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Mathematical Induction:  
is a special method of proof used to prove a Statement, a Theorem,  
or a Formula, that is asserted about every natural number. 

The natural numbers are the counting numbers: .,...4,3,2,1 etc  , also  

called positive integers. 
Principle of Mathematical Induction:  

Let )(nP  be a statement involving the positive integer n .  

IF the statement is true when 1n , and whenever the statement is true  

for kn   , then it is also true for 1 kn , Then the statement is true for all 

integers 1n . 

There is nothing special about the integer 1  in the statement above.  
It can be replaced (in both places it occurs) by any other positive integer,  
and the Principle still works. 
Steps of Mathematical Induction: 

(STEP 1): We show that )1(P  is true. 

(STEP 2): We assume that )(kP  is true. 

(STEP 3): We show that )1( kP  is true. 

As shown in the following examples:   
1- Use mathematical induction to prove that:  
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Solution: Let the statement )(nP  be 
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(STEP 1): We show that )1(P  is true: 
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Both sides of the statement are equal hence )1(P  is true. 

(STEP 2): We assume that )(kP  is true: 
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(STEP 3): We show that )1( kP  is true: 
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Which is the statement )1( kP . 

Then the statement )(nP  is true for all positive integers n . 

-------------------------------------------------------------------------------------------- ------------ 
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We can rewrite the solution as follow: 

Solution: Let )(nP  be 
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(1) at 1n : 
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)1(P  is true. 

(2) let kn  : 
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(3) at 1 kn : 
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)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 

-------------------------------------------------------------------------------------------------------- 
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2- Use mathematical induction to prove that:  
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Solution: Let )(nP  be 
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)1(P  is true. 

(2) let kn  : 
6

)12)(1(
....321 2222 


kkk

k . 

(3) at 1 kn :  
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)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 

---------------------------------------------------------------------------------------------------- ---- 
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3- Prove that )2( 3 nn   is divisible by 3  for all positive integers n . 

Solution: Let )(nP  be " )2( 3 nn   is divisible by 3 " 

(1) at 1n : 

3)1(213   is divisible by 3 . 

)1(P  is true. 

(2) let kn  : 

" )2( 3 kk   is divisible by 3 ". 

(3) at 1 kn : 
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)2( 3 kk   is divisible by 3  from (2), and )1(3 2  kk  is also divisible by 3  

)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 

---------------------------------------------------------------------------------------------------- ---- 

4- Prove that  !2 1 nn 
  for all positive integers n . 

Solution: Let )(nP  be !2 1 nn 
 

(1) at 1n : 

1!1122 011 
 

)1(P  is true. 

(2) let kn  : 

!2 1 kk 
 

(3) at 1 kn : 
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)1(  kP  is true. 

Then )(nP  is true for all positive integers n . 

--------------------------------------------------------------------------------------------------------- 
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H.W:  

1- Use mathematical induction to prove that: 
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2- Prove that )1( nx  is divisible by )1( x  for all positive integers n . 

---------------------------------------------------------------------------------------------------- ------ 
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Exercises:  
1- Use mathematical induction to prove that:  
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2- Prove that )3( 2 nn   is divisible by 2  for all positive integers n . 

3- Prove that )27( nn   is divisible by 5  for all positive integers n .  

4- Prove that )( nn yx   is divisible by )( yx   for all positive integers n . 

---------------------------------------------------------------------------------------------------------- 
 


