

Wa have cpran + 3f an 1 Aivricilhla amy mrime o< /o
YVWE nave seen tnat il an 551 a>1i m not divisible uy any priime p = /4,

then a is of necessity a pnme. Eratosthenes used this fact as the basis of a clever
technique, called the Sieve of Eratosthenes, for finding all primes below a given
integer n. The scheme calls for writing down the integers from 2 to # in their natural
order and then systematically eliminating all the composite numbers by striking out
all multiples 2p, 3p,4p, 5p, ... of the primes p < /n. The integers that are left on
the list—those that do not fall through the “sieve”—are primes.

To see an example of how this works, suppose that we wish to find all primes
not exceeding 100. Consider the sequence of consecutive integers 2, 3, 4, ...,100.
Recognizing that 2 is a prime, we begin by crossing out all even integers from our
listing, except 2 itself. The first of the remaining integers is 3, which must be a
prime. We keep 3, but strike out all higher multiples of 3, so that 9, 15, 21, ... are
now removed (the even multiples of 3 having been removed in the previous step).
The smallest integer after 3 that has not yet been deleted is 5. It is not divisible by
either 2 or 3—otherwise it would have been crossed out—hence, it is also a prime.
All proper multiples of 5 being composite numbers, we next remove 10, 15, 20, ...
(some of these are, of course, already missing), while retaining 5 itself. The first
surviving integer 7 is a prime, for it is not divisible by 2, 3, or 5, the only primes
that precede it. After eliminating the proper multiples of 7, the largest prime less
than /100 = 10, all composite integers in the sequence 2, 3, 4, . ..,100 have fallen
through the sieve. The positive integers that remain, to wit, 2, 3, 5,7, 11, 13, 17, 19,
23,29,31,37,41,43,47,53,59,61,67,71,73,79, 83, 89, 97, are all of the primes
less than 100.

The following table represents the result of the completed sieve. The multiples
of 2 are crossed out by \; the multiples of 3 are crossed out by /; the multiples of 5
are crossed out by —; the multiples of 7 are crossed out by ~.

2 3 %, 5 X 7 3 g 1y

11 r 13 M 5 I\ 17 24 19 26

2¢ 2 23 X 25 2 2 2% 29 3¢
31 R B M O3y ¥ 37 X P 26

41 ¢ 43 M #H  d 47 K 4> S8
51 % 53 M 55 B¢ ¥ 3 59 6
61 1Y) 3 & 65 56 67 68 69 a4

71 Koo M B e TF KT 36

2 % 8 B¢ 8 8 % 3 89 o
4 R 93 4 95 9 97 A% 99 6

By this point, an obvious question must have occurred to the reader. Is there a
largest prime number, or do the primes go on forever? The answer is to be found
ina remarkably simple proof given by Euclid in Book IX of his Elements. Euclid’s

argument 1S univers ]v reocarded as a model of mathematical elecance. L.oosely
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speaking, it goes like this: Given any finite list of prime nu , One
find a prime not on the list; hence, the number of primes is infinite. The ac
appear below.

Theorem 3.4 Euclid. There is an infinite number of primes.

prnnf pur\hd’c nroof ic by contradiction Tet n. =2 ns =3 ny =5 n;, = 7, . be

Ci1G § Proe¢l 15 80y COINTraGIClon. .01 =2 =23 =2
VY J Pl s 2 s M3 s 4

the primes in ascending order, and suppose that there is a last prime, called p,. Now
consider the positive integer

P=pipy---pn+1

Because P > 1, we may put Theorem 3.2 to work once again and conclude that P
is divisible hv some nr1mf= p. Rut n:. n p. are the nn]v prime mlthrQ [s)

b} .
LAVISIVIC LY ST PRl VL Pl P2y -0 -y P /10 RAIC A (R38R EE L) |

that p must be equal to one of pi, ps,..., p,. Combining the d1V131b111ty relation
plpip2---pn With p| P, wearrive at p | P — pyp, - - - p, or, equivalently, p | 1. The
only positive divisor of the integer 1 is 1 itself and, because p > 1, a contradiction
arises. Thus, no finite list of primes is complete, whence the number of primes is
infinite.

For a prime p, define p* to be the product of all primes that are less than or equal
to p. Numbers of the form p* + 1 might be termed Euclidean numbers, because they
appear in Euclid’s scheme for proving the infinitude of primes. It is interesting to
note that in forming these integers, the first five, namely,

2#+1=2+1=3
#F+1=2-34+1=7

5 +1=2-3.5+1=231
*+1=2-3.5.7+1=211
11¥4+1=2-3.5-7-114+1=2311

are all prime numbers. However,

#

\O

SN0
©JUT

[u—
I
Ch

—Il_
17 +1=19.97.277
19% + 1 = 347 - 27953

12
10

are not prime. A question whose answer is not known is whether there are infinitely

manv nrimesg n»n 'Fnr which n# 1 1 1i¢ aleo nrime For that ma fpr are there infinitelv
lllml] tllllll\lo 1./ \AJ lll 11 1_/ 1 4 10 A1Lov tllllll\.l F RV S LILDI.I, di1QALiwi LIV Llllllllt\/l]

many composite p* + 17

At present, 19 primes of the form p* + 1 have been identified. These correspond
to the values p =2, 3,5,7,11,31,379, 1019, 1021, 2657, 3229, 4547, 4787, 11549,
13649, 18523, 23801, 24029, and 42209; the largest of these, a number consisting of
18241 digits, was discovered in 2000. The integer p* + 1 is composite for all other
p < 120000.
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Euclid’s theorem is too important for us to be content with a single proof. Here
is a variation in the reasoning: Form the infinite sequence of positive 1ntegers
ny = 2
ny,=mn;+1

ng=nny---ng_;+1

Because each n; > 1, each of these integers is divisible by a prime. But no two
n; can have the same prime divisor. To see this, let d = gcd(n, , n) and suppose
that i < k. Then d divides »n; and, hence, must divide nn, - - - ny_1. Because d | ny,
Theorem 2.2 (g) tells us that d |ny —nyny---nx_yord|1. The implication is that
d = 1, and so the integers nx(k = 1, 2, . ..) are pairwise relatively prime. The point
we wish to make is that there are as many distinct primes as there are integers ny,
namely, infinitely many of them.

Let p, denote the nth of the prime numbers in their natural order. Euclid’s proof
shows that the expression p; p; - - - p, + 1 is divisibie by at least one prime. If there
are several such prime divisors, then p,; cannot exceed the smallest of these so
that p,+1 < pip2--- pn + 1 forn > 1. Another way of saying the same thing is that

DPn < pP1p2- - Pn—1+1 n>?2

With a slight modification of Euclid’s reasoning, this inequality can be improved to
give
Pn<pip2---pp1—1  n=3
For instance, when n = 5, this tells us that
11=ps<2-3-5-7—-1=209
We can see that the estimate is rather extravagant. A sharper limitation on the size
of p, is given by Bonse’s inequality, which states that

n2<mm-~~Pn-1 n>5

4 n

This inequality yields p2 < 210, or ps < 14. A somewhat better size-estimate for
ps comes from the inequality

P < p2p3 - pn—2 n=3
Here, we obtain

Ps<ps<pp3—2=3.5-2=13

To approximate the size of p, from these formulas, it is necessary to know the
values of pi, p2, ..., pn—1. For a bound in which the preceding primes do not enter
the picture, we have the following theorem.

Theorem 3.5. If p, is the nth prime number, then p, < 22".
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Proof. Let us proceed by induction on n, the asserted inequality being clearly true
when n = 1. As the hypothesis of the induction, we assume that » > 1 and that the
result holds for all integers up to n. Then

Pn+1 S p1p2Pnt 1
<2.022...077" 4 = A2 442 g

Recalling the identity 1 +2 + 22 + ... 4+2""1 = 2" — 1, we obtain
Put1 <2771+ 1
However, 1 < 22"~ for all n; whence

pri <2271 4271
=2.221 =%

compieting the induction step, and the argument.

There is a corollary to Theorem 3.5 that is of interest.

Corollary. For n > 1, there are at least n + 1 primes less than 22",
Proof. From the theorem, we know that pi, pa, ..., pn41 are all less than 22",

We can do considerably better than is indicated by Theorem 3.5. In 1845, Joseph
Bertrand conjectured that the prime numbers are well-distributed in the sense that
between n > 2 and 2n there is at least one prime. He was unable to establish his con-
jecture, but verified it for all n < 3,000,000. (One way of achieving this is to consider
a sequence of primes 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 5003, 9973,
19937, 39869, 79699, 159389, ... each of which is less than twice the preceding.)
Because it takes some real effort to substantiate this famous conjecture, let us content
ourselves with saying that the first proof was carried out by the Russian mathemati-
cian P. L. Tchebycheff in 1852. Granting the result, it is not difficult to show that

pn < 2" n>?2
and as a direct consequence, p,.1 < 2p, forn > 2. In particular,
11=p5<2-p4=14

To see that p, < 2", we argue by induction on #. Clearly, p, = 3 < 22, so that
the inequality is true here. Now assume that the inequality holds for an integer #,
whence p, < 2". Invoking Bertrand’s conjecture, there exists a prime number p
satisfying 2" < p < 2"*!; thatis, p, < p. This immediately leads to the conclusion

Primes of special form have been of perennial interest. Among these, the re-
punit primes are outstanding in their simplicity. A repunit is an integer written (in
decimal notation) as a string of 1’s, such as 11, 111, or 1111. Each such integer must
have the form (10" — 1)/9. We use the symbol R, to denote the repunit consisting
of n consecutive 1’s. A peculiar feature of these numbers is the apparent scarcity
of primes among them. So far, only R», Ry9, R23, R317, R1031, R40081, and Rgeas3
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possible repunit primes R, for all n < 45000 are the seven numbers just indicated.
No conjecture has been made as to the existence of any others. For a repunit R, to
be prime, the subscript » must be a prime; that this is not a sufficient condition is

shown by
Rs = 11111 =41-271 R; = 1111111 = 239 - 4649
PROBLEMS 3.2
1. Determine whether the integer 701 is prime by testing all primes p < +/701 as possible

2
3

L

10.

11.

12.

divisors. Do the same for the integer 1009.

Emnvlovine the Sieve of Eratosthenes. obtain all the nrimes between 100 and 2
cmpioying the sieve of Cratostienes, oblain ail the primes wee Zl

Given that p f n for all primes p < .3/n, show that n > 1 is either a prime or th
of two primes.
[Hint: Assume to the contrary that n contains at least three prime factors.]
Establish the following facts:
(a) /p is irrational for any prime p.
(b) Ifa > 0 and JE is rational, then #/a must be an integer.
(c) Forn > 2, I/n is irrational.
[Hint: Use the fact that 2" > n.]
Show that any composite three-digit number must have a prime factor less than or equal

to 31.

. Fill in any missing details in this sketch of a proof of the infinitude of primes: Assume

that there are only finitely many primes, say pi, p2, ..., pn. Let A be the product of any
r of these primes and put B = p;p; - - - p,/A. Then each p, divides either A or B, but
not both. Because A + B > 1, A 4+ B has a prime divisor different from any of the py,
which is a contradiction.

Modify Euclid’s proof that there are infinitely many primes by assuming the existence
of a largest prime p and using the integer N = p! + 1 to arrive at a contradiction.

. Give another proof of the infinitude of primes by assuming that there are only finitely many

primes, say pi, P2, - - - » Pn, and using the following integer to arrive at a contradiction:

N =pp3---pn+p1p3---pnt---+pip2- Pn-i1

bR 7 thae tha n"ﬂn-—nmmt\“n‘-n

} flUVC lhal ir7i > Ly lllCll tnere exXists a PLILIC [J dall blylllg n < 1} < IL'
[Hint: If n! — 1 is not prime, then it has a prime divisor p; and p < n implies p | n!,
leading to a contradiction.]
(b) For n > 1, show that every prime divisor of n! 4 1 is an odd integer that is greater

than n.
Let qn be the smallest prime that is strictly greater than P, = pi1p2 - p, + 1.Ithas been
buujcumcu that the difference qn — \pl 2 pn) is always a p““T Ccnﬁ‘m this for the

first five values of n.
If p, denotes the nth prime number, put d,, = p,+1 — p,. An open question is whether
the equation d,, = d,+; has infinitely many solutions. Give five solutions.
Assuming that p, is the nth prime number, establish each of the following statements:
(@ p, >2n—1forn > 5.
(b) None of the integers P, = p1p2- - pn + 1 is a perfect square.

[Hint: Each P, is of the form 4k + 3 forn > 1.]
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1 1 1
P1 P2 Pn
is never an integer.
13. For the repunits R,,, verify the assertions below:
(@) If n|m,then R, | R,,.
[Hint: If m = kn, consider the identity

m 1 7N 1\ 7 (k——l)n. ' (k-—2)rz ' ' n o 1N
xT—1={x —Dix +x 4o+ X + 1)

(b)y Ifd| R, and d | R, thend | R4 p.
[Hint: Show that R, = R,10™ + R,,.]
(c) If ged(n, m) = 1, then ged(R,, , R,y) = 1.
14. Use the previous problem to obtain the prime factors of the repunit Rjo.

3.3 THE GOLDBACH CONJECTURE

an

Although there is an infinitude of primes, their distribution within the positive inte-
gers is most mystifying. Repeatedly in their distribution we find hints or, as it were,
shadows of a pattern; yet an actual pattern amenable to precise description remains
elusive. The difference between consecutive primes can be small, as with the pairs
11 and 13, 17 and 19, or for that matter 1000000000061 and 1000000000063. At

PR, PRER S | e al P,
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are totally devoid of any primes.

It is an unanswered question whether there are infinitely many pairs of twin
primes; that is, pairs of successive odd integers p and p + 2 that are both primes.
Numerical evidence leads us to suspect an affirmative conclusion. Electronic com-
puters have discovered 152892 pairs of twin primes less than 30000000 and 20 pairs

between 1012 and 1012-1- 10000, which hints at their grow _no q(‘m‘mtv as the nnqmvp
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inm guuuut; LVlal'iy eX&l‘“"p les of immense twins ar
ate, each 51090 digits long,
33218925 - 2! + 1

integers increase
largest twins to d

were discovered in 2002.

Consecutive primes cannot only be close together, but also can be far apart; that
is, arbitrarily large gaps can occur between consecutive primes. Stated precisely:
Given any positive integer n, there exist n consecutive integers, all of which are
composite. To prove this, we simply need to consider the integers

m+ DI +2,+ DI +3,..., 0+ D+ ¢+ 1)

where (n+1)! =m+1)-n---3.2-.1. Clearly, there are n integers listed and
they are consecutive. What is important is that each integer is composite. Indeed,
(n + 1)! + 2 is divisible by 2, (n + 1)! 4 3 is divisible by 3, and so on.

Fnr ingtanca if a cannancra nf fanr cancamsmitive ~anmnngitae intagarg 1Q
4 Ul 11dLlalivie, 11 a DL«\iubll\a\z Ul 1UUl LvuUlIdvLvuu v UUIIIFUDIL\/ 11“.\.«5\./10 1o

then the previous argument produces 122, 123, 124, and 125:
51+42=122=2-61
51+3=123=3-41
5'4+4=124=4.31
S'14+5=125=5.25
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Of course, we can find other sets o
27 or 32, 33, 34, 35.

As this example suggests, our procedure for constructing gaps between two con-
secutive primes gives a gross overestimate of where they occur among the integers.
The first occurrences of prime gaps of specific lengths, where all the intervening inte-

gers are composite, have been the subject of computer searches. For instance, there is
gap of fle n oth 778 (thatis, D1 — pp = T178) fn]lnwma the nrime 4284228392535
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ength 1132, with a string
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ween two smaller pi’ii""eS.
culated gap between consecutive prime numbers has le
1131 composites immediately after the prime
1693182318746371

Interestingly, computer researchers have not identified gaps of every possible width
up to 1132. The smallest missing gap size is 796. The conjecture is that there is a
prime gap (a string of 2k — 1 consecutive composites between two primes) for every
even integer 2k.

This brings us to another unsolved problem concerning the primes, the Gold-
bach conjecture. In a letter to Leonhard Euler in the year 1742, Christian Goldbach
hazarded the guess that every even integer is the sum of two numbers that are either
primes or 1. A somewhat more general formulation is that every even integer greater
than 4 can be written as a sum of two odd prime numbers. This is easy to confirm
for the first few even integers:

=1+1
4=2+4+2=1+3
6=3+3=1+5

Rue— 1L 8 =117
O — J 7 J )

= 1 7

10=3+7=5+5

12=54+7=1+11
14=34+11=74+7=1+13

16 =34+13=5411
1I8=54+13=7T+11=1+417
20=3+17=74+13=14+19
22=3+19=5+17=11+11
24=5419=T7+17=11+13=1+423
26=34+23=7+19=13+413
28=5423=11+17
30=74+23=11419=134+17=14+29
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Although it seems that Euler never tried to prove the result, upon writing to Goldbach
at a later date, Euler countered with a conjecture of his own: Any even integer (> 6)
of the form 4n + 2 is a sum of two numbers each being either a prime of the form
4n+1lorl.

The numerical data suggesting the truth of Goldbach’s conjecture are over-
fo rs less than 4 - 1014,
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or all even inteoe
or €

YUl vy

whelming. It has been verified by computers
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As the mtegers become 1arger, the number of different ways in which 2n can be
expressed as the sum of two primes increases. For example, there are 219400 such
representations for the even integer 100000000. Although this supports the feeling
that Goldbach was correct in his conjecture, it is far from a mathematical proof,
and all attempts to obtain a proof have been completely unsuccessful. One of the

most famous number theorists of the last century, G. H. Hardy, in his address to the
Mathematical Soci f(“nnenhaoen in 1921, stated that the Goldbach ¢ Qn ecture

._n
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It is currently known that every even integer is the sum of six or fewer primes.

We remark that if the conjecture of Goldbach is true, then each odd number
larger than 7 must be the sum of three odd primes. To see this, take n to be an odd
integer greater than 7, so that n — 3 is even and greater than 4; if n — 3 could be
expressed as the sum of two odd primes, then n would be the sum of three.

The first real progress on the conjecture in nearly 200 years was made by Hardy
and Littlewood in 1922. On the basis of a certain unproved hypothesis, the so-
called generalized Riemann hypothesis, they showed that every sufficiently large
odd number is the sum of three odd primes. In 1937, the Russian mathematician
I. M. Vinogradov was able to remove the dependence on the generalized Riemann
hypothesis, thereby giving an unconditional proof of this result; that is to say, he
established that all odd integers greater than some effectively computable n( can be
written as the sum of three odd primes.
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n=p +p+p;3 (n odd, n sufficiently large)

Vinogradov was unable to decide how large ny should be, but Borozdkin (1956)
proved that ng < 3%”. In 2002, the bound on no was reduced to 1036, Tt follows
immediately that every even integer from some point on is the sum of either two
or four primes. Thus, it is enough to answer the question for every odd integer n
in the range 9 < n < ng, which, for a given integer, becomes a matter of tedious
computation (unfortunately, ng is so large that this exceeds the capabilities of the
most modern electronic computers).

Because of the strong evidence in favor of the famous Goldbach conjecture, we
readily become convinced that it is true. Nevertheless, it might be false. Vinogradov
showed that if A(x) is the number of even integers n < x that are not the sum of two
primes, then

lim A(x)/x =0
X—>00

This allows us to say that “almost all” even integers satisfy the conjecture. As Edmund
T andair g antlyy it 16 C“Tha 2ATAL A~ -~ falon fo + NOL ~AF a1l Avan
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integers; this at most 0% does not exciude, of course, the possibility that there are
infinitely many exceptions.”

Having digressed somewhat, let us observe that according to the Division Al-

gorithm, every positive integer can be written uniquely in one of the forms

4n 4n + 1 4n +2 4n +3
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for some suitable n > 0. Clearly, the integers 47 and 4n + 2 = 2(2n 4 1) are both
even. Thus, all odd integers fall into two progressions: one containing integers of
the form 4n 4 1, and the other containing integers of the form 4n 4 3.

The question arises as to how these two types of primes are distributed within the
set of positive integers. Let us display the first few odd prime numbers in consecutive
order, putting the 4n + 3 primes in the top row and the 4n + 1 primes under them:

3 7 11 19 23 31 43 47 59 67 71 79 83
5 13 17 29 37 41 53 61 73 89

At this point, one might have the general impression that primes of the form
4n + 3 are more abundant than are those of the form 4n + 1. To obtain more precise
information, we require the help of the function m, ,(x), which counts the number
of primes of the form p = an + b not exceeding x. Our small table, for instance,
indicates that 74 ;(89) = 10 and 74 3(89) = 13.

In a famous letter written in 1853, Tchebycheff remarked that 74 1 (x) < 74 3(x)
for small values of x. He also implied that he had a proof that the inequality always
held. In 1914, J. E. Littlewood showed that the inequality fails infinitely often, but
his method gave no indication of the value of x for which this first happens. It turned
out to be quite difficult to find. Not until 1957 did a computer search reveal that
x = 26861 is the smallest prime for which 74 ;(x) > 74 3(x); here, 74 1(x) = 1473
and 4 3(x) = 1472. This is an isolated situation, because the next prime at which a
reversal occurs is x = 616,841. Remarkably, 74 1(x) > w4 3(x) for the 410 million
successive integers x lying between 18540000000 and 18950000000.

The behavior of primes of the form 3n £ 1 provided more of a computa-
tional challenge: the inequality 3 ;(x) < m32(x) holds for all x until one reaches
x = 608981813029.

This furnishes a pleasant opportunity for a repeat performance of Euclid’s
method for proving the existence of an infinitude of primes. A slight modifica-
tion of his argument reveals that there is an infinite number of primes of the form
4n 4 3. We approach the proof through a simple lemma.

Lemma. The product of two or more integers of the form 4n + 1 is of the same form.

Proof. 1tis sufficient to consider the product of just two integers. Let us take k = 4n + 1
and k" = 4m + 1. Multiplying these together, we obtain

kk' = (4n + 1)(4m + 1)
=16nm+4n+4m+ 1 =4@nm+n +m) + 1

which is of the desired form.
This paves the way for Theorem 3.6.

Theorem 3.6. There are an infinite number of primes of the form 4n + 3.
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many primes of the form 4n + 3; call them qy, g2, - . . , gs. Consider the positive integer

N=4q:1q2---qs —1=4q1g2---gs — 1) +3

andlet N = ryr, - - - r; be its prime factorization. Because N is an odd integer, we have
rr # 2 for all k, so that each 7y is either of the form 4n + 1 or 4n + 3. By the lemma,
the product of any number of primes of the form 4n + 1 is again an integer of this type.
For N to take the form 4n + 3, as it clearly does, N must contain at least one prime
factor r; of the form 4n + 3. But r; cannot be found among the listing g1, g2, - - -, g5,
for this would lead to the contradiction that r; | 1. The only possible conclusion is that
there are infinitely many primes of the form 4n + 3.

Having just seen that there are infinitely many primes of the form 4n + 3, we
might reasonably ask: Is the number of primes of the form 4n + 1 also infinite? This

anqeweariq likeawice in the affirmative hit a demonctration mnet await the doavelanment
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of the necessary mathematical machinery. Both these results are special cases of a
remarkable theorem by P. G. L. Dirichlet on primes in arithmetic progressions,
established in 1837. The proof is much too difficult for inclusion here, so that we
must content ourselves with the mere statement.

Theorem 3.7 Dirichlet. If a and b are relatively prime positive integers, then the

a,a+b,a+2b,a+3b,...

contains infinitely many primes.

Dirichlet’s theorem tells us, for instance, that there are infinitely many prime
numbers ending in 999, such as 1999, 100999, 1000999, . .. for these appear in the
arithmetic progression determined by 1000n 4 999, where gcd(1000, 999) = 1.

There is no arithmetic progression a, a + b, a + 2b, . .. that consists solely of
prime numbers. To see this, suppose that a + nb = p, where p is a prime. If we put
ny =n-+kpfork =1,2,3,... then the nith term in the progression is

a+nmb=a+ n+kp)b=(a+nb)+kpb=p-+kpb

Because each term on the right-hand side is divisible by p, so is a + ngb. In other
words, the progression must contain infinitely many composite numbers.

It is an old, but still unsolved question of whether there exist arbitrarily long
but finite arithmetic progressions consisting only of prime numbers (not necessarily
consecutive primes). The longest progression found to date is composed of the 22
primes:

1410337850553 + 4609098694200 0<n<21
The prime factorization of the common difference between the terms is
2°.3.5%.7-11-13-17-19-23.1033

which is divisible by 9699690, the product of the primes less than 22. This takes
place according to Theorem 3.8.
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the arithmetic progression
p.p+d,p+2,....p+(n—-1d

are prime numbers, then the common difference d is divisible by every prime g < n.

p.p+d,p+2d,....p+(q—1d (1)

will leave different remainders when divided by g. Otherwise there exist integers j
and k, with 0 < j < k < g — 1, such that the numbers p + jd and p + kd yield the
same remainder upon division by g. Then g divides their difference (k — j)d. But
gcd(g , d) = 1, and so Euclid’s lemma leads to g | k — j, which is nonsense in light of
the inequality k — j < g — 1.

Because the g different remainders produced from Eq. (1) are drawn from the
q integers 0,1,...,g — 1, one of these remainders must be zero. This means that
g | p + td for some ¢ satisfying 0 <t < g — 1. Because of the inequality g < n <
p < p+td, we are forced to conclude that p 4 ¢td is composite. (If p were less
than n, one of the terms of the progression would be p 4+ pd = p(1 + d).) With this

contradiction, the nrnnf that q | d is complete
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It has been conjectured that there exist arithmetic progressions of finite (but
otherwise arbitrary) length, composed of consecutive prime numbers. Examples of
such progressions consisting of three and four primes, respectively, are 47, 53, 59,
and 251, 257, 263, 269.

Most recently aseguence of 10 con
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term exceeds its predecessor by just 210; the smallest of these primes has 93 digits.
Finding an arithmetic progression consisting of 11 consecutive primes is likely to
be out of reach for some time. Absent the restriction that the primes involved be
consecutive, strings of 11-term arithmetic progressions are easily located. One such
is

110437 + 13860n 0<n<10

In the interest of completeness, we might mention another famous problem that,
so far, has resisted the most determined attack. For centuries, mathematicians have
sought a simple formula that would yield every prime number or, failing this, a
formula that would produce nothing but primes. At first glance, the request seems
modest enough: Find a function f(n) whose domain is, say, the nonnegative integers
and whose range is some infinite subset of the set of all primes. It was widely believed
years ago that the quadratic polynomial

f(n)=n*+n+41

assumed only prime values. This was shown to be false by Euler, in 1772. As
evidenced by the following table, the claim is a correct one forn =0, 1,2, ..., 39.
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n f(n) n fn) n fn)

0 41 14 251 28 853
1 43 15 281 29 911
2 47 16 313 30 971
3 53 17 347 31 1033
4 61 18 383 32 1097
5 71 19 421 33 1163
6 &3 20 461 34 1231
7 97 21 503 35 1301
8 113 22 547 36 1373
9 131 23 593 37 1447
10 151 24 641 38 1523
11 173 25 691 39 1601
12 197 26 743
13 223 27 797

However, this provocative conjecture is shattered in the cases n = 40 and n = 41,
where there is a factor of 41:

f(40) = 40 - 41 + 41 = 412
and
f(41) =41-42+41 =41-43

The next value f(42) = 1847 turns out to be prime once again. In fact, for the
first 100 integer values of n, the so-called Euler polynomial represents 86 primes
AlLllUUgIl ll starts Ull ‘v‘c‘:r“y‘ ‘v‘v‘eu 1[1 I.IlC pl UUULUUII Ul leIIle, UlCIC are ULllCI quUI dllbb
such as

g(n) = n*+n+279%1

that begin to best f(n) as the values of n become larger. For example, g(n) is prime
for 286129 values of 0 < n < 10%, whereas its famous rival yields 261081 primes
in this range.

It has been shown that no po]ynomra] of he form 24n —!— g, with g a prime,

n A~ ttar than tha Fi
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Indeed, until fairly recently no other quadratlc polyn0m1al of any kind was known
to produce more than 40 successive prime values. The polynomial

h(n) = 103n® — 3945n + 34381

found in 1988, produces 43 distinct prime values forn =0, 1,2, ..., ., 42. The current

record holder in this regard

k(n) = 36n* — 8101 + 2753

does slightly better by giving a string of 45 prime values.
The failure of the previous functions to be prime-producing is no accident,
for it is easy to prove that there is no nonconstant polynomial f(n) with integral
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coefficients that takes on just prime values for integral n. We assume that such a
polynomial f(n) actually does exist and argue until a contradiction is reached. Let

f) =an* +a_n* '+ fan® +an+ap

where all the coefficients ag, a, . . ., a; are integers, and a; # 0. For a fixed value of
(ng), p = f(np)is a prime number. Now, for any integer 7, we consider the following
expression:

f(no +tp) = ar(no + tp)* + - - - + ai(no + tp) + ao
= (axnf + -+ -+ aing + ap) + pQ(t)
= f(no) + pQ()
=p+ p0(t) = p(1+ Q1))

where (J(¢) is a polynomial in ¢ having integral coefficients. Our reasoning shows
that p | f(no + tp); hence, from our own assumption that f(rn) takes on only prime
values, f(no+ tp) = p for any integer ¢. Because a polynomial of degree k can-
not assume the same value more than k times, we have obtained the required
contradiction.

Recent years have seen a measure of success in the search for prime-producing
functions. W. H. Mills nroved (1947) that there exists a nnolﬁvp raal niimber » enuch
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that the expression f(n) = [r>"] is prime for n = 1, 2, 3, ... (the brackets indicate
the greatest integer function). Needless to say, this is strlctly an existence theorem
and nothing is known about the actual value of r. Mills’s function does not produce
all the primes.

PROBLEMS 3.3
1. Verify that the integers 1949 and 1951 are twin primes.
2. (a) If 1 is added to a product of twin primes, prove that a perfect square is always
obtained.
(b) Show that the sum of twin primes p and p + 2 is divisible by 12, provided that p > 3.

3. Find all pairs of primes p and ¢ satisfying p — g = 3.

4. Sylvester (1896) rephrased the Goldbach conjecture: Every even integer 2n greater than
4 is the sum of two primes, one larger than n/2 and the other less than 3n/2. Verify this
version of the conjecture for all even integers between 6 and 76.

5. In 1752, Goldbach submitted the following conjecture to Euler: Every odd integer can
be written in the form p + 2a?, where p is either a prime or 1 and a > 0. Show that the
integer 5777 refutes this conjecture.

6. Prove that the Goldbach conjecture that every even integer greater than 2 is the sum of
two primes is equivalent to the statement that every integer greater than 5 is the sum of
three primes.

[Hint: If2n —2 = p; + pa,then2n = p1+ p,+2and2n+ 1 = p; + pr + 3.]

7. A conjecture of Lagrange (1775) asserts that every odd integer greater than 5 can be
written as a sum p; + 2p,, where p;, p, are both primes. Confirm this for all odd
integers through 75.

8. Given a positive integer n, it can be shown that there exists an even integer a that is
representable as the sum of two odd primes in » different ways. Confirm that the integers
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10.

11.

12.

14.

15.

16.

17.

18.

19.

20.
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. (a) Forn > 3, show that the integers n, n + 2, n + 4 cannot all be prime.

(b) Three integers p, p + 2, p + 6, which are all prime, are called a prime-triplet. Find
five sets of prime-triplets.
Establish that the sequence
m+DI=2,m+D=-3,...,mn+D!'—m+1)
produces n consecutive composite integers for n > 2.
Find the smallest positive integer n for which the function f(n) = n? +n + 17 is com-
posite. Do the same for the functions g(n) = n? 4 21n + 1 and h(n) = 3n? + 3n + 23.
Let p, denote the nth prime number. For n > 3, prove that pi +3 < PnDn+1Pn+2-
[Hint: Note that p2 , < 4pZ., < 8pni1Pns2-]

. Apply the same method of proof as in Theorem 3.6 to show that there are infinitely many

primes of the form 6n + 5.

Find a prime divisor of the integer N = 4(3 - 7 - 11) — 1 of the form 4n 4 3. Do the same
forN=43-7-11-15) - 1.

Another unanswered question is whether there exist an infinite number of sets of five
consecutive odd integers of which four are primes. Find five such sets of integers.

Let the sequence of primes, with 1 adjoined, be denoted by pp =1, p1 =2, p» =3,
p3 =5,....Foreachn > 1, it is known that there exists a suitable choice of coefficients
€ = =1 such that

2n—2 2n—1
P2 = Poan—1 + Z €k Pk Pon+1 = 2pw + Z €k Pk
k=0 k=0

To illustrate:

and
17=14+2-3-54+7-11+4+2-13

Determine similar representations for the primes 23, 29, 31, and 37.

In 1848, de Polignac claimed that every odd integer is the sum of a prime and a power of
2. For example, 55 = 47 + 23 = 23 4 2°. Show that the integers 509 and 877 discredit
this claim.

(a) If pis a prime and p } b, prove that in the arithmetic progression

a,a+b,a+2b,a+30b,...

every pth term is divisible by p.
[Hint: Because gcd(p, b) = 1, there exist integers r and s satisfying pr + bs = 1.
Putn, =kp —asfork =1, 2,... and show that p | (@ 4+ n;b).]
(b) From part (a), conclude that if b is an odd integer, then every other term in the
indicated progression is even.
In 1950, it was proved that any integer n > 9 can be written as a sum of distinct odd
primes. Express the integers 25, 69, 81, and 125 in this fashion.
If p and p? + 8 are both prime numbers, prove that p* + 4 is also prime.
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any integer k > 0, establish that the arithmetic progression
a+b,a+2b,a+3b,...

where ged(a, b) = 1, contains k consecutive terms that are composite.
[Hint: Put n = (a + b)(a + 2b) - - - (a + kb) and consider the k terms a 4 (n + 1)b,
a+n+2b,...,a+m+k)b.]

(b) Find five consecutive composite terms in the arithmetic progression

Z 11 1£ 1 N 21 L
0, 11,10, 21, 20, 31, 30, ...

Show that 13 is the largest prime that can divide two successive integers of the form

n? 4 3.

(a) The arithmetic mean of the twin primes 5 and 7 is the triangular number 6. Are there
any other twin primes with a triangular mean?

(b) The arithmetic mean of the twin primes 3 and 5 is the perfect square 4. Are there any
other twin primes with a square mean?

Determine all twin primes p and ¢ = p + 2 for which pg — 2 is also prime.

Let p, denote the nth prime. For n > 3, show that

Pn<pPr+p2+---+pa

[Hint: Use induction and the Bertrand conjecture.]

Verify the following:

(a) Therc exist infinitely many prime
[Hint: Apply Dirichiet’s theorem.]

(b) There exist infinitely many primes that do not belong to any pair of twin primes.
[Hint: Consider the arithmetic progression 21k +5fork =1,2,....]

(c) There exists a prime ending in as many consecutive 1’s as desired.
[Hint: To obtain a prime ending in n consecutive 1’s, consider the arithmetic pro-
gression 10"k + R, fork =1,2,....]

(d) There exist infinitely many pr1mes that contain but do not end in the block of digits
123456789.
[Hint: Consider the arithmetic progression 101k + 1234567891 fork = 1,2, ....]

Prove that for every n > 2 there exists a prime p with p < n < 2p.

[Hinz: In the case where n = 2k 4 1, then by the Bertrand conjecture there exists a prime

psuchthatk < p < 2k.]

(a) If n > 1, show that n! is never a perfect square.

(b) Find the values of » > 1 for which

PROL LI :“ ’)’) Sii PN ﬁ’)’) A2 27 1N121
€naing in 55, sucn as 253, 435, /153, 1U35, ....

.IU)

nt4+m+ DI+ (4 2)!

is a perfect square.
[Hint: Note that n! + (n + D! + (n + 2)! = nl(n + 2)°.]
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4

THE THEORY OF CONGRUENCES

Gauss once said “Mathematics is the queen of the sciences and number-theory
the queen of mathematics.” If this be true we may add that the Disquisitiones
is the Magna Charta of number-theory.

M. CANTOR

4.1 CARL FRIEDRICH GAUSS

Another approach to divisibility questions is through the arithmetic of remainders,
or the theory of congruences as it is now commonly known. The concept, and
the notation that makes it such a powerful tool, was first introduced by the German
mathematician Carl Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae;
this monumental work, which appeared in 1801 when Gauss was 24 years old, laid
the foundations of modern number theory. Legend has it that a large part of the
Disquisitiones Arithmeticae had been submitted as amemoir to the French Academy
the previous year and had been rejected in a manner that, even if the work had been
as worthless as the referees believed, would have been inexcusable. (In an attempt
to lay this defamatory tale to rest, the officers of the Academy made an exhaustive
search of their permanent records in 1935 and concluded that the Disquisitiones was
never submitted, much less rejected.) “It is really astonishing,” said Kronecker, “to
think that a single man of such young years was able to bring to light such a wealth
of results, and above all to present such a profound and well-organized treatment of
an entirely new discipline.”

61
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Carl Friedrich G
(1777-1855)

(Dover Publications, Inc.)

Gauss was one of those remarkable infant prodigies whose natural aptitude for
mathematics soon becomes apparent. As a child of age three, according to a well-
authenticated story, he corrected an error in his father’s payroll calculations. His

arithmetical powers so overwhelmed his schoolmasters that, by the time Gauss was
T veare 1A thay adm~itted thot tha ag nt L. Ty e tlhacy Ay 1,1 Al otlhn s
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said that in his first arithmetic class Gauss astonished his teacher by instantly solving
what was intended to be a “busy work” problem: Find the sum of all the numbers
from 1 to 100. The young Gauss later confessed to having recognized the pattern

1+100=101,2+4+99 =101,3498 =101, ...,50+ 51 = 101

Because there are 50 pairs of numbers, each of which adds up to 101, the sum of
all the numbers must be 50 - 101 = 5050. This technique prov1des another way of
deriving the formula
nin+1)

2

for the sum of the first n positive integers. One need only display the consecutive

ntegers 1 theni
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1 2 3 ---n—1 n
n n—1 n-—-2 ... 2 1

1+2+434-4n=

Addition of the vertical columns produces » terms, each of which is equal ton + 1;
when these terms are added, we get the value n(n + 1). Because the same sum is
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204+24+3+---+n).

Gauss went on to a succession of triumphs, each new discovery following on
the heels of a previous one. The problem of constructing regular polygons with only
“Euclidean tools,” that is to say, with ruler and compass alone, had long been laid
aside in the belief that the ancients had exhausted all the possible constructions. In
1796, Gauss showed that the 17-sided regular polygon is so constructible, the first
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rigorous proof of the Fundamental Theorem of Algebra, which had been stated first
by Girard in 1629 and then proved imperfectly by d’ Alembert (1746), and later by
Euler (1749). The theorem (it asserts that a polynomial equation of degree n has
exactly n complex roots) was always a favorite of Gauss’, and he gave, in all, four
distinct demonstratlons of it. The publication of Dzsqulsmones Arithmeticae in 1801
s more in the realm of theo-
retical astronomy than of mathematics. On the opening night of the 19th century,
January 1, 1801, the Italian astronomer Piazzi discovered the first of the so-called
minor planets (planetoids or asteroids), later called Ceres. But after the course of
this newly found body—uvisible only by telescope—passed the sun, neither Piazzi
nor any other astronomer could locate it again. Piazzi’s observations extended over
a period of 41 days, during which the orbit swept out an angle of only nine degrees.
From the scanty data available, Gauss was able to calculate the orbit of Ceres with
amazing accuracy, and the elusive planet was rediscovered at the end of the year in
almost exactly the position he had forecasted. This success brought Gauss worldwide
fame, and led to his appointment as director of Gottingen Observatory.

By the middle of the 19th century, mathematics had grown into an enormous
and unwieldy structure, divided into a large number of fields in which only the
specialist knew his way. Gauss was the last complete mathematician, and it is no
exaggeration to say that he was in some degree connected with nearly every aspect of
the subject. His contemporaries regarded him as Princeps Mathematicorum (Prince
of Mathematicians), on a par with Archimedes and Isaac Newton. This is revealed in
a small incident: On being asked who was the greatest mathematician in Germany,
Laplace answered, “Why, Pfaff.” When the questioner indicated that he would have
thought Gauss was, Laplace replied, “Pfaff is by far the greatest in Germany, but
Gauss is the greatest in all Europe.”

Although Gauss adorned every branch of mathematics, he always held number
theory in high esteem and affection. He insisted that, “Mathematics is the Queen of
the Sciences, and the theory of numbers is the Queen of Mathematics.”

In the first chapter of Disquisitiones Arithmeticae, Gauss introduces the concept of
congruence and the notation that makes it such a powerful technique (he explains that
he was induced to adopt the symbol = because of the close analogy with algebraic
equality). According to Gauss, “If a number n measures the difference between two
numbers a and b, then a and b are said to be congruent with respect to n; if not,
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Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be
congruent modulo n, symbolized by
a = b (mod n)

if # divides the difference a — b; that is, provided that a — b = kn for some integer k.
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=
[¢]
—*
&)
C)
=
[q2]
[&]
~
=
o
(=

3 =24 (mod 7) — 31 =11 (mod 7) — 15 = —64 (mod 7)

because 3 — 24 =(-3)7, —31 — 11 =(—6)7, and —15 - (—64) =7 -7. When
n f (a — b), we say that a is incongruent to b modulo n, and in this case we write
a # b (mod n). For a simple example: 25 £ 12 (mod 7), because 7 fails to divide
25 -1 13.
t be noted that any two integers are congruent modulo 1, whereas two
integers are congruent modulo 2 when they are both even or both odd. Inasmuch as
congruence modulo 1 is not particularly interesting, the usual practice is to assume
thatn > 1.

Given an integer a, let g and r be its quotient and remainder upon division by

n, so that

]

p—
w
=t

T
1

a=qn+r O0<r<n

Then, by definition of congruence, a = r (mod n). Because there are n choices for
r, we see that every integer is congruent modulo n to exactly one of the values
0,1,2,...,n — 1; in particular, a = 0 (mod n) if and only if n |a. The set of n
integers 0, 1, 2, ..., n — 1 is called the set of least nonnegative residues modulo n.
In general, a collection of » integers a;, a», . . ., g, is said to form a complete set
of residues (or a complete system of residues) modulo n if every integer is congruent
modulo # to one and only one of the a;. To put it another way, a,, az, . . ., a, are
congruent modulon to 0, 1, 2, ..., n — 1, taken in some order. For instance,

—12,-4,11,13,22,82,91

constitute a complete set of residues modulo 7; here, we have
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2

9] 2 11 A4 172 s 0D 1 (%) | Q1
p ) 1l T 10 O 44 1 0L J 1

7

N
v

_ 4
4

all modulo 7. An observation of some importance is that any » integers form a
complete set of residues modulo # if and only if no two of the integers are congruent
modulo n. We shall need this fact later.

Our first theorem provides a useful characterization of congruence modulo 7 in
terms of remainders upon division by 7.

Theorem 4.1. For arbitrary integers a and b, a = b (mod ») if and only if a and b
leave the same nonnegative remainder when divided by #.

Proof. Firsttake a = b (mod n), so that a = b + kn for some integer k. Upon division
by n, b leaves a certain remainder r; that is, b = gn + r, where 0 < r < n. Therefore,

s — Ll L — (3 L 2N A L (1 N 1 e
G =0 17K =\ghn T7)TKIH =\ T R)itT7V¥

which indicates that a has the same remainder as b.
On the other hand, suppose we can write a = qin + r and b = gan + r, with the
same remainder r (0 < r < n). Then

a—b=(@n+r)—(@n+r)=(q —qn

whence n | @ — b. In the language of congruences, we have a = b (mod »n).
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—56=(=7)9+7  —l1=(-2)9+7

with the same remainder 7, Theorem 4.1 tells us that —56 = —11 (mod 9). Going in
the other direction, the congruence —31 = 11 (mod 7) implies that —31 and 11 have
the same remainder when divided by 7; this is clear from the relations

—31=(-57+4 1l=1-7+4
Congruence may be viewed as a generalized form of equality, in the sense that

its behavior with respect to addition and multiplication is reminiscent of ordinary

equality. Some of the elementary properties of equality that carry over to congruences

appear in the next theorem.

Theorem4.2. Letn > 1befixedanda, b, c, d be arbitrary integers. Then the following
properties hold:

(a) a = a (mod n).

(b) If a = b (mod #n), then b = a (mod n).

(¢) If a = b (mod n) and b = ¢ (mod n), then a = ¢ (mod »n).

(d) If a=b (modn) and ¢ =d (mod n), then a4+ c=5b+d (modn) and ac =
bd (mod n).

(e) If a = b (mod n), then a + ¢ = b+ ¢ (mod »n) and ac = be (mod n).

(f) If a = b (mod n), then a* = b* (mod n) for any positive integer k.

Proof. For any integer a, we have a —a = 0 - n, so that @ = a (mod n). Now if
a = b (mod n), then a — b = kn for some integer k. Hence, b — a = —(kn) = (—k)n
and because —k is an integer, this yields property (b).

Property (c) is slightly less obvious: Suppose that a = b (mod n) and also b

¢ {mod r). Then there exist integers # and & satisfyinga —b = hnand b —c =kn. It
follows that

a—c=(a-b)y+b-c)=hn+kn=(h+kn

which is a = ¢ (mod #) in congruence notation.
In the same vein, if ¢ = b (mod »n) and ¢ = d (mod n), then we are assured that
a — b = kin and ¢ — d = kyn for some choice of ) and k. Adding these equations,
we obtain
(a+o—G+dy=@—-b)+(c—d

= kin + kon = (kg + ko)n

or, as a congruence statement, @ 4+ ¢ = b 4+ d (mod n). As regards the second assertion
of property (d), note that

ac = (b + kin)(d + kan) = bd + (bky + dky + kikynn
Because bky + dki + kikyn is an integer, this says that ac — bd is divisible by #,
whence ac = bd (mod n).
The proof of property (e) is covered by (d) and the fact that ¢ = ¢ (mod n). Finally,
we obtain property (f) by making an induction argument. The statement certainly
holds for k = 1, and we will assume it is true for some fixed k. From (d), we know
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that @ = b (mod n) and a* = b* (mod n) together imply that aa* = bb* (mod n), or
equivalently a*+! = b¥*! (mod n). This is the form the statement should take for k + 1,
and so the induction step is complete.

Before going further, we should illustrate that congruences can be a great help
in carrying out certain types of computations.

Examnle 4.2, L. et us endeavor to show that 41 rl; vides '720 — 1 We begin bv noting

AUNGERIPFAL Feiie viuvay {0 SNOwW Gk T L Vel Uy lvuiig

that 25 = —9 (mod 41), whence (2°)* = (—9)* (mod 41) by Theorem 4. 2(f); in other
words, 2% = 81 - 81 (mod 41). But 81 = —1 (mod 41), and so 81 - 81 = 1 (mod 41).
Using parts (b) and (e) of Theorem 4.2, we finally arrive at

0 _1=81-81—1=1-1=0(mod4l)

—
[\®]

e A
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Example 4.3. For another example in the same spirit, suppose that we are asked to
find the remainder obtained upon dividing the sum

10+ 20+ 30+ 41+ - 4+ 99! + 100!

by 12. Without the aid of congruences this would be an awesome calculation. The
observation that starts us off is that 4! = 24 = 0 (mod 12); thus, for k > 4,

k!l=4!-5.6---k=0-5-6---k =0 (mod 12)
In this way, we find that
4+2+ 3+ 40+ - + 100!
=11+21+3140+---+0=9(mod 12)

Accordingly, the sum in question leaves a remainder of 9 when divided by 12.

In Theorem 4.1 we saw that if a = b (mod n), then ca = ¢b (mod n) for any
integer c. The converse, however, fails to hold. As an example, perhaps as simple
as any, note that 2 - 4 = 2 - 1 (mod 6), whereas 4 % 1 (mod 6). In brief: One cannot
unrestrictedly cancel a common factor in the arithmetic of congruences.

With suitable precautions, cancellation can be allowed; one step in this direction,
and an important one, is provided by the following theorem.

Theorem 4.3, If ca = c¢b (mod n), then a = b (mod n/d), where d = gcd(c, n).

Proof. By hypothesis, we can write
cla—b)y=ca—cb=kn

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime integers
r and s satisfying ¢ = dr, n = ds. When these values are substituted in the displayed
equation and the common factor d canceled, the net result is

r(a—b)=ks

Hence, s | r(a — b) and ged(r , s) = 1. Euclid’s lemma yields s | @ — b, which may be
recast as a = b (mod s); in other words, a = b (mod n/d).
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Theorem 4.3 gets its maximum force when the requirement that gcd{c , n) = 11is
added, for then the cancellation may be accomplished without a change in modulus.

Corollary 1. If ca = ¢b (mod n) and gcd(c, n) = 1, then @ = b (mod n).

We take a moment to record a special case of Corollary 1 that we shall have

1 n tN 1gca r\qmn]v Fﬁfﬂ]]ﬂf‘l f)
LU uov, 11“111\/1] \/Ul\.’ll“l]

Corollary 2. If ca =cb (mod p) and p } ¢, where p is a prime number, then
a = b (mod p).

Proof. The conditions p f ¢ and p a prime imply that ged(c, p) = 1.

q

wa le 4,4, Consider the congruence 33 =15 od D or, if one nrefers. 3.11
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3.5 (mod 9). Because gcd(3, 9) = 3, Theorem 4. 3 leads to the conclusion that 11
5 (mod 3). A further illustration is given by the congruence —35 = 45 (mod 8), which
is the same as 5 - (—7) = 5+ 9 (mod 8). The integers 5 and 8 being relatively prime,
we may cancel the factor 5 to obtain a correct congruence —7 = 9 (mod 8).

||| |||

Let us call attention to the fact that, in Theorem 4.3, it is unnecessary to stipulate
that ¢ # 0 (mod n). Indeed, if c = 0 (mod »), then gcd(c , n) = »n and the conclusion
of the theorem would state that a = b (mod 1); but, as we remarked earlier, this holds
trivially for all integers a and b.

There is another curious situation that can arise with congruences: The product
of two integers, neither of which is congruent to zero, may turn out to be congruent to
zero. For instance, 4 - 3 = 0 (mod 12),but4 £ 0(mod 12)and 3 £ 0 (mod 12).1tisa
simple matter to show thatif ab = 0 (mod ) and gcd(a , n) = 1, then b = 0 (mod »):
Corollary 1 permits us legitimately to cancel the factor a from both sides of the
congruence ab = a - 0 (mod n). A variation on this is that when ab = 0 (mod p),
with p a prime, then either a = 0 (mod p) or b = 0 (mod p).

PROBLEMS 4.2

i. Prove each of the following assertions:
(a) If a = b (mod n) and m | n, then a = b (mod m).
(b) If a = b (mod n) and ¢ > 0, then ca = ¢b (mod cn).
(c) If a = b (mod n) and the integers a, b, n are all divisible by d > 0, then a/d =
b/d (mod n/d).
2. Give an example to show that «
(mod n).
3. If a = b (mod n), prove that gcd(a , n) = ged(b, n).
4. (a) Find the remainders when 2°" and 419 are divided by 7.
(b) What is the remainder when the following sum is divided by 4?

P4+25 43 +...499 +100°

5. Prove that the integer 53'% 4 10333 is divisible by 39, and that 111333 4 333111 j5 divis-
ible by 7.

2=p? (modn) need not imply that a =b
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Stdie-
ments:

(a) 7|5% +3.252,

(b) 13 l 3n+2 + 42n+1.

(C) 27 | 25n+1 + 5n+2'

(d) 43 | 6n+2 + 72n+1.

. Forn > 1, show that

A+l aANn s AANR—

(—13)"*! = (=13)" + (—13)""" (mod 181)

[Hint: Notice that (—13)> = —13 + 1 (mod 181); use induction on ».]

. Prove the assertions below:

(a) If a is an odd integer, then a? = 1 (mod 8).

(b) For any integer a, a®> = 0, 1, or 6 (mod 7).

(c) For any integer @, a” = 0 or 1 (mod 5).
2% A ¢ 1 1 AN
= 1 {(IMoad 24).

(d) If the integer a is not divisible by 2 or 3, then a

. If p is a prime satisfying n < p < 2n, show that

(2:) = 0 (mod p)

If a1, a,, ..., a, is a complete set of residues modulo » and ged(a , n) = 1, prove that
aay, adas, ..., ad, is also a complete set of residues modulo #.

|Hint: It suffices to show that the numbers in question are incongruent modulo
n.]

Verify that 0, 1,2,22,23, ..., 2% form a complete set of residues modulo 11, but that
0,1%,22,32 ..., 10% donot.

Prove the following statements:

(a) If gcd(a, n) = 1, then the integers

c,ct+a,c+2a,¢c+3a,...,c+(n—1a

form a complete set of residues modulo # for any c.
(b) Any n consecutive integers form a complete set of residues modulo 7.

[Hint: Use part (a).]
(c) The product of any set of n consecutive integers is divisible by .
Verify thatif a = b (mod n;) and a = b (mod ny), then a = b (mod n), where the integer
n = lecm(n , ny). Hence, whenever n; and n, are relatively prime, a = b (mod nn;).
Give an example to show that a* = b* (mod n) and k£ = j (mod n) need not imply that
a’ = b/ (mod n).
Establish that if a is an odd integer, then for any n > 1

a” =1 (mod 2"*?)

]

[Hint: Proceed by induction on #.
ton vnrrd
A9}

89|2% —1 and  97(2%® —1

Prove that whenever ab = ¢d (mod n) and b = d (mod n), with ged(b,n) =1, then
a = ¢ (mod n).

If a = b (mod n¢) and a = ¢ (mod n,), prove that b = ¢ (mod n), where the integern =
ng(fll , I’lg).
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One of the more interesting applications of congruence theory involves finding
special criteria under which a given integer is divisible by another integer. At their
heart, these divisibility tests depend on the notational system used to assign “names”
to integers and, more particularly, to the fact that 10 is taken as the base for our number
system. Let us, therefore, start by showing that, given an integer » > 1, any positive
integer N can be written uniquely in terms of powers of b as

N =a,b™ +au_1b" '+ - +ab®>+ab+a

where the coefficients g, can take on the b different values 0, 1,2,...,b — 1. For
the Division Algorithm yields integers ¢, and ag satisfying

N=gb+ay 0=<ap<b
If g; > b, we can divide once more, obtaining
gi=qb+a 0<a <b

Now substitute for ¢; in the earlier equation to get

N = ng3 + ayb? + a1b + ag

Because N > g > g, > --- > 0 is a strictly decreasing sequence of integers, this
process must eventually terminate, say, at the (m — 1)th stage, where

Gm—1 = qmb + am_ O0<a,_1 <b
and 0 < g, < b. Setting a,, = g,», we reach the representation
N =a,b" +anb" '+ +ab+ag
which was our aim.

To show uniqueness, let us suppose that N has two distinct representations, say,

A7 __ -~ Lm [P " TV 8 / ( S [ A T
N=aub"+ - +ab+as=cpb" +---+c1b+co

with 0 < @; < b for each i and 0 < c¢; < b for each j (we can use the same m by
simply adding terms with coefficients a; = 0 or ¢; = 0, if necessary). Subtracting
the second representation from the first gives the equation
0=d,b" +---+dib+dp

ri=0,1,...,m.B
assumed to be different, we must have d; # 0 for some
smallest subscript for which d; # 0. Then

0 =dub™ + - +dp P + 4 b*
and so, after dividing by b*,

dy = —b(dnb" ot diy)
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lis us that & | di. Now the inequalities 0 < g, <band 0 < ¢; < blead us to
—b < ap — ¢ < b, or |dr| < b. The only way of reconciling the conditions b | di
and | d; | < b is to have d;, = 0, which is impossible. From this contradiction, we
conclude that the representation of N is unique.

The essential feature in all of this is that the integer N is completely determined
by the ordered array a,,, am—1, - - - , a1, ap of coefficients, with the plus signs and the
powers of b hemo anerﬁn ous. Thus, the number

N = apb™ + ap 1™ + -+ ab® + arb + ag
may be replaced by the simpler symbol

N = (aman-1---azaiaols

or N). We call this the base b place value notation for N

Small values of b give rise to lengthy representation of numbers, but have the
advantage of requiring fewer choices for coefficients. The simplest case occurs when
the base b = 2, and the resulting system of enumeration is called the binary number
system (from the Latin binarius, two). The fact that when a number is written in the
binary system only the integers 0 and 1 can appear as coefficients means that every
positive integer is expressible in exactly one way as a sum of distinct powers of 2.
For example, the integer 105 can be written as

105=1-2°41-2540-2°41-2240-2240-2+1
=20+25+23+1

105 = (1101001),
In the other direction, (1001111), translates into

1.2°40-2240-2*+1-2°+1-2241-241=79
lllC Ul[ldly SySLE:H] lb most COITVE'/[‘llel_lt 101 use lll I‘l‘lOdEfﬂ e ectroni C COI lpUll l‘lla
chines, because binary numbers are represented by strings of zeros and ones; 0 and
1 can be expressed in the machine by a switch (or a similar electronic device) being
either on or off.
We shall frequently wish to calculate the value of a* (mod n) when & is large.

Is there a more efficient way of obtaining the least positive residue than multiplying
a hv itself k times before reduci Ang modulo n? One suc h rocedure. called the bmg_ry

MAIIaein oo th n wadiiatioe s A la .

prOiiéiitLal algm uriiii, relies Oﬁ successive squari gb 'vv'uu a reau t,u()u 1noauio 7
e

k = (amam_1 - . . azaidg)2, and the values a® (mod n) are calculated for the powers

of 2, which correspond to the 1’s in the binary representation. These partial results

are then multiplied together to give the final answer.
An illustration should make this process clear.
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Example 4.5. To calculate 5''° (mod 131), first note that the exponent 110 can be
expressed in binary form as

110 =64 +32+84+4+2=(110110),

Thus, we obtain the powers 5% (mod 131) for 0 < j < 6 by repeatedly squaring while
at each stage reducing each result modulo 131:

52= 25 (mod131) 5= 27 (modl131)
54=101 (mod131) 52 = 74 (mod131)
52 =114 (mod131) 5 =105 (mod131)

When the appropriate partial results—those corresponding to the 1’s in the binary
expansion of 110—are multiplied, we see that

5110 _ 564+32+8+4+2

=64 =32 =8 =4 =2
5% .5%.5%.5%. 5%

105-74-114-101-25=60 (mod131)

I

li

As aminor variation of the procedure, one might calculate, modulo 131, the powers
5,52%,5%, 55,512 524 5% 5% 10 arrive at

5110 — 5% .512.52 =41.117-25=60 (mod131)

which would require two fewer multiplications.

We ordinarily record numbers in the decimal system of notation, where b = 10,
omitting the 10-subscript that specifies the base. For instance, the symbol 1492
stands for the more awkward expression

1-10°+4-10°4+9-10+2
f

The integers 1, 4, 9, and 2 are called the digits of the given number, 1 beir g the
...... o~ ~ vem deem Ao A~ QO tlan 4o0ma A T
thousands digit, 4 the hundreds digit, 9 the tens digit, and 2 the units u1gu in

technical language we refer to the representation of the positive integers as sums of
powers of 10, with coefficients at most 9, as their decimal representation (from the
Latin decem, ten).

We are about ready to derive criteria for determining whether an integer is
divisible by 9 or 11, without performing the actual division. For this, we need a result
having to do with congruences involving polynomials with integral coefficients.

Theorem 4.4. Let P(x) =Y ;" ,ckx* be a polynomial function of x with integral
coefficients ¢;. If a = b (mod n), then P(a) = P(b) (mod n).

Proof. Because a = b (mod n), part (f) of Theorem 4.2 can be applied to give
ak = b* (mod n) fork =0, 1, ..., m. Therefore,

ckak = ckbk (mod n)

for all such k. Adding these m + 1 congruences, we conclude that

Z ca* = Z cib* (mod n)
k=0 k=0

or, in different notation, P(a) = P(b) (mod n).
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T D7\ o —— = e
if P{x) is a polynor
) =

al with integral coefficients, we say that a is a solution o
the congruence P(x )

() (mod n)if P(a) = 0 (mod n).

Corollary. If a is a solution of P(x) = 0 (mod n) and a = b (mod n), then b also is a

solution.

Proof. From the last theorem. it is known that P{a) = P(b) (mod n). Hence. ifg is a
. rrom tne last theorem, 1 1s xnown hat F{a) = F{o)mod xn). nence, 1rais a
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One divisibility test that we have in mind is this. A positive integer is divisible
by 9 if and only if the sum of the digits in its decimal representation is divisible by 9.

Theorem 4.5. Let N = a,,10™ + a,,_, 10"~ 4+

a
pnnmnn of the positive integer N. 0 < g, < 10 and le‘ Ay

151001 Vi uae PUSIUYL gl 1V, v (€27 1y

9|Nifand onlyif 9| S.

10 + aq be the decimal ex-

a
ap da, 4+ ... 1L a  Then
[ 4 [] w A AAN/AL

17 n-

Proof. Consider P(x) =) 1, a;x*, a polynomial with integral coefficients. The key
observation is that 10 = 1 (mod 9), whence by Theorem 4.4, P(10) = P(1) (mod 9).
But P(10)=N and P(1) =ag+a1+---+a, = S, sothat N = § (mod 9). It fol-
lows that N = 0 (mod 9) if and only if S = 0 (mod 9), which is what we wanted to
prove.

Theorem 4.4 also serves as the basis for a well-known test for divisibility by 11:
an integer is divisible by 11 if and only if the alternating sum of its digits is divisible
by 11. We state this more precisely by Theorem 4.6.

Theorem 4.6. Let N = a,,10™ + a,,_110" ! + ... + 4,10 + ao be the decimal ex-
pansion of the positive integer N,0 <a; < 10, and let T = a9 —a; + a; —
+(=1Y"a,,. Then 11| N ifand only if 11 |T'.

Proof. As in the proof of Theorem 4.5, put P(x) =) ., a;x*. Because 10 = —1
(mod 11), we get P(10) = P(—1) (mod 11). But P(10) = N, whereas P(—1) =
ap—ay+a—---+(—1)"a, = T,sothat N = T (mod 11). The implication is that
either both N and T are divisible by 11 or neither is divisible by 11.

Example 4.6. To see an illustration of the last two results, take the integer N =
1,571,724. Because the sum

1+5+74+14+7+2+4=27

is divisible by 9, Theorem 4.5 guarantees that 9 divides N. It also can be divided by
11; for, the aiternating sum

4-2+7-1+7-5+1=11
is divisible by 11.

Congruence theory is frequently used to append an extra check digit to iden-
tification numbers, in order to recognize transmission errors or forgeries. Personal
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identification numbers of some kind appear on passports, credit cards, bank accounts,
and a variety of other settings.

Some banks use an eight-digit identification number a;a; . . . ag together with
a final check digit ag. The check digit is usually obtained by multiplying the digits
a;(1 <i < 8) by certain “weights” and calculating the sum of the weighted products
modulo 10. For instance, the check digit might be chosen to satisfy

ag = Ta; + 3a; + 9asz + Tag + 3as + 9ag¢ + 7a; + 3ag  (mod 10)
The identification number 81504216 would then have check digit
a=7-84+3-14+49-54+47-043-449-24+7-143-6=9 (mod10)

so that 815042169 would be printed on the check.
This weighting scheme for assigning check digits detects any single-digit error

a idantification numher pr\r sunnose ﬂ*\at f]’\P r]irnt a; 10 rpn]qr‘pﬂ ]'“7 a A1Fﬂarpnf
I,ll\/ AVIWLILALIN/CALLALU/LL 11U/ L. A tJtJ\.IU 1AL Ll 6 l t} LAALANWINRLL

1 1

a;. By the manner in which the check digit is calculated, the difference between the
correct ag and the new ag is

ag — ay = k(a; — a;) (mod 10)

o
N\..J

where kis 7, 3, or 9 depending on the position of a;. Because k(a; — a;) # 0 (mod 10),
it follows that ag # ag and the error is apparent. Thus, if the valid number 81504216

were incorrectly entered as 81504316 into a computer nroorammed to calculate

were incorrectly entered as 81504316 into a computer programmed to calculate
CIlCCK Ulgllb dan O WULllU come up rdLIlCI' LIldIl lIlC C)&[)CLLCU y

The modulo 10 approach is not entirely effective, for it does not always detect
the common error of transposing distinct adjacent entries a and b within the string
of digits. To illustrate: the identification numbers 81504216 and 81504261 have
the same check digit 9 when our example weights are used. (The problem occurs
when |a — b| = 5.) More sophisticated methods are available, with larger moduli
and different weights. that would nrevent this nossible error

a aifferent Tapaandy wAGL WA AL VRS LIS pPUSSAVALY VARV,

PROBLEMS 4.3

1. Use the binary exponentiation algorithm to compute both 19°* (mod 503) and 1414
(mod 1537).

2. Prove the following statements:
(a) For any integer a, the units digit of a*is0,1,4,5,6,o0r09.
(b) Any one of the integers 0, 1,2, 3,4, 5, 6, 7, 8, 9 can occur as the units digit of a°.
(c) For any integer a, the units digit of a* is 0, 1, 5, or 6.
(d) The units digit of a triangular number is 0, 1, 3, 5, 6, or 8.

3. Find the last two digits of the number 9% .
[Hint: 9° =9 (mod 10); hence, 9% = 9971%; now use the fact that 9° = 89 (mod
100).]

Without nerformino the divicions. determin
. WIDoul peoriorming ne Qrvisions, aetermin

149,235,678 are divisible by 9 or 11.
5. (a) Obtain the following generalization of Theorem 4.6: If the integer N is represented
in the base b by

N =aub™ + -+ + ab* + a1b + ag O<ag,<b-1
thenb — 1 | N ifandonlyif b — 1| (g, +--- + a2 + a1 + ao)-

[

o
=
=3
@
=+
jon
[¢]
4
=
jon
o
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. Show that 2" divides an integer N if
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written in the base 9.
(c) Is the integer (447836)0 divisible by 3 and 87

. Working modulo 9 or 11, find the missing digits in the calculations below:

(a) 51840 - 273581 = 1418243x040.

(b) 2x99561 = [3(523 + x)]°.

(c) 2784x = x - 5569.

(d) 512 - 1x53125 = 1000000000.

. Establish the following divisibility criteria:

(a) An integer is divisible by 2 if and only if its units digit is 0, 2, 4, 6, or 8.

(b) An integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

(c) An integer is divisible by 4 if and only if the number formed by its tens and units
digits is divisible by 4.
[Hint: 10¥ = 0 (mod 4) for k > 2.]

(d) Aninteger is divisible by 5 if and only if its units digit is O or 5.

For any integer a, show that a®> — a + 7 ends in one of the digits 3, 7, or 9.

Find the remainder when 4444%4 is divided by 9.

[Hint: Observe that 2° = —1 (mod 9).]

Prove that no integer whose digits add up to 15 can be a square or a cube.

|Hint: For any a, a®> = 0, 1, or 8 (mod 9).]

Assuming that 495 divides 273x49y5, obtain the digits x and y.

Determine the last three digits of the number 7°%°.

[Hing: 7% = (1 4+ 400)" = 1 4+ 4001 (mod 1000).]

If 7, denotes the nth triangular number, show that #,,2; = ¢, (mod &); hence, #, and #,4.90

must have the same last digit.

For any n > 1, prove that there exists a prime with at least n of its digits equal to 0.

[Hint: Consider the arithmetic progression 10"k +1fork=1,2,....]

. Find the values of n > 1 for which 1! + 2! 4 3! + ... + n! is a perfect square.

[Hint- Drn]’\]nm f){Q\ 1
111 l

LALbite. X 1UUILG.
e DA

last n digits of N.

[Hint: 10* = 2k5% = 0 (mod 2") for k > n.]

Let N = a,,10™ + - -+ 4+ a210% + a;10 + ag, where 0 < a; < 9, be the decimal expan-
sion of a positive integer N.

(a) Prove that 7, 11, and 13 all divide N if and only if 7, 11, and 13 divide the integer

M = (100a; + 10a; + ap) — (100as + 10a4 + az)
+ (100ag + 10a;7 + ag) —

[Hint: If n is even, then 10%" = 1, 10>+ = 10, 10*"*2 = 100 (mod 1001); if n is
odd, then 10** = —1, 10>"*! = —10, 10°>"*? = —100 (mod 1001).]
(b) Prove that 6 divides N if and only if 6 divides the integer

M =ap+4a, +4a, + -+ - +4a,

Without performing the divisions, determine whether the integer 1010908899 is divisible

by 7,11, and 13.

(a) Given an integer N, let M be the integer formed by reversing the order of the digits
of N (for example, if N = 6923, then M = 3296). Verify that N — M is divisible
by 0.
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373 and 521125 are palindromes). Prove that any palindrome with an even number
of digits is divisible by 11.

Given a repunit R, show that

(a) 9| R, if and only if 9 | n.

(b) 11| R, if and only if n is even.

Factor the repunit Rg = 111111 into a product of primes.

[Hint: Problem 17(a).]

Explain why the following curious calculations hold:
1-9+ 2=11
12.94+ 3 =111

123-9+ 4=1111
1234.9+ 5=11111

1IAL s 111111
1LJ‘+J'7+ U'_ L1l

123456 - 9+ 7 = 1111111
1234567 -9+ 8 =11111111
12345678 -9+ 9 = 111111111

123456789 -9+ 10 = 1111111111

[Hint: Show that

n—2 1nn

' 42.10"24+3-10" 2 + -+ -+ n)(10 — 1)
10n+1_1

R

An old and somewhat illegible invoice shows that 72 canned hams were purchased for
$x 67.9y. Find the missing digits.
Luziu u_y Problem 17, 8 i454, 1
For any prime p > 3 prove that 13 divides 10?7 — 107 + 1.

Consider the eight-digit bank identification number a;a; . . . ag, which is followed by a

ninth check digit ag chosen to satisfy the congruence
ag = Ta; + 3a; + 9as + Tas + 3as + 9ag + 7a; + 3ag (mod 10)
(a) Obtain the check digits that should be appended to the two numbers 55382006 and

81372439.

(b) The bank identification number 237a418538 has an illegible fourth digit. Determine
the value of the obscured digit.

The International Standard Book Number (ISBN) used in many libraries consists of nine

digits aya; . . . ag followed by a tenth check digit ay9, which satisfies

9
ai =Y kag(mod11)
k=1

Determine whether each of the [ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).
When printing the ISBN a;a; . . . ag, two unequal digits were transposed. Show that the
check digits detected this error.
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This is a convenient place in our development of number theory at which to inves-
tigate the theory of linear congruences: An equation of the form ax = b (mod n)
is called a linear congruence, and by a solution of such an equation we mean an
integer xo for which axy = b (mod r). By definition, axg = b (mod #n) if and only
if n | axy — b or, what amounts to the same thing, if and only if axy — b = ny, for
some integer yo. Thus, the problem of finding all integers that will satisfy the lin-
ear congruence ax = b (mod n) is identical with that of obtaining all solutions of
the linear Diophantine equation ax — ny = b. This allows us to bring the results of
Chapter 2 into play.

It is convenient to treat two solutions of ax = b (mod »n) that are congruent
modulo #n as being, equa1 cven tuuugu ult:_y are not equa1 in the usual sense. For
instance, x = 3 and x = —9 both satisfy the congruence 3x = 9 (mod 12); because

= —9(mod 12), they are not counted as different solutions. In short: When we refer
to the number of solutions of ax = b (mod n), we mean the number of incongruent
integers satisfying this congruence.

With these remarks in mind, the principal result is easy to state.

Theorem 4.7, The linear congruence ax = b (mod ») has a solution if and only if 4 | b,
where d = ged(a, n). If d | b, then it has d mutually incongruent solutions modulo 7.

Proof. We already have observed that the given congruence is equivalent to the linear
Diophantine equation ax — ny = b. From Theorem 2.9, it is known that the latter
equation can be solved if and only if d | b; moreover, if it is solvable and xg, yo is one
specific solution, then any other solution has the form

nt at
X =Xx0+ — =yg+ —
0 d y = d

for some choice of .
Among the various integers satisfying the first of these formulas, consider those

that occur when ¢ takes on the successive valuest =0,1,2,...,d — 1:
,n  2n (d— Dn
0T d, AQ T d y ooy X0 T d

We claim that these integers are incongruent modulo 7, and all other such integers x
are congruent to some one of them. If it happened that

nt —zt (mod n)
d' = d?

Now ged(n/d, n) = n/d, and therefore by Theorem 4.3 the factor n/d could be can-
celed to arrive at the congruence

fH =t (mod d)
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hat ut this is impossible in view of the inequality

~ T o2 " mn
hat d |#, — #;. Bu

=t

which is to say t
O<thb—1 <d.

It remains to argue that any other solution x¢ + (n/d)t is congruent modulo » to
one of the d integers listed above. The Division Algorithm permits us to write ¢ as
t =qd+r,where0 <r <d— 1. Hence

+ 2t =xo+2qd +7)
X0 d = X0 dq ¥
:xo—l—nq—}—gr

= X0+ gr (mod n)

with xo + (n/d)r being one of our d selected solutions. This ends the proof.

The argument that we gave in Theorem 4.7 brings out a point worth stating ex-
plicitly: If xo is any solution of ax = b (mod n), then the d = gcd(a , n) incongruent
solutions are given by

n n n
xo,xo—l—E,x0+2(3>,...,x0+(d—1)(5)

onvenience, let us also record the form Theorem 4.7 takes in

are acenmed to bhe relativelv nrime
c to De relalively pr

aand »
aandy mme.

v Qs QASSuaiiv

Corollary. If gcd(a , n) = 1, then the linear congruence ax = b (mod n) has a unique
solution modulo 7.

Given relatively prime integers a and n, the congruence ax = 1 (mod n) has a
unique solution. This solution is sometimes called the (multiplicative) inverse of a
modulo 7.

We now pause to look at two concrete examples.

Example 4.7. First consider the linear congruence 18x = 30 (mod 42). Because
gcd(18, 42) = 6 and 6 surely divides 30, Theorem 4.7 guarantees the existence of
exactly six solutions, which are incongruent modulo 42. By inspection, one solution
is found to be x = 4. Our analysis tells us that the six solutions are as follows:

x =4+ (42/6)t =4 + 7t (mod 42) r=0,1,...,5
or, plainly enumerated,

x =4,11, 18, 25, 32, 39 (mod 42)

Example 4.8. Let us solve the linear congruence 9x = 21 (mod 30). At the outset,
because gcd(9,30) =3 and 3|21, we know that there must be three incongruent
solutions.

One way to find these solutions is to divide the given congruence through by
3, thereby replacing it by the equivalent congruence 3x = 7 (mod 10). The relative
primeness of 3 and 10 implies that the latter congruence admits a unique solution
modulo 10. Although it is not the most efficient method, we could test the integers
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sides of the congruence 3x = 7 (mod 10) by 7 to get

21x = 49 (mod 10)

which reduces to x = 9 (mod 10). (This simplification is no accident, for the multiples
0-3,1-3,2-3,...,9-3 form a complete set of residues modulo 10; hence, one
of them is necessanlv congruent to 1 modulo 10.) But the original congruence was

f=4

iven modulo 30, so that its 1ncnn0rm=nf solutions are sought among the 1 1s 0, 1,

Lo 1 1 0 20 § Vilgs vl 1S U,

2,...,29. Taking t+ = 0, 1, 2, in the formula

ag,
=t

x =94+ 10¢
we obtain 9, 19, 29, whence
v —= O frvind 200N v — 10 frvind 200 v — YO frvind M
A = 7 \uu}u JU} A = 17 \lllUU JU) A = L \lllUU JU}

are the requircd three solutions of 9x = 21 (mod 30).

A different approach to the problem is to use the method that is suggested in the
proof of Theorem 4.7. Because the congruence 9x = 21(mod 30) is equivalent to the
linear Diophantine equation

9x — 30y =21

we begin by expressing 3 = gcd(9, 30) as a linear combination of 9 and 30. It is found,
either by inspection or by using the Euclidean Algorithm, that 3 = 9(—3) + 301, so
that

21 =73 =9(—21) — 30(-7)

Thus, x = —21, y = —7 satisfy the Diophantine equation and, in consequence, all
solutions of the COngrucnce i in qu uestion are to be found from the formula

x = —21 4 (30/3)t = —21 + 10t

The integers x = —21 + 10¢, where t = 0, 1, 2, are incongruent modulo 30 (but all are
congruent modulo 10); thus, we end up with the incongruent solutions

= —21 (mod 30) x = —11 (mod 30) = —1 (mod 30)

)
N

or, if one prefers positive numbers, x = 9, 19, 29 (mod 30

Having considered a single linear congruence, it is natural to turn to the problem

of solving a system of simultaneous linear congruences:

aix = by (mod m,), axx = by (mod my), ...,a,x = b, (mod m,)

We shall assume that the moduli m; are relatively prime in pairs. Evidently, the
system will admit no solution unless each individual congruence is solvable; that
is, unless dy | by for each k, where d;, = gcd(ay , my). When these conditions are
satisfied, the factor diy can be canceled in the kth congruence to produce a new
system having the same set of solutions as the original one:

a;x = b} (mod ny), ayx = b, (mod ny), ...,a.x = b, (mod n,)
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where ny = my/dy and ged{n; , n;) = 1fori # j; in addition, ged n,-) =1.
solutions of the individual congruences assume the form

x =c; (mod ny), x =cp (mod ny),...,x =c, (mod n,)

Thus, the problem is reduced to one of finding a simultaneous solution of a system

of congruences of this simpler type.
The kind of nrnhle that can be solve
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10118 umuuy, appcauug in the Chinese literature as Cdll_y as the 1
Sun-Tsu asked: Find a number that leaves the remainders 2, 3, 2 when divided by
3,5, 7, respectively. (Such mathematical puzzles are by no means confined to a single
cultural sphere; indeed, the same problem occurs in the Introductio Arithmeticae
of the Greek mathematician Nicomachus, circa 100 A.D.) In honor of their early
contributions, the rule for obtaining a solution usually goes by the name of the
Chinese Remainder Theorem.
Theorem4.8 Chinese Remainder Theorem. Letny, n,, ..., n, be positive integers
such that ged(n; , n;) = 1 fori # j. Then the system of linear congruences

x = a; (mod ny)

x = a; (mod ny)

x = a, (mod n,)

has a simultaneous solution, which is unique modulo the integer nin; - - - n,.

Proof. We start by forming the productn = nyjny---n,. Foreachk =1,2,....r, let

115
Nl, = — — A1+ -"ApL_1AL11 "
TR 1 K—1°"KT1

ng

- A,
!

In words, Ny is the product of all the integers »; with the factor n; omitted. By hy-
pothesis, the n; are relatively prime in pairs, so that gcd(Ny , nx) = 1. According to the
theory of a single linear congruence, it is therefore possible to solve the congruence
Nigx =1 (mod ny); call the unique solution x;. Our aim is to prove that the integer

Xx=aNxi+aNox»+ --+aN,x,

Flrst observe tha
result is

1
i # k, because ny | N; in this case. The

:“
H
=Z
I
jen)
—_ O
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a
=
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~ &
¥
L T

X =aNixy+-- +aNyx, = apNyxp (mod ny)

But the integer x; was chosen to satisfy the congruence Niyx = 1 (mod n;), which

F
LOULILOD
X =a;-1=a, (modny)

This shows that a solution to the given system of congruences exists.
As for the uniqueness assertion, suppose that x’ is any other integer that satisfies
these congruences. Then

X = a; = x' (mod ny) k=1,2,...,r
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Theorem 2.4 supplies us with the crucial point that nin,---n, |X —x’; hence
X = x' (mod n). With this, the Chinese Remainder Theorem is proven.

Example 4.9. The problem posed by Sun-Tsu corresponds to the system of three
congruences

In the notation of Theorem 4.8, we haven =3 -5-7 = 105 and

n n n
Ny =—==35 N,=—==21 N3 =—==15
T3 27 s T
Now the Hnear conoruences
NOW (e lInear congrucnces
35x=1(mod3) 2lx=1@mod5) 15x=1 (mod7)

are satisfied by x; = 2, x, = 1, x3 = 1, respectively. Thus, a solution of the system is
given by
x=2-35-24+3-21-14+2-15-1=233

Modulo 103, we get the unique solution x = 233 = 23 (mod i05).

Example 4.10. For a second illustration, let us solve the linear congruence
17x = 9 (mod 276)

Because 276 = 3 - 4 - 23, this is equivalent to finding a solution for the system of
congruences

17x = 9 (mod 3) or x = 0(mod 3)

17x = 9 (mod 4) x =1 (mod 4)

17x = 9 (mod 23) 17x =9 (mod 23)

Note that if x = 0 (mod 3), then x = 3k for any integer k. We substitute into the second
congruence of the system and obtain

1 fin0d 4)
1L {Moa 4)

I

3k
Multiplication of both sides of this congruence by 3 gives us
k=9 =3 (mod4)
so that k = 3 + 4, where j is an integer. Then
x=334+4j)=9+12j

not A omIasman oA et havn
asl LULIETULCLILL, WO THUSL llave

17(9 + 12j) = 9 (mod 23)

=+
c
»
=
(o]
-
o
=
o
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or204j = —144 (mod 23), which reduces to 3j = 6 (mod 23); in consequence, j = 2
(mod 23). This yields j = 2 + 23¢, with ¢ an integer, whence

x=94+12(2+23t) =33 4+276¢
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All in all, x = 33 {(mod 276) provides a solution to the system of congruences and, in
turn, a solution to 17x = 9 (mod 276).

We should say a few words about linear congruences in two variables; that is,
congruences of the form

ax + by = ¢ (mod n)

In analogy with Theorem 4.7, such a congruence has a solution if and only if
ged(a, b, n) divides c¢. The condition for solvability holds if either gcd(a , n) = 1 or
ged(b, n) = 1. Say ged(a, n) = 1. When the congruence is expressed as

ax = c¢ — by (mod n)

the corollary to Theorem 4.7 guarantees a unique solution x for each of the
n incongruent values of y. Take as a simple illustration 7x + 4y = 5 (mod 12),

that vwnnilld ha troatad aec 7v —m 8 _ Ay frmnd 1Y Quhotitintinn of v — 8 (mad 1)
uldu Ouilh o€ UCaiCt a5 /X = o 4y U000 14y, SUoSLuuUoll O1 Yy = J Uil 14y

gives 7x = —15 (mod 12); but this is equivalent to —5x = —15 (mod 12) so that
x = 3 (mod 12). It follows that x = 3 (mod 12),y =5 (mod 12) is one of the 12
incongruent solutions of 7x + 4y = 5 (mod 12). Another solution having the same
value of x is x = 3 (mod 12),y = 8 (mod 12).

The focus of our concern here is how to solve a system of two linear congruences

in two variables with the same modulus. The proof of the coming theorem adopts
n oL

t
L

a nroe nf the inknawneg
11111114401 t}l AP e .

F=Y
Lwg

Theorem 4.9. The system of linear congruences
ax + by =r (mod n)
cx +dy = s (mod n)

hQQ a l]‘l"l.
i & uL

138 cdlad —bc,n)y=1.

Lyrry

Proof. Let us multiply the first congruence of the system by d, the second congruence
by b, and subtract the lower result from the upper. These calculations yield

(ad — bc)x = dr — bs (mod n) (D
The assumption ged{ad — bc, n) = 1 ensures that the congruence

(ad — bc)z = 1 (mod n)

x = t{dr — bs) (mod n)

A value for y is found by a similar elimination process. That is, multiply the first
congruence of the system by ¢, the second one by a, and subtract to end up with

(ad — bc)y = as — cr (mod n) 2)
Multiplication of this congruence by f leads to
y = t{as — cr) (mod n)

A solution of the system is now established.

We close this section with an example illustrating Theorem 4.9.
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Example 4.11. Consider the sysiem
7x + 3y = 10 (mod 16)
2x + 5y =9 (mod 16)

Because gcd(7-5 —2-3,16) = ged(29, 16) = 1, a solution exists. It is obtained by
the method developed in the proof of Theorem 4.9. Multiplying the first congruence

hy § the cecond ane hv 2 and enhtractine wea arrive at
UJ oty LW DWWV ULIM Ul UJ /g CALINL DuULluVLllls’ ¥Yw Gil1ivyw At

29x =5-10—3-9 =23 (mod 16)

or, what is the same thing, 13x = 7 (mod 16). Multiplication of this congruence by 5
(noting that 5 - 13 = 1 (mod 16)) produces x = 35 = 3 (mod 16). When the variable
x is eliminated from the system of congruences in a like manner, it is found that

29y =7-9 210 = 43 (mod 16)

But then 13y = 11 (mod 16), which upon multiplication by 5, results in y = 55 =
7 (mod 16). The unique solution of our system turns out to be

x =3 (mod 16) y =7 (mod 16)

PROBLEMS 4.4

1.

& W

9]}

Solve the following linear congruences:
(a) 25x = 15 (mod 29).

(b) 5x =2 (mod 26).

(c) 6x =15 (mod 21).

(d) 36x = 8 (mod 102).

(e) 34x = 60 (mod 98).

(f) 140x = 133 (mod 301

1200 QRR0OA D21 ).

[Hint: ged(140,301) = 7.]

. Using congruences, solve the Diophantine equations below:

(a) 4x + 51y =9.
[Hint: 4x = 9 (mod 51) gives x = 15 4 51¢, whereas 51y = 9 (mod 4) gives y =
3 + 4s. Find the relation between s and ¢.]

(b) 12x + 25y = 331.

(e S+ 82y — 17

\Cj) OX JIY = 1.

) 1 .11 1 s B ol I - - - . ] -~ _ 11 7 o, 1 1N

na dil SO1UtL1ons or uie 1nedr Congruenee >5x — /y = 11 (moda 153).
. Solve each of the following sets of simultanecous congruences:

(@) x =1(mod 3), x =2 (mod 5), x =3 (mod 7).

(b) x =5 (mod 11), x = 14 (mod 29), x = 15 (mod 31).

(¢) x =5(mod 6), x =4 (mod 11), x = 3 (mod 17).

(d) 2x =1 (mod 5),3x =9 (mod 6),4x =1 (mod 7),5x =9 (mod 11).

. Solve the linear congruence 17x = 3 (mod 2 -3 - 5 - 7) by solving the system

17x = 3 (mod 2) 17x = 3 (mod 3)
17x = 3 (mod 5) 17x =3 (mod 7)

. Find the smallest integer @ > 2 such that

2la,3la+1,4|a+2,5|a+3,6|la+4
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. (a) Obtain three consecutive integers, each having a square factor.

[Hint: Find an integer a such that 22 |a, 3% |a + 1, 5% |a + 2.]
(b) Obtain three consecutive integers, the first of which is divisible by a square, the
second by a cube, and the third by a fourth power.
(Brahmagupta, 7th century A.D.) When eggs in a basket are removed 2, 3,4, 5,6 at a
time there remain, respectively, 1, 2, 3, 4, 5 eggs. When they are taken out 7 at a time,
none are left over. Find the smallest number of eggs that could have been contained in
the basket.
The basket-of-eggs problem is often phrased in the following form: One egg remains
when the eggs are removed from the basket 2, 3, 4, 5, or 6 at a time; but, no eggs remain
if they are removed 7 at a time. Find the smallest number of eggs that could have been
in the basket.
(Ancient Chinese Problem.) A band of 17 pirates stole a sack of gold coins. When they
tried to divide the fortune into equal portions, 3 coins remained. In the ensuing brawl over
who should get the extra coins, one pirate was killed. The wealth was redistributed, but
this time an equal division left 10} coins. Again an argument developed in which another
pirate was killed. But now the total fortune was evenly distributed among the survivors.
What was the least number of coins that could have been stolen?
Prove that the congruences

x = 5 (mod 6) and x =7 (mod 15)

If x = a (mod n), prove that either x = a (mod 2rn) or x = a + » (mod 2n).

A certain integer between 1 and 1200 leaves the remainders 1, 2, 6 when divided by 9,

i1, 13, respectively. What is the integer?

(a) Find an integer having the remainders 1, 2, 5, 5 when divided by 2, 3, 6, 12, respec-
tively. (Yih-hing, died 717).

(b) Find aninteger having the remainders 2, 3,4, 5 when divided by 3,4, 5, 6, respectively.
(Bhaskara, born 1114).

(c) Find an integer having the remainders 3, 11, 15 when divided by 10, 13, 17, respec-
tively. (Regiomontanus, 1436-1476).

Let t, denote the nth triangular number. For which values of # does ¢, divide

2 . 2 . . 2
[Hint: Because 2 + t + - -+ + t2 = t,(3n® + 12n% + 13n + 2)/30, it suffices to deter-
mine those 7 satisfying 31> + 12n2 + 13n +2=0(mod 2 - 3 - 5).]
Find the solutions of the system of congruences:
3x +4y = 5 (mod 13)
2x 4+ 5y =7 (mod 13)
Obtain the two incongruent solutions modulo 210 of the system
2x =3 (mod 5)
4x = 2 (mod 6)
3x =2 (mod 7)
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19. Obtain the eight incongruent solutions of the linear congruence 3x + 4y =5 (
20. Find the solutions of each of the following systems of congruences:
(@ 5x+3y=1(mod7)
3x + 2y =4 (mod 7).
(b) 7x+3y=6(mod 11)
4x +2y =9 (mod 11).
(¢) 1lx + 5y =7 (mod 20)

sEE =7

6x + 3y = 8 (mod 20).
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FERMAT’S THEOREM

And perhaps posterity will thank me for having shown it that the
ancients did not know everything.
P. DE FERMAT

5.1 PIERRE DE FERMAT

What the ancient world had known was largely forgotten during the intellectual
torpor of the Dark Ages, and it was only after the 12th century that Western Europe
again became conscious of mathematics. The revival of classical scholarship was
stimulated by Latin translations from the Greek and, more especially, from the
Arabic. The Latinization of Arabic versions of Euclid’s great treatise, the Elements,
first appeared in 1120. The translation was not a faithful rendering of the Elements,
having suffered successive, inaccurate translations from the Greek—first into Arabic,
then into Castilian, and finally into Latin—done by copyists not versed in the content
of the work. Nevertheless, this much-used copy, with its accumulation of errors,
served as the foundation of all editions known in Europe until 1505, when the Greek
text was recovered.

With the fall of Constantinople to the Turks in 1453, the Byzantine schol-
ars who had served as the major custodians of mathematics brought the ancient
masterpieces of Greek learning to the West. It is reported that a copy of what sur-
vived of Diophantus’ Arithmetica was found in the Vatican library around 1462 by
town, Konigsberg). Presumably, it had been brought to Rome by the refugees from
Byzantium. Regiomontanus observed that “In these books the very flower of the

85
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Pierre de Fermat
(1601-1665)

(David Eugene Smith Collection, Rare Book

and Manuscrint Library. Columbia University)
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whole of arithmetic lies hid,” and tried to interest others in translating it. Notwith-
standing the attention that was called to the work, it remained practically a closed
book until 1572 when the first translation and printed edition was brought out by
the German professor Wilhelm Holzmann, who wrote under the Grecian form of
his name, Xylander. The Arithmetica became fully accessible to European math-
ematicians when Claude Bachet—borrowing liberally from Xylander—published
(1621) the original Greek text, along with a Latin translation containing notes and
comments. The Bachet edition probably has the distinction of being the work that
first directed the attention of Fermat to the problems of number theory.

Few if any periods were so fruitful for mathematics as was the 17th century;
Northern Europe alone produced as many men of outstanding ability as had ap-
peared during the preceding millennium. At a time when such names as Desargues,
Descartes, Pascal, Wallis, Bernoulli, Leibniz, and Newton were becoming famous, a
certain French civil servant, Pierre de Fermat (1601-1665), stood as an equal among
these brilliant scholars. Fermat, the “Prince of Amateurs,” was the last great mathe-
matician to pursue the subject as a sideline to a nonscientific career. By profession a
lawyer and magistrate attached to the provincial pariiament at Toulouse, he sought
refuge from controversy in the abstraction of mathematics. Fermat evidently had no
particular mathematical training and he evidenced no interest in its study until he
was past 30; to him, it was merely a hobby to be cultivated in leisure time. Yet no
practitioner of his day made greater discoveries or contributed more to the advance-
ment of the discipline: one of the inventors of analytic geometry (the actual term was

coined in the aquv 10ﬂ'\ r\nnfnrv\ ho laid the tarchnical fonndatinne af differantial
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and integral calculus and, with Pascal, established the conceptual guidelines of the
theory of probability. Fermat’s real love in mathematics was undoubtedly number
theory, which he rescued from the realm of superstition and occultism where it had
long been imprisoned. His contributions here overshadow all else; it may well be
said that the revival of interest in the abstract side of number theory began with
Fermat.
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reputation that it might bring him; indeed, he published only one major manuscript
during his lifetime and that just 5 years before his death, using the concealing initials
M.PE.A.S. Adamantly refusing to put his work in finished form, he thwarted several
efforts by others to make the results available in print under his name. In partial
compensation for his lack of interest in pubhcatlon Fermat carried on a voluminous

correspondence with contemporary mathematicians. Most of what little we know
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problems and to whom he reported his successes. They did their best to publicize
Fermat’s talents by passing these letters from hand to hand or by making copies,
which were dispatched over the Continent.

As his parliamentary duties demanded an ever greater portion of his time, Fermat
was given to inserting notes in the margin of whatever book he happened to be
using. Fermat’s personal copy of the Bachet edition of Diophantus held in its margin
many of his famous thecorems in number theory. These were discovered by his son
Samuel 5 years after Fermat’s death. His son brought out a new edition of the
Arithmetica incorporating Fermat’s celebrated marginalia. Because there was little
space available, Fermat’s habit had been to jot down some result and omit all steps
leading to the conclusion. Posterity has wished many times that the margins of the
Arithmetica had been wider or that Fermat had been a little less secretive about his

methods.

5.2 FERMAT’S LITTLE THEOREM AND PSEUDOPRIMES

The most significant of Fermat’s correspondents in number theory was Bernhard
Frénicle de Bessy (1605-1675), an official at the French mint who was renowned for
his gift of manipulating large numbers. (Frénicle’s facility in numerical calculation is
revealed by the following incident: On hearing that Fermat had proposed the problem
of finding cubes that when increased by their proper divisors become squares, as is the
case with 72 4 (1 + 7 + 7?) = 202, he immediately gave four different solutions, and
supplied six more the next day.) Though in no way Fermat’s equal as a mathematician,
Frénicie alone among his contemporaries could chalienge Fermat in number theory
and Frénicle’s challenges had the distinction of coaxing out of Fermat some of his
carefully guarded secrets. One of the most striking is the theorem that states: If p
is a prime and a is any integer not divisible by p, then p divides a?~! — 1. Fermat
communicated the result in a letter to Frénicle dated October 18, 1640, along with
the comment, “I would send you the demonstration, if I did not fear its being too

]r\nn ”? Thic theorem hac cince hecome known ac “Farmat’e T ittle Theo ” ar 11101’
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Fermat’s Theorem,” to distinguish it from Fermat’s “Great” or “Last Theorem,”
which is the subject of Chapter 12. Almost 100 years were to elapse before Euler
published the first proof of the little theorem in 1736. Leibniz, however, seems not
to have received his share of recognition, for he left an identical argument in an
unpublished manuscript sometime before 1683.

We now proceed to a proof of Fermat’s theorem.
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a?~! = 1 (mod p).

Proof. We begin by considering the first p — 1 positive multiples of a; that is, the
integers

a,2a,3a,...,(p— a
None of these numbers is congruent moduio p to any other, nor is any congruent to
zero. Indeed, if it happened that
ra = sa (mod p) l<r<s<p-1

then a could be canceled to give r = s (mod p), which is 1mp0551b1e Therefore, the
previous set of integers must be congruent modulo p to 1,2,3,..., p — 1, taken in
some order. Multiplying all these congruences together, we find that

—1

1110

~—’

~~
3
2
oh

~—’

whence
a?~!(p — D! = (p — D! (mod p)

Once (p — 1)!is canceled from both sides of the preceding congruence (this is possible
because since p f (p — 1)!), our line of reasoning culminates in the statement that
a?~! = 1 (mod p), which is Fermat’s theorem.

This result can be stated in a slightly more general way in which the requirement

that p f a is dropped.

Corollary. If p is a prime, then a? = a (mod p) for any integer a.

Proaf. When p|a, the statement obviously holds; for, in this thtlﬂg a*=0=a
(mod p). If p } a, then according to Fermat’s theorem, we have a?~' = 1 (mod p).

When this congruence is multiplied by a, the conclusion a” = a (mod p) follows.

There is a different proof of the fact that a” = a (mod p), involving induction

on a. If a = 1, the assertion is that 17 = 1 (mod p), which clearly is true, as is the
case a = 0. Assuming that the result holds for a, we must confirm its validity for
a + 1. In light of the binomial theorem

242 2amRat UL AAL URIVRRIAGL MV LA,

(a+DP=aP+(f)aP1+~-+(£>apk+~-+(pfl)a+1

where the coefficient (%) is given by

(pN\__ P _plp=D--(p—k+1
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Our argument hinges on the observation that (£) =0 (mod p) for 1 <k < p — 1.
To see this, note that

m(§)=p@—my~@—k+nzoumdm
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He who seeks for methods without having a definite problem in mind seeks for
the most part in vain.
D. HILBERT

12.1 THE EQUATION x2 + y2? = z2
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custom peculiarly ill-suited to this role. He published very littie personally, preferring
to communicate his discoveries in letters to friends (usually with no more than the
terse statement that he possessed a proof) or to keep them to himself in notes.
A number of such notes were jotted down in the margin of his copy of Bachet’s
translation of Diophantus’s Arithmetica. By far the most famous of these marginal
comments is the one—presumably written about 1637—which states:

It is impossible to write a cube as a sum of two cubes, a fourth power as a sum of two
fourth powers, and, in general, any power beyond the second as a sum of two similar
powers. For this, I have discovered a truly wonderful proof, but the margin is too small
to contain it.

245
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=

1as 110 solution in the integers, other than the trivial solutions in \
of the variables is zero.

The quotation just cited has come to be known as Fermat’s Last Theorem or,
more accurately, Fermat’s conjecture. By the 1800s, all the assertions appearing in the
margin of his Arithmetica had either been proved or refuted—with the one exception

of the Last Theorem (hence the name). The claim has fascinated many generations of

mathematlr.'lans, professional and amateur alike, because it is so simple to understand
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has never come to light. Whatever demonstration he thought he possessed very
likely contained a flaw. Indeed, Fermat himself may have subsequently discovered
the error, for there is no reference to the proof in his correspondence with other
mathematicians.

Fermat did, however, leave a proof of his Last Theorem for the case n = 4. To
carry through the argument, we first undertake the task of identifying all solutions

in the positive integers of the equation
Xyt =2t (1)

Because the length z of the hypotenuse of a right triangle is related to the lengths
x and y of the sides by the famous Pythagorean equation x? 4+ y? = z2, the search
for all positive integers that satisfy Eq. (1) is equivalent to the problem of finding all
right triangles with sides of integral length. The latter problem was raised in the days
of the Babylonians and was a favorite with the ancient Greek geometers. Pythagoras
himself has been credited with a formula for infinitely many such triangles, namely,

x=2n+1 y =2n?+2n z=2n+2n+1

where #n is an arbitrary positive integer. This formula does not account for all right
triangles with integral sides, and it was not until Euclid wrote his Elements that a
complete solution to the problem appeared.

The following definition gives us a concise way of referring to the solutions of

Eq. (1).

Definition 12.1. A Pythagorean triple is a set of three integers x, y, z such that
x? + y? = z?; the triple is said to be primitive if ged(x , y, z) = 1.

Perhaps the best-known examples of primitive Pythagorean triples are 3, 4, 5
and 5, 12, 13, whereas a less obvious one is 12, 35, 37.

There are several points that need to be noted. Suyppose that x, y, z is any
Pythagorean triple and d = ged(x, y, z). If we write x = dx;, y = dy,, z = dzy,
then it is easily seen that

2, .2
XNty =—pm =

with ged(x;, y;1, z1) = 1. In short, x;, y;, z; form a primitive Pythagorean triple.
Thus, it is enough to occupy ourselves with finding all primitive Pythagorean triples;
any Pythagorean triple can be obtained from a primitive one upon multiplying by a
suitable nonzero integer. The search may be confined to those primitive Pythagorean
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triples x, y, z in which x > 0, y > 0, z > 0, inasmuch as all ot
positive ones through a simple change of sign.
Our development requires two preparatory lemmas, the first of which sets forth

a basic fact regarding primitive Pythagorean triples.

Lemma 1. If x, y, z is a primitive Pythagorean triple, then one of the integers x or y

ic even. while the other 1s odd
1s even, wh A6 a.

v il Vi 15 UG

Proof. If x and y are both even, then 2 | (x? + y2) or 2| z2, so that 2 | z. The inference
is that ged(x, y, z) > 2, which we know to be false. If, on the other hand, x and y
should both be odd, then x> = 1 (mod 4) and y? = 1 (mod 4), leading to

22 =x2+y*=2(mod4)

But this is equally imnossible
~ ~1 J i

mail 1481 N ! 11§

Given a primitive Pythagorean triple x, y, z, exactly one of these integers is
even, the other two being odd (if x, y, z were all odd, then x? + y? would be even,
whereas z2 is odd). The foregoing lemma indicates that the even integer is either x
or y; to be definite, we shall hereafter write our Pythagorean triples so that x is even
and y is odd; then, of course, z is odd.

It is worth noticing (and we will use this fact) that each pair of the integers x, y,
and z must be relatively prime. Were it the case that gcd(x, y) = d > 1, then there
would exist a prime p with p |d. Because d | x and d | y, we would have p | x and
p |y, whence p|x? and p|y? But then p|(x2 4 y?), or p|z?, giving p|z. This
would conflict with the assumption that gcd(x, y, z) =1, and so d = 1. In like
manner, one can verify that ged(y, z) = ged(x, z) = 1.

By virtue of Lemma 1, there exists no primitive Pythagorean triple x, y, z all of
whose values are prime numbers. There are primitive Pythagorean triples in which
z and one of x or y is a prime; for instance, 3, 4, 5; 11, 60, 61; and 19, 180, 181. It
is unknown whether there exist infinitely many such triples.

The next hurdle that stands in our way is to establish that if a and b are relatively
prime positive integers having a square as their product, then a and b are themselves
squares. With an assist from the Fundamental Theorem of Arithmetic, we can prove
considerably more, to wit, Lemma 2.

Lemma 2. If ab = ¢", where gcd(a, b) = 1, then a and b are nth powers; that is,
there exist positive integers ay, by for whicha = af, b = bY.

Proof. There is no harm in assuming thata > 1 and » > 1. If

v iz

a=pypy---pb  b=ql'qf g

are the prime factorizations of a and b, then, bearing in mind that ged(a, b) = 1, no
pi can occur among the g;. As a result, the prime factorization of ab is given by

. - .
ab=pi' - plgl . qF
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Letus suppose that ¢ can be factored into primes as ¢ = ull‘ u; S u‘;" . Then the condition
ab = ¢" becomes

k k J . nl 1,
pll...prq{’. q!_u’il’. u:l
From this we see that the primes uy, ..., u, are p1, ..., pr, q1, - . -, ¢s (in some order)
and nly, ..., nl; are the corresponding exponents ki, ..., k,, ji, ..., js. The conclu-

sion: Each of the integers k; and j; must be divisible by #n. If we now put

a, = prlq/ﬂ p;z/n . p;nr/ﬂ
an_jin js/n
by=q;""q "qs
then af = a, b} = b, as desired.
With the routine work now out of the way, the characterization of all primitive
) 5 SR PRI RNy (. A § PRI I PRI o, |
FyUldgorcdil Uipics 15 1dilly Sudignuoiwari
Theorem 12.1. All the solutions of the Pythagorean equation
2yt =72
satisfying the conditions
ged(x, v, ) =1 2|x x>0,y>0,2z>0
are given by the formulas
x = 2st y=s—1° =841
for integers s > ¢t > O such that gcd(s, 7) = 1 and s ¢ (mod 2).
Proof. To start, let x, y, z be a (positive) primitive Pythagorean trip 1e Because we
have agreed to take x even, and y and z bothodd, z — y a d + y are even 1ntegers
say,z — y = 2u and 7 4+ y = 2v. Now the equation x* + y 7 m be rewritten as

=y =G -+

whence

/{\2_/z—y\/ Y\,
\2) =\ 2 )=

Notice that u and v are relatively prime; indeed, ifged(u, v)=d > 1,thend | (u — v)
and d | (u + v), or equivalently, d | y and d | z, which violates the fact that ged(y , 2) =
1. Taking Lemma 2 into consideration, we may conclude that u and v are each perfect
squares; to be specific, let

11—1‘2 1)—(‘2
w — ¢ vV — O

where s and ¢ are positive integers. The result of substituting these values of u and v
reads

z=v+4u=s>+1t

y=v—u=s>—1

2 = dvu = 45%?
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the condition ged(y, z) = 1 forces ged(s, ¢) = 1. It remains for us to observe that if
s and r were both even, or both odd, then this would make each of y and z even, which
is an impossibility. Hence, exactly one of the pair s,  is even, and the other is odd; in
symbols, s z ¢ (mod 2).

Conversely, let s and ¢ be two integers subject to the conditions described before.
That x = 2st, y = 5% — 12, z = §? + t* form a Pythagorean triple follows from the
easily verified identity

x2 + y2 — (2Sl‘)2 + (s2 _ t2)2 — (s2 + t2)2 — Z2

To see that this triple is primitive, we assume that gcd(x , y, z) = d > 1 and take p to
be any prime divisor of d. Observe that p # 2, because p divides the odd integer z (one

of s and ¢ is odd, and the other is even, hence, s> + > = z must be odd). From ply

and nl> we ohtain 1 L v and nl{s — ) o nnt othorurdee 1 22 and n | 242
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But then p | s and p |z, which is incompatibie with gcd(s , 1) = 1. The implication of
all this is that d = 1 and so x, y, z constitutes a primitive Pythagorean triple. Theorem
12.1 is thus proven.

The table below lists some primitive Pythagorean triples arising from small
values of s and ¢. For each value of s = 2, 3, ..., 7, we have taken those values of ¢

’
that ara ralativaly d n nrhnnpwnr o 1¢ ndd
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X y z
s t (2s9) (s — %) 2+
2 1 4 3 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 11 61
7 2 28 45 53
7 4 56 33 65
7 6 84 13 85

From this, or from a more extensive table, the reader might be led to suspect
that if x, y, z is a primitive Pythagorean triple, then exactly one of the integers x or
y is divisible by 3. This is, in fact, the case. For, by Theorem 12.1, we have

x = 2st y =s% — ¢t z=s>+1°

where gcd(s , ) = 1. If either 3 | s or 3| ¢, then evidently 3 | x, and we need go no
further. Suppose that 3 f s and 3 } r. Fermat’s theorem asserts that

s?=1(@mod3) ¢*=1 (mod3)
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and so
y =s> —t?> =0 (mod 3)

In other words, y is divisible by 3, which is what we were required to show.
Let us define a Pythagorean triangle to be a right triangle whose sides are

of integral length. Our findings lead to an interesting geometric fact concerning
P‘Tt fnr\nrﬂnr‘] aQC Thnnrnm 1'7 ,7
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Theorem 12.2. The radius of the inscribed circle of a Pythagorean triangle is always
an integer.

Proof. Letr denote the radius of the circle inscribed in a right triangle with hypotenuse

of length z and sides of lengths x and y. The area of the triangle is equal to the sum of

the areas of the three triangles having common vertex at the center of the circle; hence,
1 1 1 1

1
Exy = Erx + Ery + Erz = Er(x +y+2z)

The situation is illustrated below:
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are given by

x = 2kst y = k(s? — %) z=k(s>+ 1%

for an appropriate choice of positive integers k, s, . Replacing x, y, z in the equation
xy = r(x + y + z) by these values and solving for r, it will be found that

2k2st(s? — 1)
r = 3 ~ N ] N o BN
k(2st + 8% — 12 4+ 52 +1?)
_ kt(s?—1?)
s+t
=kt(s — 1)

which is an integer.

We take the opportunity to mention another resuit relating to Pythagorean tri-
angles. Notice that it is possible for different Pythagorean triangles to have the same
area; for instance, the right triangles associated with the primitive Pythagorean triples
20, 21, 29 and 12, 35, 37 each have an area equal to 210. Fermat proved: For any
integer n > 1, there exist n Pythagorean triangles with different hypotenuses and
the same area. The details of this are omitted.
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. (a) Find three different Pythagorean triples, not necessarily primitive, of the form

16, vy, z.
(b) Obtain all primitive Pythagorean triples x, y, z in which x = 40; do the same for
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which x or y equals n.

(b) If n = 3 is arbitrary, find a Pythagorean triple (not necessarily primitive) having n as
one of its members.
[Hint: Assuming #n is odd, consider the triple n, %(n2 — 1), %(n2 + 1); for n even,
consider the triple n, (n/4) — 1, (n*/4) + 1.]

. Prove that in a primitive Pythagorean triple x, y, z, the product xy is divisible by 12,

hence 60 | xyz.

. For a given positive integer n, show that there are at least n Pythagorean triples having

the same first member.
[Hint: Let y, = 26222k _ 1)and z;, = 2K(2**"%* 4+ 1)fork =0, 1,2,...,n — 1.Then
ol Yk, 2 are all Pythagorean triples.]

. Verify that 3, 4, 5 is the only primitive Pythagorean triple involving consecutive positive

integers.

. Show that 3n, 4n, 5n where n = 1, 2, ... are the only Pythagorean triples whose terms

are in arithmetic progression.
[Hint: Call the triple in question x — d, x, x + d, and solve for x in terms of d.]

. Find all Pythagorean triangles whose areas are equal to their perimeters.

[Hint: Theequations x? 4+ y> = z?andx + y 4+ z = %xy imply that(x — 4)(y —4) = 8.]

. (a) Provethatif x, y, z is a primitive Pythagorean triple in which x and z are consecutive

positive integers, then
x=2t¢t+1) y=2t+1 z=2tt+ 1)+ 1

for some ¢ > 0.
[Hint: The equation 1 = z — x = 5% + t* — 25t implies that s — ¢ = 1.]

(b) Provethatifx, y, zis aprimitive Pythagorean triple in which the difference 7z — y = 2,
then

x =2t y=t2—1 z=1"+1

for some ¢t > 1.
Show that there exist infinitely many primitive Pythagorean triples x, y, z whose even
member x is a perfect square.
[Hint: Consider the triple 4n?, n* — 4, n* + 4, where n is an arbitrary odd integer.]
For an arbitrary positive integer n, show that there exists a Pythagorean triangle the radius
of whose inscribed circle is n.
[Hint: If r denotes the radius of the circle inscribed in the Pythagorean triangle having
sides a and b and hypotenuse ¢, then r = %(a + b — ¢). Now consider the triple 2n + 1,
2n* +2n,2n* +2n + 1.]
(a) Establish that there exist infinitely many primitive Pythagorean triples x, y, z in
which x and y are consecutive positive integers. Exhibit five of these.
[Hint: If x, x + 1, z forms a Pythagorean triple, then so does the triple 3x + 2z + 1,
3x4+2z+4+2,4x +3z+2.]
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{(b) Show that there exist infinitely many Pyihagorean triples x, y, z in which x and y
are consecutive triangular numbers. Exhibit three of these.
[Hint: If x, x + 1, z forms a Pythagorean triple, then so does t,y, f2,+1, (2x + 1)z.]
13. Use Problem 12 to prove that there exist infinitely many triangular numbers that are
perfect squares. Exhibit five such triangular numbers.
[Hint: If x, x 4+ 1, z forms a Pythagorean triple, then upon settingu =z —x — 1, v =
x 4+ (1 — 2), one obtains u(u + 1)/2 = v2.]

12.2 FERMAT’S LAST THEOREM

With our knowledge of Pythagorean triples, we are now prepared to take up the
one case in which Fermat himself had a proof of his conjecture, the case n = 4.
The technique used in the proof is a form of induction sometimes called “Fermat’s
method of infinite descent.” In brief, the method may be described as follows: It is
assumed that a solution of the problem in question is possible in the positive integers.
From this solution, one constructs a new solution in smaller positive integers, which
then leads to a still smaller solution, and so on. Because the positive integers cannot
be decreased in magnitude indefinitely, it follows that the initial assumption must
be false and therefore no solution is possible.

Instead of giving a proof of the Fermat conjecture for n = 4, it turns out to be
easier to establish a fact that is slightly stronger, namely, the impossibility of solving
the equation x* + y* = z? in the positive integers.

Theorem 12.3 Fermat. The Diophantine equation x* 4+ y* = z? has no solution in
positive integers x, y, z. .

Proof. With the idea of deriving a contradiction, let us assume that there exists a
positive solution xg, yg, 2o of x* + y* = z2. Nothing is lost in supposing also that
ged(xg, yo) = 1; otherwise, put ged(xy, yo) = d, xo = dxy, yo = dy1, 20 = d*z; to
get xf + yf = Z% with ged(x;, y;) = 1.

Expressing the supposed equation xj + y§ = z2 in the form

P+ 0 =17

we see that x2, y2, zo meet ali the requirements of a primitive Pythagorean tripie, and
therefore Theorem 12.1 can be brought into play. In such triples, one of the integers
x§ or y; is necessarily even, whereas the other is odd. Taking x§ (and hence xo) to be
even, there exist relatively prime integers s > ¢ > 0 satisfying

2 _

xy = 2st

ygzsz_tz
22

Z0=28" +1

where exactly one of s and ¢ is even. If it happens that s is even, then we have
l=y2=5>-1>=0-1=3(mod 4)

which is an impossibility. Therefore, s must be the odd integer and, in consequence,
t is the even one. Let us put ¢ = 2r. Then the equation xg = 25t becomes xg = 4sr,
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which says that

(3)

—) =sr

2

But Lemma 2 asserts that the product of two relatively prime integers [note that
ged(s, ) = 1 implies that ged(s, r) = 1] is a square only if each of the integers
itself is a square; hence, s = z}, r = w? for positive integers z, wy.

We wish to apply Theorem 12.1 again, this time to the equation

2 2 2
"1 yg =3¢

Because ged(s, t) = 1, it follows that ged(7, yo, s) = 1, making ¢, yg, § a primitive
Pythagorean triple. With ¢ even, we obtain

t =2uv

)’0=u2—vz

s=u? 4?2
for relatively prime integers u > v > 0. Now the relation
14
uy =g =rs= w?

signifies that u and v are both squares (Lemma 2 serves its purpose once more); say,
u = x?andv = y?. When these values are substituted into the equation for s, the result
is

z’]“=s=u2+vzzxf*-|-y{1
A crucial point is that, z; and ¢ being positive, we also have the inequality

O<z1<z2=s<s’<s’+1*=2

What has happened is this. Starting with one selution xg, yg, 2o of x4+ y4 =72,
we have constructed another solution x;, vy, z; such that 0 < z7; < z5. Repeating the
whole argument, our second solution would lead to a third solution x5, y2, zp with

< 79 < Z1, which, in turn, gives rise to a fourth. This process can be carried out as

many times as desired to produce an infinite decreasing sequence of positive integers
0> >3 >

Because there is only a finite supply of positive integers less than zg, a contradiction
occurs. We are forced to conclude that x* + y* = z2 is not solvable in the positive

As an immediate result, one gets the following corollary.

Corollary. The equation x* + y* = z* has no solution in the positive integers.

Proof. If xo, Yo, zo Were a positive solution of x* + y* = z*, then xo, yo, zg would

satisfy the equation x* + y* = z2, in conflict with Theorem 12.3.

If n > 2, then n is either a power of 2 or divisible by an odd prime p. In the first
case, n = 4k for some k > 1 and the Fermat equation x* + y" = z" can be written
as

@9+ O ="
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V ve just seen that this equation is impossible in the positive integers. Wher
n = pk, the Fermat equation is the same as

&P + OF) = 4P

If it could be shown that the equation u” + v# = w? has no solution, then, in par-

ticular, there would be no solution of the form u = x*, v = yk w = z*; hence,
- . ’

x" + y" = z" would not be solvable. Therefore, Fermat’s conject

I AU DAl UL Uule L

J s =
T ey il anees P -
L'ul 1V vud priiie 7 uucs ul

Py yP =zP

admit a solution in the positive integers.

Although the problem has challenged the foremost mathematicians of the last
300 years, their efforts tended to produce partial results and proofs of individual
cases. Euler gave the first proof of the Fermat conjecture for the prime p = 3 in the
year 1770; the reasoning was incomplete at one stage, but Legendre later supplied
the missing steps. Using the method of infinite descent, Dirichlet and Legendre
independently settled the case p =5 around 1825. Not long thereafter, in 1839,
Lamé proved the conjecture for seventh powers. With the increasing complexity
of the arguments came the realization that a successful resolution of the general
case called for different techniques. The best hope seemed to lie in extending the
meaning of “integer” to include a wider class of numbers and, by attacking the
problem within this enlarged system, obtaining more information than was possible
by using ordinary integers only.

The German mathematician Kummer made the major breakthrough. In 1843, he
submitted to Dirichlet a purported proof of Fermat’s conjecture based upon an ex-
tension of the integers to include the so-called “algebraic numbers” (that is, complex
numbers satisfying polynomials with rational coefficients). Having spent consider-
able time on the problem himself, Dirichlet was immediately able to detect the flaw
in the reasoning: Kummer had taken for granted that algebraic numbers admit a
unique factorization similar to that of the ordinary integers, which is not always true.

But Kummer was undeterred by this perplexing situation and returned to his
investigations with redoubled effort. To restore unique factorization to the algebraic
numbers, he was led to invent the concept of ideal numbers. By adjoining these new
entities to the aigebraic numbers, Kummer successfuliy proved Fermat’s conjecture
for a large class of primes that he termed regular primes (that this represented an
enormous achievement is reflected in the fact that the only irregular primes less
than 100 are 37, 59, and 67). Unfortunately, it is still not known whether there are
an infinite number of regular primes, whereas in the other direction, Jensen (1915)
established that there exist infinitely many irregular ones. Almost all the subsequent

nrogeress on the nrohlem was nl1fh1n he framewaork sugoested hy Knmmer
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In 1983, a 29-year-old West German mathematician, Gerd Faltings, proved that
for each exponent n > 2, the Fermat equation x™ 4+ y" = z” can have at most a finite
number (as opposed to an infinite number) of integral solutions. At first glance, this
may not seem like much of an advance; but if it could be shown that the finite number
of solutions was zero in each case, then the Fermat’s conjecture would be laid to rest
once and for all.
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for “almost all” values of #; that is, as n increases the percentage of cases in which
the conjecture could fail approaches zero.

With the advent of computers, various numerical tests were devised to verify
Fermat’s conjecture for specific values of n. In 1977, S. S. Wagstaff took over 2 years,
using computing time on four machines on weekends and holidays, to show that the

conjecture held for all n < 125000. Since that time, the range of exponents for which
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conjecture was known to be true for exponents up to 4000000.

For a moment in the summer of 1993, it appeared that the final breakthrough
had been made. At the conclusion of 3 days of lectures in Cambridge, England,
Andrew Wiles of Princeton University stunned his colleagues by announcing that he
could favorably resolve Fermat’s conjecture. His proposed proof, which had taken
7 years to prepare, was an artful blend of many sophisticated techniques developed by
other mathematlclans only within the preceding decade. The key insight was to llnk
equations of the kind posed by Fermat with the much-studied theory of elliptic curves;
that is, curves determined by cubic polynomials of the form y? = x> + ax + b,
where a and b are integers.

The overall structure and strategy of Wiles’s argument was so compelling that
mathematicians hailed it as almost certainly correct. But when the immensely com-
plicated 200-page manuscript was carefully scrutinized for hidden errors, it revealed
a subtle snag. No one claimed that the flaw was fatal, and bridging the gap was felt
to be feasible. Over a year later, Wiles provided a corrected, refined, and shorter
(125-page) version of his original proof to the enthusiastic reviewers. The revised
argument was seen to be sound, and Fermat’s seemingly simple claim was finally
settled.

The failure of Wiles’s initial attempt is not really surprising or unusual in math-
ematical research. Normally, proposed proofs are privately circulated and examined
for possible flaws months in advance of any formal announcement. In Wiles’s case,
the notoriety of one of number theory’s most elusive conjectures brought premature
publicity and temporary disappointment to the mathematical community.

To round out our historical digression, we might mention that in 1908 a prize
of 100,000 marks was bequeathed to the Academy of Science at Gottingen to be
paid for the first complete proof of Fermat’s conjecture. The immediate resuit was
a deluge of incorrect demonstrations by amateur mathematicians. Because only
printed solutions were eligible, Fermat’s conjecture is reputed to be the mathemat-
ical problem for which the greatest number of false proofs have been published;
indeed, between 1908 and 1912 over 1000 alleged proofs appeared, mostly printed
as private pamphlets. Suffice it to say, interest declined as the German inflation
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the Reichsmark and Deutsche Mark [DM] and after various currency revaluations,
the award was worth about DM 75,000 or $40,000 when it was presented to Wiles
in 1997.)

From x* + y* = z2, we move on to a closely related Diophantine equation,
namely, x* — y* = z2. The proof of its insolubility parallels that of Theorem 12.3,
but we give a slight variation in the method of infinite descent.
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positive integers x, v, z.
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Proof. The proof proceeds by contradiction. Let us assume that the equation admits
a solution in the positive integers and among these solutions xg, g, zo is one with
a least value of x; in particular, this supposition forces x¢ to be odd (Why?). Were
ged(xg, o) = d > 1, then putting xo = dx1, yo = dy|, we would have d*(x} — y{) =
Z%, whence d? | 7y or zo = d*z; for some z; > 0. It follows that x1, Y1, Z1 provides a
solution to the equation under consideration with 0 < x; < xq, which is an impossible
situation. Thus, we are free to assume a solution xg, g, zg in which ged(xg, yo) = 1.
The ensuing argument falls into two stages, depending on whether y, is odd or even.

First, consider the case of an odd integer yo. If the equation x§ — y§ = z3 is
written in the form z2 + (y2)? = (x2)?, we see that zo, y2, x3 constitute a primitive
Pythagorean triple. Theorem 12.1 asserts the existence of relatively prime integers
s >t > 0 for which

0 = 25t
V=521
2=t

Thus, it appears that
s — 1t = (5% + )7 — 1) = x3y8 = (xoyo)®

making s, f, X9y a (positive) solution to the equation x* — y* = z2. Because

0<s <+vs2+1tZ=x

we arrive at a contradiction to the minimal nature of xj.

For the second part of the proof, assume that yy is an even integer. Using the
formulas for primitive Pythagorean triples, we now write
2

[\

af
ny3

e

0
20 = s — 12
xg =52+ 1?
where s may be taken to be even and ¢ to be odd. Then, in the relation yg = 2st, we have
ged(2s, t) = 1. The now-customary application of Lemma 2 tells us that 25 and ¢ are
each squares of positive integers; say, 2s = w2, t = v2. Because w must of necessity

be an even integer, set w = 2u to get s = 2u?. Therefore,
xg=s2+t2=4u4+v4
and so 2u?, v2, x forms a primitive Pythagorean triple. Falling back on Theorem 12.1

again, there exist integers a > b > 0 for which

2u’® = 2ab
V2 =a? — b2
Xg = a’ + b?
where ged(a, b) = 1. The equality u? = ab ensures that a and b are perfect squares,
so that a = ¢? and b = d?. Knowing this, the rest of the proof is easy; for, upon
substituting,

vV=adt-p=c*-d*
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The resuit is a new solution ¢, d, v of the given equation x* — y* = z? and what is
more, a solution in which

O<c=+a<a’+b*=x

contrary to our assumption regarding xg.
The only resolution of these contradictions is that the equation x* — y* = 72
cannot be satisfied in the positive integers.

In the margin of his copy of Diophantus’s Arithmetica, Fermat states and proves
the following: The area of a right triangle with rational sides cannot be the square of
arational number. Clearing of fractions, this reduces to a theorem about Pythagorean
triangles, to wit, Theorem 12.5.

Theorem 12.5. The area of a Pythagorean triangle can never be equal to a perfect
(integral) square.

Proof. Consider a Pythagorean triangle whose hypotenuse has length z and other two
sides have lengths x and y, so that x2 + y? = z%. The area of the triangle in question
is %xy, and if this were a square, say u?, it would follow that 2xy = 4u?. By adding

and subtracting the last-written equation from x? + y? = z2, we are led to
(x + y)? = 2% + 4u? and (x — y)? = 7% — 4u?

When these last two equations are multiplied together, the outcome is that two fourth
powers have as their difference a square:

(2 — y3? = 24 — 16w = 24 — Qu)®

Because this amounts to an infringement on Theorem 12.4, there can be no Pythagorean
triangle whose area is a square.

There are a number of simple problems pertaining to Pythagorean triangles that
still await solution. The corollary to Theorem 12.3 may be expressed by saying that
there exists no Pythagorean triangle all the sides of which are squares. However,
it is not difficult to produce Pythagorean triangles whose sides, if increased by 1,
are squares; for instance, the triangles associated with the triples 132 — 1, 10> — 1,
14? — 1, and 287% — 1, 265% — 1, 3297 — 1. An obvious—and as yet unanswered—
question is whether there are an infinite number of such triangles. We can find
Pythagorean triangles each side of which is a triangular number. [By a triangular
number, we mean an integer of the form #, = n(n 4+ 1)/2.] An example of such
is the triangle corresponding to 13, 1143, f164. It is not known if infinitely many
Pythagorean triangles of this type exist.
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ing to prove Fermat’s conjecture has been far from wasted. The new mathematics
that was developed as a by-product laid the foundations for algebraic number theory
and the ideal theory of modern abstract algebra. It seems fair to say that the value of
these far exceeds that of the conjecture itself.

Another challenge to number theorists, somewhat akin to Fermat’s conjecture,
concerns the Catalan equation. Consider for the moment the squares and cubes of

i
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1,4,8,9, 16, 25, 27, 36, 49, 64, 81, 100, . ..

We notice that 8 and 9 are consecutive integers in this sequence. The medieval
astronomer Levi ben Gerson (1288—1344) proved that there are no other consecutive

powers of 2 and 3; to put it another way, he showed that if 3" — 2" = &1, with

1 and 1 the — ) and ’2T1'7'1QE] Farmat’c athnd
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of infinite descent, dealt with the equation x*> — y? = +1, proving that x = 2 and
y = 3. Catalan himself contributed little more to the consecutive-power problem
than the assertion (1844) that the only solution of the equation x™ — y" =1 in
integers x, y, m, n, all greaterthan 1,ism = y = 2, n = x = 3. This statement, now
known as Catalan’s conjecture, was proved, in 2002.

Over the years, the Catalan equation x™ — y" = 1 had been shown to be impos-
sible of solution for special values of m and n. For example in 1850, V. A. Lebesgue
proved that x™ — y? = 1 admits no solution in the positive integers for m # 3; but,
it remained until 1964 to show that the more difficult equation x> — y"” = 1 is not
solvable for n # 3. The cases x* — y* = 1 and x™ — y* = 1, withm # 2, were suc-
cessfully resolved in 1921. The most striking result, obtained by R. Tijdeman in
1976, is that x™ — y" = 1 has only a finite number of solutions, all of which are
smaller than some computable constant C > 0; that is, x™, y" < C.

Suppose that Catalan’s equation did have a solution other than 32 — 23 = 1.
If p and g are primes dividing m and n respectively, then x™/7 and y"/? would
provide a solution to the equation u? — v¢ = 1. What needed to be shown was that
this equation was not solvable in integers «, v > 2 and distinct primes p, g > 5. One
approach called for obtaining explicit bounds on the possible size of the exponents. A
series of investigations continuaily sharpened the restrictions until by the year 2000
it was known that 3 - 10% < p < (7.15)10'! and 3.10® < g < (7.75)10'°. Thus, the
Catalan conjecture could in principle be settled by exhaustive computer calculations;
but until the upper bound was lowered, this would take a long time.

In 2000, Preda Mihailescu proved that for a Catalan solution to exist, p and g
must satisfy the simultaneous congruences

P77l =1(modg¢?) and ¢
These are known as double Wieferich primes, after Arthur Wieferich, who inves-
tigated (1909) the congruence 27! = 1 (mod p?). Such pairs of primes are rare,
with only six pairs having been identified by the year 2001. Furthermore, as each
of these 12 pnmes is less than 3 - 10%, none satisfied the known restrictions. Taking

advantage of his results on Wieferich primes, Mihailescu continued to work on the
oroblem. He finally settled the famous question earlv in the following vear: the onls
provieim. nc inauny settled the famous qucstion eariy iii tnc rouoOwing ye: the o dy

consecutive powers are 8 and 9.
One interesting consequence of these results is that no Fermat number F,, =
22" 4+ 1 can be a power of another integer, the exponent being greater than 1. For if
F, = a™,withm > 2, thena™ — (22" ')? = 1, which would imply that the equation
x™ — y? = 1 has a solution.
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. Show that the equation x? 4+ y? = z> has infinitely many solutions for x, y, z positive

integers.
[Hint: Foranyn > 2, letx = n(n? — 3) and y = 3n? —1.]

. Prove the theorem: The only solutions in nonnegative integers of the equation x2 + 2y? =

z%, with ged(x , y, z) = 1, are given by
x = +(2s? — %) y = 2st 7=2s2+ ¢

where s, t are arbitrary nonnegative integers.
[Hint: If u, v, w are such that y = 2w, z + x = 2u, z — x = 2v, then the equation
becomes 2w? = uv.]

. In a Pythagorean triple x, y, z, prove that not more than one of x, y, or z can be a perfect

square.

. Prove each of the following assertions:

(a) The system of simultaneous equations
x4+yr=72-1 and 2—yr=w?-1

has infinitely many solutions in positive integers x, y, Z, w.
[Hint: For any integer n > 1, take x = 2n% and y = 2n.]
(b) The system of simultaneous equations

2 4yr=27 and Xt -y =w
admits no solution in positive integers x, y, z, w.
(c) The system of simultaneous equations

4y =241 and 2 -y =wr41

has infinitely many solutions in positive integers x, y, z, w.

[Hint: For any integer n > 1, take x = 8n* + 1 and y = 8n3.]
Use Problem 4 to establish that there is no solution in positive integers of the simultaneous
equations

2 2

x4y =z and 242y =w
[Hint: Any solution of the given system also satisfies z2 + y? = w? and 7> — y? = x2.]
Show that there is no solution in positive integers of the simultaneous equations

2 2

x2+y2=z and P4t =w

hence, there exists no Pythagorean triangle whose hypotenuse and one of whose sides
form the sides of another Pythagorean triangle.
[Hint: Any solution of the given system also satisfies x* + (wy)? = z%.]

. Prove that the equation x* — y* = 272 has no solutions in positive integers x, y, z.

[Hint: Because x, y must be both odd or both even, x? + y? = 2a%, x 4+ y = 2b?,
X—y= 2¢? for some a, b, ¢; hence, a® = b* + ¢ ]

Verify that the only solution in relatively prime positive integers of the equation x* + y* =
27%isx=y=z=1.

[Hint: Any solution of the given equation also satisfies the equation

4_ 4n2
z4—<xy>4=(xTy) ]
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9. Prove that the Diophantine equation x* — 4y* = z? has no solution in positive integers

X, ¥, 2.
[Hint: Rewrite the given equation as (2y?)? 4+ z> = (x2)? and appeal to Theorem 12.1.]

10. Use Problem 9 to prove that there exists no Pythagorean triangle whose area is twice a
perfect square.
[Hint: Assume to the contrary that x?> + y*> = z% and %xy =2w?. Then (x + y)* =
22 + 8w?, and (x — y)? = z% — 8w?. This leads to z* — 42w)* = (x% — y?)2.]

11. Prove the theorem: The only solutions in positive integers of the equation

1 1 1
x_2+F:z—2 ged(x, y, 2) =1
are given by
x = 2st(s? + 12) y=s*—1* z = 2st(s* — %)

1e of which is even, with ¢ > 1,

»

12. Show that the equatio

where s, ¢ are relatively prime positive int

has no solution in positive integers.
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REPRESENTATION OF INTEGERS
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AS SUMS OF SQUARES

The object of pure Physic is the unfolding of the laws of the intelligible world;
the object of pure Mathematic that of unfolding the laws of human intelligence.
J. J. SYLVESTER

13.1 JOSEPH LOUIS LAGRANGE
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comparabie stature appeared for over a century. in Engiand, meanwhile, mathematics
was being pursued with restless zeal, first by Newton, then by Taylor, Stirling, and
Maclaurin, while Leibniz came upon the scene in Germany. Mathematical activity
in Switzerland was marked by the work of the Bernoullis and Euler. Toward the end
of the 18th century, Paris did again become the center of mathematical studies, as
Lagrange, Laplace, and Legendre brought fresh glory to France.
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Louis Ldgrdngc \1 /30—1613) was, next io EUICI' the foremosi HldtIlCHldLl(,ldIl of the
18th century. When he entered the University of Turin, his great interest was in
physics, but, after chancing to read a tract by Halley on the merits of Newtonian
calculus, he became excited about the new mathematics that was transforming celes-
tial mechanics. He applied himself with such energy to mathematical studies that he
was appointed, at the age of 18, Professor of Geometry at the Royal Artillery School

in Turin. The French Academv of Sciences soon hecame accustomed to includine
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Lagrange among the competitors for its biennial prizes: between 1764 and 1788, he
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Joseph Louis Lagrange
(1736-1813)

(Dover Publications, Inc.)

won five of the coveted prizes for his applications of mathematics to problems in
astronomy.

In 1766, when Euler left Berlin for St. Petersburg, Frederick the Great arranged
for Lagrange to fill the vacated post, accompanying his invitation with a modest
message that said, “It is necessary that the greatest geometer of Europe should
live near the greatest of Kings.” (To D’ Alembert, who had suggested Lagrange’s
name, the King wrote, “To your care and recommendation am I indebted for having
replaced a half-blind mathematician with a mathematician with both eyes, which will
especially please the anatomical members of my academy.”) For the next 20 years,
Lagrange served as director of the mathematics section of the Berlin Academy,
producing work of high distinction that culminated in his monumental treatise, the
Mécanique Analytique (published in 1788 in four volumes). In this work he unified
general mechanics and made of it, as the mathematician Hamiiton was later to
say, “a kind of scientific poem.” Holding that mechanics was really a branch of pure
mathematics, Lagrange so completely banished geometric ideas from the Mécanique
Analytique that he could boast in the preface that not a single diagram appeared in
its pages.

Frederick the Great died in 1786, and Lagrange, no longer finding a sympathetic

utmesp‘hefe at the Prussian court, decided to accept the invitation of Louis XVI to

settle in Paris, where he took French citizenship. But the years of constant activity
had taken their toll: Lagrange fell into a deep mental depression that destroyed his
interest in mathematics. So profound was his loathing for the subject that the first
printed copy of the Mécanique Analytique—the work of a quarter century—Ilay
unexamined on his desk for more than 2 years. Strange to say, it was the turmoil
of the French Revolution that helped to awaken him from his lethargy. Following
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the abolition of all the old French universities (the Academy of Sciences was also

suppressed) in 1793, the revolutionists created two new schools, with the humble
titles of Ecole Normale and Ecole Polytechnique, and Lagrange was invited to lecture
on analysis. Although he had not lectured since his early days in Turin, having
been under royal patronage in the interim, he seemed to welcome the appointment.
Subject to constant surveillance, the instructors were pledged “neither to read nor
reneat from memnrv > and transc r of their IPr‘tnrev as delivered were 1 specte

Araccrant nnoa gatnad o A

y the authorities. Despite the pct 7 harassments, Lagrange gained a reputati
an inspiring teacher. His lecture notes on differential calculus formed the basis of
another classic in mathematics, the Théorie des Fonctions Analytique (1797).
Although Lagrange’s research covered an extraordinarily wide spectrum, he
possessed, much like Diophantus and Fermat before him, a special talent for the
theory of numbers. His work here included: the first proof of Wilson’s theorem that
if nisaprime, then (n — 1)! = —1 (mod n); the investigation of the conditions under
which +2 and =45 are quadratic residues or nonresidues of an odd prime (—1 and
43 having been discussed by Euler); finding all integral solutions of the equation
x? — ay? = 1; and the solution of a number of problems posed by Fermat to the
effect that certain primes can be represented in particular ways (typical of these is
the result that asserts that every prime p = 3 (mod 8) is of the form p = a? + 2b?).
This chapter focuses on the discovery for which Lagrange has acquired his greatest
renown in number theory, the proof that every positive integer can be expressed as

the sum of four squares.

13.2 SUMS OF TWO SQUARES

Historically, a problem that has received a good deal of attention has been that of
representing numbers as sums of squares. In the present chapter, we develop enough
material to settle completely the following question: What is the smallest value n
such that every positive integer can be written as the sum of not more than n squares?
Upon examining the first few positive integers, we find that

1=12
2=1%2+12
3=12+12+12
4 =22
5=2241?

6=2%+1%+17?
7=22+124+1%2 412

Because four squares are needed in the representauon of 7, a partial answer to
our question is that n > 4. Needless to say, there remains the possibility that some
integers might require more than four squares. A justly famous theorem of Lagrange,
proved in 1770, asserts that four squares are sufficient; that is, every positive integer
is realizable as the sum of four squared integers, some of which may be 0 = 0%, This
is our Theorem 13.7.
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that a positive integer be representable as the sum of two squares. The problem may
be reduced to the consideration of primes by the following lemma.

Lemma. If m and n are each the sum of two squares, then so is their product mn.

'rngf Tfm — a2_l_ h2 qndvz
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mn = (a® + b*)(c? + d*) = (ac + bd)?* + (ad — bc)?
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It is clear that not every prime can be written as the sum of two squares; for
instance, 3 = a* + b? has no solution for integral a and b. More generally, one can
prove Theorem 13.1.

Theorem 13.1. No prime p of the form 4k + 3 is a sum of two squares.

Proof. Modulo 4, we have a = 0, 1, 2, or 3 for any integer a; consequently, a*> = 0 or
1 (mod 4). It follows that, for arbitrary integers a and b,

a’?+b*>=0,1,o0r2 (mod4)

A AN ilan miattoin gm w2 1 B2 e il
noa 4, tne €quation p = a” + o0~ 18 1mpoSsinI€.
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On the other hand, any prime that is congruent to 1 modulo 4 is expressible as
the sum of two squared integers. The proof, in the form we shall give it, employs a
theorem on congruences due to the Norwegian mathematician Axel Thue. This, in
its turn, relies on Dirichlet’s famous pigeonhole principle.

Pigeonhoie principie. If n objects are placed in m boxes (or pigeonhoies) and if
n > m, then some box will contain at least two objects.

Phrased in more mathematical terms, this simple principle asserts that if a set
with # elements is the union of m of its subsets and if » > m, then some subset has
more than one element.

Lemma Thue’slemma. Let p be a prime and let gcd(a , p) = 1. Then the congru-
ence

ax =y (mod p)
admits a solution xg, yg, where

—

0 < |xol </p and 0 < |yl < &/
Proof. Letk = [,/p] + 1, and consider the set of integers
S={ax—yl0<x<k-1,0=<y<k-1)}

Because ax — y takes on k> > p possible values, the pigeonhole principle guarantees
that at least two members of § must be congruent modulo p; call them ax; — y; and
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axy — yp, where xy # x, or y; # y,. Then we can wriie
a(x; — x2) = y1 — y2 (mod p)

Setting xg = x; — x2 and yg = y; — »», it follows that xy and yy provide a solution
to the congruence ax = y (mod p). If either xy or yg is equal to zero, then the fact
that ged(a, p) = 1 can be used to show that the other must also be zero, contrary to
assumption. Hence, 0 < |xo| <k —1 < /pand 0 < |y| <k -1 < /p.

We are now ready to derive the theorem of Fermat that every prime of the form
4k + 1 can be expressed as the sum of squares of two integers. (In terms of priority,
Albert Girard recognized this fact several years earlier and the result is sometimes
referred to as Girard’s theorem.) Fermat communicated his theorem in a letter to
Mersenne, dated December 25, 1640, stating that he possessed an irrefutable proof.
However, the first published proof was given by Euler in 1754, who in addition
succeeded in showing that the representation is unique.

Theorem 13.2 Fermat. An odd prime p is expressible as a sum of two squares if
and only if p = 1 (mod 4).

Proof. Although the “only if” part is covered by Theorem 13.1, let us give a differ-
ent nroof here Sunnose that » can he written ac the sinm of two sanarece. let us cav
ent proof here. Suppose that p can be written as the sum of two squares, let us say
- 22 10 L2 Mapanice 1 ic a8 mimime e hava 3 Vo oand o VL (TE o1 o dlam o | L2
Yy — u T U . Dlldud [Jlbdpllllc we lave p 4 a aua p o4 v.o A\ pa, uieu puvo,
and so p | b, leading to the contradiction that p? | p.) Thus, by the theory of linear con-
gruences, there ex1sts an integer ¢ for which b¢c = 1 (mod p). Modulo p, the relation

(ac)® + (bc)® = pc? becomes
(ac)® = —1 (mod p)
making —1I a quadratic residue of p. At this point, the corollary to Theorem 9.2 comes
to our aid, for (—1/p) = 1 only when p = 1 (mod 4).
For the converse, assume that p = 1 (mod 4). Because —1 is a quadratic residue

of p, we can find an integer a satisfying a*> = —1 (mod p); in fact, by Theorem 5.4,
a = [(p — 1)/2]! is one such integer. Now ged(a, p) = 1, so that the congruence

ax =y (mod p)
admits a solution xg, yo for which the conclusion of Thue’s lemma holds. As a result,
2 2.2 __ o 2 2o
—Xy =a"xj = (axp)” =y, (mod p)

or x2 4+ yi = 0 (mod p). This says that

0 < x5+ )’o < 2p,theim 1pucat10uo 3
and we are finished.

Counting a? and (—a)? as the same, we have the following corollary.

Corollary. Any prime p of the form 4k + 1 can be represented uniquely (aside from
the order of the summands) as a sum of two squares.
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Proof. To establish the uniqueness assertion, suppose that
p=at+br = +4d°
where a, b, ¢, d are all positive integers. Then

a*d?® — b*c? = p(d?* — b*) = 0 (mod p)

whence ad = bc (mod p) or ad = —bc (mod p). Because a, b, ¢, d are all less than
that

/p, these relations im
2 e e

nly
ad —bc=0 or ad+bc=p
If the second equality holds, then we would have ac = bd}; for,

p? = (@® + b*)(c? + d*) = (ad + bc)? + (ac — bd)?
= 52 (g — L,,I\z
— ¥V A
and so ac — bd = 0. It follows that either
ad = bc or ac = bd

Suppose, for instance, that ad = bc. Then a | be, with ged(a , b) = 1, which forces
a|, ¢; say, ¢ = ka. The condition ad = bc = b(ka) then reduces to d = bk. But

implies that £ = 1. In this case, we get a = ¢ and b = d. By a similar argument, the
condition ac = bd leads to a = d and b = c¢. What is important is that, in either event,
our two representations of the prime p turn out to be identical.
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5x = y (mod 13)
is obtained by considering the set
S=8x—-y|0<x,y <4}

me o T e OO . e 2l
e eiements O1 O are just ue lIlngCIb

0 5 10 15
-1 4 9 14
-2 3 8 13
-3 2 12

which, modulo 13, become

0 5 10 2
12 4 9 1
11 3 8 0
10 2 12
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5.1-3=2=5.3—0(mod 13)

5(1 —3) =3 (mod 13)
Thus, we may take xo = —2 and yy = 3 to obtain
13=1xj+y =2"+3

Remark. Some authors would claim that any prime p = 1 (mod 4) can be written as
a sum of squares in eight ways. For with p = 13, we have

13 =22 433 =22 4 (=32 = (—2)2 4+ 32 = (=2)* + (=3)?
=32422 =32 4 (=2)? = (=3)2 + 2% = (=3)* + (-2)?

Because all eight representations can be obtained from any one of them by interchang-
ing the signs of 2 and 3 or by interchanging the summands, there is “essentially” only
one way of doing this. Thus, from our point of view, 13 is uniquely representable as
the sum of two squares.

The next step in our program is to characterize explicitly those positive integers that
can be realized as the sum of two squares.

Mhanwmarr T2 2 T at tha macifion intagar s
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free. Then 7 can be represented as the sum of
prime factor of the form 4k + 3.

o squares if and only if m contains no

Proof. To start, suppose that m has no prime factor of the form 4k + 3. If m = 1, then
n = N? + 0? and we are through. In the case in whichm > 1,letm = pyp,--- p, be
the factorization of m into a product of distinct primes. Each of these primes p;, being
equal to 2 or of the form 4k + 1, can be written as the sum of two squares. Now, the
identity

(a® + b*)(c® + d*) = (ac + bd)* + (ad — bc)?

shows that the product of two (and, by induction, any finite number) integers, each
of which is representable as a sum of two squares, is likewise so representable. Thus,
there exist integers x and y satisfying m = x2 + y%. We end up with

n=N*m = N*(x?+ y*) = (Nx)* + (Ny)?

a sum of two squares.
Now for the opposite direction. Assume that n can be represented as the sum of
two squares

n=a*+b*=Nm
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and let p be any odd prime divisor of m (without loss of generality, it may be assumed
thatm > 1). If d = ged(a, b), thena = rd, b = sd, where gcd(r , 5) = 1. We get

d*(r* + )= N*m
and so, m being square-free, d* | N2. But then
N2)
2,2 (2 —
re+s8° = ( — |m= tp
\a&"/
for some integer ¢, which leads to

r? 4+ s? =0 (mod P)

Now the condition gcd(r , s) = 1 implies that one of r or s, say r, is relatively prime
to p. Let r’ satisfy the congruence

rr' 1 (mod n»n)
r? (mod p)

When the equation r? 4+ s2 = 0 (mod p) is multiplied by (+')?, we obtain
(sr')* + 1 = 0 (mod p)

or, to put it differently, (—1/p) = 1. Because —1 is a quadratic residue of p, Theorem
9.2 ensures that p = 1 (mod 4). The implication of our reasoning is that there is no
prime of the form 4k + 3 that divides m.

Corollary. A positive integer n is representable as the sum of two squares if and only
if each of its prime factors of the form 4k + 3 occurs to an even power.

Example 13.1. The integer 459 cannot be written as the sum of two squares, because
459 = 3% . 17, with the prime 3 occurring to an odd exponent. On the other hand,
153 = 3% . 17 admits the representation

153 =324 + 1%) = 122 + 32
Somewhat more complicated is the example n = 5 - 7> - 13 - 17. In this case, we have
n="7.5-13-17=7"2* + 1H(32 + 2H4? + 1%
Two applications of the identity appearing in Theorem 13.3 give
P +2HA*+1H = (1242 + (3 — 8)* = 14 4 57
and
(2% + 1H(14% +5) = 28+ 5% + (10 — 14)2 = 332 4 42
When these are combined, we end up with

n=7%33% + 4%) = 231? 4 28?

There exist certain positive integers (obviously, not primes of the form 4k 4 1)

that can be represented in more than one way as the sum of two squares. The smallest

18

25 =47 +3* =5 +0°
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o= (37) -(45°)

allows us to manufacture a variety of such examples. Take n = 153 as an illustration;

here,
/1—.+9\2 /17_9\2
153 =17-9 = — = 132 _ 42
(=) (%)
and
51+3\> [/51-3\"
153:51'3:( .+ \ —(".—\‘ = 27% — 242
\ / \ 2 /
so that

132 — 4> = 27> — 24
This yields the two distinct representations
27* + 4% =247 4 132 = 745

At this stage, a natural question should suggest itself: What positive integers
admit a representation as the difference of two squares? We answer this below.

Theorem 13.4. A positive integer n can be represented as the difference of two squares
if and only if #n is not of the form 4k + 2.

Proof. Because a? = 0 or 1 (mod 4) for all integers a, it follows that
a’ = b*=0,1, or 3 (mod 4)

Thus, if n = 2 (mod 4), we cannot have n = a? — b? for any choice of a and b.
Turning affairs around, suppose that the integer n is not of the form 4k + 2; that
istosay,n=0,1,or3 (mod4). fn =1 or3 (mod4), thenn + 1 and n — 1 are both

an imtegerce: han
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a difference of squares. If n = 0 (mod 4}, then we have

2 2
n=(2+1) - (5-1)
\4 / \4 7/
Corollary. An odd prime is the difference of two successive squares.

Examples of this last corollary are afforded by

11 = 6% — 52 17 = 92 — 82 29 = 152 — 147
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Another point worth mentioning is that the representation of a given prime p as
the difference of two squares is unique. To see this, suppose th t
2 _
p = b* = (a — b)(a + b)

where a > b > (. Because 1 and p are the only factors of p, necessarily we have
—-b=1 and a+b=p

a
from which it may be inf.

1A 1ian

aq—=—- and b=—

Thus, any odd prime p can be written as the difference of the squares of two integers
in precisely one way; namely, as

(p+1\* [p-—

r={7) (5

A different situation occurs when we pass from primes to arbitrary integers.
Suppose that n is a positive integer that is neither prime nor of the form 4k + 2.
Starting with a divisor d of n, put d’ = n/d (it is harmless to assume that d > d’).

Now if d and d’ are both even, or both odd, then (d + d')/2 and (d — d’)2 are integers.
Furthermore, we may write

N\ 2 Y AN
= dd — d+d B d—d
2 2

By way of illustration, consider the integer n = 24. Here,

1\?

(12 4+2\% /12 —-2\?
24:12-2:(\

:72_52

-~ ~

|
/N 4 )

6+4\° [6-4\" _,
U=6-4=——") - (—) =52-1
(5°) -(57)

giving us two representations for 24 as the difference of squares.

and

PROBLEMS 13.2

1. Represent each of the primes 113, 229, and 373 as a sum of two squares.
2. (a) It has been conjectured that there exist infinitely many prime numbers p such that
p = n?+ (n + 1)? for some positive integer n; for example, 5 = 12 +2% and 13 =
22 + 32, Find five more of these primes.
(b) Another conjecture is that there are infinitely many prime numbers p of the form
p=2+ p%, where pj is a prime. Find five such primes.
3. Establish each of the following assertions:
(a) Each of the integers 2", where n = 1, 2, 3, .. ., is a sum of two squares.
(b) If n = 3 or 6 (mod 9), then n cannot be represented as a sum of two squares.
(c) If n is the sum of two triangular numbers, then 4n 4+ 1 is the sum of two squares.
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(d) Every Fermat number £, = 2% 4+ 1, where n > 1, can be expressed as the sum of
two squares.

(e) Every odd perfect number (if one exists) is the sum of two squares.
[Hint: See the Corollary to Theorem 11.7.]

. Prove that a prime p can be written as a sum of two squares if and only if the congruence

x% 4 1 =0 (mod p) admits a solution.

(a) Show that a positive integer n is a sum of two squares if and only if n = 2"a?b,
where m > 0, a is an odd integer, and every prime divisor of & is of the form
4k + 1.

(b) Write the integers 3185 =5-72-13; 39690 =2-3%.5.7%; and 62920 =
23-5.112 - 13 as a sum of two squares.

. Find a positive integer having at least three different representations as the sum of two

squares, disregarding signs and the order of the summands.
[Hint: Choose an integer that has three distinct prime factors, each of the form 4k + 1.]

. If the positive integer n is not the sum of squares of two integers, show that n cannot be

represented as the sum of two squares of rational numbers.

[Hint: By Theorem 13.3, there is a prime p = 3 (mod 4) and an odd integer k£ such that
p* | n, whereas p**! f n. If n = (a/b)* + (c/d)?, then p will occur to an odd power
on the left-hand side of the equation n(bd)? = (ad)* + (bc)?, but not on the right-hand
side.]

. Prove that the positive integer n has as many representations as the sum of two squares

a ragantatinn
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representatlon for 2n, and conversely.]

of » ag 2 enm o
L fi @3 4 Sulll U

"'h

-
.
<

. (a) If n is a triangular number, show that each of the three successive integers 8n2,

8n% + 1, 8n? + 2 can be written as a sum of two squares.

(b) Prove that of any four consecutive integers, at least one is not representable as a sum

of two squares.
rove the fulluwiué'
d) Ifa prlmc number is the sum of two or four squares of different prlIIle then one 01
these primes must be equal to 2.

(b) If a prime number is the sum of three squares of different primes, then one of these
primes must be equal to 3.

(a) Let p be an odd prime. If p|a? + b?, where ged(a, b) = 1, prove that the prime
p =1 (mod 4).
[Hint: Raise the congruence a®> = —b? (mod p) to the power (p — 1)/2 and apply
Fermat’s theorem to conclude that (—1)7~1/2 = 1]

(b) Use part (a) to show that any positive divisor of a sum of two relatively prime squares
is itself a sum of two squares.

Establish that every prime number p of the form 8k + 1 or 8k + 3 can be written as

p = a® + 2b? for some choice of integers a and b.

[Hint: Mimic the proof of Theorem 13.2.]

Prove the following:

(a) A positive integer is representable as the difference of two squares if and only if it is
the product of two factors that are both even or both odd.

(b) A positive even integer can be written as the difference of two squares if and only if
it is divisible by 4.

Verify that 45 is the smallest positive integer admitting three distinct representations as

the difference of two squares.

[Hint: See part (a) of the previous problem.]

——
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as

15. For any n > 0, show thai there exisis a posiiive inieger that can be expressed in n distinci
ways as the difference of two squares.
[Hint: Note that, fork=1,2,...,n
22n+1 — (22n—k + 2k—l)2 _ (22n—-k _ 2/(-—1)2 ]
16. Prove that every prime p = 1 (mod 4) divides the sum of two relatively prime squares,

where each square exceeds 3.
[Hint: Given an odd primitive root r of p, we have r* = 2 (mod p) for some k; hence

=174l = _9 {mmi p).]

ooV

17. F01 aprime p=1or3 (mod 8), show that the equation x? + 2y? = p has a solution.

18. The English number theorist G. H. Hardy relates the following story about his young
protégé Ramanujan: “I remember going to see him once when he was lying ill in Putney.
I had ridden in taxi-cab No. 1729, and remarked that the number seemed to me rather a
dull one, and that I hoped it was not an unfavorable omen. ‘No,” he reflected, ‘it is avery

intaracting numher: it ic fhn cma
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13.3 SUMS OF MORE THAN TWO SQUARES

Although not every positive integer can be written as the sum of two squares, what
about their representation in terms of three squares (0? still permitted)? With an

extra square to add, it seems reasonable that there should be fewer exceptions. For
ingtance whan anly two canarag are allawead we have no reanracantatinn for enich
11 LALvL, 11v11 Ulll)’ LYWU JSUUALLDY dlU AllUyiAl, W llave 11v lbylbbbllLaLIUll 1U1 sunill

14—32+22+12 33=5%4+2%242° 67 = 7% + 3% + 32

It is still possible to find integers that are not expressible as the sum of three squares.
Theorem 13.5 speaks to this point.

Theorem 13.5. No positive integer of the form 4"(8m + 7) can be represented as the
sum of three squares.

Proof. To start, let us show that the integer 8m + 7 is not expressible as the sum of
three squares. For any integer a, we have a®> = 0, 1, or 4 (mod 8). It follows that

a*+ b +¢*=0,1,2,3,4,5, 0r 6 (mod 8)
for any choice of integers a, b, c. Because we have 8m + 7 = 7 (mod 8), the equation
a® + b? + c* = 8m + 7 is impossible.
Next, let us suppose that 4"(8m + 7), where n > 1, can be written as
4" 8m +7) = a® + b* + 2
Then each of the integers a, b, c must be even. Puttinga = 2a,,b = 2b,,c = 2¢;, we get
4 =1@m+ Ty =al + b2 + 2

If n — 1 > 1, the argument may be repeated until 8m + 7 is eventually represented
as the sum of three squared integers; this, of course, contradicts the result of the first
paragraph.

We can prove that the condition of Theorem 13.5 is also sufficient in order that
a positive integer be realizable as the sum of three squares; however, the argument
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two (or even four) squares, there is no algebraic identity that expresses the product
of sums of three squares as a sum of three squares.

With this trace of ignorance left showing, let us make a few historical remarks.
Diophantus conjectured, in effect, that no number of the form 8m + 7 is the sum
of three squares, a fact easily verified by Descartes in 1638. It seems fair to credit
Fermat with being the fir: state in full t ber can be written
as a sum of LuI‘ﬁc squarea int form 4"(8m + 7),
where m and n are nonnegative integers. This was proved in a complicated manner
by Legendre in 1798 and more clearly (but by no means easily) by Gauss in 1801.

As just indicated, there exist positive integers that are not representable as the
sum of either two or three squares (take 7 and 15, for simple examples). Things
change dramatically when we turn to four squares: There are no exceptions at all!

The first explicit reference to the fact that every positive integer can be written as
the sum of four squares, counting 0?, was made by Bachet (in 1621) and he checked
this conjecture for all integers up to 325. Fifteen years later Fermat claimed that he
had a proof using his favorite method of infinite descent; however, as usual, he gave
no details. Both Bachet and Fermat felt that Diophantus must have known the result;
the evidence is entirely conjectural: Diophantus gave necessary conditions in order
that a number be the sum of two or three squares, while making no mention of a
condition for a representation as a sum of four squares.

One measure of the difficulty of the problem is the fact that Euler, despite his
brilliant achievements, wrestled with it for more than 40 years without success.
Nonetheless, his contribution toward the eventual solution was substantial; Euler
discovered the fundamental identity that allows one to express the product of two
sums of four squares as such a sum, and the crucial result that the congruence
x2+y?+ 1 =0 (mod p) is solvable for any prime p. A complete proof of the
four-square conjecture was published by Lagrange in 1772, who acknowledged his
indebtedness to the ideas of Euler. The next year, Euler offered a much simpler
demonstration, which is essentially the version to be presented here.

It is convenient to establish two preparatory lemmas, so as not to interrupt the
main argument at an awkward stage. The proof of the first contains the algebraic
identity (Euler’s identity) that allows us to reduce the four-square problem to the
consideration of prime numbers only.

Lemma 1 Euler. If the integers m and n are each the sum of four squares, then mn
is likewise so representable.

Proof. Ifm = a? + a2 + a3 + a? and n = b? + b? + b3 + bj for integers a;, b;, then

mn = (a? + a2 + a2 + a})(b? + b3 + b3 + bD)
= (a1h1 + azby + azbs + asby)?
+ (a1by — azbi + azbs — asb3)?
+ (a1bs — azbs — azby + ashy)*
+ (a1bs + azbs — azhy — asb))?
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We confirm this cumbersome identiiy by bruie force: Just multiply everything out and
compare terms. The details are not suitable for the printed page.

Another basic ingredient in our development is Lemma 2.

Lemma 2. If p is an odd prime, then the congruence
x? 4+ y*+ 1 =0 (mod p)
has a solution xgp, yp where 0 < xg < (p — 1)/2and 0 < yp < (p — 1)/2.

Proof. The idea of the proof is to consider the following two sets:

—1\2
SI:!1+02,1+12,1+22,...,1+(30—)!
l 2

—1\2
S, = [—02,—12, 22— (3—2—) }

No two elements of the set S| are congruent modulo p. Forif 1 + x? = 1 + x3 (mod p),
then either x; = x, (mod p) or x; = —x; (mod p). But the latter consequence is
impossible, because 0 < x; 4+ x < p (unless x; = x, = 0), whence x; = x, (mod p),
which impiies that x; = x,. In the same vein, no iwo elements of S, are congruent
modulo p.

Together S; and S, contain 2[1 + %( p — )] = p + 1 integers. By the pigeonhole
principle, some integer in S; must be congruent modulo p to some integer in Sy; that
is, there exist xg, yo such that

1+ x5 = 5 (mod p)
where 0 < xp < (p—1)/2and 0 < yp < (p — 1)/2.

Corollary. Given an odd prime p, there exists an integer k < p such that kp is the
sum of four squares.

Proof. According to the theorem, we can find integers x¢ and yy,

p

()§x0<£ 0< L
2 2

<

0 <

such that
x5+ 5+ 12+ 0% =kp
for a suitable choice of k. The restrictions on the size of xg and y, imply that

2

2 2
— v +\72+1<p_+£_+1<p
44

" 2
Rp X0 Yo

and so k < p, as asserted in the corollary.

Example 13.2. We digress for a moment to look at an example. If we take p = 17,
then the sets S; and S, become

S1=1{1,2,5,10,17, 26, 37, 50, 65}
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S, =10, -1, -4, -9, —16, =25, -36, —49, —64}

Modulo 17, the set S| consists of the integers 1, 2, 5, 10, 0,9, 3, 16, 14, and those in S,
are 0, 16, 13, 8, 1,9, 15, 2, 4. Lemma 2 tells us that some member 1 + x? of the first
set is congruent to some member —y? of the second set. We have, among the various
possibilities,
=9 = -5%(mod 17)
or 1 + 5% 4+ 5% = 0 (mod 17). It follows that

3.-17=12 452452407

is a multiple of 17 written as a sum of four squares.

The last lemma is so essential to our work that it is worth pointing out another
approach, this one involving the theory of quadratic residues. If p = 1 (mod 4),
we may choose x to be a solution of x? = —1 (mod p) (this is permissible by the
corollary to Theorem 9.2) and yy = 0 to get

x5 4 y2 + 1 =0 (mod p)

Mlacan 4 a:izddo e 4 nmmmaimbanta o tlhn o nncms o — D (i A AN VT Lot aninl, 4l tnbm cne
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a to be the smallest positive quadratic nonresidue of p (keep in mind that a > 2,

because 1 is a quadratic residue). Then
(—a/p) = (=1/p)a/p) = (~1)(~1) =1
so that —a is a quadratic residue of p. Hence, the congruence
x%2 = —qa (mod p)

admits a solution xp, with 0 < x¢ < (p — 1)/2. Now a — 1, being positive and
smaller than a, must itself be a quadratic residue of p. Thus, there exists an integer
Yo, Where 0 < yy < (p — 1)/2, satisfying

y2 =q — 1 (mod p)

X+ +l=—-a+@—-1)+1=0(mod p)

With these two lemmas among our tools, we now have the necessary information
to carry out a proof of the fact that any prime can be realized as the sum of four
squared integers.

Proof. The theorem is certainly true for p = 2, because 2 = 12 + 12 4- 0? 4 0%. Thus,
we may hereafter restrict our attention to odd primes. Let k be the smallest positive
integer such that kp is the sum of four squares; say,

kp = x* 4 y2 4+ 2% + w?
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By virtue of ihe foregoing corollary, K < p. The crux of our argument is thai k = 1.
We make a start by showing that & is an odd integer. For a proof by contradiction,
assume that k is even. Then x, y, z, w are all even; or all are odd; or two are even and

two are odd. In any event, we may rearrange them, so that
x =y (mod 2) and z =w (mod 2)

It follows that
1 1 1 1
E(X -y) ‘2“(x+Y) ‘Z“(Z—W) E(Z"FW)

are all integers and

= (54 (574 (57) 0 (5)

is a representation of (k/2) p as a sum of four squares. This violates the m nature
of k, giving us our contradiction.

There still remains the problem of showing that £ = 1. Assume that k 3 1; then
k, being an odd integer, is at least 3. It is therefore possible to choose integers a, b, c,
d such that

a = x (mod k) b =y (mod k) ¢ = z (mod k) d =w (mod k)

[
o
[aN

k k
la] < = bl < = lc] < = ld| < =
2 2 2 2
(To obtain the integer a, for instance, find the remainder » when x is divided by k; put
a=rora=r —kaccording asr < k/2 orr > k/2.) Then
a2+b2+02+d25x2+y2+22+w2 = 0 (mod k)
and therefore
a?+ b+t +d*=nk

for some nonnegative integer n. Because of the restrictions on the size of a, b, ¢, d,

k 2
Ofnk=a2+b2+c2+d2<4(5) = k2

Wa ronnn ha — 0N hoa~aniga thiq 1A qionify thaot »+ — h — ~» —

A —0 and in
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consequence, that k divides each of the integers x, y, z, w. Then k? | kp, or k | p, which
is impossible in light of the inequality 1 < k < p. The relation nk < k2 also allows us
to conclude that n < k. In summary: O < n < k. Combining the various pieces, we get
= (kp)(kn) = (x> + y* + 22 + w)(a® + b* + ¢ + d?)
=r2 424+ 12+u?
where
r=xa+yb+zc+wd
s=xb—ya+zd —wc
t=xc—yd—za+wb
u=xd+yc—zb—wa



REPRESENTATION OF INTEGERS AS SUMS OF SQUARES 277
T o s o4 o4 Py RS IR & (Y oS o . P SRR (LS B D | 7 T a1 i Y ARPR B
It 1S lIIlpUIL'clIlL LO ODSCIVE UldL dil 1our oL r, 8, I, 4 4dr¢ Alvisiic Dy K. Il LNE CdsE Ol e
integer r, for example, we have

r=xa+yb+zc+wd=a®*+b*>+c?+d*=0(modk)

Similarly, s = ¢t = u = 0 (mod k). This leads to the representation
ry\2 5\2 1\? AN
np = (") + (—) + (—\ + (“)
K/ \K/ \K / \K/
where r/k, s/k, t/k, u/k are all integers. Because O < n < k, we therefore arrive at

a contradiction to the choice of k as the smallest positive integer for which kp is the
sum of four squares. With this contradiction, k = 1, and the proof is finally complete.

This brings us to our ultimate objective, the classical result of Lagrange.

Theorem 13.7 Lagrange. Any positive integer n can be written as the sum of four
squares, some of which may be zero.

Proof. Clearly, the integer 1 is expressible as 1 = 12 4+ 0% + 0? 4 02, a sum of four
squares. Assume that n > 1 and let n = p p; - - - p, be the factorization of r into (not
necessarily distinct) primes. Because each p; is realizable as a sum of four squares,
Euler’s identity permits us to express the product of any two primes as a sum of four
squares. This, by induction, extends to any finite number of prime factors, so that
applying the identity r — 1 times, we obtain the desired representation for n.

Example 13.3. To write the integer 459 = 33 - 17 as the sum of four squares, we use
Euler’s identity as follows:

459 =32.3.17
=3z(lz+]2+]2+02)(42+]2+02+02)
=34+ 14+040)2 4+ (1 —440—0)>

+0=0-4402+0+0-1-0)]
:32[52+32+42+ 12]
=152+ 92 4 122 4 32

Although squares have received all our attention so far, many of the ideas in-
volved generalize to higher powers.

In his book, Meditationes Algebraicae (1770), Edward Waring stated that each
positive integer is expressible as a sum of at most 9 cubes, also a sum of at most 19
fourth powers, and so on. This assertion has been interpreted to mean the following:
Can each positive integer be written as the sum of no more than a fixed number g (k)

of Lth nowere where o) denendc onlv on & not the inteoar haina renrecented? In
Of K11 pOWErS, wWicre gk ) Gepencs only on £, not Ine mieger oeing represeniec !’ in

n

other words, for a given k, a number g(k) 1s sought such that every n > § can be
represented in at least one way as
— K k k

where the g; are nonnegative integers, not necessarily distinct. The resulting problem
was the starting point of a large body of research in number theory on what has
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limited numerical grounds in favor of his assertion and no shadow of a proof.

As we have reported in Theorem 13.7, g(2) = 4. Except for squares, the first case
of a Waring-type theorem actually proved is attributed to Liouville (1859): Every
positive integer is a sum of at most 53 fourth powers. This bound for g(4) is somewhat
inflated, and through the years it was progressively reduced. The existence of g(k)

for each value of k was resolved in the affirmative by Hilbert in 1000 unfortunately,
Thic saim~f waline ~um oo ttranaliio v, fimalia Al o DK _£-13 '“ .-..‘ 4 PP RPSY N W |
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is In no way constructive.

Once it is known that Waring’s problem admits a solution, a natural question
to pose is “How big is g(k)?” There is an extensive literature on this aspect of the
problem, but the question itself is still open. A sample result, due to Leonard Dickson,
is that g(3) = 9, whereas

=22+ 4+ P4+ + P+ + P+ 12+ 1P
and
239 =43 + 4+ 3P 433433 433 4 13413418

are the only integers that actually require as many as 9 cubes in their representation;
each integer greater than 239 can be realized as the sum of at most 8 cubes. In 1942,
Linnik proved that only a finite number of integers need 8 cubes; from some point
onward 7 will suffice. Whether 6 cubes are also sufficient to obtain all but finitely
many positive integers is still unsettled.

The cases k = 4 and k = 5 have turned out to be the most subtle. For many years,

the best-known result was that g(4) lay somewhere in the range 19 < g(4) < 35,
wharaac nIQ\ cohoﬁnr‘] 37 ( n(q\ Q/] in‘\onnnnnf “701'11 (IOK/I\ l'\qc (‘]"\{\‘III‘\ t Qt

g(5) = 37. The upper bound on gw ) was decreased dramatically during the 1970s,
the sharpest estimate being g(4) < 22. It was also proved that every integer less than
10'40 or greater than 10*%7 can be written as a sum of at most 19 fourth powers; thus, in
principle, g(4) could be calculated. The relatively recent (1986) announcement that,
in fact, 19 fourth powers suffice to represent all integers settled this case completely.
As far as k > 6 is concerned, it has been established that the formula

glk) = [(3/2)1+2F -2

holds, except possibly for a finite number of values of k. There is considerable
evidence to suggest that this expression is correct for all k.

For k£ > 3, all sufficiently large integers require fewer than g(k) kth powers in
their representations. This suggests a general definition: Let G (k) denote the smallest

ntagar » with tha nranartyu that avery enffriantlv largs intagar ic tha 1m nf at mnet r
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kth powers. Clearly, G(k) < g(k). Exact values of G(k) are known only in two cases;
namely, G(2) = 4 and G(4) = 16. Linnik’s result on cubes indicates that G(3) < 7,
while as far back as 1851 Jacobi conjectured that G(3) < 5. Although more than
half a century has passed without an improvement in the size of G(3), nevertheless,
it is felt that G(3) = 4. In recent years, the bounds G(5) < 17 and G(6) < 24 have
been established.
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Below are listed known values and estimates for the first few g(k) and G(k)
g2)=4 GQ2) =
83) = 4=<G3)=<7
g4) =19 G@4) =16
g(5) =37 6<GO)<17
g(6) =173 9<G6) <24
g(7) = 143 8<G(7) <33

g(8) =279 32<G@8) <42

Another problem that has attracted considerable attention is whether an nth
power can be written as a sum of n nth powers, with n > 3. Progress was first made

in 1911 with the discovery of the smallest solution in fourth powers,

353% — 30% - 120% + 272% 4+ 315%
In fifth powers, the smallest solution is
72° =19° + 43° + 46> + 47° + 67°

However, for sixth or higher powers no solution is yet known.
e}l
e 8

or

There is a related question; 1t may be asked, “Can an nth power ever be the sum
ACC ...... 4+l 2 zatla smvrranc)?? Tiaalam ~nsmiantizmad tlant thic 10 oo T ~nvxraTras s
Ul 1CWCI1 l.llclll It redl PUWCID.’ LSUICt LUllJCLLulCU l.llal. Llllb lb lllll)Ubbl llUWUVCl, 111

1968, Lander and Parkin came across the representation
144° = 27° + 84° 4 110° + 133°

With the subsequent increase in computer power and sophistication, N. Elkies was
able to show (1987) that for fourth powers there are infinitely many counterexamples
to Euler’s conjecture. The one with the smallest value is

422481* = 95800* 4+ 217519* + 414560*

PROBLEMS 13.3

1. Without actually adding the squares, confirm that the following relations hold:
(a) 120224320 ...4232 1242 — 702,

\J

(b) 102 | 1n2 ) ﬂn2+__.+072+082:772'
©) 2—+52+82 . 4232 4 26% = 482,

(d) 6%+ 122+ 182 + - .- +42% 4+ 482 = 952 — 412,

2. Regiomontanus proposed the problem of finding 20 squares whose sum is a square greater
than 300,000. Furnish two solutions.
[Hint: Consider the identity

@+ai+---+a¥=@+a:+---+a>,—a?)

H

+(2a18,)* + (2420,)* + - - - + (24,1,)" ]

I p= ql2 + q% + q32, where p, q1, ¢», and g3 are all primes, show that some g; = 3.

. Establish that the equation a? + b% + ¢? 4+ a + b + ¢ = 1 has no solution in the integers.
[Hint: The equation in question is equivalent to the equation (2a + 1)> + (2b + 1)> +
Qc+1>=17]

W
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5. Fora glVCIl pUblllVC uucgcr n, show that n or /.n lb 4 Suin Ul ihree squares.
6. An unanswered question is whether there exist infinitely many prime numbers p such
that p = n% + (n + 1)*> + (n 4 2)?, for some n > 0. Find three of these primes.

7. In our examination of n = 459, no representation as a sum of two squares was found.

Express 459 as a sum of three squares.

Verify each of the statements below:

(a) Every positive odd integer is of the form a? + b? + 2¢?, where a, b, ¢ are integers.
[Hint: Given n > 0, 4n + 2 can be written as 4n + 2 = x? 4 y* + z%, with x and y
odd and z even. Then

2 2
x4y X -y Z\2
241 = 2(5)"
n+ ( 5 ) + ( 5 ) +2(5 ]
(b) Every positive integer is either of the form a® + b% + ¢? or a® 4 b? + 2c?, where a,
b, c are integers.

[Hint Tf 2 ~ O cannot he written as a sum a2 L K2 L 2 then it ic of the
HS) (£l /A ol 11§ O I

[Hint: If n > 0 cannot be written as a sum , then i
4™(8k + 7). Apply part (a) to the odd 1nteg r 8k +7.]

(c) Every positive integer is of the form a? + b? — ¢?, where a, b, c are integers.
[Hint: Given n > 0, choose a such that n — a? is a positive odd integer and use
Theorem 13.4.]

Establish the following:

(a) No integer of the form 9% 4+ 4 or 9% + 5 can be the sum of three or fewer cubes.
[Hint: Notice that P = 0, 1, or 8 (inod 9) for any integer a.]

(b) The only prime p that is representable as the sum of two positive cubes is p = 2.

[Hint: Use the identity
a®> + b =(a+b)a-bl+ab)]

(c) A prime p can be represented as the difference of two cubes if and only if it is of the
form p = 3k(k + 1) + 1, for some k.

Express each of the primes 7, 19, 37, 61, and 127 as the difference of two cubes.

Prove that every positive integer can be represented as a sum of three or fewer triangular

numbers.

[Hint: Given n > 0, express 8n + 3 as a sum of three odd squares and then solve for n.]

12. Show that there are infinitely many primes p of the form p = a® + b* 4 ¢* + 1, where
a, b, c are integers.
[Hint: By Theorem 9.8, there are infinitely many primes of the form p = 8k + 7. Write

—1=8k+6=a?+hb*+c?forsomea, b, c.]

ers231 =3-7-11, 391 = 17 - 23, and 2109 = 37 - 57 as sums of

8

hd

10
11

r

1. Eynracc the intao — AT
13. Express the integ 1 ,and 210 ums of four
squares.
14. (a) Prove that every integer n > 170 is a sum of five squares, none of which are equal
to zero.
[Hint: Write n — 169 = a? + b? 4 ¢ + d? for some integers a, b, c, d and consider
the cases in which one or more of a, b, ¢ is zero.]

(h) Prn ove thf anv nos itive mn]Hn]n of Q ic a enm of eiocht ndd canarec
\U) £iUve uial J PY SIve mu upit GI & 15 a Sulll UF ClZi OGU o{jualcs
ming # 2 1.2 2 2 il to thia ciim o tha criigrae of
[Hint: Assuming n = a“ + b + ¢ + d*, then 8n + 8 is the sum of the squares of

2a +1,2b+1,2c+1,and 2d £ 1.]
15. From the fact that n> = n (mod 6) conclude that every integer n can be represented as
the sum of the cubes of five integers, allowing negative cubes.
[Hint: Utilize the identity

—6k=n-(k+1’ -k -1 +E +&]
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17.

18.
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Prove that every odd integer is the sum of four squares, two of which are consecutive.
[Hint: For n > 0, 4n + 1 is a sum of three squares, only one being odd; notice that
dn+1=Qa¥+@2b*+QRc+1? gives 2n+l=(a+bP}+@—-bP?+c*+
(c+1)?%]

Prove that there are infinitely many triangular numbers that are simultaneously express-
ible as the sum of two cubes and the difference of two cubes. Exhibit the representations
for one such triangular number.

[Hint: In the identity

27k — 1 = (9k* — 3k)® + (9k* — 1)°
= (9%* + 3k)® — 9k + 1)

take k to be an odd integer to get
2n + 1) — 1 = 2a)’ + 2b)® = 2¢)® - 2d)°

or equivalently, t, = a® + 5 = ¢* — d* ]
(a) If n — 1 and n 4 1 are both primes, establish that the integer 212 4+ 2 can be repre-
sented as the sum of 2, 3, 4, and 5 squares.

(b) Ilustrate the result of part (a) in the cases in which n = 4, 6, and 12.
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The Propositional Calculus

1.1 Propositional Connectives: Truth Tables

Sentences may be combined in various ways to form more complicated sen-
tences. We shall consider only truth-functional combinations, in which the
truth or falsity of the new sentence is determined by the truth or falsity of its
component sentences.

Negation is one of the simplest operations on sentences. Although a sen-
tence in a natural language may be negated in many ways, we shall adopt a
uniform procedure: placing a sign for negation, the symbol -, in front of the
entire sentence. Thus, if A is a sentence, then ~A denotes the negation of A.

The truth-functional character of negation is made apparent in the follow-
ing truth table:

A —A
T F
F T
When A is true, —A is false; when A is false, —A is true. We use T and F to
denote the truth values true and false.
Another common truth-functional operation is the conjunction: “and.” The

conjunction of sentences A and B will be designated by A A B and has the
following truth table:

A B AAB
T T T
F T F
T F F
F F F

A A B is true when and only when both A and B are true. A and B are called
the conjuncts of A A B. Note that there are four rows in the table, correspond-
ing to the number of possible assignments of truth values to A and B.

In natural languages, there are two distinct uses of “or”: the inclusive and
the exclusive. According to the inclusive usage, “A or B” means “A or B or
both,” whereas according to the exclusive usage, the meaning is “A or B, but



2 Introduction to Mathematical Logic

not both,” We shall introduce a special sign, v, for the inclusive connective.
Its truth table is as follows:

A B AvVB
T T T
F T T
T F T
F F F

Thus, A v B is false when and only when both A and B are false. “A v B” is
called a disjunction, with the disjuncts A and B.

Another important truth-functional operation is the conditional: “if A, then
B” Ordinary usage is unclear here. Surely, “if A, then B” is false when the
antecedent A is true and the consequent B is false. However, in other cases,
there is no well-defined truth value. For example, the following sentences
would be considered neither true nor false:

1. If 1 + 1 = 2, then Paris is the capital of France.
2. If1 + 1 # 2, then Paris is the capital of France.
3. If 1 + 1 # 2, then Rome is the capital of France.

Their meaning is unclear, since we are accustomed to the assertion of some
sort of relationship (usually causal) between the antecedent and the conse-
quent. We shall make the convention that “if A, then B” is false when and
only when A is true and B is false. Thus, sentences 1-3 are assumed to be
true. Let us denote “if A, then B” by “A = B.” An expression “A = B” is called
a conditional. Then = has the following truth table:

A B A=B

T T T
F T T
T F F
F F T

This sharpening of the meaning of “if A, then B” involves no conflict with
ordinary usage, but rather only an extension of that usage.

* There is a common non-truth-functional interpretation of “if A, then B” connected with
causal laws. The sentence “if this piece of iron is placed in water at time ¢, then the iron will
dissolve” is regarded as false even in the case that the piece of iron is not placed in water at
time t—that is, even when the antecedent is false. Another non-truth-functional usage occurs
in so-called counterfactual conditionals, such as “if Sir Walter Scott had not written any nov-
els, then there would have been no War Between the States.” (This was Mark Twain’s conten-
tion in Life on the Mississippi: “Sir Walter had so large a hand in making Southern character, as
it existed before the war, that he is in great measure responsible for the war.”) This sentence
might be asserted to be false even though the antecedent is admittedly false. However, causal
laws and counterfactual conditions seem not to be needed in mathematics and logic. For a
clear treatment of conditionals and other connectives, see Quine (1951). (The quotation from
Life on the Mississippi was brought to my attention by Professor ].C. Owings, Jr.)
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A justification of the truth table for = is the fact that we wish “if A and
B, then B” to be true in all cases. Thus, the case in which A and B are true
justifies the first line of our truth table for =, since (A and B) and B are both
true. If A is false and B true, then (A and B) is false while B is true. This cor-
responds to the second line of the truth table. Finally, if A is false and B is
false, (A and B) is false and B is false. This gives the fourth line of the table.
Still more support for our definition comes from the meaning of statements
such as “for every x, if x is an odd positive integer, then x? is an odd positive
integer.” This asserts that, for every x, the statement “if x is an odd positive
integer, then x? is an odd positive integer” is true. Now we certainly do not
want to consider cases in which x is not an odd positive integer as coun-
terexamples to our general assertion. This supports the second and fourth
lines of our truth table. In addition, any case in which x is an odd positive
integer and x? is an odd positive integer confirms our general assertion.
This corresponds to the first line of the table.

Let us denote “A if and only if B” by “A < B.” Such an expression is called
a biconditional. Clearly, A < B is true when and only when A and B have the
same truth value. Its truth table, therefore is:

A B A<B
T T T
F T F
T F F
F F T

The symbols —, A, V, =, and < will be called propositional connectives* Any
sentence built up by application of these connectives has a truth value that
depends on the truth values of the constituent sentences. In order to make
this dependence apparent, let us apply the name statement form to an expres-
sion built up from the statement letters A, B, C, and so on by appropriate appli-
cations of the propositional connectives.

1. All statement letters (capital italic letters) and such letters with
numerical subscripts’ are statement forms.

2. If »and 7 are statement forms, then so are (=%), (7 A ©), (2 V ),
(7= 7),and (7 & 7).

* We have been avoiding and shall in the future avoid the use of quotation marks to form
names whenever this is not likely to cause confusion. The given sentence should have quota-
tion marks around each of the connectives. See Quine (1951, pp. 23-27).

* For example, A;, A,, Ay, B3, Cy, ...
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3. Only those expressions are statement forms that are determined
to be so by means of conditions 1 and 2* Some examples of state-
ment forms are B, (-C,), (D; A (—B)), (0B;) Vv B,) = (A; A (), and
(A oA e (C=>BVvO).

For every assignment of truth values T or F to the statement letters that occur
in a statement form, there corresponds, by virtue of the truth tables for the
propositional connectives, a truth value for the statement form. Thus, each
statement form determines a truth function, which can be graphically repre-
sented by a truth table for the statement form. For example, the statement
form ((=A) v B) = C) has the following truth table:

A B C (=4) (=AvB (((=A)vB)=C)
T T T F T T
F T T T T T
T F T F F T
F F T T T T
T T F F T F
F T F T T F
T F F F F T
F F F T T F

Each row represents an assignment of truth values to the statement letters
A, B, and C and the corresponding truth values assumed by the statement
forms that appear in the construction of ((=A) v B) = C).

The truth table for (A < B) = ((-A) A B)) is as follows:

A B (AeB) (H4) (HAAB) (A< B)=((—A)AB)
T T T F F F
F T F T T T
T F F F F T
F F T T F F

If there are n distinct letters in a statement form, then there are 2" possible
assignments of truth values to the statement letters and, hence, 2" rows in
the truth table.

* This can be rephrased as follows: - is a statement form if and only if there is a finite sequence
Sy - 4y (n21) such that 4, =~ and, if 1 <i<n, 4 is either a statement letter or a negation, con-
junction, disjunction, conditional, or biconditional constructed from previous expressions in
the sequence. Notice that we use script letters ., », «, ... to stand for arbitrary expressions,
whereas italic letters are used as statement letters.
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A truth table can be abbreviated by writing only the full statement form,
putting the truth values of the statement letters underneath all occurrences
of these letters, and writing, step by step, the truth values of each component
statement form under the principal connective of the form.* As an example,
for (A < B) = ((—A) A B)), we obtain

(A < B = (=4 ~ B)
T T T F FTI F T
F F T T TF T T
T F F T FI F F
F T F F TF F F

Exercises

1.1 Let @ designate the exclusive use of “or.” Thus, A @ B stands for “A or
B but not both.” Write the truth table for &.

1.2 Construct truth tables for the statement forms (A = B) v (-A4)) and
(A=>B=>0Q0)=>A=>B=>A=>0).
1.3 Write abbreviated truth tables for (A = B) A A) and ((A v (=C)) < B).

1.4 Write the following sentences as statement forms, using statement let-
ters to stand for the atomic sentences—that is, those sentences that are
not built up out of other sentences.

a. If Mr Jones is happy, Mrs Jones is not happy, and if Mr Jones is not
happy, Mrs Jones is not happy.

b. Either Sam will come to the party and Max will not, or Sam will not
come to the party and Max will enjoy himself.

c. A sufficient condition for x to be odd is that x is prime.

A necessary condition for a sequence s to converge is that s be
bounded.

e. A necessary and sufficient condition for the sheikh to be happy is
that he has wine, women, and song.

Fiorello goes to the movies only if a comedy is playing.
The bribe will be paid if and only if the goods are delivered.

5 @ -

If x is positive, x? is positive.

-

Karpov will win the chess tournament unless Kasparov wins
today.

* The principal connective of a statement form is the one that is applied last in constructing the
form.
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1.2 Tautologies

A truth function of n arguments is defined to be a function of n arguments, the
arguments and values of which are the truth values T or F. As we have seen,
any statement form containing n distinct statement letters determines a cor-
responding truth function of n arguments.*

A statement form that is always true, no matter what the truth values of its
statement letters may be, is called a tautology. A statement form is a tautol-
ogy if and only if its corresponding truth function takes only the value T,
or equivalently, if, in its truth table, the column under the statement form
contains only Ts. An example of a tautology is (A Vv (=A)), the so-called law
of the excluded middle. Other simple examples are (=(A A (-4)), (A & (=(-A))),
((AAB)= A),and (A= (A V B)).

#1s said to logically imply « (or, synonymously, ~is a logical consequence of )
if and only if every truth assignment to the statement letters of .»and ~ that
makes .~ true also makes ¢ true. For example, (A A B) logically implies A, A
logically implies (A v B), and (A A (A = B)) logically implies B.

»and « are said to be logically equivalent if and only if .7 and ¢ receive the
same truth value under every assignment of truth values to the statement
letters of ~7and ~. For example, A and (=(—A)) are logically equivalent, as are
(A AB)and (B A A).

* To be precise, enumerate all statement letters as follows: A, B, ..., Z; A}, By, ..., Z;; Ay, ...,. Ifa
statement form contains the i, ..., i s statement letters in this enumeration, where i, < --- <1i,,
then the corresponding truth function is to have x;, ..., x;,, in that order, as its arguments,

where x;; corresponds to the iw statement letter. For example, (A = B) generates the truth
function:

X1 X2 f(xlrxz)
T

e B |
o4 A

T
F
T

whereas (B = A) generates the truth function:

x x g(x,x)

e I e I
o o4 4

= =
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Proposition 1.1

a. .zlogically implies ~if and only if (7= ¢) is a tautology.
b. 7and ¢ are logically equivalent if and only if (< ) is a tautology.

Proof

a. (i) Assume ~ logically implies +. Hence, every truth assignment
that makes .7 true also makes ~ true. Thus, no truth assignment
makes 7 true and  false. Therefore, no truth assignment makes
(# = ) false, that is, every truth assignment makes (» = ¢) true.
In other words, (7 = ») is a tautology. (ii) Assume (7= ¢) is a
tautology. Then, for every truth assignment, (v = ) is true, and,
therefore, it is not the case that ~is true and ~ false. Hence, every
truth assignment that makes  true makes « true, that is, -7 logi-
cally implies .

b. (7% r)isatautology if and only if every truth assignment makes (< ¢)
true, which is equivalent to saying that every truth assignment gives
»and « the same truth value, that is, -vand ~ are logically equivalent.

By means of a truth table, we have an effective procedure for determining
whether a statement form is a tautology. Hence, by Proposition 1.1, we have
effective procedures for determining whether a given statement form logi-
cally implies another given statement form and whether two given statement
forms are logically equivalent.

To see whether a statement form is a tautology, there is another method
that is often shorter than the construction of a truth table.

Examples
1. Determine whether (A < ((—B) v C)) = ((-A) = B)) is a tautology.

Assume that the statement form ((A < ((-B) v C)) = ((-A4) = B))
sometimes is F (line 1). Then (A & F
(=B)v(C)isTand (-A) = B)isF T F
(line 2). Since (—A) = B) is E, (-A) T F
is T and B is F (line 3). Since (-A)is
T, Ais F (line 4). Since A is F and
A< (B VvC)isT (-B)v(C)isF
(line 5). Since (-B) v C) is E, (B) F F
and C are F (line 6). Since (-B) is F, T

Bis T (line7). But Bisboth T and F

(lines 7 and 3). Hence, it is impos-

sible for the form to be false.

i
i
N O Ul W DN =
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2. Determine whether (A = (B Vv C)) v (A = B)) is a tautology.

Assume that the form is F (A=>BvC)V(A=>B)

(line 1). Then (A = (B v C)) and F

(A = B) are F (line 2). Since F F
(A =B)isFEA isTandBisF T F
(line 3). Since A= (BVv C))is F, T F

Ais Tand (B v Q) is F (line 4). F F

Qs W N -

Since (B v C)is E B and C are
F (line 5). Thus, when A is T, B
is F, and C is E the form is F.
Therefore, it is not a tautology.

Exercises

1.5 Determine whether the following are tautologies.

1.6

1.7

1.8

a.

—

j-

S @ e an T

((A=>B)=B)=B)
((A=>B)=B)=> A)
(A=>B)=>A) =>4
(B=>0C)=>A=B)=>A=>B)
(AvVEBAQ)= (A= C)VB)
(A=>B=>(B=A4)
(AAB)=>(AVv Q)

(AeB) e (Ae (Be A)
(A=>B)v(B=>A)
(=(A=B)=>A)

Determine whether the following pairs are logically equivalent.

R ™ e o0 o

(A=>B)=>A)and A

(A B)and (A= B)A (B> A))

((=A) v B) and ((—B) v A)

(-(A & B)) and (A < (—B))
(Av(Be(C)and (AvB)< (Av Q)
A=>BeC)and (A=>B) < A=>0)
AABeC)and (AAB) < (AAQ)

Prove:

a.
b.

(A = B) is logically equivalent to ((=A) v B).
(A = B) is logically equivalent to (—=(A A (=B))).

Prove that ~is logically equivalent to ~if and only if slogically implies
¢and « logically implies .
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1.9 Show that »and ¢ are logically equivalent if and only if, in their truth
tables, the columns under .7and - are the same.

1.10 Prove that »sand ~ are logically equivalent if and only if (-~) and (=v)
are logically equivalent.

1.11 Which of the following statement forms are logically implied by (A A B)?

a. A

b. B

c. (AvB)

d. (-4 Vv B)

e. (CFB)=>A)

f. A< B)

g. (A=>B)

h. (=B) = (~4))

i. (AA(B))
1.12 Repeat Exercise 1.11 with (A A B) replaced by (A = B) and by (~(A = B)),

respectively.

1.13 Repeat Exercise 1.11 with (A A B) replaced by (A v B).

1.14 Repeat Exercise 1.11 with (A A B) replaced by (A < B) and by (~(A < B)),
respectively.

A statement form that is false for all possible truth values of its statement
letters is said to be contradictory. Its truth table has only Fs in the column
under the statement form. One example is (A & (—A)):

A (=4) (A=(=4)
T F F
F T F

Another is (A A (RA)).

Notice that a statement form .7 is a tautology if and only if (=) is contra-
dictory, and vice versa.

A sentence (in some natural language like English or in a formal theory)*
that arises from a tautology by the substitution of sentences for all the state-
ment letters, with occurrences of the same statement letter being replaced by
the same sentence, is said to be logically true (according to the propositional
calculus). Such a sentence may be said to be true by virtue of its truth-func-
tional structure alone. An example is the English sentence, “If it is raining or
it is snowing, and it is not snowing, then it is raining,” which arises by substi-
tution from the tautology ((A v B) A (=B)) = A). A sentence that comes from

* By a formal theory we mean an artificial language in which the notions of meaningful expres-
sions, axioms, and rules of inference are precisely described (see page 27).
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a contradictory statement form by means of substitution is said to be logically
false (according to the propositional calculus).
Now let us prove a few general facts about tautologies.

Proposition 1.2
If »7and (= ) are tautologies, then so is .

Proof

Assume that .» and (7 = ) are tautologies. If ~ took the value F for some
assignment of truth values to the statement letters of .7 and v, then, since .
is a tautology, .» would take the value T and, therefore, (# = ») would have
the value F for that assignment. This contradicts the assumption that (.7 = »)
is a tautology. Hence, » never takes the value F.

Proposition 1.3

If 7 is a tautology containing as statement letters A,, A,, ..., A,, and »
arises from by substituting statement forms .4, 4, ..., 4, for A;, A,, ..., A,,
respectively, then is a tautology; that is, substitution in a tautology yields
a tautology.

Example
Let v be (A, A Ay = A)), let o,y be (B v C) and let . be (C A D). Then .7 is
((BVC)A(CAD)=>(BvVO)).

Proof

Assume that /~ is a tautology. For any assignment of truth values to the state-
ment letters in ., the forms 4, ..., », have truth values x;, ..., x, (Where each
x;is T or F). If we assign the values x, ..., x, to A,, ..., A,, respectively, then
the resulting truth value of ~~ is the truth value of = for the given assign-
ment of truth values. Since - is a tautology, this truth value must be T. Thus,
»always takes the value T.

Proposition 1.4

If  arises from . by substitution of ~ for one or more occurrences of ., then
(#& 7) > (4 © ) is a tautology. Hence, if .7and ~ are logically equivalent,
then so are 4 and +;.



The Propositional Calculus 11

Example

Let. . be (v D), let 7 be 7, and let # be (=(=7)). Then ¢, is (~(—~)) Vv D). Since
7 and (—(—7)) are logically equivalent, (+ v D) and ((-(—+)) v D) are also logi-
cally equivalent.

Proof

Consider any assignment of truth values to the statement letters. If .~ and
~ have opposite truth values under this assignment, then (7 & ) takes the
value F, and, hence, (#< ) = (4 © ;) is T. If »and « take the same truth
values, then so do .4 and « ;, since + differs from .4 only in containing
~in some places where .7, contains .. Therefore, in this case, (7 & ») is T,
(o n)isT and, thus, (v 7)) => (4 © 7)) is T.

Parentheses

It is profitable at this point to agree on some conventions to avoid the use
of so many parentheses in writing formulas. This will make the reading of
complicated expressions easier.

First, we may omit the outer pair of parentheses of a statement form. (In the
case of statement letters, there is no outer pair of parentheses.)

Second, we arbitrarily establish the following decreasing order of strength
of the connectives: =, A, V, =, ©. Now we shall explain a step-by-step process
for restoring parentheses to an expression obtained by eliminating some or
all parentheses from a statement form. (The basic idea is that, where possible,
we first apply parentheses to negations, then to conjunctions, then to disjunc-
tions, then to conditionals, and finally to biconditionals.) Find the leftmost
occurrence of the strongest connective that has not yet been processed.

i. If the connective is - and it precedes a statement form .7, restore left
and right parentheses to obtain (= %).

ii. If the connective is a binary connective C and it is preceded by a state-
ment form .»and followed by a statement form 7, restore left and right
parentheses to obtain (#C 7).

iii. If neither (i) nor (ii) holds, ignore the connective temporarily and find
the leftmost occurrence of the strongest of the remaining unprocessed
connectives and repeat (i-iii) for that connective.

Examples
Parentheses are restored to the expression in the first line of each of the fol-
lowing in the steps shown:
1. Ae(B)vC=>A
As(-B)vO)=>A
A (B v(C)=>A
A (EB)vC)=A4)
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2. A=>-B=>C

A=>(-B)=>C

(A= (B)=>C
(A= (=B) =)
B=> A

B = ~(-A)

B = (=(=A))

(B = (=(=A))

AV -(B=AVB)
AV -(B=>(AvVB)
AV ((B=(AvVB)
(Av(=B=(AVBD)

Not every form can be represented without the use of parentheses. For exam-
ple, parentheses cannot be further eliminated from A = (B = C), since A =
B = C stands for (A = B) = C). Likewise, the remaining parentheses cannot
be removed from —(A v B) or from A A (B = C).

Exercises

1.15 Eliminate as many parentheses as possible from the following forms.

1.16

117

a. (B=>CA)A0)

(Av(BvVvO)

((AAEB) AC) v D)

(B V (=C) v (AAB)

(Ae B (CvD)

CCEB V) < (B« 0)
C(ECBVO) < (B < Q)
(A= B)=> (C=>D)AEA) VO
Restore parentheses to the following forms.
a. CV-AAB

b. B=>-—=AAC

¢ C=>-(AAB=>C)AA<B

d C>A=>As-AVB

Determine whether the following expressions are abbreviations of
statement forms and, if so, restore all parentheses.

a. mAAsBvC
b. (A A <BvC
¢ "A=>B)VvCvD=>B

0% -~ 0 & n T



The Propositional Calculus 13

d.
e.
f.

As (-AVB)=>AABVQO)
“AVBVCADSAA-A
(A=>BA(CVD)AAVD)

1.18 If we write - 7instead of (~.%), =% 7 instead of (7= »), A 7~ instead of
(7 A ¢), vz rinstead of (7V ¢), and © 7 7 instead of (7 < ), then there
is no need for parentheses. For example, (-A) A (B = (=D))), which is
ordinarily abbreviated as ~A A (B = —D), becomes A A = B =D. This
way of writing forms is called Polish notation.

1.19

1.20

a.

b.

Write (C = (—~A)) v B) and (C Vv ((B A (-D)) = C)) in this notation.
If we count =, A, V, and & each as +1, each statement letter as —1
and - as 0, prove that an expression .»7in this parenthesis-free nota-
tion is a statement form if and only if (i) the sum of the symbols of
»is =1 and (ii) the sum of the symbols in any proper initial segment
of .7is nonnegative. (If an expression .7 can be written in the form
<7, where »# -, then ~is called a proper initial segment of ..
Write the statement forms of Exercise 1.15 in Polish notation.
Determine whether the following expressions are statement forms
in Polish notation. If so, write the statement forms in the standard
way.
i == ABCVAB-C

ii. == AB == BC=>-AC

iii. VAV=A-BCAVACV-C-A

iv. VABABBB

Determine whether each of the following is a tautology, is contradic-
tory, or neither.

-

j-

5 ® =~ 0 &0 T

B< (BV B)
(A=>B)AB)=>A
-A)=>(AAB)
A=>B)=>(B=>0C)=>A=>0)
(A-B)=>AVB
AAEAVB)

(A=>B)e(-A) VB

(A= B) < —(AA(-B)
BeBeoA)=>A
AAN-A=>B

If A and B are true and C is false, what are the truth values of the fol-
lowing statement forms?

a.
b.

AvC
AANC



14

1.21

1.22

1.23

1.24
1.25

1.26

Introduction to Mathematical Logic

A A-C

As-BvC

Bv-C=>A

(BvA)=B=>-0)
B=>-AsAs0)
B=>A)=>(A=>-C)=>(-C=>B))

If A > Bis T, what can be deduced about the truth values of the
following?

a. AvC=>BvC

b. AANC=>BAC

c. "AANBSAVB

What further truth values can be deduced from those shown?
a. "~AV(A=>B)

5@ - 0 &n

F
b. -(AAB)e -A=>-B
T
c. FAVB)=>A=>-0)
F
d (AeB) e (C=>-A4)
F T
If A & B is F, what can be deduced about the truth values of the
following?
a. AAB
b. AVvB
c. A=>B

d AACeBAC
Repeat Exercise 1.23, but assume that A < Bis T.
What further truth values can be deduced from those given?
a. AAB)e(AVB)
F F
b. (A= -B)=(C=>B)
F
a. Apply Proposition 1.3 when " is A; = A; VA, 4isBAD,and »
is =B.
b. Apply Proposition 1.4 when .4 is (B= C) AD, » is B= C,and
is=BvC.
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1.27 Show that each statement form in column I is logically equivalent to
the form next to it in column IL

ETPNOT[OSE S RTESR S0 A0 TR

I
A=>B=>0)
AANBVC)
AV(BAC
(ANB)v-B
(AvVB)A—-B
A=>B
A B
AeBsC
A< B
-(A < B)
=(A Vv B)
=(A A B)

. AV(AAB)

AAN(AVB)
AANB
AVB
(AANB)AC
(AvB)yvC
A®B
A®BdC
ANB®C)

II
(AAB)=>C
(AAB)V(AACQ)
(AVB)A(AVO)
AvV-B
AAN-B
- B=>-A
Bs A
A Bs ()
(AAB) v(—=AA-B)
As-B
(-A) A (-B)
(=A) v (=B)

A

A

BAA

BV A

AANB ACQC)
Av (B v()
B A

A B&C)
(AAB)®AAQ)

(Distributive law)
(Distributive law)

(Law of the contrapositive)
(Biconditional commutativity)
(Biconditional associativity)

(De Morgan’s law)
(De Morgan’s law)

(Commutativity of conjunction)
(Commutativity of disjunction)
(Associativity of conjunction)
(Associativity of disjunction)
(Commutativity of exclusive “or”)
(Associativity of exclusive “or”)
(Distributive law)

1.28 Show the logical equivalence of the following pairs.

1.29

7 A wand 7, where  is a tautology.

/~V.zand ./, where ./ is a tautology.

7 A wand .7 where .7 is contradictory.

7V .»and .z, where .+ is contradictory.
Show the logical equivalence of =(A = B) and A A —B.
Show the logical equivalence of =(A < B) and (A A =B) v (=A A B).

For each of the following statement forms, find a statement form
that is logically equivalent to its negation and in which negation
signs apply only to statement letters.

i A= Be -0
ii. ~Av(B=>C0C)
iii. AABvV-C)
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1.30 (Duality)

a.

1.31 a.

If . is a statement form involving only —, A, and Vv, and .’ results
from .7 by replacing each A by Vv and each Vv by A, show that .7 is a
tautology if and only if =/’ is a tautology. Then prove that, if 7 = ~
is a tautology, then sois ' =, and if # & ~ is a tautology, then so
is 7' < . (Here  is also assumed to involve only —, A, and V.

Among the logical equivalences in Exercise 1.27, derive (c) from (b),
(e) from (d), (1) from (k), (p) from (o), and (r) from (q).

If 7 is a statement form involving only —, A, and Vv, and .&/* results
from by interchanging A and v and replacing every statement let-
ter by its negation, show that ../* is logically equivalent to -~ Find a
statement form that is logically equivalent to the negation of (A v B
v C) A (FA v =B v D), in which — applies only to statement letters.

Prove that a statement form that contains < as its only connective
is a tautology if and only if each statement letter occurs an even
number of times.

Prove that a statement form that contains - and < as its only con-
nectives is a tautology if and only if = and each statement letter
occur an even number of times.

1.32 (Shannon, 1938) An electric circuit containing only on-off switches
(when a switch is on, it passes current; otherwise it does not) can be
represented by a diagram in which, next to each switch, we put a letter
representing a necessary and sufficient condition for the switch to be on
(see Figure 1.1). The condition that a current flows through this network
can be given by the statement form (A A B) v (C A =A). A statement form
representing the circuit shown in Figure 1.2 is (A A B) v (C v A) A =B),
which is logically equivalent to each of the following forms by virtue
of the indicated logical equivalence of Exercise 1.27.

FIGURE 1.1

FIGURE 1.2

A B
B
—IB

A
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((AAB)v(Cv A)A(AAB)v—B) ©
((AAB)v(Cv A)A(Av—B) )
(AAB)v(AvC)A(Av—B) )
(((AAB)v A)vC) A(Av —B) @)

(AvC)n(Av—B) (p), (m)
Av (C A—B) ©

Hence, the given circuit is equivalent to the simpler circuit shown
in Figure 1.3. (Two circuits are said to be equivalent if current flows
through one if and only if it flows through the other, and one circuit is
simpler if it contains fewer switches.)

a. Find simpler equivalent circuits for those shown in Figures 1.4
through 1.6.

b. Assume that each of the three members of a committee votes yes on
a proposal by pressing a button. Devise as simple a circuit as you
can that will allow current to pass when and only when at least
two of the members vote in the affirmative.

c. We wish a light to be controlled by two different wall switches in a
room in such a way that flicking either one of these switches will
turn the light on if it is off and turn it off if it is on. Construct a
simple circuit to do the required job.

A\
FIGURE 1.3
A
C —
B\
—I A
—] C
-
B8\

FIGURE 1.4
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FIGURE 1.5

FIGURE 1.6
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1.33 Determine whether the following arguments are logically correct by
representing each sentence as a statement form and checking whether
the conclusion is logically implied by the conjunction of the assump-
tions. (To do this, assign T to each assumption and F to the conclusion,
and determine whether a contradiction results.)

a.

b.

If Jones is a communist, Jones is an atheist. Jones is an atheist.
Therefore, Jones is a communist.

If the temperature and air pressure remained constant, there was
no rain. The temperature did remain constant. Therefore, if there
was rain, then the air pressure did not remain constant.

If Gorton wins the election, then taxes will increase if the deficit
will remain high. If Gorton wins the election, the deficit will remain
high. Therefore, if Gorton wins the election, taxes will increase.

If the number x ends in 0, it is divisible by 5. x does not end in 0.
Hence, x is not divisible by 5.

If the number x ends in 0, it is divisible by 5. x is not divisible by 5.
Hence, x does not end in 0.

Ifa=00rb=0,thenab=0.Butab=0. Hence,a=0and b = 0.

A sufficient condition for f to be integrable is that g be bounded.
A necessary condition for / to be continuous is that f is integrable.
Hence, if g is bounded or % is continuous, then f is integrable.

Smith cannot both be a running star and smoke cigarettes. Smith is
not a running star. Therefore, Smith smokes cigarettes.

If Jones drove the car, Smith is innocent. If Brown fired the gun,
then Smith is not innocent. Hence, if Brown fired the gun, then
Jones did not drive the car.



