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Chapter 1

Kinematics of Rigid Bodies

Deformable Body: Anybody that changes its shape and/or volume while being acted upon by

any kind of external force.

Rigid body: A rigid body is a solid body in which deformation is zero or so small it can be
neglected. The distance between any two given points on a rigid body remains constant in

time regardless of external forces exerted on it
A deformable body is one that can distort. It would normally refer to a solid object so that as

it deforms, it sort of deforms in a way that it could return to its starting shape if all the

external forces were removed that caused it to deform.

Types of Rigid Body Motion

Translation (Or Translation-al motion)

Translation. This type of motion occurs when a line in the body remains parallel to its

original orientation throughout the motion.

Recti-linear translation: when the paths of motion for any two points on the body are parallel

@

lines, the motion is called rectilinear translation
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Rocket test sled

Curvi-linear Translation

If the paths of motion are along curved lines, the motion is called curvilinear translation

Parallel-link swinging plate

Rotation about a fixed axis

One straight line in the body is fixed. All other points in the body travel in circles around this
line.

-

Centripetal
force /
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When a rigid body rotates about a fixed axis, all the particles of the body, except those which
lies on the axis of rotation, move along circular paths except those which lies on the axis of

rotation.

General plane motion

General plane motion. When a body is subjected to general plane motion, it undergoes a
combination of translation and rotation, the translation occurs within a reference plane, and

the rotation occurs about an axis perpendicular to the reference plane.

Velocity and Acceleration

In the Transitional motion , the velocity and acceleration of all points of the body at any

moment are equal in magnitude and direction.

V,=V,=V.=V, =V, fA:fB:fC:fD:f
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Motion is not transitional Translational motion

Rotational (Rotation) motion

Rotational motion is the motion of the body wrapping (Read: rapping) around its center

k@ <o
g
Fig. (a)
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Fig. (c)

Note: One complete revolution is 360° = 2x radians.

Rotation about a Fixed Axis

When a body rotates about a fixed axis, any point P located in the body travels along a
circular path. To study this motion it is first necessary to discuss the angular motion of the
body about the axis.

Angular Motion. Since a point is without dimension, it cannot have angular motion. Only
lines or bodies undergo angular motion. For example, consider the body shown in Figure and
the angular motion of a radial line r located within the shaded plane.

Angular Position. At the instant shown, the angular position of r is defined by the angle u,
measured from a fixed reference line to r.

Angular Displacement. The change in the angular position, which can be measured as a
differential dU, 1s called the angular displacement. This vector has a magnitude of dU,
measured in degrees, radians, or revolutions, where 1 rev = 2p rad. Since motion is about a
fixed axis, the direction of dU is always along this axis. Specifically, the direction is
determined by the right-hand rule; that is, the fingers of the right hand are curled with the
sense of rotation, so that in this case the thumb, or dU, points upward, Fig. 16—4a. In two
dimensions, as shown by the top view of the shaded plane, Fig. 16—4b, both u and du are
counterclockwise, and so the thumb points outward from the page.

Angular Velocity. The time rate of change in the angular position is called the angular velocity
V (omega). Since dU occurs during an,

Remember that

When a body moves in a circular path, we can write both the velocity and acceleration in the

form
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V=5 (i, r0), f=(F—r6% rf+2r6)
If r=constant , then r=r"*=0. So, the velocity and acceleration becomes
F=F=(0, r), f=0-r0% ré+0),0or v=r=(0, r0), f =(—r6% rd)

The angular velocity in rotational (rotation) motion

Angular velocity: The time rate of change in the angular position is called the angular

velocity V (omega). Since dU occurs during an instant of time dt, then,

From the Figure s =r6@ , where ¢ is angler position and the angler velocity is (6" = ®).

It is clear that d_&’ =0'=w.

dt
The relation between the angular velocity and transitional velocity is given from
ds d(r@d) do
—=s5'=V= =r =re=row
dt dt dt
Vy

The direction of the angular velocity
@

A4
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- The direction of translational velocity is in the same direction angular velocity

- The direction of the vector tells you the axis of the rotation, as well as whether the rotation

1s clockwise or counterclockwise.

- The relation between the angular acceleration and transitional acceleration is given from

the transitional acceleration has two components, the first in Tangential direction ( f,;) and

the other in the normal direction (f})

Ve

The direction of motion

fi=ro , fr=ro* Or f,=raw?
The Resultant of acceleration is given by f = ft2 + fr2
While the direction is given by tan @ = L
/)
ol
? fr

Ji
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Special case of rotational motion

(1) In the case of constant angular velocity (o =Constant) (1. €. the angular velocity does not

change with time d_a) =0) (i1) The pure
dt

rotational motion In the case of the

. ) dw
angular acceleration is constant (i. €. @" =Constant ). Then — =C and o=Ct
dt

The relationship between the laws of motion in the case of linear motion with constant linear

acceleration and rotational motion with constant angular acceleration

v=v, + a,t, w=0, + o't,
1 1
x=u,t + —a,t, O=w,t + —ot’,
2
vi= 0 + 2a, x, o= + 200

General Plane Motion (Translation + Rotation)

If a rigid body moves with both translational and rotational motion, it is said to be in general

plane motion.

Example 1: The angular velocity of the disk is defined by o= (5 12 +2 jrad/ sec where f is

in seconds. Determine the magnitudes of the velocity and acceleration of point A on the disk

whent =0.5 sec?
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Solution

w:(5t2+2 Jrad/sec

_do
dt

[0

:(102‘ j rad | sec?

At 1=0.5 sec w:[5(0.5)2+2 J =3.25rad /sec, o :[10(0.5) J =5rad | sec’

But v, =(@) 0 () ik

Then v, =(3.25)(0.8)=2.6m/scc,
_ 2 .
fr =W, ft =@'r

— (/2 _ 2 _ _ 2
fA =(w ) Jisk (r)disk =(3.25)~(0.8m)) =(10.5625)(0.8) =8.45m/sec

r

f A =i i =(5)(0.8m)=4cm/sec’But f, = sz - fjr

fi= \/(8.432 +(4)? =471.4025+16 =+/87.4025=9.349 m/sec? =9.35 m/ sec?

f :
tanqﬁ:L —>tan¢:—AL:4:0.47337 —>¢:tan_1(0.47337) — ¢$=25°933
1 fa 845

r

Example 2: The angular acceleration of the disk is defined by o’ :[3t2 +12 J rad [ sec®

where f is in seconds. If the disk is originally rotating at @, =12 rad/sec. Determine the

magnitude of the velocity and two components of acceleration of point Aand B on the disk
when t =2sec.

wy = 12 rad /s
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Solution

The angular acceleration of the disk is given by «* = (3t2 +12 j rad | sec’ .
While the angular velocity is given by o= Iw dt = j (3t2 +12 j dt

a):(éf +12¢ )+c1

3

At the start rotating point (i. €. t=0 ) @, =12 rad/sec. So ¢, =12. Then

The angular velocity is given as ®= { P +121+12 }rad /sec At

t =2sec, we have

a)={(2)3+12(2)+12 }=44rad/sec, a)‘:(3(2)2+12 j=24md/sec2

From the two relation f = @, fz =w'r,

At the point A we have, (7) gisk =0-5m

f. =(@* . (r),  =@4420.5m)=(1936)(0.5)=968 m/sec?
A disk disk

,
Fa =@ i () i =24 (O0.5m)=12 m/sec’
t

At the point A magnitude of the acceleration is given by f, = fj + fj
1 r

fi= J12)? +(968)% =1441937024=937168=968.07 m/sec? =968 m/ sec>

The direction of acceleration is given by tan¢@ = L
fr
fA 12 1
tangp ==—-=—=0.1239 —> ¢, =tan (0.1239 — ?, =0.71024'
Yo, 968
.

10
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At the point B_we have . () dgisk =0-4m

f A = (@), (1) . =44 (0.4m) = (1936)(0.4) =774.4m/sec*

A =@ (r) gy = (24 (0.4m)=9.6m/ sec?
t

B

At the point B magnitude of the acceleration is given by f = £+ f;
! r

f =(9.6)> +(7744)" =J92.16+599695= 599787 =774.45 m/sec?

) B
The direction of the acceleration is given by tangDB =1
B
r
t 96 1239 tan~1(0.1239) 0.71024’
ang, = = =0. —> =tan . - =0.
i £, 1744 Vs i
r

Example 3: The disk is originally rotating at @, =12 rad/sec. If it is subjected to a constant

angular acceleration of @" =20 rad/sec’. Determine the magnitudes of the velocity and the

two components of acceleration of point A at the instant £ =2sec?

wy = 12 rad /s

-,

——

Solution

11
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Where the disk is subjected to a constant angular acceleration of @* =20 rad /sec’.
Then w=0, + o't, H:a)ot+%a)'t2, &= + 200

Where @, =12 rad /sec, and after t =2sec and form

Angular Motion: The angular velocity of the disk can be determined using from

=0, + ot,wehave o=>12) + 20)(2) —» w =52 rad/sec
Motion of Point A. The magnitude of the velocity is given by
Vo=@ O gise ™ Va=02 4 03 4 g > v, =26 m/sec
The tangential and normal component of acceleration are

fy =@, (1), =(52)%(0.5m)=(1936)(0.4) = 1352 m/sec?
,

Fa =@ () gig = 20)(0.5m)=10 m/sec’
t

A

At the point A magnitude of the acceleration is given by f = f > fj
t r

fa =\/(10)2 +(1352) =1352.04m/sec?

The direction of the acceleration is given by tang = Jr
A
-
fA 10 -1 '
tang =—1= — ¢ =tan” '(0.00739) — ¢ =0.423778 , then from
A f, 1352.04 A A

-
Eq. o* = o + 2w'8 , we have
q A

2704 —144 2560 256

52)"=12)" + 22006 —> 0 20 20 2

- =64

The disk makes angle distance is given by ( 9 =64 rad )

The disk rotates laps N = 0 _& 32 — 6=10.2 rev (reflection-reversal )

2r 2m 7

12
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Example 4: The disk is originally rotating at @, =12 rad /sec. If it is subjected to a constant

angular acceleration of @" =20 rad/sec’. Determine the magnitudes of the velocity and the

two components of acceleration of point B when the disk undergoes 2 revolutions?

wn = 12 rad /s

-,

Solution

Where the disk is subjected to a constant angular acceleration of @ =20 rad /sec’*.Then
1 2 2 2

w=0, + o't, 6’=a)ot+§a)'t, 0= + 200

Where @, =12 rad/sec.

When the disk undergoes 2 revolutions. Then N = zi =2 > 0=4rx rev
T

Angular Motion: The angular velocity of the disk can be determined using from

2

o' = o, + 200,wehave o’ = (12)° + 2(20)(4r) =144 +160 7 = 646.6548 ,

w =25.43 rad / sec

Motion of Point B. The magnitude of the velocity is given by

v, :(a))disk (r)B—> v, :(25'43)disk (O.4)B -V, =10.1717m/sec — v, =10.2m/sec

13
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The tangential and normal component of acceleration are

[ =(@%) . (1), =(25.43)* (0.4m)) =258.674 m/sec?

r

fB = (a).)disk (r)pg =(20)(0.4m)=8 m/sec’
t

B

At the point A magnitude of the acceleration is given by f = |f > 4 fB2
t r

£, =\ (8)° +( 258.674)° = 258.798 m/ sec The

f
direction of the acceleration is given by tan Pp = !

f?"
tang,, == fB’ _ 8 @ =tan~1(0.03092) — 0, =10.47714
B, 258674 B B

r

Example 5: The disk is driven by a motor such that the angular position of the disk is
defined by 8 = (ZOt +4¢7 ) rad where tis in seconds. Determine the number of revolutions,

the angular velocity, and angular acceleration of the disk when £ =90s?

Solution

14
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At 1=90sec, we find that O(r =90) = (20 (90) + 4(90)2jmd _ (1800 +4(8100) jmd

O(t =90) = (1800 +32400) rad = 34200 rad

0 =34200 rad (Drev = 34200rev

—  0=5443 rev
27 rad 27

Angular Velocity: Applying Eq. @ = %‘9 , we have
4

23[20t+4t2J =20+8¢ and at t =90sec, we have @=20+8(90)=740rad / sec
4

Angular Acceleration: Applying Eq. @ = ci’_a) , we have @ =8 A
4
t=90sec @ =8rad/sec?

Example 6: At the instant o N =5 rad /sec (it means initial the angular velocity), pulley A

is given an angular acceleration @, = 6rad /sec?. Determine the magnitude of acceleration

of point B on pulley C when A rotates 2 revolutions. Pulley C has an inner hub which is

fixed to its outer one and turns with it?

40 mm

60 mm

15
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Solution

Given (a)Aj =5rad/sec , @, =6rad /sec?,
0

Where the angular acceleration of pulley A is constant. So we have

1
O=0, + &'t, 9:w0t+5a)‘t2, o= + 200

. o
When the pulley A rotates 2 revolutions. Then N, :2—A =2 > 0,=4r rev
T

Angular Motion: The angular velocity of the pulley A can be determined from
o= o + 200,wehave o’ = (5)° + 2(6)(4n)=25+487=175.79644 , w =13.2588 rad /sec

Since pulleys A and C are connected by a non-slip belt. So, at any point on the pulleys A and
C.

v, =V fAt zfct.Then

V.SV, D o =0o.r. = (13.2588)(50):a)c(40) — a)C=16.57rad/sec

Also fAt ZfCt —> 1,0, =r. .- (50) (6)=(40)a)'c - =7.5 rad / sec?

Motion of Point B. The tangential and normal component of acceleration of point B can be

determined from,

fp = (@) (1), =(16.57)*(0.6m) =164.739m/ sec?

r

fg =@) () p=(6)0.6m=3.6 m/sec’
t

£, =\ (3.6 +(16477) =164.77m/ sec?

16
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Chapter 2

1. Mass Moment of Inertia

Definition of the Rigid body

In physics, a rigid body is a solid body in which deformation is zero or so small it can be
neglected. The distance between any two given points on a rigid body remains constant in
time regardless of external forces exerted on it. A rigid body is usually considered as a

continuous distribution of mass.

Definition of moment of inertia

Physical; A measure of the resistance of a body to angular acceleration about a given axis

For an object rotating about an axis, the resistance of a body to accelerate is called inertia of

mass

Mathematic; The Moment of Inertia is equal to the sum of the products of each element of

mass in the body and the square of the element's distance from the axis.

It is defined as the sum of second moment of area of individual section about an axis
(1) The basic shapes

(2) Systems of particles

(3) Composite bodies (shapes)

(4) Uninform shapes

17
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The Moment of Inertia of mass (Second moment of mass)

The mass moment of inertia about a fixed axis is the property of a body that measures the
body's resilience to rotational acceleration. The greater its value, the greater the moment
required to provide a given acceleration about a fixed pivot. The moment of inertia must be

specified with respect to a chosen axis of rotation.
(1)- For a single mass, the moment of inertia can is expressed as

For the element dm that is located a distance a« from the L-axis, the Moment of inertia

referenced to L-axis is given as

1,, =dma’
(2)- If a system consists of n—bodies, then the moment of inertia can be given as

For the n—elements, they have the mass dm,, dm,, dm,.........dm, that is located a distance a

from the L-axis, the moment of inertia referenced to L-axis is given as

dm,

dnn,

Fig. 2

18
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1, =dm a} +dm,a; +dm,a; +........ +dmnaf:de<a.

(3)- The Moment of Inertia in the plane

dm
X
»
y
o l X

Fig. 3
Referenced to x-axis is given by I, =dmy’,
Referenced to y-axis is given by 1, =dmx’,

Referenced to the original point (O) is given by
I,=dmr’ =m(x* +y*)=1_+ I,
1, i1s called Polar moment inertial

(4)- The Moment of Inertia in the plane for number of elements

y
dmy,
X, @ . dm, i,
il % & . dm,
i i
12 : ¥,
| . x
Fig. 4
Referenced to x-axis is given by I,=Ydmy

i=1

19
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. . . 1t 2
Referenced to y-axis is given by I, :ledm,. X;

(4)- The Moment of Inertia in space

L

|
m
y
” -
0 ] -
- J’:
x
n‘l.
X Fig. 5
Referenced to the original point (0) is given by
I,=mr’=m(x*+y*+27°) (1)
Referenced to x-axis is given by I, =m(y’+2°),
Referenced to y-axis is given by I, =m(x*+2%),
Referenced to z-axis is given by [ =m(x*+y%),
Referenced to the plane—x=0 1is given by I =m(y’+2°),
Referenced to the plane —y=0 is given by I, =m(x’+2°),
Referenced to the plane z=0 is given by I, =m(x*+y?),

From previous relation, we have

2 2 2 2
L=mr =m(x"+y +z)=1,+1,+1,,

20
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1
I =mr’=m(x’+y +7°)= E(Ixx +1,+1,) Or 21, =1, +1,+1

IXX:m(y2+zz)=Imy+Im
_ 2 2y _
Iyy—m(x +2z )—Imy+lm

_ 2 2y _
I =m(x"+y )—IM+IM

Parallel axis theorem

Parallel axis theorem is applicable to bodies of any shape. The theorem of parallel axis states
that the moment of inertia of a body about an axis parallel to an axis passing through the centre
of mass is equal to the sum of the moment of inertia of body about an axis passing through
centre of mass and product of mass and square of the distance between the two axes. The

parallel axis theorem is much easier to understand in equation form than in words. Here it is:

Rotation Axis through
axis center of mass
| A
C | -
d

In physics, the parallel axis theorem can be used to determine the moment of inertia of a
rigid object about any axis, given the moment of inertia of the object about the parallel axis
through the object's center of mass and the perpendicular distance between the axes.

We consider an element (m ) and its center is (x,, .y, )(see below Figure)

21
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xl‘

Fig. 7

dl . =dmy’, the moment of inertial with respect to x— axis

dl,, =dmx*, the moment of inertial with respect to y— axis

dl,=dmr® =1 +1, =dm(x’+y"), the moment of inertial with respect to the point(o)

I, =J.r2dm=J. (x> + y*)dm
I = I r'zdm:I (X +y*)dm

cm

! !’
X=X +xcm’ y:y +ycm

I, =[r’dm=| {(x'+xcm ]2 +(y'+ v T}dm

:j {x'z +x2 +2x x, YTyl 42y Yy }dm

to= (e Jam [ oz a2,
"

Icm :dZ

1,=1,, +J-a’2 dm+ 2xc1njx'dm+ 2ycmj.y'dm

I,=1,, +d2I dm+ 2xch-x'dm+ 2ycmjy'dm

I,=1,+d’ m+2xcm'|-x'dm+ 2y€mJ.y'dm

IO=Icm+d2m+2xcm{)_cJ.dm }+2ycm{yjdm }

I,=1,+d’m+2x, Xm+2y, ym
22
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1,=1, +md (6)
Question: Let 7, and I, be moments of inertia of a body about two axes A and B

respectively. The axis A passes through the centre of mass of the body but B does not, So.

(A) 1,<I, B)1,>1, (C) If the axes are parallel 7, <1,
(D) If the axes are parallel 7, >1, (E) If the axes are not parallel 7, >1,

The moment of inertia is always less for an axis passing through the center of mass than any
other parallel axis. We cannot say anything of the moment of inertia about a non parallel

axis. Thus C is correct.

Perpendicular Axis Theorem

This theorem is applicable only to the planar bodies. Bodies which are flat with very less or
negligible thickness. This theorem states that the moment of inertia of a planar body about
an axis perpendicular to its plane is equal to the sum of its moments of inertia about two

perpendicular axes concurrent with the perpendicular axis and lying in the plane of the body.

Z

y

J'; dam
Fig. 8
X

dl , =dmy’, the moment of inertial with respect to x— axis

dl , =dmx*, the moment of inertial with respect to y— axis

dl,=dmr*=I_+I =dm(x’+y*),, the moment of inertial with respect to the point (o)
IO=J.(x2+y2)dm:Ir2dm: rzj.dm =r’m (1)

IZZ =IXX + Iyy (2)
23
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Example:1 Find the Mass moment of inertia of a thin uniform rod?

Solution

We consider L be the length of the Rod, M be the mass of the Rod and is the density p.

We divide the Rod into many small elements. We select one of them, that has length dx, mass

dm and has the distance x from the left end of the Rod

L
For the small element dmzpdx—)m:IOLpdx :pIO dx =px|: — m=pL

dm=pdx

y y "
] ) !
L L
2 2
_ ;}u

24
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The moment of inertia about its end is given by

_ 2 _ L, _1 3_1 3 m _1 2 ) _1 2
Iyy—J.xdm—J.Ox(pdx)—gpL —gp pL3_§mL ..Iyy—gmL

This the moment of inertia of a thin uniform rod about an axis perpendicular to its length and
passing through one of its ends.
The moment of inertia of a thin uniform rod about an axis perpendicular to its length and

passing through its center. From the Parallel axis theorem

2 2
I =I,,,+m(%LJ —>%mL2=I,,+m(%LJ N 1,,=%mL2—lmL2=[ﬁij2=imL2

Yy

The moment of inertia about its other end is given as

2 2
I..=1..+m lL —>1,,,,,=imL2+m lL =imL2+1mL2= 1+3 mL2=imL2
vy 2 V12 2 12 4 12

: 1
. Iyrryrlzgndz

Note: The moment of inertia for a thin uniform Rod that rotates about the axis perpendicular

to the rod and passing through one end is %m]f . If the axis of rotation passes through the

center of the Rod, then the moment of inertia is émLz.

Example 2: Find the Mass moment of inertia of a thin uniform rectangular plate

about its base and its one of edges axes?

Solution

We consider a uniform strip with the length (dx) and thickness (dy) as shown in below Figure,

where the density is p.

25
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Rectangle

ba
dm=pdxdy —>m=p _[ jdxdy — m=pab . The moment of inertia about its corner is given by
00

x ’ ba’ ba’ m 1 N
3 3 3 " pab

2 2 2 b . _
dl,, =x"dm =px“dxdy -l =pjz_|‘;x dxdy=p{— [y]0 = p= yo, oA, =—ma

0

If we select a vertical strip (sector, section), we have

dl =x*dm=px*(bdx) — 1. = bszdx— bx_sa ba' _ba’ m
» P ”‘po p30 3 3 7 pab

2
1
1 =—ma Iyy:Iy,y,+m(§aj -

2
ll’l’lazz o +m la —)I, , =lma2_lma2= ﬁ mazzimaz
v 2 3 12 12

I, =—ma Similarly, if we select a horizontal strip, we can prove that:

I, =—-mb’, I.. = imb2
3 12

For axis is perpendicular ox,oy I, =1, +1,, = %mb2 +%ma2 =%m(a2 +b%)

.. ) 1 1 1
For axis is perpendicular ox',oy': I.,,=1.,,+1,, = —mb*+—ma* =—m(a* +b*
pe1p Vo e Tl T T 12 @b

The moment of inertia about its corner is given by (Mass moment of inertia)

26




Dynamic (2) Mathematics Department

1 1 1 1 1
I =—mb* = =(ab)b*> ==ab’, I =—-bd I =1_+1_=—ab(a*+b’
3 3 3 Y3 T Y3 ( )
1 3 1 3 1 2 2
.. =—ab, .. =—ba l,=1,+1, =—ab(a”+b")
12 Yy 12 12
Uniform rectangular Axis coincides with Axis passing through Axis coincides to
plate (a,b) one of its sides its centroid other side
_ . ;o | I 1 2 I 1,
With respect to [ — axis w= gma vy = Ema Yy = gma
. . 1 2 1 2 1 2
With respect to 1 — axis I..=—mb l,,=—mb I, .,.=—mb
3 XX 12 X X 3
With respect to axis
: 1 1 1
perpendicular to the I = 5m(a2 +b%) 1., = Em(a2 +b%) Iz”z” = g m(a® +b*)
plane oxy

Example 3: Determine the mass moment of inertia for right Triangular Plate

(Right-angled triangle)?
Solution

We consider a uniform strip with the length (x) and thickness (dy), such that it is parallel to

x - axis, as shown in below Figure. Then

h h 27" 2
dm:pxdy—>m:pjxdyzpja(l—%)dy:ap{y—;—h} zap{h—h—}e mzlahp
0 0

0
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b
Right-Tringale
Ao.h) —
TF. PEH ¥x—a y-0
BL—% V=R 0-a h-0
3y
Lx=a(l-—
dm ; e J';)
h 2 ¥
x o
A — -_‘_f
J | \
B x
(0.0) e i (a.0)

Then moment of Inertia with respect to x— axis:

Y

h
dl . =y’dm=pxy’dy -1, =,0J.xy2dy , but E+Z:1 - x:a(l—%)
0 a

h h 3 3 47"

Y\ 2 2 Y y oy
I, =pla(=)y dy=pal| (y" =) dy=pa[———}
! h ! h 3 4h],

3 4
Ixx=pa{h——h—}=ipah3 (4—3)=épah3

%zlmhz

3 4h| 12
—ah
> 7Y

Then moment of Inertia with respect to x'— axis:

1Y 1 1 1 1
Ixx:Ix'x,+m(_hj - IX'X' :_mhz__mhzz_mhz(?)_z):_mhz
3 6 9 18 18

Then moment of Inertia with respect to x” — axis:
2
lo.=1.,+m zh :imh2 + imh2 = imh2(1+8) zzmh2
3 18 9 18 18

1 2 1 2 1 2
AlSO, I, :gma , 1, zﬁma s L :Ema .

1

IZZ —‘lxx-i-lyj, =—ma +—mh ———m(a +h ) 1 !r_—IH+Iy,y' =—ma

1
Again, I, = gm(oo')2

28

I, =lmh2
6
XX :lmhz
18
x"'x" :lmh2
2

+imh2 :im(az +h?)

18 18
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where%(oo')AB , AB=4/(0—a)* +(h—0)’ =a* + 1’

1 1, , 1, 50 , ah 1 v a’h?
—ah=—(00")AB =—(00)Na " +h — 00 =——— ,Also I,,=—m(00)) ' =———m
RNl AR ) e M T G

Right Triangular Plate About its center of
About its corner About its vertex
of height h and bass a mass
. L, | |
About its base I = gmh INNES ﬁmh Lo = Emh
. . | S 1 ) 1,
About its height I, =—ma .. =—ma I..,=—ma
6 yy 18 yy 2
About vertical axi I = ! (a*>+h) ., = 1 (@ +h2) | L =LtmGa 1), Ly =2ma +30%)
out vertical axis 2= gm a 7 g m(a o= =

Example 4: The Mass Moment of inertia of acute triangular plate?

Solution

We divide the acute triangular plate to two right triangular plate as is shown in Figure

Acute-Tringale

The Moment of inertia of about x— axis for the two right triangular plate is given as

1 1
(Ixx)lzg’nlhz’ (Ixx)zznghz’

29
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For the acute triangular plate

L= (L) (L), = g e = me ) I =

Example 5: The Mass Moment of inertia of obtuse triangular plate?

Solution

We divide the obtuse triangular plate to two right- triangular plate as is shown below

Figure

Obtuse-Tringale
h

The Moment of inertia of about x— axis for the two right triangular plate is given as

1 1
(Ixx)ABD:g(n’ﬁ"'mz)hz’ (Ixx)CBD:nghZ

For the acute triangular plate
1

1 1
(o) apc = (Ixx)ABD+(Ixx)CBD - g(ml +my) b’ _gmzhz :gml h’

Example 6 : Find the Mass Moment of inertia of right- triangular plate as is

shown in figure about all different axes?

Solution
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Right-Tringale
B o
-
5
h=4 ’
T \—x,
l \ .
o - c
g=3 ——
a*h’
From the Figure it is clear that 1, = —mh*, I =—ma’, I;c=——5——
6 6(a”+h")
1 1 16 1 1 9
I .=-mh’=-m#4)’=—m=-m, I =-ma’=-mB)Y’ ="m==-m
"6 @ 6 Y6 N 6

a’h’ (3)’4)° 9)[d6) 9®ae) 24
BC = 2 2 M= 2 2 m= m= m=__—m
6(a”+h") 6((3)" +(4)") 6(9+16) 6(25) 25

Note that 3<4<s, 1 st =§m>13c=ﬁm
T3 Y2 25

Example 7: The Mass Moment of inertia of Circular Ring?

Solution

We select a small element has the mass dm at any point located at distance (x,y) from the

origin point

dm=apdé

S

asin @
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The Moment of inertia about z—axis (The axis is passing through the center (z-axis) and is

perpendicular to the Ring) is given as

2z

dlzz =a2dm ......... IZZ :J.az dm :aZJ. dm N I — a2m
0

From the Perpendicular axis theorem (Here, the distance between the tangent and the diameter

isa)I_.=1,+1,.S0 I, +I,=ma’

But 7, and I, are symmetric,so I, =1, , Then

I =1 W =—ma® (The moment of inertia of a ring about of its diameter or the axis passes through the diameter)

. 1
From the parallel axis theorem [ ,, =1 +ma* > I.,=—ma*+ma*— I..., =—mad*
yy yy yy 2 yy 2

1 1
I,,=1_+ma*—>1,,=—ma*+ma*—>1,,=—ma’
xXx y xx 9 xXx 9

Moment of inertia about an axis is passing through the edge of Ring and perpendicular to its
plane and parallel an axis is passing through the center (z-axis) and is perpendicular to the
Ring

I, ., =IZZ+ma2—>I ., =ma*+ma* —>I, . =2ma*
Z Z Z Z Z Z

Circular Rin g For Vertical axis About axis in the plane of Circular Ring and passes in the its center

The moment of inertia of the ring about of its diameter

i i 2 Lo=1, = ma®
Axis of rotation I =ma xx = 1lyy Ema
. . 2 3 5
Axis of rotation I.. =2ma I,,=1,,=—ma
x'x o
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Example 8: Find the Mass Moment of inertia of Circular area ?

Solution

We divide the Circular area to the small Circular Rings, we selected one of them has mass

(dm ),thickness (dr) and raids (r).

a 214
So, dm=2xrpdr— mzanI rdr —>m:27rp% =ra’p
0

0

a o) 4|4 4 4 4
IZZ=J.r2dm:J.r2(27rrpdr)=2ﬂpjr3dr= P | _mpd _7pd M _ 7pd nz
) 4 |, 2 2 m 2 mdp
|
2z = Ema
From the Perpendicular axis theorem
I=1.+1..S0 I +I =‘ma
2z A yy o - vy —Ema .
. 1
But 7,..1,, are symmetric,so I/, =1, . Then I =1 =—mad’
xx xx XX yy 4
Circular area For Vertical axis APOM axis in the_ plane_ of Circular
Ring and passes in the its center
1 2 1 2
Axis of rotation I, :Ema Ly =1yy = Zma
3 5
Axis of rotation I =Zma’ I,.=1,,=ma’
2 xx Yy 4
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Example 9: Find the Moment of inertia of Thin Disc?

Solution

We divide the solid Disc to the small Circular Rings, we selected one of them has mass

(dm),thickness (dr),distraction thickness ( Az) and raids (r).

a 214
dm=2rxrpAzdr -> m :27szJ. rdr > m= 27[,0Az% =ma’pAz

0 0
So, the Moment of inertia of thin Disc is

1"4 ‘ a4
I, :I r* dm :_[ r*QrrpAzdr) = 27szz_r rdr= ZﬁpAzZ = ﬁpAZ?
0
0
4 4
2 m 2 rma pAz 2
From the Parallel axis theorem 7. =I_+ma*— I, = %maz
From the Perpendicular axis theorem 7_ =1 +1, .So I +I, =%ma2 .
. 1

But 1,..1,, are symmetric,so /., =1, . Then I =Iyy=Zmat2

Example: 10: Derive the Mass moment of inertia of Hollow Cylinder?

Solution
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Take the hollow cylinder as the corresponding shape, divide it into an infinite number of

regular circular rings and take one of these rings with the mass (dm ) and the radius (a).

Then the moment of inertia of this ring is given as  dI__ =a’dm.

Then, the total moment of Hollow Cylinder

m
1 =J.azdm=ma2 - Izz:ma2
0

p44

Example: 11: Derive the Mass moment of inertia of Solid Cylinder?

Solution

We divide the Solid Cylinder it into an infinite number of thin discs and take one of these

discs with the mass (dm ) and the radius (a).
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ll

2

Then the moment of inertia of this disc is given as. dI__ =%a2 dm. Then the total moment of

Hollow Cylinder I_ = Jlaz dm :%ma2 -  I_=—ma’
0

Example: 11: Derive the Mass moment of inertia of Hollow Sphere?

Solution

)

We divide the Hollow Sphere into a number of small circular rings and we consider one of

them with the mass (dm ), the radius ( y) and thickness (dz).

dm=2rypdz=2x(asin@)p adfd >m=2rp azr sinf@d@ —m=-2rxp a’cos@ Z =
0
=27 p a*(cos(r)—cos(0) ) =27 p a*(-1-1)=27 p a*(1+1 ) =4z p @’
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The moment of inertia of this circular ring is given as dI__ =y’dm.

Then the total moment of Hollow Cylinder 7_ = j y*dm, then

IZZ:J- yzdm:27rpa4r (sin)zsin9d9=27rpa4{r (l—coszﬁ)sinGdGJ
0 0

:27zpa{_r siné?dé?—.rr (cos @)’ d (—sin 6)
0
=2z pa’ —cosﬁ+%(cos:9)3}

0

:2ﬂpa4{l+%—{—l+%}J :2ﬂpa4{l+%+1—%} :27rpa4[2—§} :gﬂ'pa4

Izz=—7zpa4 m2 =gma2 Then IU:gma2
3 4ra“p 3 -3

=27 pa —cos(x)+ % (cos(m))’ —{ —cos(0) + % (cos(O))3H

For the symmetric of axes 1, =1 =1, :gma2

2 2 2
Also, we know 1 +1 +1_ =21, 2I, =§ma2 I S S N R R

Example: 12: Derive the Mass moment of inertia of Solid Sphere?

Solution

L
/

We divide the solid sphere into a number of hollow sphere and take one of these sphere with

mass (dm ), radius (r) and thickness (dr). Then the moment inertia of this sphere around oz
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axis is diI = %(dm) r*, for whole sphere the moment inertia is given as 1 = j%(dm) r*, where

dm=4rr*p dr— m:47rpj r’ a’rz%ﬂ' a’p. Then
0

[l R T
51 157 °

0

I..= I%(dm)rz :I

(SSH

(47zr2p a’r) r’ =§7r pj).r“dr:%;z P

I, =§7z pasﬂ:izz pa’ m =gma2 Then 1 =gma2
15 m 15 4 55 -5
3
Where the axes are Symmetrical 1 =1 =1 =§ma2

Also I +1 +1_=21,, Then 2] =§ma2 +§ma2 +§ma2 =gma2 3 ma®

Example: 13: Find the Mass moment inertial for the Hollow Circular Cone ?

Solution

Divide the Hollow Circular Cone into a number of small circular rings and take one of
these rings with mass (dm ), radius ( y ) and thickness (dL ), which is located higher (z) than
the base of the cone with radius (a ). Note that it is similar to triangles ABC and A'B'C, we

have b=z Y oo =y
h a h a
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h

; L 72, 2
- ' . —=L=~h"+a

A i B

-----

The moment of inertia of this circular ring is given as dI_ =y’dm

Then the total moment of Hollow Circular Cone 7_ = J' y> dm

h
Note that dm=27ryp dL—> m=27p I ydL, where
0

2 2
dL = /1+[§j dy = 1+(ﬁ) dyzl\/aerhz dy:fdy.Then
y a a a

214 2

dm=27z,ojydL=27rpjy£dy= 27[,05% =27zp£%—>m:7zaLp. Then
t . a a a

0

a

a a 4 3
I, =jy2 dm = J 2z ypdl)=2x pjy —dy 2 pé— =2z péa—zﬂLp a
0 0 4 o a 4 2
3 3
—alp L Mo pd M Ll qulma2
2 m 2 maLp 2 2

Again, dL= /1+ dy dz= dz— \/ +a’ dz—
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Example 14: Find the Mass moment inertial for the Solid Circular Cone?

Solution
We divide the Solid Circular Cone into a number of small Disks and take one of them
with mass (dm ), radius (y) and thickness (dz ), which is located higher ( z ) than the base of
the cone with radius (a ). Note that it is similar to triangles ABC and A'B'C, we have

h— h
—==2 5y="(a-)—>z="(a-y)
h a h a

¥

h 2 2 h
dm=ry’pdz— m:ﬁpj.[%(h—z)) dz=7rpZ—2 I(h2—2hz+zz)dz
0

0

h
a( PR 4’ X 1
N AT VI R S N SO IR
P |t ey Ty P 3 | MmERra e

The moment of inertia of this Disk is given as dI__ =y*dm.
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Then the total moment of Solid Circular Cone/ = j y*>dm, that is given

14 1k 1k 1 a ! 1 a\'"
I =—|y*dm==|y(zy’pdz)==x ‘dz=—mpl| =(h- dz=—rzp|l—~| [(h-2)d
. zly m zly( Y p dz) > pgy 2=3 p!(h( z)j 2=3 p(hj 0( z)'dz
4 _ 5 4 15
—l [EJ (h Z) —l a—4h—=i path=—r pa’ ﬂ=—7rpa4h m —ima2
2 h -5 2" RhY5 10 m 1, 10
—ma hp
3
3
I_=—ma’, Also
10

2
I, =_r >dm= zz(ﬁyzp dz)=7zp_r zzyzdz=7zp.r z{ﬁ(h—z)] dz
0 0 0 0 h

2 2 3 4 5| 2
a 2 2 3, 4 a 2 2 .z a 5| 10-15+6
—apl & [ (B2 -2m+ ) dz=npl| B Eoni L] —npLop| D2E0
p[hJJZ(Z s phz[ 372 5]0 s [ 30

2 15

P pa—zh—:—ﬂ pa’h’ :iﬂ' pa’h’ ﬂziﬂ' pa’h’ L:imhz. Then 1, =—mn’
h” 30 30 30 m 30 lﬂazhp 1

3

II. Area Moment of Inertia

Area moment of inertia also known as second area moment or 2" moment of area is a
property of a two-dimensional plane shape where it shows how its points are dispersed in an
arbitrary axis in the cross-sectional plane. This property basically characterizes the deflection

of the plane shape under some load.

Area moment of inertia is usually denoted by the letter 7 for an axis in a plane. The
dimension unit of second area moment is Length to the power of four which is given as L'. If
we take the International System of Units, its unit of dimension is meter to the power of four

or m*. If we take the Imperial System of Units it can be inches to the fourth power, in*.

We will come across this concept in the field of structural engineering often. Here the area
moment of inertia is said to be the measure of the flexural stiffness of a beam. It is an
important property that is used to measure the resistance offered by a beam to bending or in

calculating a beam’s deflection. Here we have to look at two cases.
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First, a beam’s resistance to bending can be easily described or defined by the planar second

moment of area where the force lies perpendicular to the neutral axis.

Secondly, the polar second moment of area can be used to determine the beam’s resistance
when the applied moment is parallel to its cross-section. It is basically the beams ability to

resist torsion

Area Moment Of Inertia Formulas

The area moment of inertia for the area is given in below figure can be expressed

mathematically as:

Referenced to x-axis is given by 1, =y’ dA,

o )
Referenced to y-axis is given by I, =x"dA,

O

Referenced to o -point is given by I,=r’dA= (x> +y>)dA=I,+I,,

The parallel axis theorem

The parallel axis theorem is a relation between the moment of inertia about an axis passing

through the centroid and the moment of inertia about any parallel axis.
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-
"

Q

The parallel axis theorem states that

I,=1,+Ay, I, =1, +AX

A simple recap of the Basics:
- Moments of inertia are always positive.

- Minimum moments of inertia axes always pass through the center of mass.

- Moments of inertia are a measure of the mass distribution of a body about a set of axes.
Think of a rotating ice skater. If the person stretches the arms out, she slows down and
speeds up otherwise. Hence the smaller the inertia the more concentrated or closer the mass

is about a particular axis.
- Area moments of inertia are for a particular section or a 2D surface.
- Products of inertia can be positive, negative or zero.

- Products of inertia are a measure of the symmetry of a body about a set of axes. They are

zero about any axis normal to a plane of symmetry.
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- For any given point on a section, for example the centroid or any other point, there exists a

set of axes oriented in such a way that all products of inertia are zero.

Example 1: Find the Area moment of inertia of a rectangular section about a horizontal axis

passing through base?

Solution

We consider a uniform element with the length (dx) and thickness (dy) as is shown in below Figure

Rectangle

The Area moment of inertia about its vertical corner is given by

2 2 "o 2| b _ 1, 3 |

dl =x"dA=x"dxdy — I, =I I x“dxdy=| — [y]o =—-ba .. 1_=-ma
Y Y %% 3, 3 Y3
1 2
From the parallel Axis Theorem I,=1, + m(a aj -
I.. :lbcf—l(ab)a2 = ﬂ ba’ :iba3 R =iba3
vy 3 4 12 12 Yy 12

Similarly, we can prove that: = %abﬂ [ = éalf

.. . 1 5 1, 5 1 )
For axis is perpendicular ox,0y I, =1 +1,, = 5ab +§ba =§ab(a +b°)
For axis is perpendicular ox',oy': 1, , =1, +1I.. LI :iab(a2+b2)

7z ey 12 12 12
Uniform rectangular plate Axis coincides with AXis passing Axis coincides to other
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(a,b) one of its sides through its centroid side

i i I =tpa 1. =Lpa 1 Ly
With respect to Iyy — axis w T3 a vy T 12 a Yy T3 a

. : [ 15 15
With respect to — axis I..=—ab I, =—ab ... =—ab

3 X X 12 X X 3
With respect to axis I, zl ba>+bH 1 1., ., :l b(a® +b*
] IZZ——ab(a2+b2) zz 12a (@ ) z z 361 (@ )

perpendicular to the plane oxy

Example 2: Find the Area moment of inertia of a triangular section about a horizontal axis

passing through base?

Solution

We consider a uniform element with the length (dx) and thickness (dy) as is shown in below

Figure

(0.0) 0.

(0,1)

[,

Right-Tringale

X=X - y=n 1‘—(;_‘1'—0

O—a h-0

Sy =f.r(1—£) or .\‘za(l—l)
a h
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—I I dxdy I _[ h x2dxdy ——3_[ Oh (1—%)341

I (h—y) dy—h—J (=317 y+3y°h—y’) dy

3h3 i
4 3 4 an
=—3 h3y—3ih2+y3h—y— -2 WSt - -[8- —]——ah
h 2 4 0 3h 2 4 12h
1
I .=—hd
12
Right Triangular Plate of height About its center of
About its corner About its vertex
h and bass a mass
About its b 1 =iah3 I,,:iah3 )i _l n
out 1tS base xx 12 x'x 36 O 4 a
Ab i h h I :iha3 I :ihQS _lh 3
out its height T w3 L. = Jha

ah :Lh 2 2
_ a;l(a2+h2) I, ., = % (a2+h2) Izrlz/r 2 (a +3h ),
Lo =G0 om)

12

",
3z

About vertical axis

Example 3: Determine Area the moment of inertia of the shaded area with respect to

ox, oy —axes?
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[l
=

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x—axis with the length (2 - x) and thickness

(dy) as is shown in below Figure. Then dA =(2-x)dy

y
)

y=0.25x°

d4d =(2—x)dy

IS |} J——
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So, the area moment of inertia with respect to x -axis is given as
1 1

J‘ysz _[ (2-x)dy Iy (4y)3 dy:J.: 2y*—(4) y | dy

1 10 1 10
2, 3, 550 2. 3,5 % 16 3,5 5 3 \
I = 2yv-2(4 2y -2(4)Y @7 =22 4y (2% =2 2053334
w37 M Y ;O ) @ =714 @7 = "

0

The Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y-—axis with the length(y) and

thickness (dx) as is shown in below Figure. Then dA =ydx

J}!
[l

2m

ik !
T

—— ‘q—
dx

2117 ——

So, the area moment of inertia with respect to y -axis is given as

6
1,=] vaa= fxydx—f (0.25)x dx = f 0.25)x dy—(zzi =%=§=2.67m4

Again, the Area Moment of inertia with respect to x- axis

If we consider the previous Figure (second Figure) we can find the Area moment of inertia as

1 3(? 1 31 2
5(025) [ dx= $(025)' = (x");

0

1, =] %y3dx= fozéfdx:%j:(o.zsf ) de=

1 15625 1024 116000000 116 18 8 ]
= = e S C 0 _ 220 20.53334m
31000000 10 310000000 310 35 15
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Example 4: Determine the Area moment of inertia of the shaded area with respect to

ox, oy —axes?

4 m

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x—axis with the length (x) and thickness

(dy) as is shown in below Figure. Then dA =xdy

Y y=21
A y 8

- X

- A
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So, the area moment of inertia with respect to x -axis is given as
10
2 b 2 h 2( éd 3 d 3(8) 3 3 6 .
= dA = xdy = 2 =2——=—(1024)=614.4m
J y ! y xdy !y y= j 0 3 (1024)

From the above Figure, the area moment of inertia with respect to y -axis is given by

| 08 81, ,w 81 256
I o= Loay=[Syvay=21L(12) =2 Liga)= 220 _85.3334m"
» 3xyj03yy32(y)0 35(%)=7 "

Y

The Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y—axis with the length (8- y) and

thickness (dx) as is shown in below Figure. Then dA=(8-y) dx.

X
y=—
' 8

-11.7"'__

dx A

4

So, the area moment of inertia with respect to y -axis is given as

~
—_—

4 4 x3 4 xs
x*dA = Ix2(8— y)dxz_[xz(S—Ejdx:j(Mz —;de:

0 0 0

wo

8 5 1 * 16 J2 1] 256 )
I - :—4 ——4 =@ S| =@ £-= | =22 =85.3334

The Area Moment of inertia with respect to x- axis

If we consider the previous Figure (second Figure) we can find the Area moment of inertia

with respect to x— axis (from the parallel axis theorem) as 7_ =1, , +dm (y)’
X X
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Where 1., :i(8—y)3dx:i(512—192y+24y2—y3)dx
X X 12 12

2

_ 1 1 ) 1 1 )
=—@8-y)+y==QB+y) — =l —(8+ =—(64+16y+y’),
2( y+y 2( y) y L( y)} 4( y+y7)

dm=@8-y)dx Then[ =1, , +dm (y)2 becomes
X X

—é(512—192y+24y2—y3)dx+(8—y) dx (%(64+16y+y2)J

={$(512—192y+24y2 —y)+128+32y+2y° - i(64y+16y2 + ys)} dx

2+6+8=0  3+7+9=0 2+6+8=0  3+7+9=0

{%— 16y + 2y° —iy3+128+ 32y + 2y’ — 16y — 4y’ —1y3}dx

2+6+8=0  3+7+9=0

412 Vol e sy b= 1 s10- &y b
330 3 3 8

For all the Area, we have

Lo=| ;{512 ) }d —lf {512 @ }dx‘%[sm_ & 4}
SRl i
_3[512(4) 4()(4)} 3{512(4) ()(4)} { 2(4) (8)(8)(8)}
=l[512(4)—l _ 2
3 8| 7

Example 5: Determine Area the moment of inertia of the shaded area with respect to

ox, oy —axes?

"
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Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x—axis with the length (x) and thickness

(dy) as is shown in below Figure. Then dA =xdy

dv

- 16m -

So, the area moment of inertia with respect to x -axis is given as

I, =[ydA= jyzxdy ijz(y)2 dy =j vty
0 0

0

5
- @7 102804 gt

The Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y—axis with the length (4-y) and

thickness (dx) as is shown in below Figure. Then dA =(4-y) dx
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16 16 ] 6 3 )
I, = ijdA = Ixz(4— y)dx :sz( 4_(x)2]dx :I( Ay _(x)gjdx _ 4(;6) ~ 2(176)2
0 0 0

I, =5461.333 —4861.1428 = 780.2m"

Example 6: Determine the Area moment of inertia of the shaded area with respect to

ox, oy —axes?

—— 100 mm 4‘

200 mm ) 1 2

lel x

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the x—axis with the length (x) and thickness

(dy) as is shown in below Figure. Then dA =xdy

y

‘._IOCm——I

10
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So, the area moment of inertia with respect to x -axis is given a

10 10 1 1o 3 1o 7 10
I, :2J ysz: 2'[ y2xdy = 2J‘ y2 (IOy)Z dy :2(10)2 y2 dy :2(10)2 ;yz
0 0 0

0
1 7
I = 2(10)5 [%(IO)ZJ =% 10* m*

The Area Moment of inertia with respect to y- axis

If we consider the previous Figure (first Figure) we can find the Area moment of inertia with

respect to y— axisas I :J.%x3dy

3 3 5

10 3 200 3 2 2
1,=2f %x3dy= of %(my)zdy:—z(l;)) (y)2 dy = 240 200)
0

) sy 4 o 0 3 5
— (10)22=—(10)"'=—10"m
15( ) 15( ) 15

Iyy =

Again the Area Moment of inertia with respect to y- axis

While if we consider a uniform strip line parallels to the y—axis with the length (10-y) and

thickness (dx) as is shown in below Figure. Then dA =(10-y) dx

\_4

10 10 1 10 1
I, :ZIxsz:2£x2(10—y)dx:2!:x2(10—Ex2de=2£(10x2 —Bx“j dx

10 4 4
=2(9x3—ix5j o[ 100107 =i(50—30)104=ﬂ104=i104
3 507 ), 350 ) 150 150 15
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Example 7: Determine the Area moment of inertia of the shaded area with respect to

ox, oy —axes?

Solution

The Area Moment of inertia with respect to x- axis

We consider a uniform strip line parallels to the y—axis with the length (y) and thickness

(dy) as 1s shown in below Figure. Then dA =y dx

y

[
v =x
/?
- X ™ m
V
v
- Sm -
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So, the area moment of inertia with respect to x -axis is given as

1, 17 4 2F 20 5% 2,0 2048 A
I =[=ydx==[v'Qydy)=2(y'dy== — 24y =220 4 — 136,
« j3y X 3_([y(yy) 3£y y 15(y ) 15() o' =136.533m

The Area Moment of inertia with respect to y- axis

4
m

s 2{ T_ 20482
0

I, =I xsz:jsxzy dxzjsxz(x); dxzrx2 dxz; x? 7
0 0 0
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III. Products of Inertia of mass

Products of Inertia of mass

(1) If the body is located in a plane as shown below figure and has mass (dm). Then the

product of inertia with respect to the axes ox,oy is given by

3

= X
I, =xydm (D
Note that I, =xydm=1, =yxdm
(2) For the body in space
}
-
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With respect to the axes ox,oy

I, =xydm (2)

With respect to the axes ox,oz

I =xzdm (3)

While, With respect to the axes oy,oz

I, =yzdm 4)
Product of inertia can be positive or negative value as oppose the moment of inertia. The

calculation of the product of inertia isn't different much for the calculation of the moment of

inertia. The units of the product of inertia are the same as for moment of inertia.

Parallel-axis theorem for products of inertia

For any rigid body has mass (m ) and the center of mass (x,,,,y,, ) as shown below figure

i.._‘

Dividing the body into a number of small elements. Taking a small element whose mass
(dm) and its coordinate with respect to the original axes is (x,y). With respect to axes parallel
to the original axes and passing through the center of mass the element has the coordinate
x5,

For the original axes (x,y), the inertial product of mass (dm) is given by

I, =xydm (D)
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For the total mass (m)
I, = J.x ydm (2)

From the above Figure x=x +x,, y= y o+ y,,, and into Eq. (2), we have

I, = Ixydm: I {[x’ +x,, j [y’ + ¥, j}dm = J' {x’y’ +xy,, +x, V' +x, V., }dm

I, =I x'y'dm + ycmj x'dm +xcmj y'dm +x,, ycmj dm (3)
But, it is well-known that

I xy'dm =1, x,, ycm_[ dm=x,, y,, M,

' 4
jyd —)Iy'dmzijdm )

- jx'dm = )_cj.dm, y= J.d
m

From Eq. (4) into Eq. (3), we have

Xy

I,=1.,+Y,, )_cj dm +x,, yj dm +x,y, m

Ixy=Ix'y'+ycmim+xcmym+xcmycmm (5)

But the coordinate (x, y) is the center of mass from the center of mass and it is equal to zero.
Substituting in (5) we get

I, =1, +mx,y,, (6)

Where 1, is the product of inertia with respect to the two axes ox, oy, while 7 ; is the

product of inertia with respect to the two axes o x,0y and x, .y, are the distance of the

center of gravity from the two axes ox, oy, respectively.

Notes

(1)-The product of inertia is a product of different coordinates, so it can be positive or

negative quantity
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(2)- For the product of inertiais I, =1, I =1 I =1

yx yz zy? x Xz

(3)- If the Products of Inertia are zero with respect to any two planes. It is said that the axis

of intersection of these two axes is a principal axis.

(4) If the inertia product is neglected with respect to any two principal coordinates ox, oy, it

1s said that the tow axis ox, oy are principal axes

(5)- Any symmetry axis in a flat plate with any perpendicular axis , then these axes are called

the principal axes

(6) - The product of inertia is finished for the two axes are perpendicular, if each other and

one or both axes of symmetry.

Example 1: Find the Product of Inertia of a thin uniform rectangular plate?

Solution

We divide the plate to small uniform strip, we consider one of them with the length (dx) and

thickness (dy) as in Figure, where the density is p.

Rectangle

dx

-u—'],’ — = ff_'l'
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b
dm=p dxdy >m= pj:j:dxdy = paf dy=abp—> m=abp
0

With respect to ox, oy, we have dI, =(dm)xy.

For the total plate, we have

bpa a’ b’ ab®> m_a’b® m 1
Ixy=-[jxy (pdxdy)—)lxy=,0J.0-[Oxydxdy=7?p= 1 p;= 2 p%=zmab

From the theory of parallel axes for the product of inertia, the product of inertia with respect

to ox , oy' isgiven I, =1 . +mx,y,, — imabzlx,y, +m(%a)(%b)—) =1, =Zmab —Zmab =0

!

I1,.,=0. So, the axes ox , oy are symmetric axes.
Example 2: Find the Product of Inertia of a thin uniform triangular plate?

Solution

b pati=2) f 27 ol
dmzpdxdy—)m:pjojo h dxdy:pja(l—%)dy:ap{y—;—h} =ap{h—2—h :Eahp
0

0

o

f Right-Tringale

A (Oﬁ h) 5, xl y-— '1,.-'1 x—a y-— 0

= —> =
\ X,—X,  V,— W 0-a h-0
y=h(l-Y or x=a(-2)
a h
dax
) - \
.
-

(0,00 a -k (a.0)
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With respect to ox, oy, we have dI  =(dm)xy. For the total plate, we have

I, =I f xy (p dxdy)—>1, =pfhj - h)xydxdy——zpjh (1—1)2 ydy

zthj (h=y)’ ydy—thpj (H* - 2yh+y>ydy—2h2pj (yh* =2y*h+y")dy
:a2 y2h2_2y3h+y_4h:a_2 h_4_2_h4+h4 2h4p[_ ]:a2h4p
2P 2 3 A T 2 3 A | A 40
_azh2 ﬂ_azh2 m —imah
4 Tm o T 12
—pah
2
1
I =—mah
Y12

From the theory of parallel axes for the product of inertia, the product of inertia with respect

! ! . .
to ox , oy 1S g1ven

1 1 1 1 1 1

I =1, +mx - —mah=1_,+m(=a)(=h)—> =1, =—mah——mah=—(6—-8
Ix'y':—imah

36
I,,=1, +mx - 1 ——imahnhm( a)(—h) = ——imah—gmah—i(—l—S)mah
2 = Dty T Eem Fem 36 36 9 36
Lo =—mah

4
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IV. Moments of Inertia about inclined axis

X'=xcos6+ ysing
v y' =ycosf —xsing

rcos@
) dm

o vsin @ ¥
/ Ycos@

xsin @

For ox' dl .. =(dm)y”

Ix'x’ = jylz dm
y' =ycos@ — xsin €

I.. = J-(ycosé?—xsin 49)2 a’m=J‘y2 coszﬁdm+jx2 smzﬁdm—ijycosﬁsm Odm
1., :c0s249j.y2 dm+si1126"[x2 dm—2cos @sin Hjxydm

I, =1,cos’0+1 sin’60—1I sin26

For oy’

I, :J.x'z dm

x'=xcos@+ ysin

I, = j(xcosl9+ ysin @) dm = sz cos’ 0alm+‘[y2 sin”® @dm + 2]xycos€sin Odm
1, =cos’ ijz dm+sm291y2 dm+2cos @sin Hjxydm

2 .2 .
I, =1 ,cos"0+1 sin"0+1 sin20

For 1,

63
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1., =Ix'y'dm (5)
x'=xcos@+ ysinf, y' =ycos@—xsinf

I., =I(xcosz9+ ysin 8)(ycos @ — xsin 8)dm

I., :J‘xyCOSZHdm—J‘x2 sin 00050dm+jy2 cos @ sin Hdm—jxysmze dm

., =cos’ Hjxydm—sm Gcosesz dm+ sin Gcosﬁjyzdm —sinzﬁjxy dm

y =cos’ @I —cos@sinOI  +cosOsin I, —sin’61,

oy = (cos2 0 —sin’ G)Ixy +sin & cosH(Ixx —Iyy)

IXX .
I, = 2 sin 20+ 1 cos 26
x 2 ®

I -1
= _Ygin20+1_cos20 (6)
2 ®

x'y'

From Eq. (6), the maximum angle happens at 7, =0

tan 26 = ; a2 (7)

2 ) .
Eq. (2)....... I, =1, cos" @+ sin"@—sin261

5 14+cos 26 i, 1—cos 268 _ein 201
x'x XX 2 yy Xy

I_+1 I_—1
=z % 4. X 5 2-cos 26 — 1 sin 20 (8)

2 -2 .
Eq. 4)....... I, =1,cos*@+1I,sin"@+1 sin26

1+ cos26 1—cos26 )
1., =1, 2 +1, +1,,sin 20
I +1 I -1
=2 5 = 42 5 =c0s 260 + 1 sin 20 9)

Add 1+2 and 8+9, we have

Loo+1,, =1, +1I, (10)

XX
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Example 3: Find the moment of inertia with respect to a diagonal of the

rectangular plate?

Solution
J;
Y 1, = —ma’
“ i Rectangle x'
1
I_ =—mab
P 4;’”6‘ -
\,."(1“+b2
b
Sin@ =—
Jat+b? 1
Cos8 = a ]n’ :_mbz
VJa? +b? 3
0 _» y
0 - o -—

It is well-known
I, =1,cos’0+1 sin’>0—1I sin26

2 .2 .
I, =1 ,cos"0+1 sin"0+1 sin20

I.—1, |
Ix,y, = sin 26’+Ixy cos 20
Where
1 ., 1 , 1
I, :gmb . 1, =-ma’, I, :Zmab

Then From Eq. 1-4, we have

I,,=1,cos’0+1 sin’0—1I sin20 [,

XX

(D
2)

3)

4)

mb’ cos’ 9+%ma2 sin” H—imab (2sin @cos O)

2 2
1 a 1 b 2
Iu:—me —— +—ma2 —— ——mab
o3 (\/aersz 3 (a2+b2J 4 (
7 —lm a’b? +lm a’b? —lm a’b? o a’b?
U3 3 AP+ 2 AP +b a’+ b’

1 —lm _a2b2
6 @+ b

2 =2 :
I, =1 cos"0+1 sin"0+I sin20 1,
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\/a2+b2

)

1 1
—2+2-3)=—m
6( ) 6

21.2
ab

a’+b’

S

%ma2 cos’ 9+%mb2 sin” ¢9+imab (2sin Ocos Q)
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2 2
1 ) a 1 ) b 2 a b

. =—ma’| — | +—mb’| — | +Zmab

3 [\/a2+b2J 3 [ a2+b2J 4 (\/a2+b2J[\/a2+b2J
Y T34 3 d+b 2 A +b 3 d+b 2 d+b

1 4 2,2 4

=———ml2a” +3a°b* +2b 6

yy 6(a2+b2) ( ) ( )

-1 .
I., = 5 S sm2¢9+1xy00526’

Xy

1., :(Ixx —Iyy)sin OcosO+1 (coszé’—sinzé?)

xy

2 2
e L ) v S ) R Rerred
3 3 \/az+b2 \/612+b2 4 a’+b* a® +b?

1 (» o\ ab 1 a’ b* 1 5 2( ab j
I,,:— - —ma —_ = — b —_ 4_3
* 3m(b a )(a2+b2)+4 b{az+b2 a2+b2} 12m( “a ) a*+b* ( )

~

~

1 ab
L., =Em(b2—a2)(a2+b2) (7)
Note that at 9 =45°, we have a=b, Then

1 a’b’ 1
l=—m ———|=—m,

6 \a +b 12

1 4 272 4 1 7

[, =———ml2a*+3a%*+2b* )=——(T)m=—m, 8
= R Tl ®)

Ix,y,:%m(lf—az)( ab JzO

a*+b?

Example 4: Determine the product of inertia 7, of the right half of the parabolic

area, bounded by the y=2m and x=0?
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Solution
Yooy
1
\ 7 ‘—f:zﬁ—-l —x'
2 -
y=2x"
y
l ;
1
2 3 4
an=pxayom=pf( 1] ay= 52D - 2208 - 22 2L > m-t
22
dal,, =dl ., +dmx,,y,,
= [dmx,, y =I(pxdy)(lx)y=lpjx2 =lpjzy =—p[ydy
ofrs s 22w 2 w1 A
Y R L R L L L L B
Yo
3
Exercise

Find the moment of inertia about ox’ and oy’ axis also the product of inertia for rectangular

plate as is shown Figure (3x4)?

3m

30°
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Chapter 3

Application

Newton’s second law for rotation

We have thus far found many counterparts to the translational terms used throughout this
text, most recently, torque, the rotational analog to force. This raises the question: Is there an
analogous equation to Newton’s second law Y F =ma , which involves torque and rotational
motion? To investigate this, we start with Newton’s second law for a single particle rotating
around an axis and executing circular motion. Let’s exert a force F on a point mass m that is
at a distance r from a pivot point (see below Figure). The particle is constrained to move in a

circular path with fixed radius and the force is tangent to the circle. We apply Newton’s

second law to determine the magnitude of the acceleration « - in the direction of 7 .
m

Recall that the magnitude of the tangential acceleration is proportional to the magnitude of

the angular acceleration by a=ra

Frictionless tabletop

\N

Circular path of radius r
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Substituting this expression into Newton’s second law, we obtain F=mra
Multiply both sides of this equation by r, we have rF=mr’«a

Note that the left side of this equation is the torque about the axis of rotation, where r is
the lever arm and F is the force, perpendicular to r. Recall that the moment of inertia for a

point particle is 7=mr*. The torque applied perpendicularly to the point mass in above

Figure is therefore =1«

The torque on the particle is equal to the moment of inertia about the rotation axis times the
angular acceleration. We can generalize this equation to a rigid body rotating about a fixed

axis.

If more than one torque acts on a rigid body about a fixed axis, then the sum of the torques

equals the moment of inertia times the angular acceleration:
Zri =la

The term/ « is a scalar quantity and can be positive or negative (counterclockwise or

clockwise) depending upon the sign of the net torque. Remember the convention that
counterclockwise angular acceleration is positive. Thus, if a rigid body is rotating clockwise

and experiences a positive torque (counterclockwise), the angular acceleration is positive.

Example-1: A uniform rod of length 2L and mass M is pivoted (is hinged) at one end and

the other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it

was horizontally. Prove that the horizontal reaction will be maximum when the Rod tilts on

the horizontal at an angle % and in this case the vertical reaction is given as %mg ?

Solution
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mngcosd

The motion of center of Rod

m(—L6"2)=mgsin¢9—R1 > mLO” =R, —mgsin @
mL6O" =mg cosd—R,

The rotation of motion ( at then of Rod)

L, 6)=m, > 1,67 =m,
dt
Eq. (3) maybe written as

%m(ZL)2 0" =(mgcos@) (L)—> 6= j—‘icos 0

o do _ 38

At the start point #=0 and 6° =0, then ¢, =0

o2

o =3—gsin0
2L

From Eq, (5) into Eq. (1) mL(g—‘isin szRl -mgsin@ - R =mL (;—isin 6‘}+mg sin 6

5 .
R, =5mg sin &

70

o0 —g

mg

o2

A7 _ 28 s —> je°d9'=3—gjcosed9 L0
d0 4L AL 2

mg sin 8

Io™
(1)
2)

3)
“4)

3—gsin 0+,

4L
)

(6)

X

.2
-Ldg
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From Eq, (4) into Eq. (2)

mL [i—icos&}=mg cosd—-R, — R,=mg cos9—4img cos @

R, = 4lmg cos @ (7)
But

R, =R,sin @—R, cosd (8)
R, =R,sin 6+R,cos O 9)
Then

R = (4lmg cos &) sin 9—(§mg sin@) cosd > R, :—gmg sin & cos &
9 .
R, =g sin 260 (10)
5 . . 1 5 .2 1 )
R, =(5mg sin @) sin 9+(ng cost)cosd — R, =5mg sin 0+ng cos” @
y

R =[§ sin20+4lcoszt9jmg (11)

From Eq. (9) R, = 82mg sin 20 , R, 1s maximum if sin260 is maximum and sin26 is

maximum if sin20=1 , then 29:§—> 9:%
o (5(1Y 1(1Y 1
Inthiscase R =")=|=|—=| +—| —=| |m - R =—m
(0= [2(J§J 4(ﬁng rTg e

Example-2: A uniform rod of length L and mass M is pivoted (is hinged) at one end and the

other one is free to rotate in the vertical plane. If the rod is beginning the rotation when it

was vertically with angle velocity 1/‘Q’Tg . Find the reaction at the hinged point at 9 =§ and

prove that the Rod move angle & in time ¢=2 / 3£ In (sec(g) + tan(g)j .
8
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Solution
Rl R'&
5 X
AN
re”
P mg cos &
mgsin g
me -Le"
:‘;
The motion of center of Rod
—mLO"” =mg cos@—R, — mLO" =R —mg cosd (1)
mL6O" =R, —mg sin 0 (2)
The rotation of motion (At then of Rod)
d ° (1]
E(Ioe ):MU - 1,07 =M, )
Eq. (3) maybe written as
1 2 e . o 3g .
5m(2L) 0" =(-mgsnf) (Ly—> 6~ = —Esm 0 4)
g 49 _ 3g 3 0 3g

—————ﬂmﬁ—éjpﬂ€=—4ish@ﬂ?%——zlwmﬁﬂq
do 4L 4L 2 4L

At the start point =0 and 6" =1/3—g, then ¢, _38_38_38
L 2L 4L 4L
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2

O _38 os0+38 6" :3—g(1+0050) (5)
4L 4L 2L
Note that

0 0 ZQ_-zg: 2Q__ ZQZ ZQ_
cos(H)—cos(5+E)—cos (2) sin (2) cos (2) (I—cos (2)) 2cos (2) 1

From Eq. (5), we have

. db 3g , 0 do 3g 0 1 3g
O=—= 12 )| o—=,]=cos(%) —> d6?=1/— dt
dt \/ZL( o (2)j dt L Cos(z) I 0 L j

COS(E)

900y - |38 - 4 9\ |38
2jsec(2)d(2) 7 far — 2]11[sec(2)+tan(2)) TR

At the start point =0 and =0

2In (sec(0) + tan(0))=c, — ¢,=2In(1+0)=0

L 0 o
t=2 / g In (SGC(E) + tan(E)j (6)

mL[i—i(l+cos€)j:Rl —mgcost > R, :mL(;—i(l+cos0)j+mg cos@ R, zzl(?w Scos @ jmg

(7) mL(—i—gLsiné?j:Rz—mgsinG — R2=mgsin9—4imgsin9

R2=4lmg sin & ()
Atg=Z

3
R, :%(3+ SCos(g) ngzzl(3+§ ngz%mg — R, :%mg 9)
R2:4lmgsin0:4lmgsin(§):4lmg (?) - Rzzgmg (10)
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Example 3: A body rolls down an inclined plane without slipping. Describe the motion of
the body?

Solution

First draw a free body diagram of the body, which down the plane:

We can write both of the Linear and rotation equations of motion

mgcosda

Linear equations of motion (Equations of motion of center of gravity)

mx™ =mg sma—F (D)
m(0)=R—mg cosa (2)

Equation of Rotational Motion of a Rigid Body

L.0)=-m, » 1.6"=m, 3)

dt

16" =(F) (> F=1cg 4)
a

mx™ =mg sin a — L. o (5)

a
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Pure rolling

x*=a6",then x*=a6"

mx- =mgsma——-x — X +—5x =gsma
a ma
. sin o " . sin
N A S b (6)
IC IL‘
1+ 5 1+ 5
ma ma

vi=0+2 g s > vi=2 gsmIa .h — vzz%
1+ —= I+ — s o 1+ —

ma ma ma
(7)

I 1 i . 1 .
Foltc 1| 85X —)F=(—“]mgsma or F=———mgsina (8)

F<uR

1 )
—— ¢ mgsino
(ma2+ ICJ 8

mg cosa

F<uR —),u>% - u>

1
> (m] tan o (9)
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Example 4: A Solid Cylinder of mass m and radius « rolls without slipping down an
inclined plane whose incline angle with the horizontal is theta. Determine the acceleration of
the cylinder's center of mass, and the minimum coefficient of friction that will allow the

cylinder to roll without slipping on this incline?

Solution

First draw a free body diagram of the cylinder, which down the plane:

We can write both of the Linear and rotation equations of motion

9.

mgsin o

mgcosa

Linear equations of motion (Equations of motion of center of gravity)

mx™ =mg sma—-F (1)

mg cosa =R (2)

Rotational Motion of a Cylinder

%(L 0)=M, - 1.6"=M, 3)

that can be written as

%mazﬁ" =(F) (a)—» F :%maﬁ" 4)
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The necessary condition for rolling without slipping is the contact point have zero
velocity (the condition for no sliding is). 1. €. x" =a8* — x* =a6*. Substitute in Eq. (4), we

have
F=—mx" (5)

Again, Substituting from Eq. (5) into Eq. (1), we have

mx*™ :mgsina—lmx" - x"+lx":gsina — 3 x" =gsina
2 2 2
X :% gsin & 6)
Substituting from Eq. (6) into Eq. (5), we have
F—lm(2 sin &) - F—lm sin & (7)
238 378

Again, the necessary condition for rolling without slipping is the static coefficient and is

generally lower than the static coefficient of friction. 1. e. F < uR

> (8)

1 .

gmgsma 1 sing
u> —— > u>—

mg cosa 3 cosa

|
> —tano
#=3

Example 5: Calculate the minimum coefficient of friction necessary to keep a thin circular

ring from sliding as it rolls down a plane inclined at an angle @ with respect to the horizontal

plane.

Solution

First draw a free body diagram of the ring, which down the plane:

We can write both of the Linear and rotation equations of motion
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90

mgsine

mgcosa

\x

Linear equations of motion (Equations of motion of center of gravity)

mx™ =mg sma—F (D)
mg cosax =R (2)

Rotational motion equations

%(109')=MC — 1.0"=M, 3)

that can be written as
ma’*0” =(F) (a)»> F=mab" )

The necessary condition for rolling without slipping is the contact point have zero
velocity (the condition for no sliding is). 1. €. x* =a6* — x™ =a6™. Substitute in Eq. (4), we

have
F=mx" )
Again, Substituting from Eq.. (5) into Eq. (1), we have
mx" =mgsina—mx”T — xT+x"=gsina - 2 x"=gsina
"= gsina ©6)
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Substituting from Eq.. (6) into Eq. (5), we have
1 . 1 .
F=m(5 gsina) - F:Emgsma (7)

Again, the necessary condition for rolling without slipping is the static coefficient and is

generally lower than the static coefficient of friction.i.e. F < uR

> (8)

1 .
Emgsma
u> “=—- >

1 sinx
ﬂ —
mg cosa 2 cosa

1
> U >Etana

Example 6: A uniform solid sphere of mass m and radius « rolls without slipping
down an inclined plane whose incline angle with the horizontal is theta.
Determine the acceleration of the ball's center of mass, and the minimum
coefficient of friction that will allow the ball to roll without slipping on this

incline?
Solution

First draw a free body diagram of the sphere, which down the plane:

We can write both of the Linear and rotation equations of motion

mgsine

mgcosa
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Linear equations of motion (Equations of motion of center of gravity)

mx™ =mg sma—-F (1)
mg cosa =R (2)

Rotational motion equations

%(lce')ch > 10" =M, 3)

that can be written as

%mazﬁ" =(F) (a— F =§ma¢9" 4)

The necessary condition for rolling without slipping is the contact point have zero velocity. i.
e. x*=al’ — x™ =a6”. Substitute in Eq. (4), we have

F = gm X (5)
Again, Substituting from Eq. (5) into Eq. (1), we have

. 2 o oo 2 o . 7 o0 .
mx“zmgsma—gmx - X +gx =gsina > — x"=gsina

X =§ gsina (6)

Substituting from Eq. (6) into Eq. (5), we have
Fz%m(ggsina) — F:%mgsina (7)
Again, the necessary condition for rolling without slipping is the static coefficient and is

generally lower than the static coefficient of friction. 1. e. F < uR

F

,U>E (8)

2 )
Smgsina 2 sna

2
y7i — U >—-tana
mg cosa 7 cosa 7
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Example 7: A uniform sphere of radius & initially at rest rolls without slipping

down from the top of a rough sphere of radius b. Find the angular velocity of the

ball at the instant it breaks off the sphere and show that the angle COS‘I[%J with

the vertical?

Solution

First draw a free body diagram of the sphere, which down the plane:

We can write both of the Linear and rotation equations of motion

Note that
v=(v,, Vg):(r', ro )
i=(a,, ae):(r"—rﬁ’z, r¢9"+2r’0')

Equations of motion of Center of Gravity

m(a+b)0*” =mg sm@—-F (D)
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—m(a+b)0" =mg cos@—R (2)

Rotational motion equation

L. g)=M, > 10" =M, )

That can be written as
2 5w 2 .
gma " =(F) (a)>» F-= gma(p 4)

The condition for pure rolling is (a+b)0=ap — (a+b)0° =ag’, then

a+b ..

(a+b)0" =ap” —> ¢ = 0 (5)

a

Substituting from Eq. (5) into Eq. (4), we have

2 -
F=_m(a+b) 0 (6)
Again, substituting from Eq. (6) into Eq. (1), we have

m(a+b) 6°° =mg sin 0—%m(a+b) 0" > %m(a+b) 0" =mg sin 0

0 :7(a+b)g sin @ (7)

od% 5 o no — [6ra0" = g [sinodo
dO  7(a+b) 7(a+b)
07 5
i 0+ 8
2 7(a+Db) § cosvTa ®)

At the initial motion =0 ,then 8° =0

Then in Eq. (8), we have ¢, = T > g and again in Eq. (8), we have
a

+b)
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A 5 5 5

S TR S h A TPVt i TS AL

o8 emn) > Farn="2a-c0 )

7(a+b)

Substituting from Eq. (9) into Eq. (2), we have

—m[%g(l—cos@)j=mg cosd—R

R=mg cos&—gmg(l—cosﬁ) - R:gmg cos@—gmg (10)

When the ball instant breaks off the sphere

At the instant, that the ball breaks off the sphere, the reaction equals zero, so from Eq.

(10), we have
ng cos@—&mgzO - %mg cos@z?mg — 17 cos8=10
cos0=29 _, t9=cos_1(&j 5 0=53.968° (11)
17 17

In this case the angle will be maximum (6=6,_ )

Where the velocity is given by V=(v,,v,)=(r, r6 ) Cus V= (O, ro )

10g
T(a+b)

v:rﬁ’:(a+b)\/ (l—cos@):\/ng(a+b)(l—cosﬁ)

At the moment (=6, )

_ |10g _lo,_ 10g 17-10,_ [10g 7
V_\/ 7 a+b)( 17) \/7 (a+b)( 17 ) \/7 (a+b)(17)

V= /1;)—7g(a+b) (12)
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