

OBJECT

ORIENTED

PROGRAMMING

USING C++

OBJECT ORIENTED PROGRAMMING using C++ 2025

1

Contents

Chapter 1: Function …………………………………………………….2

Chapter 2: Object and Classes ………………………………………….28

Chapter 3: Operator Overloading ……………………………………..71

Chapter 4: Inheritance …………………………………………………89.

Chapter 5: Pointer ……………………………………………………..112

Chapter 6 :Polymorphism ……………………………………………..123

Chapter 7 : Virtual Function ………………………………………..133

OBJECT ORIENTED PROGRAMMING using C++ 2025

2

Chapter 1

 Function

1.1 Simple Function

A function groups a number of program statements into a unit and gives it a

name.

The most important reason to use functions is to aid in the conceptual

organization of a program. Another reason to use functions is to reduce

program size. Any sequence of instructions that appears in a program more

than once is a candidate for being made into a function. The function’s code

is stored in only one place in memory, even though the function is executed

many times in the course of the program. Figure 1.1 shows how a function is

invoked from different sections of a program. Functions in C++ are similar to

subroutines and procedures in various other languages.

1.1 Simple Function

1.2 Passing Arguments to Functions

1.3 Returning Values from Functions

1.4 Reference Arguments

1.5 Overloaded Functions

1.6 Recursion

1.7 Inline Functions

OBJECT ORIENTED PROGRAMMING using C++ 2025

3

Figure 1.1 : Flow of control to a function

Example 1:

This program is divided in two functions: addition and main. Remember that

no matter the order in which they are defined, a C++ program always starts

by calling main. In fact, main is the only function called automatically, and

// function example

#include <iostream>

using namespace std;

int addition (int a, int b)

{

 int r;

 r=a+b;

 return r;

}

int main ()

{

 int z;

 z = addition (5,3);

 cout << "The result is " << z;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

4

the code in any other function is only executed if its function is called

from main (directly or indirectly).

In the example above, main begins by declaring the variable z of type int, and

right after that, it performs the first function call: it calls addition. The call to a

function follows a structure very similar to its declaration. In the example

above, the call to addition can be compared to its definition just a few lines

earlier:

The parameters in the function declaration have a clear correspondence to the

arguments passed in the function call. The call passes two values, 5 and 3, to

the function; these correspond to the parameters a and b, declared for

function addition.

Example 2:

// function example

#include <iostream>

using namespace std;

int subtraction (int a, int b)

{

 int r;

 r=a-b;

 return r;

}

int main ()

{

 int x=5, y=3, z;

 z = subtraction (7,2);

 cout << "The first result is " << z << '\n';

 cout << "The second result is " << subtraction (7,2) << '\n';

 cout << "The third result is " << subtraction (x,y) << '\n';

 z= 4 + subtraction (x,y);

 cout << "The fourth result is " << z << '\n';

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

5

Similar to the addition function in the previous example, this example defines

a subtract function, that simply returns the difference between its two

parameters. This time, main calls this function several times, demonstrating

more possible ways in which a function can be called.

Let's examine each of these calls, bearing in mind that each function call is

itself an expression that is evaluated as the value it returns. Again, you can

think of it as if the function call was itself replaced by the returned value:

If we replace the function call by the value it returns (i.e., 5), we would have:

With the same procedure, we could interpret:

as:

since 5 is the value returned by subtraction (7,2).

In the case of:

The arguments passed to subtraction are variables instead of literals. That is

also valid, and works fine. The function is called with the

values x and y have at the moment of the call: 5 and 3 respectively, returning

2 as result.

The fourth call is again similar:

OBJECT ORIENTED PROGRAMMING using C++ 2025

6

The only addition being that now the function call is also an operand of an

addition operation. Again, the result is the same as if the function call was

replaced by its result: 6. Note, that thanks to the commutative property of

additions, the above can also be written as:

With exactly the same result. Note also that the semicolon does not

necessarily go after the function call, but, as always, at the end of the whole

statement. Again, the logic behind may be easily seen again by replacing the

function calls by their returned value:

Example 3:

This example demonstrates a simple function whose purpose is to print a line

of 45 asterisks. The example program generates a table, and lines of asterisks

are used to make the table more readable.

OBJECT ORIENTED PROGRAMMING using C++ 2025

7

 Output :

OBJECT ORIENTED PROGRAMMING using C++ 2025

8

The program consists of two functions: main() and starline(). You’ve already

seen many programs that use main() alone.

What other components are necessary to add a function to the

program? There are three:

(1) The function declaration

(2) The calls to the function

(3) the function definition.

The Function Declaration:-

Just as you can’t use a variable without first telling the compiler what it is,

you also can’t use a function without telling the compiler about it. There are

two ways to do this. The approach we show here is to declare the function

before it is called. (The other approach is to define it before it’s called; we’ll

examine that next.) In the TABLE program, the function starline() is

declared in the line

- The declaration tells the compiler that at some later point we plan to

present a function called starline.

- The keyword void specifies that the function has no return value

- The empty parentheses indicate that it takes no arguments.

Notice :-

• You can also use the keyword void in parentheses to indicate

that the function takes no arguments, as is often done in C, but

leaving them empty is the more common practice in C++.

• Notice that the function declaration is terminated with a

semicolon. It is a complete statement in itself.

Function declarations are also called prototypes, since they provide a model

or blueprint for the function. They tell the compiler, "a function that looks like

this is coming up later in the program, so it’s all right if you see references to

it before you see the function itself.” The information in the declaration (the

OBJECT ORIENTED PROGRAMMING using C++ 2025

9

return type and the number and types of any arguments) is also sometimes

referred to as the function signature.

Calling the Function

The function is called (or invoked, or executed) three times from main(). Each

of the three calls looks like this:

This is all we need to call the function:

 The function name, followed by parentheses.

The syntax of the call is very similar to that of the declaration, except that

the return type is not used. The call is terminated by a semicolon. Executing

the call statement causes the function to execute; that is, control is

transferred to the function, the statements in the function definition (which

we’ll examine in a moment) are executed, and then control returns to the

statement following the function call.

The Function Definition:-

Finally we come to the function itself, which is referred to as the function

definition. The definition contains the actual code for the function. Here’s

the definition for starline():

The definition consists of:

1- a line called the declaratory

2- followed by the function body.

OBJECT ORIENTED PROGRAMMING using C++ 2025

10

(The function body is composed of the statements that make up the

function, delimited by braces)

The declarator must agree with the declaration: It must use the same

function name, have the same argument types in the same order (if there are

arguments), and have the same return type.

Notice that the declarator is not terminated by a semicolon. Figure 1.2 shows

the syntax of the function declaration, function call, and function definition

Figure 1.2 Function Syntax

When the function is called, control is transferred to the first statement in the

function body. The other statements in the function body are then executed,

and when the closing brace is encountered, control returns to the calling

program.

OBJECT ORIENTED PROGRAMMING using C++ 2025

11

Table 1.1 summarizes the different function components.

Comparison with Library Functions:-

We’ve already seen some library functions in use. We have embedded calls

to library functions, such as

in our program code. Where are the declaration and definition for this library

function? The declaration is in the header file specified at the beginning of the

program (CONIO.H, for getche()). The definition (compiled into executable

code) is in a library file that’s linked automatically to your program when you

build it.

When we use a library function we don’t need to write the declaration or

definition. But when we write our own functions, the declaration and

definition are part of our source file, as we’ve shown in the TABLE example.

Library Function

C++ provides many built in functions that can be used in programs. However,

the header file containing the function must be included before int main()

using #include directive.

E.g. we must write statement #include <iostream.h> for using cin, cout

statement in the program.

OBJECT ORIENTED PROGRAMMING using C++ 2025

12

Following are the different library functions category wise:-

✓ Mathematical Function

 Mathematical functions like sin(), cos() are defined in header file math.h

Table 1.2 Some standard mathematical functions

Function Meaning

sin(x)

This function returns the sine of x in radians.

cos(x)

This function returns the cosine of x in radians.

tan(x)

This function returns the tangent of x in radians.

asin(x)

This function returns the arcsine of x in radians.

acos(x)

This function returns the arccosine of x in radians.

exp(x)

This function multiples the value of e (2.71828) to

the power of x.

log(x)

This function returns the natural logarithm of a

number.

log10(x)

This function calculates the base-10 logarithm of a

number.

sqrt(x)

This function returns the square root of a number

pow(x,y)

This function multiples x to the power of y.

abs(x)

 This function returns the absolute value of a number.

floor(x)

This function returns the largest integer that’s less than or

equal to x.

ceil(x) This function returns the smallest integer that’s

greater than or equal to x.

OBJECT ORIENTED PROGRAMMING using C++ 2025

13

Example:-

Output:

Example:-

Output :

Eliminating the Declaration:-

The second approach to inserting a function into a program is to eliminate the

function declaration and place the function definition (the function itself) in

the listing before the first call to the function. For example, we could rewrite

OBJECT ORIENTED PROGRAMMING using C++ 2025

14

TABLE to produce table2.cpp, in which the definition for starline() appears

first.

This approach is simpler for short programs, in that it removes the declaration,

but it is less flexible. To use this technique when there are more than a few

functions, the programmer must give considerable thought to arranging the

functions so that each one appears before it is called by any other. Sometimes

this is impossible. Also, many programmers prefer to place main() first in the

OBJECT ORIENTED PROGRAMMING using C++ 2025

15

listing, since it is where execution begins. In general we’ll stick with the first

approach, using declarations and starting the listing with main().

Functions with no type. The use of void

The syntax shown above for functions:

Requires the declaration to begin with a type. This is the type of the value

returned by the function. But what if the function does not need to return a

value? In this case, the type to be used is void, which is a special type to

represent the absence of value. For example, a function that simply prints a

message may not need to return any value:

7

Output :

void can also be used in the function's parameter list to explicitly specify that

the function takes no actual parameters when called. For

example, printmessage could have been declared as:

// void function example

#include <iostream>

using namespace std;

void printmessage ()

{

 cout << "I'm a function!";

}

int main ()

{

 printmessage ();

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

16

In C++, an empty parameter list can be used instead of void with same

meaning, but the use of void in the argument list was popularized by the C

language, where this is a requirement.

Something that in no case is optional are the parentheses that follow the

function name, neither in its declaration nor when calling it. And even when

the function takes no parameters, at least an empty pair of parentheses shall

always be appended to the function name. See how printmessage was called

in an earlier example:

The parentheses are what differentiate functions from other kinds of

declarations or statements. The following would not call the function:

The return value of main

You may have noticed that the return type of main is int, but most examples in

this and earlier chapters did not actually return any value from main.

Well, there is a catch: If the execution of main ends normally without

encountering a return statement the compiler assumes the function ends with an

implicit return statement:

Note that this only applies to function main for historical reasons. All other

functions with a return type shall end with a proper return statement that

includes a return value, even if this is never used.

OBJECT ORIENTED PROGRAMMING using C++ 2025

17

When main returns zero (either implicitly or explicitly), it is interpreted by

the environment as that the program ended successfully. Other values may

be returned by main, and some environments give access to that value to the

caller in some way, although this behavior is not required nor necessarily

portable between platforms. The values for main that are guaranteed to be

interpreted in the same way on all platforms are:

Because the implicit return 0; statement for main is a tricky exception, some

authors consider it good practice to explicitly write the statement.

1.2 Passing Arguments to Functions

An argument is a piece of data (an int value, for example) passed from a

program to the function. Arguments allow a function to operate with different

values, or even to do different things, depending on the requirements of the

program calling it.

Passing Constants:

As an example, let’s suppose we decide that the starline() function in the last

example is too rigid. Instead of a function that always prints 45 asterisks, we

want a function that will print any character any number of times.

Here’s a program, TABLEARG, that incorporates just such a function. We

use arguments to pass the character to be printed and the number of times to

print it.

OBJECT ORIENTED PROGRAMMING using C++ 2025

18

The new function is called repchar(). Its declaration looks like this:

void repchar(char, int); // declaration specifies data types

The items in the parentheses are the data types of the arguments that will be

sent to repchar(): char and int.

In a function call, specific values—constants in this case—are inserted in the

appropriate place in the parentheses:

repchar(‘-’, 43); // function call specifies actual values

OBJECT ORIENTED PROGRAMMING using C++ 2025

19

This statement instructs repchar() to print a line of 43 dashes. The values

supplied in the call must be of the types specified in the declaration: the first

argument, the - character, must be of type char; and the second argument, the

number 43, must be of type int. The types in the declaration and the definition

must also agree.

The next call to repchar()

repchar(‘=’, 23);

tells it to print a line of 23 equal signs. The third call again prints 43 dashes.

Here’s the output from TABLEARG:

The calling program supplies arguments, such as ‘–’ and 43, to the function.

The variables used within the function to hold the argument values are called

parameters; in repchar() they are ch and n. (We should note that many

programmers use the terms argument and parameter somewhat

interchangeably.) The declarator in the function definition specifies both the

data types and the names of the parameters:

These parameter names, ch and n, are used in the function as if they were

normal variables.

Placing them in the declarator is equivalent to defining them with statements

like

char ch;

int n;

OBJECT ORIENTED PROGRAMMING using C++ 2025

20

When the function is called, its parameters are automatically initialized to the

values passed by the calling program.

Overloaded Functions

This means that same function name can be used to create functions that

perform a variety of different tasks. This is known as function

polymorphism in OOP. The function would perform different operations

depending on the argument list in function call. The correct function to

be invoked is list in function call. The correct function to be invoked is

determined by checking the number and the type of arguments.

For example, an overloaded function area() handles different types of

data as follows:-

 // Declaration

 void area (int , int); // prototype 1

 void area (float); // prototype 2

 void area (float , int); // prototype 3

// Function calls

 cout<< area(5); // uses prototype 1

 cout<< area(5.2.6); // uses prototype 3

 cout<< area(7,6.2); // uses prototype 2

 A function call first matches the prototype having the same number and

type of arguments and then calls the appropriate function for execution. A

best match must be unique.

 The function selection involves the following steps:

1. The compiler tries to find an exact match in which types of actual

arguments are the same and use that function.

2. If an exact match is not found , the compiler uses integral promotions

to the actual arguments , such as chat to int, float to double to find a

match.

3. When either of them fails , the compiler tries to use the built in

conversions(the implicit conversions) to the actual arguments then

uses the function whose match is unique. If the conversion is possible

OBJECT ORIENTED PROGRAMMING using C++ 2025

21

to have multi matches, then the compiler will generate an error

message.

Suppose , we use the following two functions :-

long abc(long n);

Double abc (double x);

A function call such as

 abc(10)

Will cause an error because int argument can be converted to either long or

double, thereby creating an ambiguous situation.

If all the steps fail, then the compiler will try the user defined conversions in

combination with integral promotions and built in conversions to find a

unique match.

Example : the following program illustrate function overloading

Overloading Using Different Number of Parameters

#include <iostream>

using namespace std;

// function with 2 parameters

void display(int var1, double var2) {

 cout << "Integer number: " << var1;

 cout << " and double number: " << var2 << endl;

}

// function with double type single parameter

void display(double var) {

 cout << "Double number: " << var << endl;

}

// function with int type single parameter

void display(int var) {

 cout << "Integer number: " << var << endl;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

22

int main() {

 int a = 5;

 double b = 5.5;

 // call function with int type parameter

 display(a);

 // call function with double type parameter

 display(b);

 // call function with 2 parameters

 display(a, b);

 return 0;

}

 Output

Integer number: 5

Float number: 5.5

Integer number: 5 and double number: 5.5

Here, the display() function is called three times with different arguments.

Depending on the number and type of arguments passed, the

corresponding display() function is called.

OBJECT ORIENTED PROGRAMMING using C++ 2025

23

Recursive Function

Recursively is the property that functions have to be called by themselves. It

is useful for some tasks, such as sorting elements, or calculating the factorial

of numbers. For example, in order to obtain the factorial of a number (n!) the

mathematical formula would be:

More concretely, 5! (factorial of 5) would be:

OBJECT ORIENTED PROGRAMMING using C++ 2025

24

And a recursive function to calculate this in C++ could be:

Output :

Notice how in function factorial we included a call to itself, but only if the

argument passed was greater than 1, since, otherwise, the function would

perform an infinite recursive loop, in which once it arrived to 0, it would

continue multiplying by all the negative numbers (probably provoking a stack

overflow at some point during runtime).

Inline Functions

Calling a function generally causes a certain overhead (stacking arguments,

jumps, etc...), and thus for very short functions, it may be more efficient to

simply insert the code of the function where it is called, instead of performing

// factorial calculator

#include <iostream>

using namespace std;

long factorial (long a)

{

 if (a > 1)

 return (a * factorial (a-1));

 else

 return 1;

}

int main ()

{

 long number = 9;

 cout << number << "! = " << factorial (number);

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

25

the process of formally calling a function.

Preceding a function declaration with the inline specifier informs the compiler

that inline expansion is preferred over the usual function call mechanism for

a specific function. This does not change at all the behavior of a function, but

is merely used to suggest the compiler that the code generated by the function

body shall be inserted at each point the function is called, instead of being

invoked with a regular function call.

For example, the concatenate function above may be declared inline as:

This informs the compiler that when concatenate is called, the program

prefers the function to be expanded inline, instead of performing a regular

call. inline is only specified in the function declaration, not when it is called.

Note that most compilers already optimize code to generate inline functions

when they see an opportunity to improve efficiency, even if not explicitly

marked with the inline specifier. Therefore, this specifier merely indicates the

compiler that inline is preferred for this function, although the compiler is free

to not inline it, and optimize otherwise. In C++, optimization is a task

delegated to the compiler, which is free to generate any code for as long as

the resulting behavior is the one specified by the code.

Review Questions

1. A function’s single most important role is to

a. give a name to a block of code.

b. reduce program size.

c. accept arguments and provide a return value.

d. help organize a program into conceptual units.

2. A function itself is called the function d_________.

OBJECT ORIENTED PROGRAMMING using C++ 2025

26

3. Write a function called foo() that displays the word foo.

4. A one-statement description of a function is referred to as a function

d_________ or a p_________.

5. The statements that carry out the work of the function constitute the

function _________.

6. A program statement that invokes a function is a function _________.

7. The first line of a function definition is referred to as the _________.

8. A function argument is

a. a variable in the function that receives a value from the calling

program.

b. a way that functions resist accepting the calling program’s values.

c. a value sent to the function by the calling program.

d. a value returned by the function to the calling program.

9. True or false: When arguments are passed by value, the function works

with the original arguments in the calling program.

10. What is the purpose of using argument names in a function declaration?

11. Which of the following can legitimately be passed to a function?

a. A constant

b. A variable

c. A structure

d. A header file

12. What is the significance of empty parentheses in a function declaration?

13. How many values can be returned from a function?

14. True or false: When a function returns a value, the entire function call

can appear on the right side of the equal sign and be assigned to another

variable.

15. Where is a function’s return type specified?

OBJECT ORIENTED PROGRAMMING using C++ 2025

27

Exercises:-

(1) Write a function that takes two Distance values as arguments and

returns the larger one.

Include a main() program that accepts two Distance values from

the user, compares them, and displays the larger.

(2) Write a function called swap() that interchanges two int values

passed to it by the calling program. (Note that this function swaps

the values of the variables in the calling program, not those in the

function.) You’ll need to decide how to pass the arguments. Create

a main() program to exercise the function.

(3) Write a C++ program to implement the following function :-

(a) To accept two integers x and y and return x raised to y.

(b) To accept a number and check if it is a prime number .

(c) To accept a number and return the sum of its digits.

(d) To accept a number and return reversed number.

(e) To accept a capital letter and convert it into smaller letter.

OBJECT ORIENTED PROGRAMMING using C++ 2025

28

Chapter 2

Object and Classes

Introduction

Central to C++ is object-oriented programming (OOP). OOP was the impetus

for the creation of C++ Because of this it is useful to understand OOP’s basic

principles before you write even a simple C++ program.

Object-oriented programming took the best ideas of structured programming

and combined them with several new concepts. The result was a different and

better way of organizing a program. In the most general sense, a program can

be organized in one of two ways: around its code (what is happening) or

around its data (who is being affected). Using only structured programming

techniques, programs are typically organized around code. This approach can

be thought of as “code acting on data ”.

Objects and classes are used to wrap related functions and data in one place

in C++. Suppose we need to store the length, breadth, and height of a

rectangular room and calculate its area and volume.

To handle this task, we can create three variables, say, length, breadth,

and height, along with the functions calculate_area() and calculate_volume().

However, in C++, rather than creating separate variables and functions, we

can also wrap the related data and functions in a single place (by

creating objects).

- Introduction

- A simple Class

- C++ as Data Types

- Constructor

- Destructor

- Object as Function Arguments

OBJECT ORIENTED PROGRAMMING using C++ 2025

29

This programming paradigm is known as object-oriented programming.

 Object-oriented programs work the other way around. They are organized

around data, with the key principle being “data controlling access to code ” In

an object -oriented language; you define the data and the routines that are

permitted to act on that data. Thus, a data type defines precisely what sort of

operations can be applied to that data. To support the principles of object-

oriented programming, all OOP languages, including C++, have three traits in

common encapsulation, polymorphism and inheritance. Let’s examine each.

ENCAPSULATION: is a programming mechanism that binds together code

and the data it manipulates, and that keeps both safe from outside interference

and misuse. In an object-oriented language, code and data can be bound

together in such a way that a self-contained black box is created. Within the

box are all necessary data and code. When code and data are linked together

in this fashion, an object is created. In other words, an object is the device that

supports encapsulation.

POLYMORPHISM: (from Greek meaning “many forms”) is the quality that

allows one interface to access a general class of actions. A simple example of

polymorphism is found in the steering wheel of an automobile. The steering

wheel (the interface) is the same no matter what type of actual steering

mechanism is used. That is, the steering wheel works the same whether your

car has manual steering, power steering, or rack-and-pinion steering. Thus,

turning the steering wheel left causes the car to go left no matter what type of

steering is used. The benefit of the uniform interface is, of course, that once

you know how to operate the steering wheel, you can drive any type of car.

The same principle can also apply to programming. For example, consider a

stack (which is a first-in, last- out list). You might have a program that requires

three different types of stacks. One stack is used for integer values, one for

floating-point values, and one for characters. In this case, the algorithm that

implements each stack is the same, even though the data being stored differs.

In a non–object-oriented language, you would be required to create three

different sets of stack routines, with each set using different names. However,

because of polymorphism, in C++ you can create one general set of stack

routines that works for all three situations. This way, once you know how to

use one stack, you can use them all.

OBJECT ORIENTED PROGRAMMING using C++ 2025

30

 INHERITANCE: is the process by which one object can acquire the

properties of another object. This is important because it supports the concept

of hierarchical classification. If you think about it, most knowledge is made

manageable by hierarchical (that is, top-down) classifications. For example, a

Red Delicious apple is part of the classification apple, which in turn is part of

the fruit class, which is under the larger class food. That is, the food class

possesses certain qualities (edible, nutritious, and so on) which also, logically,

apply to its subclass, fruit. In addition to these qualities, the fruit class has

specific characteristics (juicy, sweet, and so on) that distinguish it from other

food. The apple class defines those qualities specific to an apple (grows on

trees, not tropical, and so on). A Red Delicious apple would, in turn, inherit

all the qualities of all preceding classes and would define only those qualities

that make it unique.

Without the use of hierarchies, each object would have to explicitly define all

of its characteristics. Using inheritance, an object need only define those

qualities that make it unique within its class. It can inherit its general attributes

from its parent. Thus, it is the inheritance mechanism that makes it possible

for one object to be a specific instance of a more general case.

CHARACTERISTICS OF OOPS

OOP offers several benefits to both the program designer and the user. The

principal advantages are.

 1) Emphasis is on data rather than procedure.

2) Programs are divided into what are known as objects.

3) Data structures are designed such that they characterize the objects.

4) Functions that operate on the data of an object are tied together in the data

structure.

5) Data is hidden and cannot be accessed by external functions.

6) Objects may communicate with each other through functions.

7) New data and functions can be easily added wherever necessary.

8) Follows bottom up approach in program design.

OBJECT ORIENTED PROGRAMMING using C++ 2025

31

9) Through inheritance, we can eliminate redundant code and extend the use

of existing classes

10) We can build program from the standard working module that

communicate with one another, rather than having to start writing the code

from scratch. This leads to saving of development time and higher

productivity.

 11) The principal of data hiding helps the programmer to build secure

programs that cannot be invaded by code in other part of the program.

12) It is possible to have multiple instance of an object to co-exist without any

interference

13) It is easy to partition the work in a project, based on objects.

14) Object oriented systems can be easily upgraded from small to large

systems.

15) Message passing techniques for communication between objects makes

the interface description with external systems much simpler.

16) Software complexity can be easily managed.

2.2 A Simple Class

Classes are an expanded concept of data structures: like data structures, they

can contain data members, but they can also contain functions as members.

An object is an instantiation of a class. In terms of variables, a class would

be the type, and an object would be the variable.

A class is defined in C++ using the keyword class followed by the name of

the class.

The body of the class is defined inside curly brackets and terminated by a

semicolon at the end.

class ClassName {

 // some data

 // some functions

};

https://www.programiz.com/cpp-programming/keywords-identifiers#keywords

OBJECT ORIENTED PROGRAMMING using C++ 2025

32

For example,

class Room {

 public:

 double length;

 double breadth;

 double height;

 double calculate_area(){

 return length * breadth;

 }

 double calculate_volume(){

 return length * breadth * height;

 }

};

Here, we defined a class named Room.

The variables length, breadth, and height declared inside the class are known

as data members.

And the functions calculate_area() and calculate_volume () are known

as member functions of a class.

Classes have the same format as plain data structures, except that they can

also include functions and have these new things called access specifiers.

An access specifier is one of the following three

keywords: private, public or protected. These specifiers modify the access

rights for the members that follow them:

private members of a class are accessible only from within other members of

the same class (or from their "friends").

• protected members are accessible from other members of the same class (or

from their "friends"), but also from members of their derived classes.

• Finally, public members are accessible from anywhere where the object is

visible.

By default, all members of a class declared with the class keyword have

OBJECT ORIENTED PROGRAMMING using C++ 2025

33

private access for all its members. Therefore, any member that is declared

before any other access specifier has private access automatically. For

example:

Declares a class (i.e., a type) called Rectangle and an object (i.e., a variable) of

this class, called rect. This class contains four members: two data members of

type int (member width and member height) with private access (because

private is the default access level) and two member functions with public access:

the functions set_values and area, of which for now we have only included their

declaration, but not their definition.

Notice the difference between the class name and the object name: In the

previous example, Rectangle was the class name (i.e., the type),

whereas rect was an object of type Rectangle. It is the same

relationship int and a have in the following declaration:

where int is the type name (the class) and a is the variable name (the object).

After the declarations of Rectangle and rect, any of the public members of

object rect can be accessed as if they were normal functions or normal variables,

by simply inserting a dot (.) between object name and member name. This

follows the same syntax as accessing the members of plain data structures. For

example:

The only members of rect that cannot be accessed from outside the class

are width and height, since they have private access and they can only be referred

to from within other members of that same class.

OBJECT ORIENTED PROGRAMMING using C++ 2025

34

Here is the complete example of class Rectangle:

C++ Objects

When a class is defined, only the specification for the object is defined; no

memory or storage is allocated.

To use the data and access functions defined in the class, we need to create

objects.

Syntax to Define Object in C++

ClassName object_name;

We can create objects of Room class as follows:

/ sample function

void sample_function() {

 // create objects

// classes example

#include <iostream>

using namespace std;

class Rectangle {

 int width, height;

 public:

 void set_values (int,int);

 int area() {return width*height;}

};

void Rectangle::set_values (int x, int y) {

 width = x;

 height = y;

}

int main () {

 Rectangle rect;

 rect.set_values (3,4);

 cout << "area: " << rect.area();

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

35

 Room room1, room2;

}

int main(){

 // create objects

 Room room3, room4;

}

Here, two objects room1 and room2 of the Room class are created

in sample_function().

Similarly, the objects room3 and room4 are created in main().

As we can see, we can create objects of a class in any function of the program.

We can also create objects of a class within the class itself or in other classes.

Also, we can create as many objects as we want from a single class.

Example:

The following program contains a class and two objects of that class.

Although it’s simple, the program demonstrates the syntax and general

features of classes in C++. Here’s the listing for the SMALLOBJ program:

OBJECT ORIENTED PROGRAMMING using C++ 2025

36

The class smallobj defined in this program contains one data item and two

member functions. The two member functions provide the only access to the

data item from outside the class. The first member function sets the data

item to a value, and the second displays the value.

Placing data and functions together into a single entity is a central idea in

object-oriented programming. This is shown in Figure 2.1.

OBJECT ORIENTED PROGRAMMING using C++ 2025

37

Figure 2.1 Classes contain Data and functions

Classes and Objects

Recall from fundamental of C++ that an object has the same relationship to

a class that a variable has to a data type. An object is said to be an instance

of a class. In SMALLOBJ, the class—whose name is smallobj—is defined

in the first part of the program. Later, in main(), we define two objects—s1

and s2—that are instances of that class.

Each of the two objects is given a value, and each displays its value. Here’s

the output of the program:

Defining the Class:-

Here’s the definition (sometimes called a specifier) for the class smallobj,

copied from the SMALLOBJ listing:

OBJECT ORIENTED PROGRAMMING using C++ 2025

38

The definition starts with the keyword class, followed by the class name—

smallobj in this example. Like a structure, the body of the class is delimited

by braces and terminated by a semicolon.

Note :-

Don’t forget the semicolon. Remember, data constructs such as structures

and classes end with a semicolon, while control constructs such as functions

and loops do not.

private and public:-

The body of the class contains two unfamiliar keywords: private and public.

What is their purpose?

A key feature of object-oriented programming is data hiding. This term does

not refer to the activities of particularly paranoid programmers; rather it

means that data is concealed within a class so that it cannot be accessed

mistakenly by functions outside the class. The primary mechanism for

hiding data is to put it in a class and make it private. Private data or

functions can only be accessed from within the class. Public data or

functions, on the other hand, are accessible from outside the class. This is

shown in Figure 2.2.

OBJECT ORIENTED PROGRAMMING using C++ 2025

39

Figure 2.2 private and public

Class Data:-

The smallobj class contains one data item: somedata, which is of type int.

The data items within a class are called data members (or sometimes

member data). There can be any number of data members in a class, just as

there can be any number of data items in a structure. The data member

somedata follows the keyword private, so it can be accessed from within the

class, but not from outside.

Member Functions:-

Member functions are functions that are included within a class. There are

two member functions in smallobj: setdata() and showdata().

The function bodies of these functions have been written on the same line as

the braces that delimit them. You could also use the more traditional format

for these function definitions:

OBJECT ORIENTED PROGRAMMING using C++ 2025

40

Because setdata() and showdata() follow the keyword public, they can be

accessed from outside the class.. Figure 2.3 shows the syntax of a class

definition.

Figure 2.3 Syntax of Class Definition

OBJECT ORIENTED PROGRAMMING using C++ 2025

41

Functions Are Public, Data Is Private

Usually the data within a class is private and the functions are public. This is

a result of the way classes are used. The data is hidden so it will be safe from

accidental manipulation, while the functions that operate on the data are

public so they can be accessed from outside the class. However, there is no

rule that says data must be private and functions public; in some

circumstances you may find you’ll need to use private functions and public

data.

Member Functions Within Class Definition:-

The member functions in the smallobj class perform operations that are quite

common in classes: setting and retrieving the data stored in the class.

The setdata() function accepts a value as a parameter and sets the somedata

variable to this value.

The showdata() function displays the value stored in somedata.

Note :

Note that the member functions setdata() and showdata() are definitions in

that the actual code for the function is contained within the class definition.

(The functions are not definitions in the sense that memory is set aside for the

function code; this doesn’t happen until an object of the class is created.)

Member functions defined inside a class this way are created as inline

functions by default. We’ll see later that it is also possible to declare a function

within a class but to define it elsewhere. Functions defined outside the class

are not normally inline.

Using the Class:-

Now that the class is defined, let’s see how main() makes use of it. We’ll see

how objects are defined, and, once defined, how their member functions are

accessed.

Defining Objects:-

The first statement in main()

OBJECT ORIENTED PROGRAMMING using C++ 2025

42

defines two objects, s1 and s2, of class smallobj.

Remember that the definition of the class smallobj does not create any

objects. It only describes how they will look when they are created, just as a

structure definition describes how a structure will look but doesn’t create any

structure variables. It is objects that participate in program operations.

Defining an object is similar to defining a variable of any data type: Space is

set aside for it in memory.

Defining objects in this way means creating them. This is also called

instantiating them. The term instantiating arises because an instance of the

class is created. An object is an instance (that is, a specific example) of a

class. Objects are sometimes called instance variables.

Calling Member Functions:-

The next two statements in main() call the member function setdata():

These statements don’t look like normal function calls.

Why are the object names s1 and s2 connected to the function names with a

period? This strange syntax is used to call a member function that is

associated with a specific object. Because setdata() is a member function of

the smallobj class, it must always be called in connection with an object of

this class. It doesn’t make sense to say

by itself, because a member function is always called to act on a specific

object, not on the class in general. Attempting to access the class this way

would be like trying to drive the blueprint of a car. Not only does this

statement not make sense, but the compiler will issue an error message if

you attempt it. Member functions of a class can be accessed only by an

object of that class.

To use a member function, the dot operator (the period) connects the object

name and the member function. The syntax is similar to the way we refer to

OBJECT ORIENTED PROGRAMMING using C++ 2025

43

structure members, but the parentheses signal that we’re executing a member

function rather than referring to a data item. (The dot operator is also called

the class member access operator.)

The first call to setdata()

executes the setdata() member function of the s1 object. This function sets

the variable somedata in object s1 to the value 1066. The second call

causes the variable somedata in s2 to be set to 1776. Now we have two

objects whose somedata variables have different values, as shown in Figure

2.4.

Figure 2.4 Two objects of class smallobj.

Similarly, the following two calls to the showdata() function will cause the

two objects to display their values:

OBJECT ORIENTED PROGRAMMING using C++ 2025

44

Messages:-

Some object-oriented languages refer to calls to member functions as

messages. Thus the call

can be thought of as sending a message to s1 telling it to show its data. The

term message is not a formal term in C++, but it is a useful idea to keep in

mind as we discuss member functions. Talking about messages emphasizes

that objects are discrete entities and that we communicate with them by

calling their member functions.

Example :- Object and Class in C++ Programming

// Program to illustrate the working of

// objects and class in C++ Programming

#include <iostream>

using namespace std;

// create a class

class Room {

 public:

 double length;

 double breadth;

 double height;

 double calculate_area() {

 return length * breadth;

 }

 double calculate_volume() {

 return length * breadth * height;

 }

};

OBJECT ORIENTED PROGRAMMING using C++ 2025

45

int main() {

 // create object of Room class

 Room room1;

 // assign values to data members

 room1.length = 42.5;

 room1.breadth = 30.8;

 room1.height = 19.2;

 // calculate and display the area and volume of the room

 cout << "Area of Room = " << room1.calculate_area() << endl;

 cout << "Volume of Room = " << room1.calculate_volume() <<

endl;

 return 0;

}

Output

Area of Room = 1309

Volume of Room = 25132.8

In this program, we have used the Room class and its object room1 to

calculate the area and volume of a room.

In main(), we assigned the values of length, breadth, and height with the

code:

room1.length = 42.5;

room1.breadth = 30.8;

room1.height = 19.2;

We then called the functions calculate_area() and calculate_volume() to

perform the necessary calculations.

Note the use of the keyword public in the program. This means the members

are public and can be accessed anywhere from the program.

OBJECT ORIENTED PROGRAMMING using C++ 2025

46

C++ Access Modifiers

One of the main features of object-oriented programming languages such as

C++ is data hiding.

Data hiding refers to restricting access to data members of a class. This is to

prevent other functions and classes from tampering with the class data.

However, it is also important to make some member functions and member

data accessible so that the hidden data can be manipulated indirectly.

The access modifiers of C++ allows us to determine which class members

are accessible to other classes and functions, and which are not.

Example:

class Patient {

 private:

 int patientNumber;

 string diagnosis;

 public:

 void billing() {

 // code

 }

 void makeAppointment() {

 // code

 }

};

Here, the variables patientNumber and diagnosis of the Patient class are

hidden using the private keyword, while the member functions are made

accessible using the public keyword.

Types of C++ Access Modifiers

In C++, there are 3 access modifiers:

(1) public

(2) private

OBJECT ORIENTED PROGRAMMING using C++ 2025

47

(3) protected

public Access Modifier

• The public keyword is used to create public members (data and

functions).

• The public members are accessible from any part of the program.

Example 1: C++ public Access Modifier

#include <iostream>

using namespace std;

// define a class

class Sample {

 // public elements

 public:

 int age;

 void displayAge() {

 cout << "Age = " << age << endl;

 }

};

int main() {

 // declare a class object

 Sample obj1;

 cout << "Enter your age: ";

 // store input in age of the obj1 object

 cin >> obj1.age;

 // call class function

 obj1.displayAge();

 return 0;

OBJECT ORIENTED PROGRAMMING using C++ 2025

48

}

Output

Enter your age: 20

Age = 20

In this program, we have created a class named Sample, which contains

a public variable age and a public function displayAge().

In main(), we have created an object of the Sample class named obj1. We

then access the public elements directly by using the

codes obj1.age and obj1.displayAge().

Notice that the public elements are accessible from main(). This is

because public elements are accessible from all parts of the program.

private Access Modifier

• The private keyword is used to create private members (data and

functions).

• The private members can only be accessed from within the class.

• However, friend classes and friend functions can access private

members.

Example : C++ private Access Specifier

#include <iostream>

using namespace std;

// define a class

class Sample {

 // private elements

 private:

 int age;

 // public elements

 public:

OBJECT ORIENTED PROGRAMMING using C++ 2025

49

 void displayAge(int a) {

 age = a;

 cout << "Age = " << age << endl;

 }

};

int main() {

 int ageInput;

 // declare an object

 Sample obj1;

 cout << "Enter your age: ";

 cin >> ageInput;

 // call function and pass ageInput as argument

 obj1.displayAge(ageInput);

 return 0;

}

Output

Enter your age: 20

Age = 20

In main(), the object obj1 cannot directly access the class variable age.

// error

cin >> obj1.age;

We can only indirectly manipulate age through the public

function displayAge(), since this function initializes age with the value

of the argument passed to it i.e. the function parameter int a.

protected Access Modifier

Before we learn about the protected access specifier, make sure you know

about inheritance in C++.

OBJECT ORIENTED PROGRAMMING using C++ 2025

50

• The protected keyword is used to create protected members (data

and function).

• The protected members can be accessed within the class and

from the derived class.

Example: C++ protected Access Specifier

#include <iostream>

using namespace std;

// declare parent class

class Sample {

 // protected elements

 protected:

 int age;

};

// declare child class

class SampleChild : public Sample {

 public:

 void displayAge(int a) {

 age = a;

 cout << "Age = " << age << endl;

 }

};

int main() {

 int ageInput;

 // declare object of child class

 SampleChild child;

 cout << "Enter your age: ";

 cin >> ageInput;

 // call child class function

OBJECT ORIENTED PROGRAMMING using C++ 2025

51

 // pass ageInput as argument

 child.displayAge(ageInput);

 return 0;

}

Output

Enter your age: 20

Age = 20

Here, SampleChild is an inherited class that is derived from Sample. The

variable age is declared in Sample with the protected keyword.

This means that SampleChild can access age since Sample is its parent class.

We see this as we have assigned the value of age in SampleChild even

though age is declared in the Sample class.

Note: By default, class members in C++ are private, unless specified

otherwise.

Example:

 Circles as Objects

In our next example we’ll examine an object used to represent a circle: the

kind of circle displayed on your computer screen. The program creates three

circles with various characteristics and displays them. Here’s the listing for

CIRCLES:

OBJECT ORIENTED PROGRAMMING using C++ 2025

52

The output of this program is the same as that of the CIRCSTRC program

shown in Figure 2.5. In CIRCLES, each circle is represented as a C++ object

rather than as a combination of a structure variable and an unrelated

circ_draw() function, as it was in CIRCSTRC. Notice in CIRCLES how

everything connected with a circle—attributes and functions—is brought

together in the class definition.

OBJECT ORIENTED PROGRAMMING using C++ 2025

53

Figure 2.5 output program

Example:-The most important property of a class is that it is a type, and as

such, we can declare multiple objects of it. For example, following with the

previous example of class Rectangle, we could have declared the

object rectb in addition to object rect:

//example: one class, two objects

#include <iostream>

using namespace std;

class Rectangle {

 int width, height;

 public:

 void set_values (int,int);

 int area () {return width*height;}

};

void Rectangle::set_values (int x, int y) {

 width = x;

 height = y;

}

int main () {

 Rectangle rect, rectb;

 rect.set_values (3,4);

 rectb.set_values (5,6);

 cout << "rect area: " << rect.area() << endl;

 cout << "rectb area: " << rectb.area() << endl;

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

54

in this particular case, the class (type of the objects) is Rectangle, of which

there are two instances (i.e., objects): rect and rectb. Each one of them has

its own member variables and member functions.

Notice that the call to rect.area() does not give the same result as the call

to rectb.area(). This is because each object of class Rectangle has its own

variables width and height, as they -in some way- have also their own

function members set_value and area that operate on the object's own

member variables.

Classes allow programming using object-oriented paradigms: Data and

functions are both members of the object, reducing the need to pass and

carry handlers or other state variables as arguments to functions, because

they are part of the object whose member is called. Notice that no arguments

were passed on the calls to rect.area or rectb.area. Those member functions

directly used the data members of their respective objects rect and rectb.

C++ Objects as Data Types:

Here’s another kind of entity C++ objects can represent: variables of a user-

defined data type. We’ll use objects to represent distances measured in the

English system, Here’s the listing for ENGLOBJ:

OBJECT ORIENTED PROGRAMMING using C++ 2025

55

In this program, the class Distance contains two data items, feet and inches.

Here the class Distance also has three member functions: setdist(), which

uses arguments to set feet and inches; getdist(), which gets values for feet

and inches from the user at the keyboard; and showdist(), which displays the

distance in feet-and-inches format.

The value of an object of class Distance can thus be set in either of two

ways. In main(), we define two objects of class Distance: dist1 and dist2.

OBJECT ORIENTED PROGRAMMING using C++ 2025

56

The first is given a value using the setdist() member function with the

arguments 11 and 6.25, and the second is given a value that is supplied by

the user. Here’s a sample interaction with the program:

Constructors:-

What would happen in the previous example if we called the member

function area before having called set_values? An undetermined result, since

the members width and height had never been assigned a value.

In order to avoid that, a class can include a special function called

its constructor, which is automatically called whenever a new object of this

class is created, allowing the class to initialize member variables or allocate

storage.

This constructor function is declared just like a regular member function, but

with a name that matches the class name and without any return type; not

even void.

The Rectangle class above can easily be improved by implementing a

constructor:

OBJECT ORIENTED PROGRAMMING using C++ 2025

57

The results of this example are identical to those of the previous example.

But now, class Rectangle has no member function set_values, and has

instead a constructor that performs a similar action: it initializes the values

of width and height with the arguments passed to it.

Notice how these arguments are passed to the constructor at the moment at

which the objects of this class are created:

Constructors cannot be called explicitly as if they were regular member

functions. They are only executed once, when a new object of that class is

created.

Notice how neither the constructor prototype declaration (within the class) nor

// example: class constructor

#include <iostream>

using namespace std;

class Rectangle {

 int width, height;

 public:

 Rectangle (int,int);

 int area () {return (width*height);}

};

Rectangle::Rectangle (int a, int b) {

 width = a;

 height = b;

}

int main () {

 Rectangle rect (3,4);

 Rectangle rectb (5,6);

 cout << "rect area: " << rect.area() << endl;

 cout << "rectb area: " << rectb.area() << endl;

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

58

the latter constructor definition, have return values; not even void: Constructors

never return values, they simply initialize the object.

Example:

The ENGLOBJ example shows two ways that member functions can be used

to give values to the data items in an object. Sometimes, however, it’s

convenient if an object can initialize itself when it’s first created, without

requiring a separate call to a member function. Automatic initialization is

carried out using a special member function called a constructor. A

constructor is a member function that is executed automatically

whenever an object is created.

 Example A Counter:-

As an example, we’ll create a class of objects that might be useful as a

general-purpose programming element. A counter is a variable that counts

things. Maybe it counts file accesses, or the number of times the user presses

the Enter key, or the number of customers entering a bank. Each time such

an event takes place, the counter is incremented (1 is added to it). The

counter can also be accessed to find the current count.

Let’s assume that this counter is important in the program and must be

accessed by many different functions. In procedural languages such as C, a

counter would probably be implemented as a global variable. However, as

we noted, global variables complicate the program’s design and may be

modified accidentally. This example, COUNTER, provides a counter

variable that can be modified only through its member functions.

OBJECT ORIENTED PROGRAMMING using C++ 2025

59

The Counter class has one data member: count, of type unsigned int (since

the count is always positive). It has three member functions: the constructor

Counter(), which we’ll look at in a moment; inc_count(), which adds 1 to

count; and get_count(), which returns the current value of count.

Automatic Initialization:-

When an object of type Counter is first created, we want its count to be

initialized to 0. After all, most counts start at 0. We could provide a

set_count() function to do this and call it with an argument of 0, or we could

provide a zero_count() function, which would always set count to 0.

OBJECT ORIENTED PROGRAMMING using C++ 2025

60

However, such functions would need to be executed every time we created a

Counter object.

This is mistake prone, because the programmer may forget to initialize the

object after creating it. It’s more reliable and convenient, especially when

there are a great many objects of a given class, to cause each object to

initialize itself when it’s created. In the Counter class, the constructor

Counter() does this. This function is called automatically whenever a new

object of type Counter is created. Thus in main() the statement

creates two objects of type Counter. As each is created, its constructor,

Counter(), is executed. This function sets the count variable to 0. So the

effect of this single statement is to not only create two objects, but also to

initialize their count variables to 0.

Same Name as the Class:-

There are some unusual aspects of constructor functions. First, it is no

accident that they have exactly the same name (Counter in this example) as

the class of which they are members. This is one way the compiler knows

they are constructors.

Second, no return type is used for constructors. Why not? Since the

constructor is called automatically by the system, there’s no program for it to

return anything to; a return value wouldn’t make sense. This is the second

way the compiler knows they are constructors.

Initializer List:-

One of the most common tasks a constructor carries out is initializing data

members. In the Counter class the constructor must initialize the count

member to 0. You might think that this would be done in the constructor’s

function body, like this:

OBJECT ORIENTED PROGRAMMING using C++ 2025

61

However, this is not the preferred approach (although it does work). Here’s

how you should initialize a data member:

The initialization takes place following the member function declarator but

before the function body. It’s preceded by a colon. The value is placed in

parentheses following the member data.

If multiple members must be initialized, they’re separated by commas. The

result is the initializer list (sometimes called by other names, such as the

member-initialization list).

Why not initialize members in the body of the constructor? The reasons are

complex, but have to do with the fact that members initialized in the

initializer list are given a value before the constructor even starts to execute.

This is important in some situations. For example, the initializer list is the

only way to initialize const member data and references.

Actions more complicated than simple initialization must be carried out in

the constructor body, as with ordinary functions.

Counter Output:-

The main() part of this program exercises the Counter class by creating two

counters, c1 and c2. It causes the counters to display their initial values,

which—as arranged by the constructor—are 0. It then increments c1 once

and c2 twice, and again causes the counters to display themselves (non-

criminal behavior in this context). Here’s the output:

OBJECT ORIENTED PROGRAMMING using C++ 2025

62

If this isn’t enough proof that the constructor is operating as advertised, we

can rewrite the constructor to print a message when it executes.

Now the program’s output looks like this:

As you can see, the constructor is executed twice—once for c1 and once for

c2—when the statement

is executed in main().

 Example A Graphics:-

Let’s rewrite our earlier CIRCLES example to use a constructor instead of a

set() function. To handle the initialization of the five attributes of circles,

this constructor will have five arguments and five items in its initialization

list. Here’s the listing for CIRCTOR:

OBJECT ORIENTED PROGRAMMING using C++ 2025

63

This program is similar to CIRCLES, except that set() has been replaced by

the constructor. Note how this simplifies main(). Instead of two separate

OBJECT ORIENTED PROGRAMMING using C++ 2025

64

statements for each object, one to create it and one to set its attributes, now

one statement both creates the object and sets its attributes at the same time.

Overloading constructors

Like any other function, a constructor can also be overloaded with different

versions taking different parameters: with a different number of parameters

and/or parameters of different types. The compiler will automatically call the

one whose parameters match the arguments:

In the above example, two objects of class Rectangle are

constructed: rect and rectb. rect is constructed with two arguments, like in

the example before.

// overloading class constructors

#include <iostream>

using namespace std;

class Rectangle {

 int width, height;

 public:

 Rectangle ();

 Rectangle (int,int);

 int area (void) {return (width*height);}

};

Rectangle::Rectangle () {

 width = 5;

 height = 5;

}

Rectangle::Rectangle (int a, int b) {

 width = a;

 height = b;

}

int main () {

 Rectangle rect (3,4);

 Rectangle rectb;

 cout << "rect area: " << rect.area() << endl;

 cout << "rectb area: " << rectb.area() << endl;

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

65

But this example also introduces a special kind constructor: the default

constructor. The default constructor is the constructor that takes no

parameters, and it is special because it is called when an object is declared

but is not initialized with any arguments. In the example above, the default

constructor is called for rectb. Note how rectb is not even constructed with

an empty set of parentheses - in fact, empty parentheses cannot be used to

call the default constructor:

This is because the empty set of parentheses would make of rectc a function

declaration instead of an object declaration: It would be a function that takes no

arguments and returns a value of type Rectangle.

Destructors:-

We’ve seen that a special member function—the constructor—is called

automatically when an object is first created. You might guess that another

function is called automatically when an object is destroyed. This is indeed

the case. Such a function is called a destructor. A destructor has the same

name as the constructor (which is the same as the class name) but is

preceded by a tilde:

Like constructors, destructors do not have a return value. They also take no

arguments (the assumption being that there’s only one way to destroy an

object).

OBJECT ORIENTED PROGRAMMING using C++ 2025

66

The most common use of destructors is to deallocate memory that was

allocated for the object by the constructor.

Objects as Function Arguments:-

Our next program adds some embellishments to the ENGLOBJ example. It

also demonstrates some new aspects of classes: constructor overloading,

defining member functions outside the class, and—perhaps most

importantly—objects as function arguments. Here’s the listing for

ENGLCON:

OBJECT ORIENTED PROGRAMMING using C++ 2025

67

This program starts with a distance dist2 set to an initial value and adds to it

a distance dist1, whose value is supplied by the user, to obtain the sum of the

distances. It then displays all three distances:

Overloaded Constructors:-

OBJECT ORIENTED PROGRAMMING using C++ 2025

68

It’s convenient to be able to give variables of type Distance a value when

they are first created. That is, we would like to use definitions like

which defines an object, width, and simultaneously initializes it to a value of

5 for feet and 6.25 for inches.

To do this we write a constructor like this:

This sets the member data feet and inches to whatever values are passed as

arguments to the constructor. So far so good.

However, we also want to define variables of type Distance without

initializing them, as we did in ENGLOBJ

In that program there was no constructor, but our definitions worked just

fine. How could they work without a constructor? Because an implicit no-

argument constructor is built into the program automatically by the

compiler, and it’s this constructor that created the objects, even though we

didn’t define it in the class. This no-argument constructor is called the

default constructor. If it weren’t created automatically by the constructor,

you wouldn’t be able to create objects of a class for which no constructor

was defined.

Often we want to initialize data members in the default (no-argument)

constructor as well. If we let the default constructor do it, we don’t really

know what values the data members may be given. If we care what values

they may be given, we need to explicitly define the constructor. In

ENGLECON we show how this looks:

The data members are initialized to constant values, in this case the integer

value 0 and the float value 0.0, for feet and inches respectively. Now we can

OBJECT ORIENTED PROGRAMMING using C++ 2025

69

use objects initialized with the no-argument constructor and be confident

that they represent no distance (0 feet plus 0.0 inches) rather than some

arbitrary value.

Since there are now two explicit constructors with the same name,

Distance(), we say the constructor is overloaded. Which of the two

constructors is executed when an object is created depends on how many

arguments are used in the definition:

Review Questions

1. What is the purpose of a class definition?

2. A ________ has the same relation to an ________ that a basic data type

has to a variable

of that type.

3. In a class definition, data or functions designated private are accessible

a. to any function in the program.

b. only if you know the password.

c. to member functions of that class.

d. only to public members of the class.

4. Write a class definition that creates a class called leverage with one

private data member, crowbar, of type int and one public function whose

declaration is void pry().

5. True or false: Data items in a class must be private.

6. Write a statement that defines an object called lever1 of the leverage class

described in question 4.

OBJECT ORIENTED PROGRAMMING using C++ 2025

70

Exercises:-

(1) Create a class named 'Student' with a string variable 'name' and an

integer variable 'roll_no'. Assign the value of roll_no as '2' and that of

name as "John" by creating an object of the class Student.

(2) Assign and print the roll number, phone number and address of two

students having names "Sam" and "John" respectively by creating two

objects of the class 'Student'.

(3) Write a program to print the area and perimeter of a triangle having

sides of 3, 4 and 5 units by creating a class named 'Triangle' with a

function to print the area and perimeter.

(4) Write a program to print the area and perimeter of a triangle having

sides of 3, 4 and 5 units by creating a class named 'Triangle' with the

constructor having the three sides as its parameters.

(5) Write a program to print the area of two rectangles having sides (4,5)

and (5,8) respectively by creating a class named 'Rectangle' with a

function named 'Area' which returns the area. Length and breadth are

passed as parameters to its constructor.

(6) Write a program to print the area of a rectangle by creating a class

named 'Area' having two functions. First function named as 'setDim'

takes the length and breadth of the rectangle as parameters and the

second function named as 'getArea' returns the area of the rectangle.

Length and breadth of the rectangle are entered through keyboard.

(7) Write a program to print the area of a rectangle by creating a class

named 'Area' taking the values of its length and breadth as parameters of

its constructor and having a function named 'returnArea' which returns

the area of the rectangle. Length and breadth of the rectangle are entered

through keyboard.

(8) Print the average of three numbers entered by the user by creating a

class named 'Average' having a function to calculate and print the

average without creating any object of the Average class.

(9) Print the sum, difference and product of two complex numbers by

creating a class named 'Complex' with separate functions for each

operation whose real and imaginary parts are entered by the user.

(10)Write a program to print the volume of a box by creating a class

named 'Volume' with an initialization list to initialize its length, breadth

and height. (just to make you familiar with initialization lists)

OBJECT ORIENTED PROGRAMMING using C++ 2025

71

Chapter 3

Operator Overloading

Operator overloading is one of the most exciting features of object-oriented

programming. It can transform complex, obscure program listings into

intuitively obvious ones. For example, statements like

d3.addobjects(d1,d2);

or the similar but equally obscure

d3=d1.addobjects(d2);

can be changed to the much more readable

d3=d1+d2;

The rather forbidding term operator overloading refers to giving the normal

C++ operators, such as +, *, <=, and +=, additional meanings when they are

applied to user-defined data types.

Normally

a =b + c;

works only with basic types such as int and float, and attempting to apply it

when a, b, and c are objects of a user-defined class will cause complaints

from the compiler. However, using overloading, you can make this

statement legal even when a, b, and c are user-defined types.

- Overloading Unary Operators

- Overloading Binary Operators

OBJECT ORIENTED PROGRAMMING using C++ 2025

72

In effect, operator overloading gives you the opportunity to redefine the C++

language. If you find yourself limited by the way the C++ operators work,

you can change them to do whatever you want. By using classes to create

new kinds of variables, and operator overloading to create new definitions

for operators, you can extend C++ to be, in many ways, a new language of

your own design.

Another kind of operation, data type conversion, is closely connected with

operator overloading.

C++ handles the conversion of simple types, such as int and float,

automatically; but conversions involving user-defined types require some

work on the programmer’s part.

Operators in C++

Overloading Unary Operators:-

Unary operators act on only one operand. (An operand is simply a variable

acted on by an operator.)

Examples of unary operators are the increment and decrement operators ++

and --, and the unary minus, as in -33.

OBJECT ORIENTED PROGRAMMING using C++ 2025

73

In the COUNTER example in Chapter 2, “Objects and Classes,” we created

a class Counter to keep track of a count. Objects of that class were

incremented by calling a member function

c1.inc_count();

That did the job, but the listing would have been more readable if we could

have used the increment operator ++ instead:

++c1;

Let’s rewrite COUNTER to make this possible. Here’s the listing for

COUNTPP1:

OBJECT ORIENTED PROGRAMMING using C++ 2025

74

In this program we create two objects of class Counter: c1 and c2. The

counts in the objects are displayed; they are initially 0. Then, using the

overloaded ++ operator, we increment c1 once and c2 twice, and display the

resulting values. Here’s the program’s output:

The statements responsible for these operations are

The ++ operator is applied once to c1 and twice to c2. We use prefix

notation in this example; we’ll explore postfix late

The operator Keyword:-

How do we teach a normal C++ operator to act on a user-defined operand?

The keyword operator is used to overload the ++ operator in this declarator:

void operator ++ ()

The return type (void in this case) comes first, followed by the keyword

operator, followed by the operator itself (++), and finally the argument list

enclosed in parentheses (which are empty here). This declarator syntax tells

OBJECT ORIENTED PROGRAMMING using C++ 2025

75

the compiler to call this member function whenever the ++ operator is

encountered, provided the operand (the variable operated on by the ++) is of

type Counter.

We saw in Chapter 1, “Functions,” that the only way the compiler can

distinguish between overloaded functions is by looking at the data types and

the number of their arguments. In the same way, the only way it can

distinguish between overloaded operators is by looking at the data type of

their operands. If the operand is a basic type such as an int, as in

++intvar;

then the compiler will use its built-in routine to increment an int. But if the

operand is a Counter variable, the compiler will know to use our user-written

operator++() instead.

Operator Arguments:-

In main() the ++ operator is applied to a specific object, as in the expression

++c1. Yet operator++() takes no arguments. What does this operator

increment? It increments the count data in the object of which it is a member.

Since member functions can always access the particular object for which

they’ve been invoked, this operator requires no arguments.

This is shown in Figure 3.1.

Figure 3.1 Overloaded Unary operator : no argument

Operator Return Values:-

The operator++() function in the COUNTPP1 program has a subtle defect.

You will discover it if you use a statement like this in main():

OBJECT ORIENTED PROGRAMMING using C++ 2025

76

c1 = ++c2;

The compiler will complain. Why? Because we have defined the ++ operator

to have a return type of void in the operator++() function, while in the

assignment statement it is being asked to return a variable of type Counter.

That is, the compiler is being asked to return whatever value c2 has after being

operated on by the ++ operator, and assign this value to c1. So as defined in

COUNTPP1, we can’t use ++ to increment Counter objects in assignments; it

must always stand alone with its operand. Of course the normal ++ operator,

applied to basic data types such as int, would not have this problem.

To make it possible to use our homemade operator++() in assignment

expressions, we must provide a way for it to return a value. The next

program, COUNTPP2, does just that

Here the operator++() function creates a new object of type Counter, called

temp, to use as a return value. It increments the count data in its own object

as before, then creates the new temp object and assigns count in the new

object the same value as in its own object. Finally, it returns the temp object.

This has the desired effect. Expressions like ++

OBJECT ORIENTED PROGRAMMING using C++ 2025

77

now return a value, so they can be used in other expressions, such as

as shown in main(), where the value returned from c1++ is assigned to c2.

The output from this program is

Postfix Notation:-

So far we’ve shown the increment operator used only in its prefix form.

++c1

What about postfix, where the variable is incremented after its value is used

in the expression?

c1++

To make both versions of the increment operator work, we define two overloaded ++ operators,

as shown in the POSTFIX program:

OBJECT ORIENTED PROGRAMMING using C++ 2025

78

OBJECT ORIENTED PROGRAMMING using C++ 2025

79

Now there are two different declarators for overloading the ++ operator. The

one we’ve seen before, for prefix notation, is

Counter operator ++ ()

The new one, for postfix notation, is Counter operator ++ (int)

The only difference is the int in the parentheses. This int isn’t really an

argument, and it doesn’t mean integer. It’s simply a signal to the compiler to

create the postfix version of the operator. The designers of C++ are fond of

recycling existing operators and keywords to play multiple roles, and int is

the one they chose to indicate postfix. (Well, can you think of a better

syntax?) Here’s the output from the program:

c1=0

c2=0

c1=2

c2=2

c1=3

c2=2

We saw the first four of these output lines in COUNTPP2 and COUNTPP3.

But in the last two lines

we see the results of the statement

c2=c1++;

Here, c1 is incremented to 3, but c2 is assigned the value of c1 before it is

incremented, so c2

retains the value 2.

Of course, you can use this same approach with the decrement operator (--).

OBJECT ORIENTED PROGRAMMING using C++ 2025

80

Overloading Binary Operators:-

Binary operators can be overloaded just as easily as unary operators. We’ll

look at examples that overload arithmetic operators, comparison operators,

and arithmetic assignment operators

OBJECT ORIENTED PROGRAMMING using C++ 2025

81

Arithmetic Operators

In the ENGLCON program in Chapter 2 we showed how two English

Distance objects could be added using a member function add_dist():

dist3.add_dist(dist1, dist2);

By overloading the + operator we can reduce this dense-looking expression

to

dist3 = dist1 + dist2;

Here’s the listing for ENGLPLUS, which does just that:

OBJECT ORIENTED PROGRAMMING using C++ 2025

82

To show that the result of an addition can be used in another addition as well

as in an assignment, another addition is performed in main(). We add dist1,

dist2, and dist3 to obtain dist4 (which should be double the value of dist3),

in the statement

dist4 = dist1 + dist2 + dist3;

Here’s the output from the program:

OBJECT ORIENTED PROGRAMMING using C++ 2025

83

In class Distance the declaration for the operator+() function looks like this:

Distance operator + (Distance);

This function has a return type of Distance, and takes one argument of type

Distance.

In expressions like

dist3 = dist1 + dist2;

it’s important to understand how the return value and arguments of the

operator relate to the objects. When the compiler sees this expression it

looks at the argument types, and finding only type Distance, it realizes it

must use the Distance member function operator+(). But what does this

function use as its argument—dist1 or dist2? And doesn’t it need two

arguments, since there are two numbers to be added?

Here’s the key: The argument on the left side of the operator (dist1 in this

case) is the object of which the operator is a member. The object on the right

side of the operator (dist2) must be furnished as an argument to the operator.

The operator returns a value, which can be assigned or used in other ways; in

this case it is assigned to dist3. Figure 3.2 shows how this looks

OBJECT ORIENTED PROGRAMMING using C++ 2025

84

Figure 3.2 Overloaded binary operator: one argument.

In the operator+() function, the left operand is accessed directly—since this

is the object of which the operator is a member—using feet and inches. The

right operand is accessed as the function’s argument, as d2.feet and

d2.inches.

We can generalize and say that an overloaded operator always requires one

less argument than its number of operands, since one operand is the object of

which the operator is a member.

That’s why unary operators require no arguments.

To calculate the return value of operator+() in ENGLPLUS, we first add the

feet and inches from the two operands (adjusting for a carry if necessary).

The resulting values, f and i, are then used to initialize a nameless Distance

object, which is returned in the statement

return Distance(f, i);

This is similar to the arrangement used in COUNTPP3, except that the

constructor takes two arguments instead of one. The statement

dist3 = dist1 + dist2;

OBJECT ORIENTED PROGRAMMING using C++ 2025

85

in main() then assigns the value of the nameless Distance object to dist3.

Compare this intuitively obvious statement with the use of a function call to

perform the same task, as in the ENGLCON example in Chapter 2.

Similar functions could be created to overload other operators in the

Distance class, so you could subtract, multiply, and divide objects of this

class in natural-looking ways.

Review Questions

1. Operator overloading is

a. making C++ operators work with objects.

b. giving C++ operators more than they can handle.

c. giving new meanings to existing C++ operators.

d. making new C++ operators.

2. Assuming that class X does not use any overloaded operators, write a

statement that subtracts

an object of class X, x1, from another such object, x2, and places the result

in x3.

3. Assuming that class X includes a routine to overload the - operator, write

a statement that

would perform the same task as that specified in Question 2.

4. True or false: The >= operator can be overloaded.

5. Write a complete definition for an overloaded operator for the Counter

class of the

COUNTPP1 example that, instead of incrementing the count, decrements it.

6. How many arguments are required in the definition of an overloaded

unary operator?

7. Assume a class C with objects obj1, obj2, and obj3. For the statement

obj3 =

OBJECT ORIENTED PROGRAMMING using C++ 2025

86

obj1 - obj2 to work correctly, the overloaded - operator must

a. take two arguments.

b. return a value.

c. create a named temporary object.

d. use the object of which it is a member as an operand.

8. Write a complete definition for an overloaded ++ operator for the

Distance class from

the ENGLPLUS example. It should add 1 to the feet member data, and make

possible

statements like

dist1++;

9. Repeat Question 8, but allow statements like the following:

dist2 = dist1++;

10. When used in prefix form, what does the overloaded ++ operator do

differently from

what it does in postfix form?

11. Here are two declarators that describe ways to add two string objects:

void add(String s1, String s2)

String operator + (String s)

Match the following from the first declarator with the appropriate selection

from the second:

function name (add) matches _________.

return value (type void) matches _________.

first argument (s1) matches _________.

second argument (s2) matches _________.

object of which function is a member matches _________.

a. argument (s)

OBJECT ORIENTED PROGRAMMING using C++ 2025

87

b. object of which operator is a member

c. operator (+)

d. return value (type String)

e. no match for this item

(12) What is a binary operator?

a) Operator that performs its action on a single operand

b) Operator that performs its action on two operand

c) Operator that performs its action on three operand

d) Operator that performs its action on any number of operand

(13) Which is the correct example of a binary operator?

a) ++

b) —

c) Dereferencing operator(*)

d) +

(14) Which is the correct example of a unary operator?

a) &

b) ==

c) —

d) /

(15) Which is called ternary operator?

a) ?:

b) &&

c) |||

d) ===

OBJECT ORIENTED PROGRAMMING using C++ 2025

88

16) What will be the output of the following C++ code?

a) Complex Number: 4 + i6

b) Complex Number: 2 + i2

c) Error

d) Segmentation fault

#include <iostream>

#include <string>

using namespace std;

class complex

{

 int i;

 int j;

 public:

 complex(){}

 complex(int a, int b)

 {

 i = a;

 j = b;

 }

 complex operator+(complex c)

 {

 complex temp;

 temp.i = this->i + c.i;

 temp.j = this->j + c.j;

 return temp;

 }

 void show(){

 cout<<"Complex Number: "<<i<<" + i"<<j<<endl;

 }

};

int main(int argc, char const *argv[])

{

 complex c1(1,2);

 complex c2(3,4);

 complex c3 = c1 + c2;

 c3.show();

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

89

Chapter 4

Inheritance

 Introduction :-

Inheritance is probably the most powerful feature of object-oriented

programming, after classes themselves. Inheritance is the process of creating

new classes, called derived classes, from existing or base classes. The derived

class inherits all the capabilities of the base class but

can add embellishments and refinements of its own. The base class is

unchanged by this process. The inheritance relationship is shown in Figure

4.1.

- Introduction

- Derived Class and Base Class

 - Derived Class Constructors

- Overriding Member functions

- Which Function Is Used

OBJECT ORIENTED PROGRAMMING using C++ 2025

90

Figure 4.1 Inheritance

The arrow in Figure 4.1 goes in the opposite direction of what you might

expect. If it pointed down we would label it inheritance. However, the more

common approach is to point the arrow up, from the derived class to the base

class, and to think of it as a “derived from” arrow.

Inheritance is an essential part of OOP. Its big payoff is that it permits code

reusability. Once a base class is written and debugged, it need not be

touched again, but, using inheritance, can nevertheless be adapted to work in

different situations. Reusing existing code saves time and

money and increases a program’s reliability. Inheritance can also help in the

original conceptualization of a programming problem, and in the overall

design of the program.

An important result of reusability is the ease of distributing class libraries. A

programmer can use a class created by another person or company, and,

without modifying it, derive other classes from it that are suited to particular

situations.

OBJECT ORIENTED PROGRAMMING using C++ 2025

91

 Derived Class and Base Class

Remember the COUNTPP3 example from Chapter , “Operator

Overloading”? This program used a class Counter as a general-purpose

counter variable. A count could be initialized to 0 or to a specified number

with constructors, incremented with the ++ operator, and read with the

get_count() operator.

Let’s suppose that we have worked long and hard to make the Counter class

operate just the way we want, and we’re pleased with the results, except for

one thing. We really need a way to decrement the count. Perhaps we’re

counting people entering a bank, and we want to increment the count when

they come in and decrement it when they go out, so that the count represents

the number of people in the bank at any moment.

Definition :-

Inheritance is probably the most powerful feature of object-oriented

programming, after classes themselves.

Inheritance is the process of creating new classes, called derived classes,

from existing or base classes

The derived class inherits all the capabilities of the base class but can add its

own features. And the base class is unchanged by this process

Inheritance permits code reusability.

Reusing existing code saves time and money and

increases

a program’s reliability

OBJECT ORIENTED PROGRAMMING using C++ 2025

92

We could insert a decrement routine directly into the source code of the

Counter class. However, there are several reasons that we might not want to

do this. First, the Counter class works very well and has undergone many

hours of testing and debugging. (Of course that’s an exaggeration in this case,

but it would be true in a larger and more complex class.) If we start fooling

around with the source code for Counter, the testing process will need to be

carried out again, and of course we may foul something up and spend hours

debugging code that worked fine before we modified it.

To avoid these problems we can use inheritance to create a new class based

on Counter, without modifying Counter itself. Here’s the listing for

COUNTEN, which includes a new class, CountDn, that adds a decrement

operator to the Counter class:

OBJECT ORIENTED PROGRAMMING using C++ 2025

93

The listing starts off with the Counter class, which (with one small

exception, which we’ll look at later) has not changed since its appearance in

COUNTPP3. Notice that, for simplicity, we haven’t modeled this program

on the POSTFIX program, which incorporated the second overloaded ++

operator to provide postfix notation.

 Specifying the Derived Class

Following the Counter class in the listing is the specification for a new class,

CountDn. This class incorporates a new function, operator--(), which

decrements the count. However—and here’s the key point—the new

CountDn class inherits all the features of the Counter class.

CountDn doesn’t need a constructor or the get_count() or operator++()

functions, because these already exist in Counter.

The first line of CountDn specifies that it is derived from Counter:-

Here we use a single colon (not the double colon used for the scope

resolution operator),followed by the keyword public and the name of the

base class Counter. This sets up the relationship between the classes. This

line says that CountDn is derived from the base class Counter.

Example:

let's imagine a series of classes to describe two kinds of polygons: rectangles

and triangles. These two polygons have certain common properties, such as

OBJECT ORIENTED PROGRAMMING using C++ 2025

94

the values needed to calculate their areas: they both can be described simply

with a height and a width (or base).

This could be represented in the world of classes with a class Polygon from

which we would derive the two other ones: Rectangle and Triangle:

The Polygon class would contain members that are common for both types

of polygon. In our case: width and height.

And Rectangle and Triangle would be its derived classes, with specific

features that are different from one type of polygon to the other.

Classes that are derived from others inherit all the accessible members of the

base class. That means that if a base class includes a member A and we

derive a class from it with another member called B, the derived class will

contain both member A and member B.

The inheritance relationship of two classes is declared in the derived class.

Derived classes definitions use the following syntax:

Where derived_class_name is the name of the derived class

and base_class_name is the name of the class on which it is based.

The public access specifier may be replaced by any one of the other access

specifiers (protected or private). This access specifier limits the most

accessible level for the members inherited from the base class: The members

with a more accessible level are inherited with this level instead, while the

OBJECT ORIENTED PROGRAMMING using C++ 2025

95

members with an equal or more restrictive access level keep their restrictive

level in the derived class.

Example:-

// derived classes

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b;}

 };

class Rectangle: public Polygon {

 public:

 int area ()

 { return width * height; }

 };

class Triangle: public Polygon {

 public:

 int area ()

 { return width * height / 2; }

 };

int main () {

 Rectangle rect;

 Triangle trgl;

 rect.set_values (4,5);

 trgl.set_values (4,5);

 cout << rect.area() << '\n';

 cout << trgl.area() << '\n';

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

96

The objects of the classes Rectangle and Triangle each contain members

inherited from Polygon. These are: width, height and set_values.

Example(2)

OBJECT ORIENTED PROGRAMMING using C++ 2025

97

The “is a” Relationship

• The relationship between a Base Class and an derived class is called

an “is

a” relationship.

– A post graduate student “is a” Student.

– An Employee “is a” Person.

– Salaried Employee “is a” Employee.

– A car “is a” vehicle

• A specialized object has:

OBJECT ORIENTED PROGRAMMING using C++ 2025

98

- all of the characteristics of the general object, plus

– additional characteristics that make it special

• In object-oriented programming, inheritance is used to create an “is a”

relationship among classes.

Generalization in UML Class Diagrams

In the UML, inheritance is called generalization, because the parent class is

a more general form of the child class. Or to put it another way, the child is

more specific version of the parent. The generalization in the COUNTEN

program is shown in Figure 4.2

Figure 4.2 UML class diagram for COUNTEN.

In UML class diagrams, generalization is indicated by a triangular arrowhead

on the line connecting the parent and child classes. Remember that the arrow

means inherited from or derived from or is a more specific version of. The

direction of the arrow emphasizes that the derived class refers to functions and

data in the base class, while the base class has no access to the derived class.

Notice that we’ve added attributes (member data) and operations (member

functions) to the classes in the diagram. The top area holds the class title, the

middle area holds attributes, and the bottom area is for operations.

Accessing Base Class Members

OBJECT ORIENTED PROGRAMMING using C++ 2025

99

An important topic in inheritance is knowing when a member function in the

base class can be used by objects of the derived class. This is called

accessibility. Let’s see how the compiler handles the accessibility issue in

the COUNTEN example.

4.5 Substituting Base Class Constructors

In the main() part of COUNTEN we create an object of class CountDn:

This causes c1 to be created as an object of class CountDn and initialized to

0. But wait—how is this possible? There is no constructor in the CountDn

class specifier, so what entity carries out the initialization? It turns out that—

at least under certain circumstances—if you don’t specify a constructor, the

derived class will use an appropriate constructor from the base class. In

COUNTEN there’s no constructor in CountDn, so the compiler uses the no-

argument constructor from Count.

This flexibility on the part of the compiler—using one function because

another isn’t available—appears regularly in inheritance situations.

Generally, the substitution is what you want, but sometimes it can be

unnerving.

 Substituting Base Class Member Functions

The object c1 of the CountDn class also uses the operator++() and

get_count() functions from the Counter class. The first is used to increment

c1:

The second is used to display the count in c1:

Again the compiler, not finding these functions in the class of which c1 is a

member, uses member functions from the base class.

Output of COUNTEN:-

OBJECT ORIENTED PROGRAMMING using C++ 2025

100

In main() we increment c1 three times, print out the resulting value,

decrement c1 twice, and finally print out its value again. Here’s the output:-

The ++ operator, the constructors, the get_count() function in the Counter

class, and the -- operator in the CountDn class all work with objects of type

CountDn.

4.7 The protected Access Specifier

We have increased the functionality of a class without modifying it. Well,

almost without modifying it. Let’s look at the single change we made to the

Counter class.

The data in the classes we’ve looked at so far, including count in the Counter

class in the earlier COUNTPP3 program, have used the private access

specifier

In the Counter class in COUNTEN, count is given a new specifier:

protected. What does this do?

Let’s first review what we know about the access specifiers private and

public. A member function of a class can always access class members,

whether they are public or private. But an object declared externally can

only invoke (using the dot operator, for example) public members of the

class. It’s not allowed to use private members. For instance, suppose an

object objA is an instance of class A, and function funcA() is a member

function of A. Then in main() (or any other function that is not a member of

A) the statement.

will not be legal unless funcA() is public. The object objA cannot invoke

private members of class A. Private members are, well, private. This is

shown in Figure 5.3.

This is all we need to know if we don’t use inheritance. With inheritance,

however, there is a whole raft of additional possibilities. The question that

OBJECT ORIENTED PROGRAMMING using C++ 2025

101

concerns us at the moment is, can member functions of the derived class

access members of the base class? In other words, can operator--() in

CountDn access count in Counter? The answer is that member functions can

access members of the base class if the members are public, or if they are

protected. They can’t access private members.

We don’t want to make count public, since that would allow it to be

accessed by any function anywhere in the program and eliminate the

advantages of data hiding. A protected member, on the other hand, can be

accessed by member functions in its own class or—and here’s the

key—in any class derived from its own class. It can’t be accessed from

functions outside these classes, such as main(). This is just what we want.

The situation is shown in Figure4.3

Figure 4.3 Access specifiers without inheritance

OBJECT ORIENTED PROGRAMMING using C++ 2025

102

Figure 4.4 Access specifiers with inheritance.

Table 4.1 Inheritance and Accessibility

OBJECT ORIENTED PROGRAMMING using C++ 2025

103

Order of Constructor Call with Inheritance in C++

Whether derived class's default constructor is called or parameterized is

called, base class's default constructor is always called inside them.

To call base class's parameterized constructor inside derived class's

parameterized constructor, we must mention it explicitly while declaring

derived class's parameterized constructor

Modes of Inheritance

Public mode

If we derive a child class from a public parent class. Then the public

member of the parent class becomes a public member for the child

class and protected members of parents class becomes protected

members of the child class

Private mode:-

If we derive a child class from a private base class, then the public , as

well as protected members, become private for the derived class.

Private members of a base class cannot be directly accessed in the

derived class in any circumstance.

protected mode

If we derive child class from a protected base class, then the public , as

well as a protected member of the parent class, becomes the

protected member of the child class

OBJECT ORIENTED PROGRAMMING using C++ 2025

104

Function Overriding:-

• It is the redefinition of base class function in its derived class with same

signature.

Function Overloading:-

• It provides multiple definitions of the function by changing signature i.e

changing number of parameters, change data type of parameters.

• It can be done in base as well as derived class.

Example:

Class Hierarchies:-

n the examples so far in this chapter, inheritance has been used to add

functionality to an existing class. Now let’s look at an example where

inheritance is used for a different purpose: as part of the original design

of a program.

Our example models a database of employees of a widget company.

We’ve simplified the situation so that only three kinds of employees are

represented. Managers manage, scientists perform research to develop

better widgets, and laborers operate the dangerous widget-stamping

presses.

The database stores a name and an employee identification number for all

OBJECT ORIENTED PROGRAMMING using C++ 2025

105

employees, no matter what their category. However, for managers, it also

stores their titles and golf club dues. For scientists, it stores the number of

scholarly articles they have published. Laborers need no additional data

beyond their names and numbers.

Our example program starts with a base class employee. This class handles

the employee’s last name and employee number. From this class three

other classes are derived: manager, scientist, and laborer. The manager and

scientist classes contain additional information about these categories of

employee, and member functions to handle this information, as shown in

Figure 5.5

Figure4.5 UML class diagram for EMPLOY

OBJECT ORIENTED PROGRAMMING using C++ 2025

106

OBJECT ORIENTED PROGRAMMING using C++ 2025

107

OBJECT ORIENTED PROGRAMMING using C++ 2025

108

Multiple Inheritance in C++:-

• Multiple inheritance occurs when a class inherits from more than one

base class. So the class can inherit features from multiple base classes in

the same time.

• Unlike other object oriented programming languages, C++ allow this

important features to programmers.

• For example, if the program had a specific class to print on screen

called Output, and we wanted our classes Rectangle and Triangle to also

inherit its members in addition to those of Polygon we could write

Example:-

OBJECT ORIENTED PROGRAMMING using C++ 2025

109

Example:

Chapter 6

Pointer

// multiple inheritance

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 Polygon (int a, int b) : width(a), height(b) {}

};

class Output {

 public:

 static void print (int i);

};

void Output::print (int i) {

 cout << i << '\n';

}

class Rectangle: public Polygon, public Output {

 public:

 Rectangle (int a, int b) : Polygon(a,b) {}

 int area ()

 { return width*height; }

};

class Triangle: public Polygon, public Output {

 public:

 Triangle (int a, int b) : Polygon(a,b) {}

 int area ()

 { return width*height/2; }

};

int main () {

 Rectangle rect (4,5);

 Triangle trgl (4,5);

 rect.print (rect.area());

 Triangle::print (trgl.area());

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

110

Review Questions

1. Inheritance is a way to

a. make general classes into more specific classes.

b. pass arguments to objects of classes.

c. add features to existing classes without rewriting them.

d. improve data hiding and encapsulation.

2. A “child” class is said to be _________ from a base class.

3. Advantages of inheritance include

a. providing class growth through natural selection.

b. facilitating class libraries.

c. avoiding the rewriting of code.

d. providing a useful conceptual framework.

4. Write the first line of the specifier for a class Bosworth that is publicly

derived from a

class Alphonso.

5. True or false: Adding a derived class to a base class requires fundamental

changes to the

base class.

6. To be accessed from a member function of the derived class, data or

functions in the base

class must be public or _________.

7. If a base class contains a member function basefunc(), and a derived class

does not contain

a function with this name, can an object of the derived class access

basefunc()?

8. Assume that the classes mentioned in Question 4 and the class Alphonso

contain a member

OBJECT ORIENTED PROGRAMMING using C++ 2025

111

function called alfunc(). Write a statement that allows object BosworthObj

of class Bosworth to access alfunc()

Exercises

(1) Create two classes named Mammals and MarineAnimals. Create

another class named BlueWhale which inherits both the above classes.

Now, create a function in each of these classes which prints "I am

mammal", "I am a marine animal" and "I belong to both the categories:

Mammals as well as Marine Animals" respectively. Now, create an

object for each of the above class and try calling

A. function of Mammals by the object of Mammal

B. function of MarineAnimal by the object of MarineAnimal

C. function of BlueWhale by the object of BlueWhale

D. function of each of its parent by the object of BlueWhale

(2) We want to calculate the total marks of each student of a class in

Physics,Chemistry and Mathematics and the average marks of the class.

The number of students in the class are entered by the user. Create a class

named Marks with data members for roll number, name and marks. Create

three other classes inheriting the Marks class, namely Physics, Chemistry

and Mathematics, which are used to define marks in individual subject of

each student. Roll number of each student will be generated automatically.

(3) All the banks operating in India are controlled by RBI. RBI has set a

well defined guideline (e.g. minimum interest rate, minimum balance

allowed, maximum withdrawal limit etc) which all banks must follow.

For example, suppose RBI has set minimum interest rate applicable to

a saving bank account to be 4% annually; however, banks are free to

use 4% interest rate or to set any rates above it.

Write a program to implement bank functionality in the above

scenario. Note: Create few classes namely Customer, Account, RBI

(Base Class) and few derived classes (SBI, ICICI, PNB etc). Assume

and implement required member variables and functions in each class.

OBJECT ORIENTED PROGRAMMING using C++ 2025

112

Chapter 5

Pointers

Pointers are the hobgoblin of C++ (and C) programming; seldom has such a

simple idea inspired so much perplexity for so many. But fear not. In this

chapter we will try to demystify pointers and show practical uses for them in

C++ programming.

What are pointers for?

 Here are some common uses:

• Accessing array elements

• Passing arguments to a function when the function needs to modify

the original argument

• Passing arrays and strings to functions

• Obtaining memory from the system

• Creating data structures such as linked lists

- Addresses and Pointers

- The Address-of Operators &

- Pointer Variables-

- Syntax Quibbles:-

- Pointers Must Have a Value

- Accessing the Variable Pointed To

OBJECT ORIENTED PROGRAMMING using C++ 2025

113

Pointers are an important feature of C++ (and C), while many other

languages, such as Visual Basic and Java, have no pointers at all. (Java has

references, which are sort of watered-down pointers.) Is this emphasis on

pointers really necessary? You can do a lot without them, as their

absence from the preceding chapters demonstrates. Some operations that use

pointers in C++ can be carried out in other ways. For example, array

elements can be accessed with array notation rather than pointer notation

(we’ll see the difference soon), and a function can modify arguments passed

by reference, as well as those passed by pointers.

Addresses and Pointers:-

The ideas behind pointers are not complicated. Here’s the first key concept:

Every byte in the computer’s memory has an address. Addresses are

numbers, just as they are for houses on a street. The numbers start at 0 and

go up from there—1, 2, 3, and so on. If you have 1MB of memory, the

highest address is 1,048,575. (Of course you have much more.)

Your program, when it is loaded into memory, occupies a certain range of

these addresses. That means that every variable and every function in your

program starts at a particular address. Figure 5.1 shows how this looks.

Figure 5.1 Memory addresses.

OBJECT ORIENTED PROGRAMMING using C++ 2025

114

The Address-of Operator &:-

You can find the address occupied by a variable by using the address-of

operator &. Here’s a short program, VARADDR, that demonstrates how to

do this:

This simple program defines three integer variables and initializes them to

the values 11, 22, and 33. It then prints out the addresses of these variables.

The actual addresses occupied by the variables in a program depend on

many factors, such as the computer the program is running on, the size of the

operating system, and whether any other programs are currently in memory.

For these reasons you probably won’t get the same addresses we did when

you run this program. (You may not even get the same results twice a row.)

Here’s the output on our machine

Remember that the address of a variable is not at all the same as its contents.

The contents of the three variables are 11, 22, and 33. Figure 5.2 shows the

three variables in memory.

OBJECT ORIENTED PROGRAMMING using C++ 2025

115

Figure 5.2 Addresses and contents of variables.

The << insertion operator interprets the addresses in hexadecimal arithmetic,

as indicated by the prefix 0x before each number. This is the usual way to

show memory addresses. If you aren’t familiar with the hexadecimal number

system, don’t worry. All you really need to know is that each variable starts

at a unique address. However, you might note in the output that each address

differs from the next by exactly 2 bytes. That’s because integers occupy 2

bytes of memory (on a 16-bit system). If we had used variables of type char,

they would have adjacent addresses, since a char occupies 1 byte; and if we

had used type double, the addresses would have differed by 8 bytes.

The addresses appear in descending order because local variables are stored

on the stack, which grows downward in memory. If we had used global

variables, they would have ascending addresses, since global variables are

stored on the heap, which grows upward. Again, you don’t need to worry too

much about these considerations, since the compiler keeps track of the details

for you.

Don’t confuse the address-of operator &, which precedes a variable name in

a variable declaration, with the reference operator &, which follows the type

name in a function prototype or definition.

OBJECT ORIENTED PROGRAMMING using C++ 2025

116

 Pointer Variables:-

Addresses by themselves are rather limited. It’s nice to know that we can find

out where things are in memory, as we did in VARADDR, but printing out

address values is not all that useful. The potential for increasing our

programming power requires an additional idea: variables that hold address

values. We’ve seen variable types that store characters, integers, floating-

point numbers, and so on. Addresses are stored similarly. A variable that holds

an address value is called a pointer variable, or simply a pointer.

What is the data type of pointer variables? It’s not the same as the variable

whose address is being stored; a pointer to int is not type int. You might think

a pointer data type would be called something like pointer or ptr. However,

things are slightly more complicated. The next program, PTRVAR , shows

the syntax for pointer variables

OBJECT ORIENTED PROGRAMMING using C++ 2025

117

This program defines two integer variables, var1 and var2, and initializes

them to the values 11 and 22. It then prints out their addresses.

The program next defines a pointer variable in the line int* ptr;

To the uninitiated this is a rather bizarre syntax. The asterisk means pointer

to. Thus the statement defines the variable ptr as a pointer to int. This is

another way of saying that this variable can hold the addresses of integer

variables.

What’s wrong with the idea of a general-purpose pointer type that holds

pointers to any data type? If we called it type pointer we could write

declarations like

pointer ptr;

The problem is that the compiler needs to know what kind of variable the

pointer points to.

(We’ll see why when we talk about pointers and arrays.) The syntax used in

C++ allows pointers to any type to be declared

 Syntax Quibbles:-

We should note that it is common to write pointer definitions with the asterisk

closer to the variable name than to the type.

char *charptr;

It doesn’t matter to the compiler, but placing the asterisk next to the type helps

emphasize that the asterisk is part of the variable type (pointer to char), not

part of the name itself.

If you define more than one pointer of the same type on one line, you need

only insert the type-pointed-to once, but you need to place an asterisk before

each variable name.

OBJECT ORIENTED PROGRAMMING using C++ 2025

118

char* ptr1, * ptr2, * ptr3; // three variables of type char*

Or you can use the asterisk-next-to-the-name approach.

char *ptr1, *ptr2, *ptr3; // three variables of type char*

 Pointers Must Have a Value:-

An address like 0x8f4ffff4 can be thought of as a pointer constant. A pointer

like ptr can be thought of as a pointer variable. Just as the integer variable var1

can be assigned the constant value 11, so can the pointer variable ptr be

assigned the constant value 0x8f4ffff4.

When we first define a variable, it holds no value (unless we initialize it at the

same time). It may hold a garbage value, but this has no meaning. In the case

of pointers, a garbage value is the address of something in memory, but

probably not of something that we want. So before a pointer is used, a specific

address must be placed in it. In the PTRVAR program, ptr is first assigned the

address of var1 in the line:

Following this, the program prints out the value contained in ptr, which

should be the same address printed for &var1. The same pointer variable ptr

is then assigned the address of var2, and this value is printed out. Figure 5.3

shows the operation of the PTRVAR program. Here’s the output of

PTRVAR

To summarize: A pointer can hold the address of any variable of the correct

type; it’s a receptacle awaiting an address. However, it must be given some

value, or it will point to an address we don’t want it to point to, such as into

our program code or the operating system. Rogue pointer values can result in

system crashes and are difficult to debug, since the compiler gives no

OBJECT ORIENTED PROGRAMMING using C++ 2025

119

warning. The moral: Make sure you give every pointer variable a valid

address value before using it

Figure 5.3 Changing values in ptr

Accessing the Variable Pointed To:-

Suppose that we don’t know the name of a variable but we do know its

address. Can we access the contents of the variable? (It may seem like

mismanagement to lose track of variable names, but we’ll soon see that there

are many variables whose names we don’t know.)

There is a special syntax to access the value of a variable using its address

instead of its name.

Here’s an example program, PTRACC, that shows how it’s done:

OBJECT ORIENTED PROGRAMMING using C++ 2025

120

This program is very similar to PTRVAR , except that instead of printing the

address values in ptr, we print the integer value stored at the address that’s

stored in ptr. Here’s the output:

11

22

The expression that accesses the variables var1 and var2 is *ptr, which

occurs in each of the two cout statements.

When an asterisk is used in front of a variable name, as it is in the *ptr

expression, it is called the dereference operator (or sometimes the indirection

operator). It means the value of the variable pointed to by. Thus the

expression *ptr represents the value of the variable pointed to by ptr. When

ptr is set to the address of var1, the expression *ptr has the value 11, since

var1 is 11. When ptr is changed to the address of var2, the expression *ptr

acquires the value 22, since var2 is 22. Another name for the dereference

operator is the contents of operator, which is another way to say the same

thing. Figure 5.4 shows how this looks.

OBJECT ORIENTED PROGRAMMING using C++ 2025

121

You can use a pointer not only to display a variable’s value, but also to

perform any operation you would perform on the variable directly. Here’s a

program, PTRTO, that uses a pointer to assign a value to a variable, and then

to assign that value to another variable

Figure 5.4 Access via pointer.

OBJECT ORIENTED PROGRAMMING using C++ 2025

122

Remember that the asterisk used as the dereference operator has a different

meaning than the asterisk used to declare pointer variables. The dereference

operator precedes the variable and means value of the variable pointed to by.

The asterisk used in a declaration means pointer to

Using the dereference operator to access the value stored in an address is

called indirect addressing, or sometimes dereferencing, the pointer

Here’s a capsule summary of what we’ve learned so far:

The last two statements show the difference between normal or direct

addressing, where we refer to a variable by name, and pointer or indirect

addressing, where we refer to the same variable using its address.

In the example programs we’ve shown so far in this chapter, there’s really no

advantage to using the pointer expression to access variables, since we can

access them directly. The value of pointers becomes evident when you can’t

access a variable directly.

OBJECT ORIENTED PROGRAMMING using C++ 2025

123

Chapter 6

Polymorphism

What is Polymorphism ?

• Polymorphism is an object-oriented programming concept that refers to

the ability of a variable, function or object to take on multiple forms.

• with polymorphism, class objects belonging to the same hierarchical tree

(inherited from a common parent class) may have functions with the

same name, but with different behaviors.

 Pointer to Base Class

One of the key features of class inheritance is that a pointer to a derived

class is type-compatible with a pointer to its base class. Polymorphism is the

art of taking advantage of this simple but powerful and versatile feature.

The example about the rectangle and triangle classes can be rewritten using

pointers taking this feature into account:

- Pointer to Base Class

- Virtual members

- Abstract Base Classes

OBJECT ORIENTED PROGRAMMING using C++ 2025

124

Function main declares two pointers to Polygon (named ppoly1 and ppoly2).

These are assigned the addresses of rect and trgl, respectively, which are

// pointers to base class

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

};

class Rectangle: public Polygon {

 public:

 int area()

 { return width*height; }

};

class Triangle: public Polygon {

 public:

 int area()

 { return width*height/2; }

};

int main () {

 Rectangle rect;

 Triangle trgl;

 Polygon * ppoly1 = ▭

 Polygon * ppoly2 = &trgl;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 cout << rect.area() << '\n';

 cout << trgl.area() << '\n';

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

125

objects of type Rectangle and Triangle. Such assignments are valid, since

both Rectangle and Triangle are classes derived from Polygon.

Dereferencing ppoly1 and ppoly2 (with ppoly1-> and ppoly2->) is valid and

allows us to access the members of their pointed objects. For example, the

following two statements would be equivalent in the previous example:

But because the type of both ppoly1 and ppoly2 is pointer to Polygon (and not

pointer to Rectangle nor pointer to Triangle), only the members inherited

from Polygon can be accessed, and not those of the derived

classes Rectangle and Triangle. That is why the program above accesses

the area members of both objects using rect and trgl directly, instead of the

pointers; the pointers to the base class cannot access the area members.

Member area could have been accessed with the pointers

to Polygon if area were a member of Polygon instead of a member of its

derived classes, but the problem is that Rectangle and Triangle implement

different versions of area, therefore there is not a single common version that

could be implemented in the base class.

Virtual members

A virtual member is a member function that can be redefined in a derived class,

while preserving its calling properties through references. The syntax for a

function to become virtual is to precede its declaration with

the virtual keyword:

OBJECT ORIENTED PROGRAMMING using C++ 2025

126

// virtual members

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area ()

 { return 0; }

};

class Rectangle: public Polygon {

 public:

 int area ()

 { return width * height; }

};

class Triangle: public Polygon {

 public:

 int area ()

 { return (width * height / 2); }

};

int main () {

 Rectangle rect;

 Triangle trgl;

 Polygon poly;

 Polygon * ppoly1 = ▭

 Polygon * ppoly2 = &trgl;

 Polygon * ppoly3 = &poly;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 ppoly3->set_values (4,5);

 cout << ppoly1->area() << '\n';

 cout << ppoly2->area() << '\n';

 cout << ppoly3->area() << '\n';

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

127

In this example, all three classes (Polygon, Rectangle and Triangle) have the

same members: width, height, and functions set_values and area.

The member function area has been declared as virtual in the base class

because it is later redefined in each of the derived classes. Non-virtual

members can also be redefined in derived classes, but non-virtual members

of derived classes cannot be accessed through a reference of the base class:

i.e., if virtual is removed from the declaration of area in the example above,

all three calls to area would return zero, because in all cases, the version of

the base class would have been called instead.

Therefore, essentially, what the virtual keyword does is to allow a member

of a derived class with the same name as one in the base class to be

appropriately called from a pointer, and more precisely when the type of the

pointer is a pointer to the base class that is pointing to an object of the

derived class, as in the above example.

A class that declares or inherits a virtual function is called a polymorphic

class.

Note that despite of the virtuality of one of its members, Polygon was a regular

class, of which even an object was instantiated (poly), with its own definition

of member area that always returns 0.

Abstract Base Classes

Abstract base classes are something very similar to the Polygon class in the

previous example. They are classes that can only be used as base classes,

and thus are allowed to have virtual member functions without definition

(known as pure virtual functions). The syntax is to replace their definition

by =0 (an equal sign and a zero):

An abstract base Polygon class could look like this:

OBJECT ORIENTED PROGRAMMING using C++ 2025

128

Notice that area has no definition; this has been replaced by =0, which makes it

a pure virtual function. Classes that contain at least one pure virtual

function are known as abstract base classes.

Abstract base classes cannot be used to instantiate objects. Therefore, this last

abstract base class version of Polygon could not be used to declare objects like:

But an abstract base class is not totally useless. It can be used to create pointers

to it, and take advantage of all its polymorphic abilities. For example, the

following pointer declarations would be valid:

And can actually be dereferenced when pointing to objects of derived (non-

abstract) classes. Here is the entire example:

/ / abstract base class

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area (void) =0;

};

OBJECT ORIENTED PROGRAMMING using C++ 2025

129

class Rectangle: public Polygon {

 public:

 int area (void)

 { return (width * height); }

};

class Triangle: public Polygon {

 public:

 int area (void)

 { return (width * height / 2); }

};

int main () {

 Rectangle rect;

 Triangle trgl;

 Polygon * ppoly1 = ▭

 Polygon * ppoly2 = &trgl;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 cout << ppoly1->area() << '\n';

 cout << ppoly2->area() << '\n';

 return 0;

}

In this example, objects of different but related types are referred to using a

unique type of pointer (Polygon*) and the proper member function is called

every time, just because they are virtual. This can be really useful in some

circumstances. For example, it is even possible for a member of the abstract

base class Polygon to use the special pointer this to access the proper virtual

members, even though Polygon itself has no implementation for this function:

OBJECT ORIENTED PROGRAMMING using C++ 2025

130

// pure virtual members can be called

// from the abstract base class

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area() =0;

 void printarea()

 { cout << this->area() << '\n'; }

};

class Rectangle: public Polygon {

 public:

 int area (void)

 { return (width * height); }

};

class Triangle: public Polygon {

 public:

 int area (void)

 { return (width * height / 2); }

};

int main () {

 Rectangle rect;

 Triangle trgl;

 Polygon * ppoly1 = ▭

 Polygon * ppoly2 = &trgl;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 ppoly1->printarea();

 ppoly2->printarea();

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

131

Virtual members and abstract classes grant C++ polymorphic characteristics,

most useful for object-oriented projects. Of course, the examples above are

very simple use cases, but these features can be applied to arrays of objects

or dynamically allocated objects.

Example: (dynamic memory, constructor initializers and polymorphism:)

// dynamic allocation and polymorphism

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int width, height;

 public:

 Polygon (int a, int b) : width(a), height(b) {}

 virtual int area (void) =0;

 void printarea()

 { cout << this->area() << '\n'; }

};

class Rectangle: public Polygon {

 public:

 Rectangle(int a,int b) : Polygon(a,b) {}

 int area()

 { return width*height; }

};

class Triangle: public Polygon {

 public:

 Triangle(int a,int b) : Polygon(a,b) {}

 int area()

 { return width*height/2; }

};

int main () {

 Polygon * ppoly1 = new Rectangle (4,5);

 Polygon * ppoly2 = new Triangle (4,5);

 ppoly1->printarea();

 ppoly2->printarea();

 delete ppoly1;

 delete ppoly2;

 return 0;

}

OBJECT ORIENTED PROGRAMMING using C++ 2025

132

Notice that the ppoly pointers:

are declared being of type "pointer to Polygon", but the objects allocated

have been declared having the derived class type directly

(Rectangle and Triangle).

OBJECT ORIENTED PROGRAMMING using C++ 2025

133

Chapter 7

Virtual Functions

Now that we understand something about pointers, we can delve into more

advanced C++ topics. This chapter covers a rather loosely related collection

of such subjects: virtual functions, friend functions, static functions, the

overloaded = operator, the overloaded copy constructor, and the this pointer.

These are advanced features; they are not necessary for every C++ program,

especially very short ones. However, they are widely used, and are essential

for most full-size programs. Virtual functions in particular are essential for

polymorphism, one of the cornerstones of object-oriented programming.

Virtual Functions

Virtual means existing in appearance but not in reality. When virtual functions

are used, a program that appears to be calling a function of one class may in

reality be calling a function of a different class. Why are virtual functions

needed? Suppose you have a number of objects of different classes but you

want to put them all in an array and perform a particular operation on them

using the same function call. For example, suppose a graphics program

includes several different shapes: a triangle, a ball, a square, and so on, as in

the MULTSHAP program in Chapter 4, “Inheritance.” Each of these classes

has a member function draw() that causes the object to

be drawn on the screen.

Now suppose you plan to make a picture by grouping a number of these

elements together, and you want to draw the picture in a convenient way. One

- Virtual Functions

- Friend Function

- Friend Class

- static Function

OBJECT ORIENTED PROGRAMMING using C++ 2025

134

approach is to create an array that holds pointers to all the different objects in

the picture. The array might be defined like this:

If you insert pointers to all the shapes into this array, you can then draw an

entire picture using a simple loop

This is an amazing capability: Completely different functions are executed by

the same function call. If the pointer in ptrarr points to a ball, the function that

draws a ball is called; if it points to a triangle, the triangle-drawing function

is called. This is called polymorphism, which means different forms. The

functions have the same appearance, the draw() expression, but different

actual functions are called, depending on the contents of ptrarr[j].

 Polymorphism is one of the key features of object-oriented programming,

after classes and inheritance.

For the polymorphic approach to work, several conditions must be met. First,

all the different classes of shapes, such as balls and triangles, must be

descended from a single base class (called shape in MULTSHAP). Second,

the draw() function must be declared to be virtual in the base class.

Normal Member Functions Accessed with Pointers:-

Our first example shows what happens when a base class and derived classes

all have functions with the same name, and you access these functions using

pointers but without using virtual functions. Here’s the listing for NOTVIRT

OBJECT ORIENTED PROGRAMMING using C++ 2025

135

The Derv1 and Derv2 classes are derived from class Base. Each of these three

classes has a member function show(). In main() we create objects of class

Derv1 and Derv2, and a pointer to class Base. Then we put the address of a

derived class object in the base class pointer in the line

But wait—how can we get away with this? Doesn’t the compiler complain

that we’re assigning an address of one type (Derv1) to a pointer of another

(Base)? On the contrary, the compiler is perfectly happy, because type

OBJECT ORIENTED PROGRAMMING using C++ 2025

136

checking has been relaxed in this situation, for reasons that will become

apparent soon. The rule is that pointers to objects of a derived class are type

compatible with pointers to objects of the base class.

Now the question is, when you execute the line

what function is called? Is it Base::show() or Derv1::show()? Again, in the

last two lines of NOTVIRT we put the address of an object of class Derv2 in

the pointer, and again execute

Which of the show() functions is called here? The output from the program

answers these questions:

Base

Base

As you can see, the function in the base class is always executed. The

compiler ignores the contents of the pointer ptr and chooses the member

function that matches the type of the pointer, as shown in Figure 7.1.

Sometimes this is what we want, but it doesn’t solve the problem posed at

the beginning of this section: accessing objects of different classes using the

same statement.

OBJECT ORIENTED PROGRAMMING using C++ 2025

137

Figure 7.1 Nonvirtual pointer access.

Virtual Member Functions Accessed with Pointers:-

Let’s make a single change in our program: We’ll place the keyword virtual

in front of the declarator for the show() function in the base class. Here’s the

listing for the resulting program, VIRT:

OBJECT ORIENTED PROGRAMMING using C++ 2025

138

The output of this program is

Derv1

Derv2

Now, as you can see, the member functions of the derived classes, not the

base class, are executed. We change the contents of ptr from the address of

OBJECT ORIENTED PROGRAMMING using C++ 2025

139

Derv1 to that of Derv2, and the particular instance of show() that is executed

also changes. So the same function call.

executes different functions, depending on the contents of ptr. The rule is

that the compiler selects the function based on the contents of the pointer ptr,

not on the type of the pointer, as in NOTVIRT. This is shown in Figure 7.2

Figure 7.2 Virtual pointer access

 Friend Functions

The concepts of encapsulation and data hiding dictate that nonmember

functions should not be able to access an object’s private or protected data.

The policy is, if you’re not a member, you can’t get in. However, there are

situations where such rigid discrimination leads to considerable

inconvenience.

Friends as Bridges:

Imagine that you want a function to operate on objects of two different classes.

Perhaps the function will take objects of the two classes as arguments, and

operate on their private data. In this situation there’s nothing like a friend

OBJECT ORIENTED PROGRAMMING using C++ 2025

140

function. Here’s a simple example, FRIEND, that shows how friend functions

can act as a bridge between two classes

OBJECT ORIENTED PROGRAMMING using C++ 2025

141

In this program, the two classes are alpha and beta. The constructors in these

classes initialize their single data items to fixed values (3 in alpha and 7 in

beta).

We want the function frifunc() to have access to both of these private data

members, so we make it a friend function. It’s declared with the friend

keyword in both classes:

This declaration can be placed anywhere in the class; it doesn’t matter

whether it goes in the public or the private section

An object of each class is passed as an argument to the function frifunc(),

and it accesses the private data member of both classes through these

arguments. The function doesn’t do much:

It adds the data items and returns the sum. The main() program calls this

function and prints the result.

A minor point: Remember that a class can’t be referred to until it has been

declared. Class beta is referred to in the declaration of the function frifunc()

in class alpha, so beta must be declared before alpha. Hence the declaration

class beta; at the beginning of the program.

 Friend Class

The member functions of a class can all be made friends at the same time

when you make the entire class a friend. The program FRICLASS shows how

this looks

OBJECT ORIENTED PROGRAMMING using C++ 2025

142

In class alpha the entire class beta is proclaimed a friend. Now all the member

functions of beta can access the private data of alpha (in this program, the

single data item data1).

Note that in the friend declaration we specify that beta is a class using the

class keyword:

friend class beta;

We could have also declared beta to be a class before the alpha class specifier,

as in previous examples

OBJECT ORIENTED PROGRAMMING using C++ 2025

143

class beta;

and then, within alpha, referred to beta without the class keyword:

friend beta;

Static Functions

In the STATIC example in Chapter 6, “Objects and Classes,” we introduced

static data members. As you may recall, a static data member is not duplicated

for each object; rather a single data item is shared by all objects of a class. The

STATIC example showed a class that kept track of how many objects of itself

there were. Let’s extend this concept by showing how functions as well as

data may be static. Besides showing static functions, our example will model

a class that provides an ID number for each of its objects. This allows you to

query an object to find out which object it is—a capability that is sometimes

useful in debugging a program, among other situations. The program also

casts some light on the operation of destructors.

Here’s the listing for STATFUNC:

OBJECT ORIENTED PROGRAMMING using C++ 2025

144

OBJECT ORIENTED PROGRAMMING using C++ 2025

145

Accessing static Functions:

In this program there is a static data member, total, in the class gamma. This

data keeps track of how many objects of the class there are. It is incremented

by the constructor and decremented by the destructor.

Suppose we want to access total from outside the class. We construct a

function, showtotal(), that prints the total’s value. But how do we access this

function?

When a data member is declared static, there is only one such data value for

the entire class, no matter how many objects of the class are created. In fact,

there may be no such objects at all, but we still want to be able to learn this

fact. We could create a dummy object to use in calling a member function, as

in

gamma dummyObj; // make an object so we can call function

dummyObj.showtotal(); // call function

But this is rather inelegant. We shouldn’t need to refer to a specific object

when we’re doing something that relates to the entire class. It’s more

reasonable to use the name of the class itself with the scope-resolution

operator.

gamma::showtotal(); // more reasonable

OBJECT ORIENTED PROGRAMMING using C++ 2025

146

However, this won’t work if showtotal() is a normal member function; an

object and the dot member-access operator are required in such cases. To

access showtotal() using only the class name, we must declare it to be a static

member function. This is what we do in STATFUNC, in the declarator

static void showtotal()

Now the function can be accessed using only the class name. Here’s the

output:

Total is 1

Total is 3

ID number is 1

ID number is 2

ID number is 3

----------end of program--------

Destroying ID number 3

Destroying ID number 2

Destroying ID number 1

We define one object, g1, and then print out the value of total, which is 1.

Then we define two more objects, g2 and g3, and again print out the total,

which is now 3.

OBJECT ORIENTED PROGRAMMING using C++ 2025

147

References

1. Object Oriented Programming in C++ by Robert Lafore Techmedia

Publication.

2. The complete reference C – by Herbert shieldt Tata McGraw Hill

Publication.

3. Object Oriented Programming in C++ Saurav Sahay Oxford University

Press.

 4. Object Oriented Programming in C++ R Rajaram New Age International

Publishers 2nd .

 5. OOPS C++ Big C++ Cay Horstmann Wiley Publication

6. https://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

7. https://www.programiz.com/cpp-programming

https://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

