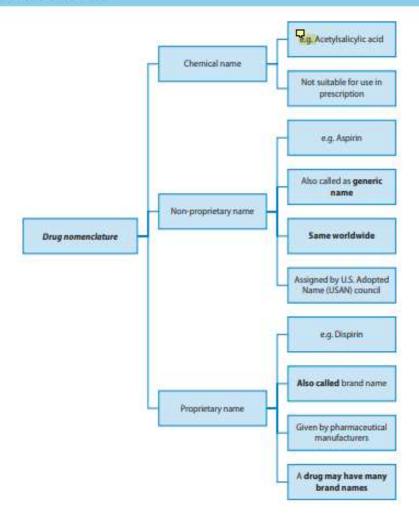
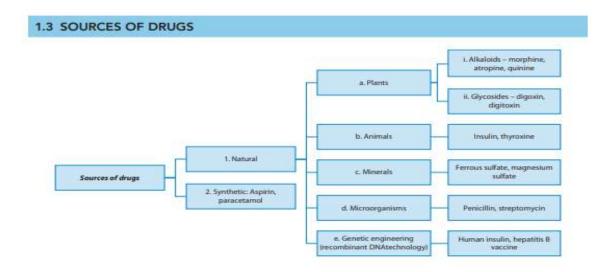
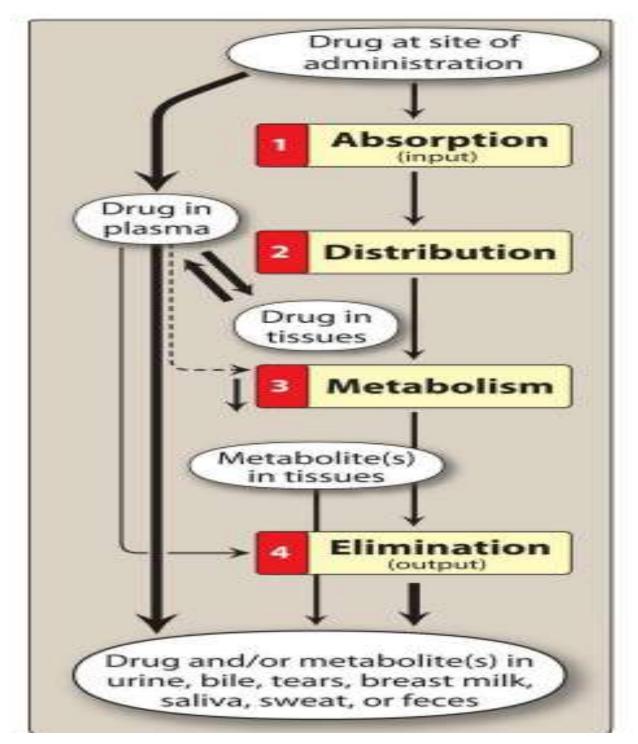


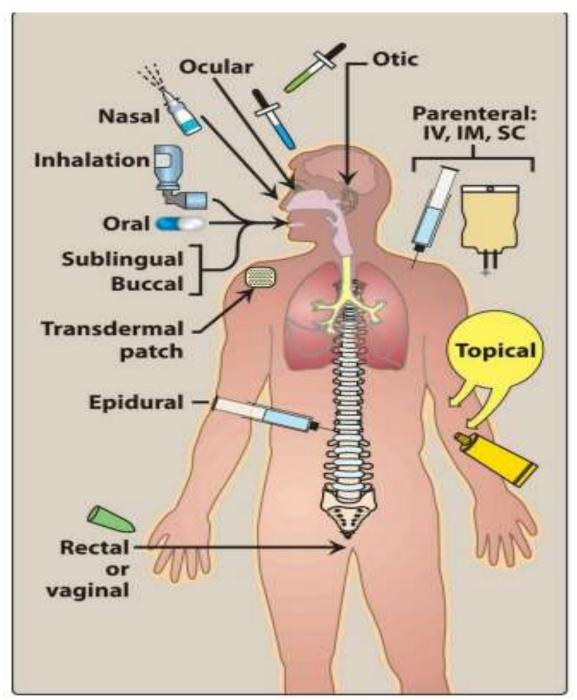
Lecture notes on Pharmacology For Nursing students

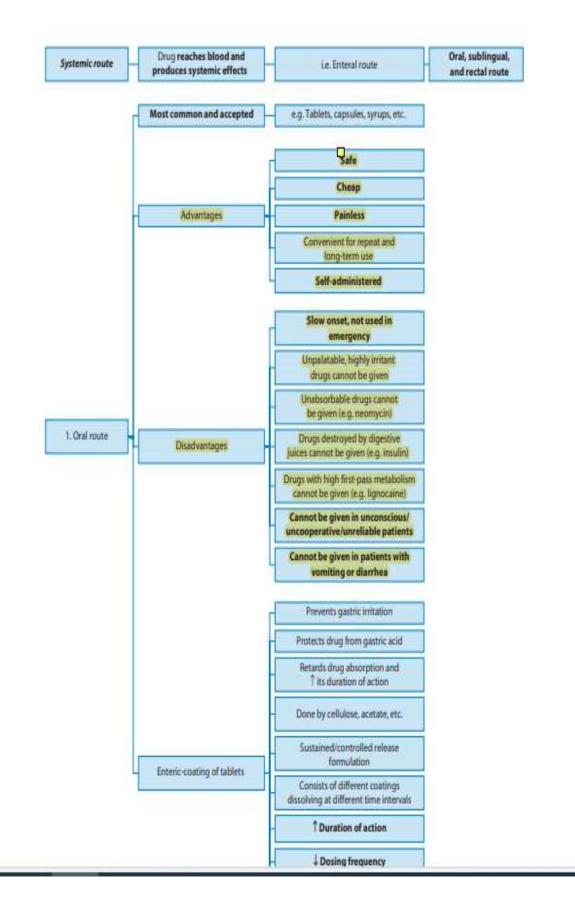

DR. Reham Ellisy

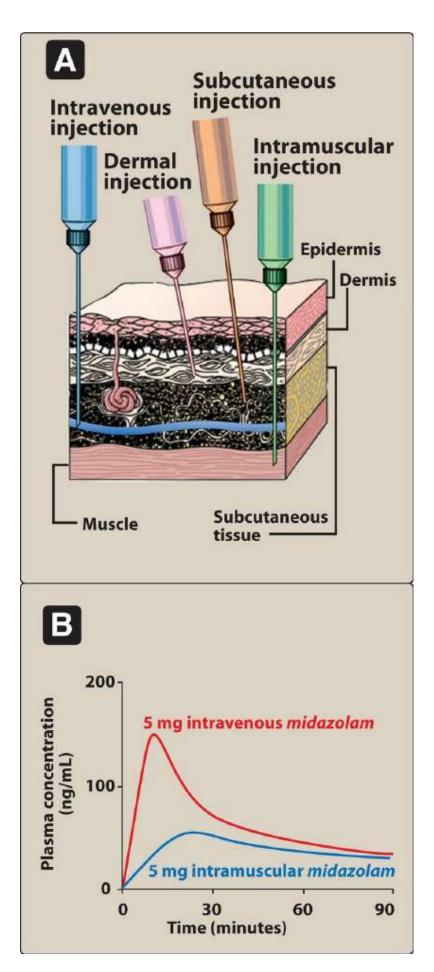

كلية الطب – جامعة جنوب الوادى

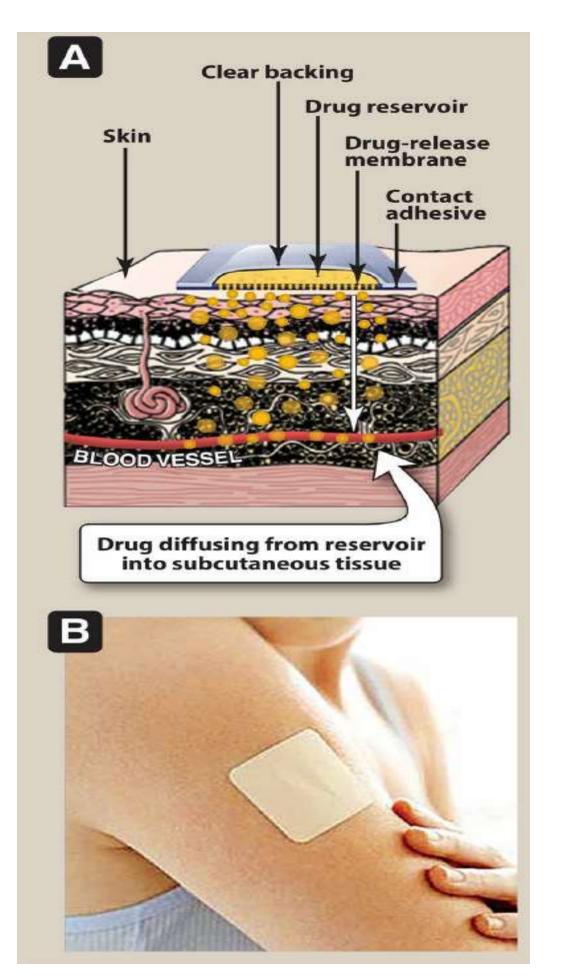
-


1.2 DRUG NOMENCLATURE

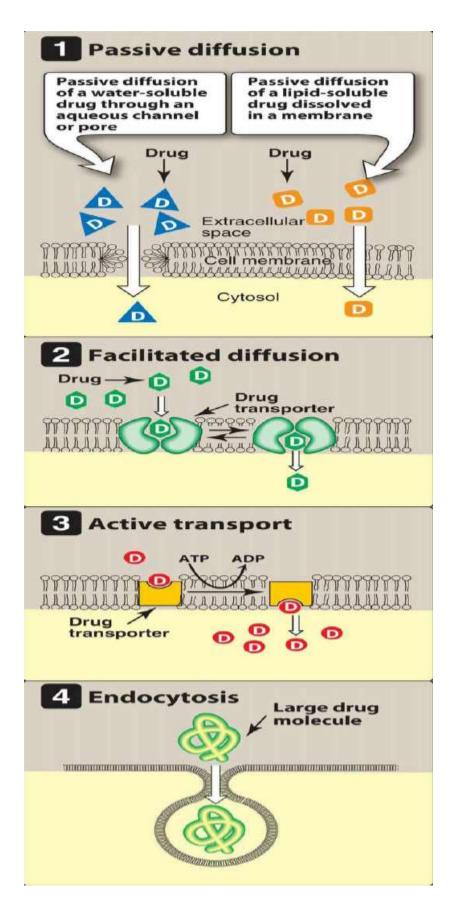

Pharmacokinetics refers to what the body does to a drug, whereas **pharmacodynamics** describes what the drug does to the body.

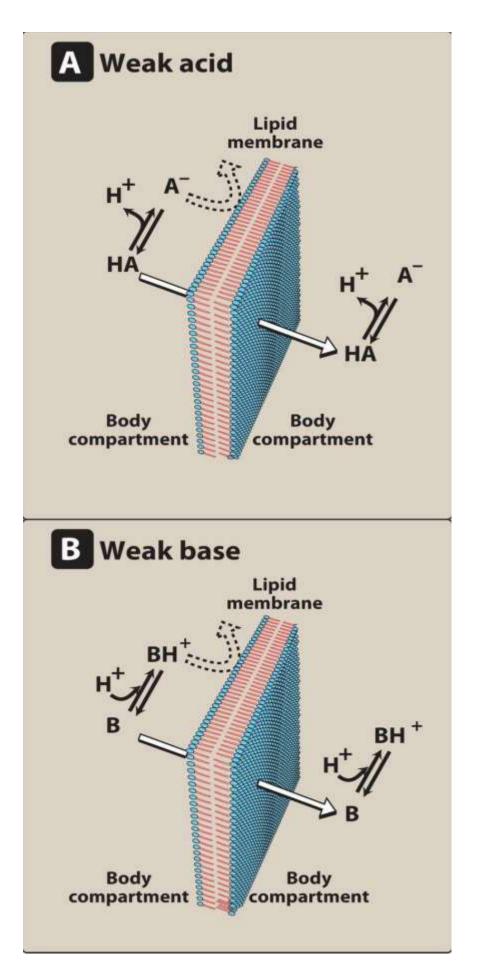

Four pharmacokinetic properties determine the onset, intensity, and duration of drug action:



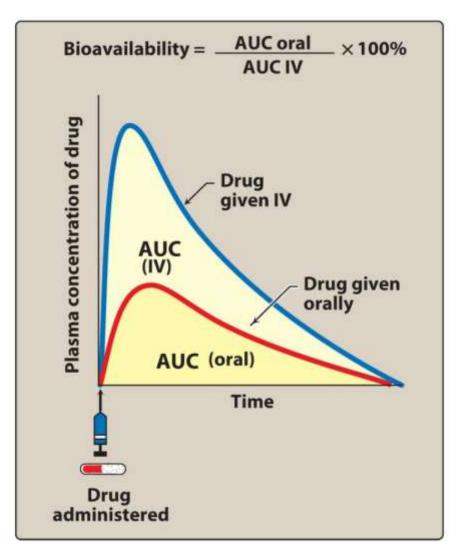

Routes of Drug Administration

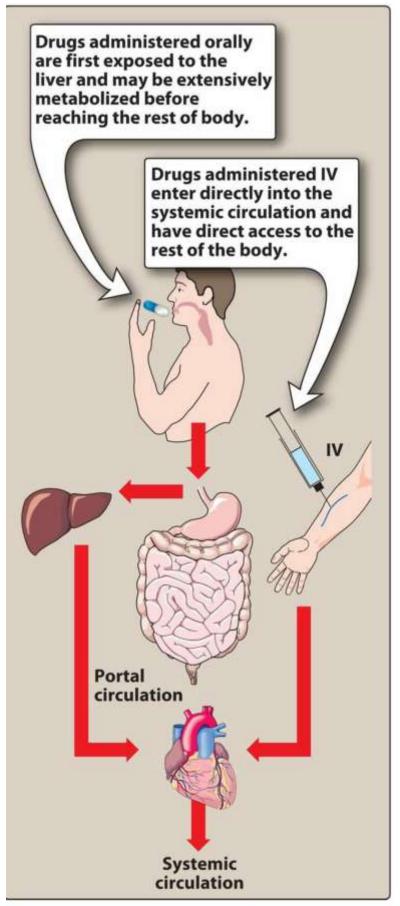
The route of administration is determined by properties of the drug (for example, water or lipid solubility, ionization) and by the therapeutic objectives (for example, the need for a rapid onset, the need for long-term treatment, or restriction of delivery to a local site). Major routes of drug administration include enteral, parenteral, and topical, among others.





Nursing pharmacology


ROUTE OF ADMINISTRATION	ABSORPTION PATTERN	ADVANTAGES	DISADVANTAGES	EXAMPLES
Oral	• Variable; affected by many factors	 Safest and most common, convesient, and economical route of administration 	Limited absorption of some drugs Food may affect absorption Patient compliance is necessary Drugs may be metabolized before systemic absorption	Acetaminophen teblets Annoxicillin suspension
Sublingual	Depends on the drug: Few drugs (for example, nitroglycenin) have rapid, direct systemic absorption Most drugs erratically or incompletely absorbed	 Bypasses first-pass effect Bypasses destruction by stomach acid Drug stability maintained because the pH of saliva relatively neutral May cause immediate pharmacological effects 	 Limited to certain types of drugs Limited to drugs that can be taken in small doses May lose part of the drug dose if swallowed 	 Nitrogiycerin Buprenorphine
Intravenous	Absorption not required	Can have immediate effects Ideal if dosed in large volumes Suitable for irritating substances and complex mixtures Valuable in emergency situations Dosage titration permissible Ideal for high molecular weight proteins and peptide drugs	Unsuitable for oily substances Bolus injection may result in adverse effects Most substances must be slowly injected Strict aseptic techniques needed	●Mancomyoln ●Heparin
Intramuscular	Depends on drug diluents: Aqueus solution: prompt Depot preparations: slow and sustained	 Suitable if drug volume is moderate Suitable for oilly vehicles and certain irritating substances Preferable to intravenous if patient must self-administor 	 Affects certain lab tests (creatine kinase) Can be painful Can cause intramuscular hemorrhage (precluded during anticoegulation therapy) 	 Haloperidal Depot medroxy- progesterone
Subcutaneous	Depends on drug diluents: Aqueous solution: prompt Depot preparations: slow and sustained	 Suitable for slow-release drugs Ideal for some poorty soluble suspensions 	 Pain or necrosis if drug is irritating Unsuitable for drugs administered in large volumes 	• Epinephrine • Insulia • Neparin
Inhalation	 Systemic absorption may occur: this is not always desirable 	 Absorption is rapid; can have immediate effects Ideal for gases Effective for potients with respiratory problems Dose can be titrated Localized effect to target lungs; lower doses used compared to that with oral or parenteral administration Fewer systemic side effects 	 Most addictive route (drug can enter the brain quickly) Patient may have difficulty regulating dose Some patients may have difficulty using inhalers 	• Albuterol • Fluticasone
Topical	 Variable; affected by skin condition, area of skin, and other factors 	 Suitable when local effect of drug is desired May be used for skin, eye, intra- vaginal, and intranasal products Minimizes systemic absorption Easy for patient 	 Some systemic absorption can occur Unsuitable for drugs with high molecular weight or poor lipid solubility 	Clotrimaznie cream Hydrocortisone cream Timalol eye drops
Transdermal (patch)	 Slow and sustained 	 Bypasses the first-pass effect Convenient and painless Ideal for drugs that are lipophilic and have poor oral bioavailability Ideal for drugs that are quickly eliminated from the body 	 Some patients are allergic to patches, which can cause irritation Drug must be highly lipophilic May cause delayed delivery of drug to pharmacological site of action Limited to drugs that can be taken in small doily doses 	 Nitroglycerin Nicotine Scopolamine
Rectal	• Erratic and variable	Partially bypasses first-pass effect Bypasses destruction by stomach acid Ideal if drug causes vomiting Ideal in patients who are vomiting, or comatose	Orugs may initiate the rectal mucosa Not a well-accepted rouse	Bisacodyi Promethazine

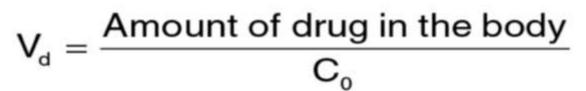


Bioavailability

Bioavailability is the rate and extent to which an administered drug reaches the systemic circulation. For example, if 100 mg of a drug is administered orally and 70 mg is absorbed unchanged, the bioavailability is 0.7 or 70%. Determining bioavailability is important for calculating drug dosages for non-intravenous routes of administration.

l First-pass metabolism can occur with orally administered drugs.

Binding of drugs to plasma proteins and tissues

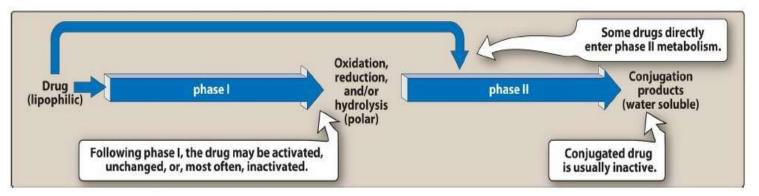

1. **Binding to plasma proteins**: Reversible binding to plasma proteins sequesters drugs in a non-diffusible form and slows transfer out of the vascularcompartment. Albumin is the major drug-binding protein, and it may act as a drug reservoir. As the concentration of free drug decreases due to elimination, the bound drug dissociates from albumin. This maintains the free-drug concentration as a constant fraction of the total drug in the plasma.

2. **Binding to tissue proteins:** Many drugs accumulate in tissues, leading to higher concentrations in tissues than in interstitial fluid and blood.

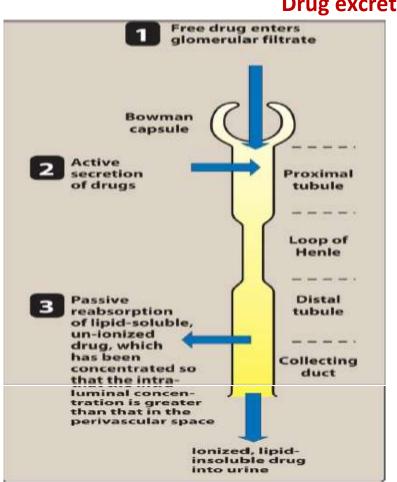
Drugs may accumulate because of binding to lipids, proteins, or nucleic acids. Drugs may also undergo active transport into tissues. Tissue reservoirs may serve as a major source of the drug and prolong its actions or cause local drug toxicity. (For example, acrolein, the metabolite of cyclophosphamide, can cause hemorrhagic cystitis because it accumulates in the bladder.)

Volume of distribution

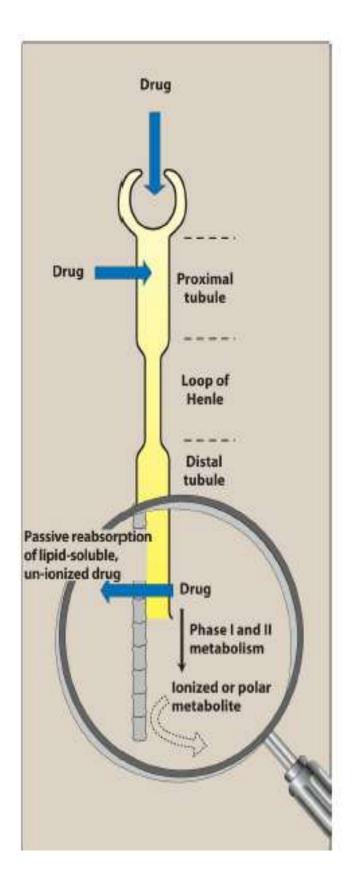
The apparent volume of distribution, Vd, is defined as the fluid volume that is required to contain the entire drug in the body at the same concentration measured in the plasma. It is calculated by dividing the dose that ultimately gets into the systemic circulation by the plasma concentration at time zero (C0).

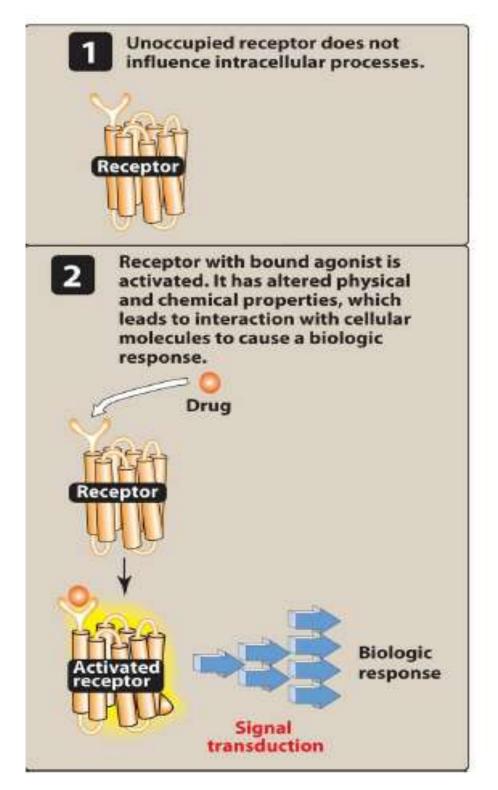


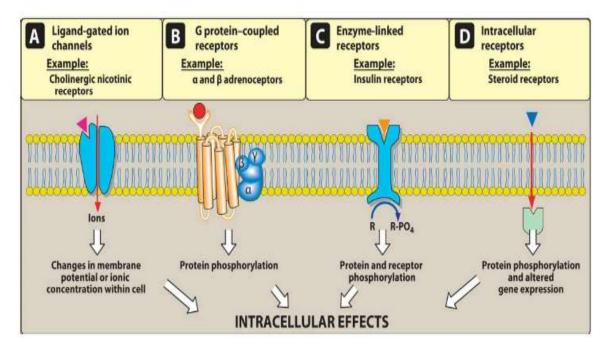
Reactions of drug metabolism

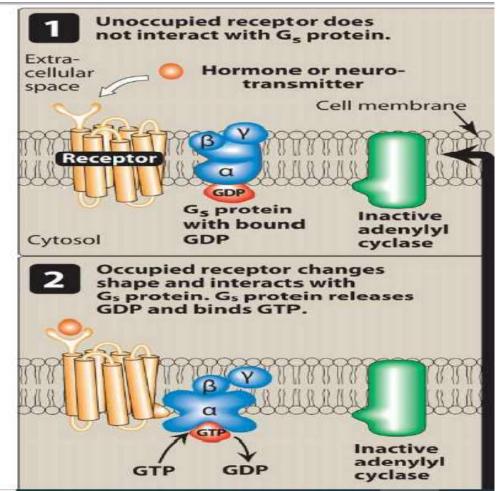

The kidney cannot efficiently excrete lipophilic drugs that readily cross cell membranes and are reabsorbed in the distal convoluted tubules. Therefore, lipidsoluble agents are first metabolized into more polar (hydrophilic)substances in the liver via two general sets of reactions, called phase I and phase II.

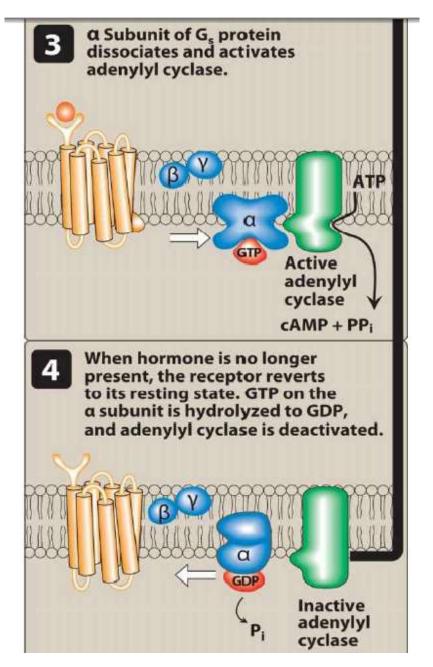
Nursing pharmacology


Dr. Reham Ellisy

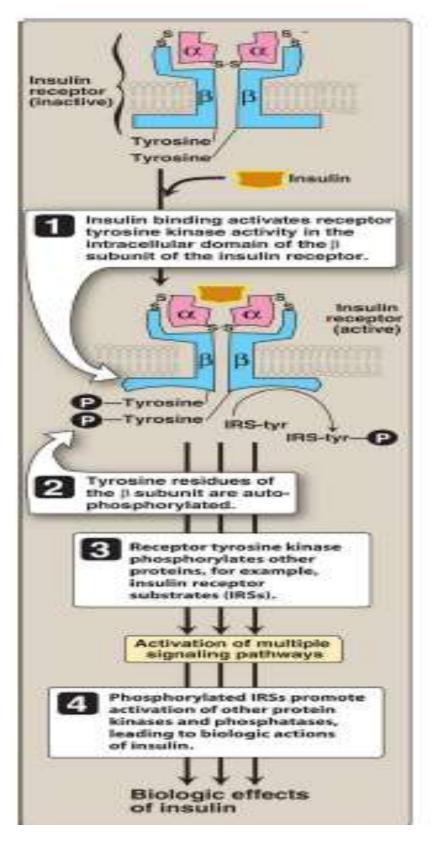

The biotransformation of drugs.

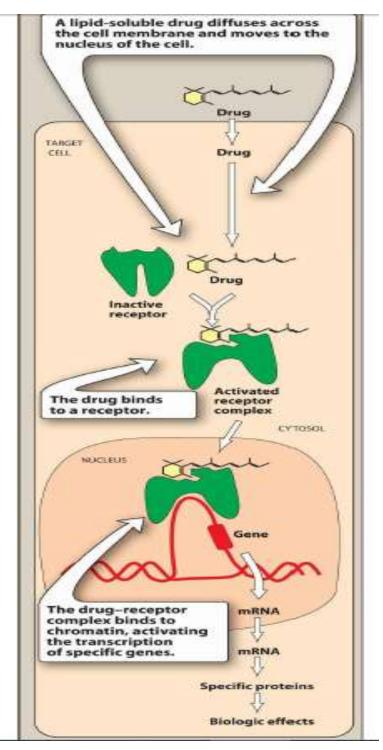



Drug excretion

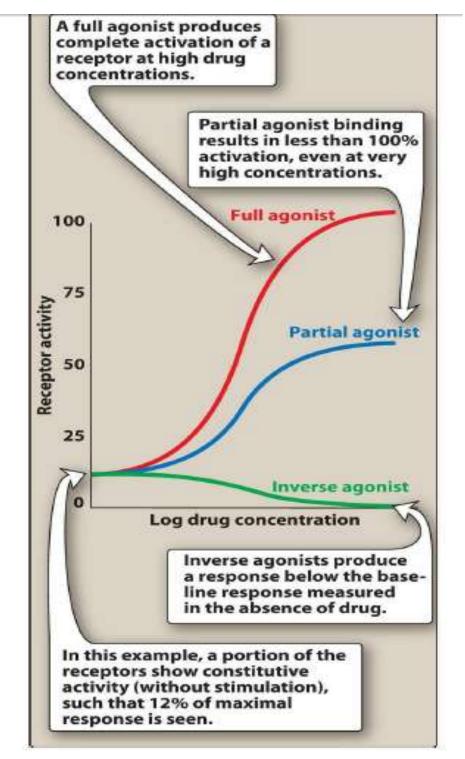


Pharmaco-dynamics

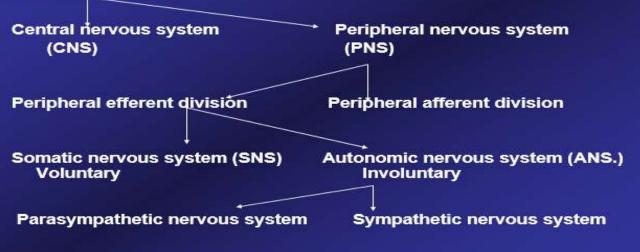




G- Protein coupled receptors



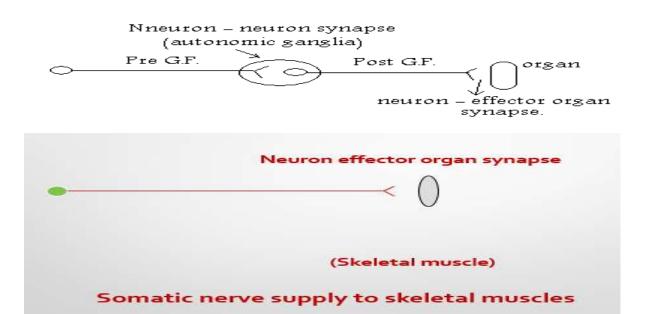
Tyrosine kinase linked receptors



Intracellular receptors

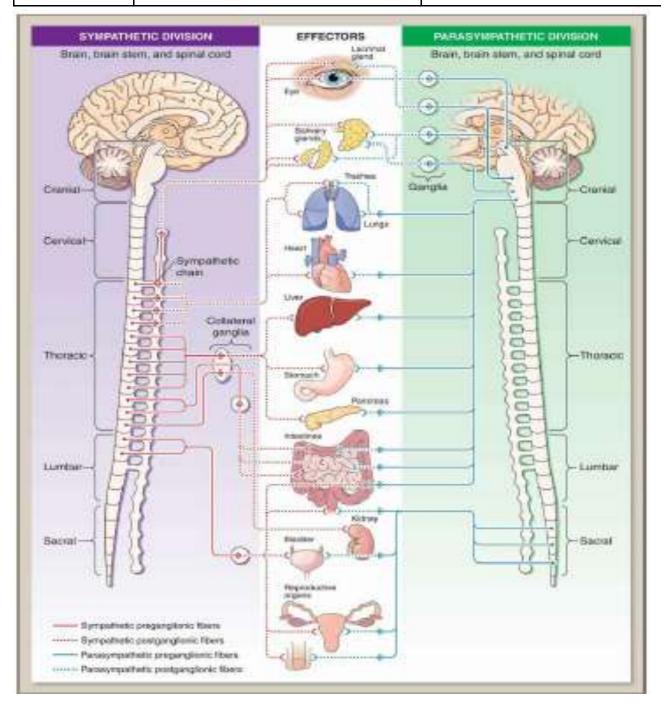
Agonist-Antagonist-Partial Agonist

Nervous System



Difference	ANF	SNF
Supply	All body structure except skeletal muscles	Only skeletal muscles
Ganglia	Interrupted by a ganglia which divides the fiber into: pre- and postganglionic fibers.	No ganglia but direct supply from the CNS to the skeletal muscles.
Function	Involuntary –or- automatic control (not under conscious control).	Voluntary i.e. under conscious control.
Denervation	Change the function of organs but they show some degree of activity.	Completely paralyze the muscle.

Types of synapses in ANS:


1) Neuron-neuron synapse, between the pre- and postganglionic fiber (Ganglia).

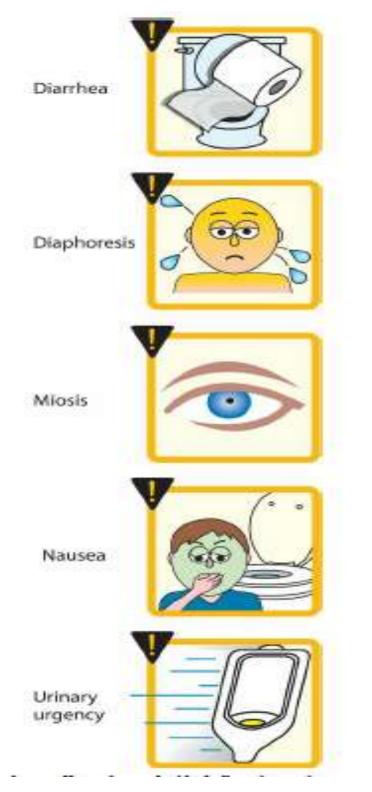
2) Neuron-effector organ synapse, (nerve end of postganglionic fiber and the organ).

Difference	Sympathetic	Parasympathetic
Origin	All thoracic and upper three Lumbar	III, VII, IX, and X cranial nerves and 2nd , 3rd and 4th of sacral
Ganglion	Ganglia are closed to spinal cord (shorter pre-ganglion and longer post-ganglion fibers).	Ganglia are away from spinal cord usually embedded in supplied organ (longer pre- ganglion and shorter post- ganglion fibers).

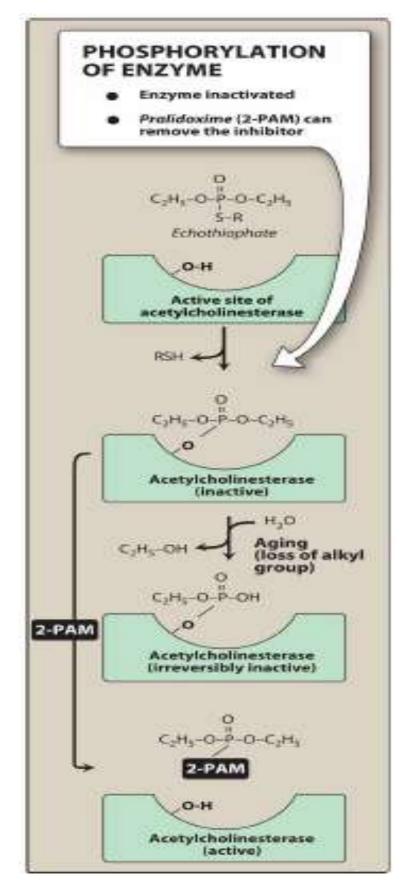
Physiological function	Not essential for life .It acts mainly under stress and emergency condition.	Essential for life, it regulates vital function as digestion etc.
chemical mediator	Generally nor epinephrine (NEP)	Generally acetylcholine (A Ch)

Types of the autonomic nerve fibers:-

According to the type of chemical mediator, the ANF. are classified into

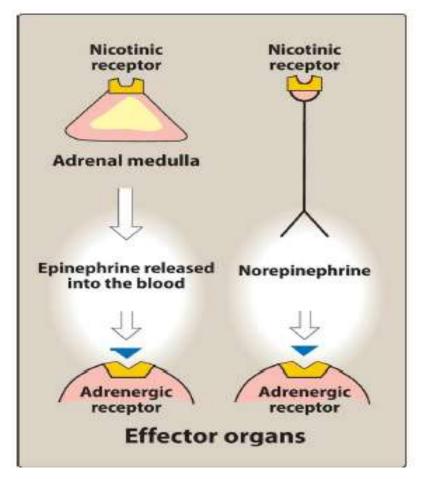

1- *Cholinergic* nerve fibers A Ch as chemical mediator

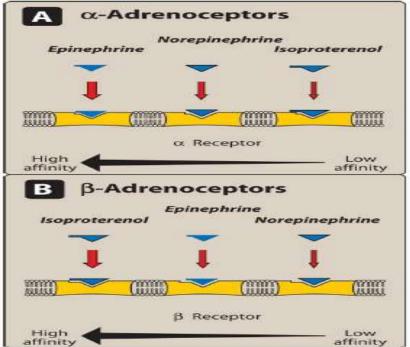
2- Adrenergic nerve fibers NEP as chemical mediator.


Red = Sympathetic actions Blue = Parasympathetic actions	LACRIMAL GLANDS
EYE	Stimulation of tears
Contraction of iris radial muscle (pupil dilates)	SALIVARY GLANDS
Contraction of iris sphincter muscle (pupil contracts) Contraction of ciliary muscle (lens accommodates for near vision)	Thick, viscous secretion Copious, watery secretion
TRACHEA AND BRONCHIOLES	· 12
Dilation Constriction, increased secretions	HEART
ADRENAL MEDULLA	Increased rate; increased contractility Decreased rate; decreased contractility
Secretion of epinephrine and norepinephrine KIDNEY	GASTROINTESTINAL SYSTEM
Secretion of renin (β ₁ increases; α ₁ decreases)	Decreased muscle motility and tone; contraction of sphincters Increased muscle motility and tone
URETERS AND BLADDER Relaxation of detrusor; contraction	GENITALIA (female) Relaxation of uterus
of trigone and sphincter	BLOOD VESSELS
Contraction of detrusor;	(skeletal muscle) Dilation
GENITALIA (male)	
Stimulation of ejaculation Stimulation of erection	BLOOD VESSELS (skin, mucous membranes, and splanchnic area)
	Constriction

Difference	M1-Receptors	M2-Receptors		M3-Receptors
Location	Gastric parietal cells - CNS.	- Smo	ocardium ooth muscles	Smooth muscles - Exocrine glands
Agonists	ACh Methacholine Carbachol	ACh Carba	Methacholine achol	ACh, Methacholine Carbachol
Antagonists	Atropine and Pirenzepine	Atrop	oine	Atropine
	SYMPATHETIC		PARASYMF	PATHETIC
ites of origin Thoracic and lumbar region of spinal cord (thoracolumbar)		fthe	Brain and sacral ar (craniosacral)	ea of the spinal cord
ength of fibers	Short preganglionic Long postganglionic	Long preganglionic Short postganglion		
ocation of ganglia	Close to the spinal cord	Within or near effe		ctor organs
reganglionic fiber branching Extensive			Minimal	
istribution Wide			Limited	
Type of response Diffuse			Discrete	

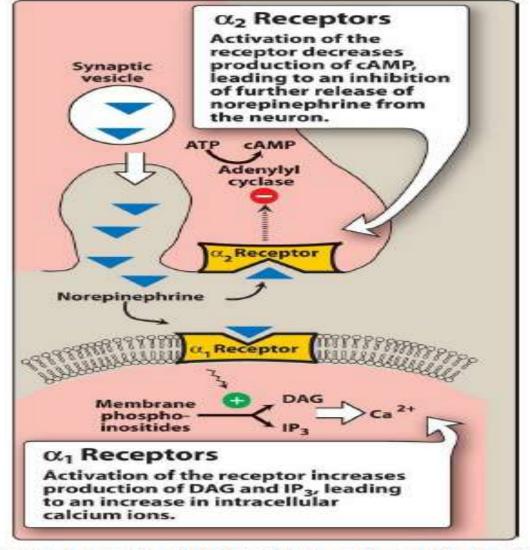
	Physostigmine (Eserine)	Neostigmine (Prostigmine)
Nature	Natural Tertiary ammonium	Synthetic Quaternary ammonium
Kinetics	 Well absorbed orally. Passes BBB. Rapid metabolism by ChE. Short duration 	 1- Irregular oral absorption. 2- Does not pass BBB. 3-Slow metabolism by ChE. 4- Long duration.
Dynamics	 1-Stimulate M&N receptors. 2- Specific on eye. 3- CNS stimulant. 	 Stimulate M&N receptors. Specific on GIT and UB. Direct Sk.M stimulant.
Uses	 1- Eye drops: a- Glaucoma. b- To counteract mydriatics. 2- IV in atropine poisoning. 3- Alzheimer disease. 	 1- Myasthenia gravis. 2- Curare poisoning. 3- Paralytic lleus. 4- Urine retention
Toxicity	 1- Exaggerated ACh-like actions. 2- CNS convulsions 	 1- Exaggerated ACh-like action. 2- No convulsions in CNS.
Management	1- Atropine. 2- Anticonvulsants.	1- Atropine only.

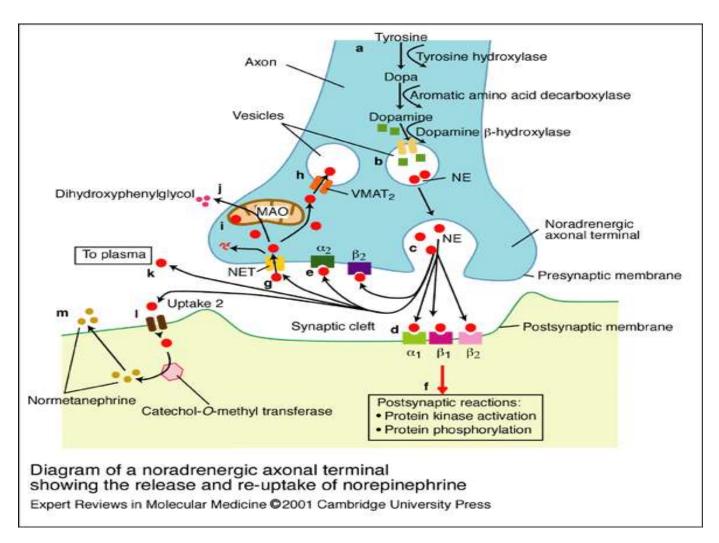


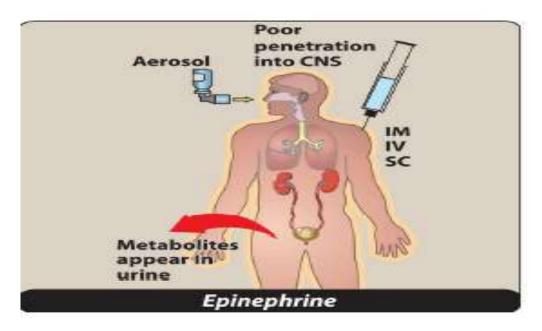


Bethanechol • Used in treatment of urinary retention • Binds preferentially at muscarinic receptors	 Physostigmine Increases intestinal and bladder motility Reverses CNS and cardiac effects of tricyclic antidepressants Reverses CNS effects of atropine Uncharged, tertiary amine that can penetrate the CNS 	 Rivastigmine, galantamine, donepezil Used as first-line treatments for Alzheimer disease, though confers modest benefit Have not been shown to reduce healthcare costs or delay institutionalization Can be used with memantine (N-methyl-o-aspartate antagonist) in moderate to severe disease
Carbachol • Binds to both muscarinic and nicotinic receptors • Produces miosis during ocular surgery • Used topically to reduce intraocular pressure in open-angle or narrow-angle glaucoma, particularly in patients who have become tolerant to <i>pilocarpine</i>	 Neostigmine Prevents postoperative abdominal distention and urinary retention Used in treatment of myasthenia gravis Used as an antidote for competitive neuromuscular blockers Has intermediate duration of action (0.5 to 2 h) 	Echothiophate • Used in treatment of open-angle glaucoma • Has long duration of action (100 h)
Pilocarpine • Reduces intraocular pressure in open- angle and narrow-angle glaucoma • Binds preferentially at muscarinic receptors • Uncharged, tertiary amine that can penetrate the CNS	 Edrophonium Used for diagnosis of myasthenia gravis Used as an antidote for competitive neuromuscular blockers Has short duration of action (10 to 20 min) 	Acetylcholine • Used to produce miosis in ophthalmic surgery

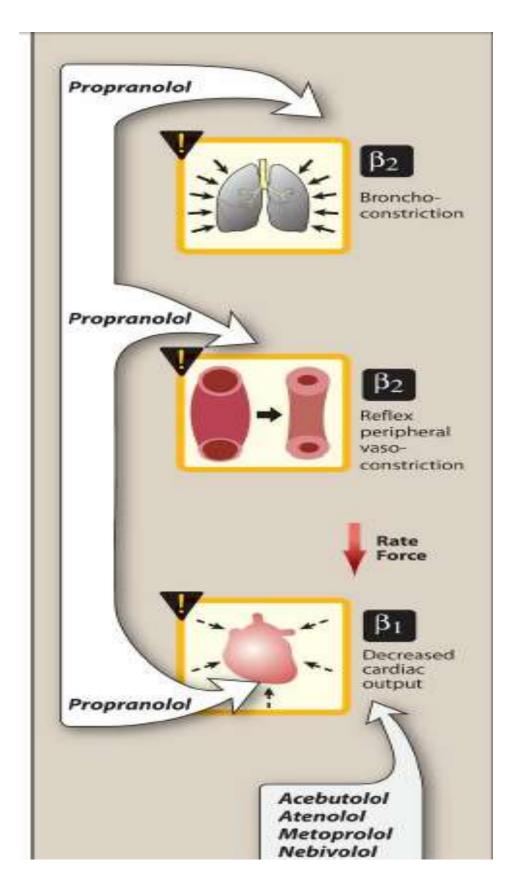
Drug	Therapeutic uses
Musc	arinic blockers
Trihexyphenidyl Benztropine	 Treatment of Parkinson disease
	 Management of antipsychotic-induced extrapyramidal effects
Darifenacin Fesoterodine Oxybutynin Solifenacin Tolterodine Trospium	 Treatment of overactive urinary bladder
Cyclopentolate Tropicamide Atropine*	 In ophthalmology, to produce mydriasis and cycloplegia prior to refraction
Atropine*	 To treat spastic disorders of the GI tract To treat organophosphate poisoning
	 To suppress respiratory secretions prior to surgery
	To treat bradycardia
Scopolamine	 To prevent motion sickness
Aclidinium Glycopyrrolate Ipratropium Tiotropium	Treatment of COPD
Gang	lionic blockers
Nicotine	 Smoking cessation




Sympathetic Nervous System (Adrenergic Nervous System)


Dr. Re

_....



Epinephrine

TISSUE	RECEPTOR TYPE	ACTION	OPPOSING ACTIONS
Heart • Sinus and AV • Conduction pathway • Myofibrils	β1 β1 β1	Automaticity Conduction velocity, automaticity Contractility, automaticity	Cholinergic receptors Cholinergic receptors
Vascular smooth muscle	β2	Vasodilation	α-Adrenergic receptors
Bronchial smooth muscle	₿₂	Bronchodilation	Cholinergic receptors
Kidneys	βı	🛉 Renin release	α1-Adrenergic receptors
Liver	β2,α1	f Glycogenolysis and gluconeogenesis	-
Adipose tissue	β1,β3	† Lipolysis	α_2 -Adrenergic receptors
Skeletal muscle	β2	Increased contractility Potassium uptake: glycogenolysis Dilates arteries to skeletal muscle Tremor	-
Eye-ciliary muscle	β2	Relaxation	Cholinergic receptors
Gi tract	βa	↓ Motility	Cholinergic receptors
Gall bladder	βz	Relaxation	Cholinergic receptors
Urinary bladder detrusor muscle	β2, β3	Relaxation	Cholinergic receptors
Uterus	β2	Relaxation	Oxytocin

	DRUG	RECEPTOR SPECIFICITY	THERAPEUTIC USES
	Epinephrine	α ₁ , α ₂ β ₁ , β ₂	Anaphylactic shock Cardiac arrest In local anesthetics to increase duration of action
	Norepinephrine	α ₁ , α ₂ β ₁	Treatment of shock
2	Isoproterenal	β_1,β_2	As a cardiac stimulant
CATECHOLAMINES Rapid onset of action Brief duration of action Not administered orally	Dopamine	Dopaminergic α _l ,β _l	Treatment of shock Treatment of congestive heart failure Raise blood pressure
Do not penetrate the blood- brain barrier	Dobutamine	βι	Treatment of acute Iseart failure
	Oxymetazoline	at	As a nasal decongestant For relief of eye redness
	Phenylephrine	a	As a nasal decongestant Raise blood pressure Treatment of paroxysmal supraventricular tachycardia
	Clonidine	a ₂	Treatment of hypertension
NONCATECHOL-	Albuteral Metaproterenal Terbutalina	β2	Treatment of bronchospasm (short-acting)
AMINES Compared to catecholamines: Longer duration of action	Arformateral Farmateral Indocateral Salmeteral	βs	Treatment of bronchospasm (long-acting)
All can be administered orally or via inhalation	Amphetamine	α, β. CNS	As a CN5 stimulant in treatment of children with ADHD, narcoleps and for appetite control
	Ephedrine Pseudoephedrine	α, β, CNS	Raise blood pressure As a nasal decongestant

....



Figure 1Propranolol Adverse Effects

Dr. Reham Ellisy

DRUG	RECEPTOR SPECIFICITY	THERAPEUTIC USES
Propranolol	β_1, β_2	Hypertension Migraine Hyperthyroidism Angina pectoris Myocardial infarction
Nadolol Pindolol ¹	β1, β2	Hypertension
Timolol	β_1, β_2	Glaucoma, hypertension
Atenolol Bisoprolol ² Esmolol Metoprolol ²	βι	Hypertension Angina Myocardial infarction Atrial fibrillation
Acebutolol ¹	βι	Hypertension
Nebivolol	β1, NO ↑	Hypertension
Carvedilol ² Labetalol	$\alpha_1, \beta_1, \beta_2$	Hypertension

Angina Pectoris

Definition:- Angina pectoris is the classical symptom of ischemic heart. It is usually due to imbalance between:- Myocardial oxygen <u>supply and demand</u>.

Classification:-

A) Exertional angina: It is characterized by:

1) Cardiac pain which develops on exertion e.g. exercise, eating, cold weather or emotional stress.

2) Significant fixed coronary stenosis (atherosclerotic) and/or excess myocardial demand are create.

ECG shows depressed ST segment.

3) If the cardiac pain happens at minor exertion or at rest, it is called *unstable angina*.

B) variant or prinzmetal's angina:

It is characterized by:

1) Patient develops cardiac pain at rest and ECG shows elevated ST segment.

2) It is due to vasospasm of coronary artery with resulting decrease of coronary blood flow.

3) It may occur spontaneously or may be induced by exposure to cold, emotional stress or vasoconstricting agents e.g. ergot derivative drugs.

1-Organic nitrates :

Examples:

Nitroglycerine,

Isosorbide mononitrate & Isosorbide dinitrate.

<u>Mechanism</u>:

Nitrates changed in vascular smooth muscle cell into <u>*nitric oxide (NO)*</u>. NO then activates <u>*guanylyl cyclase*</u> enzyme which increases the cellular level of <u>*cGMP & cGMP-dependent protein kinase*</u>.

This in turn leads to reduction in both *myosin light chain phosphorylation* & *cytosolic calcium* concentration.

The net result is *vascular relaxation*.

At low concentrations:-

Nitroglycerine preferentially <u>dilates the veins more than the arterioles</u>, with consequent reduction of preload, decrease of left and right ventricular chamber size, and end diastolic pressure.

<u>Consequently</u>, the cardiac work and oxygen demand of the heart decrease <u>and</u> anginal chest pain relieves.

Nitrates may also improve myocardial blood flow by dilating collateral coronary blood vessels so that blood redistributes from normal to ischemic regions.

Arteriolar dilatation at these concentrations may affect arterioles of the face *(causing flushing)* and meningeal arterioles *(causing pulsating headache)*.

At higher concentrations:-

Nitrate induced <u>venodilatation is associated with arteriolar dilatation & reduced</u> <u>peripheral resistance leading to reduced blood pressure, cardiac output and</u> <u>compensatory</u> **sympathetic reflex tachycardia.**

<u>Tolerance</u>:

Frequently repeated or continuous exposure to high dose of organic nitrates leads to marked decrease in the magnitude of their pharmacological effect. Many theories have been suggested to explain the tolerance to nitrates but no settled one has been yet confirmed.

To <u>restore responsiveness and avoid tolerance</u>, interrupted therapy for 8-12 hours each day of organic nitrates allows the return of efficacy of the drug.

Side effects:

1) Pulsating headache and dizziness (It is beneficial side effect HOW?)

2) Postural hypotension (nitrate syncope). It is treated by change the position of the patient (let head down and leg elevated). Don't use vasoconstricting agent (like epinephrine).

3) Marked fall in blood pressure and even death if given concomitantly with sildenafil (Viagra). Both drugs are vasodilators.

Therapeutic uses:

1- Angina pectoris:

- In acute attack,
- sublingual nitroglycerine is the drug of choice.
- It acts in about 1-2 minutes. Sublingual route allows absorption of drug rapidly from buccal mucosa, with avoidance of extensive first pass effect if swallowed orally.
- The dose (0.3, 0.4, 0.6 mg) may be repeated at 3-5 minutes intervals.
- Nitroglycerine buccal spray is also available as metered delivery system (0.4 mg).
- Pain not responding to three tablets or lasting more than 20 minutes, may *represent infarction* that needs medical attention.

In between attacks:

To prevent a new attack, any of the following nitrates preparations are indicated:

1) Short-acting nitrates as nitroglycerine sublingual (0.3-0.6 mg) or isosorbide dinitrate sublingual (2.5-10 mg) to be taken 5 minutes before any activity that may precipitate angina.

2) Long acting nitrates to be taken as a maintenance therapy such as nitroglycerine in the form of:

oral sustained release capsules, ointment, or transdermal patches, oral isosorbide dinitrate.

NB

Oral isosorbide mononitrate (better bioavailability, less first pass metabolism and longer half-life in comparison with isosorbide dinitrate).

2- Heart failure (as a vasodilator) especially if heart failure is associated with cardiac ischemia.

3- Hypertensive emergency, it is given by i.v. route.

2- Beta adrenergic blockers

<u>Mechanism:-</u>

They prevent angina through reduction of heart rate, myocardial contractility and to lesser extent blood pressure leading to reduction of myocardial oxygen requirement during exertion and stress. They prolong the life in patients with coronary disease.

<u>Beta blockers with ISA</u> like pindolol are less desirable because they may exacerbate angina.

In prinzmetal's (vasospastic) angina, use of beta blockers opens the way for catecholamines to act on unopposed coronary alpha receptors which may increases coronary spasm. Therefore, β -blockers are not preferred in prinzmetal's vasospastic angina.

<u>3- Calcium channel blocker</u>

<u>Mechanism:</u>

Calcium channel blockers inhibit the L-type calcium channels in the vascular smooth muscle of coronary arteries \rightarrow coronary vasodilatation, improve coronary blood flow and increased oxygen supply to the heart.

Therefore, in patients with coronary vasospasm (e.g. prinzmetal's or vasospastic angina), they are the drugs of choice.

Pharmacological actions:

Verapamil and diltiazem:

In addition to their vasodilator effect, they decrease the heart rate through a depressant effect on SA node and slowing the A-V nodal conduction.

Also, they have a *negative inotropic effect*.

<u>Therefore, it is not advisable to combine any of them with β -blockers for fear of heart block or heart failure.</u>

Nifedipine on the other hand has no A-V blocking activity and is more potent as arterial vasodilator.

So, its reducing effect on blood pressure may be associated with reflex sympathetic stimulation and tachycardia. <u>Accordingly, it is advisable to combine</u> <u>it with a β -blocker in patients with angina.</u>

- Therapeutic uses:

- 1) Angina pectoris.
- 2) Hypertension.
- 3) Supraventricular tachycardia (verapamil or diltiazem, but not nifedipine).
- 4) Migraine headache (verapamil as a prophylaxis).