
Dynamic (2)                                                                                                      Mathematics Department  

 

                                                                                                                                     

South Valley University                                                                     Faculty of Science 

                                                                                                       Mathematics Department 

 

 

 

 

Dynamic (2) : Lecture Notes 

Prepared by 

Department of Mathematics staff 

 

 

 

 

 



Dynamic (2)                                                                                                      Mathematics Department  

 

Content 

Chapter 1 

Kinematics of Rigid Bodies                                                1 

 

Chapter 2 

I. Mass Moment of Inertia                                                   17 

II. Area Moment of Inertia                                                   40 

III. Products of Inertia of mass                                             55 

IV. Moments of Inertia about inclined axis                          61 

 

Chapter 3 

Application                                                                            66 

 



Dynamic (2)                                                                                                           Mathematics Department  

1 

Chapter 1 

Kinematics of Rigid Bodies  

 

Deformable Body: Anybody that changes its shape and/or volume while being acted upon by 

any kind of external force. 

 

Rigid body:  A rigid body is a solid body in which deformation is zero or so small it can be 

neglected. The distance between any two given points on a rigid body remains constant in 

time regardless of external forces exerted on it 

 

A deformable body is one that can distort. It would normally refer to a solid object so that as 

it deforms, it sort of deforms in a way that it could return to its starting shape if all the 

external forces were removed that caused it to deform.  

 

Types of Rigid Body Motion 

Translation (Or Translation-al motion)                                               

Translation. This type of motion occurs when a line in the body remains parallel to its 

original orientation throughout the motion. 

Recti-linear translation: when the paths of motion for any two points on the body are parallel 

lines, the motion is called rectilinear translation  
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Curvi-linear Translation  

If the paths of motion are along curved lines, the motion is called curvilinear translation 

 

          

Rotation about a fixed axis 

One straight line in the body is fixed. All other points in the body travel in circles around this 

line.  
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When a rigid body rotates about a fixed axis, all the particles of the body, except those which 

lies on the axis of rotation, move along circular paths except those which lies on the axis of 

rotation. 

 

General plane motion 

General plane motion. When a body is subjected to general plane motion, it undergoes a 

combination of translation and rotation, the translation occurs within a reference plane, and 

the rotation occurs about an axis perpendicular to the reference plane. 

 

Velocity and Acceleration  

In the Transitional motion , the velocity and acceleration of all points of the body at any 

moment are equal in magnitude and direction.  

VVVVV DCBA


 ,      fffff DCBA


  
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Rotational (Rotation) motion                                                                               

Rotational motion is the motion of the body wrapping (Read: rapping) around its center 

 

                                                                  Fig. (a) 

                                                   

                                                              Fig. (b) 
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                                                        Fig. (c) 

Note: One complete revolution is 360° = 2π radians. 

Rotation about a Fixed Axis 

When a body rotates about a fixed axis, any point P located in the body travels along a 

circular path. To study this motion it is first necessary to discuss the angular motion of the 

body about the axis. 

Angular Motion. Since a point is without dimension, it cannot have angular motion. Only 

lines or bodies undergo angular motion. For example, consider the body shown in Figure and 

the angular motion of a radial line r located within the shaded plane. 

Angular Position. At the instant shown, the angular position of r is defined by the angle u, 

measured from a fixed reference line to r. 

Angular Displacement. The change in the angular position, which can be measured as a 

differential dU, is called the angular displacement. This vector has a magnitude of dU, 

measured in degrees, radians, or revolutions, where 1 rev = 2p rad. Since motion is about a 

fixed axis, the direction of dU is always along this axis. Specifically, the direction is 

determined by the right-hand rule; that is, the fingers of the right hand are curled with the 

sense of rotation, so that in this case the thumb, or dU, points upward, Fig. 16–4a. In two 

dimensions, as shown by the top view of the shaded plane, Fig. 16–4b, both u and du are 

counterclockwise, and so the thumb points outward from the page.  

Angular Velocity. The time rate of change in the angular position is called the angular velocity 

V (omega). Since dU occurs during an, 

Remember that                                                                                                                                     

When a body moves in a circular path, we can write both the velocity and acceleration in the 

form     
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)2,2(),,(  


rrrrfrrrv   

If constantr , then 0...  rr . So, the velocity and acceleration becomes  

)0,20(),,0(   


rrfrrv , or   ),2(),,0(  


rrfrrv   

The angular velocity in rotational (rotation) motion  

Angular velocity: The time rate of change in the angular position is called the angular 

velocity V (omega). Since dU occurs during an instant of time dt, then, 

From the Figure rs   , where   is angler position and the angler velocity is  ).(   .       

It is clear that 


 .
dt

d
.                                                                                                                

The relation between the angular velocity and transitional velocity is given from     




rr
dt

d

dt

rd
v

dt

ds
rs   .. )(
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- The direction of translational velocity is in the same direction angular velocity 

- The direction of the vector tells you the axis of the rotation, as well as whether the rotation 

is clockwise or counterclockwise. 

- The relation between the angular acceleration and transitional acceleration is given from 

the transitional acceleration has two components, the first in Tangential direction )( tf  and 

the other in the normal direction )( rf      

 

The components of the acceleration are given as   

2,.  rrr fft    Or 2rnf                                                                                               

The Resultant of acceleration is given by  
22

rt
fff                                                   

While the direction is given by 

r
f

t
f

tan    
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Special case of rotational motion 

(i) In the case of constant angular velocity )Constant(   ( i. e. the angular velocity does not 

change with time 0
dt

d
 )                                                                                     (ii) The pure 

rotational motion                                                                                      In the case of the 

angular acceleration is constant (i. e. Constant.  ). Then C
dt

d



 and tC   

The relationship between the laws of motion in the case of linear motion with constant linear 

acceleration and rotational motion with constant angular acceleration      













.

.

.

2,2

,
2

1
,

2

1

,,

2222

22







xa

tttatx

tta

c

c

c

 

General Plane Motion (Translation + Rotation)  

If a rigid body moves with both translational and rotational motion, it is said to be in general 

plane motion. 

Example 1: The angular velocity of the disk is defined by sec/25 2
radt 







  where t  is 

in seconds. Determine the magnitudes of the velocity and acceleration of point A  on the disk 

when sec50.t ? 
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Solution 

sec/25 2
radt 







                                                                                

2sec/10.
rad

dt

d
t 









                                                                                                         

At 0 5 sec.t       
25(0.5) 2 3.25 / secrad

      
 

,    
210(0.5) 5 / sec.

rad
     
 

                                 

But  
disk

r
diskA

v )()(                                                                                                

Then sec/62)80()253( ... m
A

v  , 

rfrf
tr

.,2  
2))) sec/45.8)80()5625.10()80()25.3( ..22 (( mm

diskdisk
r

A
rf  

2sec/4)()5()()( 80..
cmm

t
A diskdisk

rf   But 
22

r
A

t
AA

fff   

2222 sec/359sec/349940258716402571)4()458( ..... mmf
A

          

4 1tan tan 0 47337 tan (0 47337) 25 33
8 45

. . .
.

A
Ot

A

t

r

f

f
r

f

f
           

Example 2: The angular acceleration of the disk is defined by 223 12 / sec.
radt

     
 

 

where t  is in seconds. If the disk is originally rotating at sec/120 rad . Determine the 

magnitude of the velocity and two components of acceleration of point Aand B  on the disk 

when sec2t . 
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Solution 

The angular acceleration of the disk is given by 2sec/123 2.
radt 








 .                          

While the angular velocity is given by   







 dtdt t 123 2.                          

1

3 12
3

3
ctt 








                                                                                                                        

At the start rotating point (i. e. 0t  ) sec/120 rad . So 121 c . Then                                          

The angular velocity is given as       sec/12123
radtt









                                           At 

sec2t , we have                                                                      

sec/4412)2(12)2( 3
rad









  ,    2sec/2412)2(3 2.
rad








                                            

From the two relation rfrf
tr

.,2   ,  

At the point A  we have, m
disk

r 50.)(    

2)) sec/968)50()1936()50()44( ..22 )(( mm
diskdisk

r
A

rf  

2sec/12)()24()()( 50..
mm

t
A diskdisk

rf                                                                              

At the point A  magnitude of the acceleration is given by 
22

r
A

t
AA

fff   

2222 sec/968sec/07968937168937024144)968()12( . mmf
A

               

The direction of acceleration is given by  

r
f

t
f

A
tan  

471020)12390(1tan12390
968

12
tan ...  

AA

A

t
A

A

r
f

f

  
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At the point B  we have , m
disk

r 40.)(    

2)) sec/4774)40()1936()40()44( ...22 )(( mm
diskdisk

r
A

rf  

2sec/9)()24()()( 640 ...
mm

t
A diskdisk

rf                                                                                    

At the point B  magnitude of the acceleration is given by  
22

r
B

t
BB

fff   

222 sec/59978759969516.92)4.774()6.9( 45.774 mf
B

                                 

The direction of the acceleration is given by  

r
f

f

B

t
B

B
tan  

471020)12390(1tan12390
4.774

6.9
tan ...  

BB

B

t
B

B

r
f

f

  

Example 3:  The disk is originally rotating at sec/120 rad . If it is subjected to a constant 

angular acceleration of 2sec/20.
rad . Determine the magnitudes of the velocity and the 

two components of acceleration of point A  at the instant sec2t ?                                   

 

Solution 
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Where the disk is subjected to a constant angular acceleration of 2sec/20.
rad .                  

Then    
... 2,

2

1
, 222  ttt                                                         

Where sec/120 rad , and after sec2t  and form                                                                

Angular Motion: The angular velocity of the disk can be determined using from 

t
.   , we have        )2()20()12(         sec/52 rad  

Motion of Point A . The magnitude of the velocity is given by  


disk

r
diskA

v )()(    
diskdiskA

v )50()52( .  sec/26 m
A

v   

The tangential and normal component of acceleration are 

2 )) sec/)40()1936()50()52(  1352)(( ..22 mm
diskdisk

r
A

rf  

2sec/)()20()()( 1050..
mm

t
A diskdisk

rf                                                                                   

At the point A  magnitude of the acceleration is given by  
22

r
A

t
AA

fff   

222 sec/)1352 ()10( 1352.04 mf
A

                                                                              

The direction of the acceleration is given by  tan
A

t

r

f

f
   

423778
10 1tan tan (0 00739) 0

 1352.04
. .

A
t

A
A

A A

f

f
r

         , then from 

Eq.  
.222   , we have 

64
4

256

40

2560

40

1442704
)20(2)12()52( 22 


                                             

The disk makes angle distance is given by ( 64  rad ) 

The disk rotates laps revN 210
32

2

64

2
. 




 (reflection-reversal ) 
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Example 4:  The disk is originally rotating at sec/120 rad . If it is subjected to a constant 

angular acceleration of 2sec/20.
rad . Determine the magnitudes of the velocity and the 

two components of acceleration of point B  when the disk undergoes 2  revolutions? 

 

Solution 

Where the disk is subjected to a constant angular acceleration of 2sec/20.
rad .Then  

 
... 2,

2

1
, 222  ttt  

Where sec/120 rad . 

When the disk undergoes 2  revolutions. Then revN 



42
2

  

Angular Motion: The angular velocity of the disk can be determined using from 

  
.222  , we have 6548646160144)4()20(2)12( .22   ,  

sec/4325. rad  

Motion of Point B . The magnitude of the velocity is given by  


B

r
diskA

v )()( 
BdiskA

v )40()( ..4325   sec/171710. m
A

v   sec/210. m
A

v   
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The tangential and normal component of acceleration are 

2674)4325) sec/258)40()( ... 22 )(( mm
Bdisk

r
B

rf  

2sec/8)()20()()( 40..
mm

Bdisk
t

B
rf                                                                                    

At the point A  magnitude of the acceleration is given by  
22

r
B

t
BB

fff   

222 sec/)674.258 ()8( 798 .258 mf
B

                                                             The 

direction of the acceleration is given by  

r
f

t
f

B
tan  

44771.. 1)030920(1tan
674.258 

8
tan   O

B

t
B

BB

r
f

f

B
  

Example 5: The disk is driven by a motor such that the angular position of the disk is 

defined by radtt 





  2420 where t is in seconds. Determine the number of revolutions, 

the angular velocity, and angular acceleration of the disk when st 90 ? 

 

Solution 
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At sec90t , we find that radradt 













  )8100(41800)90(4)90(20)90( 2  

  radradt 34200324001800)90(        

 rev
rad

rev
rad




2

34200

2

)1(
34200 rev5443                                                

Angular Velocity: Applying Eq. 
dt

d  , we have                      

ttt
dt

d
820

2420 





   and at sec90t , we have  sec/740)90(820 rad  

Angular Acceleration: Applying Eq. 
dt

d . ,  we have      8.                              A 

sec90t      2sec/8. rad  

Example 6: At the instant sec/5 rad
A
 (it means initial the angular velocity), pulley A  

is given an angular acceleration 2sec/6. rad
A
 . Determine the magnitude of acceleration 

of point B  on pulley C  when A  rotates 2  revolutions. Pulley C  has an inner hub which is 

fixed to its outer one and turns with it? 
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Solution 

Given sec/5
0

rad
A






 , 2sec/6. rad

A
 ,  

Where the angular acceleration of pulley A  is constant. So we have  

 
... 2,

2

1
, 222  ttt  

When the pulley A  rotates 2  revolutions. Then revN
A

A
A





42

2
  

Angular Motion: The angular velocity of the pulley A  can be determined from 

  
.222  , we have 796441754825)4()6(2)5( .22   ,  sec/258813. rad  

Since pulleys A and C are connected by a non-slip belt. So, at any point on the pulleys A and 

C. 

,cvv
A
   

t
cf

t
f

A
 . Then 

 cvv
A

   )40()50()2588.13( ccc rr
AA

      sec/57.16 radc   

Also   ... )40()6()50( ccrr
t

cf
t

f
CAAA

      2sec/5.7. radc   

Motion of Point B. The tangential and normal component of acceleration of point B can be 

determined from,  

27164 057) sec/39)6()16( ... 22 )(( mm
BC

r
B

rf    

2sec/3)()6()()( 660 ...
mm

BC
t

B
rf                                                                                     

222 sec/)77.164 ()6.3( 77.164 mf
B

                           
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Chapter 2 

I. Mass Moment of Inertia                                              

 

Definition of the Rigid body 

In physics, a rigid body is a solid body in which deformation is zero or so small it can be 

neglected. The distance between any two given points on a rigid body remains constant in 

time regardless of external forces exerted on it. A rigid body is usually considered as a 

continuous distribution of mass. 

Definition of moment of inertia 

Physical; A measure of the resistance of a body to angular acceleration about a given axis 

For an object rotating about an axis, the resistance of a body to accelerate is called inertia of 

mass 

Mathematic; The Moment of Inertia is equal to the sum of the products of each element of 

mass in the body and the square of the element's distance from the axis. 

It is defined as the sum of second moment of area of individual section about an axis  

(1) The basic shapes 

(2) Systems of particles 

(3) Composite bodies (shapes) 

(4) Uninform shapes 
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The Moment of Inertia of mass (Second moment of mass) 

The mass moment of inertia about a fixed axis is the property of a body that measures the 

body's resilience to rotational acceleration. The greater its value, the greater the moment 

required to provide a given acceleration about a fixed pivot. The moment of inertia must be 

specified with respect to a chosen axis of rotation. 

(1)- For a single mass, the moment of inertia can is expressed as 

For the element dm  that is located a distance a  from the L -axis, the Moment of inertia 

referenced to L -axis is given as 

 

2
admILL   

(2)- If a system consists of n bodies, then the moment of inertia can be given as 

 For the n elements, they have the mass ndmdmdmdm ,.......,,, 321  that is located a distance a  

from the L -axis, the moment of inertia referenced to L -axis is given as 
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



n

i

iinnLL admadmadmadmadmI
1

222

33

2

22

2

11 ............  

(3)- The Moment of Inertia in the plane   

 

Referenced to x -axis is given by         ,2
ydmI xx                                             

Referenced to y -axis is given by          ,2
xdmI yy                                            

Referenced to the original point (O ) is given by 

                                         yyxxO IIyxmrdmI  )( 222    

OI   is called Polar moment inertial  

(4)- The Moment of Inertia in the plane for number of elements    

 

Referenced to x -axis is given by          



n

i

iixx ydmI
1

2                                        
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Referenced to y -axis is given by         



n

i

iiyy xdmI
1

2                  

(4)- The Moment of Inertia in space    

 

Referenced to the original point (O ) is given by 

)( 2222
zyxmrmIO                                                               (1) 

Referenced to x -axis is given by          ),( 22
zymI xx                                             

Referenced to y -axis is given by          ),( 22
zxmI yy   

Referenced to z -axis is given by          2 2( ),xI m x y                                            

Referenced to the plane 0x    is given by          ),( 22
zymI xx                                             

Referenced to the plane 0y   is given by          2 2( ),yI m x z                                                             

Referenced to the plane 0z   is given by          2 2( ),zI m x y                                                         

From previous relation, we have                                              

yozxozxoyo IIIzyxmrmI  )( 2222                                         
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)(
2

1
)( 2222

zzyyxxo IIIzyxmrmI    or         zzyyxxo IIII 2              

yozxozzz

yozxoyyy

xozxoyxx

IIyxmI

IIzxmI

IIzymI







)(

)(

)(

22

22

22

 

Parallel axis theorem 

Parallel axis theorem is applicable to bodies of any shape. The theorem of parallel axis states 

that the moment of inertia of a body about an axis parallel to an axis passing through the centre 

of mass is equal to the sum of the moment of inertia of body about an axis passing through 

centre of mass and product of mass and square of the distance between the two axes.  The 

parallel axis theorem is much easier to understand in equation form than in words. Here it is: 

 

In physics, the parallel axis theorem can be used to determine the moment of inertia of a 

rigid object about any axis, given the moment of inertia of the object about the parallel axis 

through the object's center of mass and the perpendicular distance between the axes.                           

We consider an element ( m ) and its center is ),( cmcm yx (see below Figure)   
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,2
ydmdIxx   the moment of inertial with respect to x axis                                                                      

,2
xdmdI yy   the moment of inertial with respect to y  axis                                                     

)( 222
yxdmIIrdmdI yyxxO  , the moment of inertial with respect to the point( o )                                

  dmyxdmrIO )( 222                                                                                     (1) 

  dmyxdmrIcm )( 222                                                                                  (2) 

cmcm yyyxxx  ,                                             











 



















 






 

dmyyyyxxxx

dmyyxxdmrI

cmcmcmcm

cmcmO

22 2222

22

2

  













 



dmyydmxxdmyxdmyxI cmcm

d

cmcm

I

O

cm

22

2

2222

  

   dmyydmxxdmdII cmcmcmO 222                      

   dmyydmxxdmdII cmcmcmO 222                       

  dmyydmxxmdII cmcmcmO 222                                                                 (3) 




 





 dmydmy
dm

dmy
ydmxdmx

dm

dmx
x ,                                   (4) 















  dmyydmxxmdII cmcmcmO 222                                    

myymxxmdII cmcmcmO 222                                                                           (5) 
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2
dmII cmO                                                                                                        (6)           

Question:  Let A
I   and BI  be moments of inertia of a body about two axes A  and B  

respectively. The axis A  passes through the centre of mass of the body but B  does not, So. 

(A) BII
A
                        (B) BII

A
                          (C) If the axes are parallel BII

A
                          

(D) If the axes are parallel BII
A
                             (E) If the axes are not parallel BII

A
                          

The moment of inertia is always less for an axis passing through the center of mass than any 

other parallel axis. We cannot say anything of the moment of inertia about a non parallel 

axis. Thus C is correct. 

 Perpendicular Axis Theorem                                                                                      

This theorem is applicable only to the planar bodies. Bodies which are flat with very less or 

negligible thickness. This theorem states that the moment of inertia of a planar body about 

an axis perpendicular to its plane is equal to the sum of its moments of inertia about two 

perpendicular axes concurrent with the perpendicular axis and lying in the plane of the body. 

 

2 ,xxdI dm y  the moment of inertial with respect to x axis                                                                   

2 ,yydI dm x  the moment of inertial with respect to y  axis                                                     

2 2 2( ),O xx yydI dm r I I dm x y     , the moment of inertial with respect to the point ( o )                         

mrdmrdmrdmyxIO

22222 )(                                                                   (1) 

yyxxzz III                                                                                                                (2)  
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Example:1  Find the Mass moment of inertia of a thin uniform rod? 

Solution 

 

We consider L  be the length of the Rod,  M  be the mass of the Rod and is the density  .          

We divide the Rod into many small elements. We select one of them, that has length dx , mass 

dm  and has the distance x  from the left end of the Rod                                                           

For the small element    Lmxdxdxmdxdm
LL L

   00 0
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The moment of inertia about its end is given by 

2

3

3322

3

1

3

1

3

1
)(

0
Lm

L

m
LLdxxdmxI

L

yy   
                  2

3

1
LmI yy                                           

This the moment of inertia of a thin uniform rod about an axis perpendicular to its length and 

passing through one of its ends.                                                                                                         

The moment of inertia of a thin uniform rod about an axis perpendicular to its length and 

passing through its center. From the Parallel axis theorem 







 

2

2

1
LmII yyyy

2222

2

2

12

1

12

34

4

1

3

1

2

1

3

1
mLmLmLLmILmILm yyyy 






 







 

2

12

1
mLI yy                                                                                                                             

The moment of inertia about its other end is given as  







 

2

2

1
LmII yyyy

2222

2

2

12

4

12

31

4

1

12

1

2

1

12

1
mLmLmLLmLmLmI yy 






 









2

3

1
mLI yy                                                                                                                     

Note: The moment of inertia for a thin uniform Rod that rotates about the axis perpendicular 

to the rod and passing through one end is 2

3

1
mL  . If the axis of rotation passes through the 

center of the Rod, then the moment of inertia is 2

12

1
mL .                                                                

Example 2: Find the Mass moment of inertia of a thin uniform rectangular plate 

about its base and its one of edges axes?                                                                   

Solution 

We consider a uniform strip with the length )(dx and thickness )(dy as shown in below Figure, 

where the density is  .  
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bamdydxmdydxdm

b a

   
0 0

.   The moment of inertia about its corner is given by 

 
3 3 3

2 2 2

0
0 0

0
3 3 3

b
b a

b

yy yy

x b a b a m
dI x dm x dx dy I x dx dy y

ab
    



           
     2

3

1
amI yy                   

If we select a vertical strip (sector, section), we have  

ba

mababx
bdxxbIdxbxdmxdI

aa

yyyy 


333
)(

333
222

00









                

2

3

1
amI yy               






 

2

2

1
amII yyyy  

2

2 2 2 2 21 1 1 1 4 3 1

3 2 3 4 12 12y y y y
m a I m a I m a ma ma ma   

                  
   

                                   

2

12

1
maI yy          Similarly, if we select a horizontal strip, we can prove that: 

22

12

1
,

3

1
bmIbmI xxxx                                                                                                            

For axis is perpendicular oyox, )(
3

1

3

1

3

1 2222
bamambmIII yyxxzz                                       

For axis is perpendicular yoxo , :  )(
12

1

12

1

12

1 2222
bamambmIII yyxxzz

                                    

The moment of inertia about its corner is given by (Mass moment of inertia)  
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3322

3

1
,

3

1
)(

3

1

3

1
baIbababbmI yyxx                      )(

3

1 22
baabIII yyxxo   

31
,

12x x
I ab                                                 

31

12y y
I ba                   )(

12

1 22
babaIII yyxxo    

Uniform rectangular 

plate ),( ba  

Axis coincides with 

one of its sides 

Axis passing through 

its centroid 

Axis coincides to 

other side 

With respect to yyI   axis 
2

3

1
maI yy   2

12

1
maI yy   2

3

1
maI yy   

With respect to 
xxI   axis 

2

3

1
mbIxx   

2

12

1
mbI

xx
  

2

3

1
mbI

xx
  

With respect to axis 

perpendicular to the 

plane oxy  

)(
3

1 22
bamIzz   )(

12

1 22
bamI

zz
  )(

3

1 22
bamI

zz
  

 

Example 3:  Determine the mass moment of inertia for right Triangular Plate 

(Right-angled triangle)? 

Solution 

We consider a uniform strip with the length ( )x and thickness ( )dy , such that it is parallel to 

x - axis,  as shown in below Figure. Then      

 ham
h

h
ha

h

y
yady

h

y
adyxmdyxdm

h hh

2

1

22
)1(

2

0 0

2

0


















   
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Then moment of Inertia with respect to x  axis:         


h

xxxx dyyxIdyyxdmydI
0

222   , but   )1(1
h

y
ax

h

y

a

x
                         

233
43

0

43

0

3
2

0

2

6

1

2

112

1
)34(

12

1

43

43
)()1(

hm

ha

m
haha

h

hh
aI

h

yy
ady

h

y
yadyy

h

y
aI

xx

hhh

xx



















 






                     
2

6

1
hmIxx                        

Then moment of Inertia with respect to x  axis: 







 

2

3

1
hmII xxxx

2222

18

1
)23(

18

1

9

1

6

1
hmhmhmhmI xx         

2

18

1
hmI xx                                 

Then moment of Inertia with respect to x  axis: 

2222

2

18

9
)81(

18

1

9

4

18

1

3

2
hmhmhmhmhmII xxxx 






                 

2

2

1
hmI xx                     

Also, ,
6

1 2
amI yy            ,

18

1 2
amI yy                  .

2

1 2
amI yy   

)(
6

1

6

1

6

1 2222
hamhmamIII yyxxzz  )(

18

1

18

1

18

1 2222
hamhmamIII yyxxzz

   

Again, 
2)(

6

1
oomIAB
                                                                                              
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where ABoo )(
2

1   ,  2222 )0()0( hahaAB   

22

22)(
2

1
)(

2

1

2

1

ha

ha
oohaooABooha


 , Also m

ha

ha
oomI AB

)(6
)(

6

1
22

22
2


  

  Right Triangular Plate 

of height h  and bass a  
About its corner   

About its center of 

mass  
About its vertex  

About its base  2

6

1
mhIxx   2

18

1
mhI

xx
  2

2

1
mhI

xx
  

About its height  2

6

1
maI yy   

2

18

1
maI yy   

2

2

1
maI yy   

About vertical axis )(
6

1 22
hamIzz   )(

18

1 22
hamI

zz
  )3(

6

1
),3(

6

1 2222
hamIhamI

zzzz
 

 

 

Example 4:  The Mass Moment of inertia of acute triangular plate?  

Solution 

We divide the acute triangular plate to two right triangular plate as is shown in Figure   

 

The Moment of inertia of about x  axis for the two right triangular plate is given as   

    ,
6

1
,

6

1 2

22

2

11
hmIhmI xxxx                                                                                                           

http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
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For the acute triangular plate                          

    22

21

2

2

2

121
6

1
)(

6

1

6

1

6

1
hmhmmhmhmIII xxxxxx   

Example 5: The Mass Moment of inertia of obtuse triangular plate?  

Solution 

We divide the obtuse triangular plate to two right- triangular plate as is shown below 

Figure   

 

The Moment of inertia of about x  axis for the two right triangular plate is given as   

    2

2

2

21
6

1
,)(

6

1
hmIhmmI

CBDxxABDxx                                                                                  

For the acute triangular plate                      

    2

1

2

2

2

21
6

1

6

1
)(

6

1
)( hmhmhmmIII

CBDxxABDxxABCxx   

 

Example 6 : Find the Mass Moment of inertia of right- triangular plate as is 

shown in figure about all different axes? 

 Solution 
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From the Figure it is clear that m
ha

ha
IamIhmI BCyyxx

)(6
,

6

1
,

6

1
22

22
22


  

mmmhmIxx
3

8

6

16
)4(

6

1

6

1 22  ,      mmmamI yy
2

3

6

9
)3(

6

1

6

1 22   

mmmmm
ha

ha
IBC

25

24

)25(6

)16()9(

)169(6

)16()9(

))4()3((6

)4()3(

)(6 22

22

22

22










  

Note that  8 3 24
3 4 5,

3 2 25
xx yy BCI m I m I m        

Example 7:  The Mass Moment of inertia of Circular Ring? 

Solution 

We select a small element has the mass dm  at any point located at distance ),( yx  from the 

origin point  
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The Moment of inertia about z axis (The axis is passing through the center (z-axis) and is 

perpendicular to the Ring) is given as 

dmadIzz

2 ………    
m

zz dmadmaI
0

22   maI zz

2                                                               

From the Perpendicular axis theorem (Here, the distance between the tangent and the diameter 

is a ) yyxxzz III  . So     
2

amII yyxx                                                                                                

But xxI and yyI  are symmetric, so  yyxx II  , Then                                                          

2

2

1
amII yyxx    (The moment of inertia of a ring about of its diameter or the axis passes through the diameter) 

From the parallel axis theorem  
2222

2

1

2

1
amIamamIamII yyyyyyyy    

2222

2

1

2

1
am

xx
Iamam

xx
IamI

xx
I yy   

Moment of inertia about an axis is passing through the edge of Ring and perpendicular to its 

plane and parallel an axis is passing through the center (z-axis) and is perpendicular to the 

Ring 

2 2 2 22I I ma I ma ma I mazz
z z z z z z

             

 

Circular Ring For Vertical axis 

 

About axis in the plane of Circular Ring and passes in the its center 

The moment of inertia of the ring about of its diameter 

Axis of rotation 
2

maI zz   2

2

1
maII yyxx   

Axis of rotation 
22maI zz   

2

2

3
maII

yyxx
   
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Example 8:  Find the Mass Moment of inertia of Circular area ?  

Solution 

We divide the Circular area to the small Circular Rings, we selected one of them has mass 

( dm ),thickness ( dr ) and raids ( r ).   

 

So,  2

0

2

0
2

222 a
r

mdrrmdrrdm

aa

 




2

444

0

4

0

322

2224

2
2)2(

a

ma

m

maar
drrdrrrdmrI

aa

zz                         

2

2

1
maI zz                                                                                                                           

From the Perpendicular axis theorem 

yyxxzz III  . So     
2

2

1
amII yyxx  .                                                                                             

But yyxx II ,  are symmetric, so  yyxx II  .     Then    
2

4

1
amII yyxx   

Circular area For Vertical axis  
About axis in the plane of Circular 

Ring and passes in the its center   

Axis of rotation 
2

2

1
maI zz   2

4

1
maII yyxx   

Axis of rotation 
2

2

3
maI zz   

2

4

5
maII

yyxx
   



Dynamic (2)                                                                                                           Mathematics Department  

34 

Example 9:  Find the Moment of inertia of   Thin Disc?  

Solution 

We divide the solid Disc to the small Circular Rings, we selected one of them has mass 

( dm ),thickness ( dr ),distraction thickness ( z ) and raids ( r ).      

           

za
r

zmdrrzmdrzrdm

aa

   2

0

2

0
2

222                                                                    

So, the Moment of inertia of thin Disc is 

4 4
2 2 3

0
0

(2 ) 2 2
4 2

a
a

zz

r a
I r dm r r z dr z r dr z z                         

4 4
2

2

1

2 2 2
zz zz

a m z a m
I I ma

m a z

 
 


   


                                                                                                             

From the Parallel axis theorem     
22

2

3
amIamII zzzzzz                                                              

From the Perpendicular axis theorem  yyxxzz III  . So     
2

2

1
amII yyxx  .                                          

But yyxx II ,  are symmetric, so  yyxx II  .     Then    
2

4

1
amII yyxx   

Example: 10: Derive the Mass moment of inertia of Hollow Cylinder? 

Solution 
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Take the hollow cylinder as the corresponding shape, divide it into an infinite number of 

regular circular rings and take one of these rings with the mass ( dm ) and the radius  ( a ).  

 

Then the moment of inertia of this ring is given as    dmadIzz

2 .  

Then, the total moment of Hollow Cylinder  

2

0

22
amIamdmaI zz

m

zz                                                       

                                                  

Example: 11: Derive the Mass moment of inertia of Solid Cylinder? 

Solution 

We divide the Solid Cylinder it into an infinite number of thin discs and take one of these 

discs with the mass ( dm ) and the radius ( a ). 
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Then the moment of inertia of this disc is given as. dmadIzz

2

2

1
 . Then the total moment of 

Hollow Cylinder  2

0

22

2

1

2

1

2

1
amIamdmaI zz

m

zz    

Example: 11: Derive the Mass moment of inertia of Hollow Sphere? 

 Solution  

        

We divide the Hollow Sphere into a number of small circular rings and we consider one of 

them with the mass ( dm ), the radius ( y ) and thickness ( dz ). 

     

2 2

0
0

2 2 2 2

2 2 ( sin ) 2 sin 2 cos

2 cos( ) cos(0) 2 1 1 2 1 1 4

dm y dz a a d m a d m a

a a a a

 
            

        

       

         
                               
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The moment of inertia of this circular ring is given as dmydIzz

2 .                                     

Then the total moment of Hollow Cylinder  dmyI zz

2 , then 

2 4 2 4 2

0 0

4 2

0 0

4 3 4 3 3

0

2 (sin) sin 2 (1 cos )sin

2 sin (cos ) ( sin )

1 1 1
2 cos (cos ) 2 cos( ) (cos( )) cos(0) (cos(0))

3 3 3

zzI y dm a d a d

a d d

a a

 

 



        

     

       

       
      

                         

  
 



 

4 4 4 41 1 1 1 2 8
2 1 1 2 1 1 2 2

3 3 3 3 3 3
a a a a       
                                         

 

2

2

4

3

2

43

8
am

a

m
aI zz 


                                      2

3

2
amIThen zz                                           

For the symmetric of axes  2

3

2
amIII zzyyxx                                                                                   

Also, we know ozzyyxx IIII 2 ,   22222 2
3

6

3

2

3

2

3

2
2 amamamamamIo     

2
amIo   

Example: 12: Derive the Mass moment of inertia of Solid Sphere? 

Solution 

 

We divide the solid sphere into a number of hollow sphere and take one of these sphere with 

mass ( dm ), radius ( r ) and thickness ( dr ). Then the moment inertia of this sphere around oz  
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axis is 2)(
3

2
rdmdIzz  , for whole sphere the moment inertia is given as  2)(

3

2
rdmI zz

, where       

 3

0

22

3

4
44 adrrmdrrdm

a

  .  Then 

  5
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0
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15
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8
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2
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3

2
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r
drrrdrrrdmI

aaa

zz   
2

3

55

5
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3

415

8

15

8
am

a

m
a

m

m
aI zz 


        Then    2

5

2
amI zz                                                               

Where the axes are Symmetrical   2

5

2
amIII zzyyxx    

Also ozzyyxx IIII 2 ,    Then    2222

5

6

5

2

5

2

5

2
2 amamamamIo       2

5

3
amIo   

Example: 13: Find the Mass moment inertial for the Hollow Circular Cone ?    

Solution 

Divide the Hollow Circular Cone into a number of small circular rings and take one of 

these rings with mass ( dm ), radius ( y ) and thickness ( dL ), which is located higher ( z ) than 

the base of the cone with radius ( a ). Note that it is similar to triangles ABC and CBA  , we 

have
                     

)()( ya
a

h
zzh

h

a
y

a

y

h

zh



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The moment of inertia of this circular ring is given as dmydIzz

2 .                                     

Then the total moment of Hollow Circular Cone  dmyI zz

2                                                              

Note that 
h

dLymdLydm
0

22  , where  

dy
a

L
dyha

a
dy

a

h
dy
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dz
dL 















 22
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1
11 . Then  
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L
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2
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   

2
3334

4

3

2

1

2224
2 am

La

ma
L

m

ma
L

a
L

h

h

La



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2
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1
amI zz             

Example 14: Find the Mass moment inertial for the Solid Circular Cone? 

Solution 
We divide the Solid Circular Cone into a number of small Disks and take one of them 

with mass ( dm ), radius ( y ) and thickness ( dz ), which is located higher ( z ) than the base of 

the cone with radius ( a ). Note that it is similar to triangles ABC and CBA  , we have 
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The moment of inertia of this Disk is given as dmydIzz

2 .                                                       
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Then the total moment of Solid Circular Cone  dmyI zz

2 , that is given  
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II. Area Moment of Inertia 

Area moment of inertia also known as second area moment or 2nd moment of area is a 

property of a two-dimensional plane shape where it shows how its points are dispersed in an 

arbitrary axis in the cross-sectional plane. This property basically characterizes the deflection 

of the plane shape under some load. 

Area moment of inertia is usually denoted by the letter I  for an axis in a plane. The 

dimension unit of second area moment is Length to the power of four which is given as 4
L . If 

we take the International System of Units, its unit of dimension is meter to the power of four 

or 4
m . If we take the Imperial System of Units it can be inches to the fourth power, 4

in . 

We will come across this concept in the field of structural engineering often. Here the area 

moment of inertia is said to be the measure of the flexural stiffness of a beam. It is an 

important property that is used to measure the resistance offered by a beam to bending or in 

calculating a beam’s deflection. Here we have to look at two cases. 
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First, a beam’s resistance to bending can be easily described or defined by the planar second 

moment of area where the force lies perpendicular to the neutral axis. 

Secondly, the polar second moment of area can be used to determine the beam’s resistance 

when the applied moment is parallel to its cross-section. It is basically the beams ability to 

resist torsion 

 

Area Moment Of Inertia Formulas 

The area moment of inertia for the area is given in below figure can be expressed 

mathematically as:  

Referenced to x -axis is given by            2 ,xxI y dA      

Referenced to y -axis is given by           2 ,yyI x dA  

 

Referenced to o -point is given by          2 2 2( )O xx yyI r dA x y dA I I                                                       

The parallel axis theorem                                                                                             

The parallel axis theorem is a relation between the moment of inertia about an axis passing 

through the centroid and the moment of inertia about any parallel axis. 
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The parallel axis theorem states that 

                                  22 , xAIIyAII yyyyxxxx      

 

A simple recap of the Basics: 

- Moments of inertia are always positive. 

- Minimum moments of inertia axes always pass through the center of mass.                                       

- Moments of inertia are a measure of the mass distribution of a body about a set of axes. 

Think of a rotating ice skater. If the person stretches the arms out, she slows down and 

speeds up otherwise. Hence the smaller the inertia the more concentrated or closer the mass 

is about a particular axis. 

- Area moments of inertia are for a particular section or a 2D surface. 

- Products of inertia can be positive, negative or zero. 

- Products of inertia are a measure of the symmetry of a body about a set of axes. They are 

zero about any axis normal to a plane of symmetry. 
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- For any given point on a section, for example the centroid or any other point, there exists a 

set of axes oriented in such a way that all products of inertia are zero. 

Example 1: Find the Area moment of inertia of a rectangular section about a horizontal axis 

passing through base?                                                                

Solution  

We consider a uniform element with the length )(dx and thickness )(dy  as is shown in below Figure 

 

The Area moment of inertia about its vertical corner is given by 

 
3

2 2 2 3

0
0 0

0

1

3 3

b
b a

b

yy yy

x
dI x dA x dx dy I x dx dy y b a

          
     2

3

1
amI yy                                          

From the parallel Axis Theorem              





 

2

2

1
amII yyyy  

3 2 3 31 1 4 3 1
( )

3 4 12 12y y
I b a ab a b a b a 

       
 

                                   31

12y y
I ba                  

Similarly, we can prove that: 3 31 1
,

3 12
xx x x

I ab I ab                                                                    

For axis is perpendicular oyox, 3 3 2 21 1 1
( )

3 3 3
zz xx yyI I I ab ba ab a b                                           

For axis is perpendicular yoxo , :  3 3 2 21 1 1
( )

12 12 12x x y yz z
I I I ab ba ab a b                                         

Uniform rectangular plate Axis coincides with Axis passing Axis coincides to other 



Dynamic (2)                                                                                                           Mathematics Department  

45 

),( ba  one of its sides through its centroid side 

With respect to yyI   axis 
31

3
yyI ba  31

12y y
I ba    31

3y y
I ba      

With respect to 
xxI   axis 

31

3
xxI ab  

31

12x x
I ab    

31

3x x
I ab      

With respect to axis 

perpendicular to the plane oxy  

2 21
( )

3
zzI ab a b   

2 21
( )

12z z
I ab a b   

 

2 21
( )

3z z
I ab a b     

 

 

Example 2: Find the Area moment of inertia of a triangular section about a horizontal axis 

passing through base?                                                                

Solution 

We consider a uniform element with the length )(dx and thickness )(dy as is shown in below 

Figure 
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 
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    

   
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  Right Triangular Plate of height 

h  and bass a  
About its corner   

About its center of 
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About its vertex  
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haI xx  3

36

1
haI xx  3
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1
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1
ahI yy  3

36

1
ahI yy  3

4

1
ahI yy  
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Example 3: Determine Area the moment of inertia of the shaded area with respect to 

,ox oyaxes? 

http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
http://hyperphysics.phy-astr.gsu.edu/hbase/cm.html#cm
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Solution 

The Area Moment of inertia with respect to x- axis                                                                                

We consider a uniform strip line parallels to the x axis with the length (2 )x and thickness 

)(dy as is shown in below Figure. Then (2 )dA x dy   
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So, the area moment of inertia with respect to x -axis is given as 

     
1 1 7

2 2 23 3 32 2 2 2

0 0 0

2 2 4 2 4xxI y dA y x dy y y dy y y dy

                        
   

   

     
2

1 1 110 10 10
3 3 33 3 33 3 4

0

2 3 2 3 16 3 8
4 (2) 4 (2) 4 (2) 0.53334

3 10 3 10 3 10 15
xxI y y m

             
 

                                   

The Area Moment of inertia with respect to y- axis                                                             

While if we consider a uniform strip line parallels to the yaxis with the length ( )y and 

thickness ( )dx as is shown in below Figure. Then dA y dx   

  .                 

So, the area moment of inertia with respect to y -axis is given as 

   
62 2 2

2 2 2 3 5 4

0 0 0

(2) 64 8
0.25 0.25 2.67

24 24 3
yyI x dA x y dx x x dx x dy m            

Again, the Area Moment of inertia with respect to x- axis 

If we consider the previous Figure (second Figure) we can find the Area moment of inertia as    

       
2 2 23 23 33 3 3 9 10

0
0 0 0

1 1 1 1 1 1
0.25 0.25  0.25

3 3 3 3 3 10
xxI y dx y dx x dx x dx x         

41 15625 1024 1 16000000 1 16 1 8 8
    0.53334
31000000 10 310000000 310 3 5 15

xxI m       
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Example 4: Determine the Area moment of inertia of the shaded area with respect to 

,ox oyaxes? 

 

Solution 

The Area Moment of inertia with respect to x- axis                                                                                

We consider a uniform strip line parallels to the x axis with the length ( )x and thickness 

)(dy as is shown in below Figure. Then dA x dy  

 



Dynamic (2)                                                                                                           Mathematics Department  

50 

So, the area moment of inertia with respect to x -axis is given as 

  4
3

10
8

0

3

78

0

3

1

2

8

0

22 4614)1024(
5

3

10

)8(3
222 . mdyydyyydyxydAyI xx                                            

From the above Figure, the area moment of inertia with respect to y -axis is given by 

   
8 8

3 2 4

0
0

1 8 8 1 8 1 256
64 85 3334

3 3 3 2 3 2 3
.yyI x dy y dy y m        

The Area Moment of inertia with respect to y- axis                                                                          

While if we consider a uniform strip line parallels to the yaxis with the length (8 )y and 

thickness ( )dx as is shown in below Figure. Then (8 )dA y dx  . 

 

So, the area moment of inertia with respect to y -axis is given as 

  
















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5
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4

0

3
2

4

0

22

8
8

8
88 dx

x
xdx

x
xdxyxdAxI yy  

4

3 6 3 6 4 4 4

0

8 1 8 1 2 16 2 1 256
(4) (4) (4) (4) 85 3334

3 48 3 48 3 48 3 3 3
.yyI x y m

                             
     

 

The Area Moment of inertia with respect to x- axis                                                                                

If we consider the previous Figure (second Figure) we can find the Area moment of inertia 

with respect to x  axis (from the parallel axis theorem) as    
2( )xx

x x
I I dm y    
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Where    3 2 31 1
(8 ) (512 192 24 )

12 12x x
I y dx y y y dx                       

1 1
(8 ) (8 )

2 2
y y y y       

2

2
2 1 1

(8 ) (64 16 )
2 4

y y y y
        

,                                        

(8 )dm y dx      Then 
2( )xx

x x
I I dm y    becomes 

2 3 2

2 3 2 2 3
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12 4

1 1
(512 192 24 ) 128 32 2 (64 16 )
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           
 

              
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For all the Area, we have 
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                            
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Example 5: Determine Area the moment of inertia of the shaded area with respect to 

,ox oyaxes? 
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Solution 

The Area Moment of inertia with respect to x- axis                                                                                

We consider a uniform strip line parallels to the x axis with the length ( )x and thickness 

)(dy as is shown in below Figure. Then dA x dy  

 

So, the area moment of inertia with respect to x -axis is given as 

  4
54

0

4

4

0

22

4

0

22 8.204
5

1024

5

)4(
mdyydyyydyxydAyI xx    

The Area Moment of inertia with respect to y- axis                                                                          

While if we consider a uniform strip line parallels to the yaxis with the length (4 )y and 

thickness ( )dx as is shown in below Figure. Then (4 )dA y dx   
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       
7
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3

)16(4
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7
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2
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22 


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
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42.7801428.4861333.5461 mI yy   

Example 6: Determine the Area moment of inertia of the shaded area with respect to 

,ox oyaxes? 

 

Solution 

The Area Moment of inertia with respect to x- axis                                                                                

We consider a uniform strip line parallels to the x axis with the length ( )x and thickness 

)(dy as is shown in below Figure. Then dA x dy  
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So, the area moment of inertia with respect to x -axis is given a 

     
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The Area Moment of inertia with respect to y- axis 

If we consider the previous Figure (first Figure) we can find the Area moment of inertia with 

respect to y  axis as       dyxI yy
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    

Again the Area Moment of inertia with respect to y- axis                                                                       

While if we consider a uniform strip line parallels to the yaxis with the length (10 )y and 

thickness ( )dx as is shown in below Figure. Then (10 )dA y dx   
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Example 7: Determine the Area moment of inertia of the shaded area with respect to 

,ox oyaxes? 

 

Solution 

The Area Moment of inertia with respect to x- axis                                                                                

We consider a uniform strip line parallels to the yaxis with the length ( )y and thickness 

)(dy as is shown in below Figure. Then dA y dx  
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So, the area moment of inertia with respect to x -axis is given as 
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The Area Moment of inertia with respect to y- axis 
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III. Products of Inertia of mass 

Products of Inertia of mass 

(1) If the body is located in a plane as shown below figure and has mass ( )dm . Then the 

product of inertia with respect to the axes  ,ox oy  is given by 

 

dmyxI xy                                                                                                             (1) 

Note that         dmxyIdmyxI xyxy   

(2) For the body in space  
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With respect to the axes  ,ox oy  

dmyxI xy                                                                                                             (2)                               

With respect to the axes  ,ox oz                                                                                     

dmzxI xz                                                                                                              (3)                        

While, With respect to the axes  ,oy oz                                                                                          

dmzyI yz                                                                                                                     (4) 

Product of inertia can be positive or negative value as oppose the moment of inertia. The 

calculation of the product of inertia isn't different much for the calculation of the moment of 

inertia. The units of the product of inertia are the same as for moment of inertia. 

Parallel-axis theorem for products of inertia 

For any rigid body has mass ( m ) and the center of mass ( , )cm cmx y  as shown below figure 

 

Dividing the body into a number of small elements. Taking a small element whose mass 

( dm ) and its coordinate with respect to the original axes is ( , )x y . With respect to axes parallel 

to the original axes and passing through the center of mass the element has the coordinate 

( , )x y
   .                                                                                                                                                  

For the original axes ( , )x y , the inertial product of  mass ( dm ) is given by                      

dmxyI xy                                                                                                             (1)                 
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For the total mass )(m                                                                                                

dmyxI xy                                                                                                          (2)               

From the above Figure  ,cm cmx x x y y y
     and into Eq. (2), we have  

 





 















 






  dmyxyxyxyxdmyyxxdmyxI cmcmcmcmcmcmxy  

  dmyxdmyxdmxydmyxI cmcmcmcmxy                                                      (3) 

But, it is well-known that 















 

dmydmy
dm

dmy
ydmxdmx

dm

dmx
x

myxdmyxIdmyx cmcmcmcmyx

,

,,

                                      (4)  

From Eq. (4) into Eq. (3), we have                                  

myxdmyxdmxyII cmcmcmcmyxxy    

myxmyxmxyII cmcmcmcmyxxy                                                                             (5) 

But the coordinate  ,x y  is the center of mass from the center of mass and it is equal to zero. 

Substituting in (5) we get                                      

cmcmyxxy yxmII                                                                                                       (6)                        

Where xyI  is the product of inertia with respect to the two axes ,ox oy , while 
x y

I   is the 

product of inertia with respect to the two axes ,o x o y
    and ,cm cmx y  are the distance of the 

center of gravity from the two axes ,ox oy , respectively. 

Notes 

(1)-The product of inertia is a product of different coordinates, so it can be positive or 

negative quantity 
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(2)- For the product of inertia is , ,xy yx yz zy zx xzI I I I I I    

(3)- If the Products of Inertia are zero with respect to any two planes. It is said that the axis 

of intersection of these two axes is a principal axis. 

(4) If the inertia product is neglected with respect to any two principal coordinates ,ox oy , it 

is said that the tow axis ,ox oy  are principal axes 

(5)- Any symmetry axis in a flat plate with any perpendicular axis , then these axes are called 

the principal axes 

(6) - The product of inertia is finished for the two axes are perpendicular, if each other and 

one or both axes of symmetry. 

 

Example 1: Find the Product of Inertia of a thin uniform rectangular plate? 

Solution 

We divide the plate to small uniform strip, we consider one of them with the length )(dx and 

thickness )(dy as in Figure, where the density is  .  
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 bamabdyadydxmdydxdm

b
b a

  
0

0 0
  

With respect to ,ox oy , we have yxdmdIxy )( .   

 For the total plate, we have 

  mab
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m
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dydxyxIdydxyxI

b a

xyxy
4
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4422

222222
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  

bamIxy
4

1
  

From the theory of parallel axes for the product of inertia, the product of inertia with respect 

to ,ox oy
   is given 0

4

1

4

1
)

2

1
()

2

1
(

4

1
  abmmabIbamImabyxmII yxyxcmcmyxxy

 

0yxI .  So, the axes ,ox oy
   are symmetric axes.  

Example 2: Find the Product of Inertia of a thin uniform triangular plate? 

Solution 
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With respect to ,ox oy , we have yxdmdIxy )( .   For the total plate, we have 
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mahIxy
12

1
                                                                                                                     

From the theory of parallel axes for the product of inertia, the product of inertia with respect 

to ,ox oy
   is given 
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1

9

1
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1
)

3

1
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3

1
(

12

1
  ahmmahIhamImahyxmII yxyxcmcmyxxy

mahI yx
36

1
                                                                                          

ahmahmmahIhammahIyxmII yxyxcmcmyxyx )81(
36

1

9

2

36

1
)

3

1
()

3

2
(

36

1



 

ahmI yx
4

1
  
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IV. Moments of Inertia about inclined axis 

 

For xo       2)( ydmdI xx
                                       

dmyI xx  
2                                                                                                      (1)                                   

 sincos xyy   

 












dmxydmxdmyI

dmxydmxdmydmxyI

xx

xx





sincos2sincos

sincos2sincossincos

2222

22222

 

 2sinsincos 22

xyyyxxxx IIII                                              (2) 

 For yo    

dmxI yy  
2                                                                                                        (3)                                 

 sincos yxx   

 












dmxydmydmxI

dmxydmydmxdmyxI

yy

yy





sincos2sincos

sincos2sincossincos

2222

22222

 2sinsincos 22

xyxxyyyy IIII                                           (4) 

For yxI   
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dmyxI yx                                                                                                          (5)                                 

 sincos,sincos xyyyxx 

  

   
yyxxxyyx

xyxxyyxyyx

yx

yx

yx

IIII

IIIII

dmyxdmydmxdmyxI

dmyxdmydmxdmyxI

dmxyyxI




































cossinsincos

sinsincossincoscos

sincossincossincos

sinsincoscossincos

sincossincos

22

22

2222

2222

 

 2cos2sin
2

xy

yyxx

yx I
II

I 


  

 2cos2sin
2

xy

yyxx

yx I
II

I 


                                                      (6)                 

From Eq. (6), the maximum angle happens at 0yxI    

xxyy

xy

II

I




2
2tan                                                                                                          (7) 

Eq. (2)……. xyyyxxxx IIII  2sinsincos 22   

xyyyxxxx IIII 
2sin

2

2cos1

2

2cos1






  

 2sin2cos
22

xy

yyxxyyxx

xx I
IIII

I 





                                                           (8) 

Eq. (4)…….  2sinsincos 22

xyxxyyyy IIII   


2sin

2

2cos1

2

2cos1
xyxxyyyy IIII 





  

 2sin2cos
22

xy

xxyyxxyy

yy I
IIII

I 





                                                           (9) 

Add 1+2 and 8+9, we have  

yyxxyyxx IIII                                                                                                     (10) 
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Example 3: Find the moment of inertia with respect to a diagonal of the 

rectangular plate? 

Solution 

 

It is well-known                                                                                 

 2sinsincos 22

xyyyxxxx IIII                                                                             (1) 

 2sinsincos 22

xyxxyyyy IIII                                                                              (2) 

 2cos2sin
2

xy

yyxx

yx I
II

I 


                                                                                    (3)                  

Where                                                                                     

mabImaIbmI xyyyxx
4

1
,

3

1
,

3

1 22                                                                   (4)                     

Then From Eq. 1-4, we have 

 2sinsincos 22

xyyyxxxx IIII  )cossin2(
4
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3
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3
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
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


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
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
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1
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 2sinsincos 22

xyxxyyyy IIII           )cossin2(
4

1
sin

3

1
cos

3

1 2222  abmbmamI yy   
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2 2

2 2

2 2 2 2 2 2 2 2

1 1 2

3 3 4y y

a b a b
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3 3 2 3 2y y

a b a b a b a b
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Note that at O45 , we have ba  , Then 
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Example 4: Determine the product of inertia xyI of the right half of the parabolic 

area, bounded by the my 2  and 0x ? 
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Solution 

 

        
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 


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1
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                                                                    Exercise 

Find the moment of inertia about xo   and yo  axis also the product of inertia for rectangular 

plate as is shown Figure ( 43 )? 
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Chapter 3 

Application 

Newton’s second law for rotation 

We have thus far found many counterparts to the translational terms used throughout this 

text, most recently, torque, the rotational analog to force. This raises the question: Is there an 

analogous equation to Newton’s second law F ma , which involves torque and rotational 

motion? To investigate this, we start with Newton’s second law for a single particle rotating 

around an axis and executing circular motion. Let’s exert a force F on a point mass m that is 

at a distance r from a pivot point (see below Figure). The particle is constrained to move in a 

circular path with fixed radius and the force is tangent to the circle. We apply Newton’s 

second law to determine the magnitude of the acceleration  
F

a
m

  in the direction of F . 

Recall that the magnitude of the tangential acceleration is proportional to the magnitude of 

the angular acceleration by a r  

 

 



Dynamic (2)                                                                                                           Mathematics Department  

69 

Substituting this expression into Newton’s second law, we obtain  F m r                   

Multiply both sides of this equation by r , we have   2
r F mr   

Note that the left side of this equation is the torque about the axis of rotation, where r  is 

the lever arm and F  is the force, perpendicular to r . Recall that the moment of inertia for a 

point particle is 2
I mr . The torque applied perpendicularly to the point mass in above 

Figure is therefore I   

The torque on the particle is equal to the moment of inertia about the rotation axis times the 

angular acceleration. We can generalize this equation to a rigid body rotating about a fixed 

axis. 

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques 

equals the moment of inertia times the angular acceleration: 

i
i

I   

The term I  is a scalar quantity and can be positive or negative (counterclockwise or 

clockwise) depending upon the sign of the net torque. Remember the convention that 

counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating clockwise 

and experiences a positive torque (counterclockwise), the angular acceleration is positive. 

 

Example-1: A uniform rod of length L2  and mass M is pivoted (is hinged) at one end and 

the other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it 

was horizontally. Prove that the horizontal reaction will be maximum when the Rod tilts on 

the horizontal at an angle  
4


 and in this case the vertical reaction is given as mg

8

11
? 

Solution 
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The motion of center of Rod  

 sinsin)( 1

2

1

2
mgRLmRmgLm                            (1)  

2cos RmgLm                                                                       (2) 

The rotation of motion ( at then of Rod)  

  oOoO MIMI
dt

d
                                                         (3)               

Eq. (3) maybe written as                                                        

       )()cos(2
3

1 2
LmgLm      cos

4

3

L

g
                        (4) 

1

2

sin
4
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2
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3
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4

3
c

L

g
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L

g
d

L

g

d

d






  


                                                     

At the start point 0  and 0 , then  01 c                                                             

 sin
2

32

L

g
                                                                                 (5)                                               

From Eq, (5) into Eq. (1)       sinsin
2

3
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2

3
11 mg

L

g
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L

g
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


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


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


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
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2

5
1 mgR                                                                                  (6)                                              
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From Eq, (4) into Eq. (2)                                          

 cos
4

3
coscoscos

4

3
22 mgmgRRmg
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But                                                                                                                 
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Then                                                          
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4
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  22 cos
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1
sin
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5
                                                           (11)                                      

From Eq. (9)  2sin
8

9
mgRx  ,  xR   is maximum if   2sin  is maximum and sin 2  is 

maximum if 12sin   , then 
42

2
                                                                               

In this case  mgRmgR yy
8
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2

1

4

1

2

1

2

5
)

4
(

22



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
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
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




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


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

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
  

 

Example-2:  A uniform rod of length L  and mass M is pivoted (is hinged) at one end and the 

other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it 

was vertically with angle velocity 
L

g3
.  Find the reaction at the hinged point at 

3

  and 

prove that the Rod move angle    in time  





  )

2
tan()

2
sec(ln

3
2


g

L
t . 
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Solution 

 

 

The motion of center of Rod  

 coscos 1
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The rotation of motion ( At then of Rod)  

  oOoO MIMI
dt

d
                                                             (3) 

Eq. (3) maybe written as  
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At the start point 0  and 
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g
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1   
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 
cos1

2

3

4

3
cos

4

3

2

2
2

 


L

g

L

g

L

g
                                       (5)  

Note that                         

1)
2

(cos2))
2

(cos1()
2

(cos)
2

(sin)
2

(cos)
22

cos()cos( 22222 
         

From Eq. (5), we have  

 







dt
L

g
d

L

g

dt

d

L

g

dt

d 3

)
2

cos(

1
)

2
cos(

3
)

2
(cos2

2

3 2 


2

3
)

2
tan()

2
sec(ln2

3
)

2
()

2
sec(2 ct

L

g
dt

L

g
d 






  


 

At the start point 0  and 0t   

    001ln2)0tan()0sec(ln2 22  cc  







  )

2
tan()

2
sec(ln

3
2


g

L
t                                                                      (6) 

     coscos1
2

3
coscos1

2

3
11 mg

L

g
LmRmgR

L

g
Lm 






 






  mgR 








 cos53

2

1
1                       

(7)  sin
4

3
sinsinsin

4

3
22 mgmgRmgR

L

g
Lm 








                                                                 

sin
4

1
2 mgR                                                                                        (8)                                              

At 
3

                                  

mgRmggmmgR
4

11

4

11

2

5
3

2

1
)

3
cos(53

2

1
11 






















         (9) 

mgRmgmgmgR
8

3
)

2

3
(

4

1
)

3
(sin

4

1
sin

4

1
22 

       (10)  

 



Dynamic (2)                                                                                                           Mathematics Department  

74 

Example 3: A body rolls down an inclined plane without slipping. Describe the motion of 

the body? 

Solution 

First draw a free body diagram of the  body, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  

 

Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm  sin                                                                     (1) 

cos)0( mgRm                                                                     (2) 

Equation of Rotational Motion of a Rigid Body 

  cccc MIMI
dt

d
                                                      (3) 

 )()( aFIc      
a

I
F c                                                  (4) 

  
a

I
mgxm csin                                                              (5) 
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Pure rolling  

  ax , then       ax  

 sinsin
22

gx
am

I
xx

a

I
mgxm cc    

22
1

sin

1

sin

am

I

g
xa

am

I

g
x

cc 



  

                                     (6) 

xx
 20

2
vv  

2

2

2

2

2

2

1

2

sin
1

sin
2

1

sin
20

am

I

hgh

am

I

g
s

am

I

g

ccc 










































 vvv


     

2
1

2

am

I

hg

c
v                                                                               (7) 


sin

1

1
sin

1

sin1
22

2

gm

I

am
Forgm

Iam

I
F

am

I

g

aa

I
F

c

c

c

c

c


































        (8) 

RF   






cos

sin
2

mg

gm
Iam

I

R

F
RF

c

c











   

 tan
2 











c

c

Iam

I
                                                                   (9) 

 tan
2 











c

c

Iam

I   
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Example 4: A Solid Cylinder of mass m  and radius a  rolls without slipping down an 

inclined plane whose incline angle with the horizontal is theta. Determine the acceleration of 

the cylinder's center of mass, and the minimum coefficient of friction that will allow the 

cylinder to roll without slipping on this incline? 

Solution 

First draw a free body diagram of the cylinder, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  

 

Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm  sin                                                                           (1) 

Rmg cos                                                                                     (2) 

Rotational Motion of a Cylinder 

  cccc MIMI
dt

d
                                                             (3) 

that can be written as 

 )()(
2

1 2
aFam      amF

2

1
                                                (4) 
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The necessary condition for rolling without slipping is the contact point have zero 

velocity (the condition for no sliding is). i. e.    axax . Substitute in Eq. (4), we 

have                      

 xmF
2

1
                                                                                     (5) 

Again, Substituting from Eq. (5) into Eq. (1), we have 

 sin
2

3
sin

2

1

2

1
sin gxgxxxmmgxm    

sin
3

2
gx                                                                                  (6) 

Substituting from Eq. (6) into Eq. (5), we have 

 sin
3

1
)sin

3

2
(

2

1
gmFgmF                                           (7) 

Again, the necessary condition for rolling without slipping is the static coefficient and is 

generally lower than the static coefficient of friction. i. e. RF   

R

F
                                                                             (8) 








 tan

3

1

cos

sin

3

1

cos

sin
3

1


mg

gm

 

Example 5: Calculate the minimum coefficient of friction necessary to keep a thin circular 

ring from sliding as it rolls down a plane inclined at an angle   with respect to the horizontal 

plane. 

Solution 

First draw a free body diagram of the ring, which down the plane:                                          

We can write both of the Linear and rotation equations of motion  
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Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm  sin                                                                           (1) 

Rmg cos                                                                                     (2) 

Rotational motion equations 

  cccc MIMI
dt

d
                                                             (3) 

that can be written as 

 )()(2
aFam      amF                                                 (4) 

The necessary condition for rolling without slipping is the contact point have zero 

velocity (the condition for no sliding is). i. e.    axax . Substitute in Eq. (4), we 

have  

 xmF                                                                                      (5) 

Again,  Substituting from Eq.. (5) into Eq. (1), we have 

 sin2sinsin gxgxxxmmgxm    

sin
2

1
gx                                                                                  (6) 
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Substituting from Eq.. (6) into Eq. (5), we have 

 sin
2

1
)sin

2

1
( gmFgmF                                           (7) 

Again, the necessary condition for rolling without slipping is the static coefficient and is 

generally lower than the static coefficient of friction. i. e. RF   

R

F
                                                                             (8) 








 tan

2

1

cos

sin

2

1

cos

sin
2

1


mg

gm

 

Example 6: A uniform solid sphere of mass m  and radius a  rolls without slipping 

down an inclined plane whose incline angle with the horizontal is theta. 

Determine the acceleration of the ball's center of mass, and the minimum 

coefficient of friction that will allow the ball to roll without slipping on this 

incline? 

Solution 

First draw a free body diagram of the sphere, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  
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Linear equations of motion (Equations of motion of center of gravity) 

Fmgxm  sin                                                                           (1) 

Rmg cos                                                                                     (2) 

Rotational motion equations 

  cccc MIMI
dt

d
                                                             (3) 

that can be written as 

 )()(
5

2 2
aFam      amF

5

2
                                                (4)                                                 

The necessary condition for rolling without slipping is the contact point have zero velocity. i. 

e.    axax . Substitute in Eq. (4), we have                                                                   

 xmF
5

2
                                                                                     (5)                                                          

Again, Substituting from Eq. (5) into Eq. (1), we have 

 sin
5

7
sin

5

2

5

2
sin gxgxxxmmgxm                                          

sin
7

5
gx                                                                                  (6)                                 

Substituting from Eq. (6) into Eq. (5), we have 

 sin
7

2
)sin

7

5
(

5

2
gmFgmF                                      (7) 

Again, the necessary condition for rolling without slipping is the static coefficient and is 

generally lower than the static coefficient of friction. i. e. RF   

R

F
                                                                                       (8) 








 tan

7

2

cos

sin

7

2

cos

sin
7

2


mg

gm
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Example 7: A uniform sphere of radius a  initially at rest rolls without slipping 

down from the top of a rough sphere of radius b . Find the angular velocity of the 

ball at the instant it breaks off the sphere and show that the angle 
101

17
cos

     
 

 with 

the vertical? 

Solution 

First draw a free body diagram of the sphere, which down the plane:                                      

We can write both of the Linear and rotation equations of motion  

 

Note that  

   ..,,  rrr  vvv


 

   ....... 2,,
2

 rrrra r  aa


 

Equations of motion of Center of Gravity 

Fmgbam    sin)(                                                           (1) 
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Rmgbam    cos)(
2

                                                       (2) 

Rotational motion equation 

  cccc MIMI
dt

d
                                                      (3) 

That can be written as  

 )()(
5

2 2
aFam      amF

5

2
                                       (4) 

The condition for pure rolling is   aba )(     aba )( , then  

 
 

a

ba
aba )(                                         (5) 

Substituting from Eq. (5) into Eq. (4), we have    

 )(
5

2
bamF                                                                      (6) 

Again, substituting from Eq. (6) into Eq. (1), we have    

 sin)(
5

7
)(

5

2
sin)( mgbambammgbam 

  

 sin
)(7

5
g

ba 


                                                                   (7) 

 



 


 


 dg

ba
dg

bad

d
sin

)(7

5
sin

)(7

5
 

1cos
)(7

5

2

2

cg
ba








                                                          (8) 

At the initial motion  0  , then 0  

Then in Eq. (8), we have g
ba

c
)(7

5
1 
  and again in Eq. (8), we have  
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)cos1(
)(7

5

)(7

5
cos

)(7

5

2

2















g
ba

g
ba

g
ba

 

)cos1(
7

10
)()cos1(

)(7

10 22
 


  g

ba
ba

g
           (9) 

Substituting from Eq. (9) into Eq. (2), we have  

Rmggm 





   cos)cos1(

7

10
 

mgmgRmgmgR
7

10
cos

7

17
)cos1(

7

10
cos           (10) 

When the ball instant breaks off the sphere 

At the instant, that the ball breaks off the sphere, the reaction equals zero, so from Eq. 

(10), we have  

10cos17
7

10
cos

7

17
0

7

10
cos

7

17
  mgmgmgmg  

O96853
17

10
cos

17

10
cos .1 






                           (11) 

In this case the angle will be maximum ( max  )  

Where the velocity is given by    ..,,  rrr  vvv
 حيث      .,0 rv


 

)cos1()(
7

10
)cos1(

)(7

10
)(.  


 ba

g

ba

g
barv  

At the moment ( max  ) 

)
17

7
()(

7

10
)

17

1017
()(

7

10
)

17

10
1()(

7

10
ba

g
ba

g
ba

g



v  

)(
17

10
ba

g
v                                                                         (12) 


