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Introduction 
An operating system is a program that manages a computer’s 

hardware. It also provides a basis for application programs 

and acts as an intermediary between the computer user and 

the computer hardware. 

Before we can explore the details of computer system 

operation, we need to know something about system 

structure. We thus discuss the basic functions of system 

startup, I/O, and storage early in this chapter. We also 

describe the basic computer architecture that makes it 

possible to write a functional operating system. 

Because an operating system is large and complex, it must be 

created piece by piece. Each of these pieces should be a well-

delineated portion of the system, with carefully defined 

inputs, outputs, and functions. In this chapter, we provide a 

general overview of the major components of a contemporary 

computer system as well as the functions provided by the 

operating system. Additionally, we cover several other topics 

to help set the stage for the remainder of this text: data 

structures used in operating systems, computing 

environments, and open-source operating systems. 
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1.1 What Operating Systems Do? 

We begin our discussion by looking at the operating system’s 

role in the overall computer system. A computer system can 

be divided roughly into four components: the hardware, the 

operating system, the application programs, and the users 

(Figure 1.1). 

The hardware —the central processing unit (CPU), the 

memory, and the input/output (I/O) devices —provides the 

basic computing resources for the system. The application 

programs —such as word processors, spreadsheets, 

compilers, and Web browsers— define the ways in which 

these resources are used to solve users’ computing problems. 

The operating system controls the hardware and 

coordinates its use among the various application programs 

for the various users. 

 

 

                    Figure 1.1 Abstract view of the components of a computer 
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-  OS is a resource allocator Manages all resources Decides 

between conflicting requests for efficient and fair resource use  

-  OS is a control program Controls execution of programs to 

prevent errors and improper use of the computer  

- Kernel:  The one program running at all times on the 

computer. 

  1.1.1 User View 

The user's view of a computer depends on the type of 

interface being used. For personal computers (PCs), the 

system is designed for a single user, focusing on ease of use 

and performance, with little concern for resource sharing. In 

contrast, mainframes or minicomputers serve multiple users 

simultaneously, with an operating system optimized for 

efficient resource utilization. Workstations connected to 

networks balance individual usability with shared resource 

management, such as file and print servers. Mobile devices 

like smartphones and tablets, typically used for tasks like 

email and web browsing, offer touch-based interfaces and are 

increasingly replacing traditional computers. Lastly, 

embedded systems in devices like appliances and cars are 

designed to function with minimal user interaction. 

Users want convenience, ease of use and good performance  

 -Don’t care about resource utilization 

• But shared computers such as mainframe or minicomputer 

must keep all users happy.  

1.1.2 System View 

From the system's perspective, the operating system (OS) is 

the key program that interacts with hardware, acting as a 

resource allocator. It manages resources like CPU time, 

memory, file storage, and I/O devices, deciding how to 

distribute them efficiently and fairly among programs and 

users, especially in systems with multiple users. 
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Additionally, the OS functions as a control program, 

overseeing the execution of user programs, preventing 

errors, and ensuring proper use of the system, with a focus 

on controlling I/O devices. 

1.2 Computer-System Organization 

Before we can explore the details of how computer systems 

operate, we need general knowledge of the structure of a 

computer system. In this section, we look at several parts of 

this structure. The section is mostly concerned with 

computer-system organization. 

A modern general-purpose computer system consists of one 

or more CPUs and a number of device controllers connected 

through a common bus that provides access to shared 

memory (Figure 1.2).  

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 1.2 A modern computer system. 
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1.2.1 Computer Startup 

 The bootstrap program is loaded at power-up or reboot. 

 It is typically stored in ROM or EPROM, commonly 

known as firmware. 

 The bootstrap program initializes all aspects of the 

system. 

 It then loads the operating system kernel and starts its 

execution. 

This program is responsible for starting up the system and ensuring 

that the essential components are ready for the operating system to 

run. 

1.2.2 Storage Structure 

The basic unit of computer storage is the bit. A bit can 

contain one of two values, 0 and 1. All other storage in a 

computer is based on collections of bits. Given enough bits, 

it is amazing how many things a computer can represent: 

numbers, letters, images, movies, sounds, documents, and 

programs, to name a few. A byte is 8 bits, and on most 

computers it is the smallest convenient chunk of storage. 

For example, most computers don’t have an instruction to 

move a bit but do have one to move a byte. A less common 

term is word, which is a given computer architecture’s 

native unit of data. A word is made up of one or more 

bytes. For example, a computer that has 64-bit registers and 

64-bit memory addressing typically has 64-bit (8-byte) 

words. A computer executes many operations in its native 

word size rather than a byte at a time. Computer storage, 

along with most computer throughput, is generally 

measured and manipulated in bytes and collections of 

bytes.  

A kilobyte, or KB, is 1,024 bytes  

a megabyte, or MB, is 1,0242 bytes  
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a gigabyte, or GB, is 1,0243 bytes 

 a terabyte, or TB, is 1,0244 bytes 

 a petabyte, or PB, is 1,0245 bytes  

Computer manufacturers often round off these numbers 

and say that a megabyte is 1 million bytes and a gigabyte is 

1 billion bytes. Networking measurements are an exception 

to this general rule; they are given in bits (because networks 

move data a bit at a time). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Storage-device hierarchy. 
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• Secondary storage – extension of main memory that 

provides large nonvolatile storage capacity 

• Hard disks – rigid metal or glass platters covered with 

magnetic recording material  

– Disk surface is logically divided into tracks, which are 

subdivided into sectors 

– The disk controller determines the logical interaction 

between the device and the computer  

• Solid-state disks – faster than hard disks, nonvolatile 

– Various technologies 

– Becoming more popular 

1.3 Computer-System Architecture 

A computer system can be organized in a number of different ways, 

which we can categorize roughly according to the number of 

general-purpose processors used. 

 

 

 

8



 

 

1.3. Single-processor systems 

Single-processor systems feature one main CPU that 

executes general-purpose instructions and user processes. 

Though they may include special-purpose processors like 

disk or graphics controllers, these processors handle specific 

tasks with limited instruction sets and do not run user 

processes. They often assist the CPU by offloading tasks like 

disk scheduling or keyboard input processing. However, 

despite having additional specialized processors, the system 

remains classified as a single-processor system if there is 

only one general-purpose CPU handling the main workload. 

1.3.2 Multiprocessor Systems 

Within the past several years, multiprocessor systems (also known 

as parallel systems or multicore systems) have begun to dominate 

the landscape of computing. Such systems have two or more 

processors in close communication, sharing the computer bus and 

sometimes the clock, memory, and peripheral devices. 

Multiprocessor systems first appeared prominently appeared in 

servers and have since migrated to desktop and laptop systems. 

Recently, multiple processors have appeared on mobile devices 

such as smartphones and tablet computers. 

Multiprocessor systems offer three main advantages: 

1. Increased throughput: More processors mean more 

work can be done in less time, though overhead and 

resource contention limit the speed-up. 

2. Economy of scale: They are more cost-efficient than 

multiple single-processor systems, as they can share 

peripherals, storage, and power supplies. 

3. Increased reliability: If one processor fails, the others 

can take over its workload, ensuring the system slows 

down but doesn't completely fail, providing higher 

fault tolerance. 
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Multiprocessor systems can be classified into two types: 

1. Asymmetric multiprocessing: One "boss" processor 

controls the system and assigns tasks to "worker" 

processors. Workers either follow instructions or have 

specific predefined tasks. 

2. Symmetric multiprocessing (SMP): All processors 

are peers, capable of performing all tasks. Each 

processor has its own local cache and shares memory, 

allowing efficient multitasking. Modern operating 

systems (Windows, Mac OS X, Linux) support SMP. 

Additionally, multicore systems, with multiple cores on a 

single chip, offer better efficiency, reduced power 

consumption, and improved performance. 

 

 

 

 

 

 

 

Figure 1.6 Symmetric multiprocessing architecture. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 A dual-core design with two cores placed on the same chip.
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1.4 Operating-System Structure  

 

 

 

 

 

 

 

 

 

 

                               

Figure 1.8 Memory layout for a multiprogramming system. 

1.4.1 Operating-System Structure 

An operating system provides the environment for executing 

programs and is structured to manage resources efficiently. A 

key feature is multiprogramming, where multiple programs 

run simultaneously, enhancing CPU utilization. Several jobs 

are kept in memory, with the remainder stored on disk in a 

job pool. The OS switches between jobs, ensuring that the 

CPU is always working, even when a program is waiting for 

I/O operations. This method ensures that the CPU is never 

idle, maximizing system efficiency. 

-  Time-sharing systems, an extension of multiprogramming, 

allow multiple users to interact with programs 

simultaneously by rapidly switching between processes. 

This provides each user with the impression of sole access to 

the system. Time-sharing requires CPU scheduling and 

memory management to maintain efficiency, especially for 

interactive I/O tasks, which run at human speeds. Virtual 

memory allows running larger programs than available 
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physical memory. Additionally, these systems ensure file 

management, resource protection, and handle job 

synchronization to avoid deadlocks and ensure smooth 

operation across multiple processes. 

1.5 Operating-System Operations 

Modern operating systems are interrupt-driven, meaning 

they respond to events like I/O requests or errors through 

interrupts or traps. A trap is a software-generated interrupt 

caused by errors (e.g., division by zero) or specific requests 

for OS services. Each interrupt triggers a service routine to 

manage the event. The OS ensures errors in one program 

don't affect others, providing necessary protection. Without 

such protection, bugs could corrupt other processes or the 

OS itself, potentially causing system-wide issues or incorrect 

execution of multiple programs. 

1.5.1 Dual-Mode and Multimode Operation 

In order to ensure the proper execution of the operating 

system, we must be able to distinguish between the execution 

of operating-system code and user- defined code. The 

approach taken by most computer systems is to provide 

hardware support that allows us to differentiate among 

various modes of execution. 

 

 

 

 

 

 

                                       

Figure 1.9 Transition from user to kernel mode
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At the very least, we need two separate modes of operation: 

user mode and kernel mode (also called supervisor mode, 

system mode, or privileged mode). A bit, called the mode 

bit, is added to the hardware of the computer to indicate the 

current mode: kernel (0) or user (1). With the mode bit, we can 

distinguish between a task that is executed on behalf of the 

operating system and one that is executed on behalf of the 

user. When the computer system is executing on behalf of a 

user application, the system is in user mode. However, when a 

user application requests a service from the operating system 

(via a system call), the system must transition from user to 

kernel mode to fulfill the request. This is shown in Figure 1.9. 

As we shall see, this architectural enhancement is useful for 

many other aspects of system operation as well. 

At system boot time, the hardware starts in kernel mode. The 

operating system is then loaded and starts user applications 

in user mode. Whenever a trap or interrupt occurs, the 

hardware switches from user mode to kernel mode (that is, 

changes the state of the mode bit to 0). Thus, whenever the 

operating system gains control of the computer, it is in kernel 

mode. The system always switches to user mode (by setting 

the mode bit to 1) before passing control to a user program. 

1.5 Storage Management 

To make the computer system convenient for users, the operating 

system provides a uniform, logical view of information storage. The 

operating system abstracts from the physical properties of its 

storage devices to define a logical storage unit, the file. The 

operating system maps files onto physical media and accesses these 

files via the storage devices. 

1.5.1 File-System Management 

File management is a key function of an operating system, 

involving the storage and organization of data across 

different physical media like magnetic disks, optical disks, 

and tapes. Each medium has unique characteristics such as 
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speed, capacity, and access methods. Files, which can be 

programs or data, are organized into directories to enhance 

usability. Operating systems also manage access control, 

determining who can read, write, or modify files. This 

ensures efficient handling of storage devices and protection 

of shared resources. 

1.5.2 Mass-Storage Management 

As we have already seen, because main memory is too small 

to accommodate all data and programs, and because the data 

that it holds are lost when power is lost, the computer system 

must provide secondary storage to back up main memory. 

Most modern computer systems use disks as the principal on-

line storage medium for both programs and data. Most 

programs— including compilers, assemblers, word 

processors, editors, and formatters— are stored on a disk until 

loaded into memory. They then use the disk as both the source 

and destination of their processing. Hence, the proper 

management of disk storage is of central importance to a 

computer system. The operating system is responsible for the 

following activities in connection with disk management: 

 Free-space management 

 Storage allocation 

 Disk scheduling 

Because secondary storage is used frequently, it must be 

used efficiently. The entire speed of operation of a computer 

may hinge on the speeds of the disk subsystem and the 

algorithms that manipulate that subsystem. 

There are, however, many uses for storage that is slower and 

lower in cost (and sometimes of higher capacity) than 

secondary storage. Backups of disk data, storage of seldom-

used data, and long-term archival storage are some examples. 

Magnetic tape drives and their tapes and CD and DVD drives 
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and platters are typical tertiary storage devices. The media 

(tapes and optical platters) vary between WORM (write-once, 

read-many-times) and RW (read– write) formats. 

Tertiary storage is not crucial to system performance, but 

it still must be managed. Some operating systems take on this 

task, while others leave tertiary-storage management to 

application programs. Some of the functions that operating 

systems can provide include mounting and unmounting 

media in devices, allocating and freeing the devices for 

exclusive use by processes, and migrating data from 

secondary to tertiary storage. 

 

 

 

 

 

 

 

 

 

Figure 1.11 Performance of various levels of storage. 

1.6 Protection and Security 

Protection and security in operating systems ensure that 

only authorized users can access important resources like 

files, memory, and the CPU. Protection keeps systems safe 

from errors or misuse by controlling who can use certain 

parts of the computer. Security helps defend against harmful 

things like viruses or hackers. Each user has a unique ID, 

and permissions can be set for individuals or groups. 

Sometimes, a user might need extra privileges temporarily, 
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like in UNIX, where certain programs can run with special 

permissions. 

 

Review Questions  

1. What is the primary role of an operating system in a 

computer system? 

2. List the four main components of a computer system 

as described in the text. 

3. How does an operating system manage resources in 

a computer? 

4. What are the differences between the user view and 

system view of a computer? 

5. Explain how the operating system acts as a resource 

allocator. 

6. What is the purpose of the kernel in an operating 

system? 

7. Describe the function of the bootstrap program 

during system startup. 
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Operating - System Structures 
An operating system provides the environment within 

which programs are executed. Internally, operating systems 

vary greatly in their makeup, since they are organized along 

many different lines. The design of a new operating system is 

a major task. It is important that the goals of the system be 

well defined before the design begins. These goals form the 

basis for choices among various algorithms and strategies. 

We can view an operating system from several vantage 

points. One view focuses on the services that the system 

provides; another, on the interface that it makes available to 

users and programmers; a third, on its components and their 

interconnections. In this chapter, we explore all three aspects of 

operating systems, showing the viewpoints of users, 

programmers, and operating system designers. We consider 

what services an operating system provides, how they are 

provided, how they are debugged, and what the various 

methodologies are for designing such systems. Finally, we 

describe how operating systems are created and how a 

computer starts its operating system. 

 

 

 

           2 
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2.1 Operating-System Services 

An operating system provides an environment for the execution of 

programs. It provides certain services to programs and to the users 

of those programs.  

 

Figure 2.1 A view of operating system services. 

Figure 2.1 shows one view of the various operating-system services 

and how they interrelate. 

Operating system services : 

 User interface. Almost all operating systems have a 

user interface (UI). This interface can take several 

forms. One is a command-line interface (CLI), which 

uses text commands and a method for entering them 

(say, a keyboard for typing in commands in a specific 

format with specific options). Another is a batch 

interface, in which commands and directives to control 

those commands are entered into files, and those files 

are executed. Most commonly, a graphical user 

interface (GUI) is used. Here, the interface is a window 

system with a pointing device to direct I/O, choose 

from menus, and make selections and a keyboard to 

enter text. Some systems provide two or all three of 

these variations. 
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 Program execution. The system must be able to load a 

program into memory and to run that program. The 

program must be able to end its execution, either 

normally or abnormally (indicating error). 

 I/O operations.A running program may require I/O, 

which may involve a file or an I/O device. For specific 

devices, special functions may be desired (such as 

recording to a CD or DVD drive or blanking a display 

screen). For efficiency and protection, users usually 

cannot control I/O devices directly. Therefore, the 

operating system must provide a means to do I/O. 

 File-system manipulation. The file system is of 

particular interest. Obvi- ously, programs need to read 

and write files and directories. They also need to 

create and delete them by name, search for a given 

file, and list file information. Finally, some operating 

systems include permissions management to allow or 

deny access to files or directories based on file 

ownership. Many operating systems provide a variety 

of file systems, sometimes to allow personal choice and 

sometimes to provide specific features or performance 

characteristics. 

 Communications. There are many circumstances in 

which one process needs to exchange information with 

another process. Such communication may occur 

between processes that are executing on the same 

computer or between processes that are executing on 

different computer systems tied together by a 

computer network. Communications may be 

implemented via shared memory, in which two or 

more processes read and write to a shared section of 

memory, or message passing, in which packets of 

information in predefined formats are moved between  
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             processes by the operating system. 

 

 Error detection. The operating system needs to be 

detecting and correcting errors constantly. Errors may 

occur in the CPU and memory hardware (such as a 

memory error or a power failure), in I/O devices (such 

as a parity error on disk, a connection failure on a 

network, or lack of paper in the printer), and in the user 

program (such as an arithmetic overflow, an attempt to 

access an illegal memory location, or a too-great use of 

CPU time). For each type of error, the operating system 

should take the appropriate action to ensure correct and 

consistent computing. Sometimes, it has no choice but 

to halt the system. At other times, it might terminate an 

error-causing process or return an error code to a 

process for the process to detect and possibly correct. 

 

Another set of operating system functions exists not for 

helping the user but rather for ensuring the efficient operation 

of the system itself. Systems with multiple users can gain 

efficiency by sharing the computer resources among the 

users. 
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 Resource allocation. When there are multiple users or 

multiple jobs running at the same time, resources must 

be allocated to each of them. The operating system 

manages many different types of resources. Some (such 

as CPU cycles, main memory, and file storage) may 

have special allocation code, whereas others (such as 

I/O devices) may have much more general request and 

release code. For instance, in determining how best to 

use the CPU, operating systems have CPU-scheduling 

routines that take into account the speed of the CPU, the 

jobs that must be executed, the number of registers 

available, and other factors. There may also be routines 

to allocate printers, USB storage drives, and other 

peripheral devices. 

 Accounting. We want to keep track of which users use 

how much and what kinds of computer resources. This 

record keeping may be used for accounting (so that 

users can be billed) or simply for accumulating usage 

statistics. Usage statistics may be a valuable tool for 

researchers who wish to reconfigure the system to 

improve computing services. 

 Protection and security. The owners of information 

stored in a multiuser or networked computer system 

may want to control use of that information. When 

several separate processes execute concurrently, it 

should not be possible for one process to interfere with 

the others or with the operating system itself. 

Protection involves ensuring that all access to system 

resources is controlled. Security of the system from 

outsiders is also important.  

2.2 User and Operating-System Interface 

We mentioned earlier that there are several ways for users to 
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interface with the operating system. Here, we discuss two 

fundamental approaches. One provides a command-line 

interface, or command interpreter, that allows users to directly 

enter commands to be performed by the operating system. 

The other allows users to interface with the operating system 

via a graphical user interface, or GUI. 

2.2.1 Command Interpreters 

 Command interpreters, also known as shells, are programs 

responsible for interpreting and executing user commands. 

  Some operating systems integrate the command 

interpreter into the kernel, while others, such as Windows 

and UNIX, treat it as a separate program that runs when a 

user logs in. 

 UNIX and Linux systems offer multiple shells to choose 

from, such as Bourne, C shell, Korn, and others, allowing 

users to select one based on their preferences. 

r-

specified commands like creating, deleting, or listing files, as 

seen in MS-DOS and UNIX shells. 

Figure 2.2 shows the Bourne shell command interpreter being 

used on Solaris 10. 
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Figure 2.2 The Bourne shell command interpreter in Solrais 10. 

2.2.2 Graphical User Interfaces 

 GUIs provide a user-friendly, graphical way to interact 

with the operating system, replacing text-based command 

interfaces. 

 Users interact with GUIs through a mouse-based window-

and-menu system, where icons represent files, programs, 

and system functions. 

became popular with the Apple Macintosh in the 1980s and 

later versions of Microsoft Windows. 

 GUIs have evolved, particularly with the rise of mobile 

devices, where touchscreens have replaced mouse 

interactions, allowing users to swipe and press to interact 

with the system. 

-line interfaces, 

but GUIs like CDE, X-Windows, KDE, and GNOME have 

become common, especially in open-source environments like 

Linux. 

Figure 2.3 illustrates the touchscreen of the Apple iPad. 
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Whereas earlier smartphones included a physical keyboard, 

most smartphones now simulate a keyboard on the 

touchscreen. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The iPad touchscreen. 

2.3 System Calls 

System calls System calls provide a crucial interface between 

a user program and the operating system, enabling the 

program to request services like reading files or printing data. 

These calls are often written in high-level languages like C or 

C++, but certain low-level tasks may require assembly 

language. 

Example: File Copy Program 

To illustrate how system calls are used, consider writing a 

program that reads data from one file and copies it to 

another. This process involves several steps: 

1. Getting File Names: 
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- The program needs input and output file names. In an 

interactive system, the program might prompt the user for 

these names through system calls, displaying a message on 

the screen and reading the user's input from the keyboard. 

- In graphical systems, the file names could be selected using 

a mouse and a menu system, requiring many input/output 

(I/O) system calls. 

2. Opening Files: 

- The program opens the input file and creates the output file 

using system calls. 

- If errors occur (e.g., the input file doesn't exist or is 

protected), the program needs additional system calls to 

handle the errors and possibly terminate abnormally. 

- If the output file already exists, the program may use 

system calls to delete it, replace it, or ask the user what to do. 
3. Reading and Writing: 

- The program reads data from the input file and writes it to 

the output file. Each read and write operation is a system 

call. 

- The program must handle potential errors, such as 

reaching the end of the file or encountering hardware 

failures during reading, and issues like disk space running 

out during writing. 
4. Closing Files and Exiting: 

After the file copy is complete, the program closes both files using 

system calls. 

- Finally, it outputs a message and terminates normally using a 

final system call. 

This system-call sequence is shown in Figure 2.5 
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Example System Call Sequence 

Acquire input file name 
Write prompt to screen 
Accept input 

Acquire output file name 
Write prompt to screen 
Accept input 

Open the input file 
if file doesn't exist, abort 

Create output file 
if file exists, abort 

Loop 
Read from input file 

Write to output file 
Until read fails 
Close output file 
Write completion message to screen 
Terminate normally 

source file destination file 

 

Figure 2.5 Example of how system calls are used. 

Even simple programs rely heavily on system calls, with 

systems executing thousands of them per second. However, 

most programmers interact with an operating system 

through an Application Programming Interface (API) 

rather than directly invoking system calls. 

1. API vs. System Calls: 

o APIs provide a higher-level, user-friendly 

interface for application programmers to 

interact with the system without dealing with 

the complexity of system calls. 

o APIs specify available functions, parameters, 

and expected return values, making 

programming easier. 

2. Common APIs: 
o Windows API: Used for Windows-based systems. 

o POSIX API: Used for UNIX-based systems like 

Linux, Mac OS X, and others. 
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o Java API: Used for programs running on the Java 

Virtual Machine (JVM). 

3. How APIs Work: 

o APIs call system functions indirectly. For example, 

the Windows CreateProcess() function calls the 

NTCreateProcess() system call in the Windows 

kernel. 

4. Benefits of Using APIs: 

o Portability: Programs written using an API can run 

on any system that supports the same API, though 

some architectural differences may still exist. 

o Simplification: APIs abstract away the more 

complex, detailed system calls, making 

programming less error-prone and easier to 

manage. 

5. Correlation Between API and System Calls: 

o Many APIs, like those in POSIX and Windows, 

closely resemble the system calls in their respective 

operating systems, simplifying the development 

process. 
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2.4 Types of System Calls 

System calls can be grouped roughly into six major 

categories: process control, file manipulation, device 

manipulation, information maintenance, communications, 

and protection. Most of these system calls support, or are 

supported by, concepts and functions that are discussed in 

later chapters. Figure 2.8 summarizes the types of system calls 

normally provided by an operating system. As mentioned, in 

this text, we normally refer to the system calls by generic 

names. Throughout the text, however, we provide examples 

of the actual counterparts to the system calls for Windows, 

UNIX, and Linux systems. 
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Figure 2.8 Types of system calls. 

 

 

Types of system calls. 
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Review Questions  

1) What are the primary functions of an operating system? 

2) What services does an operating system provide to users and 

programs? 

3)  How does a user interface (UI) differ from a command-line 

interface (CLI) and a graphical user interface (GUI)? 

4) Explain the role of error detection in operating systems.  
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Review Questions  

1) What are the differences between a command interpreter 

and a graphical user interface? 

2) Explain the correlation between APIs and system calls. 

3) What are the six major categories of system calls? 

4) In what ways does an operating system manage resource 

allocation among multiple users or jobs? 

5)  What options do users have when choosing a shell? 
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Processes 

Early computers operated one program at a time, giving it 

complete control over system resources. Modern computer 

systems, however, support concurrent execution of multiple 

programs, necessitating greater control and 

compartmentalization, leading to the concept of a process—

a program in execution and the fundamental unit of work in 

time-sharing systems. 

As operating systems grow more complex, they are expected 

to handle not only user program execution but also various 

system tasks that should remain separate from the kernel. 

Thus, a system comprises a collection of processes, including 

both operating system processes (running system code) and 

user processes (running user code). These processes can 

execute simultaneously, allowing the operating system to 

switch the CPU between them, enhancing overall computer 

productivity. This chapter will explore the nature of 

processes and their functionality. 
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3.1 Process Concept 

Program vs. Process 

 A program is a passive entity such as the file that 

contains the list of instructions stored on a disk 

always referred to as an executable file. 

 A program becomes a process when an executable file 

is loaded into the memory and then becomes an 

active entity. 

 The fundamental task of any operating system is the 

process management. 

 Processes include not only a text but also include a set 

of resources such as open files and pending signals. 

Processes also contain internal kernel data, processor 

state, an address space, and a data section. 

Process elements 

Segments of a process represent the following components: 

Text Section: the program code. This is typically read-only, 

and might be shared by a number of processes. 

Data Section: containing global variables. 

Heap: containing memory dynamically allocated during run 

time. 

Stack: containing temporary data. 

 Function parameters, return addresses, local 

variables. 
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Figure 3.1 Process in memory. 

 

3.1.1 Process State 

As a process executes, it changes state. The state of a process 

is defined in part by the current activity of that process. A 

process may be in one of the following states: 

 New. The process is being created. 

 Running. Instructions are being executed. 

 Waiting. The process is waiting for some event to 

occur (such as an I/O completion or reception of a 

signal). 

 Ready. The process is waiting to be assigned to a 

processor. 

 Terminated. The process has finished execution. 

The state diagram corresponding to these states is presented 

in Figure 3.2. 
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Figure 3.2 Diagram of process state. 

3.1.3 Process Control Block 

Each process is represented in the operating system by a 

process control block (PCB) — also called a task control 

block.A PCB is shown in Figure 3.3. It contains many pieces of 

information associated with a specific process, including these: 

 Process state. The state may be new, ready, running, 

waiting, halted, and so on. 

 Program counter. The counter indicates the address of 

the next instruction to be executed for this process. 

 CPU registers. The registers vary in number and 

type, depending on the computer architecture. They 

include accumulators, index registers, stack pointers, 

and general-purpose registers, plus any condition-

code information. Along with the program counter, 

this state information must be saved when an 

interrupt occurs, to allow the process to be continued 

correctly afterward (Figure 3.4). 

 CPU-scheduling information. This information 

includes a process priority, pointers to scheduling 

queues, and any other scheduling parameters.  

 

 

 

 

35



 

 

 

 

 

 

 

 

 

 

 

Figure 3.3  Process control block (PCB). 

 Memory-management information. This information may 

include such items as the value of the base and limit registers 

and the page tables, or the segment tables, depending on the 

memory system used by the operating system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Diagram showing CPU switch from process to process. 

 Accounting information. This information includes 

the amount of CPU and real time used, time limits, 

process state 

process number 

program counter 

 

registers 

memory limits 

list of open files 
  • 

 

• 
 

36



 

 

account numbers, job or process numbers, and so on. 

 I/O status information. This information includes the 

list of I/O devices allocated to the process, a list of 

open files, and so on. 

In brief, the PCB simply serves as the repository for any 

information that may vary from process to process. 

3.2  Process Scheduling  

The objective of multiprogramming is to have some process 

running at all times, to maximize CPU utilization. The 

objective of time sharing is to switch the CPU among 

processes so frequently that users can interact with each 

program while it is running. To meet these objectives, the 

process scheduler selects an available process (possibly from 

a set of several available processes) for program execution on 

the CPU. For a single-processor system, there will never be 

more than one running process. If there are more processes, 

the rest will have to wait until the CPU is free and can be 

rescheduled. 

3.2.1 Scheduling Queues 

When processes enter a system, they are placed in a job 

queue, which includes all processes. Processes that are in 

main memory and ready to execute are listed in the ready 

queue, typically organized as a linked list with a header that 

points to the first and last Process Control Blocks (PCBs). 

Each PCB has a pointer to the next PCB in the queue. 

The system also features device queues for processes 

waiting on I/O requests, such as to a shared disk. If a process 

requests I/O while the device is busy, it must wait in the 

respective device queue, which is unique to each device. 

Each device has its own device queue (Figure 3.5). 
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Figure 3.6 Queueing-diagram representation of process scheduling. 

 

3.2.2 Schedulers 

A process migrates among the various scheduling queues 

throughout its lifetime. The operating system must select, for 

scheduling purposes, processes from these queues in some 

fashion. The selection process is carried out by the 

appropriate scheduler. 

Often, in a batch system, more processes are submitted than 

can be executed immediately. These processes are spooled to a 

mass-storage device (typically a disk), where they are kept for 

later execution. The long-term scheduler, or job scheduler, 

selects processes from this pool and loads them into memory 

for execution. The short-term scheduler, or CPU scheduler, 

selects from among the processes that are ready to execute 

and allocates the CPU to one of them.

CPU 

I/O 

child 
executes 

 

interrupt 
occurs 

time slice 
expired 

wait for an 
interrupt 

fork a 
child 

I/O request I/O queue 

ready queue 
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Short-term scheduler (or CPU scheduler) – selects which 

process should be executed next and allocates CPU 

 – Sometimes the only scheduler in a system  

– Short-term scheduler is invoked frequently (milliseconds) 

 (must be fast)  

• Long-term scheduler (or job scheduler) – selects which 

processes should be brought into the ready queue  

–Long-term scheduler is invoked infrequently (seconds, 

minutes)  (may be slow)  

– The long-term scheduler controls the degree of 

multiprogramming 

Medium-term scheduler can be added if degree of multiple 

programming needs to decrease  

 Remove process from memory, store on disk, bring 

back in from disk to continue execution: swapping 

 

 

 

 

 

 

 

Figure 3.7 Addition of medium-term scheduling to the queueing 

diagram. 
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3.3 Interprocess Communication 

Processes executing concurrently in the operating system 

may be either independent processes or cooperating 

processes. A process is independent if it cannot affect or be 

affected by the other processes executing in the system. Any 

process that does not share data with any other process is 

independent. A process is cooperating if it can affect or be 

affected by the other processes executing in the system. 

Clearly, any process that shares data with other processes is a 

cooperating process. 

There are several reasons for providing an environment that 

allows process cooperation: 

 

 Information sharing. Since several users may be 

interested in the same piece of information (for 

instance, a shared file), we must provide an 

environment to allow concurrent access to such 

information. 

 Computation speedup. If we want a particular task to 

run faster, we must break it into subtasks, each of 

which will be executing in parallel with the others. 

Notice that such a speedup can be achieved only if the 

computer has multiple processing cores. 

 Modularity. We may want to construct the system in 

a modular fashion, dividing the system functions into 

separate processes or threads. 

 Convenience. Even an individual user may work on 

many tasks at the same time. For instance, a user may 

be editing, listening to music, and compiling in 

parallel. 
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Cooperating processes require an interprocess 

communication (IPC) mechanism for data exchange, 

typically implemented through two fundamental models: 

shared memory and message passing. 

1. Shared Memory: In this model, processes share a 

designated region of memory, allowing them to read 

and write data directly to this space for 

communication. Once the shared memory is 

established, accesses occur as routine memory 

operations, minimizing kernel intervention. 

2. Message Passing: This model facilitates 

communication through messages exchanged 

between processes. It is particularly beneficial for 

transferring smaller data amounts, as it avoids 

conflicts, and is easier to implement in distributed 

systems. 

Both models have their advantages. Shared memory tends to 

be faster due to less frequent kernel involvement, while 

message passing offers better performance in multi-core 

systems because it circumvents cache coherence issues that 

can arise with shared memory. As the number of processing 

cores increases, message passing may become the preferred 

IPC method. The two communications models are contrasted 

in Figure 3.8. 
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Figure 3.8 Communications models. (a) Message passing. (b) Shared 

memory. 

 

Review Questions  

 

1) What is the difference between a program and a process? 

2) Why do modern computer systems support the 

execution of multiple processes simultaneously? 

3) What are the main components of a process in memory? 

4) Describe the different states a process can be in during 

its lifecycle. 

5) What is the role of the Process Control Block (PCB) in 

managing processes? 

6) How does the short-term scheduler differ from the long-

term scheduler in process management? 

7) What are the different types of queues used in process 

scheduling, and what is their purpose? 
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Threads 
The process model introduced in Chapter 3 assumed that a 

process was an executing program with a single thread of control. 

Virtually all modern operating systems, however, provide features 

enabling a process to contain multiple threads of control. In this 

chapter, we introduce many concepts associated with 

multithreaded computer systems, including a discussion of the 

APIs for the Pthreads, Windows, and Java thread libraries. We look 

at a number of issues related to multithreaded programming and 

its effect on the design of operating systems. Finally, we explore 

how the Windows and Linux operating systems support threads at 

the kernel level. 
 

 

4.1 Overview 

A thread is a basic unit of CPU utilization; it comprises a thread 

ID, a program counter, a register set, and a stack. It shares with 

other threads belonging to the same process its code section, data 

section, and other operating-system resources, such as open files and 

signals. A traditional (or heavyweight) process has a single thread of 

control. If a process has multiple threads of control, it can perform 

more than one task at a time. Figure 4.1 illustrates the difference 

between a traditional single-threaded process and a multithreaded 

process. 
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4.1.1 Motivation 

Modern software applications are predominantly 

multithreaded, with multiple threads running within a 

single process to perform various tasks concurrently. For 

example, a web browser may use different threads for 

displaying content and retrieving data, while a word 

processor might manage keystrokes, display graphics, and 

check grammar simultaneously. Multithreading is especially 

beneficial in multicore systems, allowing CPU-intensive 

tasks to be executed in parallel across different cores. 

In certain scenarios, such as web servers handling multiple 

client requests, multithreading proves far more efficient than 

the traditional single-threaded approach. A single-threaded 

web server can only handle one client request at a time, 

causing delays for other clients. Previously, web servers 

created separate processes for each request, which is 

resource-intensive and slow. However, with multithreading, 

the server creates a new thread for each client request, 

reducing the overhead of process creation and enabling 

faster, more efficient handling of multiple concurrent 

requests. This is illustrated in Figure 4.2. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Single-threaded and multithreaded processes. 
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Threads also play a vital role in remote procedure call (RPC) 

systems. RPCs allow interprocess communication by 

providing a communication mechanism similar to ordinary 

function or procedure calls. Typically, RPC servers are 

multithreaded. When a server receives a message, it services 

the message using a separate thread. This allows the server to 

service several concurrent requests. 

 

 

 

 

 

 

 

Figure 4.2 Multithreaded server architecture.

 

Finally, most operating-system kernels are now 

multithreaded. Several threads operate in the kernel, and each 

thread performs a specific task, such as managing devices, 

managing memory, or interrupt handling. For example, 

Solaris has a set of threads in the kernel specifically for 

interrupt handling; Linux uses a kernel thread for managing 

the amount of free memory in the system. 

 

4.1.2 Benefits 

The benefits of multithreaded programming can be broken 

down into four major categories: 

 

1. Responsiveness. Multithreading an interactive 
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application may allow a program to continue 

running even if part of it is blocked or is performing a 

lengthy operation, thereby increasing responsiveness 

to the user. This quality is especially useful in 

designing user interfaces. For instance, consider what 

happens when a user clicks a button that results in the 

performance of a time-consuming operation. A single-

threaded application would be unresponsive to the 

user until the operation had completed. In contrast, if 

the time-consuming operation is performed in a 

separate thread, the application remains responsive to 

the user. 

2. Resource sharing. Processes can only share resources 

through techniques such as shared memory and 

message passing. Such techniques must be explicitly 

arranged by the programmer. However, threads share 

the memory and the resources of the process to which 

they belong by default. The benefit of sharing code and 

data is that it allows an application to have several 

different threads of activity within the same address 

space. 

3. Economy. Allocating memory and resources for 

process creation is costly. Because threads share the 

resources of the process to which they belong, it is 

more economical to create and context-switch threads. 

Empirically gauging the difference in overhead can be 

difficult, but in general it is significantly more time 

consuming to create and manage processes than 

threads. In Solaris, for example, creating a process is 

about thirty timesn slower than is creating a thread, 

and context switching is about five times slower. 

4. Scalability. The benefits of multithreading can be 

even greater in a multiprocessor architecture, where 

threads may be running in parallel on different 
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processing cores. A single-threaded process can run on 

only one processor, regardless how many are 

available. 

 

 

 

Figure 4.3 Concurrent execution on a single-core system 

 

4.2 Multicore Programming 

Earlier in the history of computer design, in response to the 

need for more computing performance, single-CPU systems 

evolved into multi-CPU systems. A more recent, similar trend 

in system design is to place multiple computing cores on a 

single chip. Each core appears as a separate processor to the 

operating system. Whether the cores appear across CPU chips 

or within CPU chips, we call these systems multicore or 

multiprocessor systems. Multithreaded programming 

provides a mechanism for more efficient use of these 

multiple computing cores and improved concurrency. 

Consider an application with four threads. On a system with 

a single computing core, concurrency merely means that the 

execution of the threads will be interleaved over time (Figure 

4.3), because the processing core is capable of executing only 

one thread at a time. On a system with multiple cores, 

however, concurrency means that the threads can run in 

parallel, because the system can assign a separate thread to 

each core (Figure 4.4). 
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Notice the distinction between parallelism and concurrency 

in this discussion. A system is parallel if it can perform more 

than one task simultaneously. In contrast, a concurrent system 

supports more than one task by allowing all the tasks to make 

progress. Thus, it is possible to have concurrency without 

parallelism. Before the advent of SMP and multicore 

architectures, most com- puter systems had only a single 

processor. CPU schedulers were designed to provide the 

illusion of parallelism by rapidly switching between processes 

in 

the system, thereby allowing each process to make progress. 

Such processes were running concurrently, but not in parallel. 

As systems have grown from tens of threads to thousands of 

threads, CPU designers have improved system performance 

by adding hardware to improve thread performance. Modern 

Intel CPUs frequently support two threads per core, while the 

Oracle T4 CPU supports eight threads per core. This support 

means that multiple threads can be loaded into the core for 

fast switching. Multicore computers will no doubt continue to 

increase in core counts and  
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hardware thread support. 

 

Figure 4.4Parallel execution on a multicore system. 

4.2.1  Programming Challenges 

The trend towards multicore systems continues to place 

pressure on system designers and application programmers 

to make better use of the multiple computing cores. Designers 

of operating systems must write scheduling algorithms that 

use multiple processing cores to allow the parallel execution 

shown in Figure 4.4. For application programmers, the 

challenge is to modify existing programs as well as design 

new programs that are multithreaded. 

In general, five areas present challenges in programming for 

multicore systems: 

 

1. Identifying tasks. This involves examining 

applications to find areas that can be divided into 

separate, concurrent tasks. Ideally, tasks are 

independent of one another and thus can run in 

parallel on individual cores. 

2. Balance. While identifying tasks that can run in 

parallel, programmers must also ensure that the tasks 

perform equal work of equal value. In some instances, 

a certain task may not contribute as much value to the 

overall process as other tasks. Using a separate 

execution core to run that task may not be worth the 
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cost. 

3. Data splitting. Just as applications are divided into 

separate tasks, the data accessed and manipulated by 

the tasks must be divided to run on separate cores. 

4. Data dependency. The data accessed by the tasks 

must be examined for dependencies between two or 

more tasks. When one task depends on data from 

another, programmers must ensure that the execution 

of the tasks is synchronized to accommodate the data 

dependency.  

5. Testing and debugging. When a program is running 

in parallel on multiple cores, many different execution 

paths are possible. Testing and debugging such 

concurrent programs is inherently more difficult than 

testing and debugging single-threaded applications. 

4.2.2   Types of Parallelism 

 

 

 

 

 

 

Task parallelism involves distributing not data but tasks (threads) 

across multiple computing cores. Each thread is performing a 

unique operation. Different threads may be operating on the same 

data, or they may be operating on different data. Consider again our 

example above. In contrast to that situation, an example of task 

parallelism might involve two threads, each performing a unique 

statistical operation on the array of elements. The threads again are 

operating in parallel on separate computing cores, but each is 

performing a unique operation. 
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Fundamentally, then, data parallelism involves the distribution of 

data across multiple cores and task parallelism on the distribution 

of tasks across multiple cores. In practice, however, few applications 

strictly follow either data or task parallelism. In most instances, 

applications use a hybrid of these two strategies. 

4.3 Multithreading Models 

Our discussion so far has treated threads in a generic sense. 

However, support for threads may be provided either at the 

user level, for user threads, or by the kernel, for kernel 

threads. User threads are supported above the kernel and are 

managed without kernel support, whereas kernel threads are 

supported and managed directly by the operating system. 

Virtually all contemporary operating systems— including 

Windows, Linux, Mac OS X, and Solaris— support kernel 

threads. 

Ultimately, a relationship must exist between user threads 

and kernel threads. In this section, we look at three common 

ways of establishing such a relationship: the many-to-one 

model, the one-to-one model, and the many-to- many models. 

4.3.1 Many-to-One Model 

The many-to-one model connects multiple user threads to a 

single kernel thread. It is efficient because thread 

management happens in user space. However, if one thread 

makes a system call that blocks, all threads in the process are 

blocked. Additionally, this model can't run threads in parallel 

on multicore systems. Due to these limitations, it’s rarely used 

today. 
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 Figure 4.5 Many-to-one model. 

 

4.3.2 One-to-One Model 

The one-to-one model (Figure 4.6) maps each user thread to a 

kernel thread. It provides more concurrency than the many-

to-one model by allowing another thread to run when a 

thread makes a blocking system call. It also allows multiple 

threads to run in parallel on multiprocessors. The only 

drawback to this model is that creating a user thread requires 

creating the corresponding kernel thread. Because the 

overhead of creating kernel threads can burden the 

performance of an application, most implementations of this 

model restrict the number of threads supported by the system. 

Linux, along with the family of Windows operating systems, 

implement the one-to-one model. 

 

 

 

 

 

Figure 4.6 One-to-one model. 
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4.3.3 Many-to-Many Model 

The many-to-many model (Figure 4.7) multiplexes many 

user-level threads to a smaller or equal number of kernel 

threads. The number of kernel threads may be specific to 

either a particular application or a particular machine (an 

application may be allocated more kernel threads on a 

multiprocessor than on a single processor). 

Let’s consider the effect of this design on concurrency. 

Whereas the many- to-one model allows the developer to 

create as many user threads as she wishes, it does not result in 

true concurrency, because the kernel can schedule only one 

thread at a time. The one-to-one model allows greater 

concurrency, but the developer has to be careful not to create 

too many threads within an application  

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Many-to-many model. 
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Figure 4.8 Two-level model. 

 

 

The many-to-many model suffers from neither of these 

shortcomings: developers can create as many user threads as 

necessary, and the corresponding kernel threads can run in 

parallel on a multiprocessor. Also, when a thread performs a 

blocking system call, the kernel can schedule another thread 

for execution. 

One variation on the many-to-many model still multiplexes 

many user- level threads to a smaller or equal number of 

kernel threads but also allows a user-level thread to be bound 

to a kernel thread. This variation is sometimes referred to as 

the two-level model (Figure 4.8). The Solaris operating 

system supported the two-level model in versions older than 

Solaris 9. However, beginning with Solaris 9, this system uses 

the one-to-one model. 
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Review Questions  

1) What is a thread, and what are the basic components that 

define it? 
2)  How do threads in a process share resources? 

3) What is the difference between a single-threaded and 

multithreaded process? 
4) What are the main benefits of multithreading in modern 

software applications? 

5) Why is multithreading particularly advantageous in 

multicore systems? 
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CPU Scheduling 

 
CPU scheduling is the basis of multiprogrammed operating 

systems. By switching the CPU among processes, the 

operating system can make the computer more productive. In 

this chapter, we introduce basic CPU-scheduling concepts and 

present several CPU-scheduling algorithms. We also consider 

the problem of selecting an algorithm for a particular system. 

In Chapter 4, we introduced threads to the process model. 

On operating systems that support them, it is kernel-level 

threads— not processes— that are in fact being scheduled by 

the operating system. However, the terms "process 

scheduling" and "thread scheduling" are often used 

interchangeably. In this chapter, we use process scheduling 

when discussing general scheduling concepts and thread 

scheduling to refer to thread-specific ideas. 

5.1   Basic Concepts 

In a single-processor system, only one process can run at a time. 

Others must wait until the CPU is free and can be rescheduled. 

The objective of multiprogramming is to have some process 

running at all times, to maximize CPU utilization. The idea is 

relatively simple. A process is executed until it must wait, 

typically for the completion of some I/O request. In a simple 

computer system, the CPU then just sits idle. All this waiting time 

is wasted; no useful work is accomplished. With 

multiprogramming, we try to use this time productively. Several 

processes are kept in memory at one time.  
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Figure 5.1 Alternating sequence of CPU and I/O bursts. 

 

When one process has to wait, the operating system takes the 

CPU away from that process and gives the CPU to another 

process. This pattern continues. Every time one process has to 

wait, another process can take over use of the CPU. 

Scheduling of this kind is a fundamental operating-system 

function. Almost all computer resources are scheduled before 

use. The CPU is, of course, one of the primary computer 

resources. Thus, its scheduling is central to operating-system 

design. 

5.1.1 CPU– I/O Burst Cycle 

The success of CPU scheduling depends on an observed 

property of processes: process execution consists of a cycle of 

CPU execution and I/O wait. Processes alternate between 

these two states. Process execution begins with a CPU burst. 
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That is followed by an I/O burst, which is followed by another 

CPU burst, then another I/O burst, and so on. Eventually, the 

final CPU burst ends with a system request to terminate 

execution (Figure 5.1). 

1.2 CPU Scheduler 

Whenever the CPU becomes idle, the operating system must 

select one of the processes in the ready queue to be executed. 

The selection process is carried out by the short-term 

scheduler, or CPU scheduler. The scheduler selects a process 

from the processes in memory that are ready to execute and 

allocates the CPU to that process. 

Note that the ready queue is not necessarily a first-in, first-out 

(FIFO) queue. As we shall see when we consider the various 

scheduling algorithms, a ready queue can be implemented as 

a FIFO queue, a priority queue, a tree, or simply an unordered 

linked list. Conceptually, however, all the processes in the 

ready queue are lined up waiting for a chance to run on the 

CPU. The records in the queues are generally process control 

blocks (PCBs) of the processes. 

5.1.3 Preemptive Scheduling 

CPU scheduling decisions occur under the following four 

conditions: 

1. Process moves from running to waiting state (e.g., 

due to I/O requests or wait()). 

2. Process moves from running to ready state (e.g., after 

an interrupt). 

3. Process moves from waiting to ready state (e.g., 

when I/O completes). 

4. Process terminates. 

For conditions 1 and 4, scheduling is mandatory, as a new 

process must be selected for execution. For conditions 2 and 
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3, the operating system can choose whether to continue 

running the current process or to switch to another. 

 Non-preemptive (cooperative) scheduling: 

Scheduling occurs only during conditions 1 and 4. 

Once a process gets the CPU, it retains control until it 

either finishes or enters the waiting state. Early 

systems like Windows 3.x used this model. 

 Preemptive scheduling: Allows process switching 

under all four conditions. Modern systems like 

Windows 95 and later versions, as well as Mac OS X, 

use preemptive scheduling. 

Preemptive scheduling introduces potential issues, such as 

race conditions when processes share data. If a process is 

preempted while modifying data, another process could 

access inconsistent data. This challenge also extends to the 

operating system kernel, particularly during system calls or 

I/O handling. 

To prevent inconsistency, some operating systems, like 

UNIX, wait until system calls are completed or I/O blocks 

occur before switching processes. However, this approach is 

unsuitable for real-time computing where tasks need to 

meet strict deadlines. 

Additionally, interrupts must be handled promptly, and 

certain critical code sections disable interrupts temporarily 

to prevent simultaneous access by multiple processes. These 

sections are typically brief and infrequent, ensuring minimal 

impact on system performance. 
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5.1.4 Dispatcher 

Another component involved in the CPU-scheduling function 

is the dispatcher. The dispatcher is the module that gives 

control of the CPU to the process selected by the short-term 

scheduler. This function involves the following: 

 Switching context 

 Switching to user mode 

 Jumping to the proper location in the user program to 

restart that program 

The dispatcher should be as fast as possible, since it is 

invoked during every process switch. The time it takes for the 

dispatcher to stop one process and start another running is 

known as the dispatch latency. 

5.2 Scheduling Criteria 

Different CPU-scheduling algorithms have different 

properties, and the choice of a particular algorithm may favor 

one class of processes over another. In choosing which 

algorithm to use in a particular situation, we must consider 

the properties of the various algorithms. 

Many criteria have been suggested for comparing CPU-

scheduling algo- rithms. Which characteristics are used for 

comparison can make a substantial difference in which 

algorithm is judged to be best. The criteria include the 

following: 

 

 CPU utilization. We want to keep the CPU as busy as 

possible. Concep- tually, CPU utilization can range 

from 0 to 100 percent. In a real system, it should range 

from 40 percent (for a lightly loaded system) to 90 

percent (for a heavily loaded system). 

 Throughput. If the CPU is busy executing processes, 
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then work is being done. One measure of work is the 

number of processes that are completed per time unit, 

called throughput. For long processes, this rate may be 

one process per hour; for short transactions, it may be 

ten processes per second. 

 Turnaround time. From the point of view of a 

particular process, the important criterion is how long 

it takes to execute that process. The interval from the 

time of submission of a process to the time of 

completion is the turnaround time. Turnaround time is 

the sum of the periods spent waiting to get into 

memory, waiting in the ready queue, executing on the 

CPU, and doing I/O. 

 Waiting time. The CPU-scheduling algorithm does 

not affect the amount of time during which a process 

executes or does I/O. It affects only the amount of time 

that a process spends waiting in the ready queue. 

Waiting time is the sum of the periods spent waiting 

in the ready queue. 

 Response time. In an interactive system, turnaround 

time may not be the best criterion. Often, a process 

can produce some output fairly early and can 

continue computing new results while previous 

results are being output to the user. Thus, another 

measure is the time from the submission of a request 

until the first response is produced. This measure, 

called response time, is the time it takes to start 

responding, not the time it takes to output the 

response. The turnaround time is generally limited by 

the speed of the output device. 

It is desirable to maximize CPU utilization and 

throughput and to minimize turnaround time, waiting time, 

and response time. In most cases, we optimize the average 
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measure. However, under some circumstances, we prefer to 

optimize the minimum or maximum values rather than the 

average. For example, to guarantee that all users get good 

service, we may want to minimize the maximum response 

time. 

Investigators have suggested that, for interactive systems 

(such as desktop systems), it is more important to minimize 

the variance in the response time than to minimize the 

average response time. A system with reasonable and 

predictable response time may be considered more desirable 

than a system that is faster on the average but is highly 

variable. However, little work has been done on CPU-

scheduling algorithms that minimize variance. 

As we discuss various CPU-scheduling algorithms in the 

following section, we illustrate their operation. An accurate 

illustration should involve many processes, each a sequence 

of several hundred CPU bursts and I/O bursts. For 

simplicity, though, we consider only one CPU burst (in 

milliseconds) per process in our examples. Our measure of 

comparison is the average waiting time.  

 

5.3 Scheduling Algorithms 

CPU scheduling deals with the problem of deciding which of the 

processes in the ready queue is to be allocated the CPU. There are 

many different CPU-scheduling algorithms. In this section, we 

describe several of them. 

5.3.1 First-Come, First-Served Scheduling 

By far the simplest CPU-scheduling algorithm is the first-

come, first-served (FCFS) scheduling algorithm. With this 

scheme, the process that requests the CPU first is allocated 

the CPU first. The implementation of the FCFS policy is easily 

managed with a FIFO queue. When a process enters the ready 

queue, its PCB is linked onto the tail of the queue. When the 

62



 

 

CPU is free, it is allocated to the process at the head of the 

queue. The running process is then removed from the queue. 

The code for FCFS scheduling is simple to write and 

understand. 

On the negative side, the average waiting time under the 

FCFS policy is often quite long. Consider the following set of 

processes that arrive at time 0, with the length of the CPU 

burst given in milliseconds: 

 

Process Burst Time 

P1 24 

P2 3 

P3 3 

If the processes arrive in the order P1, P2, P3, and are served in FCFS 

order, we get the result shown in the following Gantt chart, which 

is a bar chart that illustrates a particular schedule, including the 

start and finish times of each of the participating processes: 

 

The waiting time is 0 milliseconds for process P1, 24 milliseconds 

for process P2, and 27 milliseconds for process P3. Thus, the 

average waiting time is (0 + 24 + 27)/3 = 17 milliseconds. If the 

processes arrive in the order P2, P3, P1, however, the results will be 

as shown in the following Gantt chart: 
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The average waiting time is now (6 + 0 + 3)/3 = 3 

milliseconds. This reduction is substantial. Thus, the average 

waiting time under an FCFS policy is generally not minimal 

and may vary substantially if the processes’ CPU burst times 

vary greatly. 

In addition, consider the performance of FCFS scheduling in 

a dynamic situation. Assume we have one CPU-bound 

process and many I/O-bound processes. As the processes flow 

around the system, the following scenario may result. The 

CPU-bound process will get and hold the CPU. During this 

time, all the other processes will finish their I/O and will 

move into the ready queue, waiting for the CPU. While the 

processes wait in the ready queue, the I/O devices are idle. 

Eventually, the CPU-bound process finishes its CPU burst 

and moves to an I/O device. All the I/O-bound processes, 

which have short CPU bursts, execute quickly and move back 

to the I/O queues. At this point, the CPU sits idle. The CPU-

bound process will then move back to the ready queue and be 

allocated the CPU. Again, all the I/O processes end up waiting 

in the ready queue until the CPU-bound process is done. 

There is a convoy effect as all the other processes wait for the 

one big process to get off the CPU. This effect results in lower 

CPU and device utilization than might be possible if the 

shorter processes were allowed to go first. 

Note also that the FCFS scheduling algorithm is 

nonpreemptive. Once the CPU has been allocated to a process, 

that process keeps the CPU until it releases the CPU, either by 

terminating or by requesting I/O. The FCFS algorithm is thus 

particularly troublesome for time-sharing systems, where it is 

important that each user get a share of the CPU at regular 

intervals. It would be disastrous to allow one process to keep 

the CPU for an extended period. 
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5.3.2 Shortest-Job-First Scheduling 

A different approach to CPU scheduling is the shortest-job-

first (SJF) scheduling algorithm. This algorithm associates 

with each process the length of the process’s next CPU burst. 

When the CPU is available, it is assigned to the process 

that has the smallest next CPU burst. If the next CPU bursts of 

two processes are the same, FCFS scheduling is used to break 

the tie. Note that a more appropriate term for this scheduling 

method would be the shortest-next- CPU-burst algorithm, 

because scheduling depends on the length of the next CPU 

burst of a process, rather than its total length. We use the term 

SJF because most people and textbooks use this term to refer 

to this type of scheduling. 

 

As an example of SJF scheduling, consider the following set of 

processes, with the length of the CPU burst given in milliseconds: 

 

 

 

 

 

 

 

 

Using SJF scheduling, we would schedule these processes 

according to the following Gantt chart: 

0              3                              9                 16                      24 

The waiting time is 3 milliseconds for process P1, 16 milliseconds 

for process P2, 9 milliseconds for process P3, and 0 milliseconds for 

Process Burst Time 

P1 6 

P2 8 

P3 7 

P4 3 

P4 P1 P3 P2 
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process P4. Thus, the average waiting time is (3 + 16 + 9 + 0)/4 

= 7 milliseconds. By comparison, if we were using the FCFS 

scheduling scheme, the average waiting time would be 10.25 

milliseconds. 

The SJF scheduling algorithm is provably optimal, in that it 

gives the minimum average waiting time for a given set of 

processes. Moving a short process before a long one decreases 

the waiting time of the short process more than it increases the 

waiting time of the long process. Consequently, the average 

waiting time decreases. 

The real difficulty with the SJF algorithm is knowing the 

length of the next CPU request. For long-term (job) 

scheduling in a batch system, we can use the process time 

limit that a user specifies when he submits the job. In this 

situation, users are motivated to estimate the process time 

limit accurately, since a lower value may mean faster 

response but too low a value will cause a time-limit-exceeded 

error and require resubmission. SJF scheduling is used 

frequently in long-term scheduling. 

Although the SJF algorithm is optimal, it cannot be 

implemented at the level of short-term CPU scheduling. With 

short-term scheduling, there is no way to know the length of 

the next CPU burst. One approach to this problem is to try to 

approximate SJF scheduling. We may not know the length of 

the next CPU burst, but we may be able to predict its value. 

We expect that the next CPU burst will be similar in length to 

the previous ones. By computing an approximation of the 

length of the next CPU burst, we can pick the process with the 

shortest predicted CPU burst. 
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As an example, consider the following four processes, with 

the length of the CPU burst given in milliseconds: 

 

 

 

 

 

 

 

 

 

If the processes arrive at the ready queue at the times shown 

and need the indicated burst times, then the resulting 

preemptive SJF schedule is as depicted in the following Gantt 

chart: 

0        1       5                           10             17                     26 

 

 

5.3.3 Priority Scheduling 

 

 

5.3.3 Priority Scheduling 

The SJF algorithm is a special case of the general priority-

scheduling algorithm. A priority is associated with each 

process, and the CPU is allocated to the process with the highest 

priority. Equal-priority processes are scheduled in FCFS order. 

Process Arrival Time Burst Time 

P1 0 8 

P2 1 4 

P3 2 9 

P4 3 5 

P1 P2 P4 P1 P3 
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An SJF algorithm is simply a priority algorithm where the 

priority (p) is the inverse of the (predicted) next CPU burst. 

The larger the CPU burst, the lower the priority, and vice 

versa. 

Note that we discuss scheduling in terms of high priority and 

low priority. Priorities are generally indicated by some fixed 

range of numbers, such as 0 to 7 or 0 to 4,095. However, there 

is no general agreement on whether 0 is the highest or lowest 

priority. Some systems use low numbers to represent low 

priority; others use low numbers for high priority. This 

difference can lead to confusion. In this text, we assume that 

low numbers represent high priority. 

As an example, consider the following set of processes, 

assumed to have arrived at time 0 in the order P1, P2, …  , P5, 

with the length of the CPU burst given in milliseconds: 

 

 

 

 

 

 

 

 

 

 

 

Using priority scheduling, we would schedule these processes 

according to the following Gantt chart: 

0     1                6                                                 16         18 19 

 

The average waiting time is 8.2 milliseconds. 

Process Burst Time Priority 

P1 10 3 

P2 1 1 

P3 2 4 

P4 1 5 

P5 5 2 

P2 P5 P1 P3 P4 
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Priorities can be defined either internally or externally. 

Internally defined priorities use some measurable quantity or 

quantities to compute the priority of a process. For example, 

time limits, memory requirements, the number of open files, 

and the ratio of average I/O burst to average CPU burst have 

been used in computing priorities. External priorities are set 

by criteria outside  the operating system, such as the 

importance of the process, the type and amount of funds 

being paid for computer use, the department sponsoring the 

work, and other, often political, factors. 

Priority scheduling can be either preemptive or 

nonpreemptive. When a process arrives at the ready queue, 

its priority is compared with the priority of the currently 

running process. A preemptive priority scheduling algorithm 

will preempt the CPU if the priority of the newly arrived 

process is higher than the priority of the currently running 

process. A nonpreemptive priority scheduling algorithm will 

simply put the new process at the head of the ready queue. 

A major problem with priority scheduling algorithms is 

indefinite block- ing, or starvation. A process that is ready to 

run but waiting for the CPU can be considered blocked. A 

priority scheduling algorithm can leave some low- priority 

processes waiting indefinitely. In a heavily loaded computer 

system, a steady stream of higher-priority processes can 

prevent a low-priority process from ever getting the CPU. 

Generally, one of two things will happen. Either the process 

will eventually be run, or the computer system will 

eventually crash and lose all unfinished low-priority 

processes.  

A solution to the problem of indefinite blockage of low-

priority processes is aging. Aging involves gradually 

increasing the priority of processes that wait in the system for 

a long time. For example, if priorities range from 127 (low) to 

0 (high), we could increase the priority of a waiting process 
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by 1 every 15 minutes. Eventually, even a process with an 

initial priority of 127 would have the highest priority in the 

system and would be executed. In fact, it would take no more 

than 32 hours for a priority-127 process to age to a priority-0 

process. 

5.3.4  Round-Robin Scheduling 

The round-robin (RR) scheduling algorithm is designed 

especially for time- sharing systems. It is similar to FCFS 

scheduling, but preemption is added to enable the system to 

switch between processes. A small unit of time, called a time 

quantum or time slice, is defined. A time quantum is 

generally from 10 to 100 milliseconds in length. The ready 

queue is treated as a circular queue. 

The CPU scheduler goes around the ready queue, allocating 

the CPU to each process for a time interval of up to 1 time 

quantum. 

To implement RR scheduling, we again treat the ready queue 

as a FIFO queue of processes. New processes are added to the 

tail of the ready queue. The CPU scheduler picks the first 

process from the ready queue, sets a timer to interrupt after 1 

time quantum, and dispatches the process. 

One of two things will then happen. The process may have a 

CPU burst of less than 1 time quantum. In this case, the 

process itself will release the CPU voluntarily. The scheduler 

will then proceed to the next process in the ready queue. If 

the CPU burst of the currently running process is longer than 

1 time quantum, the timer will go off and will cause an 

interrupt to the operating system. A context switch will be 

executed, and the process will be put at the tail of the ready 

queue. The CPU scheduler will then select the next process in 

the ready queue. 
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The average waiting time under the RR policy is often long. 

Consider the following set of processes that arrive at time 0, 

with the length of the CPU burst given in milliseconds: 

 

 

 

 

 

 

If we use a time quantum of 4 milliseconds, then process P1 

gets the first 4 milliseconds. Since it requires another 20 

milliseconds, it is preempted after the first time quantum, and 

the CPU is given to the next process in the queue, process P2. 

Process P2 does not need 4 milliseconds, so it quits before its 

time quantum expires. The CPU is then given to the next 

process, process P3. Once each process has received 1 time 

quantum, the CPU is returned to process P1 for an additional 

time quantum. The resulting RR schedule is as follows: 

    0            4                  7      10           14 18 22           26            30 

 

Let’s calculate the average waiting time for this schedule. P1 

waits for 6 milliseconds (10 - 4), P2 waits for 4 milliseconds, and 

P3 waits for 7 milliseconds. Thus, the average waiting time is 

17/3 = 5.66 milliseconds. 

In the RR scheduling algorithm, no process is allocated the 

CPU for more than 1 time quantum in a row (unless it is the 

only runnable process). If a process’s CPU burst exceeds 1 

time quantum, that process is preempted and is put back in 

the ready queue. The RR scheduling algorithm is thus 

preemptive. If there are n processes in the ready queue 

Process Burst Time 

P1 24 

P2 3 

P3 3 

P1 P2 P3 P1 P1 P1 P1 P1 
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and the time quantum is q, then each process gets 1/n of the 

CPU time in chunks of at most q time units. Each process 

must wait no longer than (n-1) x q time units until its next 

time quantum. For example, with five processes and a time 

quantum of 20 milliseconds, each process will get up to 20 

milliseconds every 100 milliseconds. The performance of the 

RR algorithm depends heavily on the size of the time 

quantum. At one extreme, if the time quantum is extremely 

large, the RR policy 

is the same as the FCFS policy. In contrast, if the time 

quantum is extremely small (say, 1 millisecond), the RR 

approach can result in a large number of context switches. 

Assume, for example, that we have only one process of 10 

time units. If the quantum is 12 time units, the process 

finishes in less than 1 time quantum, with no overhead. If the 

quantum is 6 time units, however, the process requires 2 

quanta, resulting in a context switch. If the time quantum is 1 

time unit, then nine context switches will occur, slowing the 

execution of the process accordingly (Figure 5.4). 
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Figure 5.4 How a smaller time quantum increases context switches. 

 

Thus, we want the time quantum to be large with respect to 

the context- switch time. If the context-switch time is 

approximately 10 percent of the time quantum, then about 10 

percent of the CPU time will be spent in context switching. In 

practice, most modern systems have time quanta ranging 

from 10 to 100 milliseconds. The time required for a context 

switch is typically less than 10 microseconds; thus, the 

context-switch time is a small fraction of the time quantum. 

Turnaround time also depends on the size of the time 

quantum. the average turnaround time of a set of processes 

does not necessarily improve as the time-quantum size 

increases. In general, the average turnaround time can be 

improved if most processes finish their next CPU burst in a 

single time quantum. For example, given three processes of 10 

time units each and a quantum of 1 time unit, the average 

turnaround time is 29. If the time quantum is 10, however, the 

average turnaround time drops to 20. If context-switch time is 

added in, the average turnaround time increases even more 

for a smaller time quantum, since more context switches are 

required. 

Although the time quantum should be large compared with 

the context- switch time, it should not be too large. As we 

pointed out earlier, if the time quantum is too large, RR 
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scheduling degenerates to an FCFS policy. A rule of thumb is 

that 80 percent of the CPU bursts should be shorter than the 

time quantum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  How turnaround time varies with the time quantum. 

5.3.5 Multilevel Queue Scheduling 

Another class of scheduling algorithms has been created for 

situations in which processes are easily classified into 

different groups. For example, a common division is made 

between foreground (interactive) processes and background 

(batch) processes. 

These two types of processes have different response-time 

requirements and so may have different scheduling needs. In 

addition, foreground processes may have priority (externally 

defined) over background processes. 

A multilevel queue scheduling algorithm partitions the 

ready queue into several separate queues (Figure 5.6). The 

processes are permanently assigned to one queue, generally 

based on some property of the process, such as memory size, 

process priority, or process type. Each queue has its own  
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scheduling algorithm. For example, separate queues might 

be used for foreground and background processes. The 

foreground queue might be scheduled by an RR algorithm, 

while the background queue is scheduled by an FCFS 

algorithm. 

 

In addition, there must be scheduling among the queues, 

which is com- monly implemented as fixed-priority 

preemptive scheduling. For example, the foreground queue 

may have absolute priority over the background queue. 

Let’s look at an example of a multilevel queue scheduling 

algorithm with five queues, listed below in order of priority: 

 

1. System processes 

2. Interactive processes 

3. Interactive editing processes 

4. Batch processes 

5. Student processes 

 

 Figure 5.6 Multilevel queue scheduling. 

Each queue has absolute priority over lower-priority queues. 
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No process in the batch queue, for example, could run unless 

the queues for system processes, interactive processes, and 

interactive editing processes were all empty. If an interactive 

editing process entered the ready queue while a batch process 

was running, the batch process would be preempted. 

Another possibility is to time-slice among the queues. Here, 

each queue gets a certain portion of the CPU time, which it can 

then schedule among its various processes. For instance, in the 

foreground– background queue example, the foreground 

queue can be given 80 percent of the CPU time for RR 

scheduling among its processes, while the background queue 

receives 20 percent of the CPU to give to its processes on an 

FCFS basis. 
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5.3.6 Multilevel Feedback Queue Scheduling 

Normally, when the multilevel queue scheduling algorithm is 

used, processes are permanently assigned to a queue when 

they enter the system. If there are separate queues for 

foreground and background processes, for example, 

processes do not move from one queue to the other, since 

processes do not change their foreground or background 

nature. This setup has the advantage of low scheduling 

overhead, but it is inflexible. 

The multilevel feedback queue scheduling algorithm, in 

contrast, allows a process to move between queues. The idea is 

to separate processes according to the characteristics of their 

CPU bursts. If a process uses too much CPU time, it will be 

moved to a lower-priority queue. This scheme leaves I/O-

bound and interactive processes in the higher-priority queues. 

In addition, a process that waits too long in a lower-priority 

queue may be moved to a higher-priority queue. This form of 

aging prevents starvation. 

For example, consider a multilevel feedback queue scheduler 

with three queues, numbered from 0 to 2 (Figure 5.7). The 

scheduler first executes all processes in queue 0. Only when 

queue 0 is empty will it execute processes in queue 1. 

Similarly, processes in queue 2 will be executed only if 

queues 0 and 1 are empty. A process that arrives for queue 1 

will preempt a process in queue 2. A process in queue 1 will 

in turn be preempted by a process arriving for queue 0. 
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Figure 5.7 Multilevel feedback queues. 

 

A process entering the ready queue is put in queue 0. A 

process in queue 0 is given a time quantum of 8 milliseconds. 

If it does not finish within this time, it is moved to the tail of 

queue 1. If queue 0 is empty, the process at the head of queue 

1 is given a quantum of 16 milliseconds. If it does not 

complete, it is preempted and is put into queue 2. Processes in 

queue 2 are run on an FCFS basis but are run only when 

queues 0 and 1 are empty. 

This scheduling algorithm gives highest priority to any 

process with a CPU burst of 8 milliseconds or less. Such a 

process will quickly get the CPU, finish its CPU burst, and go 

off to its next I/O burst. Processes that need more than 8 but 

less than 24 milliseconds are also served quickly, although 

with lower priority than shorter processes. Long processes 

automatically sink to queue 2 and are served in FCFS order 

with any CPU cycles left over from queues 0 and 1. 

In general, a multilevel feedback queue scheduler is defined 

by the following parameters: 

 The number of queues 

 The scheduling algorithm for each queue 

 The method used to determine when to upgrade a 

quantum = 8 

quantum = 16 

FCFS 
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process to a higher- priority queue 

 The method used to determine when to demote a 

process to a lower- priority queue 

 The method used to determine which queue a process 

will enter when that process needs service 

The definition of a multilevel feedback queue scheduler 

makes it the most general CPU-scheduling algorithm. It can 

be configured to match a specific system under design. 

Unfortunately, it is also the most complex algorithm, since 

defining the best scheduler requires some means by which to 

select values for all the parameters. 

 

Review Questions  

1) Discuss how the following pairs of scheduling criteria 

conflict in certain settings.  

a. CPU utilization and response time 

 b. Average turnaround time and maximum waiting time 

 c. I/O device utilization and CPU utilization 

 

2) Which of the following scheduling algorithms could result in 

starvation?  

a. First-come, first-served  

b. Shortest job first  

c. Round robin  

d.Priorit
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Deadlocks 
In a multiprogramming environment, several processes may 

compete for a finite number of resources. A process requests 

resources; if the resources are not available at that time, the 

process enters a waiting state. Sometimes, a waiting process is 

never again able to change state, because the resources it has 

requested are held by other waiting processes. This 

situation is called a deadlock. 

Perhaps the best illustration of a deadlock can be drawn from 

a law passed by the Kansas legislature early in the 20th 

century. It said, in part: “When two trains approach each 

other at a crossing, both shall come to a full stop and neither 

shall start up again until the other has gone.” 

In this chapter, we describe methods that an operating 

system can use to prevent or deal with deadlocks. Although 

some applications can identify programs that may deadlock, 

operating systems typically do not provide deadlock-

prevention facilities, and it remains the responsibility of 

program- mers to ensure that they design deadlock-free 

programs. Deadlock problems can only become more 

common, given current trends, including larger num- bers of 

processes, multithreaded programs, many more resources 

within a system, and an emphasis on long-lived file and  
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database servers rather than batch systems. 

6.1 Deadlock Characterization 

In a deadlock, processes never finish executing, and system 

resources are tied up, preventing other jobs from starting. 

Before we discuss the various methods for dealing with the 

deadlock problem, we look more closely at features that 

characterize deadlocks. 

6.1.1 Necessary Conditions 

A deadlock situation can arise if the following four conditions 

hold simultane- ously in a system: 

 

1. Mutual exclusion. At least one resource must be held 

in a nonsharable mode; that is, only one process at a 

time can use the resource. If another process requests 

that resource, the requesting process must be delayed 

until the resource has been released. 

2. Hold and wait. A process must be holding at least one 

resource and waiting to acquire additional resources 

that are currently being held by other processes. 

3. No preemption. Resources cannot be preempted; that 

is, a resource can be released only voluntarily by the 

process holding it, after that process has completed its 

task. 

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes 

must exist such that P0 is waiting for a resource held 

by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is 

waiting for a resource held by Pn, and Pn is waiting for 

a resource held by P0. 

We emphasize that all four conditions must hold for a 

deadlock to occur. The circular-wait condition implies the  
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hold-and-wait condition, so the four conditions are not 

completely independent. 

6.2.2 Resource-Allocation Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resource-allocation graph shown in Figure 6.1 depicts the 

following situation. 

 The sets P, R, and E: 

 P = {P1, P2, P3} 

 R = {R1, R2, R3, R4} 

 E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → 

P3} 
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 Resource instances: 

 One instance of resource type R1 

 Two instances of resource type R2 

 One instance of resource type R3 

 Three instances of resource type R4 

 Process states: 

 Process P1 is holding an instance of resource type R2 and is 

waiting for an instance of resource type R1. 

 Process P2 is holding an instance of R1 and an instance of R2 

and is waiting for an instance of R3. 

 Process P3 is holding an instance of R3. 

 

 

 

 

 

 

 

 

 Figure 6.1 Resource-allocation graph. 

 

 

 

 

 

 

 

 

Figure 6.2 Resource-allocation graph with a deadlock. 
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Given the definition of a resource-allocation graph, it can be 

shown that, if the graph contains no cycles, then no process in 

the system is deadlocked. If the graph does contain a cycle, 

then a deadlock may exist. 

If each resource type has exactly one instance, then a cycle 

implies that a deadlock has occurred. If the cycle involves 

only a set of resource types, each of which has only a single 

instance, then a deadlock has occurred. Each process involved 

in the cycle is deadlocked. In this case, a cycle in the graph is 

both a necessary and a sufficient condition for the existence of 

deadlock. 

If each resource type has several instances, then a cycle does 

not necessarily imply that a deadlock has occurred. In this 

case, a cycle in the graph is a necessary but not a sufficient 

condition for the existence of deadlock. 

To illustrate this concept, we return to the resource-

allocation graph depicted in Figure 6.1. Suppose that process P3 

requests an instance of resource  type R2. Since no resource 

instance is currently available, we add a request edge  

P3 → R2 to the graph (Figure 6.2). At this point, two minimal 

cycles exist in the system: P1 → R1 → P2 → R3 → P3 → R2 → 

P1 P2 → R3 → P3 → R2 → P2 Processes P1, P2, and P3 are 

deadlocked. Process P2 is waiting for the resource R3, which 

is held by process P3. Process P3 is waiting for either process 

P1 or process P2 to release resource R2. In addition, process 

P1 is waiting for process P2 to release resource R1. Now 

consider the resource-allocation graph in Figure 6.3. In this 

example, we also have a cycle:  

P1 → R1 → P3 → R2 → P1 

However, there is no deadlock. Observe that process P4 may 

release its instance of resource type R2. That resource can 

then be allocated to P3, breaking the cycle. In summary, if a 

resource-allocation graph does not have a cycle, then the 
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system is not in a deadlocked state. If there is a cycle, then the 

system may or may not be in a deadlocked state. This 

observation is important when we deal with the deadlock 

problem. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3  Resource-allocation graph with a cycle but no deadlock. 

 

However, there is no deadlock. Observe that process P4 may 

release its instance of resource type R2. That resource can then 

be allocated to P3, breaking the cycle. In summary, if a 

resource-allocation graph does not have a cycle, then the 

system is not in a deadlocked state. If there is a cycle, then the 

system may or may not be in a deadlocked state. This 

observation is important when we deal with the deadlock 

problem. 

6.3 Methods for Handling Deadlocks 

Generally speaking, we can deal with the deadlock problem 

in one of three ways: 

 

 We can use a protocol to prevent or avoid deadlocks, 

85



 

 ensuring that the system will never enter a deadlocked 

state. 

 We can allow the system to enter a deadlocked state, 

detect it, and recover. 

 We can ignore the problem altogether and pretend that 

deadlocks never occur in the system. 

The third solution is the one used by most operating systems, 

including Linux and Windows. It is then up to the application 

developer to write programs that handle deadlocks. 

 

To ensure that deadlocks never occur, the system can use 

either a deadlock- prevention or a deadlock-avoidance scheme. 

Deadlock prevention provides a set of methods to ensure that 

at least one of the necessary conditions cannot hold. These 

methods prevent deadlocks by constraining how requests for 

resources can be made.  

Deadlock avoidance requires that the operating system be 

given additional information in advance concerning which 

resources a process will request and use during its lifetime. 

With this additional knowledge, the operating system can 

decide for each request whether or not the process should 

wait. To decide whether the current request can be satisfied or 

must be delayed, the system must consider the resources 

currently available, the resources currently allocated to each 

process, and the future requests and releases of each process. 

If a system does not employ either a deadlock-prevention or 

a deadlock- avoidance algorithm, then a deadlock situation 

may arise. In this environment, the system can provide an 

algorithm that examines the state of the system to determine 

whether a deadlock has occurred and an algorithm to recover 

from the deadlock. 

In the absence of algorithms to detect and recover from 
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deadlocks, we may arrive at a situation in which the system is 

in a deadlocked state yet has no way of recognizing what has 

happened. In this case, the undetected deadlock will cause the 

system’s performance to deteriorate, because resources are 

being held by processes that cannot run and because more 

and more processes, as they make requests for resources, will 

enter a deadlocked state. Eventually, the system will stop 

functioning and will need to be restarted manually. 

Although this method may not seem to be a viable approach to 

the deadlock problem, it is nevertheless used in most 

operating systems, as mentioned earlier. Expense is one 

important consideration. Ignoring the possibility of 

deadlocks is cheaper than the other approaches. Since in 

many systems, deadlocks occur infrequently (say, once per 

year), the extra expense of the other methods may not seem 

worthwhile. In addition, methods used to recover from other 

conditions may be put to use to recover from deadlock. In 

some circumstances, a system is in a frozen state but not 

in a deadlocked state. We see this situation, for example, 

with a real-time process running at the highest priority (or 

any process running on a nonpreemptive scheduler) and 

never returning control to the operating system. The system 

must have manual recovery methods for such conditions and 

may simply use those techniques for deadlock recovery. 

 6.4 Deadlock Prevention 

for a deadlock to occur, each of the four necessary conditions 

must hold. By ensuring that at least one of these conditions 

cannot hold, we can prevent the occurrence of a deadlock. We 

elaborate on this approach by examining each of the four 

necessary conditions separately. 

6.4.1 Mutual Exclusion 

The mutual exclusion condition must hold. That is, at least one 

resource must be nonsharable. Sharable resources, in contrast, 
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do not require mutually exclusive access and thus cannot be 

involved in a deadlock. Read-only files are a good example of 

a sharable resource. If several processes attempt to open a read-

only file at the same time, they can be granted simultaneous 

access to the file. A process never needs to wait for a sharable 

resource. In general, however, we cannot prevent deadlocks 

by denying the mutual-exclusion condition, because some 

resources are intrinsically nonsharable. For example, a mutex 

lock cannot be simultaneously shared by several processes. 

6.4.2 Hold and Wait 

To ensure that the hold-and-wait condition never occurs in the 

system, we must guarantee that, whenever a process requests 

a resource, it does not hold any other resources. One protocol 

that we can use requires each process to request and be 

allocated all its resources before it begins execution. We can 

implement this provision by requiring that system calls 

requesting resources for a process precede all other system 

calls. 

An alternative protocol allows a process to request resources 

only when it has none. A process may request some resources 

and use them. Before it can request any additional resources, 

it must release all the resources that it is currently allocated. 

To illustrate the difference between these two protocols, we 

consider a process that copies data from a DVD drive to a file 

on disk, sorts the file, and then prints the results to a printer. 

If all resources must be requested at the beginning of the 

process, then the process must initially request the DVD drive, 

disk file, and printer. It will hold the printer for its entire 

execution, even though it needs the printer only at the end. 

The second method allows the process to request initially 

only the DVD drive and disk file. It copies from the DVD 

drive to the disk and then releases both the DVD drive and 

the disk file. The process must then request the disk file and 

the printer. After copying the disk file to the printer, it 
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releases these two resources and terminates. 

Both these protocols have two main disadvantages. First, 

resource utiliza- tion may be low, since resources may be 

allocated but unused for a long period. In the example given, 

for instance, we can release the DVD drive and disk file, and 

then request the disk file and printer, only if we can be sure 

that our data will remain on the disk file. Otherwise, we must 

request all resources at the beginning for both protocols. 

Second, starvation is possible. A process that needs several 

popular resources may have to wait indefinitely, because at 

least one of the resources that it needs is always allocated to 

some other process. 

 

6.4.3 No Preemption 

The third necessary condition for deadlocks is that there be 

no preemption of resources that have already been allocated. 

To ensure that this condition does not hold, we can use the 

following protocol. If a process is holding some resources 

and requests another resource that cannot be immediately 

allocated to it (that is, the process must wait), then all 

resources the process is currently holding are preempted. In 

other words, these resources are implicitly released. The 

preempted resources are added to the list of resources for 

which the process is waiting. The process will be restarted 

only when it can regain its old resources, as well as the new 

ones that it is requesting. 

Alternatively, if a process requests some resources, we first 

check whether they are available. If they are, we allocate 

them. If they are not, we check whether they are allocated to 

some other process that is waiting for additional resources. If 

so, we preempt the desired resources from the waiting process 

and allocate them to the requesting process. If the resources 

are neither available nor held by a waiting process, the 
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requesting process must wait. While it is waiting, some of its 

resources may be preempted, but only if another process 

requests them. A process can be restarted only when it is 

allocated the new resources it is requesting and recovers any 

resources that were preempted while it was waiting. 

This protocol is often applied to resources whose state can be 

easily saved and restored later, such as CPU registers and 

memory space. It cannot generally be applied to such 

resources as mutex locks and semaphores. 

6.4.4 Circular Wait 

The fourth and final condition for deadlocks is the circular-

wait condition. One way to ensure that this condition never 

holds is to impose a total ordering of all resource types and to 

require that each process requests resources in an increasing 

order of enumeration. 

6.5 Deadlock Avoidance 

Deadlock-prevention algorithms, prevent deadlocks by 

limiting how requests can be made. The limits ensure that at 

least one of the necessary conditions for deadlock cannot 

occur. Possible side effects of preventing deadlocks by this 

method, however, are low device utilization and reduced 

system throughput. 

An alternative method for avoiding deadlocks is to require 

additional information about how resources are to be 

requested. For example, in a system with one tape drive and 

one printer, the system might need to know that process P 

will request first the tape drive and then the printer before 

releasing both resources, whereas process Q will request first 

the printer and then the tape drive. With this knowledge of 

the complete sequence of requests and releases for each 

process, the system can decide for each request whether or 

not the process should wait in order to avoid a possible future 

deadlock. Each request requires that in making this decision  

90



 

 

 

the system consider the resources currently available, the 

resources currently allocated to each process, and the future 

requests and releases of each process. 

The various algorithms that use this approach differ in the 

amount and type of information required. The simplest and 

most useful model requires that each process declare the 

maximum number of resources of each type that it may need. 

Given this a priori information, it is possible to construct 

an algorithm that ensures that the system will never enter a 

deadlocked state. A deadlock-avoidance algorithm 

dynamically examines the resource-allocation state to ensure 

that a circular-wait condition can never exist. The resource- 

allocation state is defined by the number of available and 

allocated resources and the maximum demands of the 

processes. 

 

Review Questions  

 

1) Suppose that a system is in an unsafe state. Show that it 

is possible for the processes to complete their execution 

without entering a deadlocked state. 

2) Is it possible to have a deadlock involving only one 

single-threaded process? Explain your answer. 
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