

–

Introduction
An operating system is a program that manages a computer’s

hardware. It also provides a basis for application programs

and acts as an intermediary between the computer user and

the computer hardware.

Before we can explore the details of computer system

operation, we need to know something about system

structure. We thus discuss the basic functions of system

startup, I/O, and storage early in this chapter. We also

describe the basic computer architecture that makes it

possible to write a functional operating system.

Because an operating system is large and complex, it must be

created piece by piece. Each of these pieces should be a well-

delineated portion of the system, with carefully defined

inputs, outputs, and functions. In this chapter, we provide a

general overview of the major components of a contemporary

computer system as well as the functions provided by the

operating system. Additionally, we cover several other topics

to help set the stage for the remainder of this text: data

structures used in operating systems, computing

environments, and open-source operating systems.

CHAPTER

1

2

user
1

user
2

user
3

… user
n

computer hardware

operating system

system and application programs

database
system

… text editor assembler compiler

1.1 What Operating Systems Do?

We begin our discussion by looking at the operating system’s

role in the overall computer system. A computer system can

be divided roughly into four components: the hardware, the

operating system, the application programs, and the users

(Figure 1.1).

The hardware —the central processing unit (CPU), the

memory, and the input/output (I/O) devices —provides the

basic computing resources for the system. The application

programs —such as word processors, spreadsheets,

compilers, and Web browsers— define the ways in which

these resources are used to solve users’ computing problems.

The operating system controls the hardware and

coordinates its use among the various application programs

for the various users.

 Figure 1.1 Abstract view of the components of a computer

3

- OS is a resource allocator Manages all resources Decides

between conflicting requests for efficient and fair resource use

- OS is a control program Controls execution of programs to

prevent errors and improper use of the computer

- Kernel: The one program running at all times on the

computer.

 1.1.1 User View

The user's view of a computer depends on the type of

interface being used. For personal computers (PCs), the

system is designed for a single user, focusing on ease of use

and performance, with little concern for resource sharing. In

contrast, mainframes or minicomputers serve multiple users

simultaneously, with an operating system optimized for

efficient resource utilization. Workstations connected to

networks balance individual usability with shared resource

management, such as file and print servers. Mobile devices

like smartphones and tablets, typically used for tasks like

email and web browsing, offer touch-based interfaces and are

increasingly replacing traditional computers. Lastly,

embedded systems in devices like appliances and cars are

designed to function with minimal user interaction.

Users want convenience, ease of use and good performance

 -Don’t care about resource utilization

• But shared computers such as mainframe or minicomputer

must keep all users happy.

1.1.2 System View

From the system's perspective, the operating system (OS) is

the key program that interacts with hardware, acting as a

resource allocator. It manages resources like CPU time,

memory, file storage, and I/O devices, deciding how to

distribute them efficiently and fairly among programs and

users, especially in systems with multiple users.

4

Additionally, the OS functions as a control program,

overseeing the execution of user programs, preventing

errors, and ensuring proper use of the system, with a focus

on controlling I/O devices.

1.2 Computer-System Organization

Before we can explore the details of how computer systems

operate, we need general knowledge of the structure of a

computer system. In this section, we look at several parts of

this structure. The section is mostly concerned with

computer-system organization.

A modern general-purpose computer system consists of one

or more CPUs and a number of device controllers connected

through a common bus that provides access to shared

memory (Figure 1.2).

Figure 1.2 A modern computer system.

mouse keyboard printer monitor

disks

CPU
disk

controller
USB controller

graphics
adapter

memory

5

1.2.1 Computer Startup

 The bootstrap program is loaded at power-up or reboot.

 It is typically stored in ROM or EPROM, commonly

known as firmware.

 The bootstrap program initializes all aspects of the

system.

 It then loads the operating system kernel and starts its

execution.

This program is responsible for starting up the system and ensuring

that the essential components are ready for the operating system to

run.

1.2.2 Storage Structure

The basic unit of computer storage is the bit. A bit can

contain one of two values, 0 and 1. All other storage in a

computer is based on collections of bits. Given enough bits,

it is amazing how many things a computer can represent:

numbers, letters, images, movies, sounds, documents, and

programs, to name a few. A byte is 8 bits, and on most

computers it is the smallest convenient chunk of storage.

For example, most computers don’t have an instruction to

move a bit but do have one to move a byte. A less common

term is word, which is a given computer architecture’s

native unit of data. A word is made up of one or more

bytes. For example, a computer that has 64-bit registers and

64-bit memory addressing typically has 64-bit (8-byte)

words. A computer executes many operations in its native

word size rather than a byte at a time. Computer storage,

along with most computer throughput, is generally

measured and manipulated in bytes and collections of

bytes.

A kilobyte, or KB, is 1,024 bytes

a megabyte, or MB, is 1,0242 bytes

6

a gigabyte, or GB, is 1,0243 bytes

 a terabyte, or TB, is 1,0244 bytes

 a petabyte, or PB, is 1,0245 bytes

Computer manufacturers often round off these numbers

and say that a megabyte is 1 million bytes and a gigabyte is

1 billion bytes. Networking measurements are an exception

to this general rule; they are given in bits (because networks

move data a bit at a time).

Figure 1.4 Storage-device hierarchy.

Main memory – only large storage media that the CPU can

access directly

– Random access

– Typically volatile

magnetic tapes

optical disk

magnetic disk

solid-state disk

main memory

cache

registers

7

• Secondary storage – extension of main memory that

provides large nonvolatile storage capacity

• Hard disks – rigid metal or glass platters covered with

magnetic recording material

– Disk surface is logically divided into tracks, which are

subdivided into sectors

– The disk controller determines the logical interaction

between the device and the computer

• Solid-state disks – faster than hard disks, nonvolatile

– Various technologies

– Becoming more popular

1.3 Computer-System Architecture

A computer system can be organized in a number of different ways,

which we can categorize roughly according to the number of

general-purpose processors used.

8

1.3. Single-processor systems

Single-processor systems feature one main CPU that

executes general-purpose instructions and user processes.

Though they may include special-purpose processors like

disk or graphics controllers, these processors handle specific

tasks with limited instruction sets and do not run user

processes. They often assist the CPU by offloading tasks like

disk scheduling or keyboard input processing. However,

despite having additional specialized processors, the system

remains classified as a single-processor system if there is

only one general-purpose CPU handling the main workload.

1.3.2 Multiprocessor Systems

Within the past several years, multiprocessor systems (also known

as parallel systems or multicore systems) have begun to dominate

the landscape of computing. Such systems have two or more

processors in close communication, sharing the computer bus and

sometimes the clock, memory, and peripheral devices.

Multiprocessor systems first appeared prominently appeared in

servers and have since migrated to desktop and laptop systems.

Recently, multiple processors have appeared on mobile devices

such as smartphones and tablet computers.

Multiprocessor systems offer three main advantages:

1. Increased throughput: More processors mean more

work can be done in less time, though overhead and

resource contention limit the speed-up.

2. Economy of scale: They are more cost-efficient than

multiple single-processor systems, as they can share

peripherals, storage, and power supplies.

3. Increased reliability: If one processor fails, the others

can take over its workload, ensuring the system slows

down but doesn't completely fail, providing higher

fault tolerance.

9

Multiprocessor systems can be classified into two types:

1. Asymmetric multiprocessing: One "boss" processor

controls the system and assigns tasks to "worker"

processors. Workers either follow instructions or have

specific predefined tasks.

2. Symmetric multiprocessing (SMP): All processors

are peers, capable of performing all tasks. Each

processor has its own local cache and shares memory,

allowing efficient multitasking. Modern operating

systems (Windows, Mac OS X, Linux) support SMP.

Additionally, multicore systems, with multiple cores on a

single chip, offer better efficiency, reduced power

consumption, and improved performance.

Figure 1.6 Symmetric multiprocessing architecture.

Figure 1.7 A dual-core design with two cores placed on the same chip.

10

1.4 Operating-System Structure

Figure 1.8 Memory layout for a multiprogramming system.

1.4.1 Operating-System Structure

An operating system provides the environment for executing

programs and is structured to manage resources efficiently. A

key feature is multiprogramming, where multiple programs

run simultaneously, enhancing CPU utilization. Several jobs

are kept in memory, with the remainder stored on disk in a

job pool. The OS switches between jobs, ensuring that the

CPU is always working, even when a program is waiting for

I/O operations. This method ensures that the CPU is never

idle, maximizing system efficiency.

- Time-sharing systems, an extension of multiprogramming,

allow multiple users to interact with programs

simultaneously by rapidly switching between processes.

This provides each user with the impression of sole access to

the system. Time-sharing requires CPU scheduling and

memory management to maintain efficiency, especially for

interactive I/O tasks, which run at human speeds. Virtual

memory allows running larger programs than available

11

physical memory. Additionally, these systems ensure file

management, resource protection, and handle job

synchronization to avoid deadlocks and ensure smooth

operation across multiple processes.

1.5 Operating-System Operations

Modern operating systems are interrupt-driven, meaning

they respond to events like I/O requests or errors through

interrupts or traps. A trap is a software-generated interrupt

caused by errors (e.g., division by zero) or specific requests

for OS services. Each interrupt triggers a service routine to

manage the event. The OS ensures errors in one program

don't affect others, providing necessary protection. Without

such protection, bugs could corrupt other processes or the

OS itself, potentially causing system-wide issues or incorrect

execution of multiple programs.

1.5.1 Dual-Mode and Multimode Operation

In order to ensure the proper execution of the operating

system, we must be able to distinguish between the execution

of operating-system code and user- defined code. The

approach taken by most computer systems is to provide

hardware support that allows us to differentiate among

various modes of execution.

Figure 1.9 Transition from user to kernel mode

12

At the very least, we need two separate modes of operation:

user mode and kernel mode (also called supervisor mode,

system mode, or privileged mode). A bit, called the mode

bit, is added to the hardware of the computer to indicate the

current mode: kernel (0) or user (1). With the mode bit, we can

distinguish between a task that is executed on behalf of the

operating system and one that is executed on behalf of the

user. When the computer system is executing on behalf of a

user application, the system is in user mode. However, when a

user application requests a service from the operating system

(via a system call), the system must transition from user to

kernel mode to fulfill the request. This is shown in Figure 1.9.

As we shall see, this architectural enhancement is useful for

many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The

operating system is then loaded and starts user applications

in user mode. Whenever a trap or interrupt occurs, the

hardware switches from user mode to kernel mode (that is,

changes the state of the mode bit to 0). Thus, whenever the

operating system gains control of the computer, it is in kernel

mode. The system always switches to user mode (by setting

the mode bit to 1) before passing control to a user program.

1.5 Storage Management

To make the computer system convenient for users, the operating

system provides a uniform, logical view of information storage. The

operating system abstracts from the physical properties of its

storage devices to define a logical storage unit, the file. The

operating system maps files onto physical media and accesses these

files via the storage devices.

1.5.1 File-System Management

File management is a key function of an operating system,

involving the storage and organization of data across

different physical media like magnetic disks, optical disks,

and tapes. Each medium has unique characteristics such as

13

speed, capacity, and access methods. Files, which can be

programs or data, are organized into directories to enhance

usability. Operating systems also manage access control,

determining who can read, write, or modify files. This

ensures efficient handling of storage devices and protection

of shared resources.

1.5.2 Mass-Storage Management

As we have already seen, because main memory is too small

to accommodate all data and programs, and because the data

that it holds are lost when power is lost, the computer system

must provide secondary storage to back up main memory.

Most modern computer systems use disks as the principal on-

line storage medium for both programs and data. Most

programs— including compilers, assemblers, word

processors, editors, and formatters— are stored on a disk until

loaded into memory. They then use the disk as both the source

and destination of their processing. Hence, the proper

management of disk storage is of central importance to a

computer system. The operating system is responsible for the

following activities in connection with disk management:

 Free-space management

 Storage allocation

 Disk scheduling

Because secondary storage is used frequently, it must be

used efficiently. The entire speed of operation of a computer

may hinge on the speeds of the disk subsystem and the

algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and

lower in cost (and sometimes of higher capacity) than

secondary storage. Backups of disk data, storage of seldom-

used data, and long-term archival storage are some examples.

Magnetic tape drives and their tapes and CD and DVD drives

14

and platters are typical tertiary storage devices. The media

(tapes and optical platters) vary between WORM (write-once,

read-many-times) and RW (read– write) formats.

Tertiary storage is not crucial to system performance, but

it still must be managed. Some operating systems take on this

task, while others leave tertiary-storage management to

application programs. Some of the functions that operating

systems can provide include mounting and unmounting

media in devices, allocating and freeing the devices for

exclusive use by processes, and migrating data from

secondary to tertiary storage.

Figure 1.11 Performance of various levels of storage.

1.6 Protection and Security

Protection and security in operating systems ensure that

only authorized users can access important resources like

files, memory, and the CPU. Protection keeps systems safe

from errors or misuse by controlling who can use certain

parts of the computer. Security helps defend against harmful

things like viruses or hackers. Each user has a unique ID,

and permissions can be set for individuals or groups.

Sometimes, a user might need extra privileges temporarily,

15

like in UNIX, where certain programs can run with special

permissions.

Review Questions

1. What is the primary role of an operating system in a

computer system?

2. List the four main components of a computer system

as described in the text.

3. How does an operating system manage resources in

a computer?

4. What are the differences between the user view and

system view of a computer?

5. Explain how the operating system acts as a resource

allocator.

6. What is the purpose of the kernel in an operating

system?

7. Describe the function of the bootstrap program

during system startup.

16

Operating - System Structures
An operating system provides the environment within

which programs are executed. Internally, operating systems

vary greatly in their makeup, since they are organized along

many different lines. The design of a new operating system is

a major task. It is important that the goals of the system be

well defined before the design begins. These goals form the

basis for choices among various algorithms and strategies.

We can view an operating system from several vantage

points. One view focuses on the services that the system

provides; another, on the interface that it makes available to

users and programmers; a third, on its components and their

interconnections. In this chapter, we explore all three aspects of

operating systems, showing the viewpoints of users,

programmers, and operating system designers. We consider

what services an operating system provides, how they are

provided, how they are debugged, and what the various

methodologies are for designing such systems. Finally, we

describe how operating systems are created and how a

computer starts its operating system.

 2

17

2.1 Operating-System Services

An operating system provides an environment for the execution of

programs. It provides certain services to programs and to the users

of those programs.

Figure 2.1 A view of operating system services.

Figure 2.1 shows one view of the various operating-system services

and how they interrelate.

Operating system services :

 User interface. Almost all operating systems have a

user interface (UI). This interface can take several

forms. One is a command-line interface (CLI), which

uses text commands and a method for entering them

(say, a keyboard for typing in commands in a specific

format with specific options). Another is a batch

interface, in which commands and directives to control

those commands are entered into files, and those files

are executed. Most commonly, a graphical user

interface (GUI) is used. Here, the interface is a window

system with a pointing device to direct I/O, choose

from menus, and make selections and a keyboard to

enter text. Some systems provide two or all three of

these variations.

18

 Program execution. The system must be able to load a

program into memory and to run that program. The

program must be able to end its execution, either

normally or abnormally (indicating error).

 I/O operations.A running program may require I/O,

which may involve a file or an I/O device. For specific

devices, special functions may be desired (such as

recording to a CD or DVD drive or blanking a display

screen). For efficiency and protection, users usually

cannot control I/O devices directly. Therefore, the

operating system must provide a means to do I/O.

 File-system manipulation. The file system is of

particular interest. Obvi- ously, programs need to read

and write files and directories. They also need to

create and delete them by name, search for a given

file, and list file information. Finally, some operating

systems include permissions management to allow or

deny access to files or directories based on file

ownership. Many operating systems provide a variety

of file systems, sometimes to allow personal choice and

sometimes to provide specific features or performance

characteristics.

 Communications. There are many circumstances in

which one process needs to exchange information with

another process. Such communication may occur

between processes that are executing on the same

computer or between processes that are executing on

different computer systems tied together by a

computer network. Communications may be

implemented via shared memory, in which two or

more processes read and write to a shared section of

memory, or message passing, in which packets of

information in predefined formats are moved between

19

 processes by the operating system.

 Error detection. The operating system needs to be

detecting and correcting errors constantly. Errors may

occur in the CPU and memory hardware (such as a

memory error or a power failure), in I/O devices (such

as a parity error on disk, a connection failure on a

network, or lack of paper in the printer), and in the user

program (such as an arithmetic overflow, an attempt to

access an illegal memory location, or a too-great use of

CPU time). For each type of error, the operating system

should take the appropriate action to ensure correct and

consistent computing. Sometimes, it has no choice but

to halt the system. At other times, it might terminate an

error-causing process or return an error code to a

process for the process to detect and possibly correct.

Another set of operating system functions exists not for

helping the user but rather for ensuring the efficient operation

of the system itself. Systems with multiple users can gain

efficiency by sharing the computer resources among the

users.

20

 Resource allocation. When there are multiple users or

multiple jobs running at the same time, resources must

be allocated to each of them. The operating system

manages many different types of resources. Some (such

as CPU cycles, main memory, and file storage) may

have special allocation code, whereas others (such as

I/O devices) may have much more general request and

release code. For instance, in determining how best to

use the CPU, operating systems have CPU-scheduling

routines that take into account the speed of the CPU, the

jobs that must be executed, the number of registers

available, and other factors. There may also be routines

to allocate printers, USB storage drives, and other

peripheral devices.

 Accounting. We want to keep track of which users use

how much and what kinds of computer resources. This

record keeping may be used for accounting (so that

users can be billed) or simply for accumulating usage

statistics. Usage statistics may be a valuable tool for

researchers who wish to reconfigure the system to

improve computing services.

 Protection and security. The owners of information

stored in a multiuser or networked computer system

may want to control use of that information. When

several separate processes execute concurrently, it

should not be possible for one process to interfere with

the others or with the operating system itself.

Protection involves ensuring that all access to system

resources is controlled. Security of the system from

outsiders is also important.

2.2 User and Operating-System Interface

We mentioned earlier that there are several ways for users to

21

interface with the operating system. Here, we discuss two

fundamental approaches. One provides a command-line

interface, or command interpreter, that allows users to directly

enter commands to be performed by the operating system.

The other allows users to interface with the operating system

via a graphical user interface, or GUI.

2.2.1 Command Interpreters

 Command interpreters, also known as shells, are programs

responsible for interpreting and executing user commands.

 Some operating systems integrate the command

interpreter into the kernel, while others, such as Windows

and UNIX, treat it as a separate program that runs when a

user logs in.

 UNIX and Linux systems offer multiple shells to choose

from, such as Bourne, C shell, Korn, and others, allowing

users to select one based on their preferences.

r-

specified commands like creating, deleting, or listing files, as

seen in MS-DOS and UNIX shells.

Figure 2.2 shows the Bourne shell command interpreter being

used on Solaris 10.

22

333

Figure 2.2 The Bourne shell command interpreter in Solrais 10.

2.2.2 Graphical User Interfaces

 GUIs provide a user-friendly, graphical way to interact

with the operating system, replacing text-based command

interfaces.

 Users interact with GUIs through a mouse-based window-

and-menu system, where icons represent files, programs,

and system functions.

became popular with the Apple Macintosh in the 1980s and

later versions of Microsoft Windows.

 GUIs have evolved, particularly with the rise of mobile

devices, where touchscreens have replaced mouse

interactions, allowing users to swipe and press to interact

with the system.

-line interfaces,

but GUIs like CDE, X-Windows, KDE, and GNOME have

become common, especially in open-source environments like

Linux.

Figure 2.3 illustrates the touchscreen of the Apple iPad.

23

Whereas earlier smartphones included a physical keyboard,

most smartphones now simulate a keyboard on the

touchscreen.

Figure 2.3 The iPad touchscreen.

2.3 System Calls

System calls System calls provide a crucial interface between

a user program and the operating system, enabling the

program to request services like reading files or printing data.

These calls are often written in high-level languages like C or

C++, but certain low-level tasks may require assembly

language.

Example: File Copy Program

To illustrate how system calls are used, consider writing a

program that reads data from one file and copies it to

another. This process involves several steps:

1. Getting File Names:

24

- The program needs input and output file names. In an

interactive system, the program might prompt the user for

these names through system calls, displaying a message on

the screen and reading the user's input from the keyboard.

- In graphical systems, the file names could be selected using

a mouse and a menu system, requiring many input/output

(I/O) system calls.

2. Opening Files:

- The program opens the input file and creates the output file

using system calls.

- If errors occur (e.g., the input file doesn't exist or is

protected), the program needs additional system calls to

handle the errors and possibly terminate abnormally.

- If the output file already exists, the program may use

system calls to delete it, replace it, or ask the user what to do.
3. Reading and Writing:

- The program reads data from the input file and writes it to

the output file. Each read and write operation is a system

call.

- The program must handle potential errors, such as

reaching the end of the file or encountering hardware

failures during reading, and issues like disk space running

out during writing.
4. Closing Files and Exiting:

After the file copy is complete, the program closes both files using

system calls.

- Finally, it outputs a message and terminates normally using a

final system call.

This system-call sequence is shown in Figure 2.5

25

Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file

Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally

source file destination file

Figure 2.5 Example of how system calls are used.

Even simple programs rely heavily on system calls, with

systems executing thousands of them per second. However,

most programmers interact with an operating system

through an Application Programming Interface (API)

rather than directly invoking system calls.

1. API vs. System Calls:

o APIs provide a higher-level, user-friendly

interface for application programmers to

interact with the system without dealing with

the complexity of system calls.

o APIs specify available functions, parameters,

and expected return values, making

programming easier.

2. Common APIs:
o Windows API: Used for Windows-based systems.

o POSIX API: Used for UNIX-based systems like

Linux, Mac OS X, and others.

26

o Java API: Used for programs running on the Java

Virtual Machine (JVM).

3. How APIs Work:

o APIs call system functions indirectly. For example,

the Windows CreateProcess() function calls the

NTCreateProcess() system call in the Windows

kernel.

4. Benefits of Using APIs:

o Portability: Programs written using an API can run

on any system that supports the same API, though

some architectural differences may still exist.

o Simplification: APIs abstract away the more

complex, detailed system calls, making

programming less error-prone and easier to

manage.

5. Correlation Between API and System Calls:

o Many APIs, like those in POSIX and Windows,

closely resemble the system calls in their respective

operating systems, simplifying the development

process.

27

2.4 Types of System Calls

System calls can be grouped roughly into six major

categories: process control, file manipulation, device

manipulation, information maintenance, communications,

and protection. Most of these system calls support, or are

supported by, concepts and functions that are discussed in

later chapters. Figure 2.8 summarizes the types of system calls

normally provided by an operating system. As mentioned, in

this text, we normally refer to the system calls by generic

names. Throughout the text, however, we provide examples

of the actual counterparts to the system calls for Windows,

UNIX, and Linux systems.

28

Figure 2.8 Types of system calls.

Types of system calls.

29

Review Questions

1) What are the primary functions of an operating system?

2) What services does an operating system provide to users and

programs?

3) How does a user interface (UI) differ from a command-line

interface (CLI) and a graphical user interface (GUI)?

4) Explain the role of error detection in operating systems.

30

Review Questions

1) What are the differences between a command interpreter

and a graphical user interface?

2) Explain the correlation between APIs and system calls.

3) What are the six major categories of system calls?

4) In what ways does an operating system manage resource

allocation among multiple users or jobs?

5) What options do users have when choosing a shell?

31

Processes

Early computers operated one program at a time, giving it

complete control over system resources. Modern computer

systems, however, support concurrent execution of multiple

programs, necessitating greater control and

compartmentalization, leading to the concept of a process—

a program in execution and the fundamental unit of work in

time-sharing systems.

As operating systems grow more complex, they are expected

to handle not only user program execution but also various

system tasks that should remain separate from the kernel.

Thus, a system comprises a collection of processes, including

both operating system processes (running system code) and

user processes (running user code). These processes can

execute simultaneously, allowing the operating system to

switch the CPU between them, enhancing overall computer

productivity. This chapter will explore the nature of

processes and their functionality.

CHAPTER

3

32

3.1 Process Concept

Program vs. Process

 A program is a passive entity such as the file that

contains the list of instructions stored on a disk

always referred to as an executable file.

 A program becomes a process when an executable file

is loaded into the memory and then becomes an

active entity.

 The fundamental task of any operating system is the

process management.

 Processes include not only a text but also include a set

of resources such as open files and pending signals.

Processes also contain internal kernel data, processor

state, an address space, and a data section.

Process elements

Segments of a process represent the following components:

Text Section: the program code. This is typically read-only,

and might be shared by a number of processes.

Data Section: containing global variables.

Heap: containing memory dynamically allocated during run

time.

Stack: containing temporary data.

 Function parameters, return addresses, local

variables.

33

Figure 3.1 Process in memory.

3.1.1 Process State

As a process executes, it changes state. The state of a process

is defined in part by the current activity of that process. A

process may be in one of the following states:

 New. The process is being created.

 Running. Instructions are being executed.

 Waiting. The process is waiting for some event to

occur (such as an I/O completion or reception of a

signal).

 Ready. The process is waiting to be assigned to a

processor.

 Terminated. The process has finished execution.

The state diagram corresponding to these states is presented

in Figure 3.2.

34

Figure 3.2 Diagram of process state.

3.1.3 Process Control Block

Each process is represented in the operating system by a

process control block (PCB) — also called a task control

block.A PCB is shown in Figure 3.3. It contains many pieces of

information associated with a specific process, including these:

 Process state. The state may be new, ready, running,

waiting, halted, and so on.

 Program counter. The counter indicates the address of

the next instruction to be executed for this process.

 CPU registers. The registers vary in number and

type, depending on the computer architecture. They

include accumulators, index registers, stack pointers,

and general-purpose registers, plus any condition-

code information. Along with the program counter,

this state information must be saved when an

interrupt occurs, to allow the process to be continued

correctly afterward (Figure 3.4).

 CPU-scheduling information. This information

includes a process priority, pointers to scheduling

queues, and any other scheduling parameters.

35

Figure 3.3 Process control block (PCB).

 Memory-management information. This information may

include such items as the value of the base and limit registers

and the page tables, or the segment tables, depending on the

memory system used by the operating system.

Figure 3.4 Diagram showing CPU switch from process to process.

 Accounting information. This information includes

the amount of CPU and real time used, time limits,

process state

process number

program counter

registers

memory limits

list of open files
 •

•

36

account numbers, job or process numbers, and so on.

 I/O status information. This information includes the

list of I/O devices allocated to the process, a list of

open files, and so on.

In brief, the PCB simply serves as the repository for any

information that may vary from process to process.

3.2 Process Scheduling

The objective of multiprogramming is to have some process

running at all times, to maximize CPU utilization. The

objective of time sharing is to switch the CPU among

processes so frequently that users can interact with each

program while it is running. To meet these objectives, the

process scheduler selects an available process (possibly from

a set of several available processes) for program execution on

the CPU. For a single-processor system, there will never be

more than one running process. If there are more processes,

the rest will have to wait until the CPU is free and can be

rescheduled.

3.2.1 Scheduling Queues

When processes enter a system, they are placed in a job

queue, which includes all processes. Processes that are in

main memory and ready to execute are listed in the ready

queue, typically organized as a linked list with a header that

points to the first and last Process Control Blocks (PCBs).

Each PCB has a pointer to the next PCB in the queue.

The system also features device queues for processes

waiting on I/O requests, such as to a shared disk. If a process

requests I/O while the device is busy, it must wait in the

respective device queue, which is unique to each device.

Each device has its own device queue (Figure 3.5).

37

Figure 3.6 Queueing-diagram representation of process scheduling.

3.2.2 Schedulers

A process migrates among the various scheduling queues

throughout its lifetime. The operating system must select, for

scheduling purposes, processes from these queues in some

fashion. The selection process is carried out by the

appropriate scheduler.

Often, in a batch system, more processes are submitted than

can be executed immediately. These processes are spooled to a

mass-storage device (typically a disk), where they are kept for

later execution. The long-term scheduler, or job scheduler,

selects processes from this pool and loads them into memory

for execution. The short-term scheduler, or CPU scheduler,

selects from among the processes that are ready to execute

and allocates the CPU to one of them.

CPU

I/O

child
executes

interrupt
occurs

time slice
expired

wait for an
interrupt

fork a
child

I/O request I/O queue

ready queue

38

Short-term scheduler (or CPU scheduler) – selects which

process should be executed next and allocates CPU

 – Sometimes the only scheduler in a system

– Short-term scheduler is invoked frequently (milliseconds)

 (must be fast)

• Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue

–Long-term scheduler is invoked infrequently (seconds,

minutes) (may be slow)

– The long-term scheduler controls the degree of

multiprogramming

Medium-term scheduler can be added if degree of multiple

programming needs to decrease

 Remove process from memory, store on disk, bring

back in from disk to continue execution: swapping

Figure 3.7 Addition of medium-term scheduling to the queueing

diagram.

39

3.3 Interprocess Communication

Processes executing concurrently in the operating system

may be either independent processes or cooperating

processes. A process is independent if it cannot affect or be

affected by the other processes executing in the system. Any

process that does not share data with any other process is

independent. A process is cooperating if it can affect or be

affected by the other processes executing in the system.

Clearly, any process that shares data with other processes is a

cooperating process.

There are several reasons for providing an environment that

allows process cooperation:

 Information sharing. Since several users may be

interested in the same piece of information (for

instance, a shared file), we must provide an

environment to allow concurrent access to such

information.

 Computation speedup. If we want a particular task to

run faster, we must break it into subtasks, each of

which will be executing in parallel with the others.

Notice that such a speedup can be achieved only if the

computer has multiple processing cores.

 Modularity. We may want to construct the system in

a modular fashion, dividing the system functions into

separate processes or threads.

 Convenience. Even an individual user may work on

many tasks at the same time. For instance, a user may

be editing, listening to music, and compiling in

parallel.

40

Cooperating processes require an interprocess

communication (IPC) mechanism for data exchange,

typically implemented through two fundamental models:

shared memory and message passing.

1. Shared Memory: In this model, processes share a

designated region of memory, allowing them to read

and write data directly to this space for

communication. Once the shared memory is

established, accesses occur as routine memory

operations, minimizing kernel intervention.

2. Message Passing: This model facilitates

communication through messages exchanged

between processes. It is particularly beneficial for

transferring smaller data amounts, as it avoids

conflicts, and is easier to implement in distributed

systems.

Both models have their advantages. Shared memory tends to

be faster due to less frequent kernel involvement, while

message passing offers better performance in multi-core

systems because it circumvents cache coherence issues that

can arise with shared memory. As the number of processing

cores increases, message passing may become the preferred

IPC method. The two communications models are contrasted

in Figure 3.8.

41

Figure 3.8 Communications models. (a) Message passing. (b) Shared

memory.

Review Questions

1) What is the difference between a program and a process?

2) Why do modern computer systems support the

execution of multiple processes simultaneously?

3) What are the main components of a process in memory?

4) Describe the different states a process can be in during

its lifecycle.

5) What is the role of the Process Control Block (PCB) in

managing processes?

6) How does the short-term scheduler differ from the long-

term scheduler in process management?

7) What are the different types of queues used in process

scheduling, and what is their purpose?

42

Threads
The process model introduced in Chapter 3 assumed that a

process was an executing program with a single thread of control.

Virtually all modern operating systems, however, provide features

enabling a process to contain multiple threads of control. In this

chapter, we introduce many concepts associated with

multithreaded computer systems, including a discussion of the

APIs for the Pthreads, Windows, and Java thread libraries. We look

at a number of issues related to multithreaded programming and

its effect on the design of operating systems. Finally, we explore

how the Windows and Linux operating systems support threads at

the kernel level.

4.1 Overview

A thread is a basic unit of CPU utilization; it comprises a thread

ID, a program counter, a register set, and a stack. It shares with

other threads belonging to the same process its code section, data

section, and other operating-system resources, such as open files and

signals. A traditional (or heavyweight) process has a single thread of

control. If a process has multiple threads of control, it can perform

more than one task at a time. Figure 4.1 illustrates the difference

between a traditional single-threaded process and a multithreaded

process.

CHAPTER

4

43

4.1.1 Motivation

Modern software applications are predominantly

multithreaded, with multiple threads running within a

single process to perform various tasks concurrently. For

example, a web browser may use different threads for

displaying content and retrieving data, while a word

processor might manage keystrokes, display graphics, and

check grammar simultaneously. Multithreading is especially

beneficial in multicore systems, allowing CPU-intensive

tasks to be executed in parallel across different cores.

In certain scenarios, such as web servers handling multiple

client requests, multithreading proves far more efficient than

the traditional single-threaded approach. A single-threaded

web server can only handle one client request at a time,

causing delays for other clients. Previously, web servers

created separate processes for each request, which is

resource-intensive and slow. However, with multithreading,

the server creates a new thread for each client request,

reducing the overhead of process creation and enabling

faster, more efficient handling of multiple concurrent

requests. This is illustrated in Figure 4.2.

Figure 4.1 Single-threaded and multithreaded processes.

44

Threads also play a vital role in remote procedure call (RPC)

systems. RPCs allow interprocess communication by

providing a communication mechanism similar to ordinary

function or procedure calls. Typically, RPC servers are

multithreaded. When a server receives a message, it services

the message using a separate thread. This allows the server to

service several concurrent requests.

Figure 4.2 Multithreaded server architecture.

Finally, most operating-system kernels are now

multithreaded. Several threads operate in the kernel, and each

thread performs a specific task, such as managing devices,

managing memory, or interrupt handling. For example,

Solaris has a set of threads in the kernel specifically for

interrupt handling; Linux uses a kernel thread for managing

the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken

down into four major categories:

1. Responsiveness. Multithreading an interactive

45

application may allow a program to continue

running even if part of it is blocked or is performing a

lengthy operation, thereby increasing responsiveness

to the user. This quality is especially useful in

designing user interfaces. For instance, consider what

happens when a user clicks a button that results in the

performance of a time-consuming operation. A single-

threaded application would be unresponsive to the

user until the operation had completed. In contrast, if

the time-consuming operation is performed in a

separate thread, the application remains responsive to

the user.

2. Resource sharing. Processes can only share resources

through techniques such as shared memory and

message passing. Such techniques must be explicitly

arranged by the programmer. However, threads share

the memory and the resources of the process to which

they belong by default. The benefit of sharing code and

data is that it allows an application to have several

different threads of activity within the same address

space.

3. Economy. Allocating memory and resources for

process creation is costly. Because threads share the

resources of the process to which they belong, it is

more economical to create and context-switch threads.

Empirically gauging the difference in overhead can be

difficult, but in general it is significantly more time

consuming to create and manage processes than

threads. In Solaris, for example, creating a process is

about thirty timesn slower than is creating a thread,

and context switching is about five times slower.

4. Scalability. The benefits of multithreading can be

even greater in a multiprocessor architecture, where

threads may be running in parallel on different

46

processing cores. A single-threaded process can run on

only one processor, regardless how many are

available.

Figure 4.3 Concurrent execution on a single-core system

4.2 Multicore Programming

Earlier in the history of computer design, in response to the

need for more computing performance, single-CPU systems

evolved into multi-CPU systems. A more recent, similar trend

in system design is to place multiple computing cores on a

single chip. Each core appears as a separate processor to the

operating system. Whether the cores appear across CPU chips

or within CPU chips, we call these systems multicore or

multiprocessor systems. Multithreaded programming

provides a mechanism for more efficient use of these

multiple computing cores and improved concurrency.

Consider an application with four threads. On a system with

a single computing core, concurrency merely means that the

execution of the threads will be interleaved over time (Figure

4.3), because the processing core is capable of executing only

one thread at a time. On a system with multiple cores,

however, concurrency means that the threads can run in

parallel, because the system can assign a separate thread to

each core (Figure 4.4).

47

Notice the distinction between parallelism and concurrency

in this discussion. A system is parallel if it can perform more

than one task simultaneously. In contrast, a concurrent system

supports more than one task by allowing all the tasks to make

progress. Thus, it is possible to have concurrency without

parallelism. Before the advent of SMP and multicore

architectures, most com- puter systems had only a single

processor. CPU schedulers were designed to provide the

illusion of parallelism by rapidly switching between processes

in

the system, thereby allowing each process to make progress.

Such processes were running concurrently, but not in parallel.

As systems have grown from tens of threads to thousands of

threads, CPU designers have improved system performance

by adding hardware to improve thread performance. Modern

Intel CPUs frequently support two threads per core, while the

Oracle T4 CPU supports eight threads per core. This support

means that multiple threads can be loaded into the core for

fast switching. Multicore computers will no doubt continue to

increase in core counts and

48

hardware thread support.

Figure 4.4Parallel execution on a multicore system.

4.2.1 Programming Challenges

The trend towards multicore systems continues to place

pressure on system designers and application programmers

to make better use of the multiple computing cores. Designers

of operating systems must write scheduling algorithms that

use multiple processing cores to allow the parallel execution

shown in Figure 4.4. For application programmers, the

challenge is to modify existing programs as well as design

new programs that are multithreaded.

In general, five areas present challenges in programming for

multicore systems:

1. Identifying tasks. This involves examining

applications to find areas that can be divided into

separate, concurrent tasks. Ideally, tasks are

independent of one another and thus can run in

parallel on individual cores.

2. Balance. While identifying tasks that can run in

parallel, programmers must also ensure that the tasks

perform equal work of equal value. In some instances,

a certain task may not contribute as much value to the

overall process as other tasks. Using a separate

execution core to run that task may not be worth the

49

cost.

3. Data splitting. Just as applications are divided into

separate tasks, the data accessed and manipulated by

the tasks must be divided to run on separate cores.

4. Data dependency. The data accessed by the tasks

must be examined for dependencies between two or

more tasks. When one task depends on data from

another, programmers must ensure that the execution

of the tasks is synchronized to accommodate the data

dependency.

5. Testing and debugging. When a program is running

in parallel on multiple cores, many different execution

paths are possible. Testing and debugging such

concurrent programs is inherently more difficult than

testing and debugging single-threaded applications.

4.2.2 Types of Parallelism

Task parallelism involves distributing not data but tasks (threads)

across multiple computing cores. Each thread is performing a

unique operation. Different threads may be operating on the same

data, or they may be operating on different data. Consider again our

example above. In contrast to that situation, an example of task

parallelism might involve two threads, each performing a unique

statistical operation on the array of elements. The threads again are

operating in parallel on separate computing cores, but each is

performing a unique operation.

50

Fundamentally, then, data parallelism involves the distribution of

data across multiple cores and task parallelism on the distribution

of tasks across multiple cores. In practice, however, few applications

strictly follow either data or task parallelism. In most instances,

applications use a hybrid of these two strategies.

4.3 Multithreading Models

Our discussion so far has treated threads in a generic sense.

However, support for threads may be provided either at the

user level, for user threads, or by the kernel, for kernel

threads. User threads are supported above the kernel and are

managed without kernel support, whereas kernel threads are

supported and managed directly by the operating system.

Virtually all contemporary operating systems— including

Windows, Linux, Mac OS X, and Solaris— support kernel

threads.

Ultimately, a relationship must exist between user threads

and kernel threads. In this section, we look at three common

ways of establishing such a relationship: the many-to-one

model, the one-to-one model, and the many-to- many models.

4.3.1 Many-to-One Model

The many-to-one model connects multiple user threads to a

single kernel thread. It is efficient because thread

management happens in user space. However, if one thread

makes a system call that blocks, all threads in the process are

blocked. Additionally, this model can't run threads in parallel

on multicore systems. Due to these limitations, it’s rarely used

today.

51

 Figure 4.5 Many-to-one model.

4.3.2 One-to-One Model

The one-to-one model (Figure 4.6) maps each user thread to a

kernel thread. It provides more concurrency than the many-

to-one model by allowing another thread to run when a

thread makes a blocking system call. It also allows multiple

threads to run in parallel on multiprocessors. The only

drawback to this model is that creating a user thread requires

creating the corresponding kernel thread. Because the

overhead of creating kernel threads can burden the

performance of an application, most implementations of this

model restrict the number of threads supported by the system.

Linux, along with the family of Windows operating systems,

implement the one-to-one model.

Figure 4.6 One-to-one model.

52

4.3.3 Many-to-Many Model

The many-to-many model (Figure 4.7) multiplexes many

user-level threads to a smaller or equal number of kernel

threads. The number of kernel threads may be specific to

either a particular application or a particular machine (an

application may be allocated more kernel threads on a

multiprocessor than on a single processor).

Let’s consider the effect of this design on concurrency.

Whereas the many- to-one model allows the developer to

create as many user threads as she wishes, it does not result in

true concurrency, because the kernel can schedule only one

thread at a time. The one-to-one model allows greater

concurrency, but the developer has to be careful not to create

too many threads within an application

Figure 4.7 Many-to-many model.

53

Figure 4.8 Two-level model.

The many-to-many model suffers from neither of these

shortcomings: developers can create as many user threads as

necessary, and the corresponding kernel threads can run in

parallel on a multiprocessor. Also, when a thread performs a

blocking system call, the kernel can schedule another thread

for execution.

One variation on the many-to-many model still multiplexes

many user- level threads to a smaller or equal number of

kernel threads but also allows a user-level thread to be bound

to a kernel thread. This variation is sometimes referred to as

the two-level model (Figure 4.8). The Solaris operating

system supported the two-level model in versions older than

Solaris 9. However, beginning with Solaris 9, this system uses

the one-to-one model.

54

Review Questions

1) What is a thread, and what are the basic components that

define it?
2) How do threads in a process share resources?

3) What is the difference between a single-threaded and

multithreaded process?
4) What are the main benefits of multithreading in modern

software applications?

5) Why is multithreading particularly advantageous in

multicore systems?

55

CPU Scheduling

CPU scheduling is the basis of multiprogrammed operating

systems. By switching the CPU among processes, the

operating system can make the computer more productive. In

this chapter, we introduce basic CPU-scheduling concepts and

present several CPU-scheduling algorithms. We also consider

the problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model.

On operating systems that support them, it is kernel-level

threads— not processes— that are in fact being scheduled by

the operating system. However, the terms "process

scheduling" and "thread scheduling" are often used

interchangeably. In this chapter, we use process scheduling

when discussing general scheduling concepts and thread

scheduling to refer to thread-specific ideas.

5.1 Basic Concepts

In a single-processor system, only one process can run at a time.

Others must wait until the CPU is free and can be rescheduled.

The objective of multiprogramming is to have some process

running at all times, to maximize CPU utilization. The idea is

relatively simple. A process is executed until it must wait,

typically for the completion of some I/O request. In a simple

computer system, the CPU then just sits idle. All this waiting time

is wasted; no useful work is accomplished. With

multiprogramming, we try to use this time productively. Several

processes are kept in memory at one time.

CHAPTER

5

56

Figure 5.1 Alternating sequence of CPU and I/O bursts.

When one process has to wait, the operating system takes the

CPU away from that process and gives the CPU to another

process. This pattern continues. Every time one process has to

wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system

function. Almost all computer resources are scheduled before

use. The CPU is, of course, one of the primary computer

resources. Thus, its scheduling is central to operating-system

design.

5.1.1 CPU– I/O Burst Cycle

The success of CPU scheduling depends on an observed

property of processes: process execution consists of a cycle of

CPU execution and I/O wait. Processes alternate between

these two states. Process execution begins with a CPU burst.

57

That is followed by an I/O burst, which is followed by another

CPU burst, then another I/O burst, and so on. Eventually, the

final CPU burst ends with a system request to terminate

execution (Figure 5.1).

1.2 CPU Scheduler

Whenever the CPU becomes idle, the operating system must

select one of the processes in the ready queue to be executed.

The selection process is carried out by the short-term

scheduler, or CPU scheduler. The scheduler selects a process

from the processes in memory that are ready to execute and

allocates the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out

(FIFO) queue. As we shall see when we consider the various

scheduling algorithms, a ready queue can be implemented as

a FIFO queue, a priority queue, a tree, or simply an unordered

linked list. Conceptually, however, all the processes in the

ready queue are lined up waiting for a chance to run on the

CPU. The records in the queues are generally process control

blocks (PCBs) of the processes.

5.1.3 Preemptive Scheduling

CPU scheduling decisions occur under the following four

conditions:

1. Process moves from running to waiting state (e.g.,

due to I/O requests or wait()).

2. Process moves from running to ready state (e.g., after

an interrupt).

3. Process moves from waiting to ready state (e.g.,

when I/O completes).

4. Process terminates.

For conditions 1 and 4, scheduling is mandatory, as a new

process must be selected for execution. For conditions 2 and

58

3, the operating system can choose whether to continue

running the current process or to switch to another.

 Non-preemptive (cooperative) scheduling:

Scheduling occurs only during conditions 1 and 4.

Once a process gets the CPU, it retains control until it

either finishes or enters the waiting state. Early

systems like Windows 3.x used this model.

 Preemptive scheduling: Allows process switching

under all four conditions. Modern systems like

Windows 95 and later versions, as well as Mac OS X,

use preemptive scheduling.

Preemptive scheduling introduces potential issues, such as

race conditions when processes share data. If a process is

preempted while modifying data, another process could

access inconsistent data. This challenge also extends to the

operating system kernel, particularly during system calls or

I/O handling.

To prevent inconsistency, some operating systems, like

UNIX, wait until system calls are completed or I/O blocks

occur before switching processes. However, this approach is

unsuitable for real-time computing where tasks need to

meet strict deadlines.

Additionally, interrupts must be handled promptly, and

certain critical code sections disable interrupts temporarily

to prevent simultaneous access by multiple processes. These

sections are typically brief and infrequent, ensuring minimal

impact on system performance.

59

5.1.4 Dispatcher

Another component involved in the CPU-scheduling function

is the dispatcher. The dispatcher is the module that gives

control of the CPU to the process selected by the short-term

scheduler. This function involves the following:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to

restart that program

The dispatcher should be as fast as possible, since it is

invoked during every process switch. The time it takes for the

dispatcher to stop one process and start another running is

known as the dispatch latency.

5.2 Scheduling Criteria

Different CPU-scheduling algorithms have different

properties, and the choice of a particular algorithm may favor

one class of processes over another. In choosing which

algorithm to use in a particular situation, we must consider

the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-

scheduling algo- rithms. Which characteristics are used for

comparison can make a substantial difference in which

algorithm is judged to be best. The criteria include the

following:

 CPU utilization. We want to keep the CPU as busy as

possible. Concep- tually, CPU utilization can range

from 0 to 100 percent. In a real system, it should range

from 40 percent (for a lightly loaded system) to 90

percent (for a heavily loaded system).

 Throughput. If the CPU is busy executing processes,

60

then work is being done. One measure of work is the

number of processes that are completed per time unit,

called throughput. For long processes, this rate may be

one process per hour; for short transactions, it may be

ten processes per second.

 Turnaround time. From the point of view of a

particular process, the important criterion is how long

it takes to execute that process. The interval from the

time of submission of a process to the time of

completion is the turnaround time. Turnaround time is

the sum of the periods spent waiting to get into

memory, waiting in the ready queue, executing on the

CPU, and doing I/O.

 Waiting time. The CPU-scheduling algorithm does

not affect the amount of time during which a process

executes or does I/O. It affects only the amount of time

that a process spends waiting in the ready queue.

Waiting time is the sum of the periods spent waiting

in the ready queue.

 Response time. In an interactive system, turnaround

time may not be the best criterion. Often, a process

can produce some output fairly early and can

continue computing new results while previous

results are being output to the user. Thus, another

measure is the time from the submission of a request

until the first response is produced. This measure,

called response time, is the time it takes to start

responding, not the time it takes to output the

response. The turnaround time is generally limited by

the speed of the output device.

It is desirable to maximize CPU utilization and

throughput and to minimize turnaround time, waiting time,

and response time. In most cases, we optimize the average

61

measure. However, under some circumstances, we prefer to

optimize the minimum or maximum values rather than the

average. For example, to guarantee that all users get good

service, we may want to minimize the maximum response

time.

Investigators have suggested that, for interactive systems

(such as desktop systems), it is more important to minimize

the variance in the response time than to minimize the

average response time. A system with reasonable and

predictable response time may be considered more desirable

than a system that is faster on the average but is highly

variable. However, little work has been done on CPU-

scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the

following section, we illustrate their operation. An accurate

illustration should involve many processes, each a sequence

of several hundred CPU bursts and I/O bursts. For

simplicity, though, we consider only one CPU burst (in

milliseconds) per process in our examples. Our measure of

comparison is the average waiting time.

5.3 Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the

processes in the ready queue is to be allocated the CPU. There are

many different CPU-scheduling algorithms. In this section, we

describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-

come, first-served (FCFS) scheduling algorithm. With this

scheme, the process that requests the CPU first is allocated

the CPU first. The implementation of the FCFS policy is easily

managed with a FIFO queue. When a process enters the ready

queue, its PCB is linked onto the tail of the queue. When the

62

CPU is free, it is allocated to the process at the head of the

queue. The running process is then removed from the queue.

The code for FCFS scheduling is simple to write and

understand.

On the negative side, the average waiting time under the

FCFS policy is often quite long. Consider the following set of

processes that arrive at time 0, with the length of the CPU

burst given in milliseconds:

Process Burst Time

P1 24

P2 3

P3 3

If the processes arrive in the order P1, P2, P3, and are served in FCFS

order, we get the result shown in the following Gantt chart, which

is a bar chart that illustrates a particular schedule, including the

start and finish times of each of the participating processes:

The waiting time is 0 milliseconds for process P1, 24 milliseconds

for process P2, and 27 milliseconds for process P3. Thus, the

average waiting time is (0 + 24 + 27)/3 = 17 milliseconds. If the

processes arrive in the order P2, P3, P1, however, the results will be

as shown in the following Gantt chart:

63

The average waiting time is now (6 + 0 + 3)/3 = 3

milliseconds. This reduction is substantial. Thus, the average

waiting time under an FCFS policy is generally not minimal

and may vary substantially if the processes’ CPU burst times

vary greatly.

In addition, consider the performance of FCFS scheduling in

a dynamic situation. Assume we have one CPU-bound

process and many I/O-bound processes. As the processes flow

around the system, the following scenario may result. The

CPU-bound process will get and hold the CPU. During this

time, all the other processes will finish their I/O and will

move into the ready queue, waiting for the CPU. While the

processes wait in the ready queue, the I/O devices are idle.

Eventually, the CPU-bound process finishes its CPU burst

and moves to an I/O device. All the I/O-bound processes,

which have short CPU bursts, execute quickly and move back

to the I/O queues. At this point, the CPU sits idle. The CPU-

bound process will then move back to the ready queue and be

allocated the CPU. Again, all the I/O processes end up waiting

in the ready queue until the CPU-bound process is done.

There is a convoy effect as all the other processes wait for the

one big process to get off the CPU. This effect results in lower

CPU and device utilization than might be possible if the

shorter processes were allowed to go first.

Note also that the FCFS scheduling algorithm is

nonpreemptive. Once the CPU has been allocated to a process,

that process keeps the CPU until it releases the CPU, either by

terminating or by requesting I/O. The FCFS algorithm is thus

particularly troublesome for time-sharing systems, where it is

important that each user get a share of the CPU at regular

intervals. It would be disastrous to allow one process to keep

the CPU for an extended period.

64

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-

first (SJF) scheduling algorithm. This algorithm associates

with each process the length of the process’s next CPU burst.

When the CPU is available, it is assigned to the process

that has the smallest next CPU burst. If the next CPU bursts of

two processes are the same, FCFS scheduling is used to break

the tie. Note that a more appropriate term for this scheduling

method would be the shortest-next- CPU-burst algorithm,

because scheduling depends on the length of the next CPU

burst of a process, rather than its total length. We use the term

SJF because most people and textbooks use this term to refer

to this type of scheduling.

As an example of SJF scheduling, consider the following set of

processes, with the length of the CPU burst given in milliseconds:

Using SJF scheduling, we would schedule these processes

according to the following Gantt chart:

0 3 9 16 24

The waiting time is 3 milliseconds for process P1, 16 milliseconds

for process P2, 9 milliseconds for process P3, and 0 milliseconds for

Process Burst Time

P1 6

P2 8

P3 7

P4 3

P4 P1 P3 P2

65

process P4. Thus, the average waiting time is (3 + 16 + 9 + 0)/4

= 7 milliseconds. By comparison, if we were using the FCFS

scheduling scheme, the average waiting time would be 10.25

milliseconds.

The SJF scheduling algorithm is provably optimal, in that it

gives the minimum average waiting time for a given set of

processes. Moving a short process before a long one decreases

the waiting time of the short process more than it increases the

waiting time of the long process. Consequently, the average

waiting time decreases.

The real difficulty with the SJF algorithm is knowing the

length of the next CPU request. For long-term (job)

scheduling in a batch system, we can use the process time

limit that a user specifies when he submits the job. In this

situation, users are motivated to estimate the process time

limit accurately, since a lower value may mean faster

response but too low a value will cause a time-limit-exceeded

error and require resubmission. SJF scheduling is used

frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be

implemented at the level of short-term CPU scheduling. With

short-term scheduling, there is no way to know the length of

the next CPU burst. One approach to this problem is to try to

approximate SJF scheduling. We may not know the length of

the next CPU burst, but we may be able to predict its value.

We expect that the next CPU burst will be similar in length to

the previous ones. By computing an approximation of the

length of the next CPU burst, we can pick the process with the

shortest predicted CPU burst.

66

As an example, consider the following four processes, with

the length of the CPU burst given in milliseconds:

If the processes arrive at the ready queue at the times shown

and need the indicated burst times, then the resulting

preemptive SJF schedule is as depicted in the following Gantt

chart:

0 1 5 10 17 26

5.3.3 Priority Scheduling

5.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority-

scheduling algorithm. A priority is associated with each

process, and the CPU is allocated to the process with the highest

priority. Equal-priority processes are scheduled in FCFS order.

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P1 P2 P4 P1 P3

67

An SJF algorithm is simply a priority algorithm where the

priority (p) is the inverse of the (predicted) next CPU burst.

The larger the CPU burst, the lower the priority, and vice

versa.

Note that we discuss scheduling in terms of high priority and

low priority. Priorities are generally indicated by some fixed

range of numbers, such as 0 to 7 or 0 to 4,095. However, there

is no general agreement on whether 0 is the highest or lowest

priority. Some systems use low numbers to represent low

priority; others use low numbers for high priority. This

difference can lead to confusion. In this text, we assume that

low numbers represent high priority.

As an example, consider the following set of processes,

assumed to have arrived at time 0 in the order P1, P2, … , P5,

with the length of the CPU burst given in milliseconds:

Using priority scheduling, we would schedule these processes

according to the following Gantt chart:

0 1 6 16 18 19

The average waiting time is 8.2 milliseconds.

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2 P5 P1 P3 P4

68

Priorities can be defined either internally or externally.

Internally defined priorities use some measurable quantity or

quantities to compute the priority of a process. For example,

time limits, memory requirements, the number of open files,

and the ratio of average I/O burst to average CPU burst have

been used in computing priorities. External priorities are set

by criteria outside the operating system, such as the

importance of the process, the type and amount of funds

being paid for computer use, the department sponsoring the

work, and other, often political, factors.

Priority scheduling can be either preemptive or

nonpreemptive. When a process arrives at the ready queue,

its priority is compared with the priority of the currently

running process. A preemptive priority scheduling algorithm

will preempt the CPU if the priority of the newly arrived

process is higher than the priority of the currently running

process. A nonpreemptive priority scheduling algorithm will

simply put the new process at the head of the ready queue.

A major problem with priority scheduling algorithms is

indefinite block- ing, or starvation. A process that is ready to

run but waiting for the CPU can be considered blocked. A

priority scheduling algorithm can leave some low- priority

processes waiting indefinitely. In a heavily loaded computer

system, a steady stream of higher-priority processes can

prevent a low-priority process from ever getting the CPU.

Generally, one of two things will happen. Either the process

will eventually be run, or the computer system will

eventually crash and lose all unfinished low-priority

processes.

A solution to the problem of indefinite blockage of low-

priority processes is aging. Aging involves gradually

increasing the priority of processes that wait in the system for

a long time. For example, if priorities range from 127 (low) to

0 (high), we could increase the priority of a waiting process

69

by 1 every 15 minutes. Eventually, even a process with an

initial priority of 127 would have the highest priority in the

system and would be executed. In fact, it would take no more

than 32 hours for a priority-127 process to age to a priority-0

process.

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed

especially for time- sharing systems. It is similar to FCFS

scheduling, but preemption is added to enable the system to

switch between processes. A small unit of time, called a time

quantum or time slice, is defined. A time quantum is

generally from 10 to 100 milliseconds in length. The ready

queue is treated as a circular queue.

The CPU scheduler goes around the ready queue, allocating

the CPU to each process for a time interval of up to 1 time

quantum.

To implement RR scheduling, we again treat the ready queue

as a FIFO queue of processes. New processes are added to the

tail of the ready queue. The CPU scheduler picks the first

process from the ready queue, sets a timer to interrupt after 1

time quantum, and dispatches the process.

One of two things will then happen. The process may have a

CPU burst of less than 1 time quantum. In this case, the

process itself will release the CPU voluntarily. The scheduler

will then proceed to the next process in the ready queue. If

the CPU burst of the currently running process is longer than

1 time quantum, the timer will go off and will cause an

interrupt to the operating system. A context switch will be

executed, and the process will be put at the tail of the ready

queue. The CPU scheduler will then select the next process in

the ready queue.

70

The average waiting time under the RR policy is often long.

Consider the following set of processes that arrive at time 0,

with the length of the CPU burst given in milliseconds:

If we use a time quantum of 4 milliseconds, then process P1

gets the first 4 milliseconds. Since it requires another 20

milliseconds, it is preempted after the first time quantum, and

the CPU is given to the next process in the queue, process P2.

Process P2 does not need 4 milliseconds, so it quits before its

time quantum expires. The CPU is then given to the next

process, process P3. Once each process has received 1 time

quantum, the CPU is returned to process P1 for an additional

time quantum. The resulting RR schedule is as follows:

 0 4 7 10 14 18 22 26 30

Let’s calculate the average waiting time for this schedule. P1

waits for 6 milliseconds (10 - 4), P2 waits for 4 milliseconds, and

P3 waits for 7 milliseconds. Thus, the average waiting time is

17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the

CPU for more than 1 time quantum in a row (unless it is the

only runnable process). If a process’s CPU burst exceeds 1

time quantum, that process is preempted and is put back in

the ready queue. The RR scheduling algorithm is thus

preemptive. If there are n processes in the ready queue

Process Burst Time

P1 24

P2 3

P3 3

P1 P2 P3 P1 P1 P1 P1 P1

71

and the time quantum is q, then each process gets 1/n of the

CPU time in chunks of at most q time units. Each process

must wait no longer than (n-1) x q time units until its next

time quantum. For example, with five processes and a time

quantum of 20 milliseconds, each process will get up to 20

milliseconds every 100 milliseconds. The performance of the

RR algorithm depends heavily on the size of the time

quantum. At one extreme, if the time quantum is extremely

large, the RR policy

is the same as the FCFS policy. In contrast, if the time

quantum is extremely small (say, 1 millisecond), the RR

approach can result in a large number of context switches.

Assume, for example, that we have only one process of 10

time units. If the quantum is 12 time units, the process

finishes in less than 1 time quantum, with no overhead. If the

quantum is 6 time units, however, the process requires 2

quanta, resulting in a context switch. If the time quantum is 1

time unit, then nine context switches will occur, slowing the

execution of the process accordingly (Figure 5.4).

72

Figure 5.4 How a smaller time quantum increases context switches.

Thus, we want the time quantum to be large with respect to

the context- switch time. If the context-switch time is

approximately 10 percent of the time quantum, then about 10

percent of the CPU time will be spent in context switching. In

practice, most modern systems have time quanta ranging

from 10 to 100 milliseconds. The time required for a context

switch is typically less than 10 microseconds; thus, the

context-switch time is a small fraction of the time quantum.

Turnaround time also depends on the size of the time

quantum. the average turnaround time of a set of processes

does not necessarily improve as the time-quantum size

increases. In general, the average turnaround time can be

improved if most processes finish their next CPU burst in a

single time quantum. For example, given three processes of 10

time units each and a quantum of 1 time unit, the average

turnaround time is 29. If the time quantum is 10, however, the

average turnaround time drops to 20. If context-switch time is

added in, the average turnaround time increases even more

for a smaller time quantum, since more context switches are

required.

Although the time quantum should be large compared with

the context- switch time, it should not be too large. As we

pointed out earlier, if the time quantum is too large, RR

73

scheduling degenerates to an FCFS policy. A rule of thumb is

that 80 percent of the CPU bursts should be shorter than the

time quantum.

Figure 5.5 How turnaround time varies with the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for

situations in which processes are easily classified into

different groups. For example, a common division is made

between foreground (interactive) processes and background

(batch) processes.

These two types of processes have different response-time

requirements and so may have different scheduling needs. In

addition, foreground processes may have priority (externally

defined) over background processes.

A multilevel queue scheduling algorithm partitions the

ready queue into several separate queues (Figure 5.6). The

processes are permanently assigned to one queue, generally

based on some property of the process, such as memory size,

process priority, or process type. Each queue has its own

74

scheduling algorithm. For example, separate queues might

be used for foreground and background processes. The

foreground queue might be scheduled by an RR algorithm,

while the background queue is scheduled by an FCFS

algorithm.

In addition, there must be scheduling among the queues,

which is com- monly implemented as fixed-priority

preemptive scheduling. For example, the foreground queue

may have absolute priority over the background queue.

Let’s look at an example of a multilevel queue scheduling

algorithm with five queues, listed below in order of priority:

1. System processes

2. Interactive processes

3. Interactive editing processes

4. Batch processes

5. Student processes

 Figure 5.6 Multilevel queue scheduling.

Each queue has absolute priority over lower-priority queues.

75

No process in the batch queue, for example, could run unless

the queues for system processes, interactive processes, and

interactive editing processes were all empty. If an interactive

editing process entered the ready queue while a batch process

was running, the batch process would be preempted.

Another possibility is to time-slice among the queues. Here,

each queue gets a certain portion of the CPU time, which it can

then schedule among its various processes. For instance, in the

foreground– background queue example, the foreground

queue can be given 80 percent of the CPU time for RR

scheduling among its processes, while the background queue

receives 20 percent of the CPU to give to its processes on an

FCFS basis.

76

5.3.6 Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue scheduling algorithm is

used, processes are permanently assigned to a queue when

they enter the system. If there are separate queues for

foreground and background processes, for example,

processes do not move from one queue to the other, since

processes do not change their foreground or background

nature. This setup has the advantage of low scheduling

overhead, but it is inflexible.

The multilevel feedback queue scheduling algorithm, in

contrast, allows a process to move between queues. The idea is

to separate processes according to the characteristics of their

CPU bursts. If a process uses too much CPU time, it will be

moved to a lower-priority queue. This scheme leaves I/O-

bound and interactive processes in the higher-priority queues.

In addition, a process that waits too long in a lower-priority

queue may be moved to a higher-priority queue. This form of

aging prevents starvation.

For example, consider a multilevel feedback queue scheduler

with three queues, numbered from 0 to 2 (Figure 5.7). The

scheduler first executes all processes in queue 0. Only when

queue 0 is empty will it execute processes in queue 1.

Similarly, processes in queue 2 will be executed only if

queues 0 and 1 are empty. A process that arrives for queue 1

will preempt a process in queue 2. A process in queue 1 will

in turn be preempted by a process arriving for queue 0.

77

Figure 5.7 Multilevel feedback queues.

A process entering the ready queue is put in queue 0. A

process in queue 0 is given a time quantum of 8 milliseconds.

If it does not finish within this time, it is moved to the tail of

queue 1. If queue 0 is empty, the process at the head of queue

1 is given a quantum of 16 milliseconds. If it does not

complete, it is preempted and is put into queue 2. Processes in

queue 2 are run on an FCFS basis but are run only when

queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any

process with a CPU burst of 8 milliseconds or less. Such a

process will quickly get the CPU, finish its CPU burst, and go

off to its next I/O burst. Processes that need more than 8 but

less than 24 milliseconds are also served quickly, although

with lower priority than shorter processes. Long processes

automatically sink to queue 2 and are served in FCFS order

with any CPU cycles left over from queues 0 and 1.

In general, a multilevel feedback queue scheduler is defined

by the following parameters:

 The number of queues

 The scheduling algorithm for each queue

 The method used to determine when to upgrade a

quantum = 8

quantum = 16

FCFS

78

process to a higher- priority queue

 The method used to determine when to demote a

process to a lower- priority queue

 The method used to determine which queue a process

will enter when that process needs service

The definition of a multilevel feedback queue scheduler

makes it the most general CPU-scheduling algorithm. It can

be configured to match a specific system under design.

Unfortunately, it is also the most complex algorithm, since

defining the best scheduler requires some means by which to

select values for all the parameters.

Review Questions

1) Discuss how the following pairs of scheduling criteria

conflict in certain settings.

a. CPU utilization and response time

 b. Average turnaround time and maximum waiting time

 c. I/O device utilization and CPU utilization

2) Which of the following scheduling algorithms could result in

starvation?

a. First-come, first-served

b. Shortest job first

c. Round robin

d.Priorit

79

Deadlocks
In a multiprogramming environment, several processes may

compete for a finite number of resources. A process requests

resources; if the resources are not available at that time, the

process enters a waiting state. Sometimes, a waiting process is

never again able to change state, because the resources it has

requested are held by other waiting processes. This

situation is called a deadlock.

Perhaps the best illustration of a deadlock can be drawn from

a law passed by the Kansas legislature early in the 20th

century. It said, in part: “When two trains approach each

other at a crossing, both shall come to a full stop and neither

shall start up again until the other has gone.”

In this chapter, we describe methods that an operating

system can use to prevent or deal with deadlocks. Although

some applications can identify programs that may deadlock,

operating systems typically do not provide deadlock-

prevention facilities, and it remains the responsibility of

program- mers to ensure that they design deadlock-free

programs. Deadlock problems can only become more

common, given current trends, including larger num- bers of

processes, multithreaded programs, many more resources

within a system, and an emphasis on long-lived file and

CHAPTER

6

80

database servers rather than batch systems.

6.1 Deadlock Characterization

In a deadlock, processes never finish executing, and system

resources are tied up, preventing other jobs from starting.

Before we discuss the various methods for dealing with the

deadlock problem, we look more closely at features that

characterize deadlocks.

6.1.1 Necessary Conditions

A deadlock situation can arise if the following four conditions

hold simultane- ously in a system:

1. Mutual exclusion. At least one resource must be held

in a nonsharable mode; that is, only one process at a

time can use the resource. If another process requests

that resource, the requesting process must be delayed

until the resource has been released.

2. Hold and wait. A process must be holding at least one

resource and waiting to acquire additional resources

that are currently being held by other processes.

3. No preemption. Resources cannot be preempted; that

is, a resource can be released only voluntarily by the

process holding it, after that process has completed its

task.

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes

must exist such that P0 is waiting for a resource held

by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is

waiting for a resource held by Pn, and Pn is waiting for

a resource held by P0.

We emphasize that all four conditions must hold for a

deadlock to occur. The circular-wait condition implies the

81

hold-and-wait condition, so the four conditions are not

completely independent.

6.2.2 Resource-Allocation Graph

The resource-allocation graph shown in Figure 6.1 depicts the

following situation.

 The sets P, R, and E:

 P = {P1, P2, P3}

 R = {R1, R2, R3, R4}

 E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 →

P3}

82

 Resource instances:

 One instance of resource type R1

 Two instances of resource type R2

 One instance of resource type R3

 Three instances of resource type R4

 Process states:

 Process P1 is holding an instance of resource type R2 and is

waiting for an instance of resource type R1.

 Process P2 is holding an instance of R1 and an instance of R2

and is waiting for an instance of R3.

 Process P3 is holding an instance of R3.

 Figure 6.1 Resource-allocation graph.

Figure 6.2 Resource-allocation graph with a deadlock.

83

Given the definition of a resource-allocation graph, it can be

shown that, if the graph contains no cycles, then no process in

the system is deadlocked. If the graph does contain a cycle,

then a deadlock may exist.

If each resource type has exactly one instance, then a cycle

implies that a deadlock has occurred. If the cycle involves

only a set of resource types, each of which has only a single

instance, then a deadlock has occurred. Each process involved

in the cycle is deadlocked. In this case, a cycle in the graph is

both a necessary and a sufficient condition for the existence of

deadlock.

If each resource type has several instances, then a cycle does

not necessarily imply that a deadlock has occurred. In this

case, a cycle in the graph is a necessary but not a sufficient

condition for the existence of deadlock.

To illustrate this concept, we return to the resource-

allocation graph depicted in Figure 6.1. Suppose that process P3

requests an instance of resource type R2. Since no resource

instance is currently available, we add a request edge

P3 → R2 to the graph (Figure 6.2). At this point, two minimal

cycles exist in the system: P1 → R1 → P2 → R3 → P3 → R2 →

P1 P2 → R3 → P3 → R2 → P2 Processes P1, P2, and P3 are

deadlocked. Process P2 is waiting for the resource R3, which

is held by process P3. Process P3 is waiting for either process

P1 or process P2 to release resource R2. In addition, process

P1 is waiting for process P2 to release resource R1. Now

consider the resource-allocation graph in Figure 6.3. In this

example, we also have a cycle:

P1 → R1 → P3 → R2 → P1

However, there is no deadlock. Observe that process P4 may

release its instance of resource type R2. That resource can

then be allocated to P3, breaking the cycle. In summary, if a

resource-allocation graph does not have a cycle, then the

84

system is not in a deadlocked state. If there is a cycle, then the

system may or may not be in a deadlocked state. This

observation is important when we deal with the deadlock

problem.

Figure 6.3 Resource-allocation graph with a cycle but no deadlock.

However, there is no deadlock. Observe that process P4 may

release its instance of resource type R2. That resource can then

be allocated to P3, breaking the cycle. In summary, if a

resource-allocation graph does not have a cycle, then the

system is not in a deadlocked state. If there is a cycle, then the

system may or may not be in a deadlocked state. This

observation is important when we deal with the deadlock

problem.

6.3 Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem

in one of three ways:

 We can use a protocol to prevent or avoid deadlocks,

85

 ensuring that the system will never enter a deadlocked

state.

 We can allow the system to enter a deadlocked state,

detect it, and recover.

 We can ignore the problem altogether and pretend that

deadlocks never occur in the system.

The third solution is the one used by most operating systems,

including Linux and Windows. It is then up to the application

developer to write programs that handle deadlocks.

To ensure that deadlocks never occur, the system can use

either a deadlock- prevention or a deadlock-avoidance scheme.

Deadlock prevention provides a set of methods to ensure that

at least one of the necessary conditions cannot hold. These

methods prevent deadlocks by constraining how requests for

resources can be made.

Deadlock avoidance requires that the operating system be

given additional information in advance concerning which

resources a process will request and use during its lifetime.

With this additional knowledge, the operating system can

decide for each request whether or not the process should

wait. To decide whether the current request can be satisfied or

must be delayed, the system must consider the resources

currently available, the resources currently allocated to each

process, and the future requests and releases of each process.

If a system does not employ either a deadlock-prevention or

a deadlock- avoidance algorithm, then a deadlock situation

may arise. In this environment, the system can provide an

algorithm that examines the state of the system to determine

whether a deadlock has occurred and an algorithm to recover

from the deadlock.

In the absence of algorithms to detect and recover from

86

deadlocks, we may arrive at a situation in which the system is

in a deadlocked state yet has no way of recognizing what has

happened. In this case, the undetected deadlock will cause the

system’s performance to deteriorate, because resources are

being held by processes that cannot run and because more

and more processes, as they make requests for resources, will

enter a deadlocked state. Eventually, the system will stop

functioning and will need to be restarted manually.

Although this method may not seem to be a viable approach to

the deadlock problem, it is nevertheless used in most

operating systems, as mentioned earlier. Expense is one

important consideration. Ignoring the possibility of

deadlocks is cheaper than the other approaches. Since in

many systems, deadlocks occur infrequently (say, once per

year), the extra expense of the other methods may not seem

worthwhile. In addition, methods used to recover from other

conditions may be put to use to recover from deadlock. In

some circumstances, a system is in a frozen state but not

in a deadlocked state. We see this situation, for example,

with a real-time process running at the highest priority (or

any process running on a nonpreemptive scheduler) and

never returning control to the operating system. The system

must have manual recovery methods for such conditions and

may simply use those techniques for deadlock recovery.

 6.4 Deadlock Prevention

for a deadlock to occur, each of the four necessary conditions

must hold. By ensuring that at least one of these conditions

cannot hold, we can prevent the occurrence of a deadlock. We

elaborate on this approach by examining each of the four

necessary conditions separately.

6.4.1 Mutual Exclusion

The mutual exclusion condition must hold. That is, at least one

resource must be nonsharable. Sharable resources, in contrast,

87

do not require mutually exclusive access and thus cannot be

involved in a deadlock. Read-only files are a good example of

a sharable resource. If several processes attempt to open a read-

only file at the same time, they can be granted simultaneous

access to the file. A process never needs to wait for a sharable

resource. In general, however, we cannot prevent deadlocks

by denying the mutual-exclusion condition, because some

resources are intrinsically nonsharable. For example, a mutex

lock cannot be simultaneously shared by several processes.

6.4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the

system, we must guarantee that, whenever a process requests

a resource, it does not hold any other resources. One protocol

that we can use requires each process to request and be

allocated all its resources before it begins execution. We can

implement this provision by requiring that system calls

requesting resources for a process precede all other system

calls.

An alternative protocol allows a process to request resources

only when it has none. A process may request some resources

and use them. Before it can request any additional resources,

it must release all the resources that it is currently allocated.

To illustrate the difference between these two protocols, we

consider a process that copies data from a DVD drive to a file

on disk, sorts the file, and then prints the results to a printer.

If all resources must be requested at the beginning of the

process, then the process must initially request the DVD drive,

disk file, and printer. It will hold the printer for its entire

execution, even though it needs the printer only at the end.

The second method allows the process to request initially

only the DVD drive and disk file. It copies from the DVD

drive to the disk and then releases both the DVD drive and

the disk file. The process must then request the disk file and

the printer. After copying the disk file to the printer, it

88

releases these two resources and terminates.

Both these protocols have two main disadvantages. First,

resource utiliza- tion may be low, since resources may be

allocated but unused for a long period. In the example given,

for instance, we can release the DVD drive and disk file, and

then request the disk file and printer, only if we can be sure

that our data will remain on the disk file. Otherwise, we must

request all resources at the beginning for both protocols.

Second, starvation is possible. A process that needs several

popular resources may have to wait indefinitely, because at

least one of the resources that it needs is always allocated to

some other process.

6.4.3 No Preemption

The third necessary condition for deadlocks is that there be

no preemption of resources that have already been allocated.

To ensure that this condition does not hold, we can use the

following protocol. If a process is holding some resources

and requests another resource that cannot be immediately

allocated to it (that is, the process must wait), then all

resources the process is currently holding are preempted. In

other words, these resources are implicitly released. The

preempted resources are added to the list of resources for

which the process is waiting. The process will be restarted

only when it can regain its old resources, as well as the new

ones that it is requesting.

Alternatively, if a process requests some resources, we first

check whether they are available. If they are, we allocate

them. If they are not, we check whether they are allocated to

some other process that is waiting for additional resources. If

so, we preempt the desired resources from the waiting process

and allocate them to the requesting process. If the resources

are neither available nor held by a waiting process, the

89

requesting process must wait. While it is waiting, some of its

resources may be preempted, but only if another process

requests them. A process can be restarted only when it is

allocated the new resources it is requesting and recovers any

resources that were preempted while it was waiting.

This protocol is often applied to resources whose state can be

easily saved and restored later, such as CPU registers and

memory space. It cannot generally be applied to such

resources as mutex locks and semaphores.

6.4.4 Circular Wait

The fourth and final condition for deadlocks is the circular-

wait condition. One way to ensure that this condition never

holds is to impose a total ordering of all resource types and to

require that each process requests resources in an increasing

order of enumeration.

6.5 Deadlock Avoidance

Deadlock-prevention algorithms, prevent deadlocks by

limiting how requests can be made. The limits ensure that at

least one of the necessary conditions for deadlock cannot

occur. Possible side effects of preventing deadlocks by this

method, however, are low device utilization and reduced

system throughput.

An alternative method for avoiding deadlocks is to require

additional information about how resources are to be

requested. For example, in a system with one tape drive and

one printer, the system might need to know that process P

will request first the tape drive and then the printer before

releasing both resources, whereas process Q will request first

the printer and then the tape drive. With this knowledge of

the complete sequence of requests and releases for each

process, the system can decide for each request whether or

not the process should wait in order to avoid a possible future

deadlock. Each request requires that in making this decision

90

the system consider the resources currently available, the

resources currently allocated to each process, and the future

requests and releases of each process.

The various algorithms that use this approach differ in the

amount and type of information required. The simplest and

most useful model requires that each process declare the

maximum number of resources of each type that it may need.

Given this a priori information, it is possible to construct

an algorithm that ensures that the system will never enter a

deadlocked state. A deadlock-avoidance algorithm

dynamically examines the resource-allocation state to ensure

that a circular-wait condition can never exist. The resource-

allocation state is defined by the number of available and

allocated resources and the maximum demands of the

processes.

Review Questions

1) Suppose that a system is in an unsafe state. Show that it

is possible for the processes to complete their execution

without entering a deadlocked state.

2) Is it possible to have a deadlock involving only one

single-threaded process? Explain your answer.

91

REFRENCES

1- Silberschatz, A., Galvin, P. B., & Gagne, G. (2012). Operating

system concepts. [Sl].

2- R. Rojas and U. Hashagen, The First Computers— History and

Architectures, MIT Press (2000).

92

