Mathematical Induction:

is a special method of proof used to prove a Statement, a Theorem, or a Formula, that is asserted about every natural number.

The natural numbers are the counting numbers: 1,2,3,4,... *etc*. , also called positive integers.

Principle of Mathematical Induction:

Let $P(n)$ be a statement involving the positive integer n .

IF the statement is true when $n=1$, and whenever the statement is true

for $n = k$, then it is also true for $n = k + 1$, Then the statement is true for all integers $n \geq 1$.

There is nothing special about the integer 1 in the statement above. It can be replaced (in both places it occurs) by any other positive integer, and the Principle still works.

Steps of Mathematical Induction:

(STEP 1): We show that $P(1)$ is true.

(STEP 2): We assume that $P(k)$ is true.

(STEP 3): We show that $P(k+1)$ is true.

As shown in the following examples:

1- Use mathematical induction to prove that:

$$
1+2+3+....+n=\frac{n(n+1)}{2}.
$$

Solution: Let the statement $P(n)$ be $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$ $1+2+3+....+n=\frac{n(n+1)}{2}$

(STEP 1): We show that $P(1)$ is true:

$$
L.H.S.=1 \quad , \quad R.H.S.=\frac{1(1+1)}{2}=1
$$

Both sides of the statement are equal hence $P(1)$ is true.

(STEP 2): We assume that $P(k)$ is true:

$$
1+2+3+\dots+k=\frac{k(k+1)}{2}.
$$

(STEP 3): We show that $P(k+1)$ is true:

$$
L.H.S. = 1 + 2 + 3 + \dots + k + (k + 1)
$$

$$
= \frac{k(k+1)}{2} + (k+1)
$$

$$
= \frac{(k+1)}{2}[k+2]
$$

$$
= R.H.S.
$$

Which is the statement $P(k+1)$.

Then the statement $P(n)$ is true for all positive integers n .

--

\Box 2

--

We can rewrite the solution as follow:

Solution: Let $P(n)$ be $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$ $1+2+3+....+n=\frac{n(n+1)}{2}$ **(1)** at $n = 1$: $L.H.S.=1$, $R.H.S.=\frac{1(1+1)}{2}=1$ 2 $R.H.S. = \frac{1(1+1)}{2} =$ \therefore *P*(1) is true. **(2)** let $n = k$: 2 $1+2+3+....+k=\frac{k(k+1)}{2}$. **(3)** at $n = k + 1$: $= R.H.S.$ $[k + 2]$ 2 $=\frac{(k+1)}{2}[k+$ $(k+1)$ 2 $=\frac{k(k+1)}{2} + (k+1)$ $L.H.S.=1+2+3+...+k+(k+1)$ \therefore *P*($k+1$) is true. Then $P(n)$ is true for all positive integers n .

2- Use mathematical induction to prove that: 6 $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{2}$. **Solution:** Let $P(n)$ be $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(n+2)}{6}$ $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{2}$ **(1)** at $n=1$: L.H.S. = $1^2 = 1$, R.H.S. = $\frac{1(1+1)(2+1)}{2} = 1$ 6 $R.H.S. = \frac{1(1+1)(2+1)}{6} = 1$ \therefore *P*(1) is true. **(2)** let $n = k : 1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(k+2)}{6}$ $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{k}$. **(3)** at $n = k + 1$: $= R.H.S.$ 6 $\frac{(k+1)}{6}[(2k+3)(k+2)(k+3)]$ $\frac{+1}{6}$ [2k² + 7k + 6]
 $\frac{+1}{6}$ [(2k + 3)(k + 2)] $=\frac{(k+1)}{6}[(2k+3)(k+1)]$ $[2k^2 + 7k + 6]$ 6 $=\frac{(k+1)}{k}(2k^2+7k+$ $[2k^2 + k + 6k + 6]$ 6 $=\frac{(k+1)}{6}[2k^2+k+6k+$ $\frac{k+1(2k+1)}{6} + (k+1)^2$
 $\frac{+1}{6} [k(2k+1) + 6(k+1)]$ $=\frac{(k+1)}{k(2k+1)}$ + 6(k + $(k+1)$ (2) let $n = k : 1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{(k + 1)(2k + 1)}{6}$.

(3) at $n = k + 1$:
 L.H.S. = $1^2 + 2^2 + 3^2 + \dots + k^2 + (k + 1)^2 = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2$ $=\frac{(k+1)(k+2)(2k+1)}{k}$

--

 \therefore *P*($k+1$) is true.

Then $P(n)$ is true for all positive integers n .

\Box

4

3- Prove that $(n^3 + 2n)$ is divisible by $\bar{3}$ for all positive integers \bar{n} **.**

<u>Solution</u>: Let $P(n)$ be " $(n^3 + 2n)$ is divisible by 3" **(1)** at $n = 1$: $1^3 + 2(1) = 3$ is divisible by 3. \therefore *P*(1) is true. **(2)** let $n = k$: " (k^3+2k) is divisible by 3". **(3)** at $n = k + 1$: $=(k^3+2k)+3(k^2+k+1)$ $=(k^3+2k)+(3k^2+3k+3)$ $=k^{3}+3k^{2}+5k+3$ $(k+1)^3 + 2(k+1) = (k^3 + 3k^2 + 3k + 1) + (2k+2)$ (k^3+2k) is divisible by 3 from (2), and $3(k^2+k+1)$ is also divisible by 3 \therefore *P*($k+1$) is true. Then $P(n)$ is true for all positive integers n . -- 4- Prove that $\ 2^{n-1} \leq n! \ \,$ for all positive integers $\ n$. **<u>Solution</u>:** Let $P(n)$ be $2^{n-1} \le n!$ **(1)** at $n = 1$: $2^{1-1} = 2^0 = 1 \le 1! = 1$ \therefore *P*(1) is true. **(2)** let $n = k$: $2^{k-1} \leq k!$ **(3)** at $n = k + 1$: $2 \leq k+1 \ \forall \ k \in \mathbb{Z}^+$ $k^{k-1} \le k! \Rightarrow (2)(2^{k-1}) \le (2)(k!) \Rightarrow (2)(2^{k-1}) \le (k+1)(k!) \Rightarrow 2^k \le (k+1)$ $2^{k-1} \le k!$

(3) at $n = k + 1$:
 $2^{k-1} \le k! \Rightarrow (2)(2^{k-1}) \le (2)(k!) \Rightarrow (2)(2^{k-1}) \le (k+1)(k!) \Rightarrow 2^{k} \le (k+1)!$; $1 \lt l! \to (2)(2^{k-1}) \lt (2)(l!) \to (2)(2^{k-1})$ \therefore *P*($k+1$) is true. Then $P(n)$ is true for all positive integers n .

H.W:

1- Use mathematical induction to prove that:

$$
(i) 2+4+6+...+2n = n(n+1).
$$

$$
(ii) \ 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2 - \frac{1}{2^{n-1}}.
$$

2- Prove that $(x^n - 1)$ is divisible by $(x - 1)$ for all positive integers n.

--

Exercises:

1- Use mathematical induction to prove that:

 (i) 1+3+5+.... + $(2n-1) = n^2$ 2 (ii) 1+4+7+....+(3*n*-2) = $\frac{n(3n-1)}{2}$ 3 $(n+1)(n+2)$ (*iii*) $2+6+12+....+n(n+1)$ *iii*) $2+6+12+...+n(n+1) = \frac{n(n+1)(n+1)}{2}$ **2-** Prove that $(3n^2 - n)$ is divisible by 2 for all positive integers n . **3-** Prove that $(7^n - 2^n)$ is divisible by 5 for all positive integers n . **4-** Prove that $(x^n - y^n)$ is divisible by $(x - y)$ for all positive integers n.

--