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1. Operations Research Overview

The main core of the current chapter is to give an answer to the following questions; what is

the operations research? and how it is useful to different branches of science, especially to

the computer science researchers. Then we provide the definition of optimization problems

and see its mathematical statement. Finally, examples for establishing the mathematical

formulation of practical problems as well as some benchmark problems are given.

1.1 Introduction

1.1.1 Definition of Operations research

Operations research, for short OR, is the act of obtaining the best result under given

circumstances. Thus, we may have several solutions for a given problem and our aim is to

find the best solution among those solutions taking into account some certain constrains

that many exist.

- Another definition of OR is the interdisciplinary branch of applied mathematics and formal

science that uses methods like mathematical modeling, statistics, and algorithms by applying

advanced analytical/numerical methods to arrive at optimal or near optimal solutions to

complex problems hence, make better decisions.
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1.1.2 impacts and applications of OR

The impacts and applications of operations research: "Operations research has had an

impressive impact on improving the efficiency of numerous organizations around the world.

In the process, OR has made a significant contribution to increasing the productivity of

the economies of various countries. There now are a few dozen member countries in the

International Federation of Operational Research Societies (IFORS), with each country

having a national OR society. Both Europe and Asia have federations of OR societies to

coordinate holding international conferences and publishing international journals in those

continents". The following are the abbreviated set of typical operations research applications

to show how widely these techniques are used today:

• Accounting:

– Assigning audit teams effectively

– Credit policy analysis

– Cash flow planning

– Developing standard costs

– Establishing costs for byproducts

– Planning of delinquent account strat-

egy

• Construction:

– Project scheduling, monitoring and

control

– Determination of proper work force

– Deployment of work force

– Allocation of resources to projects

• Facilities Planning:

– Factory location and size decision

– Estimation of number of facilities

required

– Hospital planning

– International logistic system design

– Transportation loading and unload-

ing

– Warehouse location decision

• Finance:
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– Building cash management models

– Allocating capital among various al-

ternatives

– Building financial planning models

– Investment analysis

– Portfolio analysis

– Dividend policy making

• Manufacturing:

– Inventory control

– Marketing balance projection

– Production scheduling

– Production smoothing

• Marketing:

– Advertising budget allocation

– Product introduction timing

– Selection of Product mix

– Deciding most effective packaging

alternative

• Organizational Behavior / Human Resources:

– Personnel planning

– Recruitment of employees

– Skill balancing

– Training program scheduling

– Designing organizational structure

more effectively

• Purchasing:

– Optimal buying – Optimal reordering – Materials transfer

• Research and Development:

– R & D Projects control

– R & D Budget allocation

– Planning of Product introduction
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1.1.3 Historical Background of OR

• Pre-World war II: The roots of OR are as old as science and society. Though the

roots of OR extend to even early 1800s, it was in 1885 when Ferderick W. Taylor

emphasized the application of scientific analysis to methods of production, that the

real start took place.

• Henry L. Gantt, emerged during a time when job scheduling methods were largely

disorganized. During this period, it was common for a job to smoothly proceed on

one machine but then experience lengthy waiting times before being accepted by the

next machine. Gantt introduced a systematic approach by meticulously charting the

path of each job through various machines, thus reducing delays significantly. Thanks

to the Gantt procedure, it became feasible to forecast machine workloads several

months in advance while maintaining precision in quoting delivery dates.

• In 1917, A.K.Erlang, a Danish mathematician, published his work on the problem of

congestion of telephone traffic. The difficulty was that during busy periods, telephone

operators were many, resulting in delayed calls. A few years after its appearance,

his work was accepted by the British Post Office as the basis for calculating circuit

facilities.

• The well known economic order quantity model is attributed to F.W. Harris, who

published his work on the area of inventory control in 1915.

• In the 1930s, H.C. Levinson, an American astronomer, utilized scientific methods to

address issues related to merchandising. His research encompassed the systematic

examination of customer purchasing patterns, the impact of advertising on consumer

behavior, and the correlation between the selling environment and the nature of

products being sold.

• However, it was the First Industrial Revolution which contributed mainly towards the

development of OR. Before this revolution, most of the industries were small scale,

employing only a handful of men.

• The advent of machine tools-the replacement of man by machine as a source of

power and improved means of transportation and communication resulted in fast
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flourishing industry. It became increasingly difficult for a single man to perform all

the managerial functions ( of planning, sale, purchase, production, etc.). Consequently,

a division of management function took place. Managers of production, marketing,

finance, personnel, research and development etc., began to appear. With further

industrial growth, further subdivisions of management functions took place. For

example ,production department was sub-divided into sections like maintenance,

quality control, procurement, production planning, etc.

• World War II: During World War II, the British military leadership enlisted a team

of scientists to analyze strategic and tactical challenges related to both air and land

defense. This team was led by Professor P.M.S. Blackett from the University of

Manchester, a former naval officer. Known as the "Blackett circus," this group

consisted of three physiologists, two mathematical physicists, an astrophysicist, an

army officer, a surveyor, a general physicist, and two mathematicians. Many of the

problems they tackled were of an administrative nature. Their primary goal was

to determine the most efficient allocation of scarce military resources for various

military operations and the tasks within each operation. Their work encompassed

optimizing the use of newly developed radar technology, assigning British Air Force

planes to specific missions, and devising effective patterns for locating submarines.

This assembly of scientists marked the inception of the first operational research (OR)

team.

• The name operations research ( or operational research) was apparently coined because

the team was carrying out research on (military)operation.the encouraging results

of these effort led to the information of more such teams in British armed services

and the use of scientific teams soon spread to western allies-the united states, Canada

and France. thus through this scince of operation research originated in England,the

united states soon took the lead.in united state these OR teams helped in developing

stategiesfrom mining operations, inventing new flight patterns and planning of sea

mines.

• Post-world war II : Right after the war, the achievements of military teams garnered
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the interest of industrial managers in search of solutions for their challenges. The

field of industrial operational research took distinct paths in the United Kingdom

and the United States. In the UK, the urgent economic circumstances demanded a

significant boost in production efficiency and the establishment of new markets. The

nationalization of select key industries further expanded the scope for operational

research. Consequently, operational research quickly extended its reach beyond the

military domain to encompass government, industrial, social, and economic planning.

• In USA the situation was different. Impressed by its dramatic success in U.K., defence

operations research in U.S.A was increased. Most of the war experienced OR workers

remained in military service. Industrial executives did not call for much help because

they were returning to the peace-time situation and many of them believed that it

was merely a new application of an old technique. Operation research by a variety

of names in that country such as operational analysis, operation evaluation, systems

analysis, system evaluation, system research and management science.

• The scenario in the USA was distinct. The remarkable success of operational research

in the UK left an impression, and as a result, defense-related operational research

efforts in the USA were expanded. A majority of the operational research experts

with wartime experience continued to serve in the military. Industrial executives,

on the other hand, did not seek as much assistance because they were transitioning

back to peacetime conditions, and some of them perceived it as a mere adaptation

of existing techniques. In the United States, operational research was referred to by

various names, including operational analysis, operation evaluation, systems analysis,

system evaluation, system research, and management science.

1.1.4 Basic facts about OR

The following are basic facts about Operations Research:

• It is a science-based approach to analyzing problems and decision situations to

aid solving such problems and decision-making. It is therefore a practical activity,

although based on the theoretical construction and analysis.
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• It is an approach and an aid to problem-solving and decision-making.

• Its distinctive approach is facts-finding and modeling.

• It examines functional relations (i.e. functions of a system and their related compo-

nents) from a system overview.

• It utilizes interdisciplinary mixed-team approach to solving management problems.

• It adopts the planned approach (updated scientific method which reflects technological

advancement as the computer) to management problems.

• It helps to discover new problems as one problem is being solved.

1.1.5 Limitations of Operations Research

Operations Research has number of applications; similarly it also has certain limitations.

These limitations are mostly related to the model building and money and time factors

problems involved in its application. Some of them are as given below:

• Distance between OR specialist and Manager

Operations Researchers job needs a mathematician or statistician, who might not be

aware of the business problems. Similarly, a manager is unable to understand the

complex nature of Operations Research. Thus there is a big gap between the two

personnel.

• Magnitude of Calculations

The aim of the OR is to find out optimal solution taking into consideration all the

factors. In this modern world these factors are enormous and expressing them in

quantitative model and establishing relationships among these require voluminous

calculations, which can be handled only by machines.

• Money and Time Costs

The basic data are subjected to frequent changes, incorporating these changes into

the operations research models is very expensive. However, a fairly good solution at

present may be more desirable than a perfect operations research solution available in

future or after some time.

• Non-quantifiable Factors:
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When all the factors related to a problem can be quantifiable only then operations

research provides solution otherwise not. The non-quantifiable factors are not incor-

porated in OR models. Importantly OR models do not take into account emotional

factors or qualitative factors.

• Implementation:

Once the decision has been taken it should be implemented. The implementation

of decisions is a delicate task. This task must take into account the complexities of

human relations and behavior and in some times only the psychological factors.

1.2 Steps of OR analysis

The seven steps to a good OR analysis

1. Identify the problem or opportunity

During this step one has to identify the objectives and to determine if the proposed

problem is too narrow or if it is too broad.

2. Observe and understand the system under consideration

Within this step, we are seeking answers to the following questions:

(a) what data should be collected?

(b) How will data be collected?

(c) How do different components of the system interact with each other ?

3. Formulate a mathematical model

(a) What kind of models should be used?

(b) Is the model accurate?

(c) Is the model too complex?

4. Verify the model and use it for prediction

(a) Do outputs match current observations for current inputs ?

(b) Are outputs reasonable?

(c) Could the model be erroneous?
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5. Select the best alternative

Given a model and a set of alternatives, the analyst now chooses the alternative that

best meets the organization’s objectives. Sometimes there are many best alternatives,

in which case the OR analyst should present them all to the organization’s decision-

makers, or ask for more objectives or restrictions.Since this is the most difficult step,

we could seek if there are software tools that could help us!!

6. Present the results of the analysis

(a) The outputs of the model do fit within the output from the system itself ?

(b) Are the outputs of the model reasonable ?

(c) Is the model correct ? Note that the model may be wrong.

7. Implement and evaluate the obtained solution

This step is considered with the following two items:

(a) Users must be trained on the new system

(b) System must be observed over time to ensure it works properly.

1.3 Problem Formulation

1. Determine decision variables that are going to be used mathematically to define the

problem

2. Define the quantity to be maximize or minimize.

This quantity is called objective function.

3. Define the constraints

Those are the restriction under which we have to solve our problem.

4. Define the non-negative constraints

We have to be sure that all the variables are of non-negative type. If this is not the

case, then we have to modify them as we will see later on in our study.
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1.4 Statement of an optimization problem
Definition 1.4.1 An optimization or a mathematical programming problem can be stated

as follows. Find

xxx =


x1
...

xn

 , which minimize f (xxx)

Subject to the following constrains

g j(xxx)≤ 0, j = 1,2, · · · ,m

l j(xxx) = 0, j = 1,2, · · · , p

where, xxx is an n-dimensional vector called the design vector, f (xxx) is the objective function,

and g j(xxx) and l j(xxx)are known as inequality and equality constraints, respectively. The

problem stated in Definition 1.4.1 is called a constrained optimization problem.

OR models can be classified into:

• linear programming: models with linear objective and constraint functions.

• Integer programming: the variables assume integer values

• Dynamic programming: the original model can be decomposed into smaller sub

problems

• Network programming: the problem can be modeled as a network

• nonlinear programming: functions of the model are nonlinear.

R Many practical problems can be formulated as an optimization problem in which the

objective function and the constrains are are linear i.e. any term is either a constant or

a constant multiplied by an unknown. This problem is called Liner Programming

(LP) problem.

Now, we give some examples for how a practical problem can be formulated as an LP

problem.
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■ Example 1.4.1 The Haty shop makes its sandwiches from a combination beef and goat

meat. The beef contains 80% meat and 20% fat, and it costs 24 pounds per kilo. The goat

meat contains 68% meat and 32% fat, and it costs 18 pounds per kilo. What is the amount

of meat from each type must be used in each kilo of meat if it wants to minimize its costs

and keep the ratio of fat so that no more than 25%? ■

■ Solution 1.4.1 Let x1 be weight of beef meat and x2 be weight of goat meat

Objective function is

minimize z = 24x1 +18x2

The constrains

(1) Rate of fat

0.20x1 +0.32x2 ≤ 0.25

(2) Per kilo

x1 + x2 = 1

Non-negative condition

x1 ≥ 0, x2 ≥ 0

Thus, the final formula for the linear programming problem is

Minimize z = 24x1 +18x2

Subject to

0.20x1 +0.32x2 ≤ 0.25

x1 + x2 = 1

x1 ≥ 0, x2 ≥ 0

■

■ Example 1.4.2 Tela Inc. manufactures two product: #1 and #2. To manufacture one unit

of product #1 costs C40 and to manufacture one unit of product #2 costs C60. The profit

from product #1 is C30, and the profit from product #2 is C20.
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The company wants to maximize its profit. How many products #1 and #2 should it

manufacture? ■

■ Solution 1.4.2 The solution is trivial: There is no bound on the amount of units the

company can manufacture. So it should manufacture infinite number of either product

#1 or #2, or both. If there is a constraint on the number of units manufactured then the

company should manufacture only product #1, and not product #2. This constrained case

is still rather trivial. ■

■ Example 1.4.3 — The transportation problem.

A certain product is to be shipped in amounts u1,u2, . . . ,un from n service points to m

destinations, where it is to be received in amounts v1,v2, . . . ,vm. See Figure 1.4-1. If the

cost of sending one unit product from origin i to destination j is known to be ci j, determine

the quantity xi j to be sent from origin i to destination j so that the total transportation cost

is minimum.

Figure 1.4-1: Sketch of the transportation problem

■
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■ Solution 1.4.3

If xi j is the amount of the product sent from initial location i to destination j, then

the total cost will be

∑
i, j

ci jxi j

if ci j is the unit cost of sending the product from i to j.

What are the restrictions we must respect? For a fixed service point i,ui is the quantity to

be shipped, so that

∑
j

xi j = ui, i = 1,2, . . . ,n

likewise, for every fixed destination, the amount v j should be received, and this enforces

∑
i

xi j = v j, j = 1,2, . . . ,m.

Notice that these two sets of equalities are compatible if

∑
i

ui = ∑
j

v j

which is a restriction that the data of the problem must satisfy for the problem to be well

posed. Moreover, if we accept that the feature of being a service point or a destination

cannot be reversed, then we must ask for

xi j ≥ 0, for all i, j.

Hence, we are seeking to

Minimize ∑
i, j

ci jxı j
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with the following restrictions

∑
j

xi j = ui, i = 1,2, . . . ,n

∑
i

xi j = v j, j = 1,2, . . . ,m.

xi j ≥ 0 for all i, j

■

■ Example 1.4.4 A factory wants in the production of 2 models. The first one needs 3 units

of wood; and 3 units of iron; 5 units of aluminum, models II need a single unit of wood;

8 units of iron; 4 units of aluminum. If you know that the maximum available of wood is

53 units, Steel 127 and 100 for aluminum. Form the mathematical model in the following

cases:

(A) If the first model is given a profit of unit and the second 2 units.

(B) If the first model gives a profit of two units and the second gives a single unit. ■

■ Solution 1.4.4 Let the factory produce x unit of 1st model and y from the 2nd one, then

Objective function reads

(a) MaxZ = x+2y (b) Max Z = 2x+ y

and the constraints are

For wood;

3x+ y ≤ 53

For iron;

3x+8y ≤ 127

For Aluminum;

5x+4y ≤ 100
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Non-negative condition

x ≥ 0, y ≥ 0

■

■ Example 1.4.5 — Giapetto Example.

Giapetto’s wooden soldiers and trains. Each soldier sells for $27, uses $10 of raw materials

and takes $14 of labor & overhead costs. Each train sells for $21, uses $9 of raw materials,

and takes $10 of overhead costs. Each soldier needs 2 hours finishing and 1 hour carpentry;

each train needs 1 hour finishing and 1 hour carpentry. Raw materials are unlimited, but

only 100 hours of finishing and 80 hours of carpentry are available each week. Demand for

trains is unlimited; but at most 40 soldiers can be sold each week. How many of each toy

should be made each week to maximize profits? ■

■ Solution 1.4.5

Decision variables completely describe the decisions to be made (in this case, by Gia-

petto). Giapetto must decide how many soldiers and trains should be manufactured each

week. With this in mind, we define:

x1 = the number of soldiers produced per week

x2 =the number of trains produced per week

Objective function is the function of the decision variables that the decision maker

wants to maximize (revenue or profit) or minimize (costs). Giapetto can concentrate on

maximizing the total weekly profit (z)

Here profit equals to

(weekly revenues) – (raw material purchase cost) – (other variable costs).

Hence Giapetto’s objective function is:

maxz = 3x1 +2x2

Constraints show the restrictions on the values of the decision variables. Without

constraints Giapetto could make a large profit by choosing decision variables to be very
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large. Here there are three constraints:

(a) Finishing time per week

(b) Carpentry time per week

(c) Weekly demand for soldiers

Sign restrictions are added if the decision variables can only assume nonnegative values

(Giapetto can not manufacture negative number of soldiers or trains!)

All these characteristics explored above give the following Linear Programming (LP)

model

maxz = 3x1 +2x2 (The Objective function)

s.t. 2x1 + x2 ≤ 100 (Finishing constraint)

x1 + x2 ≤ 80 (Carpentry constraint)

x1 ≤ 40 (Constraint on demand for soldiers)

x1,x2 ≥ 0 (Sign restrictions)

A value of (x1,x2) is in the feasible region if it satisfies all the constraints and sign

restrictions.

Graphically and computationally we see the solution is (x1,x2) = (20,60) at which z =

180. (Optimal solution)

Report

The maximum profit is $180 by making 20 soldiers and 60 trains each week. Profit is

limited by the carpentry and finishing labor available. Profit could be increased by buying

more labor. ■

■ Example 1.4.6 — Advertisement Example.

Dorian makes luxury cars and jeeps for high-income men and women. It wishes to advertise

with 1 minute spots in comedy shows and football games. Each comedy spot costs $50 K

and is seen by 7M high-income women and 2M high-income men. Each football spot

costs $100 K and is seen by 2M high-income women and 12M high-income men. How can

Dorian reach 28M high-income women and 24M high-income men at the least cost? ■
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■ Solution 1.4.6 The decision variables are

x1 = the number of comedy spots

x2 = the number of football spots

The model of the problem:

minz = 50x1 +100x2

s.t.
7x1 +2x2 ≥ 28

2x1 +12x2 ≥ 24

x1,x2 ≥ 0

The graphical solution is z = 320 when (x1,x2) = (3.6,1.4). From the graph, in this

problem rounding up to (x1,x2) = (4,2) gives the best integer solution.

Report

The minimum cost of reaching the target audience is $400K, with 4 comedy spots and

2 football slots. The model is dubious as it does not allow for saturation after repeated

viewings. ■

■ Example 1.4.7 — Diet.

Ms. Fidan’s diet requires that all the food she eats come from one of the four "basic food

groups". At present, the following four foods are available for consumption: brownies,

chocolate ice cream, cola, and pineapple cheesecake. Each brownie costs 0.5$, each scoop

of chocolate ice cream costs 0.2$, each bottle of cola costs 0.3$, and each pineapple cheese-

cake costs 0.8$. Each day, she must ingest at least 500 calories, 6oz of chocolate, 10oz

of sugar, and 8oz of fat. The nutritional content per unit of each food is shown in Table.

Formulate an LP model that can be used to satisfy her daily nutritional requirements at

minimum cost.
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Calories
Chocolate

(ounces)

Sugar

(ounces)

Fat

(ounces)

Brownie 400 3 2 2

Choc. ice cream (1 scoop) 200 2 2 4

Cola (1 bottle) 150 0 4 1

Pineapple cheesecake (1 piece) 500 0 4 5

■

■ Solution 1.4.7 The decision variables:

x1 : number of brownies eaten daily

x2 : number of scoops of chocolate ice cream eaten daily

x3 : bottles of cola drunk daily

x4 : pieces of pineapple cheesecake eaten daily

The objective function (the total cost of the diet in cents):

minw = 50x1 +20x2 +30x3 +80x4

Constraints:

400x1 +200x2 +150x3 +500x4 ≥ 500 (daily calorie intake)

3x1 +2x2 ≥ 6 (daily chocolate intake)

2x1 +2x2 +4x3 +4x4 ≥ 10 (daily sugar intake)

2x1 +4x2 + x3 +5x4 ≥ 8 (daily fat intake)

xi ≥ 0, i = 1,2,3,4 (Sign restrictions!)

Report

The minimum cost diet incurs a daily cost of 90 cents by eating 3 scoops of chocolate and

drinking 1 bottle of cola (w = 90,x2 = 3,x3 = 1) ■

■ Example 1.4.8 — Post Office.

A PO requires different numbers of employees on different days of the week. Uni rules
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state each employee must work 5 consecutive days and then receive two da off. Find the

minimum number of employees needed.

Mon Tue Wed Thur Fri Sat Sun

Staff Needed 17 13 15 19 14 16 11
■

■ Solution 1.4.8 The decision variables are xi (# of employees starting on day i)

Mathematically we must

[le f t]minz = x1 + x2 +x3 + x4 +x5 + x6 +x7

s.t. x1 + x4 +x5 + x6 +x7 ≥ 17

x1 + x2 +x5 + x6 +x7 ≥ 13

x1 + x2 +x3 + x6 +x7 ≥ 15

x1 + x2 +x3 + x4 +x7 ≥ 19

x1 + x2 +x3 + x4 +x5 ≥ 14

+ x2 +x3 + x4 +x5 + x6 ≥ 16

+x3 + x4 +x5 + x6 +x7 ≥ 11

xt ≥ 0,∀t

The solution is (xi) = (4/3,10/3,2,22/3,0,10/3,5) giving z = 67/3. We could round

this up to (xi) = (2,4,2,8,0,4,5) giving z = 25 (may be wrong!). However restricting the

decision var.s to be integers and using Lindo again gives (xi) = (4,4,2,6,0,4,3) giving

z = 23. ■
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1.5 Exercises
Exercise 1.5.1

Define the following items:

Operation research, Optimization problem, Steps of OR ■

Exercise 1.5.2 Tela Inc. in Example 1.4.2 can invest C40,000 in production and use

85 hours of labor. To manufacture one unit of product #1 requires 15 minutes of labor,

and to manufacture one unit of product #2 requires 9 minutes of labor. The company

wants to maximize its profit. How many units of product #1 and product #2 should it

manufacture? What is the maximized profit? ■

Exercise 1.5.3

Sailco must determine how many sailboats to produce in the next 4 quarters. The demand

is known to be 40, 60, 75, and 25 boats. Sailco must meet its demands. At the beginning

of the 1st quarter Sailco starts with 10 boats in inventory. Sailco can produce up to 40

boats with regular time labor at $400 per boat, or additional boats at $450 with overtime

labor. Boats made in a quarter can be used to meet that quarter’s demand or held in

inventory for the next quarter at an extra cost of $20.00 per boat. Formulate the LP

problem? ■

Exercise 1.5.4

CSL services computers. Its demand (hours) for the time of skilled technicians in the

next 5 months is

t Jan Feb Mar Apr May

dt 6000 7000 8000 9500 11000

It starts with 50 skilled technicians at the beginning of January. Each technician can

work 160hrs/ month. To train a new technician they must be supervised for 50hrs by an

experienced technician for a period of one month time. Each experienced technician is
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paid 2K/mth and a trainee is paid 1K/mth. Each month 5% of the skilled technicians

leave. CSL needs to meet demand and minimize costs. ■

Exercise 1.5.5

Reddy Mikks produces both interior and exterior paints from two raw materials, M1 and

M2. The following table provides the basic data of the problem

Tons of raw material per ton of

Exterior paint Interior paint
Maximum daily

availability (tons)

Raw material, M1 6 4 24

Raw material, M2 1 2 6

Profit per ton ($1000) 5 4

■

Exercise 1.5.6

A company wants to produce a certain alloy containing 30% lead, 30% zinc, and 40%

tin. This is to be done by mixing certain amounts of existing alloys that can be purchased

at certain prices. The company wishes to minimize the cost. There are 9 available alloys

with the following composition and prices.

Alloy 1 2 3 4 5 6 7 8 9 Blend

Lead (%) 20 50 30 30 30 60 40 10 10 30

Zinc (%) 30 40 20 40 30 30 50 30 10 30

Tin (%) 50 10 50 30 40 10 10 60 80 40

Cost ($/1b) 7.3 6.9 7.3 7.5 7.6 6.0 5.8 4.3 4.1 minimize

■

Exercise 1.5.7 Suppose an industry is manufacturing tow types of products P1 and P2.

The profits per Kg of the two products are C30 and C40 respectively. These two products
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require processing in three types of machines. The following table shows the available

machine hours per day and the time required on each machine to produce one Kg of P1

and P2. Formulate the problem in the form of linear programming model.

Profit/Kg P 1 (C30) P2 (C40) Total available Machine (hours/day)

Machine 1 3 2 600

Machine 2 3 5 800

Machine 3 5 6 1100

■

Exercise 1.5.8 Furniture company manufactures four models of chairs. Each chair

requires certain amount of raw materials (wood/steel)to make. The company wants to

decide on a production that maximizes profit (assuming all produced chair are sold).The

required and available amounts of materials are as follows

Chair 1 Chair 2 Chair 3 Chair 4 Total available

Steel 1 1 3 9 4,4000(lbs)

Wood 4 9 7 2 6,000(lbs)

Profit $12 $20 $18 $40 maximize

■



2. Clasical optimization Methods

This chapter deals with the classical analytical and numerical techniques for One-Dimensional

unconstrained minimization problem as well as the classical methods for the multivariable

optimization problems with no constrains and with equality consitrain.

2.1 1D unconstrained minimization problem

2.1.1 Introduction

As know from the previous chapter optimization problems consistent of an amount to be

minimized or maximized that is the objective function and the constrains under which the

problems is going to be solved. In the most practical problems, the optimum solution is

known to lie within restricted ranges of the design variables. In some cases this range is

not known, and hence the reach has to be made with no restrictions on the values of the

variables.
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Definition 2.1.1 A unimodal function is one that has only one peak (maximum) or

valley (minimum) in a given interval as in figure2.1-1. Thus a function of one variable is

said to be unimodal if, given that two values of the variable are on the same side of the

optimum, the one nearer the optimum gives the better functional value (i.e., the smaller

value in the case of a minimization problem). This can be stated mathematically as

follows:

A function f (x) is unimodal if (i)x1 < x2 < x∗ implies that f (x2) < f (x1), and (ii)

x2 > x1 > x∗ implies that f (x1)< f (x2), where x∗ is the minimum point.

Figure 2.1-1: Sketch of unimodal function

Figure 2.1-2: Minimum of f (x) corresponds to maximum of − f (x).
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It can be seen from the figure 2.1-2 that if a point x∗ corresponds to the minimum value

of a function f (x), the same point also corresponds to the maximum value of the negative

of the function − f (x),

Figure 2.1-3: Flowchart of the various techniques for One-Dimensional unconstrained

minimization problem

Referring to figure 2.1-3, there exists various techniques to treat a one-Dimensional uncon-

strained minimization problem as we see in the following sections.

2.1.2 Analytical approach for 1D unconstrained problem

Theorem 2.1.1 Necessary Condition

If a function f (x) is defined in the interval a < x < b f (x) and has a relative minimum at

x = x∗, where a < x∗ < b, and if the derivative f racd f (x)dx = f ′(x∗) exists as a finite

number at x∗, then f ′(x∗) = 0.

Theorem 2.1.2 Sufficient Condition

Let f ′ (x∗) = f ′′ (x∗) = . . .= f (n−1) (x∗) = 0, but f (n) (x∗) ̸= 0. Then, f (x∗) is

(i) A minimum value of f (x∗) if f (n) (x∗)> 0 and n is even;
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(ii) A maximum value of f (x∗) if f (n) (x∗)< 0 and n is even;

(iii) Neither a maximum nor a minimum if n is odd.

■ Example 2.1.1 Using the Necessary and Sufficient Condition theorems, find the optimum

values od the following function

f (x) = 12x5 −45x4 +40x3 +5

■

■ Solution 2.1.1
f ′(x) = 60x4 −3∗60x3 +60∗2∗ x2

= 60x2 (x2 −3x+2
)

= 60x2(x−1)(x−2) = 0

The extreme points are x = 0,x = 1 and x = 2

x = 0 x = 1 x = 2

f ′′(x) = 240x3 −540x2 +240x f ′′(1) =−60 f ′′(2) = 240

f ′′(0) = 0 this point is relative this point is relative

We evaluate the next derivative maximum fMin =−11

f ′′′(x) = 3∗240x2 −2∗540x fMax = 12(1)−45(1)+

240 40(1)+5

f ′′′(0) = +240, = 12

Order of derivative is odd.

So this point is neithe

maximum nor minimum
■

General algorithm to treat an optimization programming problem.

1. Start with an initial trial point X1.

2. Find a suitable direction Si(i = 1 to start with) which points in the general direction

of the optimum.

3. Find an appropriate step length λ ∗
i for movement along the direction Si.



2.1 1D unconstrained minimization problem 33

4. Obtain the new approximation Xi+1 as

xi+1 = Xi +λ
∗
i Si

5. Test whether Xi+1 is optimum. If Xi+1 is optimum, stop the procedure. Otherwise,

set a new i = i+1 and repeat step (2) onward.

From this algorithm, we conclude that finding a minimum of single variable objective

function is an important step (step3) in solving unconstrained multivariable optimization

problem. So we start with studying unconstrained single optimization problem

Figure 2.1-4: General algorithm to treat an optimization programming problem

2.1.3 Elimination methods

Search with fixed step size

The most elementary approach for such a problem is to use a fixed step size and move from

an initial guess point in a favorable direction (positive or negative). The step size used must
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be small in the relation to the final accuracy desired. Although this method is very simple to

implement, it is not efficient in many cases. This method is described in the following steps:

1. Start with an initial guess point, say, x1.

2. Find f1 = f (x1).

3. Assuming a step size s, find x2 = x1 + s.

4. Find f2 = f (x2).

5. If f2 < f1, and if the problem is one of minimization, the assumption of unimodality

indicates that the desired minimum cannot lie at x < x1.

Hence the search can be continued further along points x3,x4, . . . using the unimodality

assumption while testing each pair of experiments. This procedure is continued until

a point, xi = x1 +(i−1)s, shows an increase in the function value.

6. The search is terminated at xi, and either xi−1 or xi can be taken as the optimum point.

7. Originally, if f2 > f1, the search should be carried in the reverse direction at points

x−2,x−3, . . ., where x− j = x1 − ( j−1)s.

8. If f2 = f1, the desired minimum lies in between x1 and x2, and the minimum point

can be taken as either x1 or x2.

9. If it happens that both f2 and f−2 are greater than f1, it implies that the desired

minimum will lie in the double interval x−2 < x < x2.
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■ Example 2.1.2 Use unrestricted search with fixed step size to find the maximum of

f (x) =

 1
2x, x ≤ 2

3− x, x > 2

by starting from x1 = 0 with an initial step size of 0.4 . ■

■ Solution 2.1.2 This problem corresponds to Find the minimum of

f (x) =

 −0.5x; x ≤ 2

x−3; x > 2

x1 = 0, f (x1) = f (0) = 0, S = 0.4

x2 = x1 +S = 0.4 f (x) =

 −1
2x, x ≤ 2

3− x, x > 2

f (x2) = f (0.4) =−1
2(0.4) =−0.2

x3 = x2 +S = 0.4+0.4 = 0.8, f (x3) = f (0.8) =−1
2
(0.8) =−0.4
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x4 = x3 +S = 0.8+0.4 = 1.2, f (x4) = f (1.2) =−1
2
(1.2) =−0.6

x5 = x4 +S = 1.2+0.4 = 1.6 f (x5) = f (1.6) =−1
2
(1.6) =−0.8

x6 = x5 +S = 1.6+0.4 = 2.0 f (x6) = f (2.0) =−1
2
(2.0) =−1

x7 = x6 +S = 2.0+0.4 = 2.4 f (x7) = f (2.4) = 2.4−3 =−0.6

Thus, x6 = 2.0 is the minimum point and f (2.0) =−1 ■

Fibonacci method

The Fibonacci method can be used to find the minimum of a function of one variable even

if the function is not continuous. This method, like many other elimination methods, has
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the following limitations:

1. The initial interval of uncertainty, in which the optimum lies, has to be known.

2. The function being optimized has to be unimodal in the initial interval of uncertainty.

3. The exact optimum cannot be located in this method. Only an interval known as the

final interval of uncertainty will be known. The final interval of uncertainty can be

made as small as desired by using more computations.

4. The number of function evaluations to be used in the search or the resolution required

has to be specified beforehand.

The Fibonacci sequence {Fn} are defined as

F0 = F1 = 1

Fn = Fn−1 +Fn−2, n = 2,3,4, · · ·

that yields the explicit sequence as1,1,2,3,5,8,13,21,34,55,89, · · ·

Procedure

• Let L0 be the initial interval of uncertainty defined by a ≤ x ≤ b and n be the total

number of experiments to be conducted.

• Define

L∗
2 =

Fn−2

Fn
L0

and place the first two experiments at points x1 and x2, which are located at a

distance of L∗
2 from each end of L0.

• This gives

x1 = a+L∗
2 = a+

Fn−2

Fn
L0

x2 = b−L∗
2 = b− Fn−2

Fn
L0 = a+

Fn−1

Fn
L0

• Discard part of the interval by using the unimodality assumption.

• Then there remains a smaller interval of uncertainty L2 given by

L2 = L0 −L∗
2 = L0

(
1− Fn−2

Fn

)
=

Fn−1

Fn
L0
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and with one experiment left in it. This experiment will be at a distance of

L∗
2 =

Fn−2

Fn
L0 =

Fn−2

Fn−1
L2

from one end and

L2 −L∗
2 =

Fn−3

Fn
L0 =

Fn−3

Fn−1
L2

from the other end.

• Now place the third experiment in the interval L2 so that the current two experi-

ments are located at a distance of

L∗
3 =

Fn−3

Fn
L0 =

Fn−3

Fn−1
L2

from each end of the interval L2.

• Again the unimodality property will allow us to reduce the interval of uncertainty

to L3 given by

L3 = L2 −L∗
3 = L2 −

Fn−3

Fn−1
L2 =

Fn−2

Fn−1
L2 =

Fn−2

Fn
L0

This process of discarding a certain interval and placing a new experiment in the

remaining interval can be continued, so that the location of the j th experiment and

the interval of uncertainty at the end of j experiments are, respectively, given by

L∗
j =

Fn− j

Fn−( j−2)
L j−1

L j =
Fn−( j−1)

Fn
L0

• The ratio of the interval of uncertainty remaining after conducting j of the n

predetermined experiments to the initial interval of uncertainty becomes

L j

L0
=

Fn−( j−1)

Fn

and for j = n, we obtain
Ln

L0
=

F1

Fn
=

1
Fn
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• The ratio Ln/L0 will permit us to determine n, the required number of experiments,

to achieve any desired accuracy in locating the optimum point.

Golden Section Method

The golden section method is same as the Fibonacci method except that in the Fibonacci

method the total number of experiments to be conducted has to be specified before beginning

the calculation, whereas this is not required in the golden section method. In the Fibonacci

method, the location of the first two experiments is determined by the total number of

experiments, N. In the golden section method we start with the assumption that we are

going to conduct a large number of experiments. Of course, the total number of experiments

can be decided during the computation.

■ Example 2.1.3 Deduce the best value for the eliminating part of the interval in Fibonacci

method assuming we conduct a large number of iterations.

n 3 4 5 6 7
Fn−2

Fn

f1

F3
=

1
3
= 0.33

F2

F4
=

2
5
= 0.4

F3

F5
=

3
8
= 0.37

F4

F6
=

5
13

= 0.382
F5

F7
=

8
21

= 0.382

The Fibonacci sequence reads 1,1,2,3,5,8,13,21, · · · The intervals of uncertainty remain-

ing at the end of different number of experiments can be computed as follows:

L∗ =
Fn−2

Fn
L0

lim
n→∞

Fn−2

Fn
= 0.382

■

Procedure

The procedure is same as the Fibonacci method except that the location of the first two

experiments is defined byL∗ = 0.382L0 thus, 1- Let L0 be the initial interval:L0 = [a,b]

2- Define L∗ = 0.382L0

3- Put points of test to be x1 = a+L∗,x2 = b−L∗

4- Eliminate the non-desired part of the interval depending on the unimodality property

5- Define the new interval Lo = [a,b], repeat steps 2-5 until a desired accuracy is obtained.
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In step 5, we can use one of the following accuracy formula: | f (x1)− f (x2)| ≤ ε Or

|Lo| ≤ ε Where ε is small chosen value (such as 0.1).

2.1.4 MATLAB solution of one-dimensional minimization problems

The solution of one-dimensional minimization problems, using the MATLAB program

optimset, is illustrated by the following example.

■ Example 2.1.4 Find the minimum of the following function:

f (x) = 0.65− 0.75
1+ x2 −0.65tan−1(

1
x
)

■

■ Solution 2.1.3

Step 1: Write an M-file "objfun.m" for the objective function as

function f= objfun(x)

f= 0.65 -(0.75/(1+x^2)) -0.65*x*atan (1/x);

Step 2 : Invoke unconstrained optimization program (write this in new MATLAB file).

clc

clear all

warning off

options = optimset('LargeScale ','off');

[x,fval] = fminbnd (@objfun ,0,0.5, options)

This produces the solution or ouput as follows:

x=

0.4809

fval =

-0.3100

■
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2.2 Multivariable Optimization

Here, we present the classical techniques for multivariable optimization. The necessary and

sufficient conditions for the minimum or maximum of an unconstrained function of several

variables are given. Finally, we present one way of solving multivariable optimization with

equality constrained.

2.2.1 Multivariable optimization with no constraints

Theorem 2.2.1 Necessary Condition

If f (X) has an extreme point (maximum or minimum) at X = X∗ and if the first partial

derivatives of f (X) exist at X∗, then

∂ f
∂x1

(X∗) =
∂ f
∂x2

(X∗) = · · ·= ∂ f
∂xn

(X∗) = 0

Theorem 2.2.2 Sufficient Condition

A sufficient condition for a stationary point X∗ to be an extreme point is that the matrix of

second partial derivatives (Hessian matrix) of f (X) evaluated at X∗ is (i) positive definite

when X∗ is a relative minimum point, and (ii) negative definite when X∗ is a relative

maximum point.

Definition 2.2.1 A matrix A will be positive definite if all its eigenvalues are positive;

that is, all the values of λ that satisfy the determinantal equation

|A−λ I|= 0

should be positive. Similarly, the matrix [A] will be negative definite if its eigenvalues

are negative.

Definition 2.2.2 Saddle Point In the case of a function of two variables, f (x,y), the

Hessian matrix may be neither positive nor negative definite at a point (x∗,y∗) at which

∂ f
∂x

=
∂ f
∂y

= 0
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In such a case, the point (x∗,y∗) is called a saddle point.

■ Example 2.2.1 Find the extreme points of the function

f (x1,x2) = x3
1 + x3

2 +2x2
1 +4x2

2 +6

■

■ Solution 2.2.1 The necessary conditions for the existence of an extreme point are

∂ f
∂x1

= 3x2
1 +4x1 = x1(3x1 +4) = 0

∂ f
∂x21

= 3x2
2 +8x2 = x2(3x2 +8) = 0

These equations are satisfied at the points

(0,0),
(

0,−8
3

)
,

(
−4

3
,0
)
, and

(
−4

3
,−8

3

)
■

2.2.2 Multivariable Optimization With Equality Constraints

In this section we consider the optimization of continuous functions subjected to equality

constraints:
Minimize f = f (X)

subject to

g j(X) = 0, j = 1,2, . . . ,m

where

X = [xx,x,2 · · · ,xn]
⊺

Lagrange multiplier method

The basic features of the Lagrange multiplier method is given initially for a simple problem

of two variables with one constraint. The extension of the method to a general problem of n

variables with m constraints is given later.

Problem with Two Variables and One Constraint. Consider the problem:

Minimize f (x1,x2) subject to g(x1,x2) = 0 The necessary conditions generated by con-
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structing a function L, known as the Lagrange function, as

L(x1,x2,λ ) = f (x1,x2)+λg(x1,x2)

by treating L as a function of the three variables x1,x2, and λ , the necessary conditions for

its extremum are given by

∂L
∂x1

(x1,x2,λ ) =
∂ f
∂x1

(x1,x2)+λ
∂g
∂x1

(x1,x2) = 0

∂L
∂x2

(x1,x2,λ ) =
∂ f
∂x2

(x1,x2)+λ
∂g
∂x2

(x1,x2) = 0

∂L
∂λ

(x1,x2,λ ) = g(x1,x2) = 0

■ Example 2.2.2 Using the Lagrange multiplier method, find the solution for:

Minimize f (x,y) = kx−1y−2

subject to

g(x,y) = x2 + y2 −a2 = 0

■

■ Solution 2.2.2 The Lagrange function is

L(x,y,λ ) = f (x,y)+λg(x,y) = kx−1y−2 +λ
(
x2 + y2 −a2)

The necessary conditions for the minimum of f (x,y) give

∂L
∂x

=−kx−2y−2 +2xλ = 0

∂L
∂y

=−2kx−1y−3 +2yλ = 0

∂L
∂λ

= x2 + y2 −a2 = 0

From the first two equations, we have

2λ =
k

x3y2 =
2k
xy4
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from which the relation x∗ = (1/
√

2)y∗ can be obtained. Hence,

x∗ =
a√
3

and y∗ =
√

2
a√
3

■

2.3 Exercises
Exercise 2.3.1 What are the limitations of classical methods in solving a one-dimensional

minimization problem? ■

Exercise 2.3.2 Explain with graph the meaning of unimodal function and give its

mathematical representation ■

Exercise 2.3.3 Explain the main core difference between the Fibonacci and golden

section method to obtain the optimum value of unconstrained problem in one dimensional

■

Exercise 2.3.4 Use Fibonacci method and golden section method to find the maximum

of

f (x) =

 1
2x, x ≤ 2

3− x, x > 2

by starting from [0,3] with n = 6.

■

Exercise 2.3.5 Find the minimum of the function f (x) = x3 + x2 − x−2 in the interval

−4 and 4 using MATLAB ■

Exercise 2.3.6 Using MATLAB, find the minimum of f (x) = x(x−1.5) in the interval

(0,1) ■



3. Linear programming problem

3.1 Standard or canonical form of a linear programming problem

The general linear programming problem can be stated in the following standard forms:

Scalar Form

Minimize f (x1,x2, . . . ,xn) = c1x1 + c2x2 + · · ·+ cnxn

subject to the constraints

a11x1 +a12x2 + · · ·+a1nxn = b1

a21x1 +a22x2 + · · ·+a2nxn = b2

...

am1x1 +am2x2 + · · ·+amnxn = bm

x1 ≥ 0

x2 ≥ 0
...

xn ≥ 0
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where c j,b j, and ai j(i = 1,2, . . . ,m; j = 1,2, . . . ,n) are known constants, and x j are the

decision variables. Matrix Form

Minimize f (X) = cTX

subject to the constraints

aX = b

X ≥ 0

where,

x =



x1

x2
...

xn


, b =



b1

b2
...

bm


, c =



c1

c2
...

cn


,

a =


a11 a12 · · · a1n

a21 a22 · · · a2n
...


The characteristics of a linear programming problem, stated in standard form, are

1. The objective function is of the minimization type.

2. All the constraints are of the equality type.

3. All the decision variables are nonnegative.

Thus, it is now shown that any linear programming problem can be expressed in standard

form by using the following transformations.

1. Objective function: The maximization of a function f (x1,x2, . . . ,xn) is equivalent

to the minimization of the negative of the same function. For example, the objective

function minimize f = c1x1 + c2x2 + · · ·+ cnxn is equivalent to

maximize f ′ =− f =−c1x1 − c2x2 −·· ·− cnxn

Consequently, the objective function can be stated in the minimization form in any

linear programming problem.
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2. Decision variables: In most engineering optimization problems, the decision vari-

ables represent some physical dimensions, and hence the variables x j will be non-

negative. However, a variable may be unrestricted in sign in some problems. In such

cases, an unrestricted variable (which can take a positive, negative, or zero value) can

be written as the difference of two nonnegative variables. Thus if x j is unrestricted in

sign, it can be written as x j = x′j − x′′j , where

x′j ≥ 0 and x′′j ≥ 0

It can be seen that x f will be negative, zero, or positive, depending on whether xN
j is

greater than, equal to, or less than xy
j.

3. Constrains: If a constraint appears in the form of a "less than or equal to" type of

inequality as

ak1x1 +ak2x2 + · · ·+akexn ≤ bk

it can be converted into the equality form by adding a nonnegative slack variable

xn+1 as follows:

ak1x1 +ak2x2 + · · ·+akexk + xn+1 = bk

Similarly, if the constraint is in the form of a "greater than or equal to" type of

inequality as

ak1x1 +ak2x2 + · · ·+aknxn ≥ bk

it can be converted into the equality form by subtracting a variable as

ak1x1 +ak2x2 + · · ·+aknxn − xn+1 = bk

where xn+1 is a nonnegative variable known as a surplus variable.

Now, it can be seen that

• There are m equations in n decision variables in a linear programming problem.

• We can assume that m < n; for if m > n, there would be m−n redundant equations

that could be eliminated.
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• The case n = m is of no interest, for then there is either a unique solution X that

satisfies the constraints and sign equations given above(in which case there can be no

optimization) or no solution, in which case the constraints are inconsistent.

• The case m < n corresponds to an underdetermined set of linear equations, which, if

they have one solution, have an infinite number of solutions.

Hence, we have the following theorem :

Theorem 3.1.1 Every linear program has either

1. a unique optimal solution, or

2. multiple (infinity) optimal solutions, or

3. is infeasible (has no feasible solution), or

4. is unbounded (no feasible solution is maximal).

3.2 Geometrical solution of linear programming problems

Before we start with the geometrical solution of the LP problem we give some mathematical

distentions that is needed for completely drawing the full picture.

3.3 Relevant Definitions

Point in n-Dimensional Space:

(x1,x2, . . . ,xn) .

Line Segment in n-Dimensions (L): If the coordinates of two points A and B are given by

x(1)j and x(2)j ( j = 1,2, . . . ,n), the line segment (L) joining these points is the collection of

points X(λ ) whose coordinates are given by x j = λx(1)j +(1−λ )x(2)j , j = 1,2, . . . ,n, with

0 ≤ λ ≤ 1. Thus

L =
{

X | X = λX(1)+(1−λ )X(2)
}

In one dimension, for example, it is easy to see that the definition is in accordance with our

experience (Fig. 3.3-1):

x(2)− x(λ ) = λ

[
x(2)− x(1)

]
, 0 ≤ λ ≤ 1
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Figure Line segment. whence

x(λ ) = λx(1)+(1−λ )x(2), 0 ≤ λ ≤ 1

Figure 3.3-1: Line segment in n-dimensional

Convex set: A convex set is a collection of points such that if X(1) and X(2) are any two

points in the collection, the line segment joining them is also in the collection. A convex set,

S, can be defined mathematically as follows: If X(1),X(2) ∈ S, then X ∈ S where

X = λX(1)+(1−λ )X(2), 0 ≤ λ ≤ 1

Figure 3.3-2: Convex Sets

Figure 3.3-3: NonConvex Sets

Vertex, corner or Extreme Point This is a point in the convex set that does not lie on a line

segment joining two other points of the set. For example, every point on the circumference
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of a circle and each corner point of a polygon can be called a vertex or extreme point.

Feasible solution: In a linear programming problem, any solution that satisfies the con-

straints

ai jx j = b j, x j ≥ 0

is called a feasible solution.

Basic solution: A basic solution is one in which n−m variables are set equal to zero. A

basic solution can be obtained by setting n−m variables to zero and solving the constraint

Eqs. (3.2) simultaneously.

Basis: The collection of variables not set equal to zero to obtain the basic solution is called

the basis.

Basic Feasible Solution This is a basic solution that satisfies the non negativity conditions

of the problem

ai jx j = b j, x j ≥ 0

Optimal Solution: A feasible solution that optimizes the objective function is called an

optimal solution.

Optimal Basic Solution This is a basic feasible solution for which the objective function is

optimal.

3.4 Graphical method

• Any LP with only two variables can be solved graphically (with possible solution as

in theorem 3.1.1)

• The following characteristics can be noted from the graphical solution:

Theorem 3.4.1

(a) The feasible region is a convex polygon.

(b) If a linear program has an optimal solution, then it also has an optimal solution

that is a corner point of the feasible region.
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■ Example 3.4.1

Find the optimum solution of the following LP problem using graphical method

Max 3x1 +2x2

x1 + x2 ≤ 80

2x1 + x2 ≤ 100

x1 ≤ 40

x1, x2 ≥ 0

■

■ Solution 3.4.1

1. First, we have to find the feasible region

• Plot each constraint as an equation ≡ line in the plane

• Feasible points on one side of the line – plug in (0,0) to find out which

2. Find all corner points. Evaluate the objective function at those point since the

optimum solution exists at those points according to theorem 3.4.1.
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3. Iso-value line ≡ all points on this line the objective function has the same value: For

our objective 3x1 +2x2 an iso-value line consists of points satisfying 3x1 +2x2 = z

where z is some number.

Optimal solution is (x1,x2) = (20,60).
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Observe that this point is the intersection of two lines forming the boundary of the

feasible region. Recall that lines we use to construct the feasible region come from

inequalities (the points on the line satisfy the particular inequality with equality).

Binding constraint ≡ constraint satisfied with equality

■

From this example, the Main steps of Graphical Method are

1. Find the feasible region.

2. Plot an iso-value (isoprofit, isocost) line for some value.

3. Slide the line in the direction of increasing value until it only touches the region.

4. Read-off an optimal solution.

■ Example 3.4.2 Find the solution of the following LP problem graphically:

Maximize f (x, y) = 3x+ y+2,

Subject to 2x+ y+9 ≥ 0,3y− x+6 ≥ 0,x+2y ≤ 3,y ≤ x+3 ■

■ Solution 3.4.2 1. Find the feasible region.

2x+ y+9 = 0

2x+ y =−9 =⇒ x = 0, y =−9

y = 0, x =−4.5

(0,0) Satisfies it, so the proposed area is up right the line

3y− x+6 ≥ 0

3y− x =−6 =⇒ x = 0, y =−2

y = 0, x = 6

(0,0) Satisfies it, so the proposed area is up Left the line

x+2y = 3 =⇒ x = 0,y = 1.5
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y = 0, x = 3

(0,0)satisfies it, so the proposed area is Down Left the line

y− x = 3 =⇒ x = 0, y = 3

y = 0, x =−3

(0,0) satisfies it, so the proposed area is Down Wright the line

2. Corner or vertex

- The intersection of

2x+ y =−9,3y− x =−6

is obtained by solving these two eqs. to obtain

x =−3, y =−3

f (at A) = 3(−3)+(−3)+2 =−10

- The intersection of

3y− x =−6,x+2y = 3

is obtained by solving these two eqs. To obtain

x = 4.5, y =−0.6

f (at B) = 3(4.5)+(−0.6)+2 = 14

- The intersection of

y− x = 3,x+2y = 3

is obtained by solving these two eqs. to obtain

x =−1, y = 2
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f (at C) = 3(−1)+(2)+2 = 1

- The intersection of

y+ x = 3,2x+ y =−9

is obtained by solving these two eqs. to obtain

x =−4, y =−12

f (x, y) = 3x+ y+2
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Thus,

fA =−10 at A(−3,−3)

fC = 1 at C (−1,2)

fB = 14 at B(4.2,−0.6)

fD =−11 at D(−4,−1)

Hence the Maximum value is fB = 14 at B(4.2,−0.6)

And the Minimum value is fD =−11 at D(−4,−1).

■

3.5 Simplex method

The Linear Programming with two variables can be solved graphically. The graphical

method of solving linear programming problem is of limited application in the business

problems as the number of variables is substantially large. If the linear programming

problem has larger number of variables, the suitable method for solving is Simplex Method.

The simplex method is an iterative process, through which it reaches ultimately to the

minimum or maximum value of the objective function.

The simplex algorithm for solving linear programs (LP’s) was developed by Dantzig in

the late 1940’s and since then a number of different versions of the algorithm have been

developed. One of these later versions, called the revised simplex algorithm (sometimes

known as the "product form of the inverse" simplex algorithm) forms the basis of most

modern computer packages for solving LP’s.

In General, the process consists of two steps

1- Find a feasible solution (or determine that none exists).

2- Improve the feasible solution to an optimal solution
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Steps or procedures

1. Convert the LP to standard form

2. Obtain a basic feasible solution (bfs) from the standard form

3. Determine whether the current bfs is optimal. If it is optimal, stop.

4. If the current bfs is not optimal, determine which nonbasic variable should become a

basic variable and which basic variable should become a nonbasic variable to find a

new bfs with a better objective function value

5. Go back to Step 3.

Related concepts:

Standard form: all constraints are equations and all variables are nonnegative

Bfs: any basic solution where all variables are nonnegative

Nonbasic variable: a chosen set of variables where variables equal to 0

Basic variable: the remaining variables that satisfy the system of equations at the standard

form.

3.5.1 Simplex method by example

Consider the toyshop example from earlier lectures. Convert to equalities by adding slack

variables
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• Starting feasible solution

- Set variables x1,x2 to zero and set slack variables to the values on the right-hand

side. =⇒ yields a feasible solution

x1 = x2 = 0, x3 = 80, x4 = 100, x5 = 40

- Recall that the solution is feasible because all variables are non-negative and satisfy

all equations.

(we get a feasible solution right away because the right-hand side is non-negative;

this may not always work)

- Note something interesting: in this feasible solution two variables (namely x1,x2)

are zero. Such a solution is called a basic solution of this problem, because the value

of at least two variables is zero.

In a problem with n variables and m constraints, a solution where at least (n−m)

variables are zero is a basic solution

A basic solution that is also feasible is called a basic feasible solution (BFS). The

importance of basic solutions is revealed by the following observation.

Basic solutions are precisely the corner points of the feasible region

- Recall that we have discussed that to find an optimal solution to an LP, it suffices

to find a best solution among all corner points. The above tells us how to compute

them - they are the basic feasible solutions.

A variable in a basic solution is called a non-basic variable if it is chosen to be

zero. Otherwise, the variable is basic.

• Dictionary

To conveniently deal with basic solutions, we use the so-called dictionary. A dictionary

lists values of basic variables as a function of non-basic variables. The correspondence

is obtained by expressing the basic variables from the initial set of equations. (We
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shall come back to this later; for now, have a look below.)

Express the slack variables from the individual equations

max3x1 +2x2

x1 + x2 + x3 = 80

2x1 + x2 + x4 = 100

x1 + x5 = 40

x1,x2,x3,x4,x5 ≥ 0

=⇒

This is called a dictionary

x3 = 80− x1 − x2

x4 = 100−2x1 − x2

x5 = 40− x1

z = 0+3x1 +2x2

- x1,x2 independent (non-basic) variables

- x3,x4,x5 dependent (basic) variables

- {x3,x4,x5} is a basis

set x1 = x2 = 0 =⇒ the corresponding (feasible) solution is x3 = 80,x4 = 100,x5 = 40

with value z = 0

• Improving the solution

-Try to increase x1 from its current value 0 in hopes of improving the value of z

- Try x1 = 20,x2 = 0 and substitute into the dictionary to obtain the values of x3,x4,x5

and z =⇒ x3 = 60,x4 = 60,x5 = 20 with value z = 60 → feasible

-Try again x1 = 40,x2 = 0 =⇒ x3 = 40,x4 = 20,x5 = 0 with value z = 120 → feasible

- Now try x1 = 50,x2 = 0 =⇒ x3 = 30,x4 = 0,x5 =−10 → not feasible

How much we can increase x1 before a (dependent) variable becomes negative?

If x1 = t and x2 = 0, then the solution is feasible if

x3 = 80− t −0 ≥ 0

x4 = 100−2t −0 ≥ 0

x5 = 40− t ≥ 0

=⇒
t ≤ 80

t ≤ 50

t ≤ 40

⇒ t ≤ 40

Maximal value is x1 = 40 at which point the variable x5 becomes zero

x1 is incoming variable and x5 is outgoing variable

(we say that x1 enters the dictionary/basis, and x5 leaves the dictionary/basis)

• Ratio test

The above analysis can be streamlined into the following simple "ratio" test.
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■ Example 3.5.1

Let x1,X2,x3 be the number of desks, tables and chairs produced. Let the weekly profit be

$z. Then, we must
maxz = 60x1 +30x2 +20x3

s.t. 8x1 +6x2 + x3 ≤ 48

4x1 +2x2 +1.5x3 ≤ 20

2x1 +1.5x2 + .5x3 ≤ 8

x2 ≤ 5

x1,x2,x3 ≥ 0
■

■ Solution 3.5.1

R0 z −60x1 −30x2 −20x3 = 0

R1 8x1 +6x2 +x3 +s1 = 48

R2 4x1 +2x2 +1.5x3 +s2 = 20

R3 2x1 +1.5x2 +.5x3 +s3 = 8

R4 x2 +s4 = 5

x1,x2,x3,s1,s2,s3,s4 ≥ 0

Obtain a starting bfs.

As (x1,x2,x3) = 0 is feasible for the original problem, the below given point where three

of the variables equal 0 (the non-basic variables) and the four other variables (the basic

variables) are determined by the four equalities is an obvious bfs:

x1 = x2 = x3 = 0,s1 = 48,s2 = 20,s3 = 8,s4 = 5.

Determine whether the current bfs is optimal.

Determine whether there is any way that z can be increased by increasing some nonbasic

variable.

If each nonbasic variable has a nonnegative coefficient in the objective function row (row
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0 ), current bfs is optimal.

However, here all nonbasic variables have negative coefficients: It is not optimal.

Find a new bfs

• z increases most rapidly when x1 is made non-zero; i.e. x1 is the entering variable.

• Examining R1,x1 can be increased only to 6 . More than 6 makes s1 < 0.

Similarly R2,R3, and R4, give limits of 5,4 , and no limit for x1 (ratio test). The

smallest ratio is the largest value of the entering variable that will keep all the

current basic variables nonnegative. Thus by R3,x1 can only increase to x1 = 4

when s3 becomes 0 . We say s3 is the leaving variable and R3 is the pivot equation.

• Now we must rewrite the system so the values of the basic variables can be read off.

The new pivot equation (R3/2) is

R′
3 : x1 + .75x2 + .25x3 + .5 s3 = 4

Then use R′
3 to eliminate x1 in all the other rows.

R′
0 = R0 +60R′

3, R′
1 = R1 −8R′

3, R′
2 = R2 −4R′

3, R′
4 = R4

R′
0 z +15x2 −5x3 +30s3 = 240 =⇒ z = 240

R′
1 −x3 +s1 −4s3 = 16 =⇒ s1 = 16

R′
2 −x2 +0.5x3 +s2 −2s3 = 4 =⇒ s2 = 4

R′
3 x1 +.75x2 +.25x3 +.5s3 = 4 =⇒ x1 = 4

R′
4 x2 +s4 = 5 =⇒ s4 = 5

The new bfs is x2 = x3 = s3 = 0,x1 = 4,s1 = 16,s2 = 4,s4 = 5 making z = 240.

Check optimality of current bfs. Repeat steps until an optimal solution is reached

- We increase z fastest by making x3 non-zero (i.e. x3 enters).

- x3 can be increased to at most x3 = 8, when s2 = 0 (i.e. s2 leaves.)

Rearranging the pivot equation gives

R′′
2 −2x2 + x3 +2s2 −4s3 = 8

(
R′

2 ×2
)

.
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Row operations with R2
′′ eliminate x3 to give the new system

R′′
0 = R′

0 +5R′′
2, R′′

1 = R′
1 +R′′

2, R′′
3 = R′

3 − .5R′′
2, R′′

4 = R′
4

The bfs is now x2 = s2 = s3 = 0,x1 = 2,x3 = 8,s1 = 24,s4 = 5 making z = 280.

Each nonbasic variable has a nonnegative coefficient in row 0(5x2,10s2,10s3).

THE CURRENT SOLUTION IS OPTIMAL

Report: Dakota furniture’s optimum weekly profit would be 280$ if they produce

2 desks and 8 chairs.

tableau format This was once written as a tableau.

maxz = 60x1 +30x2 +20x3

s.t. 8x1 +6x2 + x3 ≤ 48

4x1 +2x2 +1.5x3 ≤ 20

2x1 +1.5x2 + .5x3 ≤ 8

x2 ≤ 5

x1,x2,x3 ≥ 0

Initial tableau:

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio

1 -60 -30 -20 0 0 0 0 0 z = 0

0 8 6 1 1 0 0 0 48 s1 = 48 6

0 4 2 1.5 0 1 0 0 20 s2 = 20 5

0 2 1.5 0.5 0 0 1 0 8 s3 = 8 4

0 0 1 0 0 0 0 1 5 s4 = 5 -
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First tableau:

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio

1 0 15 -5 0 0 30 0 240 z = 240

0 0 0 -1 1 0 -4 0 16 s1 = 16 -

0 0 -1 0.5 0 1 -2 0 4 s2 = 4 8

0 1 0.75 0.25 0 0 0.5 0 4 x1 = 4 16

0 0 1 0 0 0 0 1 5 s4 = 5 -

Second and optimal tableau:

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio

1 0 5 0 0 10 10 0 280 z = 280

0 0 -2 0 1 2 -8 0 24 s1 = 24

0 0 -2 1 0 2 -4 0 8 x3 = 8

0 1 1.25 0 0 -0.5 1.5 0 2 x1 = 2

0 0 1 0 0 0 0 1 5 s4 = 5

■

■ Example 3.5.2 Modified Dakota Furniture

If we modify the objective function in the previous example to be

maxz = 60x1 +35x2 +20x3

■

■ Solution 3.5.2
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Second and optimal tableau for the modified problem:

⇓

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio

1 0 0 0 0 10 10 0 280 z = 280

0 0 -2 0 1 2 -8 0 24 s1 = 24 -

0 0 -2 1 0 2 -4 0 8 x3 = 8 -

0 1 1.25 0 0 -0.5 1.5 0 2 x1 = 2 2/1.25 =⇒

0 0 1 0 0 0 0 1 5 s4 = 5 5/1

Another optimal tableau for the modified problem:

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio

1 0 0 0 0 10 10 0 280 z = 280

0 1.6 0 0 1 1.2 -5.6 0 27.2 s1 = 27

0 1.6 0 1 0 1.2 -1.6 0 11.2 x3 = 11.2

0 0.8 1 0 0 -0.4 1.2 0 1.6 x2 = 1.6

0 -0.8 0 0 0 0.4 -1.2 1 3.4 s4 = 3.4

Therefore the optimal solution is as follows: z = 280 and for 0 ≤ c ≤ 1∣∣∣∣∣∣∣∣∣
x1

x2

x3

∣∣∣∣∣∣∣∣∣= c

∣∣∣∣∣∣∣∣∣
2

0

8

∣∣∣∣∣∣∣∣∣+(1− c)

∣∣∣∣∣∣∣∣∣
0

1.6

11.2

∣∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣∣

2c

1.6−1.6c

11.2−3.2c

∣∣∣∣∣∣∣∣∣
■

3.6 MATLAB solution of LP problems

The solution of linear programming problems, using simplex method, can be found as

illustrated by the following example.

■ Example 3.6.1 Find the solution of the following linear programming problem using

MATLAB (simplex method):
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minz =−x1 −2x2 − x3

s.t. 2x1 + x2 − x3 ≤ 2

2x1 −2x2 +5x3 ≤ 6

4x1 + x2 + x3 ≤ 6

x1,x2,x3 ≥ 0
■

■ Solution 3.6.1

Step 1 Express the objective function in the form f (x) = f T x and identify the vectors x

and f as

x =


x1

x2

x3

 and f =


−1

−2

−1


Express the constraints in the form Ax ≤ b and identify the matrix A and the vector b as

A =


2 1 −1

2 −1 5

4 1 1

 and b =


2

6

6


Step 2 Use the command for executing linear programming program using simplex

method as indicated below:

clc

clear all

f=[-1; -2;-1];

A=[2 1 - 1;

2 -1 5;

4 1 1];

b=[2;6;6];

lb=zeros (3,1);
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Aeq =[];

beq =[];

options = optimset('LargeScale ', 'off', 'Simplex ', 'on')

;

[x,fval ,exitflag ,output] = linprog(f,A,b,Aeq ,beq ,lb

,[],[],...

optimset('Display ','iter'))

This produces the solution or output as follows:

Optimization terminated.

x=

0

4

2

fval =

-10

exitflag =

1

output =

iterations :3

algorithm: 'medium scale: simplex '

cgiterations: []

message: 'Optimization terminated.'

■
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3.7 Exercises
Exercise 3.7.1 Define the following items

- surplus variable - slack variable ■

Exercise 3.7.2 what are the conditions that Linear Programming (LP) problem has to

satisfy to be in the canonical form? ■

Exercise 3.7.3 Put the following LP problem in its stander matrix form

maxz = 4x1 +7x2

s.t. 2x1 +2x2 ≤ 100

x1 + x2 ≤ 80

x1 ≤ 40

x2 ≥ 1

x1 ≥ 0

(Explain all the details and names of the addition variables if needed) ■

Exercise 3.7.4 Put the following LP problem in its stander scalar form

minz = 50x1 +100x2

s.t.

7x1 +2x2 ≥ 28

2x1 +12x2 ≥ 24

x1,x2 ≥ 0

(Explain all the details and names of the addition variables if needed) ■

Exercise 3.7.5 Detect which of the following Mathematical statements is true and which

is false.

1. The Matrix form of the standard form of linear programming problem is Minimize

f (X) = cT X , where c is unknown constant.
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■

Exercise 3.7.6 Find the solution of the following LP problem graphically:

Maximize f (x, y) = 50x+100y

subject to

10x+5y ≤ 2500

4x+10y ≤ 2000

x+1.5y ≤ 450

x ≥ 0, y ≥ 0

■

Exercise 3.7.7 Find the solution of the following LP problem graphically ( Giapetto LP):

maxz = 3x1 +2x2 (The Objective function)

s.t. 2x1 + x2 ≤ 100 (Finishing constraint)

x1 + x2 ≤ 80 (Carpentry constraint)

x1 ≤ 40 (Constraint on demand for soldiers)

x1,x2 ≥ 0 (Sign restrictions)

Hint:
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■

Exercise 3.7.8 Find the solution of the following LP problem graphically ( Advertise-

ment LP):

minz = 50x1 +100x2

s.t.

7x1 +2x2 ≥ 28

2x1 +12x2 ≥ 24

x1,x2 ≥ 0

Hint:

■

Exercise 3.7.9 Find the solution of the following LP problem graphically ( Modified

Giapetto LP):
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maxz = 4x1 +2x2 (The Objective function)

s.t. 2x1 + x2 ≤ 100 (Finishing constraint)

x1 + x2 ≤ 80 (Carpentry constraint)

x1 ≤ 40 (Constraint on demand for soldiers)

x1,x2 ≥ 0 (Sign restrictions)
■

Exercise 3.7.10 Using SIMPLEX method, find

maxz = 4x1 +7x2

s.t. 2x1 +2x2 ≤ 100

x1 + x2 ≤ 80

x1 ≤ 40

x2 ≥ 1

x1 ≥ 0

■

Exercise 3.7.11 Using SIMPLEX method, find

maxz = 10x1 +20x2

s.t. 5x1 +3x2 ≤ 30

3x1 +6x2 ≤ 36

2x1 +5x2 ≤ 20

x1,x2 ≥ 0

■

Exercise 3.7.12 Using MATLAB solve the above LP problems based on SIMPLEX

method ■
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4.1 Introduction

In all the optimization techniques considered so far, the design variables are assumed to be

continuous, which can take any real value. Other cases could be considered as follows:

• When all the variables are constrained to take only integer values in an optimization

problem, it is called an (all)-integer programming problem.

• When the variables are restricted to take only discrete values, the problem is called a

discrete programming problem.

• When some variables only are restricted to take integer (discrete) values, the op-

timization problem is called a mixed-integer (discrete) programming problem

.

• When all the design variables of an optimization problem are allowed to take on

values of either zero or 1, the problem is called a zero-one programming problem.

Solving various type of integral programming

• Among the several techniques available for solving the all-integer and mixed-integer

linear programming problems, the cutting plane algorithm of Geometry

• The branch-and-bound algorithm of Land and Doig have been quite popular.

• The zero–one linear programming problems can be solved by the general cutting
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plane or the branch-and-bound algorithm.

• Balas developed an efficient enumerative algorithm for solving the zero–one linear

programming problems.

• Very little work has been done in the field of integer nonlinear programming. The

generalized penalty function method and the sequential linear integer (discrete) pro-

gramming method can be used tomethod and the sequential linear integer (discrete)

programming method can be used to solve all integer and mixed-integer nonlinear

programming problems.

The various solution techniques of solving integer programming problems are summarized

in the following figure

4.2 Integer Linear Programming

4.2.1 Graphical representation

Consider the following integer programming problem:

Maximize f (X) = 3x1 +4x2
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subject to

3x1 − x2 ≤ 12

3x1 +11x2 ≤ 66

x1 ≥ 0

x2 ≥ 0

x1 and x2 are integers

The graphical solution of this problem, by ignoring the integer requirements, is shown in

Fig. 4.2-1. It can be seen that the solution is x1 = 51
2 ,x2 = 41

2 with a value of f = 341
2 .

Figure 4.2-1: Graphical solution of the problem

Now, since this is a noninteger solution, we truncate the fractional parts and obtain the new

solution as x1 = 5, x2 = 4, and f = 31. By comparing this solution with all other integer

feasible solutions (shown by dots in Fig. 4.2-1), we find that this solution is optimum for

the integer LP problem.
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Figure 4.2-2: Graphical solution with modified constraint

It is to be noted that truncation of the fractional part of a LP problem will not always give

the solution of the corresponding integer LP problem. This can be illustrated by changing

the constraint

3x1 +11x2 ≤ 66 to 7x1 +11x2 ≤ 88

With this altered constraint, the feasible region and the solution of the LP problem, without

considering the integer requirement, are shown in Fig. 4.2-2. The optimum solution of

this problem is identical with that of the preceding problem: namely, x1 = 51
2 ,x2 = 41

2 , and

f = 341
2 . The truncation of the fractional part of this solution gives x1 = 5,x2 = 4, and

f = 31. Although this truncated solution happened to be optimum to the corresponding

integer problem in the earlier case, it is not so in the present case. In this case the optimum

solution of the integer programming problem is given by x∗1 = 0,x∗2 = 8, and f ∗ = 32.
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4.3 Cutting Plane
Theorem 4.3.1 The optimal solution of the ILP problem lies at one corner of the closed

convex polyhedron of the feasible region, or at the nearest integer point of the best corner.

Figure 4.3-3: Graphical solution with modified constraint

• For the same problem stated in the previous section, the feasible region of the problem

is denoted by ABCD in Fig. 4.2-1.

• The optimal solution of the problem, without considering the integer requirement, is

given by point C. This point corresponds to x1 = 51
2 ,x2 = 41

2 , and f = 341
2 , which is

not optimal to the integer programming problem since the values of x1 and x2 are not

integers.

• The feasible integer solutions of the problem are denoted by dots in Fig. 4.2-1. These

points are called the integer lattice points.
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• In Fig. 4.3-3, the original feasible region is reduced to a new feasible region ABEFGD

by including the additional (arbitrarily selected) constraints.

• The idea behind adding these additional constraints is to reduce the original feasible

convex region ABCD to a new feasible convex region (such as ABEFGD) such that

an extreme point of the new feasible region becomes an integer optimal solution to

the integer programming problem.

• There are two main considerations to be taken while selecting the additional con-

straints:

(1) The new feasible region should also be a convex set, and

(2) The part of the original feasible region that is sliced off because of the additional

constraints should not include any feasible integer solutions of the original problem.

4.4 Balas’ algorithm for zero-one programming problems

• When all the variables of a LP problem are constrained to take values of 0 or 1

only, we have a zero-one (or binary) LP problem. A study of the various techniques

available for solving zero-one programming problems is important because of the

following reasons:

(a) Certain class of integer nonlinear programming problems can be converted into

equivalent zero-one LP problems.

(b) A wide variety of industrial, management, and engineering problems can be

formulated as zero-one problems. For example, in structural control, the problem

of selecting optimal locations of actuators (or dampers) can be formulated as a

zero-one problem. In this case, if a variable is zero or 1, it indicates the absence

or presence of the actuator, respectively, at a particular location.

• The zero-one LP problems can be solved by using any of the general integer LP

techniques like Gomory’s cutting plane method and Land and Doig’s branch-and-

bound method by introducing the additional constraint that all the variables must be

less than or equal to 1.
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• This additional constraint will restrict each of the variables to take a value of either

zero (0) or one (1). Since the cutting plane and the branch-and-bound algorithms

were developed primarily to solve a general integer LP problem, they do not take

advantage of the special features of zero-one LP problems.

• Thus several methods have been proposed to solve zero-one LP problems more

efficiently. In this section we present an algorithm developed by Balas (in 1965) for

solving LP problems with binary variables only.

• If there are n binary variables in a problem, an explicit enumeration process will

involve testing 2n possible solutions against the stated constraints and the objective

function. In Balas method, all the 2n possible solutions are enumerated, explicitly or

implicitly.

• The efficiency of the method arises out of the clever strategy it adopts in selecting

only a few solutions for explicit enumeration.

• The method starts by setting all the n variables equal to zero and consists of a

systematic procedure of successively assigning to certain variables the value 1, in

such a way that after trying a (small) part of all the 2n possible combinations, one

obtains either an optimal solution or evidence of the fact that no feasible solution

exists. The only operations required in the computation are additions and subtractions,

and hence the round-off errors will not be there. For this reason the method is

sometimes referred to as additive algorithm.
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Standard Form of the Problem:

To describe the algorithm, consider the following form of the LP problem with zero-one

variables:

Find X =



x1

x2
...

xn


such that f (X) = CT X → minimum

subject to

AX+Y = B

xi = 0 or 1

Y ≥ 0

where

C =



c1

c2
...

cn


≥ 0, Y =



y1

y2
...

ym


, B =



b1

b2
...

bm



A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn



where Y is the vector of slack variables and ci and ai j need not be integers.

Initial Solution:

• An initial solution for the problem stated in Eqs. (10.28) can be taken as

f0 = 0

xi = 0, i = 1,2, . . . ,n

Y(0) = B
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• If B ≥ 0, this solution will be feasible and optimal since C ≥ 0. In this case there is

nothing more to be done as the starting solution itself happens to be optimal.

• On the other hand, if some of the components b j are negative, the solution given by

the above equation will be optimal (since C ≥ 0 ) but infeasible. Thus the method

starts with an optimal (actually better than optimal) and infeasible solution. The

algorithm forces this solution toward feasibility while keeping it optimal all the time.

• This is the reason why Balas called his method the pseudo dual simplex method. The

word pseudo has been used since the method is similar to the dual simplex method

only as far as the starting solution is concerned and the subsequent procedure has no

similarity at all with the dual simplex method.

4.5 Solution of binary programming problems using MATLAB

The MATLAB function bintprog can be used to solve a binary (or zero–one) programming

problem. The following example illustrates the procedure.

■ Example 4.5.1 Example 10.7 Find the solution of the following binary programming

problem using the MATLAB function bintprog:

Minimize f (X) =−5x1 −5x2 −8x3 +4x4 +4x5

subject to

3x1 −6x2 +7x3 −9x4 −9x5 ≤−10, x1 +2x2 − x4 −3x5 ≤ 0

xi binary ; i = 1,2,3,4,5

■

■ Solution 4.5.1 Step 1: State the problem in the form required by the program bintprog:

Minimize f (x) = f Tx subject to Ax ≤ b and Aeqx = beq
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Here
f T =

{
−5 −5 −8 2 4

}
,x =

{
x1 x2 x3 x4 x5

}T

A =

 3 −6 7 −9 −9

1 2 0 −1 −3

 ,b =

 −10

0


Step 2: The input is directly typed on the MATLAB command window and the program

bintprog is called as indicated below:

% using bintprog MATLAB function

clear; clc;

f = [-5 -5 -8 2 4]';

A = [3 -6 7 -9 -9; 1 2 0 -1 -3];

b = [-10 0]';

x = bintprog (f, A, b,[])

Step 3: The output of the program is shown below:

Optimization terminated.

x =

1

1

1

1

1

■
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4.6 Exercises
Exercise 4.6.1 Solve the following programming problem using a graphical procedure

Minimize f = 4x1 +5x2

subject to

3x1 + x2 ≥ 2

x1 +4x2 ≥ 5

3x1 +2x2 ≥ 7

x1,x2 ≥ 0, integers
■

Exercise 4.6.2 Solve the following programming problem using a graphical procedure

Maximize f = 4x1 +8x2

subject to

4x1 +5x2 ≤ 40

x1 +2x2 ≤ 12

x1,x2 ≥ 0, integers
■

Exercise 4.6.3 Solve the following programming problem using a graphical procedure

Maximize f = 4x1 +3x2

subject to

3x1 +2x2 ≤ 18

x1,x2 ≥ 0, integers
■

Exercise 4.6.4 Solve the following programming problem using a graphical procedure

Maximize f = 3x1 − x2
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subject to

3x1 −2x2 ≤ 3

−5x1 −4x2 ≤−10x1,x2 ≥ 0, integers
■

Exercise 4.6.5 Solve the following zero-one programming problem using MATLAB

Maximize f =−10x1 −5x2 −3x3

subject to

x1 +2x2 + x3 ≥ 4

2x1 + x2 + x3 ≤ 6

xi = 0 or 1, i = 1,2,3
■

Exercise 4.6.6 Solve the following zero-one programming problem using MATLAB

Minimize f =−5x1 +7x2 +10x3 −3x4 + x5

subject to

x1 +3x2 −5x3 + x4 +4x5 ≤ 0

2x1 +6x2 −3x3 +2x4 +2x5 ≥ 4

x2 −2x3 − x4 + x5 ≤−2

xi = 0 or 1, i = 1,2, . . . ,5
■
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5.1 Introduction

Network routing problems commonly arise in communication and transportation systems.

Delays that occur at the nodes (e.g., railroad classification yards or telephone switchboards)

may be a function of the loads placed on them and their capacities. Breakdowns may occur

in either links or nodes. Much studied is the “traveling salesman problem,” which consists

of starting a route from a designated node that goes through each node (e.g., city) only once

and returns to the origin in the least time, cost, or distance. This problem arises in selecting

an order for processing a set of production jobs when the cost of setting up each job depends

on which job has preceded it. In this case the jobs can be thought of as nodes, each of which

is connected to all of the others, with setup costs as the analogue of distances between them.

The order that yields the least total setup cost is therefore equivalent to a solution to the

traveling salesman problem.

A network may be defined by a set of points, or “nodes,” that are connected by lines, or

“links.” A way of going from one node (the “origin”) to another (the “destination”) is called

a “route” or “path.” Links, which may be one-way or two-way, are usually characterized

by the time, cost, or distance required to traverse them. The time or cost of traveling in

different directions on the same link may differ.
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Thus, G =graph or network consists of

– a set V of vertices (nodes, points) and

– a set E of edges (arcs, lines) which are connections between vertices.

write G = (V,E); write V (G) for vertices of G, and E(G) for edges of G.

(vertices are usually denoted u or v with subscripts; edges we usually denote e) edges may

have direction: an edge e between u and v may go from u to v, we write e = (u,v), or from

v to u, we write e = (v,u)

Figure 5.1-1: Network components

(if an edge e does not have a direction, we treat it the same way as having both directions) if

all edges do not have a direction (are undirected), we say that the network is undirected

edges may have weight: a weight of edge e = (u,v) is a real number denoted c(e) or

c(u,v),ce,cuv a sequence of nodes and edges v1,e1,v2,e2, . . .vk−1,ek,vk is

- a path (directed path) if each ei goes from vi to vi+1

- a chain (undirected path) if each ei connects vi and vi+1 (in some direction)

(often we write: e1,e2, . . . ,ek is a path (we omit vertices) or write: v1,v2, . . . ,vk is a path

(we omit edges))

a network is connected if for every two nodes there is a path connecting them; otherwise it

is disconnected a cycle (loop, circuit) is a path starting and ending in the same node, never

repeating any node or edge a forest (acyclic graph) is an undirected graph that contains no

cycles a tree is a connected forest

Claim: A tree with n nodes contains exactly n−1 edges. Adding any edge to a tree creates
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a cycle. Removing any edge from a tree creates a disconnected forest.

R Some of the points to be remembered while drawing the network are

• There must be only one beginning and one end for the network as in this figure

• Event number should be written inside the circle or node (or triangle/square/rect-

angle etc). Activity name should be capital alphabetical letters and would be

written above the arrow. The time required for the activity should be written

below the arrow as

• While writing network, see that activities should not cross each other. And

arcs or loops as in the following figure should not join Activities (Crossing of

activities not allowed).
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• While writing network, looping should be avoided. This is to say that the network

arrows should move in one direction, i.e. starting from the beginning should

move towards the end, as in the following figure (Looping is not allowed.)

• When two activities start at the same event and end at the same event, they should

be shown by means of a dummy activity as in the following figure. Dummy

activity is an activity, which simply shows the logical relationship and does not

consume any resource. It should be represented by a dotted line as shown. In

the figure, activities C and D start at the event 3 and end at event 4. C and D are

shown in full lines, whereas the dummy activity is shown in dotted line.

• When the event is written at the tail end of an arrow, it is known as tail event.

If event is written on the head side of the arrow it is known as head event. A
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tail event may have any number of arrows (activities) emerging from it. This is

to say that an event may be a tail event to any number of activities. Similarly, a

head event may be a head event for any number of activities. This is to say that

many activities may conclude at one event.

• A network is connected if every node can be reached from every other node by

a path

• A spanning tree is a connected subset of a network including all nodes, but

containing no cycles.

• An out-tree is a spanning tree in which every node has exactly one incoming arc

except for the root.



90 Chapter 5. Network problems

5.2 Shortest Path Problem

Where does it arise in practice?

Common applications

• shortest paths in a vehicle (Navigator)

• shortest paths in internet routing

• shortest paths around any university camps for instance; SVU.

How will we solve the shortest path problem?

– Dijkstra’s algorithm

What is the shortest path from a source node (often denoted as s) to a sink node, (often

denoted as t)?

What is the shortest path from node 1 to node 6?
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• Given a network G = (V,E) with two distinguished vertices s, t ∈V , find a shortest

path from s to t?

■ Example 5.2.1 A real life situation involving a shortest route problem.

A leather manufacturing company has to transport the finished goods from the factory to the

store house. The path from the factory to the store house is through certain intermediate

stations as indicated in the following diagram. The company executive wants to identify the

path with the shortest distance so as to minimize the transportation cost. The problem is to

achieve this objective. ■

The shortest route technique can be used to minimize the total distance from a node desig-

nated as the starting node or origin to another node designated as the final node.
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■ Solution 5.2.1

Step 1

- Looking at the diagram, we see that node 1 is the origin and the nodes 2 and 3 are

neighbours to the origin.

- Among the two nodes, we see that node 2 is at a distance of 40 units from node 1 whereas

node 3 is at a distance of 100 units from node 1.

- The minimum of {40,100} is 40. Thus, the node nearest to the origin is node 2, with a

distance of 40 units. So, out of the two nodes 2and 3, we select node 2.

-We form a set of nodes {1,2} and construct a path connecting the node 2 with node 1 by

a thick line and mark the distance of 40 in a box by the side of node 2. This first iteration

is shown in the following diagram.

Step 2: Now we search for the next node nearest to the set of nodes {1,2}. For this

purpose, consider those nodes which are neighbours of either node 1 or node 2. The nodes

3,4 and 5 fulfill this condition. We calculate the following distances.

The distance between nodes 1 and 3 = 100.

The distance between nodes 2 and 3 = 35.

The distance between nodes 2 and 4 = 95.

The distance between nodes 2 and 5 = 65.
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Minimum of {100,35,95,65}= 35.

Therefore, node 3 is the nearest one to the set {1,2}. In view of this observation, the set

of nodes is enlarged from {1,2} to {1,2,3}. For the set {1,2,3}, there are two possible

paths, viz. Path 1 → 2 → 3 and Path 1 → 3 → 2. The Path 1 → 2 → 3 has a distance

of 40+35 = 75 units while the Path 1 → 3 → 2 has a distance of 100+35 = 135 units.

Minimum of{75,135}= 75. Hence we select the path 1 → 2 → 3 and display this path

by thick edges. The distance 75 is marked in a box by the side of node 3. We obtain the

following diagram at the end of Iteration No. 2

Repeating the process: We repeat the process. The next node nearest to the set {1,2,3}

is either node 4 or node5.

Node 4 is at a distance of 95 units from node 2 while node 2 is at a distance of 40 units

from node 1. Thus, node 4 is at a distance of95+40 = 135 units from the origin.

As regards node 5, there are two paths viz. 2 → 5 and 3 → 5, providing a link to the origin.

We already know the shortest routes from nodes 2 and 3 to the origin. The minimum

distances have been indicated in boxes near these nodes. The path 3 → 5 involves the

shortest distance. Thus, the distance between nodes 1 and 5 is 95 units (20 units between

nodes 5 and 3+75 units between node 3 and the origin). Therefore, we select node 5 and

enlarge the set from {1,2,3} to {1,2,3,5}. The distance 95 is marked in a box by the

side of node 5. The following diagram is obtained at the end of Iteration No. 3.
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Now 2 nodes remain, viz., nodes 4 and 6.

- Among them, node 4 is at a distance of 135 units from the origin (95 units from node 4

to node 2+40 units from node 2 to the origin).

- Node6 is at a distance of 135 units from the origin (40+95 units). Therefore, nodes 4

and 6 are at equal distances from the origin.

- If we choose node 4, then travelling from node 4 to node 6 will involve an additional

distance of 40 units. However, node 6 is the ending node.

- Therefore, we select node 6 instead of node 4. Thus the set is enlarged from {1,2,3,5}

to {1,2,3,5,6}.

-The distance 135 is marked in a box by the side of node 6. Since we have got a path

beginning from the start node and terminating with the stop node, we see that the solution

to the given problem has been obtained.

We have the following diagram at the end of Iteration No. 4.
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Minimum distance: Referring to the above diagram, we see that the shortest route is

provided by the path 1 → 2 → 3 → 5 → 6 with a minimum distance of135 units ■

5.3 Minimum spanning tree problem

Tree: A minimally connected network is called a tree. If there are n nodes in a network, it

will be a tree if the number of edges = n−1.

5.3.1 Minimum spanning tree algorithm

Problem : Given a connected network with weights assigned to the edges, it is required to

find out a tree whose nodes are the same as those of the network.

The weight assigned to an edge may be regarded as the distance between the two nodes

with which the edge is incident. Algorithm:

The problem can be solved with the help of the following algorithm.

The procedure consists of selection of a node at each step.

• Step 1: First select any node in the network. This can be done arbitrarily. We will

start with this node.

• Step 2: Connect the selected node to the nearest node.

• Step 3: Consider the nodes that are now connected. Consider the remaining nodes.

If there is no node remaining, then stop. On the other hand, if some nodes remain,

among them find out which one is nearest to the nodes that are already connected.

Select this node and go to Step 2.
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Thus the method involves the repeated application of Steps 2 and 3. Since the number of

nodes in the given network is finite, the process will end after a finite number of steps. The

algorithm will terminate with step 3.

R While applying the above algorithm, if some nodes remain in step 3 and if there is a

tie in the nearest node, then the tie can be broken arbitrarily.

As a consequence of tie, we may end up with more than one optimal solution.

■ Example 5.3.1 Determine the minimum spanning tree for the following network.

■

■ Solution 5.3.1 Step 1: First select node 1. (This is done arbitrarily)

Step 2: We have to connect node 1 to the nearest node. Nodes 2,3 and 4 are adjacent

to node 1. They are at distances of 60,40 and 80 units from node 1. Minimum of

{60,40,80}= 40.

Hence the shortest distance is40. This corresponds to node 3. So we connect node 1to

node 3 by a thick line. This is Iteration No. 1.
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Step 3: Now the connected nodes are 1 and 3. The remaining nodes are 2,4,5,6,7 and 8.

Among them, nodes 2 and 4 are connected to node 1. They are at distances of 60 and 80

from node 1. Minimum of {60,80}= 60. So the shortest distance is 60. Next, among the

nodes 2,4,5,6,7 and 8, find out which nodes are connected to node 3. We find that all of

them are connected to node 3. They are at distances of 60,50,80,60,100 and 120 from

node 3.

Minimum of {60,50,80,60,100,120}= 50. Hence the shortest distance is 50.

Among these nodes, it is seen that node 4 is nearest to node 3.

Now we go to Step 2. We connect node 3 to node 4 by a thick line. This is Iteration No.2.
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Next go to step 3. Now the connected nodes are 1,3 and 4. The remaining nodes are

2,5,6,7 and 8.

Node 2 is at a distance of 60 from node 1. Nodes 5,6,7 and 8 are not adjacent to node 1.

All of the nodes 2,5,6,7 and 8 are adjacent to node 3. Among them, nodes 2 and 6 are
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nearer to node 3, with equal distance of 60. Node 6 is adjacent to node 4, at a distance of

90. Now there is a tie between nodes 2 and 6. The tie can be broken arbitrarily. So we

select node 2. Connect node 3 to Node 2 by a thick line. This is Iteration No. 3.

• We continue the above process. Now nodes 1,2,3 and 4 are connected. The remaining

nodes are 5,6,7 and 8. None of them is adjacent to node 1. Node 5 is adjacent to node 2

at a distance of 60. Node 6 is at a distance of 60 from node 3. Node 6 is at a distance of

90 from node 4. There is a tie between nodes 5 and 6. We select node 5. Connect node 2

to node 5 by a thick line. This is Iteration No. 4.

Now nodes 1,2,3,4 and 5 are connected. The remaining nodes are 6,7 and 8.

Among them,node 6 is at the shortest distance of 60 from node 3. So, connect node 3 to

node 6 by a thick line. This is Iteration No. 5.
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Now nodes1,2,3,4,5 and 6 are connected. The remaining nodes are 7 and 8.

Among them, node 8 is at the shortest distance of 30 from node 6. Consequently we

connect node 6 to node 8 by a thick line. This is Iteration No. 6.

Now nodes 1,2,3,4,5,6 and 8 are connected. The remaining node is7.
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It is at the shortest distance of 50 from node 8. So, connect node 8 to node 7 by a thick

line. This is Iteration No.7.

Now all the nodes 1,2,3,4,5,6,7 and 8 are connected by seven thick lines. Since no

node is remaining, we have reached the stopping condition. Thus, we obtain the following

minimum spanning tree for the given network.

■
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5.4 Neural-network-based optimization

• The immense computational power of nervous system to solve perceptional problems

in the presence of massive amount of sensory data has been associated with its parallel

processing capability.

• The neural computing strategies have been adopted to solve optimization problems in

recent years

• A neural network is a massively parallel network of interconnected simple processors

(neurons) in which each neuron accepts a set of inputs from other neurons and

computes an output that is propagated to the output nodes. Thus a neural network can

be described in terms of the individual neurons, the network connectivity, the weights

associated with the interconnections between neurons, and the activation function

of each neuron. The network maps an input vector from one space to another. The

mapping is not specified but is learned.

5.4.1 Feedforward Neural Networks

• Feedforward Neural Networks (FNNs) have consistently ranked among the most

widely adopted neural network models, showcasing their versatility across various

applications. The procedure of fine-tuning the control parameters of a neural network

is referred to as training and can be viewed as an optimization challenge. Within

this optimization context, the primary objective revolves around discovering optimal

parameter values to minimize errors in the neural network or enhance its accuracy.

• Traditionally, FNNs have been trained using a method known as Back Propagation

(BP). This training algorithm relies on gradients and employs a gradient descent

approach to converge towards the best solution, starting from an initial random

point. However, the BP algorithm encounters a challenge in the form of local optima

stagnation due to its reliance on gradients.

• Feedforward neural networks (FNNs) are characterized by a unidirectional connection

between their neurons. These neural networks consist of neurons organized into

distinct parallel layers. The initial layer is consistently referred to as the input layer,



5.4 Neural-network-based optimization 103

while the ultimate layer is termed the output layer. Any intermediary layers positioned

between the input and output layers are known as hidden layers. An FNN featuring

a single hidden layer is simply referred to as an FNN, as depicted in the following

figure

• Upon supplying the inputs, along with their corresponding weights and biases, the

output of FNNs is determined through the subsequent steps:

(a) The weighted sums of inputs are first calculated by

s j =
n

∑
i=1

(
Wi jXi

)
−θ j, j = 1,2, . . . ,h

where n is the number of the input nodes, Wi j shows the connection weight from

the ith node in the input layer to the jth node in the hidden layer, θ j is the bias

(threshold) of the j th hidden node, and Xi indicates the ith input.

(b) The output of each hidden node is calculated as follows:

S j = sigmoid(s) j
)
=

1
1+ e−s j

, j = 1,2, . . .m
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(c) The final outputs are defined based on the calculated outputs of the hidden nodes

as follows:

ok =
h

∑
j=1

(
w jkS j

)
−θ

′
k, k = 1,2, . . . ,m

Ok = sigmoid(ok) =
1

1+ e−ok
, k = 1,2, . . . ,m

where w jk is the connection weight from the jth hidden node to the kth output

node, and θ ′
k is the bias (threshold) of the kth output node.

As evident from these equations, it is apparent that the weights and biases play

a crucial role in determining the ultimate output of FNNs based on provided

inputs. The task of identifying suitable values for these weights and biases,

with the aim of establishing a desirable relationship between inputs and outputs,

precisely characterizes the process of training FNNs.

• Several neural network architectures, such as the Hopfield and Kohonen networks,

have been proposed to reflect the basic characteristics of a single neuron.

These architectures differ one from the other in terms of the number of neurons in

the network, the nature of the threshold functions, the connectivities of the various

neurons, and the learning procedures.

• Various neural network architectures, including models like Hopfield and Kohonen

networks, have been devised to capture the fundamental attributes of an individual

neuron.

• These architectures exhibit distinctions from one another in terms of factors such as the

network’s neuron count, the characteristics of threshold functions, the interconnections

among neurons, and the methodologies employed for learning

Further reading can be found in the bibliography and references therein.
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5.5 Exercises

Exercise 5.5.1 Explain the shortest path problem. ■

Exercise 5.5.2 Explain the algorithm for a shortest path problem ■

Exercise 5.5.3 Find the shortest path of the following network:

■

Exercise 5.5.4 Find the shortest path of the following network:

■

Exercise 5.5.5 Explain the minimum spanning tree algorithm. ■
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Exercise 5.5.6 From the following network, find the minimum spanning tree.

■

Exercise 5.5.7 Find the minimum spanning tree of the following network:

■
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