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1. Indefinite Integrals

1.1 Introduction

For the sake of convenience, we mention below the following symbols/terms/phrases with

their meanings as given in the following Table

Symbols/Terms/Phrases Meaning∫
f (x)dx Integral of f with respect to x

f (x) in
∫

f (x)dx Integrand

x in
∫

f (x)dx Variable of integration

Integrate Find the integral

An integral of f A function F such that F́(x) = f (x)

Integration The process of finding the integral

Constant of Integration An arbitrary constant C, considered as constant function

1.2 Elementary Integrals

Applying the fundamental theorem of calculus, one can obtain the following integrals.
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Derivatives Integrals (Anti derivatives)

d
dx

(
xn+1

n+1

)
= xn �

∫
xndx =

xn+1

n+1
+C, n 6=−1

d
dx

(sinx) = cosx �
∫

cosxdx = sinx+C

d
dx

(−cosx) = sinx �
∫

sinxdx =−cosx+C

d
dx

(tanx) = sec2 x �
∫

sec2 xdx = tanx+C

d
dx

(−cotx) = cosec2 x �
∫

cosec2 xdx =−cotx+C

d
dx

(secx) = secx tanx �
∫

secx tanxdx = secx+C

d
dx

(−cosecx) = cosecxcotx �
∫

cosecxcotxdx =−cosecx+C

d
dx

(
sin−1 x

)
=

1√
1− x2

�
∫ dx√

1− x2
= sin−1 x+C

d
dx

(
−cos−1 x

)
=

1√
1− x2

�
∫ dx√

1− x2
=−cos−1 x+C

d
dx

(
tan−1 x

)
=

1
1+ x2 �

∫ dx
1+ x2 = tan−1 x+C

d
dx

(
−cot−1 x

)
=

1
1+ x2 �

∫ dx
1+ x2 =−cot−1 x+C

d
dx

(
sec−1 x

)
=

1
x
√

x2−1
�

∫ dx

x
√

x2−1
= sec−1 x+C

d
dx

(
−cosec−1 x

)
=

1
x
√

x2−1
�

∫ dx

x
√

x2−1
=−cosec−1 x+C

d
dx

(ex) = ex �
∫

exdx = ex +C

d
dx

(log |x|) = 1
x

�
∫ 1

x
dx = log |x|+C

d
dx

(
ax

loga

)
= ax �

∫
axdx =

ax

loga
+C
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Some properties of indefinite integral

1.
∫
[ f (x)+g(x)] dx =

∫
f (x)dx+

∫
g(x)dx.

2.
∫

m f (x)dx = m
∫

f (x)dx, where m is a constant.

� Example 1.1 Write an anti derivative for each of the following functions using the method

of inspection:

(a) cos2x (b)3x2 +4x3 (c)
1
x
,x 6= 0

Solution.

(a) We look for a function whose derivative is cos2x. Recall that

d
dx

sin2x = 2cos2x

or

cos2x =
1
2

d
dx

(sin2x) =
d
dx

(
1
2

sin2x
)

Therefore, ∫
cos2xdx =

1
2

sin2x+C

(b) ∫
(3x2 +4x3)dx = 3

(
x3

3

)
+4
(

x4

4

)
+C = x3 + x4 +C

(c) We know that
d
dx

logx =
1
x
, x > 0,

so ∫ 1
x

dx = logx+C,

in general ∫ f́ (x)
f (x)

dx = log f (x)+C,

�

� Example 1.2 Find the following integrals:

(a)
∫ x3−1

x2 dx (b)
∫ (

x
2
3 +1

)
dx (c)

∫ (
x

3
2 +2ex− 1

x

)
dx,
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Solution.

(a) ∫ x3−1
x2 dx =

∫ x3

x2 dx−
∫ 1

x2 dx

=
∫

xdx−
∫

x−2 dx

=
x2

2
− x−2+1

−2+1
+C =

x2

2
+

1
x
+C

(b) ∫ (
x

2
3 +1

)
dx =

∫
x

2
3 dx+

∫
dx =

x
2
3+1

2
3 +1

+ x+C =
5
3

x
5
3 + x+C

(c) ∫ (
x

3
2 +2ex− 1

x

)
dx =

∫
x

3
2 dx+

∫
2ex dx−

∫ 1
x

dx

=
x

3
2+1

3
2 +1

+2ex− logx+C

=
2
5

x
5
2 +2ex− logx+C

�

� Example 1.3 Find the following integrals:

(a)
∫
(sinx+ cosx)dx, (b)

∫
cosec x(cosec x+ cotx)dx, (c)

∫ 1− sinx
cos2 x

dx.

Solution.

(a) ∫
(sinx+ cosx)dx =−cosx+ sinx+C

(b) ∫
cosec x(cosec x+ cotx)dx =

∫
cosec2 xdx+

∫
cosec xcotxdx

=−cotx− cosec x+C

(c) ∫ 1− sinx
cos2 x

dx =
∫ 1

cos2 x
dx−

∫ sinx
cos2 x

dx

=
∫

sec2 xdx−
∫

tanx secxdx

= tanx− secx+C
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�

� Example 1.4 Find the anti derivative F of f defined by f (x) = 4x3−6, where F(0) = 3.

Solution:

F(x) =
∫
(4x3−6)dx = x4−6x+C

where C is constant, given that F(0) = 3, which gives,

3 = 0−6×0+C, =⇒ C = 3

Hence, the required anti derivative is the unique function F defined by

F(x) = x4−6x+3.

�

Exercise 1.1 Find an anti derivative (or integral) of the following functions by the

method of inspection.

(1) sin2x.

(2) cos3x.

(3)e2x.

(4)(ax+b)2.

(5) sin2x−4e3x.
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Find the following integrals in Exercises 6 to 20:

(6)
∫
(4e3x +1)dx.

(7)
∫

x2
(

1− 1
x2

)
dx.

(8)
∫
(ax2 +bx+ c)dx.

(9)
∫ (

2x2 + ex)dx.

(10)
∫ (√

x− 1√
x

)2

dx.

(11)
∫ x3 +5x2−4

x2 dx.

(12)
∫ x3 +3x+4√

x
dx.

(13)
∫ x3− x2 + x−1

x−1
dx.

(14)
∫
(1− x)

√
xdx.

(15)
∫ √

x
(
3x2 +2x+3

)
dx.

(16)
∫

(2x−3cosx+ ex)dx.

(17)
∫ (

2x2−3sinx+5
√

x
)

dx.

(18)
∫

secx(secx+ tanx)dx.

(19)
∫ sec2 x

cosec2 x
dx.

(20)
∫ 2−3sinx

cos2 x
dx.

�



2. Techniques of integration

In previous chapter, we discussed integrals of those functions which were readily obtainable

from derivatives of some functions. It was based on inspection, i.e., on the search of a

function F whose derivative is f which led us to the integral of f. However, this method,

which depends on inspection, is not very suitable for many functions. Hence, we need to

develop additional techniques or methods for finding the integrals by reducing them into

standard forms. Prominent among them are methods based on:

1. Integration by Substitution

2. Integration using Partial Fractions

3. Integration by Parts

2.1 Integration by substitution

In this section, we consider the method of integration by substitution.

The given integral
∫

f (x)dx can be transformed into another form by changing the indepen-

dent variable x to t by substituting x = g(t).

Consider

I =
∫

f (x)dx
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Put x = g(t) so that
dx
dt

= ǵ(t)

. We write

dx = ǵ(t)dt

Thus

I =
∫

f (x)dx =
∫

f (g(t))ǵ(t)dt

This change of variable formula is one of the important tools available to us in the name of

integration by substitution. It is often important to guess what will be the useful substitution.

Usually, we make a substitution for a function whose derivative also occurs in the integrand

as illustrated in the following examples.

� Example 2.1 Integrate the following functions w.r.t. x:

(a) sinmx, (b) 2xsin(x2 +1),

(c)
tan4√x sec2√x√

x
, (d)

sin tan−1 x
1+ x2

Solution:

(a) We know that derivative of mx is m. Thus, we make the substitution mx = t so that

mdx = dt. Therefore,∫
sinmxdx =

∫ 1
m

sin t dt =− 1
m

cos t +C =− 1
m

cosmx+C

(b) Derivative of x2 +1 is 2x. Thus, we use the substitution x2 +1 = t so that 2xdx = dt.

Therefore, ∫
2xsin(x2 +1)dx =

∫
sin t dt =−cos t +C =−cos(x2 +1)+C

(c) Derivative of
√

x is 1
2x−

1
2 = 1

2
√

x .

Thus, we use the substitution
√

x = t so that 1
2
√

xdx = dt giving dx = 2tdt.

Thus, ∫ tan4√xsec2√x√
x

dx =
∫ 2t tan4 t sec2 tdt

t
= 2

∫
tan4 t sec2 tdt
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Again, we make another substitution tan t = u so that sec2 tdt = du Therefore,

2
∫

tan4 t sec2 tdt = 2
∫

u4du = 2
u5

5
+C

=
2
5

tan5 t +C( since u = tan t)

=
2
5

tan5√x+C( since t =
√

x)

Hence, ∫ tan4√xsec2√x√
x

dx =
2
5

tan5√x+C

Alternatively, make the substitution tan
√

x = t

(d) Derivative of tan−1 x = 1
1+x2 . Thus, we use the substitution

tan−1 x = t so that
dx

1+ x2 = dt.

Therefore, ∫ sin
(
tan−1 x

)
1+ x2 dx =

∫
sin tdt =−cos t +C =−cos

(
tan−1 x

)
+C

�

Now, we discuss some important integrals involving trigonometric functions and their

standard integrals using substitution technique. These will be used later without reference.

(i)
∫

tanxdx = log |secx|+C

We have ∫
tanxdx =

∫ sinx
cosx

dx

Put cosx = t so that sinxdx =−dt

Then ∫
tanxdx =−

∫ dt
t
=− log |t|+C =− log |cosx|+C∫

tanxdx = log |secx|+C

(ii)
∫

cotxdx = log |sinx|+C

We have ∫
cotxdx =

∫ cosx
sinx

dx
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Put sinx = t so that cosxdx = dt

Then ∫
cotxdx =

∫ dt
t
= log |t|+C = log |sinx|+C

(iii)
∫

secxdx = log |secx+ tanx|+C

We have ∫
secxdx =

∫ secx(secx+ tanx)
secx+ tanx

dx

Put secx+ tanx = t so that secx(tanx+ secx)dx = dt

Therefore, ∫
secxdx =

∫ dt
t
= log |t|+C = log |secx+ tanx|+C

(iv)
∫

cosecxdx = log |cosecx− cotx|+C

We have ∫
cosecxdx =

∫ cosecx(cosecx+ cotx)
(cosecx+ cotx)

dx

Put cosecx+ cotx = t so that −cosecx(cosecx+ cotx)dx = dt

So ∫
cosecxdx =−

∫ dt
t
=− log |t|=− log |cosecx+ cotx|+C

=− log
∣∣∣∣cosec2 x− cot2 x

cosecx− cotx

∣∣∣∣+C

= log |cosecx− cotx|+C

� Example 2.2 Find the following integrals:

(a)
∫

sin3 xcos2 xdx.

(b)
∫ sinx

sin(x+a)
dx.

(c)
∫ 1

1+ tanx
dx.

�
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Solution:

(a) We have ∫
sin3 xcos2 xdx =

∫
sin2 xcos2 x(sinx)dx

=
∫ (

1− cos2 x
)

cos2 x(sinx)dx

Put t = cosx so that dt =−sinxdx

Therefore, ∫
sin2 xcos2 x(sinx)dx =−

∫ (
1− t2) t2dt

=−
∫ (

t2− t4)dt =−
(

t3

3
− t5

5

)
+C

=−1
3

cos3 x+
1
5

cos5 x+C

(b) Put x+a = t. Then dx = dt.

Therefore ∫ sinx
sin(x+a)

dx =
∫ sin(t−a)

sin t
dt

=
∫ sin t cosa− cos t sina

sin t
dt

= cosa
∫

dt− sina
∫

cot tdt

= (cosa)t− (sina) [log |sin t|+C1]

= (cosa)(x+a)− (sina) [log |sin(x+a)|+C1]

= xcosa+acosa− (sina) log |sin(x+a)|−C1 sina

Hence, ∫ sinx
sin(x+a)

dx = xcosa− sina log |sin(x+a)|+C

, where, C =−C1 sina+acosa, is another arbitrary constant.

(c) ∫ dx
1+ tanx

=
∫ cosxdx

cosx+ sinx

=
1
2

∫
(cosx+ sinx+ cosx− sinx)dx

cosx+ sinx

=
1
2

∫
dx+

1
2

∫ cosx− sinx
cosx+ sinx

dx

=
x
2
+

C1

2
+

1
2

∫ cosx− sinx
cosx+ sinx

dx



2.1 Integration by substitution 16

Now, consider

I =
∫ cosx− sinx

cosx+ sinx
dx

Put cosx+ sinx = t so that (cosx− sinx)dx = dt

Therefore

I =
∫ dt

t
= log |t|+C2 = log |cosx+ sinx|+C2

Putting it in (1), we get∫ dx
1+ tanx

=
x
2
+

C1

2
+

1
2

log |cosx+ sinx|+ C2

2

=
x
2
+

1
2

log |cosx+ sinx|+ C1

2
+

C2

2

=
x
2
+

1
2

log |cosx+ sinx|+C,
(

C =
C1

2
+

C2

2

)
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Exercise 2.1 Integrate the following functions:

(1)
2x

1+ x2 .

(2)
(logx)2

x
.

(3)
1

x+ x logx
.

(4) sinxsin(cosx).

(5) sin(ax+b)cos(ax+b).

(6)
√

ax+b.

(7)x
√

1+2x2.

(8)(4x+2)
√

x2 + x+1.

(9)
1

x−
√

x
.

(10)
(
x3−1

) 1
3 x5.

(11)
x2

(2+3x3)
3 .

(12)
x

9−4x2 .

(13)e2x+3.

(14)
x

ex2 .

(15)
etan−1x

1+ x2 .

�

Integration using trigonometric identities

When the integrand involves some trigonometric functions, we use some known identities

to find the integral as illustrated through the following example.

� Example 2.3 Find
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(a)
∫

cos2 xdx.

(b)
∫

sin2xcos3xdx.

(c)
∫

sin3 xdx.

�

Solution:

(a) Recall the identity cos2x = 2cos2 x−1, which gives

cos2 x =
1+ cos2x

2

Therefore, ∫
cos2 xdx =

1
2

∫
(1+ cos2x)dx =

1
2

∫
dx+

1
2

∫
cos2xdx

=
x
2
+

1
4

sin2x+C

(b) Recall the identity

sinxcosy =
1
2
[sin(x+ y)+ sin(x− y)]

(Why?)

Then ∫
sin2xcos3xdx =

1
2

[∫
sin5xdx ·

∫
sinxdx

]
=

1
2

[
−1

5
cos5x+ cosx

]
+C

=− 1
10

cos5x+
1
2

cosx+C

(c) From the identity sin3x = 3sinx−4sin3 x, we find that

sin3 x =
3sinx− sin3x

4

Therefore, ∫
sin3 xdx =

3
4

∫
sinxdx− 1

4

∫
sin3xdx

=−3
4

cosx+
1

12
cos3x+C
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Alternatively, ∫
sin3 xdx =

∫
sin2 xsinxdx =

∫ (
1− cos2 x

)
sinxdx

Put cosx = t so that −sinxdx = dt

Therefore, ∫
sin3 xdx =−

∫ (
1− t2)dt =−

∫
dt +

∫
t2dt =−t +

t3

3
+C

=−cosx+
1
3

cos3 x+C

R Remark: It can be shown using trigonometric identities that both answers are equiva-

lent.
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Exercise 2.2 Find the integrals of the following functions :

(1) sin2(2x+5).

(2) sin3xcos4x.

(3) cos2xcos4xcos6x.

(4) sin3(2x+1).

(5) sin3 xcos3 x.

(6) sinxsin2xsin3x.

(7) sin4xsin8x.

(8)
1− cosx
1+ cosx

.

(9)
cosx

1+ cosx
.

(10) sin4 x.

(11) cos4 2x.

(12)
sin2 x

1+ cosx
.

(13)
cos2x− cos2α

cosx− cosα
.

(14)
cosx− sinx
1+ sin2x

.

(15) tan3 2xsec2x.

(16) tan4 x.
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(17)
sin3 x+ cos3 x
sin2 xcos2 x

.

(18)
cos2x+2sin2 x

cos2 x
.

(19)
1

sinxcos3 x
.

(20)
cos2x

(cosx+ sinx)2 .

(21) sin−1(cosx).

(22)
1

cos(x−a)cos(x−b)
.

�

Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them for

integrating many other related standard integrals:

(1) ∫ dx
x2−a2 =

1
2a

log
∣∣∣∣x−a
x+a

∣∣∣∣+C

(2) ∫ dx
a2− x2 =

1
2a

log
∣∣∣∣a+ x
a− x

∣∣∣∣+C

(3) ∫ dx
x2 +a2 =

1
a

tan−1 x
a
+C

(4) ∫ dx√
x2−a2

= log
∣∣∣x+√x2−a2

∣∣∣+C

(5) ∫ dx√
a2− x2

= sin−1 x
a
+C

(6) ∫ dx√
x2 +a2

= log
∣∣∣x+√x2 +a2

∣∣∣+C
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We now prove the above results:

(1) We have
1

x2−a2 =
1

(x−a)(x+a)

=
1

2a

[
(x+a)− (x−a)
(x−a)(x+a)

]
=

1
2a

[
1

x−a
− 1

x+a

]
Therefore, ∫ dx

x2−a2 =
1

2a

[∫ dx
x−a

−
∫ dx

x+a

]
=

1
2a

[log |(x−a)|− log |(x+a)|]+C

=
1

2a
log
∣∣∣∣x−a
x+a

∣∣∣∣+C

(2) In view of (1) above, we have

1
a2− x2 =

1
2a

[
(a+ x)+(a− x)
(a+ x)(a− x)

]
=

1
2a

[
1

a− x
+

1
a+ x

]
Therefore, ∫ dx

a2− x2 =
1

2a

[∫ dx
a− x

+
∫ dx

a+ x

]
=

1
2a

[− log |a− x|+ log |a+ x|]+C

=
1

2a
log
∣∣∣∣a+ x
a− x

∣∣∣∣+C

R Note: The technique used in (1) will be explained later.

(3) Put x = a tanθ . Then dx = asec2 θdθ .

Therefore, ∫ dx
x2 +a2 =

∫ asec2 θdθ

a2 tan2 θ +a2

=
1
a

∫
dθ =

1
a

θ +C =
1
a

tan−1 x
a
+C
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(4) Let x = asecθ . Then dx = asecθ tanθdθ .

Therefore, ∫ dx√
x2−a2

=
∫ asecθ tanθdθ√

a2 sec2 θ −a2

=
∫

secθdθ = log |secθ + tanθ |+C1

= log

∣∣∣∣∣xa +

√
x2

a2 −1

∣∣∣∣∣+C1

= log
∣∣∣x+√x2−a2

∣∣∣− log |a|+C1

= log
∣∣∣x+√x2−a2

∣∣∣+C, where C1 = C1− log |a|

(5) Let x = asinθ . Then dx = acosθdθ .

Therefore, ∫ dx√
a2− x2

=
∫ acosθdθ√

a2−a2 sin2
θ

=
∫

dθ = θ +C = sin−1 x
a
+C

(6) Let x = a tanθ . Then dx = asec2 θdθ .

Therefore, ∫ dx√
x2 +a2

=
∫ asec2 θdθ√

a2 tan2 θ +a2

=
∫

secθdθ = log |(secθ + tanθ)|+C1

= log

∣∣∣∣∣xa +

√
x2

a2 +1

∣∣∣∣∣+C1

= log
∣∣∣x+√x2 +a2

∣∣∣− log |a|+C1

= log
∣∣∣x+√x2 +a2

∣∣∣+C, where C = C1− log |a|

Applying these standard formulae, we now obtain some more formulae which are useful

from applications point of view and can be applied directly to evaluate other integrals.

(7) To find the integral ∫ dx
ax2 +bx+ c

,
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we write

ax2 +bx+ c = a
[

x2 +
b
a

x+
c
a

]
= a

[(
x+

b
2a

)2

+

(
c
a
− b2

4a2

)]

Now, put x+ b
2a = t so that dx = dt and writing

c
a
− b2

4a2 =±k2.

We find the integral reduced to the form

1
a

∫ dt
t2± k2

depending upon the sign of
(

c
a −

b2

4a2

)
and hence can be evaluated.

(8) To find the integral of the type ∫ dx√
ax2 +bx+ c

, proceeding as in (7), we obtain the integral using the standard formulae.

(9) To find the integral of the type ∫ px+q
ax2 +bx+ c

dx,

where p,q,a,b,c are constants, we are to find real numbers A, B such that

px+q = A
d
dx

(
ax2 +bx+ c

)
+B = A(2ax+b)+B

To determine A and B, we equate from both sides the coefficients of x and the constant

terms. A and B are thus obtained and hence the integral is reduced to one of the known

forms.

(10) For the evaluation of the integral of the type∫
(px+q)dx√
ax2 +bx+ c

,

we proceed as in (9) and transform the integral into known standard forms. Let us illustrate

the above methods by some examples.
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� Example 2.4 Find the following integrals:

(a)
∫ dx

x2−16
, (b)

∫ dx√
2x− x2

.

�

Solution:

(a) We have ∫ dx
x2−16

=
∫ dx

x2−42 =
1
8

log
∣∣∣∣x−4
x+4

∣∣∣∣+C.

(b) ∫ dx√
2x− x2

=
∫ dx√

1− (x−1)2
.

Put x−1 = t. Then dx = dt.

Therefore, ∫ dx√
2x− x2

=
∫ dt√

1− t2
= sin−1(t)+C

= sin−1(x−1)+C

� Example 2.5 Find the following integrals:

(a)
∫ dx

x2−6x+13
, (b)

∫ dx
3x2 +13x−10

, (c)
∫ dx√

5x2−2x
.

�

Solution:

(a) ∫ dx
x2−6x+13

,

We have

x2−6x+13 = x2−6x+32−32 +13 = (x−3)2 +4

So, ∫ dx
x2−6x+13

=
∫ 1

(x−3)2 +22 dx

Let x−3 = t. Then dx = dt

Therefore, ∫ dx
x2−6x+13

=
∫ dt

t2 +22 =
1
2

tan−1 t
2
+C

=
1
2

tan−1 x−3
2

+C
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(b) The given integral is of the form 2.1 (7).∫ dx
3x2 +13x−10

,

We write the denominator of the integrand,

3x2 +13x−10 = 3
(

x2 +
13x
3
− 10

3

)
= 3

[(
x+

13
6

)2

−
(

17
6

)2
]

(completing the square)

Thus ∫ dx
3x2 +13x−10

=
1
3

∫ dx(
x+ 13

6

)2−
(17

6

)2 ,

Put x+ 13
6 = t. Then dx = dt.

Therefore, ∫ dx
3x2 +13x−10

=
1
3

∫ dt

t2−
(17

6

)2 ,

=
1

3×2× 17
6

log

∣∣∣∣∣t− 17
6

t + 17
6

∣∣∣∣∣+C1

=
1
17

log

∣∣∣∣∣x+ 13
6 −

17
6

x+ 13
6 + 17

6

∣∣∣∣∣+C1

=
1
17

log
∣∣∣∣ 6x−4
6x+30

∣∣∣∣+C1

=
1
17

log
∣∣∣∣3x−2

x+5

∣∣∣∣+C1 +
1

17
log

1
3

=
1
17

log
∣∣∣∣3x−2

x+5

∣∣∣∣+C, where,C = C1 +
1

17
log

1
3
.

(c) We have∫ dx√
5x2−2x

=
∫ dx√

5
(
x2− 2x

5

)
=

1√
5

∫ dx√(
x− 1

5

)2−
(1

5

)2
(completing the square)
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Put x− 1
5 = t. Then dx = dt.

Therefore, ∫ dx√
5x2−2x

=
1√
5

∫ dt√
t2−

(1
5

)2

=
1√
5

log

∣∣∣∣∣∣t +
√

t2−
(

1
5

)2
∣∣∣∣∣∣+C

=
1√
5

log

∣∣∣∣∣x− 1
5
+

√
x2− 2x

5

∣∣∣∣∣+C

Exercise 2.3 Integrate the following functions:

(1)
3x2

x6 +1
.

(2)
1√

1+4x2
.

(3)
1√

(2− x)2 +1
.

(4)
1√

9−25x2
.

(5)
3x

1+2x4 .

(6)
x2

1− x6 .

(7)
x−1√
x2−1

.

(8)
x2

√
x6 +a6

.

(9)
sec2 x√

tan2 x+4
.

(10)
1√

x2 +2x+2
.

(11)
1

9x2 +6x+5
.

(12)
1√

7−6x− x2
.

�
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2.2 Integration by Partial Fractions

Recall that a rational function is defined as the ratio of two polynomials in the form P(x)
Q(x) ,

where P(x) and Q(x) are polynomials in x and Q(x) 6= 0. If the degree of P(x) is less

than the degree of Q(x), then the rational function is called proper, otherwise, it is called

improper.The improper rational functions can be reduced to the proper rational functions

by long division process. Thus, if P(x)
Q(x) is improper, then P(x)

Q(x) = T(x)+ P1(x)
Q(x) , where T(x)

is a polynomial in x and P1(x)
Q(x) is a proper rational function. As we know how to integrate

polynomials, the integration of any rational function is reduced to the integration of a

proper rational function. The rational functions which we shall consider here for integration

purposes will be those whose denominators can be factorised into linear and quadratic

factors.

Assume that we want to evaluate
∫ P(x)

Q(x)dx, where P(x)
Q(x) is proper rational function. It is

always possible to write the integrand as a sum of simpler rational functions by a method

called partial fraction decomposition. After this, the integration can be carried out easily

using the already known methods. The following Table indicates the types of simpler partial

fractions that are to be associated with various kind of rational functions. In the above table,

S.No. Form of the rational function Form of the partial fraction

1. px+q
(x−a)(x−b),a 6= b A

x−a +
B

x−b

2. px+q
(x−a)2

A
x−a +

B
(x−a)2

3. px2+qx+r
(x−a)(x−b)(x−c)

A
x−a +

B
x−b +

C
x−c

4. px2+qx+r
(x−a)2(x−b)

A
x−a +

B
(x−a)2 +

C
x−b

5. px2+qx+r
(x−a)(x2+bx+c)

A
x−a +

Bx+C
x2+bx+c ,

where x2 +bx+ c cannot be factorised further

Table 2.1:

A, B and C are real numbers to be determined suitably.
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� Example 2.6 Find ∫ dx
(x+1)(x+2)

.

Solution: The integrand is a proper rational function. Therefore, by using the form of partial

fraction, we write

1
(x+1)(x+2)

=
A

x+1
+

B
x+2

, (2.1)

where, real numbers A and B are to be determined suitably. This gives

1 = A(x+2)+B(x+1).

Equating the coefficients of x and the constant term, we get and

A+B = 0

2A+B = 1

Solving these equations, we get A = 1 and B =−1. Thus, the integrand is given by

1
(x+1)(x+2)

=
1

x+1
+
−1

x+2

Therefore, ∫ dx
(x+1)(x+2)

=
∫ dx

x+1
−
∫ dx

x+2

= log |x+1|− log |x+2|+C

= log
∣∣∣∣x+1
x+2

∣∣∣∣+C

�

R Remark The equation (2.1) above is an identity, i.e. a statement true for all (permissi-

ble) values of x. Some authors use the symbol ’ ≡ ’ to indicate that the statement is an

identity and use the symbol ’ = ’ to indicate that the statement is an equation, i.e., to

indicate that the statement is true only for certain values of x.
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� Example 2.7 Find ∫ x2 +1
x2−5x+6

dx.

Solution:

Here the integrand
x2 +1

x2−5x+6
is not proper rational function, so we divide x2 +1 by x2−5x+6 and find that

x2 +1
x2−5x+6

= 1+
5x−5

x2−5x+6
= 1+

5x−5
(x−2)(x−3)

Let
5x−5

(x−2)(x−3)
=

A
x−2

+
B

x−3

5x−5 = A(x−3)+B(x−2)

So that

5x−5 = A(x−3)+B(x−2)

Equating the coefficients of x and constant terms on both sides, we get A+B = 5 and

3 A+2 B = 5. Solving these equations, we get A =−5 and B = 10 Thus,

x2 +1
x2−5x+6

= 1− 5
x−2

+
10

x−3

Therefore, ∫ x2 +1
x2−5x+6

dx =
∫

dx−5
∫ 1

x−2
dx+10

∫ dx
x−3

= x−5log |x−2|+10log |x−3|+ C.
�

� Example 2.8 Find ∫ 3x−2
(x+1)2(x+3)

dx

Solution:

The integrand is of the type as given in Table 2.2 (4). We write

3x−2
(x+1)2(x+3)

=
A

x+1
+

B
(x+1)2 +

C
x+3

3x−2 = A(x+1)(x+3)+B(x+3)+C(x+1)2

= A
(
x2 +4x+3

)
+B(x+3)+C

(
x2 +2x+1

)
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So that
3x−2 = A(x+1)(x+3)+B(x+3)+C(x+1)2

= A
(
x2 +4x+3

)
+B(x+3)+C

(
x2 +2x+1

)
Comparing coefficient of x2,x and constant term on both sides, we get A+C = 0,4 A+

B+2C = 3 and 3 A+3 B+C =−2. Solving these equations, we get A = 11
4 , B = −5

2 and

C = −11
4 . Thus the integrand is given by

3x−2
(x+1)2(x+3)

=
11

4(x+1)
− 5

2(x+1)2 −
11

4(x+3)

Therefore, ∫ 3x−2
(x+1)2(x+3)

=
11
4

∫ dx
x+1

− 5
2

∫ dx
(x+1)2 −

11
4

∫ dx
x+3

=
11
4

log |x+1|+ 5
2(x+1)

− 11
4

log |x+3|+C

=
11
4

log
∣∣∣∣x+1
x+3

∣∣∣∣+ 5
2(x+1)

+C

�

� Example 2.9 Find ∫ x2

(x2 +1)(x2 +4)
dx

Solution:

put x2 = y. Then
x2

(x2 +1)(x2 +4)
=

y
(y+1)(y+4)

y
(y+1)(y+4)

=
A

y+1
+

B
y+4

y = A(y+4)+B(y+1)

So that

y = A(y+4)+B(y+1)

Comparing coefficients of y and constant terms on both sides, we get A+B = 1 and

4 A+B = 0, which give

A =−1
3

and B =
4
3
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Thus,
x2

(x2 +1)(x2 +4)
=− 1

3(x2 +1)
+

4
3(x2 +4)

Therefore, ∫ x2dx
(x2 +1)(x2 +4)

=−1
3

∫ dx
x2 +1

+
4
3

∫ dx
x2 +4

=−1
3

tan−1 x+
4
3
× 1

2
tan−1 x

2
+C

=−1
3

tan−1 x+
2
3

tan−1 x
2
+C

�

In the above example, the substitution was made only for the partial fraction part and

not for the integration part. Now, we consider an example, where the integration involves a

combination of the substitution method and the partial fraction method.

� Example 2.10 Find ∫ x2 + x+1dx
(x+2)(x2 +1)

Solution:

The integrand is a proper rational function. Decompose the rational function into partial

fraction. Write
x2 + x+1

(x2 +1)(x+2)
=

A
x+2

+
Bx+C
(x2 +1)

Therefore,

x2 + x+1 = A
(
x2 +1

)
+(Bx+C)(x+2)

Equating the coefficients of x2,x and of constant term of both sides, we get A+B =

1,2 B+C = 1 and A+2C = 1. Solving these equations, we get A = 3
5 , B = 2

5 and C = 1
5

Thus, the integrand is given by

x2 + x+1
(x2 +1)(x+2)

=
3

5(x+2)
+

2
5x+ 1

5
x2 +1

=
3

5(x+2)
+

1
5

(
2x+1
x2 +1

)
Therefore, ∫ x2 + x+1

(x2 +1)(x+2)
dx =

3
5

∫ dx
x+2

+
1
5

∫ 2x
x2 +1

dx+
1
5

∫ 1
x2 +1

dx

=
3
5

log |x+2|+ 1
5

log
∣∣x2 +1

∣∣+ 1
5

tan−1 x+C.
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�

Exercise 2.4 Integrate the following rational functions:

(1)
x

(x+1)(x+2)
.

(2)
1

x2−9
.

(3)
3x−1

(x−1)(x−2)(x−3)
.

(4)
x

(x−1)(x−2)(x−3)
.

(5)
2x

x2 +3x+2
.

(6)
1− x2

x(1−2x)
.

(7)
x

(x2 +1)(x−1)
.

(8)
x

(x−1)2(x+2)
.

(9)
3x+5

x3− x2− x+1
.

(10)
2x−3

(x2−1)(2x+3)
.

(11)
5x

(x+1)(x2−4)
.

(12)
x3 + x+1

x2−1
.

�

2.3 Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in

integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by the

product rule of differentiation, we have Integrating both sides, we get

d
dx

(uv) = u
dv
dx

+ v
du
dx
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uv =
∫

u
dv
dx

dx+
∫

v
du
dx

dx

or ∫
u

dv
dx

dx = uv−
∫

v
dx
dx

dx

Let
u = f (x) and

dv
dx

= g(x). Then

du
dx

= f ′(x) and v =
∫

g(x)dx

Therefore, expression (1) can be rewritten as∫
f (x)g(x)dx = f (x)

∫
g(x)dx−

∫ [∫
g(x)dx

]
f ′(x)dx

i.e.,
∫

f (x)g(x)dx = f (x)
∫

g(x)dx−
∫ [

f ′(x)
∫

g(x)dx
]

dx

If we take f as the first function and g as the second function, then this formula may be

stated as follows:

"The integral of the product of two functions = (first function) × (integral of the second

function) - Integral of the product of the derivative of the first function with integral of the

second function".

� Example 2.11 Find ∫
xcosxdx

Solution:

Put f (x) = x (first function) and g(x) = cosx (second function).

Then, integration by parts gives∫
xcosxdx = x

∫
cosxdx−

∫ [ d
dx

(x)
∫

cosxdx
]

dx

= xsinx−
∫

sinxdx = xsinx+ cosx+C

Suppose, we take

f (x) = cosx and g(x) = x. Then∫
xcosxdx = cosx

∫
xdx−

∫ [ d
dx

(cosx)
∫

xdx
]

dx

= (cosx)
x2

2
+
∫

sinx
x2

2
dx
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Thus, it shows that the integral
∫

xcosxdx is reduced to the comparatively more complicated

integral having more power of x. Therefore, the proper choice of the first function and the

second function is significant. �

R Remarks:

• It is worth mentioning that integration by parts is not applicable to product of

functions in all cases. For instance, the method does not work for
∫ √

xsinxdx .

The reason is that there does not exist any function whose derivative is
√

xsinx.

• Observe that while finding the integral of the second function, we did not add

any constant of integration. If we write the integral of the second function cosx

as sinx+ k, where k is any constant, then∫
xcosxdx = x(sinx+ k)−

∫
(sinx+ k)dx

= x(sinx+ k)−
∫

sinxdx−
∫

kdx

= x(sinx+ k)− cosx− kx+C

= xsinx+ cosx+C

This shows that adding a constant to the integral of the second function is

superfluous so far as the final result is concerned while applying the method of

integration by parts.

• Usually, if any function is a power of x or a polynomial in x, then we take it as the

first function. However, in cases where other function is inverse trigonometric

function or logarithmic function, then we take them as first function.

� Example 2.12 Find ∫
logxdx

Solution:

To start with, we are unable to guess a function whose derivative is logx. We take logx as

the first function and the constant function 1 as the second function. Then, the integral of
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the second function is x. Hence,∫
(logx.1)dx = logx

∫
1dx−

∫ [ d
dx

(logx)
∫

1dx
]

dx

= (logx) · x−
∫ 1

x
xdx = x logx− x+C.

�

� Example 2.13 Find ∫
xexdx

Solution:

Take first function as x and second function as e. The integral of the second function is ex.

Therefore, ∫
xexdx = xex−

∫
1 · exdx = xex− ex +C

. �

� Example 2.14 Find ∫ xsin−1 x√
1− x2

dx

Solution:

Let first function be sin−1 x and second function be x√
1−x2 .

First we find the integral of the second function, i.e.,∫ xdx√
1− x2

. Put t = 1− x2. Then dt =−2xdx Therefore,∫ xdx√
1− x2

=−1
2

∫ dt√
t
=−
√

t =−
√

1− x2

Hence, ∫ xsin−1 x√
1− x2

dx =
(
sin−1 x

)(
−
√

1− x2
)
−
∫ 1√

1− x2

(
−
√

1− x2
)

dx

=−
√

1− x2 sin−1 x+ x+C = x−
√

1− x2 sin−1 x+C

Alternatively, this integral can also be worked out by making substitution sin−1 x = θ and

then integrating by parts. �
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� Example 2.15 Find ∫
ex sinxdx

Solution:

Take ex as the first function and sin x as second function. Then, integrating by parts, we

have
I =

∫
ex sinxdx = ex(−cosx)+

∫
ex cosxdx

=−ex cosx+ I1(say)

Taking ex and cosx as the first and second functions, respectively, in I1, we get

I1 = ex sinx−
∫

ex sinxdx

Substituting the value of In in (1), we get

I =−ex cosx+ ex sinx− I or 2I = ex(sinx− cosx)

Hence,

I =
∫

ex sinxdx =
ex

2
(sinx− cosx)+C

Alternatively, above integral can also be determined by taking sin x as the first function and

ex the second function. �
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Exercise 2.5 Integrate the functions:

(1)xsinx.

(2)xsin3x.

(3)x2ex.

(4)x log2x.

(5)x2 logx.

(6)x tan−1 x.

(7)
(
sin−1 x

)2
.

(8)
xcos−1 x√

1− x2
.

(9)x(logx)2.

(10)
(
x2 +1

)
logx.

(11)
xex

(1+ x)2 .

(12)
(x−3)ex

(x−1)3 .

�



3. Definite Integral

In the previous, we have studied about the indefinite integrals and discussed few methods of

finding them including integrals of some special functions. In this Chapter, we shall study

what is called definite integral of a function. The definite integral has a unique value.

A definite integral is denoted by
b∫
a

f (x)dx, where a is called the lower limit of the integral

and b is called the upper limit of the integral. The definite integral is introduced either as

the limit of a sum or if it has an anti derivative F in the interval [a,b], then its value is the

difference between the values of F at the end points, i.e., F(b)−F(a).

3.1 Area function

Here, We have defined
b∫
a

f (x)dx as the area of the region bounded by the curve y = f (x),

the ordinates x = a and x = b and x−axis. Let x be a given point in [a,b]. Then
b∫
a

f (x)dx

represents the area of the light shaded region in Fig 3.1 [Here it is assumed that f (x)> 0

for x ∈ [a,b], the assertion made below is equally true for other functions as well]. The area

of this shaded region depends upon the value of x. In other words, the area of this shaded

region is a function of x. In other words, the area of this shaded region is a function of x.

We denote this function of x by A(x).
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Figure 3.1:

We call the function A(x) as Area function and is given by

A(x) =
b∫

a

f (x)dx.

Based on this definition, the two basic fundamental theorems have been given. However,

we only state them as their proofs are beyond the scope of this text book.

Theorem 3.1.1 Let f be a continuous function on the closed interval [a,b] and let A(x)

be the area function. Then Á(x) = f (x), for all x ∈ [a,b]

We state below an important theorem which enables us to evaluate definite integrals by

making use of anti derivative.

Theorem 3.1.2 Let f be continuous function defined on the closed interval [a,b] and F

be an anti derivative of f . Then
b∫
a

f (x)dx = [F(x)]ba = F(b)−F(a)

Steps for calculating
∫ b

a f (x)dx.

(i) Find the indefinite integral
∫

f (x)dx. Let this be F(x). There is no need to keep

integration constant C because if we consider F(x)+C instead of F(x), we get
∫ b

a f (x)dx =

[F(x)+C]ba = [F(b)+C]− [F(a)+C] = F(b)−F(a). Thus, the arbitrary constant disappears
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in evaluating the value of the definite integral.

(ii) Evaluate F(b)−F(a) = [F(x)]ba, which is the value of
∫ b

a f (x)dx. We now consider some

examples

� Example 3.1 Evaluate the following integrals:

(a)
∫ 3

2
x2dx, (b)

∫ 9

4

√
x(

30− x
3
2

)2 dx

(c)
∫ 2

1

xdx
(x+1)(x+2)

, (d)
∫ π

4

0
sin3 2t cos2tdt

�

Solution:

(a) Let

I =
∫ 3

2
x2dx.

Since ∫
x2dx =

x3

3
= F(x),

Therefore, by the second fundamental theorem, we get

I = F(3)−F(2) =
27
3
− 8

3
=

19
3

(b) Let ∫ 9

4

√
x(

30− x
3
2

)2 dx.

We first find the anti derivative of the integrand.

Put 30− x
3
2 = t. Then −3

2
√

xdx = dt or
√

xdx =−2
3dt Thus,

∫ √
x(

30− x
3
2

)2 dx =−2
3

∫ dt
t2 =

2
3

[
1
t

]
=

2
3

 1(
30− x

3
2

)
= F(x)

Therefore, by the second fundamental theorem of calculus, we have

I = F(9)−F(4) =
2
3

 1(
30− x

3
2

)
9

4

=
2
3

[
1

(30−27)
− 1

30−8

]
=

2
3

[
1
3
− 1

22

]
=

19
99
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(c) Let

I =
∫ 2

1

xdx
(x+1)(x+2)

Using partial fraction, we get

x
(x+1)(x+2)

=
−1

x+1
+

2
x+2

So ∫ xdx
(x+1)(x+2)

=− log |x+1|+2log |x+2|= F(x)

Therefore, by the second fundamental theorem of calculus, we have

I = F(2)−F(1) = [− log3+2log4]− [− log2+2log3]

=−3log3+ log2+2log4 = log
(

32
27

)
(d) Let

I =
∫ π

4

0
sin3 2t cos2tdt.

Consider ∫
sin3 2t cos2tdt

Put sin2t = u so that 2cos2tdt = du or cos2tdt = 1
2du

So ∫
sin3 2t cos2tdt =

1
2

∫
u3du

=
1
8
[
u4]= 1

8
sin4 2t = F(t) say

Therefore, by the second fundamental theorem of integral calculus

I = F
(

π

4

)
−F(0) =

1
8

[
sin4 π

2
− sin4 0

]
=

1
8
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Exercise 3.1 Evaluate the following definite integrals:

(1)
∫ 1

−1
(x+1)dx.

(2)
∫ 3

2

1
x

dx.

(3)
∫ 2

1

(
4x3−5x2 +6x+9

)
dx.

(4)
∫ π

4

0
sin2xdx.

(5)
∫ 1

0

2x+3
5x2 +1

dx.

(6)
∫ 5

4
exdx.

(7)
∫ π

4

0
tanxdx.

(8)
∫ π

4

π

6

cosecxdx.

(9)
∫ 1

0

dx√
1− x2

.

(10)
∫ 1

0

dx
1+ x2 .

(11)
∫ 3

2

dx
x2−1

.

(12)
∫ π

2

0
cos2 xdx.

�
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3.2 Some Properties of Definite Integrals

We list below some important properties of definite integrals. These will be useful in

evaluating the definite integrals more easily.

P0 :
∫ b

a
f (x)dx =

∫ b

a
f (t)dt

P1 :
∫ b

a
f (x)dx =−

∫ a

b
f (x)dx. In particular,

∫ a

a
f (x)dx = 0

P2 :
∫ b

a
f (x)dx =

∫ c

a
f (x)dx+

∫ b

c
f (x)dx

P3 :
∫ b

a
f (x)dx =

∫ b

a
f (a+b− x)dx

P4 :
∫ a

0
f (x)dx =

∫ a

0
f (a− x)dx

(Note thatP4 is a particular case of P3)

P5 :
∫ 2a

0
f (x)dx =

∫ a

0
f (x)dx+

∫ a

0
f (2a− x)dx

P6 :
∫ 2a

0
f (x)dx = 2

∫ a

0
f (x)dx if f (2a− x) = f (x)and 0 if f (2a− x) =− f (x)

P7 : (i)
∫ a

−a
f (x)dx = 2

∫ a

0
f (x)dx, if f is an even function, i.e., if f (−x) = f (x)

(ii)
∫ a

−a
f (x)dx = 0, if f is an odd function, i.e., if f (−x) =− f (x).

We give the proofs of these properties one by one.

Proof of P0 It follows directly by making the substitution x = t.

Proof of P1: Let F be anti derivative of f . Then, by the second fundamental theorem

of calculus, we have
∫ b

a f (x)dx = F(b)−F(a) = −[F(a)−F(b)] = −
∫ a

b f (x)dx Here, we

observe that, if a = b, then
∫ a

a f (x)dx = 0.

Proof of P2: Let F be anti derivative of f . Then∫ b

a
f (x)dx = F(b)−F(a) (3.1)

∫ c

a
f (x)dx = F(c)−F(a) (3.2)



3.2 Some Properties of Definite Integrals 45

∫ b

c
f (x)dx = F(b)−F(c) (3.3)

Adding (3.2) and (3.2), we get∫ c

a
f (x)dx+

∫ b

c
f (x)dx = F(b)−F(a) =

∫ b

a
f (x)dx

This proves the property P2.

Proof of P3: Let t = a+b− x. Then dt =−dx. When x = a, t = b and when x = b, t = a.

Therefore ∫ b

a
f (x)dx =−

∫ a

b
f (a+b− t)dt

=
∫ b

a
f (a+b− t)dt (by P1)

=
∫ b

a
f (a+b− x)dx by P0

Proof of P4: Put t = a− x. Then dt =−dx. When x = 0, t = a and when x = a, t = 0. Now

proceed as in P3.

Proof of P5: Using P2, we have∫ 2a

0
f (x)dx =

∫ a

0
f (x)dx+

∫ 2a

a
f (x)dx.

Let t = 2a− x in the second integral on the right hand side. Then dt = −dx. When

x = a, t = a and when x = 2a, t = 0. Also x = 2a− t.

Therefore, the second integral becomes∫ 2a

a
f (x)dx =−

∫ 0

a
f (2a− t)dt =

∫ a

0
f (2a− t)dt =

∫ a

0
f (2a− x)dx

Hence ∫ 2a

0
f (x)dx =

∫ a

0
f (x)dx+

∫ a

0
f (2a− x)dx

Proof of P6: Using P5, we have∫ 2a

0
f (x)dx =

∫ a

0
f (x)dx+

∫ a

0
f (2a− x)dx (3.4)
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Now, if f (2a− x) = f (x), then Eq. (3.4) becomes∫ 2a

0
f (x)dx =

∫ a

0
f (x)dx+

∫ a

0
f (x)dx = 2

∫ a

0
f (x)dx,

and if f (2a− x) =− f (x), then Eq. (3.4) becomes∫ 2a

0
f (x)dx =

∫ a

0
f (x)dx−

∫ a

0
f (x)dx = 0

Proof of P7: Using P2, we have∫ a

−a
f (x)dx =

∫ 0

−a
f (x)dx+

∫ a

0
f (x)dx. Then

Let t =−x in the first integral on the right hand side. dt =−dx. When x =−a, t = a and

when x = 0, t = 0. Also x =−t.

Therefore∫ a

−a
f (x)dx =−

∫ 0

a
f (−t)dt +

∫ a

0
f (x)dx

=
∫ a

0
f (−x)dx+

∫ a

0
f (x)dx

(3.5)

Eq. (3.5) Now, if f is an even function, then f (−x) = f (x) and so Eq. (3.5) becomes∫ a

−a
f (x)dx =

∫ a

0
f (x)dx+

∫ a

0
f (x)dx = 2

∫ a

0
f (x)dx

(ii) If f is an odd function, then f (−x) =− f (x) and so (1) becomes∫ a

−a
f (x)dx =−

∫ a

0
f (x)dx+

∫ a

0
f (x)dx = 0

� Example 3.2 Evaluate ∫ π

4

−π

4

sin2 xdx.

Solution: We observe that sin2 x is an even function. Therefore, by P7 (i), we get∫ π

4

−π

4

sin2 xdx = 2
∫ π

4

0
sin2 xdx

= 2
∫ π

4

0

(1− cos2x)
2

dx =
∫ π

4

0
(1− cos2x)dx

=

[
x− 1

2
sin2x

] π

4

0
=

(
π

4
− 1

2
sin

π

2

)
−0 =

π

4
− 1

2
�
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� Example 3.3 Evaluate ∫
π

0

xsinx
1+ cos2 x

dx

Solution:

Let

I =
∫

π

0

xsinx
1+ cos2 x

dx.

Then, by P4, we have

I =
∫

π

0

(π− x)sin(π− x)dx
1+ cos2(π− x)

=
∫

π

0

(π− x)sinxdx
1+ cos2 x

= π

∫
π

0

sinxdx
1+ cos2 x

− I

or

2I = π

∫
π

0

sinxdx
1+ cos2 x

or

I =
π

2

∫
π

0

sinxdx
1+ cos2 x

Put cosx = t so that −sinxdx = dt. When x = 0, t = 1 and when x = π, t =−1. Therefore,

(by P1 ) we get

I =
−π

2

∫ −1

1

dt
1+ t2 =

π

2

∫ 1

−1

dt
1+ t2

= π

∫ 1

0

dt
1+ t2 (by P7, since

1
1+ t2 is even function)

= π
[
tan−1 t

]1
0 = π

[
tan−1 1− tan−1 0

]
= π

[
π

4
−0
]
=

π2

4
�
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Exercise 3.2 By using the properties of definite integrals, evaluate the integrals:

(1)
∫ π

2

0
cos2 xdx.

(2)
∫ π

2

0

√
sinx√

sinx+
√

cosx
dx.

(3)
∫ π

2

0

sin
3
2 xdx

sin
3
2 x+ cos

3
2 x

.

(4)
∫ π

2

0

cos5 xdx
sin5 x+ cos5 x

.

(5)
∫ 1

0
x(1− x)ndx.

(6)
∫ π

4

0
log(1+ tanx)dx.

(7)
∫ 2

0
x
√

2− xdx.

(8)
∫ π

2

0
(2logsinx− logsin2x)dx.

(9)
∫ π

2

−π

2

sin2 xdx.

(10)
∫

π

0

xdx
1+ sinx

.

(11)
∫ π

2

−π

2

sin7 xdx.

(12)
∫ 2π

0
cos5 xdx.

�



4. Applications of Integration

4.1 Areas between curves

The area A of the region bounded by the curves y = f (x), y = g(x) and the lines x = a,

x = b, where f and g are continuous and f (x)≥ g(x) for all x in [a,b] , is

A =
∫ b

a
[ f (x)−g(x)]dx

� Example 4.1 Find the area of the region bounded above by y = ex, bounded below by

y = x, and bounded on the sides by x = 0 and x = 1.

Solution. The region is shown in Figure 2. The upper boundary curve is y = ex and the

lower boundary curve is y = x. So we use the area formula with f (x) = ex, t(x) = x, a = 0,
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and b = 1 :

A =
∫ 1

0
(ex− x)dx = ex− 1

2
x2
]1

0

= e− 1
2
−1 = e−1.5

�

� Example 4.2 Find the area of the region enclosed by the parabolas y = x2 and y = 2x−x2.

Solution. First, we find the points of intersection of the parabolas by solving their equations

simultaneously. This gives x2 = 2x− x2, or 2x2−2x = 0. Thus 2x(x−1) = 0, so x = 0 or

1 . The points of intersection are (0,0) and (1,1). We see from Figure 3 that the top and

bottom boundaries are

yT = 2x− x2 and yB = x2

The area of a typical rectangle is

(yT − yB)∆x =
(
2x− x2− x2)

∆x

and the region lies between x = 0 and x = 1. So the total area is

A =
∫ 1

0

(
2x−2x2)dx = 2

∫ 1

0

(
x− x2)dx

= 2
[

x2

2
− x3

3

]1

0

�

� Example 4.3 Find the area of the region bounded by the curves y = sinx,y = cosx, x = 0,

and x = π/2.

Solution. The points of intersection occur when sinx = cosx, that is, when x = π/4
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(since 06 x6 π/2 ). The region is sketched in Figure 4. Observe that cosx> sinx when

06 x6 π/4 but sinx> cosx when π/46 x6 π/2. Therefore the required area is

A =
∫

π/2

0
|cosx− sinx|dx = A1 +A2

=
∫

π/4

0
(cosx− sinx)dx+

∫
π/2

π/4
(sinx− cosx)dx

= [sinx+ cosx]π/4
0 +[−cosx− sinx]π/2

π/4

=

(
1√
2
+

1√
2
−0−1

)
+

(
−0−1+

1√
2
+

1√
2

)
= 2
√

2−2

In this particular example we could have saved some work by noticing that the region is

symmetric about x = π/4 and so

A = 2A1 = 2
∫

π/4

0
(cosx− sinx)dx

�

� Example 4.4 Find the area enclosed by the line y = x−1 and the parabola y2 = 2x+6.

Solution. By solving the two equations we find that the points of intersection are (−1,−2)
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and (5,4). We solve the equation of the parabola for x and notice from Figure 5 that the left

and right boundary curves are

xL =
1
2

y2−3 xR = y+1

We must integrate between the appropriate y-values, y =−2 and y = 4. Thus

A =
∫ 4

−2
(xR− xL)dy

=
∫ 4

−2

[
(y+1)−

(
1
2

y2−3
)]

dy

=
∫ 4

−2

(
−1

2
y2 + y+4

)
dy

=−1
2

(
y3

3

)
+

y2

2
+4y

]4

−2

=−1
6
(64)+8+16−

(
4
3
+2−8

)
= 18

�

Exercise 4.1 Sketch the region enclosed by the given curves. Decide whether to inte-

grate with respect to x or y. Then find the area of the region.
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1. y = x+1, y = 9− x2, x =−1, x = 2 2. y = sinx, y = ex, x = 0, x = π/2

3. y = x, y = x2 4. y = x2−2x, y = x+4

5. y = 1/x, y = 1/x2, x = 2 6. y = 1+
√

x, y = (3+ x)/3

7. y = x2, y2 = x 8. y = x2, y = 4x− x2

9. y = 12− x2, y = x2−6 10. y = cosx, y = 2− cosx, 06 x6 2π

11. y = tanx, y = 2sinx, −π/36 x6 π/3 12. y = x3− x, y = 3x

13. y =
√

x, y = 1
2x, x = 9 14. y = 8− x2, y = x2, x =−3, x = 3

15. x = 2y2, x = 4+ y2 16. 4x+ y2 = 12,x = y
�

Exercise 4.2 Find the area of the shaded region. �

4.2 Volumes

DEFINITION OF VOLUME Let S be a solid that lies between x = a and x = b. If the

cross-sectional area of S in the plane Px, through x and perpendicular to the x-axis, is A(x),
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where A is a continuous function, then the volume of S is

V =
∫ b

a
A(x)dx

When we use the volume formula V =
∫ b

a A(x)dx, it is important to remember that A(x)

is the area of a moving cross-section obtained by slicing through x perpendicular to the

x-axis.

Notice that, for a cylinder, the cross-sectional area is constant: A(x) = A for all x. So our

definition of volume gives V =
∫ b

a Adx = A(b−a); this agrees with the formula V = Ah.

� Example 4.5 Show that the volume of a sphere of radius r is V = 4
3πr3.

Solution> If we place the sphere so that its center is at the origin (see Figure 7), then the

plane Px intersects the sphere in a circle whose radius (from the Pythagorean Theorem) is

y =
√

r2− x2. So the cross-sectional area is

A(x) = πy2 = π
(
r2− x2)

Using the definition of volume with a =−r and b = r, we have

V =
∫ r

−r
A(x)dx =

∫ r

−r
π
(
r2− x2)dx

= 2π

∫ r

0

(
r2− x2)dx (The integrand is even.)

= 2π

[
r2x− x3

3

]r

0
= 2π

(
r3− r3

3

)
=

4
3

πr3

�
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� Example 4.6 Find the volume of the solid obtained by rotating the region bounded by

y = x3,y = 8, and x = 0 about the y-axis.

Solution. The region is shown in Figure 8(a) and the resulting solid is shown in Figure 8(b).

Because the region is rotated about the y-axis, it makes sense to slice the solid perpendicular

to the y-axis and therefore to integrate with respect to y. If we slice at height y, we get a

circular disk with radius x, where x = 3
√

y. So the area of a cross section through y is

A(y) = πx2 = π( 3
√

y)2 = πy2/3

and the volume of the approximating cylinder pictured in Figure 8(b) is

A(y)∆y = πy2/3
∆y

Since the solid lies between y = 0 and y = 8, its volume is

V =
∫ 8

0
A(y)dy =

∫ 8

0
πy2/3dy = π

[
3
5

y5/3
]8

0
=

96π

5

�

� Example 4.7 The region R enclosed by the curves y = x and y = x2 is rotated about the

x-axis. Find the volume of the resulting solid.

Solution. The curves y = x and y = x2 intersect at the points (0,0) and (1,1). The region
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between them, the solid of rotation, and a cross-section perpendicular to the x-axis are

shown in Figure 9. A cross-section in the plane Px has the shape of a washer (an annular ring)

with inner radius x2 and outer radius x, so we find the cross-sectional area by subtracting

the area of the inner circle from the area of the outer circle:

A(x) = πx2−π
(
x2)2

= π
(
x2− x4)

Therefore we have

V =
∫ 1

0
A(x)dx =

∫ 1

0
π
(
x2− x4)dx = π

[
x3

3
− x5

5

]1

0
=

2π

15

�

� Example 4.8 Find the volume of a pyramid whose base is a square with side L and whose

height is h.

Solution. We place the origin O at the vertex of the pyramid and the x-axis along its central

axis as in Figure 10. Any plane Px that passes through x and is perpendicular to the x-axis

intersects the pyramid in a square with side of length s, say. We can express s in terms of x

by observing from the similar triangles in Figure 11 that

x
h
=

s/2
L/2

=
s
L

and so s = Lx/h. [Another method is to observe that the line OP has slope L/(2h) and so

its equation is y = Lx/(2h).] Thus the cross-sectional area is

A(x) = s2 =
L2

h2 x2
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The pyramid lies between x = 0 and x = h, so its volume is

V =
∫ h

0
A(x)dx =

∫ h

0

L2

h2 x2dx =
L2

h2
x3

3

]h

0
=

L2h
3

�

Exercise 4.3 Find the volume of the solid obtained by rotating the region bounded by

the given curves about the specified line. Sketch the region, the solid, and a typical disk

or washer.

1. y = 2− 1
2x,y = 0,x = 1,x = 2; about the x-axis

2. y = 1− x2,y = 0; about the x-axis

3. y = 1/x,x = 1,x = 2,y = 0; about the x-axis

4. y =
√

25− x2,y = 0,x = 2,x = 4; about the x-axis

5. x = 2
√

y,x = 0,y = 9; about the y-axis

6. y = lnx,y = 1,y = 2,x = 0; about the y-axis

7. y = x3,y = x,x> 0; about the x-axis

8. y = 1
4x2,y = 5− x2; about the x-axis

9. y2 = x,x = 2y; about the y-axis

10. y = 1
4x2,x = 2,y = 0; about the y-axis

11. y = x,y =
√

x; about y = 1

12. y = e−x,y = 1,x = 2; about y = 2

13. y = 1+ secx,y = 3; about y = 1

14. y = 1/x,y = 0,x = 1,x = 3; about y =−1 �
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4.3 More Volume Problems

� Example 4.9 Find the volume of a cylinder of radius r and height h. �

Solution. We’ll start off with the sketch of the cylinder below. What we need here is to get a

formula for the cross-sectional area at any x. In this case the cross-sectional area is constant

and will be a disk of radius r. Therefore, for any x we’ll have the following cross-sectional

area,

A(x) = πr2

Next the limits for the integral will be 0≤ x ≤ h since that is the range of x in which the

cylinder lives. Here is the integral for the volume,

V =
∫ h

0
πr2dx = πr2

∫ h

0
dx = πr2x

∣∣h
0 = πr2h

So, we get the expected formula.

� Example 4.10 For a sphere of radius r find the volume of the cap of height h. �

Solution. A sketch is probably best to illustrate what we after have.
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The area of the disk A(y) is then, A(y) = πx2. We need the cross-sectional area in terms of

y. So, what we really need to determine what x will be for any given y at the cross-section.

Let’s look at the spherical cross-section.

We have

A(y) = π
(
r2− y2) , r−h≤ y≤ r

So the volume is,

V =
∫ r

r−h
π
(
r2− y2)dy

= π

(
r2y− 1

3
y3
)∣∣∣∣r

r−h

= π

(
h2r− 1

3
h3
)
= πh2

(
r− 1

3
h
)

� Example 4.11 Find the volume of a wedge cut out of a cylinder of radius r if the angle

between the top and bottom of the wedge is π �

Solution. We should really start off with a sketch of just what we’re looking for here. From

the figure, we can compute the area of the cross-section A(x) as,

A(x) =
1
2
(y)
(

1√
3

y
)
=

1
2

√
r2− x2

(
1√
3

√
r2− x2

)
=

1
2
√

3

(
r2− x2)

The limits on x are −r ≤ x≤ r and so the volume is then,

V =
∫ r

−r

1
2
√

3

(
r2− x2)dx =

1
2
√

3

(
r2x− 1

3
x3
)∣∣∣∣r
−r

=
2r3

3
√

3
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� Example 4.12 Find the volume of a torus with radii r and R. �

Solution. First, just what is a torus? A torus is a donut shaped solid that is generated by

rotating the circle of radius r and centered at (R,0) about the y-axis. This is shown in the

figire below.

Here, what we’ll do is use a cross-section as shown in the sketch below. This cross-

section is obtained by cuting the torus perpendicular to the y-axis we’ll get a cross-section

of a ring and finding the area.
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The cross-sectional area is then,

A(y) = π( outer radius )2−π( inner radius )2

= π

[(
R+

√
r2− y2

)2
−
(

R−
√

r2− y2
)2
]

= π

[
R2 +2R

√
r2− y2 + r2− y2−

(
R2−2R

√
r2− y2 + r2− y2

)]
= 4πR

√
r2− y2

Next, the lowest cross-section will occur at y =−r and the highest cross-section will occ at

y = r and so the limits for the integral will be −r ≤ y≤ r. The integral giving the volume is

then,

V =
∫ r

−r
4πR

√
r2− y2dy = 2

∫ r

0
4πR

√
r2− y2dy

= 8πR
∫ r

0

√
r2− y2dy = 4πR

(
1
4

πr2
)
= 2π

2r2

� Example 4.13 Determine the volume of the solid obtained by rotating the region bounded

by x = (y2)2 and y = x about the line y = 1. �

Solution. First, we should get the intersection points there. So, solving the equation

y = (y−2)2 or y2−5y+4 = 0

gives the intersection points (1,1) and (4,4).

Here is a sketch of the bounded region and the solid.
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Here’s the cross-sectional area for this cylinder.

A(y) = 2π (radius) ( width )

= 2π(y+1)
(
y− (y−2)2)

= 2π
(
−y3 +4y2 + y−4

)
The first cylinder will cut into the solid at y = 1 and the final cylinder will cut in at y = 4.

The volume is then,

V =
∫ d

c
A(y)dy

= 2π

∫ 4

1
−y3 +4y2 + y−4dy

= 2π

(
−1

4
y4 +

4
3

y3 +
1
2

y2−4y
)∣∣∣∣4

1

=
63π

2

4.4 Arc Length

THE ARC LENGTH FORMULA If f ′ is continuous on [a,b], then the length of the

curve y = f (x),a6 x6 b, is

L =
∫ b

a

√
1+[ f ′(x)]2dx

If we use Leibniz notation for derivatives, we can write the arc length formula as follows:

L =
∫ b

a

√
1+
(

dy
dx

)2

dx

� Example 4.14 Find the length of the arc of the semi cubical parabola y2 = x3 between

the points (1,1) and (4,8).

Solution. For the top half of the curve we have

y = x3/2,
dy
dx

=
3
2

x1/2

and so the arc length formula gives

L =
∫ 4

1

√
1+
(

dy
dx

)2

dx =
∫ 4

1

√
1+

9
4

xdx
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If we substitute u = 1+ 9
4x, then du = 9

4dx. When x = 1,u = 13
4 ; when x = 4,u = 10.

Therefore,

L =
4
9

∫ 10

13/4

√
udu =

4
9
· 2

3
u3/2

]10

13/4

=
8

27

[
103/2−

(
13
4

)3/2
]
=

1
27

(80
√

10−13
√

13)

�

If a curve has the equation x = g(y),c 6 y 6 d, and g′(y) is continuous, then by inter-

changing the roles of x and y in Formula 2 or Equation 3, we obtain the following formula

for its length:

L =
∫ d

c

√
1+[g′(y)]2dy =

∫ d

c

√
1+
(

dx
dy

)2

dy

� Example 4.15 Find the length of the arc of the parabola y2 = x from (0,0) to (1,1).

Solution. Since x = y2, we have dx/dy = 2y, gives

L =
∫ 1

0

√
1+
(

dx
dy

)2

dy =
∫ 1

0

√
1+4y2dy

We make the trigonometric substitution y = 1
2 tanθ , which gives dy = 1

2 sec2 θdθ and√
1+4y2 =

√
1+ tan2 θ = secθ . When y = 0, tanθ = 0, so θ = 0; when y = 1, tanθ = 2,

so θ = tan−1 2 = α , say. Thus

L =
∫

α

0
secθ · 1

2
sec2

θdθ =
1
2

∫
α

0
sec3

θdθ

=
1
2
· 1

2
[secθ tanθ + ln |secθ + tanθ |]α0

=
1
4
(secα tanα + ln |secα + tanα|)

Since tanα = 2, we have sec2 α = 1+ tan2 α = 5, so sec α =
√

5 and

L =

√
5

2
+

ln(
√

5+2)
4

�
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� Example 4.16 (a) Set up an integral for the length of the arc of the hyperbola xy = 1

from the point (1,1) to the point
(
2, 1

2

)
.

Solution. (a) We have

y =
1
x

dy
dx

=− 1
x2

and so the arc length is

L =
∫ 2

1

√
1+
(

dy
dx

)2

dx =
∫ 2

1

√
1+

1
x4 dx =

∫ 2

1

√
x4 +1
x2 dx

�

The arc length function

We will find it useful to have a function that measures the arc length of a curve from a

particular starting point to any other point on the curve. Thus if a smooth curve C has

the equation y = f (x),a 6 x 6 b, let s(x) be the distance along C from the initial point

P0(a, f (a)) to the point Q(x, f (x)). Then s is a function, called the arc length function. It

is defined by Formula

s(x) =
∫ x

a

√
1+[ f ′(t)]2dt

(We have replaced the variable of integration by t so that x does not have two meanings.)

� Example 4.17 Find the arc length function for the curve y = x2− 1
8 lnx taking P0(1,1) as

the starting point.

Solution. If f (x) = x2− 1
8 lnx, then

f ′(x) = 2x− 1
8x

1+
[

f ′(x)
]2

= 1+
(

2x− 1
8x

)2

= 1+4x2− 1
2
+

1
64x2

= 4x2 +
1
2
+

1
64x2 =

(
2x+

1
8x

)2

√
1+[ f ′(x)]2 = 2x+

1
8x
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Thus the arc length function is given by

s(x) =
∫ x

1

√
1+[ f ′(t)]2dt

=
∫ x

1

(
2t− 1

8t

)
dt = t2 +

1
8

ln t
]x

1

= x2 +
1
8

lnx−1

For instance, the arc length along the curve from (1,1) to (3, f (3)) is

s(3) = 32 +
1
8

ln3−1 = 8+
ln3
8
≈ 8.1373

�

Exercise 4.4 Use the arc length formula to find the length of the curve y = 2x−5,−16

x6 3. Check your answer by noting that the curve is a line segment and calculating its

length by the distance formula. �

Exercise 4.5 Use the arc length formula to find the length of the curve y =
√

2− x2,06

x6 1. Check your answer by noting that the curve is part of a circle. �

Exercise 4.6 Set up, but do not evaluate, an integral for the length of the curve.

1. y = cosx, 06 x6 2π 2. y = xe−x2
, 06 x6 1

3. x = y+ y3, 16 y6 4 4. x2

a2 +
y2

b2 = 1
�

Exercise 4.7 Find the length of the curve.

1. y = 1+6x3/2, 06 x6 1 2. y2 = 4(x+4)3, 06 x6 2, y > 0

3. y = x5

6 + 1
10x3 , 16 x6 2 4. x = y4

8 + 1
4y2 , 16 y6 2

5. x = 1
3
√

y(y−3), 16 y6 9 6. y = ln(cosx), 06 x6 π/3

7. y = ln(secx), 06 x6 π/4 8. y = 3+ 1
2 cosh2x, 06 x6 1

�
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Final Exam with Model Answers

Question No.(3):

Find the following integrals∫ 1+ sin2x
cos2 x

dx,
∫
(x−7)9dx,

∫ dx√
1− x2

,
∫

x2e−3xdx,
∫ sin

(
tan−1 x

)
1+ x2 dx

Answer: Let c be an arbitrary constant.∫ 1+ sin2x
cos2 x

dx =
∫ (

sec2 x+
2sinxcosx

cos2 x

)
dx = tanx+ lncos2 x+ c.

∫
(x−7)9dx =

1
10

(x−7)10 = c.
∫ dx√

1− x2
= sin−1 x+ c.∫

x2e−3xdx =−1
3

[
x2e−3x−2

∫
xe−3xdx

]
=

(
−1

3
x2− 2

9
x− 2

27

)
e−3x + c

∫ sin
(
tan−1 x

)
1+ x2 dx =−cos

(
tan−1 x

)
+ c.

Question No.(4):

Compute the following integrals∫ 1

0
cot−1 xdx,

∫ π

2

0
sin3 xcos5 xdx,

∫ √2

1

dx

x2
√

4− x2
,
∫ 2

1

dx
(x+1)(x−3)

,
∫

π

0

xsinx
1+ cos2 x

dx

Answer: ∫ 1

0
cot−1 xdx =

π

4
+ ln
√

2.∫ π

2

0
sin3 xcos5 xdx =

∫ π

2

0
(cos5 x− cos7 x)sinxdx =

1
6
− 1

8
=

1
24

.

Using x = 2sinθ ∫ √2

1

dx

x2
√

4− x2
=

1
4

∫
π/4

π/6
cosec2

θdθ =
1−
√

3
4
√

3
.

∫ 2

1

dx
(x+1)(x−3)

=
1
4

∫ 2

1

(
1

x−3
− 1

x+1

)
dx =

1
4

ln
(

1
3

)
.∫

π

0

xsinx
1+ cos2 x

dx =
∫

π

0

(π− x)sin(π− x)
1+ cos2(π− x)

dx =
∫

π

0

(π− x)sinx
1+ cos2 x

dx.

So, ∫
π

0

xsinx
1+ cos2 x

dx =
π

2

∫
π

0

sinx
1+ cos2 x

dx =
π2

4
.
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Question No.(5):

(1) Find the area of the region that is enclosed by the curves y = x2 and y = 2x− x2.

Answer: First, we find the points of intersection of the parabolas by solving their equations

simultaneously. This gives x2 = 2x− x2, or 2x2−2x = 0. Thus 2x(x−1) = 0, so x = 0 or

1 . The points of intersection are (0,0) and (1,1). We see from Figure 3 that the top and

bottom boundaries are

yT = 2x− x2 and yB = x2

The area of a typical rectangle is

(yT − yB)∆x =
(
2x− x2− x2)

∆x

and the region lies between x = 0 and x = 1. So the total area is

A =
∫ 1

0

(
2x−2x2)dx = 2

∫ 1

0

(
x− x2)dx

= 2
[

x2

2
− x3

3

]1

0

(2) Find the volume of the solid obtained by rotating the region bounded by y = x3,y = 8,

and x = 0 about the y-axis.

Answer: Because the region is rotated about the y-axis, it makes sense to slice the solid

perpendicular to the y-axis and therefore to integrate with respect to y. If we slice at height

y, we get a circular disk with radius x, where x = 3
√

y. So the area of a cross section through

y is

A(y) = πx2 = π( 3
√

y)2 = πy2/3

and the volume of the approximating cylinder pictured in Figure 8(b) is

A(y)∆y = πy2/3
∆y

Since the solid lies between y = 0 and y = 8, its volume is

V =
∫ 8

0
A(y)dy =

∫ 8

0
πy2/3dy = π

[
3
5

y5/3
]8

0
=

96π

5
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