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Introduction

b Digital Design is about designing in digital space so that the created

contents can be displayed and seen on a digital device. With the
availability of high computing power, designers are able to quickly create designs

in digital space prior to actual deployment.

The course is an introduction to digital design technology. It allows you to

understand the basics of digital design and helps you develop skills.

In this course the student will be learn the following topics: Binary systems and
Boolean algebra- logic gates — simplifying the Boolean circuit-combinational
circuits- encryption and decryption - asynchronous sequential circuits and their
applications- synchronous sequential circuits and their applications-

displacement recorders- counters — memories and types of memories.

The following is a brief summary of the topics that are covered in each chapter.

Chapter 1  presents the various binary systems suitable for representing
information in digital systems. The binary number system is explained and binary
codes are illustrated. Examples are given for addition and subtraction of signed

binary numbers and decimal numbers in binary-coded decimal (BCD) format.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the
correlation between Boolean expressions and their corresponding logic
diagrams. All Possible logic operations for two variables are investigated, and
the most useful logic gates used in the design of digital systems are identified.

This chapter also introduces basic CMOS logic gates.



Chapter 3 covers the map method for simplifying Boolean expressions. The
map method is also used to simplify digital circuits constructed with AND-OR,
NAND, or NOR gates. All other possible two-level gate circuits are considered,
and their method of implementation is explained. Verilog HDL is introduced

together with simple examples of gate-level models.

Chapter 4  outlines the formal procedures for the analysis and design of
combinational circuits. Some basic components used in the design of digital
systems, such as adders and code converters, are introduced as design
examples. Frequently used digital logic functions such as parallel adders and
subtractors, decoders, encoders, and multiplexers are explained, and their use

in the design of combinational circuits is illustrated.

Chapter 5 outlines the formal procedures for analyzing and designing clocked
(synchronous) sequential circuits. The gate structure of several types of flip-flops
is presented together with a discussion on the difference between level and
edge triggering.

Chapter 6 deals with various sequential circuit components such as registers,
shift registers, and counters. These digital components are the basic building

blocks from which more complex digital systems.
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Ch1: Introduction to Digital Design and Binary

Digital vs. Analog

Numbers

> Analog: Continuous function V of continuous variable t (time,

space etc.) : V(t)

Example: Human voice in air,
analog devices.

An analog* quantity is one having continuous values.

> Digital: Discrete function Vk of discrete sampling variable tk, with

k = integer: Vi = V(tk)

Example: Computer, CDs, DVDs,
digital devices.

Igital

-

d

A digital quantity is one having a discrete set of values.

ol |




Continuous vs. Discrete
Continuous:

» defined for every instant of time

» denoted by x(t)

Discrete:

7 defined at the discrete-instant of

time

bl

ia|

» denoted by x(n)

continuous-time
continuous values
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Digital vs. Analog

® An analog system has continuous range of values
. A mercury thermometer

Vinyl records
. Human eye

A | A =

4

H=

Digital signal




® A digital system has a set of discrete values
_ Digital Thermometer 1{5’\"

Compact Disc (CD) Q < S
_ Digital camera /
Analog System: Audio System

Original sound waves

W Microphone ” . Reproduced

o
> sound waves
RN

~

2 \
“ \
l Gy O,
WY
kA |
1A |
R

{ S
v
Speaker

Amplified audio signal

Linear amplifier

AW LW
7° 'U v
Audio signal

—l.

System using Digital and Analog Methods: The Compact Disk (CD) Player

CD drive

i ,JW
0110011101 | Digital-to-analog Linear amglifier
Digital data | converter Analog

reproduction

of music audio Speaker

signal
Scund
waves

Digital Systems and Units

SAMSUNE @ _ _

CPU Digital Watch Digital Cameras

Benefits of using digital

® Advantages of using Digital:

¢ Cheap electronic circuits

e Easier to calibrate and adjust

e Resistance to noise: Clearer picture and sound




Digital Design

Data Types and Representation

1- Integers: 35, 125, 5612* 1e2

2-Real Numbers, 5.67, 0.05, 52*1e0.5

3-Strings,

a- Names (ali, maha, ...)
b- Dates (12/9/2016)

c- Addresses (Qena, Egypt)

d- Telephone Numbers (0965214264)

e-string: $, &,%,@,...

Digital Design

Number Systems : 1- Decimal Code

Base (Radix) is 10 - symbols (0,1, . . 9) Digits (Base-1)

MSD ———__

Weights:

10°

i

10"

10° blio-

—1LSD

102)07

base 10

v If wewereto write 1936.25 using a power series
expansion and base 10 arithmetic:

1%10° +9%10° +3x10" + 6x10° +2x10" +5%x107




Digital Design

2- Binary Number System

Discrete elements of information are represented with
bits called binary codes.

—Baseis2 - symbols (0,1) - Binary Digits (Bits)
— Each position carries a weight (using decimal).

MSD :
weighs 2°] 221 2' 12° B2 222 L-LsD

v If wewrite 10111.01 using a decimal power
series we convert from binary to decimal:

152 002 116 25 21T 2 T2 40 %7 412~ =
=1x16+0Ox 8 +1x 4 +1x 2+1x1+ 0x 0.5 +1x 0.25=23.25

Digital Design

3- Octal Number system

The octal number system [from Greek: OKTQ].
—Itsbaseis8 2> eghtdigitsO, 1, 2,3,4,5,6,7

v (236.4)8=(7?)10

2x8% +3%x8 +6x8° +4x81=1585

[2] 7] 2] «] s ]octalNumber

4 2 2 1 3 decimal
B B 8 8 g

‘ | — : =




Digital Design

4- Hexadecimal Number system

-The hexadecimal number system [from Greek:
AEKAEZI].

—Itsbaseis 16 - first 10 digits are borrowed from the
decimal system (O -- 9) and the lettersA, B, C, D, E, F are
used for the digits 10, 11, 12, 13, 14, 15

v (D63FA)16=( ?)10

13x16" +6x16° +3x16° +15x16' +10x16° =877562

Digital Design

Different Systems

Numbers with Different Bases

Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)

(Wih] 1000 00 a

01 0001 01 I

02 0010 02 2

03 0011 03 3

04 0100 04 4

03 0101 03 5

06 0110 06 §

07 0111 07 7

08 1000 10 L]

09 1001 11 Y

10 1010 12 A

11 1071 12 B

12 1100 14 C

13 1107] 15 D

14 1110 16 E

15 1111 17 ¥




Digital Design

Conversion from Binary to Decimal

Let each bit of abinary number be represented by avariable
whose subscript = bit positions, i.e.,

(110), = (a,a,a,),

Its decimal equivalent is:
Ax22 4+ 1x 2"+ 0% 2% =(as x2* +aix 2"+ a5 x 20

It is necessary to separate the number into an integer part
and a fraction: Repeatedly divide the decimal number by 2.

Digital Design

v" Find the binary equivalent of 37.

2W —18+0.5

LSB Least Significant Bit

1 ¥—1LSB
218 =9 +0 |0
219 =4 511
ol 37,,=100101,
2)4 =2 +0 |0 )
2)2 -1 40 |0 /
2ﬁ =g 305 | la——M5D MSB Most Significant Bit

u33,= 2 , ANSi53,=110101,

Dr. Hany Ahmed Date: 9/2017



Digital Design

Conversion from decimal fraction to binary:

same method used for integers except multiplication

isused instead of division.

v' Convert (0.8542)to binary (give answer to 6

digits).

08542x2= 1
0.7084x2= 1
04168x2= 0
0.8336x2—- 1
0.6675x2= 1
03344x2= 0

+
+
+
i
+
+

0.7084
04168
08336
0.6672
0.3344
0.6688

a, =1 VsB
a,=1
A=)
Hg— 4
A |
ag=0 LSB

(0.8542),, =(0u_ja_,a_a_,a__g), =(0.110110),

Digital Design

Dr. Hany Ahmed Date: 9/2017

Convert (0.6875);, to binary. First,0.6875 is multiplied by 2 to give an integer and a fraction.
Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process
is conlinued until the (raction becomes 0 or until the number of digits has sullicient
accuracy. The coefficients of the binary number are obtained from the integers as follows:

Integer
0.6875 % 2 = 1
03750 % 2 0
0.7500 X 2 1
0.5000 x 2 = 1

+ o+ 4+ +

Fraction
0.3750
0.7500
0.5000
0.0000

Coefficient

a4 =1
a,=10
a3 =1
a4 = |

Dr. Hany Ahmed Date: 9/2017

10/9/2017



Digital Design

« Conversion from Decimal to Octal
217|i
1 278 37| 8
3 3|8 5 4|8
5 9 4 0

(v

3 4 5
Decimal =415
Division | Quotient Remainder
415/8 | _-51 7
5178 6 3
6/8 0 6
Octal=637

Dr. Hany Ahmed Date: 9/2017

Digital Design

e Conversion from Decimal to Octal

Decimal to Octal Conversion

Example: (175),,

Quotient  Remainder Coefficient
175/8= 21 7 a,=7
21 /8= 2 5 a,=5
2 /8= 0 2 a,=2

Answer: (175),,=(aya, ay), = (257),

Example: (0.3125),,

Integer Fraction Coefficient
03126*8= 2 . 6 a,=2
05 +*8= 4 . 0 a,=4

Answer: (0.3125),,= (0.a,a,a3); = (0.24),

Dr. Hany Ahmed Date: 9/2017
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Digital Design

Conversion from decimal fraction to Octal:

Convert (0.513)( to octal.

1513 X 8 = 4.104
).104 X 8 = (0.832
0.832 X 8 — 6.656
0.656 X 8 = 5.248
0.248 X 8§ = 1.984
(.984 X 8 = 7.872
The answer. to seven significant figures, is obtained from the integer part of the products:

(0.513)3 = (0.406517 ... )g

Dr. Hany Ahmed Date: 9/2017

Arithmetic operations in Systems

Arithmetic operations in Binary Number L

System
augend: 101101  minuend: 101101  multiplicand: 1011
addend: +100111 subtrahend: —100111  multiplier: X 101
sum: 1010100  difference: 000110 1011
= 0000
partial product: 1011
product: 110111

Dr. Hany Ahmed Date: 9/2017
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Digital Design

Arithmetic operations in Binary Number

System

1125 v 5 1 < [
x 110.1
0000000

6.5

10T 101
1110.11

23.25
14.75

101101j00
101101000
1001001.001

73.125

100110.00

38.00

Digital Design

Dr. Hany Ahmed Date: 9/2017

Arithmetic operations in Octal Number

System

Evaluate:
(1) (162)g + (537) ¢

11
162

537

721

<---- carry

Therefore, sum = (721)g

12

Dr. Hany Ahmed Date: 9/2017



Digital Design

Arithmetic operations in Octal Number
System

(iv) (67.5) ¢ + (45.6)

Solution:
11 <---- carry
67.5
45.6
135.3

Therefore, sum = (135.3) 4

Digital Design

Binary Digits

Each of the two digits in the binary system, 1 and 0, is called a bit, which is a
contraction of the words binary digit. In digital circuits, two different voltage levels are
used to represent the two bits. Generally, 1 is represented by the higher voltage, which
we will refer to as a HIGH, and a 0 is represented by the lower voltage level, which we
will refer to as a LOW. This is called positive logic and will be used throughout the
book.

HIGH 1and LOW 0

HIGH — HIGH —— —

iis - ; : e 23
Rising or Falling or Falling or " Rising or
leading edge trailing edge leading edge trailing edge
‘_.a" ‘_,.--""
LOW o LOW ——
r.;] 'r| rif] II
(a) Positive—going pulse (b) Negative—poing pulse

13



Digital Design

Non Ideal Pulse

rise time (tr), Overshoot

Ringing

i — Droop
fall time ()

|
The pulse width (tw) Amplitude }
is a measure of the '
duration of the pulse

and is often defined

Pulse width

as the time interval i L | I Ringing
between the 50% Base line l I 3 P e
. | I Undershoot
points on = Ll
the rising and falling :
edges Rise time Fall time
8 Nonideal pulse characteristics.
Digital Design
Binary Digits E—
1024 bytes = 1 KB KB = Kilobyte
1 Byte = 8 bits (Bit-> 0 or 1)
1024 KB = 1 MB MB = Megabyte
enough to represent one
alphanumeric character 1024MB = 1GB GB = Gigabyte
1024 GB = 1TB TB = Terabyte
1 KB =2"10 Bytes = 1024
1024 TB = 1 PB PE = Petabyte

14



Digital Design

Systematic multiples

the International System of Units (SI).

Symbol | Prefix | Sl Meaning

kilo

giga
| tera
| peta
| exa

zetta

< | N[mMm|B|IA @IZ|=

yotta

mega

10° =1000?
10 = 10002
109 =1000°
1012 = 10004 |
1078 = 1000°
1078 = 10008
1041 = 10007
1024 = 10008

Binary meaning

210 = 10241
220 = 10242
230 = 10243
240 = 10244
| 250 = 10245
| 950 = 10248
200 Ynogl
280 = 10248

Joint Electron Device Engineering Council (JEDEC)

memory standard_s JEDEC

memory
standards

Digital Design

ASCII Code

An alphanumeric
character (e.g. a letter or
number such as 'A', 'B'
or '7') is stored as 1 byte.
For example, to store the
letter 'R' uses 1 byte,
which is stored by the

computer as 8 hits,
'01010010'.
ASCII (American

Standard Code for
Information Interchange)
Code

ASCII Code: Character to Binary

0011 0000
0011 0001
001l 0010
o011 0011
0011 0100
o011 0101
0011 0110
0011 0111
0011 1000
0011 1001
0100 0001
0100 0010
0100 0011
0100 0100
0100 0101
0100 0110
0100 0111
0100 1000
0100 1001
0100 1010
0100 1011
0100 1100
0100 1101
0100 1110

E X0 % uHEG@NWNDODDPWESané W Fo

o 0100 1111
P 0101 oooQ
Q 0101 o001

R 0101 0010

o011
o100
o101
o110
0111

0101
o101
0101
0101
0101
0101 1000
0101 1001
0101 1010
0110 0001
0110 0010
011c 09011
0110 0100
0110 0101
0110 0110
0110 0111
0110 1000
0110 1001
0110 1010
0110 1011
0110 1100

H AW HETGMme &0 0TS HSN T SO0

= B M g 4 2 ru Haw o p g

0110
o110
0110
0111
oL11
o111
o111
0111
0111
0111
0111
o111
o111
0L11
ooLo
0oL0
ooil
o011
o011
on1o
o010
Qo0
oo10
ooxo
oo10

1101
1110
1111
0ooo
ooo1
o010
o011
oioo
0101
0110
o111
1000
1001
1010
1110
0111
1010
1011
il11
ooo1
1100
o010
1000
1001
onoo

15



Digital Design

Complements of Numbers

Why? --> to simplify the subtraction operation

There are two types of complements for each base™ system:
the radix complement and the diminished radix complement.
The first is referred to as

the r's complement and the second as the (r - 1)>s
complement. When the value of the base r is substituted in the
name,

the two types are referred to as the 2’s complement and 1's
complement for binary numbers and the 10’s complement and
9’'s complement for

decimal numbers.

Digital Design

Complements of Numbers |

The (r - 1)>s complement.

The 9°’s complement of 546700 is 999999 — 546700 = 453299.
The 9°’s complement of 012398 is 999999 — (12398 = 987601.

The 1's complement of 1011000 1s 0100111.

The 1's complement of 0101101 1s 1010010.
Invert the binary digits

16



Digital Design

Complements of Numbers

The r’s complement.
the 10’s complement of 012398 is 987602

and

the 10’s complement of 246700 is 753300

The 9's complement + 1
Or the 10’s complement of the first digit then the 9’s for the reaming digits.

the 2’s complement of 1101100 is 0010100
and
the 2's complement of 0110111 1s 1001001

The 1’s complement + 1

Or keep the first One (not the first digit) from left then Invert all
digits (after).

Digital Design

Subtraction with Complements |

The subtraction of two n-digit unsigned numbers M — N in base r can be done as
follows:

1. Add the minuend M to the r’'s complement of the subtrahend N. Mathematically,
M+@"-N)=M-N+r

2. If M = N, the sum will produce an end carry r”, which can be discarded; what is
left is the result M — N.

3. If M < N, the sum does not produce an end carry and is equal to r" — (N — M),
which is the r’s complement of (N — M). To obtain the answer in a familiar form,
take the r's complement of the sum and place a negative sign in front.

The following examples illustrate the procedure:

17



Digital Design

Subtraction with Complements

Given the two binary numbers X' = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Y and (b) Y — X by using 2’s complements.

(a) X = 1010100 84
2’scomplementof ¥ = + 0111101 67
Sum = 10010001
Discard end carry 2/ = — 10000000
Answer: X — Y = 0010001 17
Digital Design

Subtraction with Complements |

Given the two binary numbers X' = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Y and (b) Y — X by using 2’s complements.

(b) ¥ = 1000011
2’s complement of X = + 0101100
Sum = 1101111

There is no end carry. Therefore, the answer is Y - X = -(2>s
complement of 1101111) = -0010001

18



Digital Design

Signed Binary Numbers
1- the signed-magnitude

The representation: the sign with a bit placed in the
leftmost position of the number. The convention is to make
the sign bit O for positive and 1 for negative.

For example,

the string of bits 01001 can be considered as 9 (unsigned binary) or
as +9 (signed binary)

The string of bits 11001 represents the binary equivalent of 25 when
considered as an unsigned number and the binary equivalent of -9 when
considered as a signed number

referred to as the signed-magnitude

Digital Design

Signed Binary Numbers

&-bit field

% & Implied
Sign B_Il binary point

Integer Fractional
Part Part

Sign bit (0 = +, 1 = =) —1 I I L +2% = +0.0625
+22 = 44 +27 = +0.125
+2' = 42 +22 = +0.25

+2°% = +1 +27 = +05

8-bit sign-magnitude binary

19



Digital Design

Signed Binary Numbers

Most Significant Bit Least Significant Bit
(MSB) Bit (LSB)
1101111 1ojoj1p11of1jof1jof1]1

=
]
=I* DATA >
)
7]
€ WORD »

16-bit Sign-magnitude Binary

Digital Design

2- the signed-Complement system

The complement will always start with a 1, indicating a negative
number. The signed-complement system can use either the 1's or the
2’'s complement, but the 2’s complement is the most common.

there are three different ways to represent -9 with eight bits

signed-magnitude representation: -o 10001001
signed-1's-complement representation: 11110110
signed-2’s-complement representation: 11110111

20



Digital Design

Signed Binary Numbers

Signed Binary Numbers

Signed-2’s Signed-1's Signed
Decimal Complement Complement Magnitude

+7 U111 0111 U111
+6 0110 0110 0110
+5 0101 0101 0101
I 4 arnon 0100 0100
+3 a1l noi1 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 1111 1000
-1 1111 1110 1001

2 1110 1101 1010
=3 1101 a0 1011
—4 110 1011 1100
-5 1011 1010 1101
-6 1010 1001 1110

7 1ot 10010 1111
—8 1000 — =

Digital Design

Arithmetic Addition

+ 6 00000110
+13 00001101
+19 00010011
+ 6 00000110
—13 11110011
= 2 TTLITO0

Discard Carry

— 6 11111010
+13 00001101
+ 7 00000111
— 6 11111010
—13 11110011
=19 11101100

21




Digital Design

Arithmetic Subtraction

Take the 2’s complement of the subtrahend (including the sign bit) and add
it to the minuend (including the sign bit). A carry out of the sign-bit
position is discarded.

(xA)— (+B) = (xA) + B);
(*A) — —B) = (£A) + +B).

consider the subtraction (-6) - (-13) = +7.
written as (11111010 - 11110011).

The subtraction is changed to addition by taking the 2’s complement
of the subtrahend (-13), giving (+13).

11111010 + 00001101 = 100000111. Removing the end carry,
we obtain the correct answer: 00000111 (+7).

Digital Design

Why Signed Binary Numbers -

It is worth noting that binary numbers in the
signed"complement system are added

and subtracted by the same basic addition and subtraction
rules as unsigned numbers.

Therefore, computers need only one common hardware
circuit to handle both types of

arithmetic. This consideration has resulted in the
signed"complement system being used

in virtually all arithmetic units of computer systems.

Dr. Hany Ahmed Date: 9/2017
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Binary Coded Decimal-BCD

each decimal digit is represented by its corresponding four-bit binary
value

BCD
Decimaldigit 1,214 the binary combinations 1010
0 0lo 0o through 1111 are not used and have
. 0 001 NOomeaningin BCD.
2 o|o|1]|0
3 00|11 - _ o ; ;
A 0'1'0 0 (183)“] - {0“[}1 1000 0101)3{:'[) = (1011100]]2
5 0101
6 o1]1]0
7 0111 an advantage in the use of decimal
g 1lololo numbers, because computer input and
B B o output data are generated by people
who use the decimal system.
Digital Design

BCD Addition e

- 0100 4 0100 8 1000
5

+5 +0101 +8 +1000 +9 1001
9 1001 12 1100 17 10001
+0110 +0110
10010 10111

Dr. Hany Ahmed Date: 2017
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Digital Design

BCD Addition

BCD 1 1
0001 1000 0100 184
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Add6 0110 0110
BCD sum 0111 0110 0000 760
Dr. Hany Ahmed Date: 2017
Digital Design

Different Binary Codes

Decimal BCD
Digit 8421 2421 Excess-3 8 4, -2, -1

0 0000 0000 0011 0000
1 0001 noot 100 0111
2 0010 0010 0101 0L
3 0011 0011 0110 0101
4 0100 0100 (i1 0100
3 0101 1011 1000 1011
i) 01110 1100 1001 1010
T 0111 1101 1010 1001
8 1000 1110 1011 1000
9 1001 1111 1100 1111
1010 0101 0000 0001
Unused 1011 0110 0001 010
bit 1100 0111 0010 0011
combi- 1101 1000 101 1100
nations 1110 1001 1110 1101
1111 1010 111 1110

24
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Digital Design

Gray Code

The reflected binary code (RBC)

Decimal  Bina Gray | Gray as decimal
advantage of the Gray L : >

code over the straight © (000 1000 0

binary number 1 001 001 | 1

sequence is that only 2 010 o1 | 3

one bit in the code

group changes in 3 _011 _Dm _2

going from one 4 100 110 |6

number to the next. 5 101 TR

6 110 101 5
7 111 100 4
Dr. Hany Ahmed Date: 2017

Digital Design

Gray Code Gray Decimal L

The reflected binary code (RBC) Code Equivalent
0000 0
0001 |
0011 2
0010 3
0110 4
0111 5
0101 §)
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

Dr. Hany Ahmed Date: 2017
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Digital Design

Binary to Gray Code Conversion

B0 1—4=—=] — P —2(0—P—&)
|

(GC) 1 0 1 0

« MSB does not change as a result of conversion

« Start with MSB of binary number and add it to
neighboring binary bit to get the next Gray code

bit A
ol
» Repeat for subsequent Gray coded bits 8

Out

- - ols
-0 = olm
o = = 0o|Cc

Dr. Hany Ahmed Date: 2017

Digital Design

Gray Code to Binary Conversion

(1) 92 9@ 94 93

1 0 0 1 " 1 gray
| 7| 7| 71 )
1 1 1 0 1 binary

b(1) b(2)  b3)  Db4)  b()

g(1)  bi1)xorg(2) bi2)xor g(3) b(3)xor gi4) b(&)xorgis) * 'm AGR
8

Dr. Hany Ahmed Date: 2017
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Digital Design

ASCII Character Code

American Standard Code far Information Interchange (ASCII)

bbb
b bbb, 000 001 010 011 100 101 110 111

oo NIUJT. NDLE sP 0 @ P P
ool SOH DC1 ! 1 A Q a q
0010 STX DC2 =5 2 B R b r
0oLt FTX DC3 # 3 & S c s
0100 EOT pC4 b 4 D A d t
0101 ENO NAK % 5 E U e u
(T ACK SYN & 6 F v § v
0111 BEL ETB : 7 G W g w
1000 BS CAN ( 8 H X h X
100 HT FM ) 9 1 ¥ I v
1010 LF suUB # : £ s~ ] T
1011 VT ESC + : K [ k [
1100 T rs . < L \ |

1101 CR GS - = M | m |
1110 SO RS : > N !\ n -

g | SI us / 7 ] - o DCL
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Error-Detecting Code

A parity bit is an extra bit included with a message
to make the total number of 1’s either even or odd.

Even Parity Check -
1- No. of One’s Even = 0
2- No. of One’'s Odd=> 1

With even parity With odd parity
ASCII A = 1000001 01000001 11000001
ASCII' T = 1010100 11010100 01010100

Odd Parity Check =
1- No. of One’s Even 2> 1
2- No. of One’s Odd=-> 0

The parity bit is helpful in
detecting errors during the
transmission of information

Dr. Hany Ahmed Date: 2017
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Digital Design

BINARY STORAGE AND REGISTERS

Registers

A register is a group of binary cells. A register with n cells can
store any discrete quantity of information that contains n bits.

A register with 16 cells can be in one of 216 possible states

Register Transfer

iIs a basic operation that consists of a transfer of binary
information from one set of registers into another set of registers.

Dr. Hany Ahmed Date: 2017

Digital Design
- 1
Register Transfer o000
. J o H N
[01001010010011111100100011001110 ;1:;?523
A
PROCESSOR UNI'1

| 8cells |« 8cells |« 8cells |« HCTHS | ;;Lg;;:?r

INPUT UNII Input

& cells Register
)
©)
Keyboard = CONTROL
e
(N}
I\‘}/'
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ograivesion  Register Transfer: Serial I/O

Serial bits
on mput lioe

0101— 0O | O | O

Tuitially, the register contains only invelil
data or all zeros as shown here.

i : First bit (1) is shifted serially into the
010— 1 |O | 0 register;
Second kit (0) is shifted serially into

0
0

Ol—~ O—~1 O | O | resisterand firstbit is shifted right.
0

= ) Third bit (1) is shifted into register and
( } —_— ] —_— () —u-] the first and second bits are shitted right.
l'ourth bit (1) is shitied into register and
- () |= ] () = 1 the [irst, second, and third bits we shilted
% Z right. The regisier now siores all four bits

and is full.

Register Transfer: Parallel 1/0

Paralle] bits {} I “ ]

Inimally, the register 1s empry.
O [) 0 0 comaining only nondata reros,

Al bils are sbilte] incand

0 1 0 [ stored sty

Dr. Hany Ahmed Date: 2017

Digital Design

BINARY LOGIC

Binary logic consists of binary variables and a set of
logical operations. The variables are designated by
letters of the alphabet, such as A, B, C, x, vy, z, etc.,
with each variable having two and only two distinct
possible values: 1 and 0. There are three basic logical
operations:

f i = "
Truth Tables of Logical Qperations

AND, OR, and NOT.

AND OR NOT
x |2
01
1| 0
1 0 1
E 1 1 [ 1

Dr. Hany Ahmed Date: 2017
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Logic Gates

Digital Design

* B x i {7 ElLé @
}I LTI
(a) Two-input AND gate i ] 0 1 1 0
i I=x+ty
" AND:x -y 0 o 1 1] 0
ib) Two-input OR. gate
OR:x+y 0 1 1 | 1]
i 4{ >o—x' NOT:x' 1 0 ] 1 1
(c) NOT gate or inverter
A ) . .
B G=A+B+C+D 4 \ F=ABC
C c— /
D
{b) Four-input OR gate (a) Three-input AND gate
Dr. Hany Ahmed Date: 2017
Digital Design
Logic Gates
Volts
x I=x-y
¥y — 3 /
Vv,
(a) Two-input AND gate Signal .
range for HIGH
logic 1 (binary 1)
X I=X +_\' 2 T VH[IJIiII?
4 Transition occurs i bl
(b) Two-input OR gate between these limits fEtiEp i e
l l V_“Ilm'
Signal .LOW
range for (binary 0)
o —| So—' logic 0 VL o)
i}

(c) NOT gate or inverter

30
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Transistor Transistor Logic
(TTL)

Luw Level voltags Culpul  Lligh Leval vallage Oulzul Ve = By Vee = by
oV e Sround =5 Volls LOG IC LO GI C
T 1 P ! Von (min)
gr 2R Von (min) =27
- l_. A Nomueme | 20V
et Teaer n-usable } | Non-usable
e Salch Area i Area
' Open Voff (max)
Ov (round) L o i = (.8v Voff (max}
LOGIC e
: O ;.-O:r
i"I DV DV
. LS-TTLInput LS- TTL Output
i+ = Voltage levels Voltage levels
= = Low-power Schottky TTL
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Digital Design

Complementary metal—-oxide—semiconductor
(CMOS)

HC Logic Levels

V=50V
CC
HIGH
ObminT = 3-8V
0+ i ’]Pﬂmrjﬁv
ABNORMAL
u = =15V
= O LOW
S— 0.0V 1™ Vormer =033V
+ +
w g, o
- S -

CMOS Inverter
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pigita esign CH 2 : Boolean Algebra and Logic Gates

Boolean Algebra

—

. (a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator -

2. (a) The element 0 is an identity element with respect to +: that is, x + 0 =
0+ x:= x:
(b) The element 1 is an identity element with respect to - ; thatis,x+1 = 1'x = x.

'A

. (a) The structure is commutative with respect to +: thatis,x + y = y + x.
(b) The structure is commultative with respect to +; thatis,x+y = y*x

e

. (a) The operator - is distributive over +; thatis, x-(y + z) = (x-y) + (x+2).

(b) The operator + is distributive over -;thatis,x + (y-z) = (x + y)-(x — 2).
5. Foreveryelement x € B, there existsanelementx’ € B (called the complement of x)
such that (a)x + x" = land (h) x-x" = (.

0. There exist at least two elements x, y e B such that x 4 y.

Dr. Hany Ahmed Date: 2017

Digital Design BOO | ean Alg ebra
Identity I
04+x =x g =%
Commutation
Xy =yX X TFY=YPTX
Distribution

x(y +z)y=1x=y) +(x*2)

¥+ =&+ & +2)
Complement
r+at=1 TEx" =1
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Digital Design

Boolean Algebra

X ¥ z y+z x(y+2) x-y|xz|(xN+(x-2)
0 0 0 0 0 0 0 0
0] 0 1 I 0 i} 0 (0
0 1 0 | 0 0 0 0
0 1 1 | 0 0 0 W
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 |
1 1 0 1 1 1 0 |
1 1 1 1 1 1 1 1
Dr. Hany Ahmed Date: 2017
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Basic Theorems |
Duality

Pastulates and Theorems of Boolean Algebra

Postulate 2 (a) x+0=x (b) ¥+l =x

Postulate 5 (a) x +xt="1 (h) x'x'=40

Theorem | (a) X +x=x (h) Xx=2x

Theorem 2 (a) I wl=il (b) x:0=0

Theorem 3, involution (") =«

Poslulate 3. commutative  (a) ¥ FBy=gta (b) Xy = yx

‘Theorem 4, associative (@) x+y+z)=>04y ¥z (h) x(yvz) = (xy)z
Postulate 4, distributive (a) Xy +z)=2xy +2xz (h) X +yz={(x+ y}x +z)
Theorem 5, DeMorgan (a) (x+ y)=xy (b) {xy) =x" |y
Theorem 6, absarption (a)  GEE e (b) x(x +y)=x

Dr. Hany Ahmed Date: 2017
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Basic Theorems

THEOREM 1(a): x + x = x.

Statement Justification
X+ x=(x+x)d postulate 2(b)
= 0 a2 S(a)
= x4 0%’ 4(b)
=x+0 5(b)
=X 2(a)

Dr. Hany Ahmed Date: 2017

Digital Design

Basic Theorems |

THEOREM 6(a): x + xy = x.

Statement Justification
X 4 Xy = Xl +.xy postulate 2(b)
=x(1 + y) 4(a)
=x(y + 1) 3(a)
= y-1 2(a)
=X 2(b)

Dr. Hany Ahmed Date: 2017
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Digital Design Basic Theorems

DeMorgan’s theorem .
(.-'f e }.1)’ — I’}a’

Using Duality e wetgans Thearem

TRy = RRT RN
RN =X = %= %Y
X y|x+ty (x+y) x|y | xy
0 0 0 1 1 1 1
0 | | 0 | 0 0
1 0 1 0 0 1 0
| 1 | 0 0 0 0
Dr. Hany Ahmed Date: 2017
Digital Design
Boolean Function x 7 z 1§ L—
0 0 0 0
0 0 1 1
0 I 0 N
. ? 0 1 | 0
Fi ks T Y 1 0 0 1
| 0 1 |
1 1 0 1
1 1 1 1
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ol vesign . SlMPIlifications of Function

Fr,=x'y'z + x'yz + xy’

= X ! : (}. ! _|_ -‘__,) + '\\1 I — X f:

R
!ﬂD —>

——

(ay M =x"y'z + 2y + xy'

(b) I —xy' +x"z

!

- '\-},‘

=
— P

Digital Design

Dr. Hany Ahmed Date: 2017

o

tn
.

W e

Simplifications of Function

!

x(x' ty)=xx" 1 xy=01 xy = xy.
x+xy=@x+x)Yx+y)=1x+y) =x+y.
@+y)x+y)=x+xy+xy' +yy =x(l+y
xy +x'z +yz=xy+x'z+yz(x +x')

=xy + x'z+ xyz + x'yz

=xy(1 +z) +x'z(1 + y)

=xy + x'z.

+y) =

(x+y)&x" +2)(y+2z)=(x+y)x' + z),byduality from function 4.

36
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Digital Design

Complement of a Function E—

The complement of a function Fis F’

{4+ B +i€) =(A +3) Bt B4 € =x
= A'x' by theorem 5(a) (DeMorgan)
= A'(B + (€)' substitute B + C = x
= A'"(B'C') by theorem 5(a) (DeMorgan)
= A'B'C’ by theorem 4(b) (associative)

Dr. Hany Ahmed Date: 2017

Digital Design

Complement of a Function E—

These theorems can be generalized as follows:
A4+ B +C€C+ D+ 4 F=4RCD... P
(ABCD .. By = A" + B +€" -+ D' % »on £ F

Find the complement of the functions F; = x'yz" + x'y'z

Flr — (II-};ZF _|_ Iryfz)r — (.'LJ}"EF)F(II}!IZ)F

=x+y +2)x+y+2')

Dr. Hany Ahmed Date: 2017
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Digital Design

Canonical and Standard Forms |

Minterms and Maxterms

A Boolean function can be expressed algebraically from a given truth
table by forming a minterm for each combination of the variables that
produces a 1in the function and then taking the OR of all those terms.

Minterms or Standard Products
Function = (Sum of Product)

Maxterms or Standard Sums
Function = (Product of Sums)

Dr. Hany Ahmed Date: 2017

Digital Design

Canonical and Standard Forms |

Minterms and Maxterms

Minterms and Maxterms far Three Binary Variables

Minterms Maxterms
X v z Term Designation Term Designation
0 0 0 x'yiz! 1y ol o My
0 0 1 x'v'z oy b A v M,
0 1 0 x'yz! ) X Pyl M,
0 1 1 x'yz i3 x Fgplihg! My
1 0 0 xy'z! iy Ll payeteg M,
1 0 | xy'z Mis X hiebi! Ms
1 1 0 xvz' Mg o A o e Mg
1 | 1 XyZ Fr Al o (ol M

Hint: Minterms are the complements of the Maxterms or vice versa

Dr. Hany Ahmed Date: 2017
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Canonical and Standard Forms
Minterms or Standard Products

For example hi=x'y'z +xy'z" +xyz
fa=xyz +xy'z + xyz" + xyz

Functions of Three Variables

X y z Function f; Function f;

0 ] () ] 1y 0

0 0 | 1 114 0

0 1 0 1] 13 0

0 1 i 0 13 i

1 0 0 1 1y 0

1 0 1 1] 1l 1

1 1 (0 ] 1l i

1 1 1 | 1y 1

fi =my + my + nmy f,b=m3 + Mg + Mg + Ny

Dr. Hany Ahmed Date: 2017

Digital Design

Canonical and Standard Forms
Maxterms or Standard Sums

For example f{ =x'y'z' + x'yz' + x'yz + xy'z + xy7’
The complement of f: is read as
fo= ek oy ok O E " gl vy kg’ Hx 2y +.2)

Maxterms
x ¥ z Term Designation
0 0 0 x+y+2z2 M,
0 ] 1 x+y+z M,
0 | 0 xX+y +z M,
0 1 1 x+y +2z M5
1 0 0 x'+y+z M,
1 0n 1 X'yt Ms
1 1 0 X'+y' +z M,
1 1 1 X" pr4+ 7 M-

Dr. Hany Ahmed Date: 2017
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Digital Design

Canonical and Standard Forms |

Boolean functions expressed as a sum of minterms or product of
maxterms are said to be in canonical form .

The minterms whose sum defines the Boolean
function are those which give the 1’s of the function in
a truth table

Express the Boolean function F = 4 + B'C as a sum of minterms. The function has
thrce variables: A. B. and C. The first tcrm A is missing two variablcs: thercforc,
A=AB+ B')=AB + AR’

Dr. Hany Ahmed Date: 2017

Digital Design

Example E—

Express the Boolean function < = 4 + B'C  as asum of minterms.

The function has three variables: A, B, and C. The first
term A is missing two variables; therefore,

A=A(B + B') = AB + AB'
This function is still missing one variable, so

A = AB(C + C') + AB'(C + C")
= ABC + ABC' + AB'C + AB'C’

Dr. Hany Ahmed Date: 2017
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Digital Design

The second term BC is missing one variable; hence,

B'C=B'C(A+ A'y=AB'C+ A'B'C

Combining all terms, we have

F=A+B'C

But AB'C appears twice (x + x = x)

= ABC + ABC' + AB'C+ AB'C" + A'B'C

It

= A'B'C + AB'C + AB'C + ABC' + ABC

= my + my + ms + mg + My

F(A,B,C) = %(1,4,5,6,7)

The summation symbol stands for the ORing of terms

Digital Design

Dr. Hany Ahmed Date: 2017

Another solution

An alternative procedure for deriving the minterms of a Boolean
function is to obtain the truth table of the function directly from the
algebraic expression and then read the minterms from the truth table.

Truth Table for F = A + BC

A B C F

0 0 0 0 my
0 0 1 1 .
0 1 0 0 m
0 1 1 0
1 0 0 1 my
1 0 1 1 s
1 1 0 1 mg
1 1 1 1 g

HA, B, C) = 3(1,4.5.6,7)

41
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Digital Design

Example : Maxterms

Express the Boolean function F — XV T J:'E as a product of maxterms

F=xy +x'z=(xy +x")xy + 2)
= @+ x)(p + X)@x + ) + 2
= (x" A+ y)x+2)(y + 7)

The function has three variables: x, y, and z. Each OR term is missing one variable;
therefore,
¥ +y=xtytg = +y+zlx +y+7)

(X% ¥ )+ +2)

= }J-}r'
yp+ g=y+ z = (x+y+ g)x’ +y+ )

xXt+tz=x+

L

Dr. Hany Ahmed Date: 2017

Digital Design
Example : Maxterms
Express the Boolean function F — XV + J:'E as a product of maxterms

F={x+y+z2)x+y +2)x"+y+ 2" +y+2z2')
JM(]JWQ M 4 M 5

F(x,y, z) = 11(0, 2, 4,5)

The product symbol denotes the ANDing of maxterms

The maxterms whose product defines the Boolean
function are those which give the 0’s of the function in
a truth table

Dr. Hany Ahmed Date: 2017
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Example : Maxterms

Express the Boolean function F = XV¥ + I!E as a product of maxterms

Hint. An alternative procedure for deriving the maxterms of a Boolean
function is to obtain the truth table of the function directly from the
algebraic expression and then read the maxterms from the truth table.

Truth Table for F = xy + x'z

X ¥ z F
0 0 0 My 0
0 0 1 M 1
0 1 0 M, ¢
0 1 1 M3 g Fix - ~
ry. zy=1IH} 2 4.5
| 0 0 M: g (x.¥,2) ( ]
1 0 1 Ms g
1 1 0 Ms 1
1 1 1 Mo
Dr. Hany Ahmed Date: 2017
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Conversion between Canonical Forms L __
F(A,B,C) = %(1,4,5,6,7)

This function has a complement that can be expressed as
F'(A,B,C) = 2(0,2,3) = my + my + iy

Now, if we take the complement of F by DeMorgan’s theorem, we obtain F in a
different form:

F=(my+ my + mz) = my-ms-my = MMMz = 11(0, 2, 3)

| i
m; = M,

the maxterm with subscript j is a complement of the
minterm with the same subscript j and vice versa.

Dr. Hany Ahmed Date: 2017
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Minterms and Maxterms of Function F I
F=xy+x'z

Truth Table for F = xy + x'z

X ¥ z F

0 0 0 __»Minterms
0 0 1

0 1 0

0 1 |

1 0 0

1 0 1

1 1 0 Maxterms
1 1 1

F(x.y.z) = 11(0, 2,4, 5) F(x,y,z) = 3(1,3,6,7)

Dr. Hany Ahmed Date: 2017

Digital Design

]

Minterms and Maxterms of Functions I

Fi=y +xy +x'yz

\ _r_\\ F,

—

: _} B=x(y'+ )@ +y+1z)

(a) Sum of Products

. ——

(b) Product of Sums

Dr. Hany Ahmed Date: 2017
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CH 2

Boolean Algebra and Logic Gates

2.7 Other Logic Operations

Truth Tables for the 16 Functions of Two Binary Variables

X ¥ Fob Fp F2 F3 Fy Fs Fg F; Fg Fo Fjo Fyq3 Fi2 Fi3 Fpqy Fis
0 0 0 0 0 0 0 () 1] 0 1 | | 1 1 1 1 1
0 1 0 0 0 0 1 1 | 1 0] 0 0 0 ] 1 | 1
1 0 0 0 1 1 0 0 | 1 0 0 1 1 0 0 1 1
| 1 0 1 0 1 0 1 0 1 (0 | 0 1 0 1 0 1
Dr. Hany Ahmed Date: 2016
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2.7 Other Logic Operations

Boolean Expressions for the 16 Functions of Two Variables

Operator

Boolean Functions Symbol Name Comments
=0 Null Binary constant ()
Iy =xy xX-y AND xandy
Fr— xy' Xy Inhibition X, but not y
ki Transler X
F,=x"y v Inhibition y, but not ¥
o=y Transfer v
Fe=xy" +x'y xDy Exclusive-OR xary. but not hoth
FF=x1y xly OR xory
Fs—(x+ ) xly NOR Not-OR
Fo—axy +x° (x@y) Equivalence xequals y
Fu=v y' Complement Not y
Fy=x 1 y* xCy Implication If y, then x
s =x' xt Complement Not x
Fizs—x"+y xJy Implication If x, theny
iy — (ay)’ * 5 NAND Not-AND
Fys =1 Identity Binary constant 1

45
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NAND

Logic Gates

1 1
0| 1
1| O
¥ F
0 1

1 0
0| @
I A ¢

Digital Design
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Exclusive-OR
(XOR)

Exclusive-NOR
or
equivalence

Logic Gates

:IEB}"

x F=xy +x'y
:)Dif e
¥

F F=xy+x'y
= (xDy)

x y| F
0 0 0
0 2| 1
1 0] 1
i 14 0
x| F
0 0] 1
0 1
1 0
11

46
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Logic Gates

The NAND and NOR operators are not associative

(.k- i .’1) l g = [(\ + }__.)r = Z]r — (JC + }_,)Zr e -\L'Z? s VZJ
|yl =+l +a)|'=xy+2g) =x'y+x'z

]

|
—

Lo

_|_

y+ 2)°

Nl

o
— —
-4 |
|
—
Lt
et
M
L
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Digital Design

Logic Gates
X
v
y 4DR(X¢)IN:’.={X+)J)Z‘
X
xdylz)=x"(y+2)
:D>¥ Demonstrating the nonassociativity of the NOR operator:

Xy Y) Z7F X4 (Y4 Z)

.

The exclusive-OR and equivalence gates are both commutative and
associative and can be extended to more than two inputs.

Dr. Hany Ahmed Date: 2016
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Logic Gates

(a) 3-input NOR gate (b) 3-input NAND gate

e e~ 1

&

X
X ¥ I F
y :
] —reever b b0
z 7
1 0 1
(a) Using 2-input gates 0 1 1 0
| L 1
1 0 1 0
1 I 4 0
T — W S f il i 1
h (c) Truth table

(b) 3-input gate

Dr. Hany Ahmed Date: 2016

Digital Design

Signal assignment and logic polarity L

s A z
X
E [L-:! E Digital 5
H L | L " gate
H H H
(a) Truth table (b) Gate block diagram
with H and L
Logic Signal Logic Signal
value value value value
1 li H 0 — H
0 L I e E
(a) Positive logic (b) Negative logic
a positive logic system a negative logic system.
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Signal assignment and logic polarity

xX oy z

0 0 0

1 0
1 0 0
1 1 1

(c) Truth table for
positive logic

x ¥ z

1
0 1
1
0 0

(e) Truth table for
negative logic

X ——mo
Z
2 |

(d) Positive logic AND gate

z
¥

(f) Negative logic OR gate

Digital Design

Dr. Hany Ahmed Date: 2016

An integrated circuit (IC) I

Small-scale integration
(SSI) devices

Medium-scale integration
(MSI)

Large-scale integration
(LSI) devices

Very large-scale integration
(VLSI) devices

Up to 10 gates in a single package

complexity of approximately 10 to
1,000 gates in a single package

contain thousands of gates in a single
package

contain millions of gates within a
single package.

Dr. Hany Ahmed Date: 2016
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Logic Families

Many different logic families of digital integrated circuits

TTL transistor—transistor logic;
ECL emitter"coupled logic; high-speed operation
MOS metal oxide semiconductor; high component density

CMOS complementary metal oxide semiconductor.

low power consumption

Low power consumption is essential for VLSI design

Dr. Hany Ahmed Date: 2016

Digital Design

Basic Definitions

Fan-out specifies the number of standard loads that the output of a
typical gate can drive without impairing its normal operation.

Fan-in is the number of inputs available in a gate.

Other Gates
hee P :
e Ffan-out =N A
- Is.
driving gate S ) | tin
A =
I Fan-out = 3
Buffer v
Other Gates i
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Basic Definitions

Power dissipation is the power consumed by the gate that must be
available from the power supply.

Propagation delay is the average transition delay time for a signal to
propagate from input to output.

E[ — rH : H f
} Output " .
gt — ultpu . r

H = HIGH T .
L = LOW SO .

=l

Dr. Hany Ahmed Date: 2016

Digital Design
Basic Definitions |
{>c F
AT
0 >t
kel |
1 tonL toLH
e 1
0 >

propagation delay f_p = (prL T prH )/ 2
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Propagation delay

O w >
0
\.‘I:
w
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Digital Design

Noise margin |

Noise margin is the maximum external noise voltage added to
an input signal that does not cause an undesirable change in the

circuit output.
P Vout Wik
VoH e
; B Viy
noise
e e
VoL NML
P T » y . .
NM; =V -V noise margin high
NM; =V, - Vg, noise margin low
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Standard Load and Waveform

A standard load is usually defined as the amount of current
needed by an input of another similar gate in the same family.

Waveform Characteristics .
the pulse width

. T

--v|

B S e A O [
Period = Tl = T_‘y = T3 = ... = TH
0 l

Frequency = LT 1

(a) Periodic (square wave) f = ?
duty cycle, which is the ratio of the pulse width (tw) to the period (T).
tw
Duty cycle = (%)lﬂ{}‘?{
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Digital Design

computer-aided design (CAD) |

The designer can choose between

1- application-specific integrated circuit (ASIC),

2- field-programmable gate array (FPGA),

With each of these devices comes a set of CAD tools that
provide the necessary software to facilitate the hardware
fabrication of the unit.

An important development in the design of digital systems is the
use of a hardware description language (HDL).

1- HDLs—Verilog

2- VHDL (VHSIC Hardware Description Language)

Very High Speed Integrated Circuit

have been approved as standards by the Institute of Electronics and
Electrical Engineers (IEEE) and are in use by design teams
worldwide
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pigital DesigdlCH 3 © The Map Method and Gate Level Minimization

Minimization of Logic Functions

We have chips with millions of gates
—Why care about minimizing a function?
—What do a few gates matter?

Basic logic functions replicated thousands of times
—Saving one gate for a memory cell pays off

What is the criterion for “minimization”

Should we minimize

*Number of product terms?

*Number of logic operations? systematic approach to minimize
sNumber of variables (literals)? expression
*Number of wires? Karnaugh maps (K-maps)
°« 2

For implementation: minimize number of gates

Dr. Hany Ahmed Date: 2016

Digital Design Karnaugh Maps

» Karnaugh maps (K-maps) are graphical representations
of Boolean functions.

* One map cell corresponds to arow in the truth table.

* Also, one map cell corresponds to a minterm or a
maxterm in the boolean expression

* Multiple-cell areas of the map correspond to standard

terms. y
Vv E—
X minterm % 0 1
5 - My, m,
m my m :
2 . 0| &% | x'y
0 1 m,
1 0 m, my | ms 2 3
X+<1 _1'}:" Xy
1 1 ms
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Karnaugh Maps

NOTE: ordering of variables is IMPORTANT for f(x,y), X is the
row, y is the column. Cell O represents x’y’; Cell 1 represents

x'y; etc.
If a minterm is present in the function, then a 1 is placed in the

corresponding cell.

N0 1 . B 4
0 1 0 2
1 m, m, i m, ms
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Digital Design

Boolean Function in Karnaugh Map |

1s and Os represent function in Karnaugh map
—1 represent On-set (F=1), 0 represents Off-set (F=0)

—Similar to truth table X |y f X |y
—0s are typically not shown 0 | o 0 0 0 0
0| 1 0 0 |1 a
Example: And & OR Gates 1 0 0 1 0| D
1 [ 1 | @D 111 ]| /D
| |
|
- | IR
¢ 0 1 ) ¥ T |y
" ny ’/_‘. b i | | ¥ o —|-]‘——
0 1 1 : T
. [ 4 |I 0 |:_| J
xi1| 1 1 —* ~ T
¥ e |1 e . ‘, @ | O
(b)x+y () xy ; (b) x+y
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Boolean Function in Karnaugh Map

F=x! +y!;

Any two adjacent cells in the map
differ by ONLY one variable, which
appears complemented in one cell

0 1 and uncomplemented in the other.
| IFESm———-
b 1| j. j *Example: mo (=xy’) is adjacent to
":' ‘:"" . m1 (=x’y) this means that
2 P Xy +X'y= X' (y'+y)=X’
I |
= e 1 I *Also mo (=x’y’) is adjacent to m2
= (=xy")
Xy HxXy’= y(X +x)=y
Dr. Hany Ahmed Date: 2016
Digital Design

Three-Variable K-Map

» Karnaugh map with 3 variables:

— Two variables on one side, one on the other

— Note Gray code sequence (single variable change) facilitates
grouping of 1-entries into logic blocks

* Note that the minterms are not arranged in a binary sequence, but

similar to the Gray code.

+ For simplifying Boolean functions, we must recognize the basic
property possessed by adjacent squares.

m

ny

s My

my

ms

ms Mg

Xyl xy'z' | xviz | xyz | xyz’

my my 78 T8
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Three-Variable K-Map

To clarify this concept, consider the sum of two adjacent squares such as msand
m::
ms + m; = xy'z + xyz = xz(y'+y) = xz

Z
\ cancel

y , which can be removed when the sum of ~ *\_ 00 01 1 10

Here, the two squares differ by the variable

the two minterms is formed. Thus, any two

minterms in adjacent squares (vertically or

horizontally, but not diagonally, adjacent) x| xy'z' | xv'z | xvz | xvz’

that are ORed together will cause a removal
of the dissimilar variable. &
Neighboring minterms can be combined:

Dr. Hany Ahmed Date: 2016

Digital Design

Three-Variable K-Map

-Note: variable ordering is (x,y,2); yz specifies column, x specifies row.
-Each cell is adjacent to three other cells (left or right or top or bottom
or edge wrap)

I________'l e el I___'I
kN 1 1 I 1 I |
LG R jais ol g
x\, 00 01 11 10 Stk

0 1 3 2 F | i | :
0 my| m  my| m, V4 el Bl 0 X 1
4 5 7 6 Group of 2 terms
1 my Mg 0| Wl @ ssmess 4 A
EEEEEEEEE ————h——
/1 minterm / term : :-L : ;
I___.: I_-‘-': I___I | 7 el L St b bt s o et

(P R I | : :

bt I LR o i B B o )

1 1 1 1 1 0] o, e | [f 0
1 ! 1 1 | —

1 |
) L [ ) -
Group of 4 terms
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Three-Variable K-Map

Simplify the Boolean function

F(x,y,2) = 2(2,3,4,5)

F(x,y,.z) = £(2,3,4,5) = XyZ'+X'yzZ+xy'zZ’+xyz

yz Y x'y
* 00 01 11 10
my, m, iy i,
0 1 1
T ol
my My - [N F — X .‘r’ + -1_"r'
x4 1 1 1
//
xy' £
Digital Design

Three-Variable K-Map

For the Boolean function
F=A'C+ A'B+ AB'C + BC
(a) Express this function as a sum of minterms.
(b) Find the minimal sum-of-products expression.

FA,B.C)— 3(1,2,.3.5.7) BT BC BC BC
¥ x
BC :
AN o0 o 1 1w 4B A
my, n, m; n,
0 1 1 17
m, s n, me .F —= (__H 4+ A'B
A1 1 1
—
C
C
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Three-Variable K-Map
Out= ABC + ABC

BC

or]
al
oz
(9]
o]
(o]

|

C
AN00/01/11 10

O
=
'_|_
[
e
v

] 1 i : A

1 )

Out= ABC + ABC + ARC + ABC

C
ANLO 011110 Out= C
0 [L]1]
1 [ [0
2 %o 011110 P
ol 1 e T N _
2 At Py %% Out= C
'\,_:_.__‘___/ ks = s
out= T

Digital Design

Three-Variable K-Map

=8 B Why Minimization?

Qéj

Q/ output = ABC + ABC + ABC + ABC
p——  ABC
—

— “ ABC

BC

— J/ ANDD 011110

\ [ T\ AEBC 0 -"1"}
|

1 |kl

(O T Lo

\ ABC

S Cutput = AB + BC + AC
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Three-Variable K-Map

A B C Small No. of Gates and Variables
Output = AB + BC + AC
A A~ P
T [ T\ EC D_
L/
AC
Digital Design

Four-Variable K-Map

y
¥z A
wx 00 01 11 10
my m, ms m,
ny ny s 3 00 [w'x'y'z'|w'x'y'z| wx'yz |w'x'yz'
my s ms m
ny m; niy Mg 01 {wixy'z' | wxy'z | wixyz | wixyz’
2
my 13 Mys [
myy mys ms My o : :
11| wxy'z" | wxy'z | wxyz | wxyz
W
my My myy - mg Mg my, My

10 {wx'y'z" | wx'y'z | wx'yz | wx'yz'
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Four-Variable K-Map
Simplify the Boolean function

F(w,x,y.2) = 3(0,1,2,4,5,6,8,9,12, 13, 14)

o ¥
i Vi
00 01 11 10
H"}”i’.' — iy iy ity iy
001 1 1]
i, i fil; i, WYz
01 1 1 1
X
Mg LR 1ty My
x.v’z'/J’i__l : il F=y"4+ wiz"+ xz'
i my my ity my,
10 1 1
P
_‘r"‘ / e
Note:w'y'z" + wyz' =w'z’
Iy =ag
Dr. Hany Ahmed Date: 2016
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Four-Variable K-Map

Out— ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

CD
AB 00 01 1110

00 o
01 {1 out= AEBE + CD
111 1ff1 f} e
";‘ === - Out= ABCD+ ABCD+ ABCD 4+ ABCD
0N\ N G
Y \ ApNDO 01 11140
Out= AB + CD |1’ il Ah
01| | i
11|
16| 1| il e
out= BD )
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Digital Design

cD
PLB 00 01 11 10
00 |1 |2 j_::

01 ~=== +BCD +BCD +ABCD + ABD + ABCD

il [ 2 s 9

v (&8
sol@ e | o lay 0 01 11 10 ApNDO 01 11 10
- J 11 |12 o0\l |1 ¢
= 1Y YT 12| 2
Out= B i ot 5
1. I1faf | 2 §
il%]a 0 cx ) ) e e
A -4 \
\ﬁ/cmr_: B+ D
Dr. Hany Ahmed Date: 2016
Digital Design
Four-Variable K-Map
Oout= AB BCD + ABCD

ABED ¢ ABED & A
+ ABCD + ABCD + ABCD
+ ABCD + ABC

CD CD CD

ApN00 01 1110  2p\00 01 1110  AE\00 0111 10

00 [ ]1)]t 00|[1]1)]r oo |1 [1)[2}
01 !1 1)1 o1 {lal1) 01|
a3l [z 11| 1|2 [1) 4

10 10 10

out= AC + AD + BC + BD

Dr. Hany Ahmed Date: 2016

62 9



10/4/2019

Digital Design
Four-Variable K-Map
Out= C+ABCD Simplification by Boolean
) Algebra
cD
ApN00 D1 111 10
e RS fers)
0011 11\ out= C+ABCD
o1fi |1 'J\
11 [i1 @:[) Applyingrule A + 3B = A + B 1o
i s
; [ i the T + RBCD term
1o | v\
G \ _
out= C + ABD out= C + ABD
Dr. Hany Ahmed Date: 2016
Digital Design
Four-Variable K-Map
o ) F— A'R'CT + BCD + A'BCD' — AR'C”
=
. cD \\ —r
A'B‘C'D‘\_\ 00 \i]l 11 10
(HU ﬂf| IH-; !H«! . | , . .
\\ﬁﬁ“m 1 1 | | T ABCD
01 o | —H— A'CD’
My, my 1y My B
11
i F=R'TY +B'C"+ A"CD"
o 1| 1| ' 7 2
aBcp o T s

Note: A'B'C'D'+ A'B'CD'=A'B'D
AB'C'D’ + AB'CD' = AB'D’
A'B'D' + AR'D' — B'D'
A'B'C'+ AB'C'=B'C

Dr. Hany Ahmed Date: 2016

63 10



Digital Design

Example 3.7

Simplify the following Boolean function into (a) sum-of-products form and

(b) product-of-sumsform: (4 B € D) = 3(0,1,2,5,8,9,10)

C
CD .
AB 00 01 11 10 If the squares marked with 1’s
- cD
my my s my | —
00] 1 | 011 | / BCD'
BC’D\,«H1 n; iy g F=RB'D +B'C' +A'C'D
010 1 0 0 - - :
- B
& I s My sum-of-products
11| 0 0 0] o
A my y, my, my,
0] 1 1 0 1 T~ AB
—
D
ones Note: BC'D' + BCD' = BD'
Dr. Hany Ahmed Date: 2016
Digital Design
Example 3.7

Simplify the following Boolean function into (a) sum-of-products form and
(b) product-of-sums form:

oL

] BN B
cr J —
D

(a)F=B'D'+ B'C' + A'C’'D

sum-of-products

Dr. Hany Ahmed Date: 2016
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Digital Design

Example 3.7

Simplify the following Boolean function into (a) sum-of-products form and

(b) product-of-sumsform: (4 B € D) = 3(0,1,2,5,8,9,10)

C
CD o
AB 00 01 11 10 If the squares marked with O’s
ol 1 |1 | o417 fﬁ,;c;D
- / F'=AB + CD + BD'
BC'D \ my n; iy g
0110 1 0 0
B Applying DeMorgan’s theorem
My M3 s My
11| 0 0 0. 0 _ . o .
A F=(A"+B)(C'"+D") (B +D)
My my my; my,
0] 1 1 0 1 T AB productof-sums form
——
D
Zel’OS Note: BC'D' + BCD' = BD'
Dr. Hany Ahmed Date: 2016
Digital Design
Example 3.7

Simplify the following Boolean function into (a) sum-of-products form and
(b) product-of-sums form:

| D |

(b) F= (A’ + B")(C' + D") (B’ + D)

product-of-sums
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Don’t-Care Conditions

Don’t Care Cells in the Karnaugh Map >>>>>> x or *

Don’t cares in a Karnaugh map, or truth table, may be either 1s or Os,

BC
2~ 00 01 11 10
0|0 |0 |0 (O
1 0 [;'I_‘: * *

BC

by oo 01 11 10
0|0 0 (0 0
laaDE
OQut = AC ‘/

Digital Design

Dr. Hany Ahmed Date: 2016

Don’t-Care Conditions
F(w,x,y,2) = 2(1,3,7,11, 15)

Simplify the Boolean function

which has the don’t-care conditions

y
\J? e
W 00 01 11 10
g my my iy
00| X 1 1 X
wxt ="
oil o | x 1 0
ny, g s my,
1|l o 0 1 0
W g my my, nmy,
10| 0 0 1 0
~N

(a)F=yz+w

,ca

d(w,x,y,z) = 2(0,2,5)

y
R o
wx 00 01 I 10
my ny s ",
of X | 1 1 X
W ’z == i f?!_] m5 m? ?'Pﬁ
0l o b4 1 0
My, Kz mys L X
1 0 0 1 0
W "y mny my "y,
10 0 0 1 0
.
e 8
= ]
Z \\\
¥z

(b)F=yz+w'z
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66

10/4/2019



Digital Design

Don’t-Care Conditions

F(w,x,y,2) = yz + w'x' = 3(0,1,2,3,7,11, 15)

F(w,x,y,2) =yz + w'z = 2(1,3,5,7,11, 15)

It is also possible to obtain a simplified product-of-sums expression for the
function. In this case, the only way to combine the 0’s is to include don’t-care
minterms 0 and 2 with the O’s to give a simplified complemented function:

F.F — ::J' _|_ I.1'-}:.'{)."

F(w,x,y,2) = z(w' + y) = 3(1,3,5,7, 11, 15)

Dr. Hany Ahmed Date: 2016

Digital Design
Tri-State-Buffers
Tri-state-buffer is actually a "variable resistor"
input L oulpul lﬂp_l“l-*;lﬂu:
1
control control
The resistance of the yellow
substance can change depending
of the value of the control signal
low lr?:s‘i
. resistance s stance
input input oulpul,
4“ [>> 4'*0““““ Works like: e
&
1
resistance o -

i . resistance
input . output input - oulput
- - -

T

0

Works like:

Dr. Hany Ahmed Date: 2016
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pigitat esign CH 3 Nand and Nor Implementation

Nand and Nor Implementation

- Digital circuit are frequently constructed with NAND or NOR gates

rather than AND and

OR gates.

- NAND and NOR gates are easier to fabricate with electronic
components and are the basic gates used in all IC digital logic families.

NAND Circuits

I
EAalRCHILD
AR ORI AR
B AN SOMNCIISTON T

Quad 2-Input NAND Gate »
Quad 2-Input NOR Gate *
Hex Inverter

General Description

The MMT4CO0, MMTACOI, and MMTAC0L logic gales
employ complementary MCOS (CMOS) to achieve wide
DOVEr SUDON ODEMENG TENOS. |OW DOWBI Conaumction.
high noise mmunity and symmetric controllzd rise and fall
tmes. With features such as this e 74C logic family s
close to ideal for use systerns. Funcfion end pin
out compathility with serss T4 devices miimizes design
wime for those designare aliady Tanikar win the standard
T4 bgic famiy.

Al MpUS HE PIOECTE oM d3ME0S OUe 10 SIS OiS-
charge by dode clanpe to Yoo and GND.

MM74C00 « MM74C02 - NM74C04

October 1967
Revised May 2002

Features

m Woe supply voltage range. 3V 1o 15V
m Guaranteed noise margin: 1V
gl i sy, DS Ve ()
W Low Dower sumption. 10 nWwipackage (typ.}
W Low power.  TTLcompatiilicy:
Fan out of 2 criving 74L

Digital Design
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Logic operations with NAND gates

Inverter x

X —
AND |
X
OR
y

68
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Digital Design

Logic operations with NAND gates

NAND Circuits
Inverting Buffer

A L
| NAND Out=AA =A E> A—>°—A
AB AB A
NAND NAND ﬁ> AND AB
— B —|
A
B

A ==
- > D
- == B
W
B

>

m

Dr. Hany Ahmed Date: 2016

Digital Design

Logic operations with NAND gates

Two graphic symbols for a three-input NAND gate

— X
} (xyz)’ y 3 p——x Yy =)
¥

(a) AND-invert (b) Invert-OR

]

The implementation of Boolean functions with NAND gates
requires that the functions be in sum-of-products form.

Dr. Hany Ahmed Date: 2016
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Two-Level Implementation

Example Implement F=AB + CD
y - A—
. B—
F F
Cli— c—1
D — D —
(a) (b)
A —

— |
g

(c)

Digital Design

Dr. Hany Ahmed Date: 2016

Logic operations with NAND gates

Implement the following Boolean function with NAND gates:

Fx,y.z) = (1,2,3,4,5,7)

NC 00 o 11 10
.”J‘I__-I ﬁ'!l .FH3 H!‘,
0l 0 1 1 1 —+— X'y
my m m; m,
x 41 1 1 1 F=xy-+ 2y +Z
xy ¥ Z
(a) F=xy' +x'y+z

Dr. Hany Ahmed Date: 2016
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Logic operations with NAND gates

Implement the following Boolean function with NAND gates:

F=xy' +x'y + z

x—

=

V —

D oo
B,

(c)

Digital Design

Dr. Hany Ahmed Date: 2016

Multilevel NAND Circuits

F=A(CD + B) + BC'

c——1
1 )
: | >
A
B —— |
— D
(a) AND-OR gates
c ———]
D 7}‘—DI
B
A
B
c ):

(b) NAND gates

Dr. Hany Ahmed Date: 2016
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Nor Implementation

Inverter X Dc £
x

x DD
AND ::Da— (' +y'Y=xy
y [>o

4 s x—d
¥ (x+y+12) y— xXyz=@x+y+z)
Z z—

(a) OR-invert (b) Invert-AND

Dr. Hany Ahmed Date: 2016

Digital Design

Nand and Nor Implementation

 » = b = O >

D= :?=§ZD>;§}

e
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Nand and Nor Implementation

NOR Circuits Implementing F = (A + B)(C + D)E

T >—q

A'—

4 F= (AB' + A'B)(C + D)

. :D_,_D—@} .

Digital Design

Other Two Level Implementation

AND-OR OR-AND
NAND-NAND NOR-NOR
NOR-OR NAND-AND
OR-NAND AND-NOR

— -
B‘_
C‘_

r—F
D_

F=(AB+ CD+E&)

(a) AND-NOR
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Other Two Level Implementation
F=(AB+ CD + E)’

a4 —
B —

B -
ol 1 -+ 1

i
_—

(b) AND-NOR (c) NAND-AND

F

Digital Design

Other Two Level Implementation

F= [(A+ B)(C + D)E]

c C
} - D :] > —3 > F
E—— E 4D°7

(a) OR-NAND (b) OR-NAND (c) NOR-OR
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Nand and Nor Implementation

Example Fr=x'y¥x3 +2
B

(x'¥y T+ "+ )

=]

Y

AND-NOR NAND-AND

Dr. Hany Ahmed Date: 2016

Digital Design

The exclusive-OR (XOR)

xBy=xy' + x'y

The following identities apply to the exclusive-OR operation:

x&D0=x
x| =gt
x@Bx =0
rPEx'=1 the exclusive-OR
. operations both
xBy' =x"@y=(xDy)’ commutative and
) ’ associative;
ASB=Ba&A
and

(A®B)®C=AE(BBC)=ASBoC

Dr. Hany Ahmed Date: 2016
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The exclusive-OR (XOR)

”r

-

(a) Exclusive-OR with AND-OR-NOT gates

W

)
[ —

(b) Exclusive-OR with NAND gates

Dr. Hany Ahmed Date: 2016

Digital Design

Odd Function

ABBEC=(AB' + A'B)C" + (AB + A'B")C
= AB'C' + A'BC" + ABC + A'B'C

= 3(1,2,4,7)
BC - B “
A 00 01 11 10
i y m, my
0 i i 2
B
my My m- My,
Aq1 1 1
| cC——
C (a) 3-input odd function

(a) Odd function F=ASB& C

Dr. Hany Ahmed Date: 2016
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Odd Function

A®B®CaD = (AB' + A'B)&(CD’' + C'D)
— (AB’ + A'B)(CD + C'D’) + (AB + A'B')(CD’ + C'D)
= 3(1,2,4,7,8,11,13,14)

C C
cD B cD —_—
AB 00 01 11 10 2 00 01 11 10
gy m, iy my My my My My
00 1 1 0o 1 1
m, ms m; my ] My ms Al Mg
01 1 1 01 1 1
+ B my My s m, B
my my My My 5 Z = o
11 1 1 | 1 1
A
A Mg Mig iy, iy Mg ik M Mg
0| 1 1 10 1 1
 — e —
D D
(2) Odd function F= A& B CE D (b) Even function F=(A©@B&CE D)’
Dr. Hany Ahmed Date: 2016
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Parity Generation and Checking

Even-Parity-Generator Truth Table

Three-Bit Message Parity Bit

X y z P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

P=xdydz

X

(a) 3-bit even parity generator

#a

Even Parity Check >
1- No. of One’s Even = 0
2- No. of One’'s Odd~> 1

77
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Digital Design

CH 4 combinational circuit:

Logic circuits can be classified as either
— ™
1- Combinational Logic Circuits minpus —|  Combmational -, guipurs
— the output(s) depend only on — ——

the input(s) at any specific time
and not on any previous
input(s).
An example of the two concepts is a television remote control. You can enter a
number and the output (a particular television channel) depends only on the number
entered. It does not matter what channels been viewed previously. So the
relationship between the input (a number) and the output is combinational.

2- Sequential Logic Circuits — the
output(s) depend both on previous
and current input(s).

The remote control also has inputs for stepping either up or down one channel.
When using this input method, the channel selected depends on what channel has
been previously selected and the sequence of up/down button pushes. The
channel up/down buttons illustrate a sequential input/output relationship.

Dr. Hany Ahmed Date: 2016

Digital Design
CH 4 combinational circuit:
Code Conversion BCD to Excess-3
Truth Table for Code Conversion Example cn —-—~C
Input BCD Output Excess-3 Code AR L] 0o 1 10

A B C D w x y z 00 =1 i i

0 0 ] 0 0 0 1 1] - - - =

0 0 0 1 0 1 0 0 0 1 :

0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 i} 1 1 0 0 0 Al
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0

1

1

B

My, my "y y

1] X X X X

iy my iy, Ay

0] 1 X X

1 0 0 0
1 0 0 1

0 1 1 —_—

1 0 0 D
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CH 4 combinational circuit:
Code Conversion BCD to Excess-3

Truth Table for Code Conversion Example C
CcD
Input BCD Output Excess-3 Code 4 p 00 01 1 10
A B C D w X ¥y 4 My n iy m,
0 0 0o o 0 0 1] 1 L : :
0 0 0 1 0 1 0 0 — - 3 .
0 0 1 0 0 1 0 1 o 1 ' : 1
0 0 1 1 0 1 1 0
0 1 0 0 g 4 1 1 - P B
0 1 i} 1 1 0 0 0 11 X X X X
0 1 1 0 1 0 0 1 A
0 1 | 1 1 0 1 0 Mg iy iy My
1 0 0 0 1 0 1 1 10 1 X X
1 0 0 1 1 1 o 0
p 7
D
y=CDh+CD
Dr. Hany Ahmed Date: 2016
Digital Design
CH 4 combinational circuit:
Code Conversion BCD to Excess-3
Truth Table for Code Conversion Example C
Input BCD Qutput Excess-3 Code AR i 00 01 11 10
A B C D w X ¥y z My iy My L
L1] 1 1 1
0 0 0o o 0 on 1 1
0 0 0 1 0 1 0 0 my nty "y my
0 0 1 0 0 1 0 1 o) 1 i
0 0 1 1 0 1 1 0 — — — - B
0 1 0o o 0 1 1 1 e & -2 s
0 1 0 1 1 off o o ey x| *| =
0 1 1 0 1 0l o 1 A — z e
0 1 | 1 1 0 1 0 10 1 X X
1 0 0 0 1 0 1 1
1 0 0 1 1 Iy 0 0 ——
D

x=BC+B'D+BCD'
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CH 4 combinational circuit:
Code Conversion BCD to Excess-3

Truth Table for Code Conversion Example en C
Input BCD Output Excess-3 Code AR 00 01 i 11 10
A B c D w X y z J‘.‘l'_j .l’.‘[| J‘H-: m:
= 00
1] 0 0 0 0 0 1 1
1] 0 0 1 0 1 0 0 y [ a, my;
0 0 1 0 0 1 0 1 0 1 1 1
0 0 1 1 0 1 1 0 - - — — B
0 1 0 0 0 1 1 1 “ o 3 it
00 1 0 1 1o o 0 - X X | X ] X
0 1 1 0 1 0 1 A = = o o
0 1 1 1 1 0 1 0
1 0 0 o0 il o 1 i 10| IR R
1 0 0 1 1V 1 0 0
D
w=4A+ BC+ BD
Dr. Hany Ahmed Date: 2016
Digital Design

P

W

T

Code Conversion BCD to Excess-3

=D —
= C:+ G = B + [(G-+ I

=B'C+ B'D+ BC'D'=B'(C+ D)+ BC'D'

= RB'(C + D) + B{C + D)’

=A+BC+BD=A+B(C+ D)

o )
> .

-

— o
[>s0 [—)
—
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CH 4 combinational circuit;

Half Adder (2 bit)

| % v:|Carry., Sum, |
— X gaf C—* g ? g {1}
Adder
— R ¥ 1 0|0 1
[ % |3 0
H{u'.'.-l: —1| [I-."Jrl:‘l' . :D
X ¥y
x ¥ |€ = ! i'yDi_g S
o 0|0 0 -
0 1|0 1 ;th ‘
1 0| 0 1 0)S—18y % :D c
1 1 1 0 C=xy y
(a)S=xy" +x'y
C=xy
Dr. Hany Ahmed Date: 2016
Digital Design
CH 4 combinational circuit:
i A
B| ADDER
S
r-:IM —
Full Adder
X ¥ z C s vz ¥ _ yz "‘
X X
o 0o oo o 2 L L L
0 0 1 0 1 0 1 1 0 1
0 1 0| o0 1
0 1 i 1 0 my iy m; m, iy iy y g
i 0 0 0 1 X+1 1 1 X1 1 1 1
1 0 1 1 0 = ——
| 1 0 1 0 _ < 5
1 1 1 1 1 (a)S=x'y'z+xvz' +xy'z" +xyz () C=xy+xz+yz

S=x'y'z + x'yz" + xy'z' + xyz

C=xy+xz+yz

81
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Digital Design

CH 4 combinational circuit:
Full Adder (3 bit)

S=x'y'z+x'yz'" +xy'z' + xyz

C=xy+tzxz+yz

.k.. 1
z' T
s ) c
X i
¥ —

Dr. Hany Ahmed Date: 2016

Digital Design
CH 4 combinational circuit:
Full Adder (3 bit) B‘ A| Cin
S=x'y'z +x'yz' +xy'z’ + xyz Full Adder
C=xy+t+tzxz+yz
S=z@ (xdy) Cou sl
=z'(xy' +x'y) + z{xy' +x'y)

]

Ty Faty) iy vy
e ¥t g vy

. ~ f ; o~ 4
Carmyiy, = T - W + Carry, - T, -y + Carry; - -y
=z, -y + Carry, - (zy - 9 + T - )

=x; - i + Carry, - (z: i)

Dr. Hany Ahmed Date: 2016
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Digital Design

CH 4 combinational circuit:
Full Adder (3 bit)

T;

Carry;

Dr. Hany Ahmed Date: 2016

Digital Design

TASKSs

1- Learning MULTISIM 14 Software.

| NI Multisim™ ¥

2- Implementing the Half and Full Adders
using Multisim.

Dr. Hany Ahmed Date: 2016
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Digital Design CH 4 : Combinational Circuit

Adders, Multipliers, Comparators, and 7
Segment Display

1- Adders
Half Adder Full Adder
* 2lInputs (A & B) * 3 Inputs (A, B, C;,)
+ 2 Outputs (Sum & C ;) « 2 Outputs (Sum & C,;)
* Used for LSB only » Used for all other bits
A —
A — — Sum — Sum
Half Adder B — Full Adder
B — P C i = Cut
Cin_

Dr. Hany Ahmed Date: 2016

Digital Design

Full Adder Circuit

A@B

e

A®B®C=5Sum
_,j }

) \_AB + BC +AC = Carmy
—L_/

L7

Full adder logic diagram

Dr. Hany Ahmed Date: 2016
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Full Adder Circuit

* Full adder logic diagram

A =4
B — S
Cin

\_“ S=(4®B)®C,

Cout

C, =AB+(A®B|C,

Dr. Hany Ahmed Date: 2016

Digital Design

Implementation of Full Adder with
Two Half Adders

(VIR CEERE o T RUPR o T e S 5kt P L D P Do I
'\ Half Adder | | Half Adder |
| AEB 2R =
- | SUM : := SUM : AZB J=Cin : gm
: [ Ha [ | HA [ |
| I AB | I CinfA=B)
B—t# CARRY - o IS :
| | [ | |
CIN K R . 4 RTINS OHRPAC . LR T ﬂ@_;_‘:'qj
|
| Full Adder :
Full Adder
S=(4@B)@C, C, =AB+(4®B)C,

Dr. Hany Ahmed Date: 2016
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Implementation of Full Adder with
Two Half Adders

|- " " T T - b B 1

I . I I
r_ﬁ’—‘n‘_ﬁ\xe_‘ L ‘e xdy)Ddz

| i Wk

| ;- ! i | o 3

I [ |

I T Ny : i ) bL

}—' | L xBy)z .
i L l : ! g (xEy)z+xy
o] A B e 5 o W
Dr. Hany Ahmed Date: 2016
Digital Design
Four-bit Adder

To demonstrate with a specific example, consider the two binary numbers A = 1011
and B = 0011. Their sum § = 1110 is formed with the four-bit adder as follows:

0 1 1 0 C; — 101" C3C2Cl Co
1 0 1 1 A A=1011 52 AL Ao
0 0 1 1 B, B = 0011 B3B2B1Bo T
1 1 1 0 £ C4 S3S2 S1 So
0 0 1 R s
By A, B, Ay B, A B, Ay
Gy G C
FA  |= FA |< FA |< FA |«——0G
0
s s S 5 S5

Dr. Hany Ahmed Date: 2016
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Digital Design

Subtraction with Complements

The subtraction of two n-digit unsigned numbers M — N in base r can be done as

follows:
1. Add the minuend M to the r's complement of the subtrahend N. Mathematically,
M+@"—-N)=M-N-+r"
2. If M = N, the sum will produce an end carry r”, which can be discarded; what is

left is the result M — N.
3. If M < N, the sum does not produce an end carry and is equal to r" — (N — M),
which is the r's complement of (N — M). To obtain the answer in a familiar form,

take the r's complement of the sum and place a negative sign in front.

The following examples illustrate the procedure:

Dr. Hany Ahmed Date: 2016

Digital Design

Subtraction with Complements |

Given the two binary numbers X' = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Yand (b) Y — X by using 2's complements.

X = 1010100 84
2’scomplementof ¥ = + 0111101 67

Sum = 10010001

Discard end carry 27 = — 10000000
Answer: X — Y = 0010001 17

(a)

Dr. Hany Ahmed Date: 2016
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Subtraction with Complements

Given the two binary numbers X' = 1010100 and ¥ = 1000011, perform the subtraction
(a) X — Y and (b) Y — X by using 2’s complements.

(b) Y = 1000011
2’s complement of X = + 0101100
Sum = 1101111

There is no end carry. Therefore, the answer is Y - X = -(2>s
complement of 1101111) = -0010001

Dr. Hany Ahmed Date: 2016

Digital Design

Four-bit Adder—Subtractor

EE- AS 52 .ﬂn.f B, .I':'l.-| Bu An xPH1=x'

‘ . ‘ . ‘ . ‘M =1 Subtraction

L | ¥ ¥ y
Cﬁ

— FA FA  |e FA | FA |—Cg

) l l l

¥

€3 = = 5 Sp
T M =0 Addition
xB0=x M = Co

Dr. Hany Ahmed Date: 2016
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C4
End Carry

0

Unsigned Numbers

Case
Addition

Correct
(N) bits

Overflow

(N+1) bits

Case
Subtraction

The answer is
negative and the 2’s
complement
(N) bits

Discard the End Carry

(N) bits

Digital Design

Dr. Hany Ahmed Date: 2016

Signed Binary Numbers
1- the signed-magnitude

The representation:

the sign with a bit placed in the

leftmost position of the number. The convention is to make
the sign bit O for positive and 1 for negative.

For example,

the string of bits 01001 can be considered as 9 (unsigned binary) or

as +9 (signed binary)

The string of bits 11001 represents the binary equivalent of 25 when

considered as an unsigned number and the binary equivalent of -9 when
considered as a signed number

referred to as the signed-magnitude

89
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2- the signed-Complement system

The complement will always start with a 1, indicating a negative
number. The signed-complement system can use either the 1's or the
2’s complement, but the 2’'s complement is the most common.

there are three different ways to represent -9 with eight bits

signed-magnitude representation: -9 10001001
signed-1's-complement representation: 11110110
signed-2's-complement representation: 11110111

00001001

signed-magnitude representation: +9

The representation: the sign with a bit placed in the leftmost position of
the number. The convention is to make the sign bit O for positive and 1
for negative.

Dr. Hany Ahmed Date: 2016

Digital Design
Four-bit adder—subtractor with
overflow detection

B Ay B, Ay By A By Ay
l‘ M
\]/ Y Y Y ki r
Cy Cs Gy Gy
C FA < FA FA FA [
e 54 S; 5 S
—C
W

90

Dr. Hany Ahmed Date: 2016



Digital Design

Two-bit by two-bit

binary multiplier

By

L

Ay
B, R,
A, Ay
ABy  ABy 4
AB;  AB,
G G G Co

Task 1: Design the circuit of 3 * 3 bit
Multiplier

Exact Deadline

B, B,

HA HA

™ -
| ]

By

Digital Design

Dr. Hany Ahmed Date: 2016

Magnitude Comparator

magnitude comparator is a combinational circuit that compares
two numbers A and B and determines their relative magnitudes.
The outcome of the comparison is specified by three binary

variables that indicate whether A

Inputs

A

.

>B,A=B,or A<B.

B

|

n-hit
comparal

|

A=R A-R
|

ur
A<D
]

Outputs

Dr. Hany Ahmed Date: 2016
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10/9/2017

Single Bit Magnitude Comparator

A comparator used to compare two bits, i.e., two numbers each of
single bit is called a single bit comparator. It consists of two inputs
for allowing two single bit numbers and three outputs to generate
less than, equal and greater than comparison outputs.

A,

By

E

G

0

0

1

0

A—Pp

B—P

Comparator ok
for 1-bit —-F
Numbers >G

The truth table for the single bit comparator is given below. When A0 BO =
00 & 11, both inputs are equal, therefore A=B output will be high. When A0
BO =01, B is more than A and hence AB is active.

Digital Design

Dr. Hany Ahmed Date: 2016

Single Bit Magnitude Comparator

L

: 1

o

0

By using these Boolean expressions, we
can implement a logic circuit for this

comparator using two AND gates, one NOT
gate and one Ex-NOR gate as shown

Bi

TN

A0 <B0:L =A0 B0
A0=B0:E=A0B0+ A0BO

A0 >=B0:G=A0B0

It is to be noted that E can be realized as (L + G).

I

F
2

94
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Digital Design

Magnitude 4 Bit Comparator

magnitude comparator is a combinational circuit that compares
two numbers A and B and determines their relative magnitudes.
The outcome of the comparison is specified by three binary
variables that indicate whether A>B, A=B, or A<B.

A= .-"13 _.‘43 ,-4] A“
B = B3 B; B, By

can be expressed logically with an
exclusive-NOR function as

x; = AB; + A/B] fori=20,1,2,3

where x; = 1 only if the pair of bits in position i are equal (i.e., if both are 1 or both
are 0).

Dr. Hany Ahmed Date: 2016

Digital Design

Magnitude 4 Bit Comparator
E: Equal
(A = B) = x30axx
G: Greater

(A = B) = AxB3 + 3485 + X308 + X30x0A48)

L: Less Than

(A << B) = AiB; + ;A58 + x130:A 1B + xx0x0A'mg By,

Dr. Hany Ahmed Date: 2016
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Magnitude 4 Bit Comparator

—
HL |

e

By

\KF @E‘I
\

1Y

ﬁ%
_'FL'\.
v
’ﬂ
\_|_/

1

G

4!?

h

ﬁg

It
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Digital Design

I
il ueé';

TASK 2
Design Magnitude comparator: 2-Bit Comparator

TASK 3
Design BCD to 7 segment

TASKs
1- Learning MULTISIM 14 Software.

7 NI Multisim™ .

2- Implementing the BCD to 7 segment
and multipliers.

Dr. Hany Ahmed Date: 2016



pigital Desisn CH 4 : Combinational Circuit

7 Segment Display and Decoders

BCD to Seven Segment

LSB
a a a
co—lc : < |, |
d d S
Boi B a -]
Ao——A f '
MSB > CLOCK 9 9
BCD to 7 Segment 7-Segment
Decoder LED Display

Dr. Hany Ahmed Date: 2016

Digital Design
BCD to Seven Segment
F————>a™
B BCD-to-Seven [—>C
BCD | segment [——>d > Outputlines
nput lines N C decoder ———>¢
{ = E—
. SR ——9 )
LSB
Figure 3 BCD-to-Sevensegment decoder
00— :
1—® of
0101 0—1c 0
1—:op .

Dr. Hany Ahmed Date: 2016
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BCD to Seven Segment

FIGURE 3: Seven segroent display formar showing

arrangement of segments,

FIGURE 4 : Display of decimal digits with a 7-segment device.

Dr. Hany Ahmed Date: 2016

Digital Design

[Decimal | Input lines Output lines Display S
Digit "ATe[c|Dlalblc|d]|elf pattern

w

o Jloloflofola|a|1[1[1]1]0o] N

(N
100010110000= a

L 4
200101101101E
3001111110013 fQ b
4
4 foft]ofofof[t]1]ojo[1]1] U
e C

5010110110115
S

=

I
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Table 2.4.2

BCD Inputs

T Segment Outputs

Decimal

a

Q
O

X

X

X

o

X X | x| X

X | X | X

X | X | X | X
X X | x| X

X | X | X

10
11

12
13
14
15

Dr. Hany Ahmed Date: 2016

Digital Design

BCD to Seven Segment

e
Cathode

470N

each
a—T—1—
bl—{——
11+
d—T—1—
e
f——1—
g—r—1

D .
s o 5
(]
=
ElE < .
110 gmon |
— I [ ]
L
L
| |
| —
|7
[ =R =)
-3
) % gm
[#2] [#a]
= Z
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BCD to Seven Segment

vlv|vy

2

TASK 3
Design BCD to 7 ;’ |
segment = J = —
| L
Exact Deadline T
I 1 P)—e
woii] i
B =
— Dﬁ
=
Dr. Hany Ahmed Date: 2016
Digital Design
Decoders
A decoder is a combinational circuit that converts binary

information from n input lines to a maximum of 2" unique output

lines.

Example 3*8 Decoder Framples
38
— DO 416
Decoder .
3X8 > °"32
Decoder
z N — D2
y —» D3
—— D4
X —>
—» D5
— D6
—» D7

100
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Decoders

Truth Table of a Three-to-E ight-Line Decoder

Inputs Outputs
X Yy z DD 'D'l Dz D; D4 Ds Dﬁ D?
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1
Dr. Hany Ahmed Date: 2016
Digital Design
Decoders
—l_J Dp=xyz

<7
B

I

.H'

5 -——':) Dy=xy'z"

Dr. Hany Ahmed Date: 2016
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2* 4 Decoder with Enable Active High

Enable X; X, Yo Yy Y, Y3
. Yo o | dld ] olololo

S W SN P
— 1 olo | 1/0]o0lo

Decoder Y2
Xo — 1 | ol1]o0ol1]0]o0

| Y3

Fnable 1 110l olol1lo0
1 1 1111 o0lolol1

Digital Design

Dr. Hany Ahmed Date: 2016

2* 4 Decoder with Enable Active Low

s
E A B D, D, 0 D
DY
T 1 X X Lo 1 1
1 >0 o o 0 0 1 1 1
T 0 0 1 | 0 1 1
}U‘_‘ 0 1 0 1 1 0 1
HT% (L 0 1 1 i (E i 3
[ D
. |
E
(a) Logic diagram (b) Truth table

102
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4*16 Decoders by using 3*8

X w zZ Yy X
3 % 8 0 0 0 0

¥y Tk —— Dy to Dy 0 0 0 1
: decoder g i : 4
£ E 0 0 1 1
- 0 1 0 0

W . 0 1 1 0
D 0 1 1 1
1 0 0 0
1 0 0 1
1 8 1 0 1 0
3=t ] 1 0 1 1
decoder Dy to Dys 1 1 0 0
1 0 1
E 1 1 1 0
1 1 1 1
4 % 16 decoder constructed with two 3 < 8 decoders
Dr. Hany Ahmed Date: 2016
Digital Design
Implementation of a full adder with a
decoder
Sx,y,2) = Z(1,2,4.7)
R C(x,y,2) = 2(3,5,6,7)
1
- th ;
xr— 7 2 From the truth table of
- the full adder (see
o e I8 5 Table 4.4), we obtain
decoder 4 the functions for the
i o . ) combinational circuit in
LS ' @ c sum-of-minterms form:
fi
-

Implementation of a full adder with a decoder

Dr. Hany Ahmed Date: 2016

103



Digital Design

CH 4 : Combinational Circuit

Encoders, Multiplexers, and Three
State Gates.

Dr. Hany Ahmed Date: 2017

Digital Design

Decoders Applications

Need to activate only one product:
—1: activated (product released)

—0: not activated

*Only one slot can be activated at a

time.
Machine It could be modeled as
follows

—_— [ Output
Inpm:’_ Machine |—— select
pad ——— line

Dr. Hany Ahmed Date: 2017
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Encoders

An encoder is a digital circuit that performs the inverse operation of a
decoder. An encoder has 2n (or fewer) input lines and n output lines.

The output lines generate the binary equivalent of the input line
whose value is 1.

—P>
I Data  =—p
Inputs E >
E 2%:n —— L Dat
S Encoder : :utl::.ltas
Enable =P >
Inputs e

Dr. Hany Ahmed Date: 2017

Digital Design

8 * 3 Encoder

Truth Table of an Octal-to-Binary Encoder

Inputs Outputs
Do D] Dz D 3 D_q_ DS DG D;r X ¥ I
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 ] 0 {0 1 0 0 0 1 ] 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

=D+ D+ Ds + Dy
}-'=.I'}3+D;,.—Dh—ﬂ?
.Y=D;+Dﬁ—ﬂh+ﬂjr

Dr. Hany Ahmed Date: 2017
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8 * 3 Encoder

Dn =
D1 —
D, 1 LSB
D. — Eight to [ *
03 Three '
4 Encoder L
D — ¥ MSB
5
Ds —
Dr =
=D+ Dy + Ds+ Dy
y =D+ Dy + Dy + Dy
'{=D_"_D;E_D41+DT
Dr. Hany Ahmed Date: 2017
Digital Design
8 * 3 Encoder
Octal Inputs =14 + Di+ D% Dy

D1 D2 D3 D4 D5 D6 D7

y=Dy+ Dyt Dyt Dy
_‘{ZD_-'—D_-:—Dh'FDT
)
| X
\ v Binary
| £ Outputs
T .
D
/
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Digital Design

Multiplexers

Making Connections

*Direct point-to-point connections between gates

—Wires we've seen so far

*Route one of many inputs to a single output --- multiplexer
*Route a single input to one of many outputs --- demultiplexer

l { control l J control

—

Multiplexer Demultiplexer

Digital Design

Multiplexers

A multiplexer is a combinational circuit that selects binary information
from one of many input lines and directs it to a single output line. The
selection of a particular input line is controlled by a set of selection
lines. Normally, there are 2" input lines and n selection lines whose
bit combinations determine which input is selected.

*Multiplexers: general concept

—2" data inputs, n control inputs (called "selects"), 1 output
—Used to connect 2n points to a single point
—Control signal pattern forms binary index of input connected to output

Dr. Hany Ahmed Date: 2017
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2*1 Multiplexer

§ I Iy ¥y
L o 0 0
MUX ¥ 0 0
h : 0 1
O >
1 0
1 1
s | 0
1 I

Iy

) >—
Y=Slo+S 1

D
" -

Dr. Hany Ahmed Date: 2017

Digital Design
4*1 Multiplexer
Iy :
[3 —— i
h ) e Al L e
_j [1 — MUX
) 4

. @ 10—

'_—/I sel_1_1 1
; 28] (—

51 & ¥

Sa
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Boolean Function Implementation

Fix,y,z) = 2(1,2,6,7) Ex I MUX
z =8
— §.
X 'y £|F >)</—:-71
o 0 oo
g0 1|73 0—8
1—1 L
a1 o1 1—2
SN 0—a
0—4
1 0 0|oD 0 —]s
1 0 1|D . LN
1 1 o)1 1=
1 1 1

Digital Design

Dr. Hany Ahmed Date: 2017

Boolean Function Implementation

Flxi.g) = 2l 2.0,7)

X ¥ | F

8D 0l g_.,

a o 111 B

0 I DI Fp=g

a 1 1|0

1 O oI f i

I DO I 2

1 1 O]l y

1 1 1|3 =4
{2l Trull Labls

d 1 MUX
F — %
x &
7 —ll F
£—H
] —2
18

(b)) Muliiplexer implementation

Dr. Hany Ahmed Date: 2017
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Boolean Function Implementation

F(A,B,C,D) = 3(1,3, 4,11, 12, 13, 14, 15)

A 8B C D|JF
I 0 D O|O g - -
10 o 1l F=D B 1 MLTX
c Sp
a o1 oo =
(R T W B . B 5
A E
il o ol I n 5‘
1 DL L
0 o
i} i 1 o) F ] —
| | 3 —1
. | e 2
00 00 g 0 3
oo 1|o i
01 00 p_p i
1 0 1 1]l
1 &
1 0 01 g, I—"
o 1]l
1 1 0|1
1 1 11 Fe=l
Dr. Hany Ahmed Date: 2017
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Three-State Gates

IS

Normal input A | >
Control input C

Multiplexers with three-state gates

A

i

Select

[,

|

T

{a) 2-to-1dime mux

¥

Output Y = AifC=1
High-impedance it C =0

111
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CH 5 : Synchronous Sequential Logic Circuits

Digital Design i,

1112

Introduction

Sequential Logic Circuit

*A circuit with memory, whose outputs depend on the
current input and the sequence of past outputs, is called
a sequential circuit.

*The behaviour of such a circuit may be described by a
state table that specifies its output and next state as
functions of its current state and input.

It consists of a combinational circuit to which storage elements are
connected to form a feedback path. The storage elements are devices
capable of storing binary information.

Dr. Hany Ahmed Date: 2016

Digital Design o,

e

11 1

Introduction

sequential circuit

Input Oulputrn
’| Combinational ———
Logic Circuit S
Feedback
Previous
State

Memory > _]_L Clock

Sequential Logic Circuit
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I'W&‘

Sequential Logic Circuit

Types of Sequential Circuits

*Two types of sequential circuits:

*Synchronous: The behavior of the circuit depends on the input
signal at discrete instances of time (also called clocked)

*Asynchronous: The behavior of the circuit depends on the input
signals at any instance of time and the order of the inputs change

*A combinational circuit with feedback

Dr. Hany Ahmed Date: 2016

Digital Design

| I'W&‘

Storage elements

Storage elements

‘What’s required from storage element? ’

—Store data (hold)
—Accept writing a new data (write)

—Read the stored data

Dr. Hany Ahmed Date: 2016
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Storage elements

*Types of storage (memory) elements

= ,_F--"’"_‘““---h__h
___.--"‘-_-_- ‘Hﬁ""-ﬁ.,_\__k
Latch Flip flop
SR Latch E Edge triggered (D flip-flop)
Master-slave
D Latch
D flip-flop
JK flip-flop
Before we proceed with Flip-flops we need T flip-flop

to define, What's the meaning of “Clock”?

Dr. Hany Ahmed Date: 2016

Digital Design

The Term Clock Clock

*In electronics, a clock signal is a particular type of signal that
oscillates between a high and a low state and is utilized to
coordinate actions of circuits. A clock signal is produced by a clock
generator.

*Although more complex arrangements are used, the most
common clock signal is in the form of a square wave with a 50%
duty cycle, usually with a fixed, constant frequency. Circuits using
the clock signal for synchronization may become active at either
the rising edge, falling edge of the clock Cycle.

CLOCK

Dr. Hany Ahmed Date: 2016
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Clock

| s 1
-l-—':lr-l—h--l—f _hr'-l—Jr-.:_h- T
Period = T, =T =T; = =
Frequency =
. T fw ;
¢ Duty cvele = | — |100%
W = = T
t{ms)
o 1 I 11
Dr. Hany Ahmed Date: 2016
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clock pulses

What'’s the clock pulses?

—Definition of clock-pulse transition :

Positive pulse Negative pulse

Positive- Negative-

Negative- Posifive-
edge edge

edge edge

Dr. Hany Ahmed Date: 2016
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Timing Diagrams

Atiming diagram is a graph of digital waveforms showing the actual time
relationship of two or more waveforms and how each waveform changes in
relation to the others

o (1) 10 O o O 7 g O

I T 7 T A TR e
b 4 | ¥ B v .
I I I I I I I

) B

|
|
|
|
|
|
.
i
|
|

B

| | | | |
| | I i i
e I I L
A, B, and C HIGH
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Basic memory element

Storage elements
*What's the Basic idea for the memory cell?

*Basic memory element consists of two cascaded inverters and the output of the
last inverter is fed back to the input of the first inverter.

*Q and Q’ are the outputs of the memory element.

*This memory element will always store one bit.

*This cell called LATCH

Dr. Hany Ahmed Date: 2016

116



Digital Design s

Basic memory element

How to write in this cell

a new value? We need T \y,f’ =0
a special technique to e
write a new value into '
the memory.

Q=1

0
Dr. Hany Ahmed Date: 2016
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Storage Elements: SR latches

Storage

elements that operate with signal levels (rather than signal
transitions) are referred to as latches ; those controlled by a
clock transition are flip-flops .

Dr. Hany Ahmed Date: 2016
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D Latch
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Storage Elements: D latches

Ck D |Qu+1 D Q
0 X Q1)
L 0 0 G =
Clk Q pb—
1 1 1 Q

{b) Characteristic table {c) Graphical symboi

1 1 )

[T
—

> _| | papily
B

Time

(d) Timing diagram
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Storage Elements: latches g
) 3| § D
R = R = En o—
SR SR D

Graphic symbols for latches

D D
(b) Positive edge response
‘ Clic — of > Clk o8

ic) Negative-ecge response (a) Positive-edge (a) Negative-edge
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4-bit Data Latch

A data latch can be used as a device to hold or remember the data present on
its data input, thereby acting a bit like a single bit memory device and IC’s

4-Bit Data Output

A B G D
- S VRS (RN AR
|
: D Q D Q D Q D Q
| FFA FFB FFC FFD
: Clk Clk Clk Clk
|
|
J_L l J_ ( IV |7 4-bit Latch
Clock | I~ | ) U ‘ okt
in
| A B L D |
4-Bit Data Input
Dr. Hany Ahmed Date: 2016
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JK Flip-Flops
Flip-Flop Characteristic Tables
JK Flip-Flop
g J K |a@+)

0 0 Qi) Mo change
-‘;3 Clk 0 1 0 Reset

1 0 1 Set

K o 1 1 Q'(t) Complement

Dr. Hany Ahmed Date: 2016
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JK Flip-Flops

Other Flip-Flops

L J
J
D 0 — = Clk
D) _ .
Clk —> Clk o'

(b} Graphic symbol

(a) Circuit diagram

D=1JQ +KOQ

Dr. Hany Ahmed Date: 2016
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T Flip-Flops
— T — T Flip-Flop
T | Qt+ 1)
0 o) No change
—I Ik - 1 Q') Complement

Dr. Hany Ahmed Date: 2016
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T Flip-Flops

T ] A
! —> Clk
—=>Clk — K §

pReel e {(a) From JK flip-flop
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D Flip-Flop with SYN Reset

Data D i}
R Clk D | Qo
Clock > Clk :L ';"[: f']i z: 1
R [ 9 T 1|x
Reset [ (b) Function table
{b) Graphic symbol
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Digital Design

CH 5 : Synchronous Sequential
Logic Circuits

Registers and Counters

Dr. Hany Ahmed Date: 2017

Digital Design

How could you describe
combinational circuit?

*Truth table

sLogic function between input and output
*F=A+B =>if A= 1and B=0F=1
if A=0and B=0 F=0 (not depends on the pervious value of F)

How could you describe a sequential circuit?
*The sequential circuit output is now function in
the inputs and past outputs *So, we need a tool
to help us describe the behavior of the circuit.

Finite State Machine (FSM)

Dr. Hany Ahmed Date: 2017
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Finite State Machine (FSM)

*Finite State Machine is a tool to model the desired behavior of a
sequential system.

*The designer has to develop a finite state model of the system
behavior and then designs a circuit that implements this model
*A FSM consists of several states. Inputs into the machine are
combined with the current state of the machine to determine the
new state or next state of the machine.

*Depending on the state of the machine, outputs are generated
based on either the state or the state and inputs of the machine

How to describe FSM?

—State equation ( transition equation ) input variables, present states, next
states equation

—State table input variables, present states " next states, truth table
—State diagram

Dr. Hany Ahmed Date: 2017
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Finite State Machine (FSM)

e

11 1

State tables
Similar to the truth table
*Doesn’t contain the system clock when specifying its
transitions (it is implicit that transitions occur only when
allowed by clock)
*Unless different stated, all the transitions are occurring on the
positive edge of the clock

Present |Inputs |Next |Outputs
State State
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Finite State Machine (FSM)

State diagram

*Graphical representation of the state table

*Each state is represented by a circle vertex

*Each row of the state table is represented as a directed arc
from present state vertex to the next state vertex

+In this diagram, the outputs are associated with the states

@
&

Digital Design

Counters

Counters are sequential circuits which "count" through a
specific state sequence. They can count up, count
down, or count through other fixed sequences.
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Counters

A counter is a sequential circuit that goes through a
predetermined sequence of states upon the application of
clock pulses.

Counters are categorized as:

Synchronous Counter:
All FFs receive the common clock pulse, and the change of state is
determined from the present state.

Ripple Counters: Asynchronous
The FF output transition serves as a source for triggering other FFs.
No common clock.

Digital Design

Counters
Counters are a specific type of sequential circuit

The state serves as the “output” (Moore)

A counter that follows the binary number sequence is called a
binary counter

n-bit binary counter: n flip-flops, count in binary from 0 to 2n-1

Counters are available in two types:

Synchronous Counters
Ripple Counters

Synchronous Counters:

A common clock signal is connected to the C input of each flip-flop
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Synchronous Binary Counters

Synchronous Counters
Clock is directly connected to the flip-flop clock inputs
Logic is used to implement the desired state sequencing

The design procedure for a binary counter is the same as
any other synchronous sequential circuit.

Most efficient implementations usually use D- FFs or T-FFs
or JK-FFs. We will examine T and D flip-flop designs.

Digital Design o,

e

11 1

Synchronous Binary Counters

Synchronous Binary Up Counter Using D flip flop
The output value increases by one on each clock cycle

After the largest value, the output “wraps around” back to 0

Using two bits, we’d get something like this:

Present State | Next State
A B | A B (00)——(o1)
0 0 0 1
0 1 1 0
1 0 1 1
P () —)
State tables State diagram
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Synchronous Binary Counters
Synchronous Binary Up Counter Using D flip flop

\\ : 1
Present State | Next State s 5 :
A B A B 0 AR’ 1 AB
0 0] 0 1 1 1 AF° . AB

0 1 1 0
1 0] 1 1 D1=AB + AB’
1 1 0 0 -
DA DB 5% 0 :
Do — p al—g 0 1A AB
e ob- 1 1 AF° AB
D0O= B’
Digital Design

Synchronous Binary Counters
Synchronous Binary Up Counter Using D flip flop

D

D1=AB + AB’
c Qp—
DO=B’
I— D Q B
c Qp
clock
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Design of Counters
Design Counter Using T flip-flop that counts from
0-1-2-3-4-5-6-7
1- State diagram of three-bit binary counter

to 7 with step 1

T, T-FF excitation table 4
d o) (9

13
(l 0 0 4
l
|
0

Using T-type FFs, design a 3-bits binary .,
counter that can count in binary from 0 “ @
] *

(l l
| 0
l l

Digital Design

Synchronous Binary Counters

State Table for Three-Bit Counter

Present State Next State Flip-Flop Inputs
A2 A A A2 A A Taz Tav Tao
© o O © o 0 ©@ o O
0 0 1 0 1 0 0 1 1
0 1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 0 1
1 0 1 1 0 0 1 1
1 1 0 1 1 1 0 1 1
1 1 1 0 0 0 1 1 1
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Synchronous Binary Counters
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Digital Design

Synchronous Binary Counters
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Aj 00 01 11 10
m, ", m, Hi,
o] 1 1 1 1
my His my Mg
rmeel 1 1 1
—
X
Ty=1

I
il ueﬁ';

129



Digital Design .

Iy,
A

. i ueﬁ"g

Summary

Counters serve many purposes in sequential logic design

There are lots of variations on the basic counter fi

Some can increment or decrement
An enable signal can be added
The counter’s value may be explicitly set

There are also several ways to make counters

You can follow the sequential design principles to build counters
from scratch
You could also modify or combine existing counter devices

Exercise
Design Counter using T flip flops that counts from
0-3-7-4-5-1-6-2
Digital Design fy“:“.{‘%
Registers

A common sequential device: Registers

They'’re a good example of sequential analysis and design
They are also frequently used in building larger sequential circuits

Registers hold larger quantities of data than individual flip-
flops

Registers are central to the design of modern processors
There are many different kinds of registers
We’ll show some applications of

these special registers
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What good are registers?

Flip-flops are limited because they can store only one bit

We had to use two flip-flops for our two-bit counter examples

Most computers work with integers and single-precision floating-point
numbers that are 32-bits long

A register is an extension of a flip-flop that can store multiple
bits

Registers are commonly used as temporary storage in a
processor

They are faster and more convenient than main memory
More registers can help speed up complex calculations

Digital Design
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4-bit Data Latch

A data latch can be used as a device to hold or remember the data present on
its data input, thereby acting a bit like a single bit memory device and IC’s

4-Bit Data Output

Ay B C D
i S e -
|
: D Q D Q D Q D Q
| FFA FFB FFC FFD
: Clk Clk Clk Clk
|
Clock : = = = 4-bit Latch
i . ’ [
A B L D

4-Bit Data Input
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A Basic Register (Parallel in/out)

Basic registers are easy to build. We can store multiple bits just
by putting a bunch of flip-flops together!
A 4-bit register is given below
This register uses D flip-flops, so it's easy to store data without worrying
about flip-flop input equations
All the flip-flops share a common CLK and CLR signal

D3 D2 D1 DO

D O D O D Q D O

—I“R —“R —1~R R

o o o o

CLR ] i . \ |

CLK -
Q3 Q2 Q1 Qo
Digital Design

A Basic Register (Serial in/out)

Shift Registers move data laterally within the register toward its MSB or
LSB position

In the simplest case, the shift register is simply a set of
D flip-flops connected in a row like this:
A B C Out

|
" DQ DQ DQ DQ

CP
Data input, In, is called a serial input or the shift right input.

Data output, Out, is often called the serial output.
The vector (A, B, C, Out) is called the parallel output.
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Shift Register
A shift register “shifts” its output once every clock cycle.
S I D & Do [Qun=sT
oyl c o c Qy(1+1) = Qo(t)
- | | | Q= Q)
-2 = S LI SN —— Qs(+1) = Qu(t)

Sl is an input that supplies a new bit to shift “into” the register
For example, if on some positive clock edge we have:

SI=1
Qu-Q; = 0110
then the next state will be:
Qp-Q; = 1011

The current Q4 (O in this example) will be lost on the next cycle

Digital Design g*‘“'--"'“%:
____________________________ Shift direction ==
> 0 ° ° . O - o
I el I el I el e B -
Q0 o1 Q2 Q3

Present Qo-Q3 ST Next Qo-Q3
ABCD X XABC

The circuit and example make it look like the register shifts “right.”

Present Q3-Qo| SI [ Next Q3-Qo
DCBA X CBAX

But it really depends on your interpretation of the bits. If you consider
Q3 to be the most significant bit instead, then the register is shifting in
the opposite direction!
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Serial data transfer
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One application of shift registers is converting between “serial data” and
“parallel data”

Computers typically work with multiple-bit quantities

ASCII text characters are 8 bits long

Integers, single-precision floating-point numbers, and screen pixels are up to
32 bits long

But sometimes it's necessary to send or receive data serially, or one bit at a
time. Some examples include:
Input devices such as keyboards and mice A\
Output devices like printers

Any serial port, USB or Firewire device transfers data serially
Recent switch from Parallel ATA to Serial ATA in hard drives

Digital Design
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Receiving serial data
To receive serial data using a shift register:

The serial device is connected to the register’s Sl input
The shift register outputs Q3-Q0 are connected to the computer

The serial device transmits one bit of data per clock cycle

These bits go into the Sl input of the shift register
After four clock cycles, the shift register will hold a four-bit word

The computer then reads all four bits at once from the Q3-Q0
outputs.

—CLK
serial device — LD
— G|
—D3 Q3—
o —D2 QZ—
* — D1 Q1
—D0 00—

computer
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Sending data serially
To send data serially with a shift register, you do the opposite:

The CPU is connected to the register’s D inputs
The shift output (Q3 in this case) is connected to the serial device

The computer first stores a four-bit word in the register, in one
cycle
The serial device can then read the shift output

One bit appears on Q3 on each clock cycle
After four cycles, the entire four-bit word will have been sent

mouter —CLK
compute o

— 5l
J— D3 Qa_— -

—D2 QI o
—D1 Qi —

— DO Qq

serial device

Digital Design
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Registers summary

A register is a special state machine that stores multiple bits of data

Several variations are possible:

Parallel loading to store data into the register
Shifting the register contents either left or right
Counters are considered a type of register too!

One application of shift registers is converting between serial
and parallel data

Most programs need more storage space than registers provide
We’ll introduce RAM to address this problem

Registers are a central part of modern processors

TASKs - Implementing the registers and Counters.

Best Wishes
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Sheet (1)

1- Convert the following numbers with the indicated bases to decimal:

(a) (4310)s (b) (198)12 (c) (435)s (d) (345)s

2- Express the following numbers in decimal:

(a) (10110.0101)2 (b) (16.5)16 (c) (26.24)s
(d) (DADA.B)1s (e) (1010.1101)2

3- What is the largest binary number that can be expressed with 16 bits?
What are the equivalent decimal and hexadecimal numbers?

4- Determine the base of the numbers in each case for the following
operations to be correct:
(@) 14/2=5 (b) 54/4 =13 (c) 24 + 17 = 40.

5- The solutions to the quadratic equation x?-11x+22=0 are x = 3 and x = 6.
What is the base of the numbers?

6- (a) Find the 16’s complement of C3DF. (b) Convert C3DF to binary.
(c) Find the 2’s complement of the result in (b).
(d) Convert the answer in(c) to hexadecimal and compare with the answer in (a).

7- Perform subtraction on the given unsigned binary numbers using the 2’s
complement of the subtrahend. Where the result should be negative, find its
2’s complement and affix a minus sign.

(@) 10011 - 10010 (b) 100010 - 100110

(c) 1001 - 110101 (d) 101000 - 10101

8- Represent the unsigned decimal numbers 791 and 658 in BCD, and then
show the steps necessary to form their sum.

9- The state of a 12-bit register is 100010010111. What is its content if it
represents (a) Three decimal digits in BCD?

(b) Three decimal digits in the excess-3 code?

(c) Three decimal digits in the 84-2-1 code?

(d) A binary number?

10- Express the switching electrical circuit below in binary logic form?
i

N ®

/ﬂ!/}.

source

!
Voliage )
{~
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1- Simplify the following Boolean expressions:

(a)* ABC + A'B + ABC'’ (b)®* x'yz+xz
eJ® (x + 3)' (X" + ') (d)* xy+x(wz +wz')
(e)* (BC'"+ A'D)(AB" + CD') () @ +e)(athb' +c)

2- Find the complement of F = wx + yz; then show that FF’ =0and F+F =1,

3- Find the complement of the following expressions:
(a)* xy'+x'y (b) (a+c)(a+b')(a"+b+<)
() z+z'(v'wtxy)

4- Given the Boolean functions F1 and F 2, show that (a) The Boolean function
E = F1 + F2 contains the sum of the minterms of F1 and F2. (b) The Boolean
function G = F1F2 contains only the minterms that are common to F1 and F2.

5- Implement the Boolean function F = xy + I,}I, 4 ;}-"z
(a) With AND, OR, and inverter gates. (b) With OR and inverter gates

(c) With AND and inverter gates. (d) With NAND and inverter gates.
(e) With NOR and inverter gates.

BB

6- For the Boolean function F' = xy'z + x'y'z + w'xy + wx'y + wxy

(a) Obtain the truth table of F. (b) Draw the logic diagram, using the original
Boolean expression. (c) Use Boolean algebra to simplify the function to a
minimum number of literals. (d) Obtain the truth table of the function from the
simplified expression and show that it is the same as the one in part (a).

(e) Draw the logic diagram from the simplified expression, and compare the
total number of gates with the diagram of part (b).

7- Obtain the truth table of the following functions, and express each function
in sum-of-minterms and product-of-maxterms form:

(a)* (b+cd)(c+bd) (b) (cd+b'c+bd")(b+d)
(c) (c'+dMb+c') (d) bd' +acd’ +ab’'c+a'c’
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8- Express the following function as a sum of minterms and as a product of

maxterms: F(A, B.. C D} — B'D + AD + BD

9- Express the complement of the following functions in sum-of-minterms
form:

(a) F(A,B,C,D)=3(2,4,7,10,12,14)

(b) F(x,y,z)=T1(3,5,7)

10- Determine whether the following Boolean equation is true or false.
If})r L I'f, + Irz.l = Irzr + },rzr i I'z

11- Convert each of the following expressions into sum of products and
product of sums:

(a) (u+xw)(x+u'v)
(b) x' + x(x + y)(y + 2')

12- Write the following Boolean expressions in sum of products form:

(b + d)(a' + b' + c)

13- Write the following Boolean expression in product of sums form:

a'b + a'c’ + abc

14- Show that the dual of the exclusive-OR is equal to its complement.

15- Show that the simplest form of

XYZ'+ XY'Z + X'YZ + XYZ

is AY +XL + T4
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1- Simplify the following Boolean expressions:

(a)*F(x,y,z) = 2(0,1,5,7) (b)*F (x,y,2) = 3(1,2,3,6,7)
(c) F(x,y,z) = 2(2,3,4,5) (d) F(x,y.z) = %(1,2,3,5,6,7)
(e) F(x,y,z) = 2(0,2,4,6) (f) F(x,y,z) = %(3,4,5,6,7)

2- Simplify the following Boolean expressions, using three-variable

maps:
(@ xy +x'y'z' +x'yz' (b)* x'y" + yz + x'yz'
() F(x,y,z) =x'y +yz' +y'2 (d) F(x,y,2) = x'yz + x9'2" + xy'z

3- Simplify the following Boolean functions, using Karnaugh maps:
(@)* Fx,y,2)=3223,6,7 (b)* F (A, B, C, D) = 2(4, 6,7, 15)
(¢)* F(A,B,C, D) =3(3,7,11,13,14,15 (d* F(w,x, ¥, 2 = 2(@2, 3, 12, 13, 14, 15)
() F(w,x,y,z) = 3(11,12, 13, 14, 15) () F(w,x,y,z) = %(8,10,12,13, 14)

4-  Simplify the following Boolean expressions, using four -variable maps:
(a)* A'B'C'D" + AC'D' + B'CD" + A'BCD + BC'D
(b)* x'z + w'xy' + wix'y + xy')
(c) A'B'C'D+ AB'D + A'BC' + ABCD + AB'C
(d) A'B'C'D'" + BC'D + A'C'D + A'BCD + ACD’

5- Find all the prime implicants for the following Boolean functions, and

determine which are essential:
(a)* F(w,x,y,2) = %(0,2,4,5,6,7,8,10,13,15)

(b)* F(A,B,C,D)=13(0,2,3,5,7,8, 10, 11, 14, 15)
(¢) F(A B C D) =3(23,4,5,6709,11,12,13)
d) F(w,xy2)=3(1,3,6,7,8,9,12,13, 14, 15)
(e) F(A, B, C D) =3(0,1,2578,9,610,13,15)
(f) F(w,xy2z)=23(0,1,257810,15)
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6- Convert the following Boolean function from a sum-of-products form
to asimplified product-of-sums form.
F(x,y,z) =%2(0,1,2,5,8,10,13)
7- Simplify the following Boolean functions:
(a)* F(A, B, C,D) =11(1,3,5,7,13,15)
(b) F(A,B,C,D) =11(1,3,6,9,11,12,14)
8- Simplify the following expressionsto (1) sum-of-products and (2)
products-of-sums:
(@)* x'z" +y'z' +yz' + xy
(b) ACD' + C'D + AB' + ABCD
() (A'’+ B+ D')(A"+ B +C)(A" + B" + C)(B' + C + D)
(d) BCD' + ABC' + ACD

9- Simplify the following Boolean function F, together with the don’t-care
conditions d, and then expressthe smplified function in sum-of-minterms

form:

(@) F(xyz) =3(0,1,4,5,6) (b)* F(A, B, C, D) = 3(0,6,8,13, 14)
d(xyz) = 2(2,3,7) d(A, B, C, D) = 3(2,4,10)

(¢) F(A B, C, D)= 3(56,7,12,14,15,) (d) F(A, B,C, D) = %(4,12,7,2,10,)
d(A, B, C,D) = ¥(3,9,11,15) d(A, B,C, D) = 3(0,6,8)

10- Simplify the following functions, and implement them with two-level
NAND gate circuits:
(a) F(A,B,C,D)=ACD'+ A'C + ABC+ AB'C + A'C'D'’
(b) F(A,B,C,D) =A'B'C'D + CD + AC'D
() F(A,B,C)=(A"+C' +D")(A"+C")(C'+ D)
(d)y F(A,B,C,D)=A"+B+ D'+ B'C



Sheet (3)

11- Draw alogic diagram using only two-input NOR gatesto implement
thefollowing function:

F(A,B,C,D) = (A®B)'(C®D)

12- Simplify the following functions, and implement them with two-level
NOR gate circuits

[:H}:E: F=wx"+ }-"'rEr + W"}-‘Ef
(b) F(w,x,y2) = %(0,3,12,15)

13- Draw the multiple-level NOR circuit for the following expression:
CD(B+ C)A+ (BC' + DE")

14- Draw the multiple-level NAND circuit for the following expression
wx+y+2z)+xyz

15- Implements the following Boolean function F, using the two-level
forms of logic (a) NANDAND, (b) AND-NOR, (c) OR-NAND, and (d)
NOR-OR:

F(A,B,C,D) = 3(0,4,8,9,10,11, 12, 14)

16- Derivethecircuitsfor athree-bit parity generator and four-bit
parity checker using an odd parity bit.

Best Wishes
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