

# SOUTH VALLEY UNIVERSITY

# FACULTY OF COMPUTERS &INFORMATION

# **Introduction to Algorithms**



1

# Introduction

Two ideas lie gleaming on the jeweler's velvet. The first is the calculus, the second, the algorithm. The calculus and the rich body of mathematical analysis to which it gave rise made modern science possible; but it has been the algorithm that has made possible the modern world.

-David Berlinski, The Advent of the Algorithm, 2000

Why do you need to study algorithms? If you are going to be a computer professional, there are both practical and theoretical reasons to study algorithms. From a practical standpoint, you have to know a standard set of important algorithms from different areas of computing; in addition, you should be able to design new algorithms and analyze their efficiency. From the theoretical standpoint, the study of algorithms, sometimes called *algorithmics*, has come to be recognized as the cornerstone of computer science. David Harel, in his delightful book pointedly titled *Algorithmics: the Spirit of Computing*, put it as follows:

Algorithmics is more than a branch of computer science. It is the core of computer science, and, in all fairness, can be said to be relevant to most of science, business, and technology. [Har92, p. 6]

But even if you are not a student in a computing-related program, there are compelling reasons to study algorithms. To put it bluntly, computer programs would not exist without algorithms. And with computer applications becoming indispensable in almost all aspects of our professional and personal lives, studying algorithms becomes a necessity for more and more people.

Another reason for studying algorithms is their usefulness in developing analytical skills. After all, algorithms can be seen as special kinds of solutions to problems—not just answers but precisely defined procedures for getting answers. Consequently, specific algorithm design techniques can be interpreted as problemsolving strategies that can be useful regardless of whether a computer is involved. Of course, the precision inherently imposed by algorithmic thinking limits the kinds of problems that can be solved with an algorithm. You will not find, for example, an algorithm for living a happy life or becoming rich and famous. On the other hand, this required precision has an important educational advantage. Donald Knuth, one of the most prominent computer scientists in the history of algorithmics, put it as follows:

A person well-trained in computer science knows how to deal with algorithms: how to construct them, manipulate them, understand them, analyze them. This knowledge is preparation for much more than writing good computer programs; it is a general-purpose mental tool that will be a definite aid to the understanding of other subjects, whether they be chemistry, linguistics, or music, etc. The reason for this may be understood in the following way: It has often been said that a person does not really understand something until after teaching it to someone else. Actually, a person does not *really* understand something until after teaching it to a *computer*, i.e., expressing it as an algorithm . . . An attempt to formalize things as algorithms leads to a much deeper understanding than if we simply try to comprehend things in the traditional way. [Knu96, p. 9]

We take up the notion of algorithm in Section 1.1. As examples, we use three algorithms for the same problem: computing the greatest common divisor. There are several reasons for this choice. First, it deals with a problem familiar to everybody from their middle-school days. Second, it makes the important point that the same problem can often be solved by several algorithms. Quite typically, these algorithms differ in their idea, level of sophistication, and efficiency. Third, one of these algorithms deserves to be introduced first, both because of its age—it appeared in Euclid's famous treatise more than two thousand years ago—and its enduring power and importance. Finally, investigation of these three algorithms leads to some general observations about several important properties of algorithms in general.

Section 1.2 deals with algorithmic problem solving. There we discuss several important issues related to the design and analysis of algorithms. The different aspects of algorithmic problem solving range from analysis of the problem and the means of expressing an algorithm to establishing its correctness and analyzing its efficiency. The section does not contain a magic recipe for designing an algorithm for an arbitrary problem. It is a well-established fact that such a recipe does not exist. Still, the material of Section 1.2 should be useful for organizing your work on designing and analyzing algorithms.

Section 1.3 is devoted to a few problem types that have proven to be particularly important to the study of algorithms and their application. In fact, there are textbooks (e.g., [Sed11]) organized around such problem types. I hold the view—shared by many others—that an organization based on algorithm design techniques is superior. In any case, it is very important to be aware of the principal problem types. Not only are they the most commonly encountered problem types in real-life applications, they are used throughout the book to demonstrate particular algorithm design techniques.

Section 1.4 contains a review of fundamental data structures. It is meant to serve as a reference rather than a deliberate discussion of this topic. If you need

a more detailed exposition, there is a wealth of good books on the subject, most of them tailored to a particular programming language.

## **1.1** What Is an Algorithm?

Although there is no universally agreed-on wording to describe this notion, there is general agreement about what the concept means:

An *algorithm* is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

This definition can be illustrated by a simple diagram (Figure 1.1).

The reference to "instructions" in the definition implies that there is something or someone capable of understanding and following the instructions given. We call this a "computer," keeping in mind that before the electronic computer was invented, the word "computer" meant a human being involved in performing numeric calculations. Nowadays, of course, "computers" are those ubiquitous electronic devices that have become indispensable in almost everything we do. Note, however, that although the majority of algorithms are indeed intended for eventual computer implementation, the notion of algorithm does not depend on such an assumption.

As examples illustrating the notion of the algorithm, we consider in this section three methods for solving the same problem: computing the greatest common divisor of two integers. These examples will help us to illustrate several important points:

- The nonambiguity requirement for each step of an algorithm cannot be compromised.
- The range of inputs for which an algorithm works has to be specified carefully.
- The same algorithm can be represented in several different ways.
- There may exist several algorithms for solving the same problem.



**FIGURE 1.1** The notion of the algorithm.

Introduction

 Algorithms for the same problem can be based on very different ideas and can solve the problem with dramatically different speeds.

Recall that the greatest common divisor of two nonnegative, not-both-zero integers m and n, denoted gcd(m, n), is defined as the largest integer that divides both m and n evenly, i.e., with a remainder of zero. Euclid of Alexandria (third century B.C.) outlined an algorithm for solving this problem in one of the volumes of his *Elements* most famous for its systematic exposition of geometry. In modern terms, *Euclid's algorithm* is based on applying repeatedly the equality

$$gcd(m, n) = gcd(n, m \mod n),$$

where  $m \mod n$  is the remainder of the division of m by n, until  $m \mod n$  is equal to 0. Since gcd(m, 0) = m (why?), the last value of m is also the greatest common divisor of the initial m and n.

For example, gcd(60, 24) can be computed as follows:

$$gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.$$

(If you are not impressed by this algorithm, try finding the greatest common divisor of larger numbers, such as those in Problem 6 in this section's exercises.)

Here is a more structured description of this algorithm:

#### **Euclid's algorithm** for computing gcd(*m*, *n*)

- **Step 1** If n = 0, return the value of *m* as the answer and stop; otherwise, proceed to Step 2.
- **Step 2** Divide *m* by *n* and assign the value of the remainder to *r*.
- **Step 3** Assign the value of *n* to *m* and the value of *r* to *n*. Go to Step 1.

Alternatively, we can express the same algorithm in pseudocode:

#### **ALGORITHM** Euclid(m, n)

//Computes gcd(m, n) by Euclid's algorithm //Input: Two nonnegative, not-both-zero integers *m* and *n* //Output: Greatest common divisor of *m* and *n* while  $n \neq 0$  do  $r \leftarrow m \mod n$  $m \leftarrow n$  $n \leftarrow r$ return *m* 

How do we know that Euclid's algorithm eventually comes to a stop? This follows from the observation that the second integer of the pair gets smaller with each iteration and it cannot become negative. Indeed, the new value of n on the next iteration is  $m \mod n$ , which is always smaller than n (why?). Hence, the value of the second integer eventually becomes 0, and the algorithm stops.

Just as with many other problems, there are several algorithms for computing the greatest common divisor. Let us look at the other two methods for this problem. The first is simply based on the definition of the greatest common divisor of m and n as the largest integer that divides both numbers evenly. Obviously, such a common divisor cannot be greater than the smaller of these numbers, which we will denote by  $t = \min\{m, n\}$ . So we can start by checking whether t divides both m and n: if it does, t is the answer; if it does not, we simply decrease t by 1 and try again. (How do we know that the process will eventually stop?) For example, for numbers 60 and 24, the algorithm will try first 24, then 23, and so on, until it reaches 12, where it stops.

#### **Consecutive integer checking algorithm** for computing gcd(m, n)

- **Step 1** Assign the value of  $min\{m, n\}$  to *t*.
- **Step 2** Divide *m* by *t*. If the remainder of this division is 0, go to Step 3; otherwise, go to Step 4.
- Step 3 Divide n by t. If the remainder of this division is 0, return the value of t as the answer and stop; otherwise, proceed to Step 4.

**Step 4** Decrease the value of *t* by 1. Go to Step 2.

Note that unlike Euclid's algorithm, this algorithm, in the form presented, does not work correctly when one of its input numbers is zero. This example illustrates why it is so important to specify the set of an algorithm's inputs explicitly and carefully.

The third procedure for finding the greatest common divisor should be familiar to you from middle school.

#### **Middle-school procedure** for computing gcd(*m*, *n*)

**Step 1** Find the prime factors of *m*.

- **Step 2** Find the prime factors of *n*.
- **Step 3** Identify all the common factors in the two prime expansions found in Step 1 and Step 2. (If p is a common factor occurring  $p_m$  and  $p_n$  times in m and n, respectively, it should be repeated min $\{p_m, p_n\}$  times.)
- **Step 4** Compute the product of all the common factors and return it as the greatest common divisor of the numbers given.

Thus, for the numbers 60 and 24, we get

$$60 = 2 \cdot 2 \cdot 3 \cdot 5$$
  
24 = 2 \cdot 2 \cdot 3  
gcd(60, 24) = 2 \cdot 2 \cdot 3 = 12.

Nostalgia for the days when we learned this method should not prevent us from noting that the last procedure is much more complex and slower than Euclid's algorithm. (We will discuss methods for finding and comparing running times of algorithms in the next chapter.) In addition to inferior efficiency, the middleschool procedure does not qualify, in the form presented, as a legitimate algorithm. Why? Because the prime factorization steps are not defined unambiguously: they require a list of prime numbers, and I strongly suspect that your middle-school math teacher did not explain how to obtain such a list. This is not a matter of unnecessary nitpicking. Unless this issue is resolved, we cannot, say, write a program implementing this procedure. Incidentally, Step 3 is also not defined clearly enough. Its ambiguity is much easier to rectify than that of the factorization steps, however. How would you find common elements in two sorted lists?

So, let us introduce a simple algorithm for generating consecutive primes not exceeding any given integer n > 1. It was probably invented in ancient Greece and is known as the *sieve of Eratosthenes* (ca. 200 B.C.). The algorithm starts by initializing a list of prime candidates with consecutive integers from 2 to n. Then, on its first iteration, the algorithm eliminates from the list all multiples of 2, i.e., 4, 6, and so on. Then it moves to the next item on the list, which is 3, and eliminates its multiples. (In this straightforward version, there is an overhead because some numbers, such as 6, are eliminated more than once.) No pass for number 4 is needed: since 4 itself and all its multiples are also multiples of 2, they were already eliminated on a previous pass. The next remaining number on the list, which is used on the third pass, is 5. The algorithm continues in this fashion until no more numbers can be eliminated from the list. The remaining integers of the list are the primes needed.

As an example, consider the application of the algorithm to finding the list of primes not exceeding n = 25:

| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 2 | 3 |   | 5 |   | 7 |   | 9 |    | 11 |    | 13 |    | 15 |    | 17 |    | 19 |    | 21 |    | 23 |    | 25 |
| 2 | 3 |   | 5 |   | 7 |   |   |    | 11 |    | 13 |    |    |    | 17 |    | 19 |    |    |    | 23 |    | 25 |
| 2 | 3 |   | 5 |   | 7 |   |   |    | 11 |    | 13 |    |    |    | 17 |    | 19 |    |    |    | 23 |    |    |

For this example, no more passes are needed because they would eliminate numbers already eliminated on previous iterations of the algorithm. The remaining numbers on the list are the consecutive primes less than or equal to 25.

What is the largest number p whose multiples can still remain on the list to make further iterations of the algorithm necessary? Before we answer this question, let us first note that if p is a number whose multiples are being eliminated on the current pass, then the first multiple we should consider is  $p \cdot p$  because all its smaller multiples  $2p, \ldots, (p-1)p$  have been eliminated on earlier passes through the list. This observation helps to avoid eliminating the same number more than once. Obviously,  $p \cdot p$  should not be greater than n, and therefore p cannot exceed  $\sqrt{n}$  rounded down (denoted  $\lfloor \sqrt{n} \rfloor$  using the so-called *floor function*). We assume in the following pseudocode that there is a function available for computing  $\lfloor \sqrt{n} \rfloor$ ; alternatively, we could check the inequality  $p \cdot p \leq n$  as the loop continuation condition there.

#### **ALGORITHM** *Sieve*(*n*)

//Implements the sieve of Eratosthenes
//Input: A positive integer n > 1
//Output: Array L of all prime numbers less than or equal to n

for  $p \leftarrow 2$  to n do  $A[p] \leftarrow p$ for  $p \leftarrow 2$  to  $|\sqrt{n}|$  do //see note before pseudocode if  $A[p] \neq 0$ //p hasn't been eliminated on previous passes  $j \leftarrow p * p$ while  $j \leq n$  do  $A[j] \leftarrow 0$ //mark element as eliminated  $j \leftarrow j + p$ //copy the remaining elements of A to array L of the primes  $i \leftarrow 0$ for  $p \leftarrow 2$  to n do if  $A[p] \neq 0$  $L[i] \leftarrow A[p]$  $i \leftarrow i + 1$ return L

So now we can incorporate the sieve of Eratosthenes into the middle-school procedure to get a legitimate algorithm for computing the greatest common divisor of two positive integers. Note that special care needs to be exercised if one or both input numbers are equal to 1: because mathematicians do not consider 1 to be a prime number, strictly speaking, the method does not work for such inputs.

Before we leave this section, one more comment is in order. The examples considered in this section notwithstanding, the majority of algorithms in use today—even those that are implemented as computer programs—do not deal with mathematical problems. Look around for algorithms helping us through our daily routines, both professional and personal. May this ubiquity of algorithms in today's world strengthen your resolve to learn more about these fascinating engines of the information age.

#### Exercises 1.1

- 1. Do some research on al-Khorezmi (also al-Khwarizmi), the man from whose name the word "algorithm" is derived. In particular, you should learn what the origins of the words "algorithm" and "algebra" have in common.
- **2.** Given that the official purpose of the U.S. patent system is the promotion of the "useful arts," do you think algorithms are patentable in this country? Should they be?
- **3. a.** Write down driving directions for going from your school to your home with the precision required from an algorithm's description.
  - **b.** Write down a recipe for cooking your favorite dish with the precision required by an algorithm.
- **4.** Design an algorithm for computing  $\lfloor \sqrt{n} \rfloor$  for any positive integer *n*. Besides assignment and comparison, your algorithm may only use the four basic arithmetical operations.

## **1.2** Fundamentals of Algorithmic Problem Solving

Let us start by reiterating an important point made in the introduction to this chapter:

We can consider algorithms to be procedural solutions to problems.

These solutions are not answers but specific instructions for getting answers. It is this emphasis on precisely defined constructive procedures that makes computer science distinct from other disciplines. In particular, this distinguishes it from theoretical mathematics, whose practitioners are typically satisfied with just proving the existence of a solution to a problem and, possibly, investigating the solution's properties.

We now list and briefly discuss a sequence of steps one typically goes through in designing and analyzing an algorithm (Figure 1.2).

#### Understanding the Problem

From a practical perspective, the first thing you need to do before designing an algorithm is to understand completely the problem given. Read the problem's description carefully and ask questions if you have any doubts about the problem, do a few small examples by hand, think about special cases, and ask questions again if needed.

There are a few types of problems that arise in computing applications quite often. We review them in the next section. If the problem in question is one of them, you might be able to use a known algorithm for solving it. Of course, it helps to understand how such an algorithm works and to know its strengths and weaknesses, especially if you have to choose among several available algorithms. But often you will not find a readily available algorithm and will have to design your own. The sequence of steps outlined in this section should help you in this exciting but not always easy task.

An input to an algorithm specifies an *instance* of the problem the algorithm solves. It is very important to specify exactly the set of instances the algorithm needs to handle. (As an example, recall the variations in the set of instances for the three greatest common divisor algorithms discussed in the previous section.) If you fail to do this, your algorithm may work correctly for a majority of inputs but crash on some "boundary" value. Remember that a correct algorithm is not one that works most of the time, but one that works correctly for *all* legitimate inputs.

Do not skimp on this first step of the algorithmic problem-solving process; otherwise, you will run the risk of unnecessary rework.

#### Ascertaining the Capabilities of the Computational Device

Once you completely understand a problem, you need to ascertain the capabilities of the computational device the algorithm is intended for. The vast majority of



FIGURE 1.2 Algorithm design and analysis process.

algorithms in use today are still destined to be programmed for a computer closely resembling the von Neumann machine—a computer architecture outlined by the prominent Hungarian-American mathematician John von Neumann (1903–1957), in collaboration with A. Burks and H. Goldstine, in 1946. The essence of this architecture is captured by the so-called *random-access machine (RAM)*. Its central assumption is that instructions are executed one after another, one operation at a time. Accordingly, algorithms designed to be executed on such machines are called *sequential algorithms*.

The central assumption of the RAM model does not hold for some newer computers that can execute operations concurrently, i.e., in parallel. Algorithms that take advantage of this capability are called *parallel algorithms*. Still, studying the classic techniques for design and analysis of algorithms under the RAM model remains the cornerstone of algorithmics for the foreseeable future. Should you worry about the speed and amount of memory of a computer at your disposal? If you are designing an algorithm as a scientific exercise, the answer is a qualified no. As you will see in Section 2.1, most computer scientists prefer to study algorithms in terms independent of specification parameters for a particular computer. If you are designing an algorithm as a practical tool, the answer may depend on a problem you need to solve. Even the "slow" computers of today are almost unimaginably fast. Consequently, in many situations you need not worry about a computer being too slow for the task. There are important problems, however, that are very complex by their nature, or have to process huge volumes of data, or deal with applications where the time is critical. In such situations, it is imperative to be aware of the speed and memory available on a particular computer system.

#### Choosing between Exact and Approximate Problem Solving

The next principal decision is to choose between solving the problem exactly or solving it approximately. In the former case, an algorithm is called an *exact algorithm*; in the latter case, an algorithm is called an *approximation algorithm*. Why would one opt for an approximation algorithm? First, there are important problems that simply cannot be solved exactly for most of their instances; examples include extracting square roots, solving nonlinear equations, and evaluating definite integrals. Second, available algorithms for solving a problem exactly can be unacceptably slow because of the problem's intrinsic complexity. This happens, in particular, for many problems involving a very large number of choices; you will see examples of such difficult problems in Chapters 3, 11, and 12. Third, an approximation algorithm can be a part of a more sophisticated algorithm that solves a problem exactly.

#### **Algorithm Design Techniques**

Now, with all the components of the algorithmic problem solving in place, how do you design an algorithm to solve a given problem? This is the main question this book seeks to answer by teaching you several general design techniques.

What is an algorithm design technique?

An *algorithm design technique* (or "strategy" or "paradigm") is a general approach to solving problems algorithmically that is applicable to a variety of problems from different areas of computing.

Check this book's table of contents and you will see that a majority of its chapters are devoted to individual design techniques. They distill a few key ideas that have proven to be useful in designing algorithms. Learning these techniques is of utmost importance for the following reasons.

First, they provide guidance for designing algorithms for new problems, i.e., problems for which there is no known satisfactory algorithm. Therefore—to use the language of a famous proverb—learning such techniques is akin to learning

to fish as opposed to being given a fish caught by somebody else. It is not true, of course, that each of these general techniques will be necessarily applicable to every problem you may encounter. But taken together, they do constitute a powerful collection of tools that you will find quite handy in your studies and work.

Second, algorithms are the cornerstone of computer science. Every science is interested in classifying its principal subject, and computer science is no exception. Algorithm design techniques make it possible to classify algorithms according to an underlying design idea; therefore, they can serve as a natural way to both categorize and study algorithms.

#### **Designing an Algorithm and Data Structures**

While the algorithm design techniques do provide a powerful set of general approaches to algorithmic problem solving, designing an algorithm for a particular problem may still be a challenging task. Some design techniques can be simply inapplicable to the problem in question. Sometimes, several techniques need to be combined, and there are algorithms that are hard to pinpoint as applications of the known design techniques. Even when a particular design technique is applicable, getting an algorithm often requires a nontrivial ingenuity on the part of the algorithm designer. With practice, both tasks—choosing among the general techniques and applying them—get easier, but they are rarely easy.

Of course, one should pay close attention to choosing data structures appropriate for the operations performed by the algorithm. For example, the sieve of Eratosthenes introduced in Section 1.1 would run longer if we used a linked list instead of an array in its implementation (why?). Also note that some of the algorithm design techniques discussed in Chapters 6 and 7 depend intimately on structuring or restructuring data specifying a problem's instance. Many years ago, an influential textbook proclaimed the fundamental importance of both algorithms and data structures for computer programming by its very title: *Algorithms* + *Data Structures* = *Programs* [Wir76]. In the new world of object-oriented programming, data structures remain crucially important for both design and analysis of algorithms. We review basic data structures in Section 1.4.

#### Methods of Specifying an Algorithm

Once you have designed an algorithm, you need to specify it in some fashion. In Section 1.1, to give you an example, Euclid's algorithm is described in words (in a free and also a step-by-step form) and in pseudocode. These are the two options that are most widely used nowadays for specifying algorithms.

Using a natural language has an obvious appeal; however, the inherent ambiguity of any natural language makes a succinct and clear description of algorithms surprisingly difficult. Nevertheless, being able to do this is an important skill that you should strive to develop in the process of learning algorithms.

*Pseudocode* is a mixture of a natural language and programming languagelike constructs. Pseudocode is usually more precise than natural language, and its usage often yields more succinct algorithm descriptions. Surprisingly, computer scientists have never agreed on a single form of pseudocode, leaving textbook authors with a need to design their own "dialects." Fortunately, these dialects are so close to each other that anyone familiar with a modern programming language should be able to understand them all.

This book's dialect was selected to cause minimal difficulty for a reader. For the sake of simplicity, we omit declarations of variables and use indentation to show the scope of such statements as **for**, **if**, and **while**. As you saw in the previous section, we use an arrow " $\leftarrow$ " for the assignment operation and two slashes "//" for comments.

In the earlier days of computing, the dominant vehicle for specifying algorithms was a *flowchart*, a method of expressing an algorithm by a collection of connected geometric shapes containing descriptions of the algorithm's steps. This representation technique has proved to be inconvenient for all but very simple algorithms; nowadays, it can be found only in old algorithm books.

The state of the art of computing has not yet reached a point where an algorithm's description—be it in a natural language or pseudocode—can be fed into an electronic computer directly. Instead, it needs to be converted into a computer program written in a particular computer language. We can look at such a program as yet another way of specifying the algorithm, although it is preferable to consider it as the algorithm's implementation.

#### Proving an Algorithm's Correctness

Once an algorithm has been specified, you have to prove its *correctness*. That is, you have to prove that the algorithm yields a required result for every legitimate input in a finite amount of time. For example, the correctness of Euclid's algorithm for computing the greatest common divisor stems from the correctness of the equality  $gcd(m, n) = gcd(n, m \mod n)$  (which, in turn, needs a proof; see Problem 7 in Exercises 1.1), the simple observation that the second integer gets smaller on every iteration of the algorithm, and the fact that the algorithm stops when the second integer becomes 0.

For some algorithms, a proof of correctness is quite easy; for others, it can be quite complex. A common technique for proving correctness is to use mathematical induction because an algorithm's iterations provide a natural sequence of steps needed for such proofs. It might be worth mentioning that although tracing the algorithm's performance for a few specific inputs can be a very worthwhile activity, it cannot prove the algorithm's correctness conclusively. But in order to show that an algorithm is incorrect, you need just one instance of its input for which the algorithm fails.

The notion of correctness for approximation algorithms is less straightforward than it is for exact algorithms. For an approximation algorithm, we usually would like to be able to show that the error produced by the algorithm does not exceed a predefined limit. You can find examples of such investigations in Chapter 12.

### Analyzing an Algorithm

We usually want our algorithms to possess several qualities. After correctness, by far the most important is *efficiency*. In fact, there are two kinds of algorithm efficiency: *time efficiency*, indicating how fast the algorithm runs, and *space efficiency*, indicating how much extra memory it uses. A general framework and specific techniques for analyzing an algorithm's efficiency appear in Chapter 2.

Another desirable characteristic of an algorithm is *simplicity*. Unlike efficiency, which can be precisely defined and investigated with mathematical rigor, simplicity, like beauty, is to a considerable degree in the eye of the beholder. For example, most people would agree that Euclid's algorithm is simpler than the middle-school procedure for computing gcd(m, n), but it is not clear whether Euclid's algorithm is simpler than the consecutive integer checking algorithm. Still, simplicity is an important algorithm characteristic to strive for. Why? Because simpler algorithms are easier to understand and easier to program; consequently, the resulting programs usually contain fewer bugs. There is also the undeniable aesthetic appeal of simplicity. Sometimes simpler algorithms are also more efficient than more complicated alternatives. Unfortunately, it is not always true, in which case a judicious compromise needs to be made.

Yet another desirable characteristic of an algorithm is *generality*. There are, in fact, two issues here: generality of the problem the algorithm solves and the set of inputs it accepts. On the first issue, note that it is sometimes easier to design an algorithm for a problem posed in more general terms. Consider, for example, the problem of determining whether two integers are relatively prime, i.e., whether their only common divisor is equal to 1. It is easier to design an algorithm for a more general problem of computing the greatest common divisor of two integers and, to solve the former problem, check whether the gcd is 1 or not. There are situations, however, where designing a more general algorithm is unnecessary or difficult or even impossible. For example, it is unnecessary to sort a list of *n* numbers to find its median, which is its  $\lceil n/2 \rceil$ th smallest element. To give another example, the standard formula for roots of a quadratic equation cannot be generalized to handle polynomials of arbitrary degrees.

As to the set of inputs, your main concern should be designing an algorithm that can handle a set of inputs that is natural for the problem at hand. For example, excluding integers equal to 1 as possible inputs for a greatest common divisor algorithm would be quite unnatural. On the other hand, although the standard formula for the roots of a quadratic equation holds for complex coefficients, we would normally not implement it on this level of generality unless this capability is explicitly required.

If you are not satisfied with the algorithm's efficiency, simplicity, or generality, you must return to the drawing board and redesign the algorithm. In fact, even if your evaluation is positive, it is still worth searching for other algorithmic solutions. Recall the three different algorithms in the previous section for computing the greatest common divisor: generally, you should not expect to get the best algorithm on the first try. At the very least, you should try to fine-tune the algorithm you

already have. For example, we made several improvements in our implementation of the sieve of Eratosthenes compared with its initial outline in Section 1.1. (Can you identify them?) You will do well if you keep in mind the following observation of Antoine de Saint-Exupéry, the French writer, pilot, and aircraft designer: "A designer knows he has arrived at perfection not when there is no longer anything to add, but when there is no longer anything to take away."<sup>1</sup>

#### **Coding an Algorithm**

Most algorithms are destined to be ultimately implemented as computer programs. Programming an algorithm presents both a peril and an opportunity. The peril lies in the possibility of making the transition from an algorithm to a program either incorrectly or very inefficiently. Some influential computer scientists strongly believe that unless the correctness of a computer program is proven with full mathematical rigor, the program cannot be considered correct. They have developed special techniques for doing such proofs (see [Gri81]), but the power of these techniques of formal verification is limited so far to very small programs.

As a practical matter, the validity of programs is still established by testing. Testing of computer programs is an art rather than a science, but that does not mean that there is nothing in it to learn. Look up books devoted to testing and debugging; even more important, test and debug your program thoroughly whenever you implement an algorithm.

Also note that throughout the book, we assume that inputs to algorithms belong to the specified sets and hence require no verification. When implementing algorithms as programs to be used in actual applications, you should provide such verifications.

Of course, implementing an algorithm correctly is necessary but not sufficient: you would not like to diminish your algorithm's power by an inefficient implementation. Modern compilers do provide a certain safety net in this regard, especially when they are used in their code optimization mode. Still, you need to be aware of such standard tricks as computing a loop's invariant (an expression that does not change its value) outside the loop, collecting common subexpressions, replacing expensive operations by cheap ones, and so on. (See [Ker99] and [Ben00] for a good discussion of code tuning and other issues related to algorithm programming.) Typically, such improvements can speed up a program only by a constant factor, whereas a better algorithm can make a difference in running time by orders of magnitude. But once an algorithm is selected, a 10–50% speedup may be worth an effort.

<sup>1.</sup> I found this call for design simplicity in an essay collection by Jon Bentley [Ben00]; the essays deal with a variety of issues in algorithm design and implementation and are justifiably titled *Programming Pearls*. I wholeheartedly recommend the writings of both Jon Bentley and Antoine de Saint-Exupéry.

A working program provides an additional opportunity in allowing an empirical analysis of the underlying algorithm. Such an analysis is based on timing the program on several inputs and then analyzing the results obtained. We discuss the advantages and disadvantages of this approach to analyzing algorithms in Section 2.6.

In conclusion, let us emphasize again the main lesson of the process depicted in Figure 1.2:

As a rule, a good algorithm is a result of repeated effort and rework.

Even if you have been fortunate enough to get an algorithmic idea that seems perfect, you should still try to see whether it can be improved.

Actually, this is good news since it makes the ultimate result so much more enjoyable. (Yes, I did think of naming this book *The Joy of Algorithms*.) On the other hand, how does one know when to stop? In the real world, more often than not a project's schedule or the impatience of your boss will stop you. And so it should be: perfection is expensive and in fact not always called for. Designing an algorithm is an engineering-like activity that calls for compromises among competing goals under the constraints of available resources, with the designer's time being one of the resources.

In the academic world, the question leads to an interesting but usually difficult investigation of an algorithm's *optimality*. Actually, this question is not about the efficiency of an algorithm but about the complexity of the problem it solves: What is the minimum amount of effort *any* algorithm will need to exert to solve the problem? For some problems, the answer to this question is known. For example, any algorithm that sorts an array by comparing values of its elements needs about  $n \log_2 n$  comparisons for some arrays of size n (see Section 11.2). But for many seemingly easy problems such as integer multiplication, computer scientists do not yet have a final answer.

Another important issue of algorithmic problem solving is the question of whether or not every problem can be solved by an algorithm. We are not talking here about problems that do not have a solution, such as finding real roots of a quadratic equation with a negative discriminant. For such cases, an output indicating that the problem does not have a solution is all we can and should expect from an algorithm. Nor are we talking about ambiguously stated problems. Even some unambiguous problems that must have a simple yes or no answer are "undecidable," i.e., unsolvable by any algorithm. An important example of such a problem appears in Section 11.3. Fortunately, a vast majority of problems in practical computing *can* be solved by an algorithm.

Before leaving this section, let us be sure that you do not have the misconception—possibly caused by the somewhat mechanical nature of the diagram of Figure 1.2—that designing an algorithm is a dull activity. There is nothing further from the truth: inventing (or discovering?) algorithms is a very creative and rewarding process. This book is designed to convince you that this is the case.

Introduction

- **8.** Give an example of a problem other than computing the greatest common divisor for which you know more than one algorithm. Which of them is simpler? Which is more efficient?
- **9.** Consider the following algorithm for finding the distance between the two closest elements in an array of numbers.

```
ALGORITHM MinDistance(A[0..n-1])
```

```
//Input: Array A[0..n - 1] of numbers

//Output: Minimum distance between two of its elements

dmin \leftarrow \infty

for i \leftarrow 0 to n - 1 do

for j \leftarrow 0 to n - 1 do

if i \neq j and |A[i] - A[j]| < dmin

dmin \leftarrow |A[i] - A[j]|

return dmin
```

return amin

Make as many improvements as you can in this algorithmic solution to the problem. If you need to, you may change the algorithm altogether; if not, improve the implementation given.

**10.** One of the most influential books on problem solving, titled *How To Solve It* [Pol57], was written by the Hungarian-American mathematician George Pólya (1887–1985). Pólya summarized his ideas in a four-point summary. Find this summary on the Internet or, better yet, in his book, and compare it with the plan outlined in Section 1.2. What do they have in common? How are they different?

# **1.3 Important Problem Types**

In the limitless sea of problems one encounters in computing, there are a few areas that have attracted particular attention from researchers. By and large, their interest has been driven either by the problem's practical importance or by some specific characteristics making the problem an interesting research subject; fortunately, these two motivating forces reinforce each other in most cases.

In this section, we are going to introduce the most important problem types:

- Sorting
- Searching
- String processing
- Graph problems
- Combinatorial problems
- Geometric problems
- Numerical problems

These problems are used in subsequent chapters of the book to illustrate different algorithm design techniques and methods of algorithm analysis.

#### Sorting

The *sorting problem* is to rearrange the items of a given list in nondecreasing order. Of course, for this problem to be meaningful, the nature of the list items must allow such an ordering. (Mathematicians would say that there must exist a relation of total ordering.) As a practical matter, we usually need to sort lists of numbers, characters from an alphabet, character strings, and, most important, records similar to those maintained by schools about their students, libraries about their holdings, and companies about their employees. In the case of records, we need to choose a piece of information to guide sorting. For example, we can choose to sort student records in alphabetical order of names or by student number or by student grade-point average. Such a specially chosen piece of information is called a *key*. Computer scientists often talk about sorting a list of keys even when the list's items are not records but, say, just integers.

Why would we want a sorted list? To begin with, a sorted list can be a required output of a task such as ranking Internet search results or ranking students by their GPA scores. Further, sorting makes many questions about the list easier to answer. The most important of them is searching: it is why dictionaries, telephone books, class lists, and so on are sorted. You will see other examples of the usefulness of list presorting in Section 6.1. In a similar vein, sorting is used as an auxiliary step in several important algorithms in other areas, e.g., geometric algorithms and data compression. The greedy approach—an important algorithm design technique discussed later in the book—requires a sorted input.

By now, computer scientists have discovered dozens of different sorting algorithms. In fact, inventing a new sorting algorithm has been likened to designing the proverbial mousetrap. And I am happy to report that the hunt for a better sorting mousetrap continues. This perseverance is admirable in view of the following facts. On the one hand, there are a few good sorting algorithms that sort an arbitrary array of size *n* using about  $n \log_2 n$  comparisons. On the other hand, no algorithm that sorts by key comparisons (as opposed to, say, comparing small pieces of keys) can do substantially better than that.

There is a reason for this embarrassment of algorithmic riches in the land of sorting. Although some algorithms are indeed better than others, there is no algorithm that would be the best solution in all situations. Some of the algorithms are simple but relatively slow, while others are faster but more complex; some work better on randomly ordered inputs, while others do better on almost-sorted lists; some are suitable only for lists residing in the fast memory, while others can be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algorithm is called *stable* if it preserves the relative order of any two equal elements in its input. In other words, if an input list contains two equal elements in positions *i* and *j* where i < j, then in the sorted list they have to be in positions i' and j',

respectively, such that i' < j'. This property can be desirable if, for example, we have a list of students sorted alphabetically and we want to sort it according to student GPA: a stable algorithm will yield a list in which students with the same GPA will still be sorted alphabetically. Generally speaking, algorithms that can exchange keys located far apart are not stable, but they usually work faster; you will see how this general comment applies to important sorting algorithms later in the book.

The second notable feature of a sorting algorithm is the amount of extra memory the algorithm requires. An algorithm is said to be *in-place* if it does not require extra memory, except, possibly, for a few memory units. There are important sorting algorithms that are in-place and those that are not.

#### Searching

The *searching problem* deals with finding a given value, called a *search key*, in a given set (or a multiset, which permits several elements to have the same value). There are plenty of searching algorithms to choose from. They range from the straightforward sequential search to a spectacularly efficient but limited binary search and algorithms based on representing the underlying set in a different form more conducive to searching. The latter algorithms are of particular importance for real-world applications because they are indispensable for storing and retrieving information from large databases.

For searching, too, there is no single algorithm that fits all situations best. Some algorithms work faster than others but require more memory; some are very fast but applicable only to sorted arrays; and so on. Unlike with sorting algorithms, there is no stability problem, but different issues arise. Specifically, in applications where the underlying data may change frequently relative to the number of searches, searching has to be considered in conjunction with two other operations: an addition to and deletion from the data set of an item. In such situations, data structures and algorithms should be chosen to strike a balance among the requirements of each operation. Also, organizing very large data sets for efficient searching poses special challenges with important implications for real-world applications.

#### String Processing

In recent decades, the rapid proliferation of applications dealing with nonnumerical data has intensified the interest of researchers and computing practitioners in string-handling algorithms. A *string* is a sequence of characters from an alphabet. Strings of particular interest are text strings, which comprise letters, numbers, and special characters; bit strings, which comprise zeros and ones; and gene sequences, which can be modeled by strings of characters from the four-character alphabet {A, C, G, T}. It should be pointed out, however, that string-processing algorithms have been important for computer science for a long time in conjunction with computer languages and compiling issues. One particular problem—that of searching for a given word in a text—has attracted special attention from researchers. They call it *string matching*. Several algorithms that exploit the special nature of this type of searching have been invented. We introduce one very simple algorithm in Chapter 3 and discuss two algorithms based on a remarkable idea by R. Boyer and J. Moore in Chapter 7.

#### **Graph Problems**

One of the oldest and most interesting areas in algorithmics is graph algorithms. Informally, a *graph* can be thought of as a collection of points called vertices, some of which are connected by line segments called edges. (A more formal definition is given in the next section.) Graphs are an interesting subject to study, for both theoretical and practical reasons. Graphs can be used for modeling a wide variety of applications, including transportation, communication, social and economic networks, project scheduling, and games. Studying different technical and social aspects of the Internet in particular is one of the active areas of current research involving computer scientists, economists, and social scientists (see, e.g., [Eas10]).

Basic graph algorithms include graph-traversal algorithms (how can one reach all the points in a network?), shortest-path algorithms (what is the best route between two cities?), and topological sorting for graphs with directed edges (is a set of courses with their prerequisites consistent or self-contradictory?). Fortunately, these algorithms can be considered illustrations of general design techniques; accordingly, you will find them in corresponding chapters of the book.

Some graph problems are computationally very hard; the most well-known examples are the traveling salesman problem and the graph-coloring problem. The *traveling salesman problem (TSP)* is the problem of finding the shortest tour through *n* cities that visits every city exactly once. In addition to obvious applications involving route planning, it arises in such modern applications as circuit board and VLSI chip fabrication, X-ray crystallography, and genetic engineering. The *graph-coloring problem* seeks to assign the smallest number of colors to the vertices of a graph so that no two adjacent vertices are the same color. This problem arises in several applications, such as event scheduling: if the events are represented by vertices that are connected by an edge if and only if the corresponding events cannot be scheduled at the same time, a solution to the graph-coloring problem yields an optimal schedule.

#### **Combinatorial Problems**

From a more abstract perspective, the traveling salesman problem and the graphcoloring problem are examples of *combinatorial problems*. These are problems that ask, explicitly or implicitly, to find a combinatorial object—such as a permutation, a combination, or a subset—that satisfies certain constraints. A desired combinatorial object may also be required to have some additional property such as a maximum value or a minimum cost. Generally speaking, combinatorial problems are the most difficult problems in computing, from both a theoretical and practical standpoint. Their difficulty stems from the following facts. First, the number of combinatorial objects typically grows extremely fast with a problem's size, reaching unimaginable magnitudes even for moderate-sized instances. Second, there are no known algorithms for solving most such problems exactly in an acceptable amount of time. Moreover, most computer scientists believe that such algorithms do not exist. This conjecture has been neither proved nor disproved, and it remains the most important unresolved issue in theoretical computer science. We discuss this topic in more detail in Section 11.3.

Some combinatorial problems can be solved by efficient algorithms, but they should be considered fortunate exceptions to the rule. The shortest-path problem mentioned earlier is among such exceptions.

#### **Geometric Problems**

*Geometric algorithms* deal with geometric objects such as points, lines, and polygons. The ancient Greeks were very much interested in developing procedures (they did not call them algorithms, of course) for solving a variety of geometric problems, including problems of constructing simple geometric shapes—triangles, circles, and so on—with an unmarked ruler and a compass. Then, for about 2000 years, intense interest in geometric algorithms disappeared, to be resurrected in the age of computers—no more rulers and compasses, just bits, bytes, and good old human ingenuity. Of course, today people are interested in geometric algorithms with quite different applications in mind, such as computer graphics, robotics, and tomography.

We will discuss algorithms for only two classic problems of computational geometry: the closest-pair problem and the convex-hull problem. The *closest-pair problem* is self-explanatory: given *n* points in the plane, find the closest pair among them. The *convex-hull problem* asks to find the smallest convex polygon that would include all the points of a given set. If you are interested in other geometric algorithms, you will find a wealth of material in such specialized monographs as [deB10], [OR098], and [Pre85].

#### **Numerical Problems**

*Numerical problems*, another large special area of applications, are problems that involve mathematical objects of continuous nature: solving equations and systems of equations, computing definite integrals, evaluating functions, and so on. The majority of such mathematical problems can be solved only approximately. Another principal difficulty stems from the fact that such problems typically require manipulating real numbers, which can be represented in a computer only approximately. Moreover, a large number of arithmetic operations performed on approximately represented numbers can lead to an accumulation of the round-off

error to a point where it can drastically distort an output produced by a seemingly sound algorithm.

Many sophisticated algorithms have been developed over the years in this area, and they continue to play a critical role in many scientific and engineering applications. But in the last 30 years or so, the computing industry has shifted its focus to business applications. These new applications require primarily algorithms for information storage, retrieval, transportation through networks, and presentation to users. As a result of this revolutionary change, numerical analysis has lost its formerly dominating position in both industry and computer science programs. Still, it is important for any computer-literate person to have at least a rudimentary idea about numerical algorithms. We discuss several classical numerical algorithms in Sections 6.2, 11.4, and 12.4.

#### Exercises 1.3 -

1. Consider the algorithm for the sorting problem that sorts an array by counting, for each of its elements, the number of smaller elements and then uses this information to put the element in its appropriate position in the sorted array:

```
ALGORITHM ComparisonCountingSort(A[0..n-1])
```

```
//Sorts an array by comparison counting
//Input: Array A[0..n - 1] of orderable values
//Output: Array S[0..n - 1] of A's elements sorted
// in nondecreasing order
for i \leftarrow 0 to n - 1 do
Count[i] \leftarrow 0
for i \leftarrow 0 to n - 2 do
for j \leftarrow i + 1 to n - 1 do
if A[i] < A[j]
Count[j] \leftarrow Count[j] + 1
else Count[i] \leftarrow Count[i] + 1
for i \leftarrow 0 to n - 1 do
S[Count[i]] \leftarrow A[i]
return S
```

- **a.** Apply this algorithm to sorting the list 60, 35, 81, 98, 14, 47.
- **b.** Is this algorithm stable?
- **c.** Is it in-place?
- **2.** Name the algorithms for the searching problem that you already know. Give a good succinct description of each algorithm in English. If you know no such algorithms, use this opportunity to design one.
- 3. Design a simple algorithm for the string-matching problem.

2

# Fundamentals of the Analysis of Algorithm Efficiency

I often say that when you can measure what you are speaking about and express it in numbers you know something about it; but when you cannot express it in numbers your knowledge is a meagre and unsatisfactory kind: it may be the beginning of knowledge but you have scarcely, in your thoughts, advanced to the stage of science, whatever the matter may be.

-Lord Kelvin (1824–1907)

Not everything that can be counted counts, and not everything that counts can be counted.

—Albert Einstein (1879–1955)

This chapter is devoted to analysis of algorithms. The American Heritage Dictionary defines "analysis" as "the separation of an intellectual or substantial whole into its constituent parts for individual study." Accordingly, each of the principal dimensions of an algorithm pointed out in Section 1.2 is both a legitimate and desirable subject of study. But the term "analysis of algorithms" is usually used in a narrower, technical sense to mean an investigation of an algorithm's efficiency with respect to two resources: running time and memory space. This emphasis on efficiency is easy to explain. First, unlike such dimensions as simplicity and generality, efficiency can be studied in precise quantitative terms. Second, one can argue—although this is hardly always the case, given the speed and memory of today's computers—that the efficiency considerations are of primary importance from a practical point of view. In this chapter, we too will limit the discussion to an algorithm's efficiency. We start with a general framework for analyzing algorithm efficiency in Section 2.1. This section is arguably the most important in the chapter; the fundamental nature of the topic makes it also one of the most important sections in the entire book.

In Section 2.2, we introduce three notations: O ("big oh"),  $\Omega$  ("big omega"), and  $\Theta$  ("big theta"). Borrowed from mathematics, these notations have become *the* language for discussing the efficiency of algorithms.

In Section 2.3, we show how the general framework outlined in Section 2.1 can be systematically applied to analyzing the efficiency of nonrecursive algorithms. The main tool of such an analysis is setting up a sum representing the algorithm's running time and then simplifying the sum by using standard sum manipulation techniques.

In Section 2.4, we show how the general framework outlined in Section 2.1 can be systematically applied to analyzing the efficiency of recursive algorithms. Here, the main tool is not a summation but a special kind of equation called a recurrence relation. We explain how such recurrence relations can be set up and then introduce a method for solving them.

Although we illustrate the analysis framework and the methods of its applications by a variety of examples in the first four sections of this chapter, Section 2.5 is devoted to yet another example—that of the Fibonacci numbers. Discovered 800 years ago, this remarkable sequence appears in a variety of applications both within and outside computer science. A discussion of the Fibonacci sequence serves as a natural vehicle for introducing an important class of recurrence relations not solvable by the method of Section 2.4. We also discuss several algorithms for computing the Fibonacci numbers, mostly for the sake of a few general observations about the efficiency of algorithms and methods of analyzing them.

The methods of Sections 2.3 and 2.4 provide a powerful technique for analyzing the efficiency of many algorithms with mathematical clarity and precision, but these methods are far from being foolproof. The last two sections of the chapter deal with two approaches—empirical analysis and algorithm visualization—that complement the pure mathematical techniques of Sections 2.3 and 2.4. Much newer and, hence, less developed than their mathematical counterparts, these approaches promise to play an important role among the tools available for analysis of algorithm efficiency.

## 2.1 The Analysis Framework

In this section, we outline a general framework for analyzing the efficiency of algorithms. We already mentioned in Section 1.2 that there are two kinds of efficiency: time efficiency and space efficiency. *Time efficiency*, also called *time complexity*, indicates how fast an algorithm in question runs. *Space efficiency*, also called *space complexity*, refers to the amount of memory units required by the algorithm in addition to the space needed for its input and output. In the early days of electronic computing, both resources—time and space—were at a premium. Half a century of relentless technological innovations have improved the computer's speed and memory size by many orders of magnitude. Now the amount of extra space required by an algorithm is typically not of as much concern, with the caveat that there is still, of course, a difference between the fast main memory, the slower secondary memory, and the cache. The time issue has not diminished quite to the same extent, however. In addition, the research experience has shown that for most problems, we can achieve much more spectacular progress in speed than in space. Therefore, following a well-established tradition of algorithm textbooks, we primarily concentrate on time efficiency, but the analytical framework introduced here is applicable to analyzing space efficiency as well.

#### Measuring an Input's Size

Let's start with the obvious observation that almost all algorithms run longer on larger inputs. For example, it takes longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to investigate an algorithm's efficiency as a function of some parameter n indicating the algorithm's input size.<sup>1</sup> In most cases, selecting such a parameter is quite straightforward. For example, it will be the size of the list for problems of sorting, searching, finding the list's smallest element, and most other problems dealing with lists. For the problem of evaluating a polynomial  $p(x) = a_n x^n + \cdots + a_0$  of degree n, it will be the polynomial's degree or the number of its coefficients, which is larger by 1 than its degree. You'll see from the discussion that such a minor difference is inconsequential for the efficiency analysis.

There are situations, of course, where the choice of a parameter indicating an input size does matter. One such example is computing the product of two  $n \times n$  matrices. There are two natural measures of size for this problem. The first and more frequently used is the matrix order n. But the other natural contender is the total number of elements N in the matrices being multiplied. (The latter is also more general since it is applicable to matrices that are not necessarily square.) Since there is a simple formula relating these two measures, we can easily switch from one to the other, but the answer about an algorithm's efficiency will be qualitatively different depending on which of these two measures we use (see Problem 2 in this section's exercises).

The choice of an appropriate size metric can be influenced by operations of the algorithm in question. For example, how should we measure an input's size for a spell-checking algorithm? If the algorithm examines individual characters of its input, we should measure the size by the number of characters; if it works by processing words, we should count their number in the input.

We should make a special note about measuring input size for algorithms solving problems such as checking primality of a positive integer n. Here, the input is just one number, and it is this number's magnitude that determines the input

<sup>1.</sup> Some algorithms require more than one parameter to indicate the size of their inputs (e.g., the number of vertices and the number of edges for algorithms on graphs represented by their adjacency lists).

size. In such situations, it is preferable to measure size by the number b of bits in the n's binary representation:

$$b = \lfloor \log_2 n \rfloor + 1. \tag{2.1}$$

This metric usually gives a better idea about the efficiency of algorithms in question.

#### **Units for Measuring Running Time**

The next issue concerns units for measuring an algorithm's running time. Of course, we can simply use some standard unit of time measurement—a second, or millisecond, and so on—to measure the running time of a program implementing the algorithm. There are obvious drawbacks to such an approach, however: dependence on the speed of a particular computer, dependence on the quality of a program implementing the algorithm and of the compiler used in generating the machine code, and the difficulty of clocking the actual running time of the program. Since we are after a measure of an *algorithm*'s efficiency, we would like to have a metric that does not depend on these extraneous factors.

One possible approach is to count the number of times each of the algorithm's operations is executed. This approach is both excessively difficult and, as we shall see, usually unnecessary. The thing to do is to identify the most important operation of the algorithm, called the *basic operation*, the operation contributing the most to the total running time, and compute the number of times the basic operation is executed.

As a rule, it is not difficult to identify the basic operation of an algorithm: it is usually the most time-consuming operation in the algorithm's innermost loop. For example, most sorting algorithms work by comparing elements (keys) of a list being sorted with each other; for such algorithms, the basic operation is a key comparison. As another example, algorithms for mathematical problems typically involve some or all of the four arithmetical operations: addition, subtraction, multiplication, and division. Of the four, the most time-consuming operation is division, followed by multiplication and then addition and subtraction, with the last two usually considered together.<sup>2</sup>

Thus, the established framework for the analysis of an algorithm's time efficiency suggests measuring it by counting the number of times the algorithm's basic operation is executed on inputs of size n. We will find out how to compute such a count for nonrecursive and recursive algorithms in Sections 2.3 and 2.4, respectively.

Here is an important application. Let  $c_{op}$  be the execution time of an algorithm's basic operation on a particular computer, and let C(n) be the number of times this operation needs to be executed for this algorithm. Then we can estimate

On some computers, multiplication does not take longer than addition/subtraction (see, for example, the timing data provided by Kernighan and Pike in [Ker99, pp. 185–186]).

the running time T(n) of a program implementing this algorithm on that computer by the formula

$$T(n) \approx c_{op}C(n).$$

Of course, this formula should be used with caution. The count C(n) does not contain any information about operations that are not basic, and, in fact, the count itself is often computed only approximately. Further, the constant  $c_{op}$  is also an approximation whose reliability is not always easy to assess. Still, unless n is extremely large or very small, the formula can give a reasonable estimate of the algorithm's running time. It also makes it possible to answer such questions as "How much faster would this algorithm run on a machine that is 10 times faster than the one we have?" The answer is, obviously, 10 times. Or, assuming that  $C(n) = \frac{1}{2}n(n-1)$ , how much longer will the algorithm run if we double its input size? The answer is about four times longer. Indeed, for all but very small values of n,

$$C(n) = \frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \approx \frac{1}{2}n^2$$

and therefore

$$\frac{T(2n)}{T(n)} \approx \frac{c_{op}C(2n)}{c_{op}C(n)} \approx \frac{\frac{1}{2}(2n)^2}{\frac{1}{2}n^2} = 4.$$

Note that we were able to answer the last question without actually knowing the value of  $c_{op}$ : it was neatly cancelled out in the ratio. Also note that  $\frac{1}{2}$ , the multiplicative constant in the formula for the count C(n), was also cancelled out. It is for these reasons that the efficiency analysis framework ignores multiplicative constants and concentrates on the count's *order of growth* to within a constant multiple for large-size inputs.

#### Orders of Growth

Why this emphasis on the count's order of growth for large input sizes? A difference in running times on small inputs is not what really distinguishes efficient algorithms from inefficient ones. When we have to compute, for example, the greatest common divisor of two small numbers, it is not immediately clear how much more efficient Euclid's algorithm is compared to the other two algorithms discussed in Section 1.1 or even why we should care which of them is faster and by how much. It is only when we have to find the greatest common divisor of two large numbers that the difference in algorithm efficiencies becomes both clear and important. For large values of n, it is the function's order of growth that counts: just look at Table 2.1, which contains values of a few functions particularly important for analysis of algorithms.

The magnitude of the numbers in Table 2.1 has a profound significance for the analysis of algorithms. The function growing the slowest among these is the logarithmic function. It grows so slowly, in fact, that we should expect a program

| n                                                                           | $\log_2 n$                         | n                                                                                            | $n \log_2 n$                                                                                                                          | $n^2$                                                                                                                                        | $n^3$                                                                                        | $2^n$                                   | n!                                           |
|-----------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|
| $ \begin{array}{c} 10 \\ 10^2 \\ 10^3 \\ 10^4 \\ 10^5 \\ 10^6 \end{array} $ | 3.3<br>6.6<br>10<br>13<br>17<br>20 | $ \begin{array}{r} 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{5} \\ 10^{6} \\ \end{array} $ | $3.3 \cdot 10^{1} \\ 6.6 \cdot 10^{2} \\ 1.0 \cdot 10^{4} \\ 1.3 \cdot 10^{5} \\ 1.7 \cdot 10^{6} \\ 2.0 \cdot 10^{7} \\ \end{cases}$ | $     \begin{array}{r}       10^{2} \\       10^{4} \\       10^{6} \\       10^{8} \\       10^{10} \\       10^{12} \\       \end{array} $ | $ \begin{array}{r} 10^{3} \\ 10^{6} \\ 10^{9} \\ 10^{12} \\ 10^{15} \\ 10^{18} \end{array} $ | 10 <sup>3</sup><br>1.3·10 <sup>30</sup> | 3.6·10 <sup>6</sup><br>9.3·10 <sup>157</sup> |

**TABLE 2.1** Values (some approximate) of several functions important for analysis of algorithms

implementing an algorithm with a logarithmic basic-operation count to run practically instantaneously on inputs of all realistic sizes. Also note that although specific values of such a count depend, of course, on the logarithm's base, the formula

$$\log_a n = \log_a b \log_b n$$

makes it possible to switch from one base to another, leaving the count logarithmic but with a new multiplicative constant. This is why we omit a logarithm's base and write simply  $\log n$  in situations where we are interested just in a function's order of growth to within a multiplicative constant.

On the other end of the spectrum are the exponential function  $2^n$  and the factorial function n! Both these functions grow so fast that their values become astronomically large even for rather small values of n. (This is the reason why we did not include their values for  $n > 10^2$  in Table 2.1.) For example, it would take about  $4 \cdot 10^{10}$  years for a computer making a trillion ( $10^{12}$ ) operations per second to execute  $2^{100}$  operations. Though this is incomparably faster than it would have taken to execute 100! operations, it is still longer than 4.5 billion ( $4.5 \cdot 10^9$ ) years—the estimated age of the planet Earth. There is a tremendous difference between the orders of growth of the functions  $2^n$  and n!, yet both are often referred to as "exponential-growth functions" (or simply "exponential") despite the fact that, strictly speaking, only the former should be referred to as such. The bottom line, which is important to remember, is this:

Algorithms that require an exponential number of operations are practical for solving only problems of very small sizes.

Another way to appreciate the qualitative difference among the orders of growth of the functions in Table 2.1 is to consider how they react to, say, a twofold increase in the value of their argument *n*. The function  $\log_2 n$  increases in value by just 1 (because  $\log_2 2n = \log_2 2 + \log_2 n = 1 + \log_2 n$ ); the linear function increases twofold, the linearithmic function  $n \log_2 n$  increases slightly more than twofold; the quadratic function  $n^2$  and cubic function  $n^3$  increase fourfold and

eightfold, respectively (because  $(2n)^2 = 4n^2$  and  $(2n)^3 = 8n^3$ ); the value of  $2^n$  gets squared (because  $2^{2n} = (2^n)^2$ ); and *n*! increases much more than that (yes, even mathematics refuses to cooperate to give a neat answer for *n*!).

#### Worst-Case, Best-Case, and Average-Case Efficiencies

In the beginning of this section, we established that it is reasonable to measure an algorithm's efficiency as a function of a parameter indicating the size of the algorithm's input. But there are many algorithms for which running time depends not only on an input size but also on the specifics of a particular input. Consider, as an example, sequential search. This is a straightforward algorithm that searches for a given item (some search key K) in a list of n elements by checking successive elements of the list until either a match with the search key is found or the list is exhausted. Here is the algorithm's pseudocode, in which, for simplicity, a list is implemented as an array. It also assumes that the second condition  $A[i] \neq K$  will not be checked if the first one, which checks that the array's index does not exceed its upper bound, fails.

**ALGORITHM** SequentialSearch(A[0..n-1], K)

```
//Searches for a given value in a given array by sequential search
//Input: An array A[0..n − 1] and a search key K
//Output: The index of the first element in A that matches K
// or −1 if there are no matching elements
i ← 0
while i < n and A[i] ≠ K do</li>
i ← i + 1
if i < n return i</li>
else return −1
```

Clearly, the running time of this algorithm can be quite different for the same list size *n*. In the worst case, when there are no matching elements or the first matching element happens to be the last one on the list, the algorithm makes the largest number of key comparisons among all possible inputs of size  $n: C_{worst}(n) = n$ .

The *worst-case efficiency* of an algorithm is its efficiency for the worst-case input of size n, which is an input (or inputs) of size n for which the algorithm runs the longest among all possible inputs of that size. The way to determine the worst-case efficiency of an algorithm is, in principle, quite straightforward: analyze the algorithm to see what kind of inputs yield the largest value of the basic operation's count C(n) among all possible inputs of size n and then compute this worst-case value  $C_{worst}(n)$ . (For sequential search, the answer was obvious. The methods for handling less trivial situations are explained in subsequent sections of this chapter.) Clearly, the worst-case analysis provides very important information about an algorithm's efficiency by bounding its running time from above. In other

words, it guarantees that for any instance of size n, the running time will not exceed  $C_{worst}(n)$ , its running time on the worst-case inputs.

The *best-case efficiency* of an algorithm is its efficiency for the best-case input of size n, which is an input (or inputs) of size n for which the algorithm runs the fastest among all possible inputs of that size. Accordingly, we can analyze the best-case efficiency as follows. First, we determine the kind of inputs for which the count C(n) will be the smallest among all possible inputs of size n. (Note that the best case does not mean the smallest input; it means the input of size n for which the algorithm runs the fastest.) Then we ascertain the value of C(n) on these most convenient inputs. For example, the best-case inputs for sequential search are lists of size n with their first element equal to a search key; accordingly,  $C_{best}(n) = 1$  for this algorithm.

The analysis of the best-case efficiency is not nearly as important as that of the worst-case efficiency. But it is not completely useless, either. Though we should not expect to get best-case inputs, we might be able to take advantage of the fact that for some algorithms a good best-case performance extends to some useful types of inputs close to being the best-case ones. For example, there is a sorting algorithm (insertion sort) for which the best-case inputs are already sorted arrays on which the algorithm works very fast. Moreover, the best-case efficiency deteriorates only slightly for almost-sorted arrays. Therefore, such an algorithm might well be the method of choice for applications dealing with almost-sorted arrays. And, of course, if the best-case efficiency of an algorithm is unsatisfactory, we can immediately discard it without further analysis.

It should be clear from our discussion, however, that neither the worst-case analysis nor its best-case counterpart yields the necessary information about an algorithm's behavior on a "typical" or "random" input. This is the information that the *average-case efficiency* seeks to provide. To analyze the algorithm's average-case efficiency, we must make some assumptions about possible inputs of size *n*.

Let's consider again sequential search. The standard assumptions are that (a) the probability of a successful search is equal to p ( $0 \le p \le 1$ ) and (b) the probability of the first match occurring in the *i*th position of the list is the same for every *i*. Under these assumptions—the validity of which is usually difficult to verify, their reasonableness notwithstanding—we can find the average number of key comparisons  $C_{avg}(n)$  as follows. In the case of a successful search, the probability of the first match occurring in the *i*th position of the list is p/n for every *i*, and the number of comparisons made by the algorithm in such a situation is obviously *i*. In the case of an unsuccessful search, the number of comparisons will be *n* with the probability of such a search being (1 - p). Therefore,

$$C_{avg}(n) = \left[1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + i \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}\right] + n \cdot (1-p)$$
  
=  $\frac{p}{n} \left[1 + 2 + \dots + i + \dots + n\right] + n(1-p)$   
=  $\frac{p}{n} \frac{n(n+1)}{2} + n(1-p) = \frac{p(n+1)}{2} + n(1-p).$ 

This general formula yields some quite reasonable answers. For example, if p = 1 (the search must be successful), the average number of key comparisons made by sequential search is (n + 1)/2; that is, the algorithm will inspect, on average, about half of the list's elements. If p = 0 (the search must be unsuccessful), the average number of key comparisons will be *n* because the algorithm will inspect all *n* elements on all such inputs.

As you can see from this very elementary example, investigation of the average-case efficiency is considerably more difficult than investigation of the worst-case and best-case efficiencies. The direct approach for doing this involves dividing all instances of size n into several classes so that for each instance of the class the number of times the algorithm's basic operation is executed is the same. (What were these classes for sequential search?) Then a probability distribution of inputs is obtained or assumed so that the expected value of the basic operation's count can be found.

The technical implementation of this plan is rarely easy, however, and probabilistic assumptions underlying it in each particular case are usually difficult to verify. Given our quest for simplicity, we will mostly quote known results about the average-case efficiency of algorithms under discussion. If you are interested in derivations of these results, consult such books as [Baa00], [Sed96], [KnuI], [KnuII], and [KnuIII].

It should be clear from the preceding discussion that the average-case efficiency cannot be obtained by taking the average of the worst-case and the best-case efficiencies. Even though this average does occasionally coincide with the average-case cost, it is not a legitimate way of performing the average-case analysis.

Does one really need the average-case efficiency information? The answer is unequivocally yes: there are many important algorithms for which the averagecase efficiency is much better than the overly pessimistic worst-case efficiency would lead us to believe. So, without the average-case analysis, computer scientists could have missed many important algorithms.

Yet another type of efficiency is called *amortized efficiency*. It applies not to a single run of an algorithm but rather to a sequence of operations performed on the same data structure. It turns out that in some situations a single operation can be expensive, but the total time for an entire sequence of *n* such operations is always significantly better than the worst-case efficiency of that single operation multiplied by *n*. So we can "amortize" the high cost of such a worst-case occurrence over the entire sequence in a manner similar to the way a business would amortize the cost of an expensive item over the years of the item's productive life. This sophisticated approach was discovered by the American computer scientist Robert Tarjan, who used it, among other applications, in developing an interesting variation of the classic binary search tree (see [Tar87] for a quite readable nontechnical discussion and [Tar85] for a technical account). We will see an example of the usefulness of amortized efficiency in Section 9.2, when we consider algorithms for finding unions of disjoint sets.

#### **Recapitulation of the Analysis Framework**

Before we leave this section, let us summarize the main points of the framework outlined above.

- Both time and space efficiencies are measured as functions of the algorithm's input size.
- Time efficiency is measured by counting the number of times the algorithm's basic operation is executed. Space efficiency is measured by counting the number of extra memory units consumed by the algorithm.
- The efficiencies of some algorithms may differ significantly for inputs of the same size. For such algorithms, we need to distinguish between the worst-case, average-case, and best-case efficiencies.
- The framework's primary interest lies in the order of growth of the algorithm's running time (extra memory units consumed) as its input size goes to infinity.

In the next section, we look at formal means to investigate orders of growth. In Sections 2.3 and 2.4, we discuss particular methods for investigating nonrecursive and recursive algorithms, respectively. It is there that you will see how the analysis framework outlined here can be applied to investigating the efficiency of specific algorithms. You will encounter many more examples throughout the rest of the book.

## Exercises 2.1 -

- 1. For each of the following algorithms, indicate (i) a natural size metric for its inputs, (ii) its basic operation, and (iii) whether the basic operation count can be different for inputs of the same size:
  - a. computing the sum of *n* numbers
  - **b.** computing *n*!
  - c. finding the largest element in a list of n numbers
  - d. Euclid's algorithm
  - e. sieve of Eratosthenes
  - f. pen-and-pencil algorithm for multiplying two n-digit decimal integers
- **2. a.** Consider the definition-based algorithm for adding two  $n \times n$  matrices. What is its basic operation? How many times is it performed as a function of the matrix order n? As a function of the total number of elements in the input matrices?
  - **b.** Answer the same questions for the definition-based algorithm for matrix multiplication.

- **3.** Consider a variation of sequential search that scans a list to return the number of occurrences of a given search key in the list. Does its efficiency differ from the efficiency of classic sequential search?
- **4. a.** *Glove selection* There are 22 gloves in a drawer: 5 pairs of red gloves, 4 pairs of yellow, and 2 pairs of green. You select the gloves in the dark and can check them only after a selection has been made. What is the smallest number of gloves you need to select to have at least one matching pair in the best case? In the worst case?
  - **b.** *Missing socks* Imagine that after washing 5 distinct pairs of socks, you discover that two socks are missing. Of course, you would like to have the largest number of complete pairs remaining. Thus, you are left with 4 complete pairs in the best-case scenario and with 3 complete pairs in the worst case. Assuming that the probability of disappearance for each of the 10 socks is the same, find the probability of the best-case scenario; the probability of the worst-case scenario; the number of pairs you should expect in the average case.
- **5. a.** Prove formula (2.1) for the number of bits in the binary representation of a positive decimal integer.
  - **b.** Prove the alternative formula for the number of bits in the binary representation of a positive integer *n*:

$$b = \lceil \log_2(n+1) \rceil.$$

- c. What would be the analogous formulas for the number of decimal digits?
- **d.** Explain why, within the accepted analysis framework, it does not matter whether we use binary or decimal digits in measuring *n*'s size.
- 6. Suggest how any sorting algorithm can be augmented in a way to make the best-case count of its key comparisons equal to just n 1 (*n* is a list's size, of course). Do you think it would be a worthwhile addition to any sorting algorithm?
- 7. Gaussian elimination, the classic algorithm for solving systems of *n* linear equations in *n* unknowns, requires about  $\frac{1}{3}n^3$  multiplications, which is the algorithm's basic operation.
  - **a.** How much longer should you expect Gaussian elimination to work on a system of 1000 equations versus a system of 500 equations?
  - **b.** You are considering buying a computer that is 1000 times faster than the one you currently have. By what factor will the faster computer increase the sizes of systems solvable in the same amount of time as on the old computer?
- **8.** For each of the following functions, indicate how much the function's value will change if its argument is increased fourfold.

**a.**  $\log_2 n$  **b.**  $\sqrt{n}$  **c.** n **d.**  $n^2$  **e.**  $n^3$  **f.**  $2^n$ 

537

**9.** For each of the following pairs of functions, indicate whether the first function of each of the following pairs has a lower, same, or higher order of growth (to within a constant multiple) than the second function.

| <b>a.</b> $n(n+1)$ and $2000n^2$ | <b>b.</b> $100n^2$ and $0.01n^3$        |
|----------------------------------|-----------------------------------------|
| <b>c.</b> $\log_2 n$ and $\ln n$ | <b>d.</b> $\log_2^2 n$ and $\log_2 n^2$ |
| <b>e.</b> $2^{n-1}$ and $2^n$    | <b>f.</b> $(n - 1)!$ and $n!$           |

10. Invention of chess

- **a.** According to a well-known legend, the game of chess was invented many centuries ago in northwestern India by a certain sage. When he took his invention to his king, the king liked the game so much that he offered the inventor any reward he wanted. The inventor asked for some grain to be obtained as follows: just a single grain of wheat was to be placed on the first square of the chessboard, two on the second, four on the third, eight on the fourth, and so on, until all 64 squares had been filled. If it took just 1 second to count each grain, how long would it take to count all the grain due to him?
- **b.** How long would it take if instead of doubling the number of grains for each square of the chessboard, the inventor asked for adding two grains?

# 2.2 Asymptotic Notations and Basic Efficiency Classes

As pointed out in the previous section, the efficiency analysis framework concentrates on the order of growth of an algorithm's basic operation count as the principal indicator of the algorithm's efficiency. To compare and rank such orders of growth, computer scientists use three notations: O (big oh),  $\Omega$  (big omega), and  $\Theta$  (big theta). First, we introduce these notations informally, and then, after several examples, formal definitions are given. In the following discussion, t(n) and g(n) can be any nonnegative functions defined on the set of natural numbers. In the context we are interested in, t(n) will be an algorithm's running time (usually indicated by its basic operation count C(n)), and g(n) will be some simple function to compare the count with.

#### Informal Introduction

Informally, O(g(n)) is the set of all functions with a lower or same order of growth as g(n) (to within a constant multiple, as *n* goes to infinity). Thus, to give a few examples, the following assertions are all true:

$$n \in O(n^2),$$
  $100n + 5 \in O(n^2),$   $\frac{1}{2}n(n-1) \in O(n^2).$ 

577

Indeed, the first two functions are linear and hence have a lower order of growth than  $g(n) = n^2$ , while the last one is quadratic and hence has the same order of growth as  $n^2$ . On the other hand,

$$n^3 \notin O(n^2),$$
  $0.00001n^3 \notin O(n^2),$   $n^4 + n + 1 \notin O(n^2).$ 

Indeed, the functions  $n^3$  and  $0.00001n^3$  are both cubic and hence have a higher order of growth than  $n^2$ , and so has the fourth-degree polynomial  $n^4 + n + 1$ .

The second notation,  $\Omega(g(n))$ , stands for the set of all functions with a higher or same order of growth as g(n) (to within a constant multiple, as *n* goes to infinity). For example,

$$n^3 \in \Omega(n^2),$$
  $\frac{1}{2}n(n-1) \in \Omega(n^2),$  but  $100n + 5 \notin \Omega(n^2).$ 

Finally,  $\Theta(g(n))$  is the set of all functions that have the same order of growth as g(n) (to within a constant multiple, as n goes to infinity). Thus, every quadratic function  $an^2 + bn + c$  with a > 0 is in  $\Theta(n^2)$ , but so are, among infinitely many others,  $n^2 + \sin n$  and  $n^2 + \log n$ . (Can you explain why?)

Hopefully, this informal introduction has made you comfortable with the idea behind the three asymptotic notations. So now come the formal definitions.

#### **O**-notation

**DEFINITION** A function t(n) is said to be in O(g(n)), denoted  $t(n) \in O(g(n))$ , if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer  $n_0$  such that

$$t(n) \le cg(n)$$
 for all  $n \ge n_0$ .

The definition is illustrated in Figure 2.1 where, for the sake of visual clarity, n is extended to be a real number.

As an example, let us formally prove one of the assertions made in the introduction:  $100n + 5 \in O(n^2)$ . Indeed,

$$100n + 5 \le 100n + n$$
 (for all  $n \ge 5$ ) =  $101n \le 101n^2$ .

Thus, as values of the constants c and  $n_0$  required by the definition, we can take 101 and 5, respectively.

Note that the definition gives us a lot of freedom in choosing specific values for constants c and  $n_0$ . For example, we could also reason that

$$100n + 5 \le 100n + 5n$$
 (for all  $n \ge 1$ ) =  $105n$ 

to complete the proof with c = 105 and  $n_0 = 1$ .



**FIGURE 2.1** Big-oh notation:  $t(n) \in O(g(n))$ .



**FIGURE 2.2** Big-omega notation:  $t(n) \in \Omega(g(n))$ .

#### $\Omega$ -notation

**DEFINITION** A function t(n) is said to be in  $\Omega(g(n))$ , denoted  $t(n) \in \Omega(g(n))$ , if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer  $n_0$  such that

$$t(n) \ge cg(n)$$
 for all  $n \ge n_0$ .

The definition is illustrated in Figure 2.2.

Here is an example of the formal proof that  $n^3 \in \Omega(n^2)$ :

$$n^3 \ge n^2$$
 for all  $n \ge 0$ ,

i.e., we can select c = 1 and  $n_0 = 0$ .


**FIGURE 2.3** Big-theta notation:  $t(n) \in \Theta(g(n))$ .

### Θ-notation

**DEFINITION** A function t(n) is said to be in  $\Theta(g(n))$ , denoted  $t(n) \in \Theta(g(n))$ , if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants  $c_1$  and  $c_2$  and some nonnegative integer  $n_0$  such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all  $n \ge n_0$ .

The definition is illustrated in Figure 2.3.

For example, let us prove that  $\frac{1}{2}n(n-1) \in \Theta(n^2)$ . First, we prove the right inequality (the upper bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2 \quad \text{for all } n \ge 0.$$

Second, we prove the left inequality (the lower bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n$$
 (for all  $n \ge 2$ ) =  $\frac{1}{4}n^2$ .

Hence, we can select  $c_2 = \frac{1}{4}$ ,  $c_1 = \frac{1}{2}$ , and  $n_0 = 2$ .

## **Useful Property Involving the Asymptotic Notations**

Using the formal definitions of the asymptotic notations, we can prove their general properties (see Problem 7 in this section's exercises for a few simple examples). The following property, in particular, is useful in analyzing algorithms that comprise two consecutively executed parts.

**THEOREM** If  $t_1(n) \in O(g_1(n))$  and  $t_2(n) \in O(g_2(n))$ , then

 $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).$ 

(The analogous assertions are true for the  $\Omega$  and  $\Theta$  notations as well.)

**PROOF** The proof extends to orders of growth the following simple fact about four arbitrary real numbers  $a_1$ ,  $b_1$ ,  $a_2$ ,  $b_2$ : if  $a_1 \le b_1$  and  $a_2 \le b_2$ , then  $a_1 + a_2 \le 2 \max\{b_1, b_2\}$ .

Since  $t_1(n) \in O(g_1(n))$ , there exist some positive constant  $c_1$  and some non-negative integer  $n_1$  such that

$$t_1(n) \le c_1 g_1(n)$$
 for all  $n \ge n_1$ .

Similarly, since  $t_2(n) \in O(g_2(n))$ ,

$$t_2(n) \le c_2 g_2(n)$$
 for all  $n \ge n_2$ .

Let us denote  $c_3 = \max\{c_1, c_2\}$  and consider  $n \ge \max\{n_1, n_2\}$  so that we can use both inequalities. Adding them yields the following:

$$t_1(n) + t_2(n) \le c_1 g_1(n) + c_2 g_2(n)$$
  
$$\le c_3 g_1(n) + c_3 g_2(n) = c_3 [g_1(n) + g_2(n)]$$
  
$$\le c_3 2 \max\{g_1(n), g_2(n)\}.$$

Hence,  $t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$ , with the constants c and  $n_0$  required by the O definition being  $2c_3 = 2 \max\{c_1, c_2\}$  and  $\max\{n_1, n_2\}$ , respectively.

So what does this property imply for an algorithm that comprises two consecutively executed parts? It implies that the algorithm's overall efficiency is determined by the part with a higher order of growth, i.e., its least efficient part:

$$\left|\begin{array}{c} t_1(n) \in O(g_1(n)) \\ \hline t_2(n) \in O(g_2(n)) \end{array}\right\} \quad t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

For example, we can check whether an array has equal elements by the following two-part algorithm: first, sort the array by applying some known sorting algorithm; second, scan the sorted array to check its consecutive elements for equality. If, for example, a sorting algorithm used in the first part makes no more than  $\frac{1}{2}n(n-1)$  comparisons (and hence is in  $O(n^2)$ ) while the second part makes no more than n-1 comparisons (and hence is in O(n)), the efficiency of the entire algorithm will be in  $O(\max\{n^2, n\}) = O(n^2)$ .

## Using Limits for Comparing Orders of Growth

Though the formal definitions of O,  $\Omega$ , and  $\Theta$  are indispensable for proving their abstract properties, they are rarely used for comparing the orders of growth of two specific functions. A much more convenient method for doing so is based on

computing the limit of the ratio of two functions in question. Three principal cases may arise:

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n), \\ c & \text{implies that } t(n) \text{ has the same order of growth as } g(n), \\ \infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n).^3 \end{cases}$$

Note that the first two cases mean that  $t(n) \in O(g(n))$ , the last two mean that  $t(n) \in \Omega(g(n))$ , and the second case means that  $t(n) \in \Theta(g(n))$ .

The limit-based approach is often more convenient than the one based on the definitions because it can take advantage of the powerful calculus techniques developed for computing limits, such as L'Hôpital's rule

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \lim_{n \to \infty} \frac{t'(n)}{g'(n)}$$

and Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 for large values of  $n$ .

Here are three examples of using the limit-based approach to comparing orders of growth of two functions.

**EXAMPLE 1** Compare the orders of growth of  $\frac{1}{2}n(n-1)$  and  $n^2$ . (This is one of the examples we used at the beginning of this section to illustrate the definitions.)

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

Since the limit is equal to a positive constant, the functions have the same order of growth or, symbolically,  $\frac{1}{2}n(n-1) \in \Theta(n^2)$ .

**EXAMPLE 2** Compare the orders of growth of  $\log_2 n$  and  $\sqrt{n}$ . (Unlike Example 1, the answer here is not immediately obvious.)

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2\log_2 e \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

Since the limit is equal to zero,  $\log_2 n$  has a smaller order of growth than  $\sqrt{n}$ . (Since  $\lim_{n\to\infty} \frac{\log_2 n}{\sqrt{n}} = 0$ , we can use the so-called *little-oh notation*:  $\log_2 n \in o(\sqrt{n})$ . Unlike the big-Oh, the little-oh notation is rarely used in analysis of algorithms.)

<sup>3.</sup> The fourth case, in which such a limit does not exist, rarely happens in the actual practice of analyzing algorithms. Still, this possibility makes the limit-based approach to comparing orders of growth less general than the one based on the definitions of O, Ω, and Θ.

**EXAMPLE 3** Compare the orders of growth of n! and  $2^n$ . (We discussed this informally in Section 2.1.) Taking advantage of Stirling's formula, we get

$$\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{2^n} = \lim_{n \to \infty} \sqrt{2\pi n} \frac{n^n}{2^n e^n} = \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{2e}\right)^n = \infty$$

Thus, though  $2^n$  grows very fast, n! grows still faster. We can write symbolically that  $n! \in \Omega(2^n)$ ; note, however, that while the big-Omega notation does not preclude the possibility that n! and  $2^n$  have the same order of growth, the limit computed here certainly does.

### **Basic Efficiency Classes**

Even though the efficiency analysis framework puts together all the functions whose orders of growth differ by a constant multiple, there are still infinitely many such classes. (For example, the exponential functions  $a^n$  have different orders of growth for different values of base a.) Therefore, it may come as a surprise that the time efficiencies of a large number of algorithms fall into only a few classes. These classes are listed in Table 2.2 in increasing order of their orders of growth, along with their names and a few comments.

You could raise a concern that classifying algorithms by their asymptotic efficiency would be of little practical use since the values of multiplicative constants are usually left unspecified. This leaves open the possibility of an algorithm in a worse efficiency class running faster than an algorithm in a better efficiency class for inputs of realistic sizes. For example, if the running time of one algorithm is  $n^3$ while the running time of the other is  $10^6n^2$ , the cubic algorithm will outperform the quadratic algorithm unless *n* exceeds  $10^6$ . A few such anomalies are indeed known. Fortunately, multiplicative constants usually do not differ that drastically. As a rule, you should expect an algorithm from a better asymptotic efficiency class to outperform an algorithm from a worse class even for moderately sized inputs. This observation is especially true for an algorithm with a better than exponential running time versus an exponential (or worse) algorithm.

## Exercises 2.2 -

- **1.** Use the most appropriate notation among O,  $\Theta$ , and  $\Omega$  to indicate the time efficiency class of sequential search (see Section 2.1)
  - a. in the worst case.
  - **b.** in the best case.
  - **c.** in the average case.
- **2.** Use the informal definitions of O,  $\Theta$ , and  $\Omega$  to determine whether the following assertions are true or false.

| Class                 | Name         | Comments                                                                                                                                                                                                                                                                                               |
|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                     | constant     | Short of best-case efficiencies, very few reasonable<br>examples can be given since an algorithm's running<br>time typically goes to infinity when its input size grows<br>infinitely large.                                                                                                           |
| log n                 | logarithmic  | Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 4.4). Note that a logarithmic algorithm cannot take into account all its input or even a fixed fraction of it: any algorithm that does so will have at least linear running time. |
| n                     | linear       | Algorithms that scan a list of size $n$ (e.g., sequential search) belong to this class.                                                                                                                                                                                                                |
| n log n               | linearithmic | Many divide-and-conquer algorithms (see Chapter 5),<br>including mergesort and quicksort in the average case,<br>fall into this category.                                                                                                                                                              |
| <i>n</i> <sup>2</sup> | quadratic    | Typically, characterizes efficiency of algorithms with<br>two embedded loops (see the next section). Elemen-<br>tary sorting algorithms and certain operations on $n \times n$<br>matrices are standard examples.                                                                                      |
| n <sup>3</sup>        | cubic        | Typically, characterizes efficiency of algorithms with<br>three embedded loops (see the next section). Several<br>nontrivial algorithms from linear algebra fall into this<br>class.                                                                                                                   |
| 2 <sup><i>n</i></sup> | exponential  | Typical for algorithms that generate all subsets of an <i>n</i> -element set. Often, the term "exponential" is used in a broader sense to include this and larger orders of growth as well.                                                                                                            |
| <i>n</i> !            | factorial    | Typical for algorithms that generate all permutations of an <i>n</i> -element set.                                                                                                                                                                                                                     |

**TABLE 2.2** Basic asymptotic efficiency classes

| a. | $n(n+1)/2 \in O(n^3)$     | <b>b.</b> $n(n+1)/2 \in O(n^2)$    |
|----|---------------------------|------------------------------------|
| c. | $n(n+1)/2\in \Theta(n^3)$ | <b>d.</b> $n(n+1)/2 \in \Omega(n)$ |

- **3.** For each of the following functions, indicate the class  $\Theta(g(n))$  the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions.
  - **a.**  $(n^2 + 1)^{10}$  **b.**  $\sqrt{10n^2 + 7n + 3}$  **c.**  $2n \lg(n+2)^2 + (n+2)^2 \lg \frac{n}{2}$  **d.**  $2^{n+1} + 3^{n-1}$ **e.**  $\lfloor \log_2 n \rfloor$

**4. a.** Table 2.1 contains values of several functions that often arise in the analysis of algorithms. These values certainly suggest that the functions

 $\log n$ , n,  $n \log_2 n$ ,  $n^2$ ,  $n^3$ ,  $2^n$ , n!

are listed in increasing order of their order of growth. Do these values prove this fact with mathematical certainty?

- **b.** Prove that the functions are indeed listed in increasing order of their order of growth.
- 5. List the following functions according to their order of growth from the lowest to the highest:

$$(n-2)!$$
,  $5 \lg(n+100)^{10}$ ,  $2^{2n}$ ,  $0.001n^4 + 3n^3 + 1$ ,  $\ln^2 n$ ,  $\sqrt[3]{n}$ ,  $3^n$ .

- **6.** a. Prove that every polynomial of degree k,  $p(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$ with  $a_k > 0$ , belongs to  $\Theta(n^k)$ .
  - **b.** Prove that exponential functions  $a^n$  have different orders of growth for different values of base a > 0.
- **7.** Prove the following assertions by using the definitions of the notations involved, or disprove them by giving a specific counterexample.

**a.** If 
$$t(n) \in O(g(n))$$
, then  $g(n) \in \Omega(t(n))$ 

**b.** 
$$\Theta(\alpha g(n)) = \Theta(g(n))$$
, where  $\alpha > 0$ .

- **c.**  $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)).$
- **d.** For any two nonnegative functions t(n) and g(n) defined on the set of nonnegative integers, either  $t(n) \in O(g(n))$ , or  $t(n) \in \Omega(g(n))$ , or both.
- 8. Prove the section's theorem for
  - **a.**  $\Omega$  notation. **b.**  $\Theta$  notation.
- **9.** We mentioned in this section that one can check whether all elements of an array are distinct by a two-part algorithm based on the array's presorting.
  - **a.** If the presorting is done by an algorithm with a time efficiency in  $\Theta(n \log n)$ , what will be a time-efficiency class of the entire algorithm?
  - **b.** If the sorting algorithm used for presorting needs an extra array of size *n*, what will be the space-efficiency class of the entire algorithm?
- 10. The *range* of a finite nonempty set of *n* real numbers *S* is defined as the difference between the largest and smallest elements of *S*. For each representation of *S* given below, describe in English an algorithm to compute the range. Indicate the time efficiency classes of these algorithms using the most appropriate notation  $(O, \Theta, \text{ or } \Omega)$ .
  - a. An unsorted array
  - b. A sorted array
  - c. A sorted singly linked list
  - d. A binary search tree



537

- **11.** Lighter or heavier? You have n > 2 identical-looking coins and a two-pan balance scale with no weights. One of the coins is a fake, but you do not know whether it is lighter or heavier than the genuine coins, which all weigh the same. Design a  $\Theta(1)$  algorithm to determine whether the fake coin is lighter or heavier than the others.
- 12. Door in a wall You are facing a wall that stretches infinitely in both directions. There is a door in the wall, but you know neither how far away nor in which direction. You can see the door only when you are right next to it. Design an algorithm that enables you to reach the door by walking at most O(n) steps where *n* is the (unknown to you) number of steps between your initial position and the door. [Par95]

# 2.3 Mathematical Analysis of Nonrecursive Algorithms

In this section, we systematically apply the general framework outlined in Section 2.1 to analyzing the time efficiency of nonrecursive algorithms. Let us start with a very simple example that demonstrates all the principal steps typically taken in analyzing such algorithms.

**EXAMPLE 1** Consider the problem of finding the value of the largest element in a list of n numbers. For simplicity, we assume that the list is implemented as an array. The following is pseudocode of a standard algorithm for solving the problem.

```
ALGORITHM MaxElement(A[0..n-1])
```

```
//Determines the value of the largest element in a given array
//Input: An array A[0..n - 1] of real numbers
//Output: The value of the largest element in A
maxval \leftarrow A[0]
for i \leftarrow 1 to n - 1 do
if A[i] > maxval
maxval \leftarrow A[i]
return maxval
```

The obvious measure of an input's size here is the number of elements in the array, i.e., n. The operations that are going to be executed most often are in the algorithm's **for** loop. There are two operations in the loop's body: the comparison A[i] > maxval and the assignment  $maxval \leftarrow A[i]$ . Which of these two operations should we consider basic? Since the comparison is executed on each repetition of the loop and the assignment is not, we should consider the comparison to be the algorithm's basic operation. Note that the number of comparisons will be the same for all arrays of size n; therefore, in terms of this metric, there is no need to distinguish among the worst, average, and best cases here.

Let us denote C(n) the number of times this comparison is executed and try to find a formula expressing it as a function of size n. The algorithm makes one comparison on each execution of the loop, which is repeated for each value of the loop's variable i within the bounds 1 and n - 1, inclusive. Therefore, we get the following sum for C(n):

$$C(n) = \sum_{i=1}^{n-1} 1$$

This is an easy sum to compute because it is nothing other than 1 repeated n - 1 times. Thus,

$$C(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n).$$

Here is a general plan to follow in analyzing nonrecursive algorithms.

### General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

- 1. Decide on a parameter (or parameters) indicating an input's size.
- 2. Identify the algorithm's basic operation. (As a rule, it is located in the innermost loop.)
- **3.** Check whether the number of times the basic operation is executed depends only on the size of an input. If it also depends on some additional property, the worst-case, average-case, and, if necessary, best-case efficiencies have to be investigated separately.
- 4. Set up a sum expressing the number of times the algorithm's basic operation is executed.<sup>4</sup>
- 5. Using standard formulas and rules of sum manipulation, either find a closed-form formula for the count or, at the very least, establish its order of growth.

Before proceeding with further examples, you may want to review Appendix A, which contains a list of summation formulas and rules that are often useful in analysis of algorithms. In particular, we use especially frequently two basic rules of sum manipulation

$$\sum_{i=l}^{u} ca_i = c \sum_{i=l}^{u} a_i,$$
(R1)

$$\sum_{i=l}^{u} (a_i \pm b_i) = \sum_{i=l}^{u} a_i \pm \sum_{i=l}^{u} b_i,$$
 (R2)

<sup>4.</sup> Sometimes, an analysis of a nonrecursive algorithm requires setting up not a sum but a recurrence relation for the number of times its basic operation is executed. Using recurrence relations is much more typical for analyzing recursive algorithms (see Section 2.4).

and two summation formulas

$$\sum_{i=l}^{u} 1 = u - l + 1 \quad \text{where } l \le u \text{ are some lower and upper integer limits, (S1)}$$
$$\sum_{i=0}^{n} i = \sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2 \in \Theta(n^2).$$
(S2)

Note that the formula  $\sum_{i=1}^{n-1} 1 = n - 1$ , which we used in Example 1, is a special case of formula (S1) for l = 1 and u = n - 1.

**EXAMPLE 2** Consider the *element uniqueness problem*: check whether all the elements in a given array of *n* elements are distinct. This problem can be solved by the following straightforward algorithm.

```
ALGORITHM Unique Elements (A[0..n - 1])
```

```
//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n - 1]
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for i \leftarrow 0 to n - 2 do
for j \leftarrow i + 1 to n - 1 do
if A[i] = A[j] return false
return true
```

The natural measure of the input's size here is again n, the number of elements in the array. Since the innermost loop contains a single operation (the comparison of two elements), we should consider it as the algorithm's basic operation. Note, however, that the number of element comparisons depends not only on n but also on whether there are equal elements in the array and, if there are, which array positions they occupy. We will limit our investigation to the worst case only.

By definition, the worst case input is an array for which the number of element comparisons  $C_{worst}(n)$  is the largest among all arrays of size n. An inspection of the innermost loop reveals that there are two kinds of worst-case inputs—inputs for which the algorithm does not exit the loop prematurely: arrays with no equal elements and arrays in which the last two elements are the only pair of equal elements. For such inputs, one comparison is made for each repetition of the innermost loop, i.e., for each value of the loop variable j between its limits i + 1 and n - 1; this is repeated for each value of the outer loop, i.e., for each value of the loop variable i between its limits 0 and n - 2. Accordingly, we get

$$\begin{split} C_{worst}(n) &= \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i) \\ &= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2} \\ &= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} \approx \frac{1}{2}n^2 \in \Theta(n^2). \end{split}$$

We also could have computed the sum  $\sum_{i=0}^{n-2} (n-1-i)$  faster as follows:

$$\sum_{i=0}^{n-2} (n-1-i) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$$

where the last equality is obtained by applying summation formula (S2). Note that this result was perfectly predictable: in the worst case, the algorithm needs to compare all n(n-1)/2 distinct pairs of its *n* elements.

**EXAMPLE 3** Given two  $n \times n$  matrices A and B, find the time efficiency of the definition-based algorithm for computing their product C = AB. By definition, C is an  $n \times n$  matrix whose elements are computed as the scalar (dot) products of the rows of matrix A and the columns of matrix B:



where  $C[i, j] = A[i, 0]B[0, j] + \dots + A[i, k]B[k, j] + \dots + A[i, n-1]B[n-1, j]$ for every pair of indices  $0 \le i, j \le n-1$ .

**ALGORITHM** MatrixMultiplication(A[0..n - 1, 0..n - 1], B[0..n - 1, 0..n - 1]) //Multiplies two square matrices of order n by the definition-based algorithm //Input: Two  $n \times n$  matrices A and B//Output: Matrix C = ABfor  $i \leftarrow 0$  to n - 1 do for  $j \leftarrow 0$  to n - 1 do  $C[i, j] \leftarrow 0.0$ for  $k \leftarrow 0$  to n - 1 do  $C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]$ return C We measure an input's size by matrix order n. There are two arithmetical operations in the innermost loop here—multiplication and addition—that, in principle, can compete for designation as the algorithm's basic operation. Actually, we do not have to choose between them, because on each repetition of the innermost loop each of the two is executed exactly once. So by counting one we automatically count the other. Still, following a well-established tradition, we consider multiplication as the basic operation (see Section 2.1). Let us set up a sum for the total number of multiplications M(n) executed by the algorithm. (Since this count depends only on the size of the input matrices, we do not have to investigate the worst-case, average-case, and best-case efficiencies separately.)

Obviously, there is just one multiplication executed on each repetition of the algorithm's innermost loop, which is governed by the variable k ranging from the lower bound 0 to the upper bound n - 1. Therefore, the number of multiplications made for every pair of specific values of variables i and j is

$$\sum_{k=0}^{n-1} 1,$$

and the total number of multiplications M(n) is expressed by the following triple sum:

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1.$$

Now, we can compute this sum by using formula (S1) and rule (R1) given above. Starting with the innermost sum  $\sum_{k=0}^{n-1} 1$ , which is equal to *n* (why?), we get

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3.$$

This example is simple enough so that we could get this result without all the summation machinations. How? The algorithm computes  $n^2$  elements of the product matrix. Each of the product's elements is computed as the scalar (dot) product of an *n*-element row of the first matrix and an *n*-element column of the second matrix, which takes *n* multiplications. So the total number of multiplications is  $n \cdot n^2 = n^3$ . (It is this kind of reasoning that we expected you to employ when answering this question in Problem 2 of Exercises 2.1.)

If we now want to estimate the running time of the algorithm on a particular machine, we can do it by the product

$$T(n) \approx c_m M(n) = c_m n^3,$$

where  $c_m$  is the time of one multiplication on the machine in question. We would get a more accurate estimate if we took into account the time spent on the additions, too:

$$T(n) \approx c_m M(n) + c_a A(n) = c_m n^3 + c_a n^3 = (c_m + c_a)n^3,$$

where  $c_a$  is the time of one addition. Note that the estimates differ only by their multiplicative constants and not by their order of growth.

You should not have the erroneous impression that the plan outlined above always succeeds in analyzing a nonrecursive algorithm. An irregular change in a loop variable, a sum too complicated to analyze, and the difficulties intrinsic to the average case analysis are just some of the obstacles that can prove to be insurmountable. These caveats notwithstanding, the plan does work for many simple nonrecursive algorithms, as you will see throughout the subsequent chapters of the book.

As a last example, let us consider an algorithm in which the loop's variable changes in a different manner from that of the previous examples.

**EXAMPLE 4** The following algorithm finds the number of binary digits in the binary representation of a positive decimal integer.

#### **ALGORITHM** *Binary*(*n*)

```
//Input: A positive decimal integer n
//Output: The number of binary digits in n's binary representation
count \leftarrow 1
while n > 1 do
count \leftarrow count + 1
n \leftarrow \lfloor n/2 \rfloor
return count
```

First, notice that the most frequently executed operation here is not inside the **while** loop but rather the comparison n > 1 that determines whether the loop's body will be executed. Since the number of times the comparison will be executed is larger than the number of repetitions of the loop's body by exactly 1, the choice is not that important.

A more significant feature of this example is the fact that the loop variable takes on only a few values between its lower and upper limits; therefore, we have to use an alternative way of computing the number of times the loop is executed. Since the value of n is about halved on each repetition of the loop, the answer should be about  $\log_2 n$ . The exact formula for the number of times the comparison n > 1 will be executed is actually  $\lfloor \log_2 n \rfloor + 1$ —the number of bits in the binary representation of n according to formula (2.1). We could also get this answer by applying the analysis technique based on recurrence relations; we discuss this technique in the next section because it is more pertinent to the analysis of recursive algorithms.

# **Exercises 2.3**

- **1.** Compute the following sums.
  - **a.**  $1+3+5+7+\dots+999$  **b.**  $2+4+8+16+\dots+1024$  **c.**  $\sum_{i=3}^{n+1} 1$  **d.**  $\sum_{i=3}^{n+1} i$  **e.**  $\sum_{i=0}^{n-1} i(i+1)$ **f.**  $\sum_{j=1}^{n} 3^{j+1}$  **g.**  $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$  **h.**  $\sum_{i=1}^{n} 1/i(i+1)$
- **2.** Find the order of growth of the following sums. Use the  $\Theta(g(n))$  notation with the simplest function g(n) possible.
  - **a.**  $\sum_{i=0}^{n-1} (i^2+1)^2$  **b.**  $\sum_{i=2}^{n-1} \lg i^2$  **c.**  $\sum_{i=1}^{n} (i+1)2^{i-1}$ **d.**  $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} (i+j)$
- 3. The sample variance of *n* measurements  $x_1, \ldots, x_n$  can be computed as either

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \quad \text{where } \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

or

$$\frac{\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2 / n}{n-1}$$

Find and compare the number of divisions, multiplications, and additions/ subtractions (additions and subtractions are usually bunched together) that are required for computing the variance according to each of these formulas.

4. Consider the following algorithm.

#### **ALGORITHM** *Mystery(n)*

```
//Input: A nonnegative integer n

S \leftarrow 0

for i \leftarrow 1 to n do

S \leftarrow S + i * i

return S
```

- a. What does this algorithm compute?
- **b.** What is its basic operation?
- c. How many times is the basic operation executed?
- **d.** What is the efficiency class of this algorithm?
- e. Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.





**13.** *Page numbering* Find the total number of decimal digits needed for numbering pages in a book of 1000 pages. Assume that the pages are numbered consecutively starting with 1.

# 2.4 Mathematical Analysis of Recursive Algorithms

In this section, we will see how to apply the general framework for analysis of algorithms to recursive algorithms. We start with an example often used to introduce novices to the idea of a recursive algorithm.

**EXAMPLE 1** Compute the factorial function F(n) = n! for an arbitrary nonnegative integer *n*. Since

 $n! = 1 \cdot \ldots \cdot (n-1) \cdot n = (n-1)! \cdot n \text{ for } n \ge 1$ 

and 0! = 1 by definition, we can compute  $F(n) = F(n-1) \cdot n$  with the following recursive algorithm.

#### **ALGORITHM** F(n)

//Computes n! recursively //Input: A nonnegative integer n//Output: The value of n!if n = 0 return 1 else return F(n - 1) \* n

For simplicity, we consider *n* itself as an indicator of this algorithm's input size (rather than the number of bits in its binary expansion). The basic operation of the algorithm is multiplication,<sup>5</sup> whose number of executions we denote M(n). Since the function F(n) is computed according to the formula

$$F(n) = F(n-1) \cdot n \quad \text{for } n > 0,$$

<sup>5.</sup> Alternatively, we could count the number of times the comparison n = 0 is executed, which is the same as counting the total number of calls made by the algorithm (see Problem 2 in this section's exercises).

the number of multiplications M(n) needed to compute it must satisfy the equality

$$M(n) = \underbrace{M(n-1)}_{\substack{\text{to compute}\\F(n-1)}} + \underbrace{1}_{\substack{\text{to multiply}\\F(n-1) \text{ by } n}} \text{ for } n > 0.$$

Indeed, M(n-1) multiplications are spent to compute F(n-1), and one more multiplication is needed to multiply the result by n.

The last equation defines the sequence M(n) that we need to find. This equation defines M(n) not explicitly, i.e., as a function of n, but implicitly as a function of its value at another point, namely n - 1. Such equations are called *recurrence relations* or, for brevity, *recurrences*. Recurrence relations play an important role not only in analysis of algorithms but also in some areas of applied mathematics. They are usually studied in detail in courses on discrete mathematics or discrete structures; a very brief tutorial on them is provided in Appendix B. Our goal now is to solve the recurrence relation M(n) = M(n - 1) + 1, i.e., to find an explicit formula for M(n) in terms of n only.

Note, however, that there is not one but infinitely many sequences that satisfy this recurrence. (Can you give examples of, say, two of them?) To determine a solution uniquely, we need an *initial condition* that tells us the value with which the sequence starts. We can obtain this value by inspecting the condition that makes the algorithm stop its recursive calls:

#### if n = 0 return 1.

This tells us two things. First, since the calls stop when n = 0, the smallest value of *n* for which this algorithm is executed and hence M(n) defined is 0. Second, by inspecting the pseudocode's exiting line, we can see that when n = 0, the algorithm performs no multiplications. Therefore, the initial condition we are after is

$$M(0) = 0.$$
  
the calls stop when  $n = 0$  no multiplications when  $n = 0$ 

Thus, we succeeded in setting up the recurrence relation and initial condition for the algorithm's number of multiplications M(n):

$$M(n) = M(n-1) + 1 \text{ for } n > 0,$$

$$M(0) = 0.$$
(2.2)

Before we embark on a discussion of how to solve this recurrence, let us pause to reiterate an important point. We are dealing here with two recursively defined functions. The first is the factorial function F(n) itself; it is defined by the recurrence

$$F(n) = F(n-1) \cdot n \text{ for every } n > 0,$$
  

$$F(0) = 1.$$

The second is the number of multiplications M(n) needed to compute F(n) by the recursive algorithm whose pseudocode was given at the beginning of the section.

As we just showed, M(n) is defined by recurrence (2.2). And it is recurrence (2.2) that we need to solve now.

Though it is not difficult to "guess" the solution here (what sequence starts with 0 when n = 0 and increases by 1 on each step?), it will be more useful to arrive at it in a systematic fashion. From the several techniques available for solving recurrence relations, we use what can be called the *method of backward substitutions*. The method's idea (and the reason for the name) is immediately clear from the way it applies to solving our particular recurrence:

$$M(n) = M(n-1) + 1$$
 substitute  $M(n-1) = M(n-2) + 1$   
=  $[M(n-2) + 1] + 1 = M(n-2) + 2$  substitute  $M(n-2) = M(n-3) + 1$   
=  $[M(n-3) + 1] + 2 = M(n-3) + 3.$ 

After inspecting the first three lines, we see an emerging pattern, which makes it possible to predict not only the next line (what would it be?) but also a general formula for the pattern: M(n) = M(n - i) + i. Strictly speaking, the correctness of this formula should be proved by mathematical induction, but it is easier to get to the solution as follows and then verify its correctness.

What remains to be done is to take advantage of the initial condition given. Since it is specified for n = 0, we have to substitute i = n in the pattern's formula to get the ultimate result of our backward substitutions:

$$M(n) = M(n-1) + 1 = \dots = M(n-i) + i = \dots = M(n-n) + n = n.$$

You should not be disappointed after exerting so much effort to get this "obvious" answer. The benefits of the method illustrated in this simple example will become clear very soon, when we have to solve more difficult recurrences. Also, note that the simple iterative algorithm that accumulates the product of n consecutive integers requires the same number of multiplications, and it does so without the overhead of time and space used for maintaining the recursion's stack.

The issue of time efficiency is actually not that important for the problem of computing n!, however. As we saw in Section 2.1, the function's values get so large so fast that we can realistically compute exact values of n! only for very small n's. Again, we use this example just as a simple and convenient vehicle to introduce the standard approach to analyzing recursive algorithms.

Generalizing our experience with investigating the recursive algorithm for computing n!, we can now outline a general plan for investigating recursive algorithms.

#### General Plan for Analyzing the Time Efficiency of Recursive Algorithms

- 1. Decide on a parameter (or parameters) indicating an input's size.
- 2. Identify the algorithm's basic operation.

- **3.** Check whether the number of times the basic operation is executed can vary on different inputs of the same size; if it can, the worst-case, average-case, and best-case efficiencies must be investigated separately.
- **4.** Set up a recurrence relation, with an appropriate initial condition, for the number of times the basic operation is executed.
- 5. Solve the recurrence or, at least, ascertain the order of growth of its solution.

**EXAMPLE 2** As our next example, we consider another educational workhorse of recursive algorithms: the *Tower of Hanoi* puzzle. In this puzzle, we (or mythical monks, if you do not like to move disks) have *n* disks of different sizes that can slide onto any of three pegs. Initially, all the disks are on the first peg in order of size, the largest on the bottom and the smallest on top. The goal is to move all the disks to the third peg, using the second one as an auxiliary, if necessary. We can move only one disk at a time, and it is forbidden to place a larger disk on top of a smaller one.

The problem has an elegant recursive solution, which is illustrated in Figure 2.4. To move n > 1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first move recursively n - 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), then move the largest disk directly from peg 1 to peg 3, and, finally, move recursively n - 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). Of course, if n = 1, we simply move the single disk directly from the source peg to the destination peg.



FIGURE 2.4 Recursive solution to the Tower of Hanoi puzzle.

Let us apply the general plan outlined above to the Tower of Hanoi problem. The number of disks n is the obvious choice for the input's size indicator, and so is moving one disk as the algorithm's basic operation. Clearly, the number of moves M(n) depends on n only, and we get the following recurrence equation for it:

$$M(n) = M(n-1) + 1 + M(n-1)$$
 for  $n > 1$ .

With the obvious initial condition M(1) = 1, we have the following recurrence relation for the number of moves M(n):

$$M(n) = 2M(n-1) + 1 \quad \text{for } n > 1,$$

$$M(1) = 1.$$
(2.3)

We solve this recurrence by the same method of backward substitutions:

$$M(n) = 2M(n-1) + 1$$
 sub.  $M(n-1) = 2M(n-2) + 1$   
= 2[2M(n-2) + 1] + 1 = 2<sup>2</sup>M(n-2) + 2 + 1 sub.  $M(n-2) = 2M(n-3) + 1$   
= 2<sup>2</sup>[2M(n-3) + 1] + 2 + 1 = 2<sup>3</sup>M(n-3) + 2<sup>2</sup> + 2 + 1.

The pattern of the first three sums on the left suggests that the next one will be  $2^4M(n-4) + 2^3 + 2^2 + 2 + 1$ , and generally, after *i* substitutions, we get

$$M(n) = 2^{i} M(n-i) + 2^{i-1} + 2^{i-2} + \dots + 2 + 1 = 2^{i} M(n-i) + 2^{i} - 1.$$

Since the initial condition is specified for n = 1, which is achieved for i = n - 1, we get the following formula for the solution to recurrence (2.3):

$$M(n) = 2^{n-1}M(n - (n - 1)) + 2^{n-1} - 1$$
  
= 2<sup>n-1</sup>M(1) + 2<sup>n-1</sup> - 1 = 2<sup>n-1</sup> + 2<sup>n-1</sup> - 1 = 2<sup>n</sup> - 1.

Thus, we have an exponential algorithm, which will run for an unimaginably long time even for moderate values of n (see Problem 5 in this section's exercises). This is not due to the fact that this particular algorithm is poor; in fact, it is not difficult to prove that this is the most efficient algorithm possible for this problem. It is the problem's intrinsic difficulty that makes it so computationally hard. Still, this example makes an important general point:

One should be careful with recursive algorithms because their succinctness may mask their inefficiency.

When a recursive algorithm makes more than a single call to itself, it can be useful for analysis purposes to construct a tree of its recursive calls. In this tree, nodes correspond to recursive calls, and we can label them with the value of the parameter (or, more generally, parameters) of the calls. For the Tower of Hanoi example, the tree is given in Figure 2.5. By counting the number of nodes in the tree, we can get the total number of calls made by the Tower of Hanoi algorithm:

$$C(n) = \sum_{l=0}^{n-1} 2^{l} \text{ (where } l \text{ is the level in the tree in Figure 2.5)} = 2^{n} - 1.$$



**FIGURE 2.5** Tree of recursive calls made by the recursive algorithm for the Tower of Hanoi puzzle.

The number agrees, as it should, with the move count obtained earlier.

**EXAMPLE 3** As our next example, we investigate a recursive version of the algorithm discussed at the end of Section 2.3.

#### **ALGORITHM** *BinRec(n)*

//Input: A positive decimal integer *n* //Output: The number of binary digits in *n*'s binary representation if n = 1 return 1 else return  $BinRec(\lfloor n/2 \rfloor) + 1$ 

Let us set up a recurrence and an initial condition for the number of additions A(n) made by the algorithm. The number of additions made in computing  $BinRec(\lfloor n/2 \rfloor)$  is  $A(\lfloor n/2 \rfloor)$ , plus one more addition is made by the algorithm to increase the returned value by 1. This leads to the recurrence

$$A(n) = A(\lfloor n/2 \rfloor) + 1 \text{ for } n > 1.$$
 (2.4)

Since the recursive calls end when *n* is equal to 1 and there are no additions made then, the initial condition is

$$A(1) = 0.$$

The presence of  $\lfloor n/2 \rfloor$  in the function's argument makes the method of backward substitutions stumble on values of *n* that are not powers of 2. Therefore, the standard approach to solving such a recurrence is to solve it only for  $n = 2^k$  and then take advantage of the theorem called the *smoothness rule* (see Appendix B), which claims that under very broad assumptions the order of growth observed for  $n = 2^k$  gives a correct answer about the order of growth for all values of *n*. (Alternatively, after getting a solution for powers of 2, we can sometimes fine-tune this solution to get a formula valid for an arbitrary *n*.) So let us apply this recipe to our recurrence, which for  $n = 2^k$  takes the form

$$A(2^k) = A(2^{k-1}) + 1$$
 for  $k > 0$ ,  
 $A(2^0) = 0$ .

Now backward substitutions encounter no problems:

$$A(2^{k}) = A(2^{k-1}) + 1$$
 substitute  $A(2^{k-1}) = A(2^{k-2}) + 1$   
=  $[A(2^{k-2}) + 1] + 1 = A(2^{k-2}) + 2$  substitute  $A(2^{k-2}) = A(2^{k-3}) + 1$   
=  $[A(2^{k-3}) + 1] + 2 = A(2^{k-3}) + 3$  ...  
$$= A(2^{k-i}) + i$$
  
...  
$$= A(2^{k-k}) + k.$$

Thus, we end up with

$$A(2^k) = A(1) + k = k,$$

or, after returning to the original variable  $n = 2^k$  and hence  $k = \log_2 n$ ,

$$A(n) = \log_2 n \in \Theta(\log n).$$

In fact, one can prove (Problem 7 in this section's exercises) that the exact solution for an arbitrary value of *n* is given by just a slightly more refined formula  $A(n) = \lfloor \log_2 n \rfloor$ .

This section provides an introduction to the analysis of recursive algorithms. These techniques will be used throughout the book and expanded further as necessary. In the next section, we discuss the Fibonacci numbers; their analysis involves more difficult recurrence relations to be solved by a method different from backward substitutions.

# Exercises 2.4 –

- 1. Solve the following recurrence relations.
  - **a.** x(n) = x(n-1) + 5 for n > 1, x(1) = 0
  - **b.** x(n) = 3x(n-1) for n > 1, x(1) = 4
  - **c.** x(n) = x(n-1) + n for n > 0, x(0) = 0
  - **d.** x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for  $n = 2^k$ )
  - e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for  $n = 3^k$ )
- **2.** Set up and solve a recurrence relation for the number of calls made by F(n), the recursive algorithm for computing n!.

# 2.5 Example: Computing the *n*th Fibonacci Number

In this section, we consider the Fibonacci numbers, a famous sequence

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$
 (2.5)

that can be defined by the simple recurrence

$$F(n) = F(n-1) + F(n-2) \quad \text{for } n > 1$$
(2.6)

and two initial conditions

$$F(0) = 0, F(1) = 1.$$
 (2.7)

The Fibonacci numbers were introduced by Leonardo Fibonacci in 1202 as a solution to a problem about the size of a rabbit population (Problem 2 in this section's exercises). Many more examples of Fibonacci-like numbers have since been discovered in the natural world, and they have even been used in predicting the prices of stocks and commodities. There are some interesting applications of the Fibonacci numbers in computer science as well. For example, worst-case inputs for Euclid's algorithm discussed in Section 1.1 happen to be consecutive elements of the Fibonacci sequence. In this section, we briefly consider algorithms for computing the *n*th element of this sequence. Among other benefits, the discussion will provide us with an opportunity to introduce another method for solving recurrence relations useful for analysis of recursive algorithms.

To start, let us get an explicit formula for F(n). If we try to apply the method of backward substitutions to solve recurrence (2.6), we will fail to get an easily discernible pattern. Instead, we can take advantage of a theorem that describes solutions to a *homogeneous second-order linear recurrence with constant co-efficients* 

$$ax(n) + bx(n-1) + cx(n-2) = 0,$$
 (2.8)

where *a*, *b*, and *c* are some fixed real numbers  $(a \neq 0)$  called the coefficients of the recurrence and x(n) is the generic term of an unknown sequence to be found. Applying this theorem to our recurrence with the initial conditions given—see Appendix B—we obtain the formula

$$F(n) = \frac{1}{\sqrt{5}} (\phi^n - \hat{\phi}^n),$$
 (2.9)

where  $\phi = (1 + \sqrt{5})/2 \approx 1.61803$  and  $\hat{\phi} = -1/\phi \approx -0.61803$ .<sup>6</sup> It is hard to believe that formula (2.9), which includes arbitrary integer powers of irrational numbers, yields nothing else but all the elements of Fibonacci sequence (2.5), but it does!

One of the benefits of formula (2.9) is that it immediately implies that F(n) grows exponentially (remember Fibonacci's rabbits?), i.e.,  $F(n) \in \Theta(\phi^n)$ . This

<sup>6.</sup> Constant  $\phi$  is known as the *golden ratio*. Since antiquity, it has been considered the most pleasing ratio of a rectangle's two sides to the human eye and might have been consciously used by ancient architects and sculptors.

follows from the observation that  $\hat{\phi}$  is a fraction between -1 and 0, and hence  $\hat{\phi}^n$  gets infinitely small as *n* goes to infinity. In fact, one can prove that the impact of the second term  $\frac{1}{\sqrt{5}}\hat{\phi}^n$  on the value of F(n) can be obtained by rounding off the value of the first term to the nearest integer. In other words, for every nonnegative integer *n*,

$$F(n) = \frac{1}{\sqrt{5}}\phi^n$$
 rounded to the nearest integer. (2.10)

In the algorithms that follow, we consider, for the sake of simplicity, such operations as additions and multiplications at unit cost. Since the Fibonacci numbers grow infinitely large (and grow very rapidly), a more detailed analysis than the one offered here is warranted. In fact, it is the size of the numbers rather than a time-efficient method for computing them that should be of primary concern here. Still, these caveats notwithstanding, the algorithms we outline and their analysis provide useful examples for a student of the design and analysis of algorithms.

To begin with, we can use recurrence (2.6) and initial conditions (2.7) for the obvious recursive algorithm for computing F(n).

#### **ALGORITHM** F(n)

//Computes the *n*th Fibonacci number recursively by using its definition //Input: A nonnegative integer *n* //Output: The *n*th Fibonacci number **if**  $n \le 1$  **return** *n* **else return** F(n-1) + F(n-2)

Before embarking on its formal analysis, can you tell whether this is an efficient algorithm? Well, we need to do a formal analysis anyway. The algorithm's basic operation is clearly addition, so let A(n) be the number of additions performed by the algorithm in computing F(n). Then the numbers of additions needed for computing F(n-1) and F(n-2) are A(n-1) and A(n-2), respectively, and the algorithm needs one more addition to compute their sum. Thus, we get the following recurrence for A(n):

$$A(n) = A(n-1) + A(n-2) + 1 \quad \text{for } n > 1,$$
  

$$A(0) = 0, \qquad A(1) = 0.$$
(2.11)

The recurrence A(n) - A(n-1) - A(n-2) = 1 is quite similar to recurrence F(n) - F(n-1) - F(n-2) = 0, but its right-hand side is not equal to zero. Such recurrences are called *inhomogeneous*. There are general techniques for solving inhomogeneous recurrences (see Appendix B or any textbook on discrete mathematics), but for this particular recurrence, a special trick leads to a faster solution. We can reduce our inhomogeneous recurrence to a homogeneous one by rewriting it as

$$[A(n) + 1] - [A(n - 1) + 1] - [A(n - 2) + 1] = 0$$

and substituting B(n) = A(n) + 1:

$$B(n) - B(n-1) - B(n-2) = 0,$$
  

$$B(0) = 1, \qquad B(1) = 1.$$

This homogeneous recurrence can be solved exactly in the same manner as recurrence (2.6) was solved to find an explicit formula for F(n). But it can actually be avoided by noting that B(n) is, in fact, the same recurrence as F(n) except that it starts with two 1's and thus runs one step ahead of F(n). So B(n) = F(n + 1), and

$$A(n) = B(n) - 1 = F(n+1) - 1 = \frac{1}{\sqrt{5}}(\phi^{n+1} - \hat{\phi}^{n+1}) - 1.$$

Hence,  $A(n) \in \Theta(\phi^n)$ , and if we measure the size of *n* by the number of bits  $b = \lfloor \log_2 n \rfloor + 1$  in its binary representation, the efficiency class will be even worse, namely, doubly exponential:  $A(b) \in \Theta(\phi^{2^b})$ .

The poor efficiency class of the algorithm could be anticipated by the nature of recurrence (2.11). Indeed, it contains two recursive calls with the sizes of smaller instances only slightly smaller than size n. (Have you encountered such a situation before?) We can also see the reason behind the algorithm's inefficiency by looking at a recursive tree of calls tracing the algorithm's execution. An example of such a tree for n = 5 is given in Figure 2.6. Note that the same values of the function are being evaluated here again and again, which is clearly extremely inefficient.

We can obtain a much faster algorithm by simply computing the successive elements of the Fibonacci sequence iteratively, as is done in the following algorithm.

#### **ALGORITHM** *Fib*(*n*)

//Computes the nth Fibonacci number iteratively by using its definition
//Input: A nonnegative integer n

//Output: The *n*th Fibonacci number

 $F[0] \leftarrow 0; F[1] \leftarrow 1$ 

for  $i \leftarrow 2$  to n do

 $F[i] \leftarrow F[i-1] + F[i-2]$ return F[n]



**FIGURE 2.6** Tree of recursive calls for computing the 5th Fibonacci number by the definition-based algorithm.

This algorithm clearly makes n - 1 additions. Hence, it is linear as a function of n and "only" exponential as a function of the number of bits b in n's binary representation. Note that using an extra array for storing all the preceding elements of the Fibonacci sequence can be avoided: storing just two values is necessary to accomplish the task (see Problem 8 in this section's exercises).

The third alternative for computing the *n*th Fibonacci number lies in using formula (2.10). The efficiency of the algorithm will obviously be determined by the efficiency of an exponentiation algorithm used for computing  $\phi^n$ . If it is done by simply multiplying  $\phi$  by itself n - 1 times, the algorithm will be in  $\Theta(n) = \Theta(2^b)$ . There are faster algorithms for the exponentiation problem. For example, we will discuss  $\Theta(\log n) = \Theta(b)$  algorithms for this problem in Chapters 4 and 6. Note also that special care should be exercised in implementing this approach to computing the *n*th Fibonacci number. Since all its intermediate results are irrational numbers, we would have to make sure that their approximations in the computer are accurate enough so that the final round-off yields a correct result.

Finally, there exists a  $\Theta(\log n)$  algorithm for computing the *n*th Fibonacci number that manipulates only integers. It is based on the equality

$$\begin{bmatrix} F(n-1) & F(n) \\ F(n) & F(n+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^n \quad \text{for } n \ge 1$$

and an efficient way of computing matrix powers.

# Exercises 2.5

- **1.** Find a Web site dedicated to applications of the Fibonacci numbers and study it.
- 2. *Fibonacci's rabbits problem* A man put a pair of rabbits in a place surrounded by a wall. How many pairs of rabbits will be there in a year if the initial pair of rabbits (male and female) are newborn and all rabbit pairs are not fertile during their first month of life but thereafter give birth to one new male/female pair at the end of every month?
- **3.** *Climbing stairs* Find the number of different ways to climb an *n*-stair staircase if each step is either one or two stairs. For example, a 3-stair staircase can be climbed three ways: 1-1-1, 1-2, and 2-1.
- **4.** How many even numbers are there among the first *n* Fibonacci numbers, i.e., among the numbers F(0), F(1), ..., F(n-1)? Give a closed-form formula valid for every n > 0.
- 5. Check by direct substitutions that the function  $\frac{1}{\sqrt{5}}(\phi^n \hat{\phi}^n)$  indeed satisfies recurrence (2.6) and initial conditions (2.7).
- 6. The maximum values of the Java primitive types int and long are  $2^{31} 1$  and  $2^{63} 1$ , respectively. Find the smallest *n* for which the *n*th Fibonacci number is not going to fit in a memory allocated for





Produce a scatterplot of  $D_{avg}(n)$  and indicate the algorithm's likely averagecase efficiency class.

- **9.** Run an experiment to ascertain the efficiency class of the sieve of Eratosthenes (see Section 1.1).
- 10. Run a timing experiment for the three algorithms for computing gcd(m, n) presented in Section 1.1.

# 2.7 Algorithm Visualization

In addition to the mathematical and empirical analyses of algorithms, there is yet a third way to study algorithms. It is called *algorithm visualization* and can be defined as the use of images to convey some useful information about algorithms. That information can be a visual illustration of an algorithm's operation, of its performance on different kinds of inputs, or of its execution speed versus that of other algorithms for the same problem. To accomplish this goal, an algorithm visualization uses graphic elements—points, line segments, two- or three-dimensional bars, and so on—to represent some "interesting events" in the algorithm's operation.

There are two principal variations of algorithm visualization:

- Static algorithm visualization
- Dynamic algorithm visualization, also called *algorithm animation*

Static algorithm visualization shows an algorithm's progress through a series of still images. Algorithm animation, on the other hand, shows a continuous, movie-like presentation of an algorithm's operations. Animation is an arguably more sophisticated option, which, of course, is much more difficult to implement.

Early efforts in the area of algorithm visualization go back to the 1970s. The watershed event happened in 1981 with the appearance of a 30-minute color sound film titled *Sorting Out Sorting*. This algorithm visualization classic was produced at the University of Toronto by Ronald Baecker with the assistance of D. Sherman [Bae81, Bae98]. It contained visualizations of nine well-known sorting algorithms (more than half of them are discussed later in the book) and provided quite a convincing demonstration of their relative speeds.

The success of *Sorting Out Sorting* made sorting algorithms a perennial favorite for algorithm animation. Indeed, the sorting problem lends itself quite naturally to visual presentation via vertical or horizontal bars or sticks of different heights or lengths, which need to be rearranged according to their sizes (Figure 2.8). This presentation is convenient, however, only for illustrating actions of a typical sorting algorithm on small inputs. For larger files, *Sorting Out Sorting* used the ingenious idea of presenting data by a scatterplot of points on a coordinate plane, with the first coordinate representing an item's position in the file and the second one representing the item's value; with such a representation, the process of sorting looks like a transformation of a "random" scatterplot of points into the points along a frame's diagonal (Figure 2.9). In addition, most sorting algorithms





**FIGURE 2.8** Initial and final screens of a typical visualization of a sorting algorithm using the bar representation.

work by comparing and exchanging two given items at a time—an event that can be animated relatively easily.

Since the appearance of *Sorting Out Sorting*, a great number of algorithm animations have been created, especially after the appearance of Java and the





**FIGURE 2.9** Initial and final screens of a typical visualization of a sorting algorithm using the scatterplot representation.

World Wide Web in the 1990s. They range in scope from one particular algorithm to a group of algorithms for the same problem (e.g., sorting) or the same application area (e.g., geometric algorithms) to general-purpose animation systems. At the end of 2010, a catalog of links to existing visualizations, maintained under the

NSF-supported AlgoVizProject, contained over 500 links. Unfortunately, a survey of existing visualizations found most of them to be of low quality, with the content heavily skewed toward easier topics such as sorting [Sha07].

There are two principal applications of algorithm visualization: research and education. Potential benefits for researchers are based on expectations that algorithm visualization may help uncover some unknown features of algorithms. For example, one researcher used a visualization of the recursive Tower of Hanoi algorithm in which odd- and even-numbered disks were colored in two different colors. He noticed that two disks of the same color never came in direct contact during the algorithm's execution. This observation helped him in developing a better non-recursive version of the classic algorithm. To give another example, Bentley and McIlroy [Ben93] mentioned using an algorithm animation system in their work on improving a library implementation of a leading sorting algorithm.

The application of algorithm visualization to education seeks to help students learning algorithms. The available evidence of its effectiveness is decisively mixed. Although some experiments did register positive learning outcomes, others failed to do so. The increasing body of evidence indicates that creating sophisticated software systems is not going to be enough. In fact, it appears that the level of student involvement with visualization might be more important than specific features of visualization software. In some experiments, low-tech visualizations prepared by students were more effective than passive exposure to sophisticated software systems.

To summarize, although some successes in both research and education have been reported in the literature, they are not as impressive as one might expect. A deeper understanding of human perception of images will be required before the true potential of algorithm visualization is fulfilled.

### SUMMARY

- There are two kinds of algorithm efficiency: time efficiency and space efficiency. *Time efficiency* indicates how fast the algorithm runs; *space efficiency* deals with the extra space it requires.
- An algorithm's time efficiency is principally measured as a function of its input size by counting the number of times its basic operation is executed. A *basic operation* is the operation that contributes the most to running time. Typically, it is the most time-consuming operation in the algorithm's innermost loop.
- For some algorithms, the running time can differ considerably for inputs of the same size, leading to *worst-case* efficiency, *average-case* efficiency, and *best-case* efficiency.
- The established framework for analyzing time efficiency is primarily grounded in the order of growth of the algorithm's running time as its input size goes to infinity.

- The notations O, Ω, and Θ are used to indicate and compare the asymptotic orders of growth of functions expressing algorithm efficiencies.
- The efficiencies of a large number of algorithms fall into the following few classes: *constant*, *logarithmic*, *linear*, *linearithmic*, *quadratic*, *cubic*, and *exponential*.
- The main tool for analyzing the time efficiency of a nonrecursive algorithm is to set up a sum expressing the number of executions of its basic operation and ascertain the sum's order of growth.
- The main tool for analyzing the time efficiency of a recursive algorithm is to set up a recurrence relation expressing the number of executions of its basic operation and ascertain the solution's order of growth.
- Succinctness of a recursive algorithm may mask its inefficiency.
- The *Fibonacci numbers* are an important sequence of integers in which every element is equal to the sum of its two immediate predecessors. There are several algorithms for computing the Fibonacci numbers, with drastically different efficiencies.
- Empirical analysis of an algorithm is performed by running a program implementing the algorithm on a sample of inputs and analyzing the data observed (the basic operation's count or physical running time). This often involves generating pseudorandom numbers. The applicability to any algorithm is the principal strength of this approach; the dependence of results on the particular computer and instance sample is its main weakness.
- Algorithm visualization is the use of images to convey useful information about algorithms. The two principal variations of algorithm visualization are static algorithm visualization and dynamic algorithm visualization (also called *algorithm animation*).

# 2 Getting Started

This chapter will familiarize you with the framework we shall use throughout the book to think about the design and analysis of algorithms. It is self-contained, but it does include several references to material that we introduce in Chapters 3 and 4. (It also contains several summations, which Appendix A shows how to solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem introduced in Chapter 1. We define a "pseudocode" that should be familiar to you if you have done computer programming, and we use it to show how we shall specify our algorithms. Having specified the insertion sort algorithm, we then argue that it correctly sorts, and we analyze its running time. The analysis introduces a notation that focuses on how that time increases with the number of items to be sorted. Following our discussion of insertion sort, we introduce the divide-and-conquer approach to the design of algorithms and use it to develop an algorithm called merge sort. We end with an analysis of merge sort's running time.

### 2.1 Insertion sort

Our first algorithm, insertion sort, solves the *sorting problem* introduced in Chapter 1:

- **Input:** A sequence of *n* numbers  $\langle a_1, a_2, \ldots, a_n \rangle$ .
- **Output:** A permutation (reordering)  $\langle a'_1, a'_2, \dots, a'_n \rangle$  of the input sequence such that  $a'_1 \leq a'_2 \leq \cdots \leq a'_n$ .

The numbers that we wish to sort are also known as the *keys*. Although conceptually we are sorting a sequence, the input comes to us in the form of an array with *n* elements.

In this book, we shall typically describe algorithms as programs written in a *pseudocode* that is similar in many respects to C, C++, Java, Python, or Pascal. If you have been introduced to any of these languages, you should have little trouble



Figure 2.1 Sorting a hand of cards using insertion sort.

reading our algorithms. What separates pseudocode from "real" code is that in pseudocode, we employ whatever expressive method is most clear and concise to specify a given algorithm. Sometimes, the clearest method is English, so do not be surprised if you come across an English phrase or sentence embedded within a section of "real" code. Another difference between pseudocode and real code is that pseudocode is not typically concerned with issues of software engineering. Issues of data abstraction, modularity, and error handling are often ignored in order to convey the essence of the algorithm more concisely.

We start with *insertion sort*, which is an efficient algorithm for sorting a small number of elements. Insertion sort works the way many people sort a hand of playing cards. We start with an empty left hand and the cards face down on the table. We then remove one card at a time from the table and insert it into the correct position in the left hand. To find the correct position for a card, we compare it with each of the cards already in the hand, from right to left, as illustrated in Figure 2.1. At all times, the cards held in the left hand are sorted, and these cards were originally the top cards of the pile on the table.

We present our pseudocode for insertion sort as a procedure called INSERTION-SORT, which takes as a parameter an array A[1..n] containing a sequence of length *n* that is to be sorted. (In the code, the number *n* of elements in *A* is denoted by *A.length.*) The algorithm sorts the input numbers *in place*: it rearranges the numbers within the array *A*, with at most a constant number of them stored outside the array at any time. The input array *A* contains the sorted output sequence when the INSERTION-SORT procedure is finished.



**Figure 2.2** The operation of INSERTION-SORT on the array  $A = \langle 5, 2, 4, 6, 1, 3 \rangle$ . Array indices appear above the rectangles, and values stored in the array positions appear within the rectangles. (a)–(e) The iterations of the **for** loop of lines 1–8. In each iteration, the black rectangle holds the key taken from A[j], which is compared with the values in shaded rectangles to its left in the test of line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows indicate where the key moves to in line 8. (**f**) The final sorted array.

INSERTION-SORT(A)

1 for j = 2 to A.length 2 kev = A[i]// Insert A[j] into the sorted sequence A[1 ... j - 1]. 3 i = j - 14 while i > 0 and A[i] > key5 A[i + 1] = A[i]6 i = i - 17 8 A[i+1] = kev

#### Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for  $A = \langle 5, 2, 4, 6, 1, 3 \rangle$ . The index *j* indicates the "current card" being inserted into the hand. At the beginning of each iteration of the **for** loop, which is indexed by *j*, the subarray consisting of elements A[1..j-1] constitutes the currently sorted hand, and the remaining subarray A[j+1..n] corresponds to the pile of cards still on the table. In fact, elements A[1..j-1] are the elements *originally* in positions 1 through j-1, but now in sorted order. We state these properties of A[1..j-1] formally as a *loop invariant*:

At the start of each iteration of the **for** loop of lines 1–8, the subarray A[1 ... j - 1] consists of the elements originally in A[1 ... j - 1], but in sorted order.

We use loop invariants to help us understand why an algorithm is correct. We must show three things about a loop invariant:

Initialization: It is true prior to the first iteration of the loop.

- **Maintenance:** If it is true before an iteration of the loop, it remains true before the next iteration.
- **Termination:** When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration of the loop. (Of course, we are free to use established facts other than the loop invariant itself to prove that the loop invariant remains true before each iteration.) Note the similarity to mathematical induction, where to prove that a property holds, you prove a base case and an inductive step. Here, showing that the invariant holds before the first iteration corresponds to the base case, and showing that the invariant holds from iteration to iteration corresponds to the inductive step.

The third property is perhaps the most important one, since we are using the loop invariant to show correctness. Typically, we use the loop invariant along with the condition that caused the loop to terminate. The termination property differs from how we usually use mathematical induction, in which we apply the inductive step infinitely; here, we stop the "induction" when the loop terminates.

Let us see how these properties hold for insertion sort.

- **Initialization:** We start by showing that the loop invariant holds before the first loop iteration, when j = 2.<sup>1</sup> The subarray A[1 . . j 1], therefore, consists of just the single element A[1], which is in fact the original element in A[1]. Moreover, this subarray is sorted (trivially, of course), which shows that the loop invariant holds prior to the first iteration of the loop.
- **Maintenance:** Next, we tackle the second property: showing that each iteration maintains the loop invariant. Informally, the body of the **for** loop works by moving A[j 1], A[j 2], A[j 3], and so on by one position to the right until it finds the proper position for A[j] (lines 4–7), at which point it inserts the value of A[j] (line 8). The subarray A[1 . . j] then consists of the elements originally in A[1 . . j], but in sorted order. Incrementing j for the next iteration of the **for** loop then preserves the loop invariant.

A more formal treatment of the second property would require us to state and show a loop invariant for the **while** loop of lines 5–7. At this point, however,

<sup>&</sup>lt;sup>1</sup>When the loop is a **for** loop, the moment at which we check the loop invariant just prior to the first iteration is immediately after the initial assignment to the loop-counter variable and just before the first test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the variable *j* but before the first test of whether  $j \le A.length$ .

we prefer not to get bogged down in such formalism, and so we rely on our informal analysis to show that the second property holds for the outer loop.

**Termination:** Finally, we examine what happens when the loop terminates. The condition causing the **for** loop to terminate is that j > A.length = n. Because each loop iteration increases j by 1, we must have j = n + 1 at that time. Substituting n + 1 for j in the wording of loop invariant, we have that the subarray A[1..n] consists of the elements originally in A[1..n], but in sorted order. Observing that the subarray A[1..n] is the entire array, we conclude that the entire array is sorted. Hence, the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this chapter and in other chapters as well.

#### **Pseudocode conventions**

We use the following conventions in our pseudocode.

- Indentation indicates block structure. For example, the body of the for loop that begins on line 1 consists of lines 2–8, and the body of the while loop that begins on line 5 contains lines 6–7 but not line 8. Our indentation style applies to if-else statements<sup>2</sup> as well. Using indentation instead of conventional indicators of block structure, such as begin and end statements, greatly reduces clutter while preserving, or even enhancing, clarity.<sup>3</sup>
- The looping constructs while, for, and repeat-until and the if-else conditional construct have interpretations similar to those in C, C++, Java, Python, and Pascal.<sup>4</sup> In this book, the loop counter retains its value after exiting the loop, unlike some situations that arise in C++, Java, and Pascal. Thus, immediately after a for loop, the loop counter's value is the value that first exceeded the for loop bound. We used this property in our correctness argument for insertion sort. The for loop header in line 1 is for j = 2 to A.length, and so when this loop terminates, j = A.length + 1 (or, equivalently, j = n + 1, since n = A.length). We use the keyword to when a for loop increments its loop

<sup>&</sup>lt;sup>2</sup>In an **if-else** statement, we indent **else** at the same level as its matching **if**. Although we omit the keyword **then**, we occasionally refer to the portion executed when the test following **if** is true as a *then clause*. For multiway tests, we use **elseif** for tests after the first one.

<sup>&</sup>lt;sup>3</sup>Each pseudocode procedure in this book appears on one page so that you will not have to discern levels of indentation in code that is split across pages.

<sup>&</sup>lt;sup>4</sup>Most block-structured languages have equivalent constructs, though the exact syntax may differ. Python lacks **repeat-until** loops, and its **for** loops operate a little differently from the **for** loops in this book.

counter in each iteration, and we use the keyword **downto** when a **for** loop decrements its loop counter. When the loop counter changes by an amount greater than 1, the amount of change follows the optional keyword **by**.

- The symbol "//" indicates that the remainder of the line is a comment.
- A multiple assignment of the form i = j = e assigns to both variables i and j the value of expression e; it should be treated as equivalent to the assignment j = e followed by the assignment i = j.
- Variables (such as *i*, *j*, and *key*) are local to the given procedure. We shall not use global variables without explicit indication.
- We access array elements by specifying the array name followed by the index in square brackets. For example, A[i] indicates the *i*th element of the array A. The notation "..." is used to indicate a range of values within an array. Thus, A[1...j] indicates the subarray of A consisting of the *j* elements A[1], A[2], ..., A[j].
- We typically organize compound data into *objects*, which are composed of *attributes*. We access a particular attribute using the syntax found in many object-oriented programming languages: the object name, followed by a dot, followed by the attribute name. For example, we treat an array as an object with the attribute *length* indicating how many elements it contains. To specify the number of elements in an array *A*, we write *A.length*.

We treat a variable representing an array or object as a pointer to the data representing the array or object. For all attributes f of an object x, setting y = x causes y.f to equal x.f. Moreover, if we now set x.f = 3, then afterward not only does x.f equal 3, but y.f equals 3 as well. In other words, x and y point to the same object after the assignment y = x.

Our attribute notation can "cascade." For example, suppose that the attribute f is itself a pointer to some type of object that has an attribute g. Then the notation x.f.g is implicitly parenthesized as (x.f).g. In other words, if we had assigned y = x.f, then x.f.g is the same as y.g.

Sometimes, a pointer will refer to no object at all. In this case, we give it the special value NIL.

• We pass parameters to a procedure *by value*: the called procedure receives its own copy of the parameters, and if it assigns a value to a parameter, the change is *not* seen by the calling procedure. When objects are passed, the pointer to the data representing the object is copied, but the object's attributes are not. For example, if x is a parameter of a called procedure, the assignment x = y within the called procedure is not visible to the calling procedure. The assignment x.f = 3, however, is visible. Similarly, arrays are passed by pointer, so that

a pointer to the array is passed, rather than the entire array, and changes to individual array elements are visible to the calling procedure.

- A **return** statement immediately transfers control back to the point of call in the calling procedure. Most **return** statements also take a value to pass back to the caller. Our pseudocode differs from many programming languages in that we allow multiple values to be returned in a single **return** statement.
- The boolean operators "and" and "or" are *short circuiting*. That is, when we evaluate the expression "x and y" we first evaluate x. If x evaluates to FALSE, then the entire expression cannot evaluate to TRUE, and so we do not evaluate y. If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the value of the entire expression. Similarly, in the expression "x or y" we evaluate the expression y only if x evaluates to FALSE. Short-circuiting operators allow us to write boolean expressions such as " $x \neq$  NIL and x.f = y" without worrying about what happens when we try to evaluate x.f when x is NIL.
- The keyword **error** indicates that an error occurred because conditions were wrong for the procedure to have been called. The calling procedure is responsible for handling the error, and so we do not specify what action to take.

#### **Exercises**

#### *2.1-1*

Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the array  $A = \langle 31, 41, 59, 26, 41, 58 \rangle$ .

### 2.1-2

Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of nondecreasing order.

### *2.1-3*

Consider the *searching problem*:

**Input:** A sequence of *n* numbers  $A = \langle a_1, a_2, \dots, a_n \rangle$  and a value  $\nu$ .

**Output:** An index *i* such that v = A[i] or the special value NIL if v does not appear in A.

Write pseudocode for *linear search*, which scans through the sequence, looking for  $\nu$ . Using a loop invariant, prove that your algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties.

### 2.1-4

Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A and B. The sum of the two integers should be stored in binary form in
an (n + 1)-element array C. State the problem formally and write pseudocode for adding the two integers.

# 2.2 Analyzing algorithms

*Analyzing* an algorithm has come to mean predicting the resources that the algorithm requires. Occasionally, resources such as memory, communication bandwidth, or computer hardware are of primary concern, but most often it is computational time that we want to measure. Generally, by analyzing several candidate algorithms for a problem, we can identify a most efficient one. Such analysis may indicate more than one viable candidate, but we can often discard several inferior algorithms in the process.

Before we can analyze an algorithm, we must have a model of the implementation technology that we will use, including a model for the resources of that technology and their costs. For most of this book, we shall assume a generic oneprocessor, *random-access machine (RAM)* model of computation as our implementation technology and understand that our algorithms will be implemented as computer programs. In the RAM model, instructions are executed one after another, with no concurrent operations.

Strictly speaking, we should precisely define the instructions of the RAM model and their costs. To do so, however, would be tedious and would yield little insight into algorithm design and analysis. Yet we must be careful not to abuse the RAM model. For example, what if a RAM had an instruction that sorts? Then we could sort in just one instruction. Such a RAM would be unrealistic, since real computers do not have such instructions. Our guide, therefore, is how real computers are designed. The RAM model contains instructions commonly found in real computers: arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling), data movement (load, store, copy), and control (conditional and unconditional branch, subroutine call and return). Each such instruction takes a constant amount of time.

The data types in the RAM model are integer and floating point (for storing real numbers). Although we typically do not concern ourselves with precision in this book, in some applications precision is crucial. We also assume a limit on the size of each word of data. For example, when working with inputs of size n, we typically assume that integers are represented by  $c \lg n$  bits for some constant  $c \ge 1$ . We require  $c \ge 1$  so that each word can hold the value of n, enabling us to index the individual input elements, and we restrict c to be a constant so that the word size does not grow arbitrarily. (If the word size could grow arbitrarily, we could store huge amounts of data in one word and operate on it all in constant time—clearly an unrealistic scenario.)

Real computers contain instructions not listed above, and such instructions represent a gray area in the RAM model. For example, is exponentiation a constant-time instruction? In the general case, no; it takes several instructions to compute  $x^y$  when x and y are real numbers. In restricted situations, however, exponentiation is a constant-time operation. Many computers have a "shift left" instruction, which in constant time shifts the bits of an integer by k positions to the left. In most computers, shifting the bits of an integer by one position to the left is equivalent to multiplication by 2, so that shifting the bits by k positions to the left is equivalent to multiplication by  $2^k$ . Therefore, such computers can compute  $2^k$  in one constant-time instruction by shifting the integer 1 by k positions to the left, as long as k is no more than the number of bits in a computer word. We will endeavor to avoid such gray areas in the RAM model, but we will treat computation of  $2^k$  as a constant-time operation when k is a small enough positive integer.

In the RAM model, we do not attempt to model the memory hierarchy that is common in contemporary computers. That is, we do not model caches or virtual memory. Several computational models attempt to account for memory-hierarchy effects, which are sometimes significant in real programs on real machines. A handful of problems in this book examine memory-hierarchy effects, but for the most part, the analyses in this book will not consider them. Models that include the memory hierarchy are quite a bit more complex than the RAM model, and so they can be difficult to work with. Moreover, RAM-model analyses are usually excellent predictors of performance on actual machines.

Analyzing even a simple algorithm in the RAM model can be a challenge. The mathematical tools required may include combinatorics, probability theory, algebraic dexterity, and the ability to identify the most significant terms in a formula. Because the behavior of an algorithm may be different for each possible input, we need a means for summarizing that behavior in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a given algorithm, we still face many choices in deciding how to express our analysis. We would like a way that is simple to write and manipulate, shows the important characteristics of an algorithm's resource requirements, and suppresses tedious details.

## Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input: sorting a thousand numbers takes longer than sorting three numbers. Moreover, INSERTION-SORT can take different amounts of time to sort two input sequences of the same size depending on how nearly sorted they already are. In general, the time taken by an algorithm grows with the size of the input, so it is traditional to describe the running time of a program as a function of the size of its input. To do so, we need to define the terms "running time" and "size of input" more carefully.

The best notion for *input size* depends on the problem being studied. For many problems, such as sorting or computing discrete Fourier transforms, the most natural measure is the *number of items in the input*—for example, the array size n for sorting. For many other problems, such as multiplying two integers, the best measure of input size is the *total number of bits* needed to represent the input in ordinary binary notation. Sometimes, it is more appropriate to describe the size of the input with two numbers rather than one. For instance, if the input to an algorithm is a graph, the input size can be described by the numbers of vertices and edges in the graph. We shall indicate which input size measure is being used with each problem we study.

The *running time* of an algorithm on a particular input is the number of primitive operations or "steps" executed. It is convenient to define the notion of step so that it is as machine-independent as possible. For the moment, let us adopt the following view. A constant amount of time is required to execute each line of our pseudocode. One line may take a different amount of time than another line, but we shall assume that each execution of the *i*th line takes time  $c_i$ , where  $c_i$  is a constant. This viewpoint is in keeping with the RAM model, and it also reflects how the pseudocode would be implemented on most actual computers.<sup>5</sup>

In the following discussion, our expression for the running time of INSERTION-SORT will evolve from a messy formula that uses all the statement costs  $c_i$  to a much simpler notation that is more concise and more easily manipulated. This simpler notation will also make it easy to determine whether one algorithm is more efficient than another.

We start by presenting the INSERTION-SORT procedure with the time "cost" of each statement and the number of times each statement is executed. For each j = 2, 3, ..., n, where n = A.length, we let  $t_j$  denote the number of times the **while** loop test in line 5 is executed for that value of j. When a **for** or **while** loop exits in the usual way (i.e., due to the test in the loop header), the test is executed one time more than the loop body. We assume that comments are not executable statements, and so they take no time.

<sup>&</sup>lt;sup>5</sup>There are some subtleties here. Computational steps that we specify in English are often variants of a procedure that requires more than just a constant amount of time. For example, later in this book we might say "sort the points by *x*-coordinate," which, as we shall see, takes more than a constant amount of time. Also, note that a statement that calls a subroutine takes constant time, though the subroutine, once invoked, may take more. That is, we separate the process of *calling* the subroutine—passing parameters to it, etc.—from the process of *executing* the subroutine.

| INSERTION-SORT $(A)$ |                                  | cost                  | times                      |
|----------------------|----------------------------------|-----------------------|----------------------------|
| 1                    | for $j = 2$ to A.length          | $c_1$                 | п                          |
| 2                    | key = A[j]                       | <i>C</i> <sub>2</sub> | n - 1                      |
| 3                    | // Insert $A[j]$ into the sorted |                       |                            |
|                      | sequence $A[1 \dots j - 1]$ .    | 0                     | n - 1                      |
| 4                    | i = j - 1                        | C4                    | n - 1                      |
| 5                    | while $i > 0$ and $A[i] > key$   | C <sub>5</sub>        | $\sum_{j=2}^{n} t_j$       |
| 6                    | A[i+1] = A[i]                    | <i>C</i> <sub>6</sub> | $\sum_{j=2}^{n} (t_j - 1)$ |
| 7                    | i = i - 1                        | C7                    | $\sum_{j=2}^{n} (t_j - 1)$ |
| 8                    | A[i+1] = key                     | C 8                   | n-1                        |

The running time of the algorithm is the sum of running times for each statement executed; a statement that takes  $c_i$  steps to execute and executes n times will contribute  $c_i n$  to the total running time.<sup>6</sup> To compute T(n), the running time of INSERTION-SORT on an input of n values, we sum the products of the *cost* and *times* columns, obtaining

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1).$$

Even for inputs of a given size, an algorithm's running time may depend on *which* input of that size is given. For example, in INSERTION-SORT, the best case occurs if the array is already sorted. For each j = 2, 3, ..., n, we then find that  $A[i] \leq key$  in line 5 when *i* has its initial value of j - 1. Thus  $t_j = 1$  for j = 2, 3, ..., n, and the best-case running time is

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$
  
=  $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$ .

We can express this running time as an + b for *constants* a and b that depend on the statement costs  $c_i$ ; it is thus a *linear function* of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst case results. We must compare each element A[j] with each element in the entire sorted subarray A[1..j-1], and so  $t_j = j$  for j = 2, 3, ..., n. Noting that

<sup>&</sup>lt;sup>6</sup>This characteristic does not necessarily hold for a resource such as memory. A statement that references m words of memory and is executed n times does not necessarily reference mn distinct words of memory.

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

and

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

(see Appendix A for a review of how to solve these summations), we find that in the worst case, the running time of INSERTION-SORT is

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8).$$

We can express this worst-case running time as  $an^2 + bn + c$  for constants a, b, and c that again depend on the statement costs  $c_i$ ; it is thus a *quadratic function* of n.

Typically, as in insertion sort, the running time of an algorithm is fixed for a given input, although in later chapters we shall see some interesting "randomized" algorithms whose behavior can vary even for a fixed input.

#### Worst-case and average-case analysis

In our analysis of insertion sort, we looked at both the best case, in which the input array was already sorted, and the worst case, in which the input array was reverse sorted. For the remainder of this book, though, we shall usually concentrate on finding only the *worst-case running time*, that is, the longest running time for *any* input of size n. We give three reasons for this orientation.

- The worst-case running time of an algorithm gives us an upper bound on the running time for any input. Knowing it provides a guarantee that the algorithm will never take any longer. We need not make some educated guess about the running time and hope that it never gets much worse.
- For some algorithms, the worst case occurs fairly often. For example, in searching a database for a particular piece of information, the searching algorithm's worst case will often occur when the information is not present in the database. In some applications, searches for absent information may be frequent.

The "average case" is often roughly as bad as the worst case. Suppose that we randomly choose *n* numbers and apply insertion sort. How long does it take to determine where in subarray A[1 ... j - 1] to insert element A[j]? On average, half the elements in A[1 ... j - 1] are less than A[j], and half the elements are greater. On average, therefore, we check half of the subarray A[1 ... j - 1], and so  $t_j$  is about j/2. The resulting average-case running time turns out to be a quadratic function of the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the *average-case* running time of an algorithm; we shall see the technique of *probabilistic analysis* applied to various algorithms throughout this book. The scope of average-case analysis is limited, because it may not be apparent what constitutes an "average" input for a particular problem. Often, we shall assume that all inputs of a given size are equally likely. In practice, this assumption may be violated, but we can sometimes use a *randomized algorithm*, which makes random choices, to allow a probabilistic analysis and yield an *expected* running time. We explore randomized algorithms more in Chapter 5 and in several other subsequent chapters.

#### Order of growth

We used some simplifying abstractions to ease our analysis of the INSERTION-SORT procedure. First, we ignored the actual cost of each statement, using the constants  $c_i$  to represent these costs. Then, we observed that even these constants give us more detail than we really need: we expressed the worst-case running time as  $an^2 + bn + c$  for some constants a, b, and c that depend on the statement costs  $c_i$ . We thus ignored not only the actual statement costs, but also the abstract costs  $c_i$ .

We shall now make one more simplifying abstraction: it is the *rate of growth*, or *order of growth*, of the running time that really interests us. We therefore consider only the leading term of a formula (e.g.,  $an^2$ ), since the lower-order terms are relatively insignificant for large values of n. We also ignore the leading term's constant coefficient, since constant factors are less significant than the rate of growth in determining computational efficiency for large inputs. For insertion sort, when we ignore the lower-order terms and the leading term's constant coefficient, we are left with the factor of  $n^2$  from the leading term. We write that insertion sort has a worst-case running time of  $\Theta(n^2)$  (pronounced "theta of n-squared"). We shall use  $\Theta$ -notation informally in this chapter, and we will define it precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another if its worstcase running time has a lower order of growth. Due to constant factors and lowerorder terms, an algorithm whose running time has a higher order of growth might take less time for small inputs than an algorithm whose running time has a lower order of growth. But for large enough inputs, a  $\Theta(n^2)$  algorithm, for example, will run more quickly in the worst case than a  $\Theta(n^3)$  algorithm.

## **Exercises**

## 2.2-1

Express the function  $n^3/1000 - 100n^2 - 100n + 3$  in terms of  $\Theta$ -notation.

## 2.2-2

Consider sorting *n* numbers stored in array *A* by first finding the smallest element of *A* and exchanging it with the element in *A*[1]. Then find the second smallest element of *A*, and exchange it with *A*[2]. Continue in this manner for the first n - 1elements of *A*. Write pseudocode for this algorithm, which is known as *selection sort*. What loop invariant does this algorithm maintain? Why does it need to run for only the first n - 1 elements, rather than for all *n* elements? Give the best-case and worst-case running times of selection sort in  $\Theta$ -notation.

# 2.2-3

Consider linear search again (see Exercise 2.1-3). How many elements of the input sequence need to be checked on the average, assuming that the element being searched for is equally likely to be any element in the array? How about in the worst case? What are the average-case and worst-case running times of linear search in  $\Theta$ -notation? Justify your answers.

# 2.2-4

How can we modify almost any algorithm to have a good best-case running time?

# 2.3 Designing algorithms

We can choose from a wide range of algorithm design techniques. For insertion sort, we used an *incremental* approach: having sorted the subarray A[1.. j - 1], we inserted the single element A[j] into its proper place, yielding the sorted subarray A[1.. j].

In this section, we examine an alternative design approach, known as "divideand-conquer," which we shall explore in more detail in Chapter 4. We'll use divideand-conquer to design a sorting algorithm whose worst-case running time is much less than that of insertion sort. One advantage of divide-and-conquer algorithms is that their running times are often easily determined using techniques that we will see in Chapter 4.

## 2.3.1 The divide-and-conquer approach

Many useful algorithms are *recursive* in structure: to solve a given problem, they call themselves recursively one or more times to deal with closely related subproblems. These algorithms typically follow a *divide-and-conquer* approach: they break the problem into several subproblems that are similar to the original problem but smaller in size, solve the subproblems recursively, and then combine these solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recursion:

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

The *merge sort* algorithm closely follows the divide-and-conquer paradigm. Intuitively, it operates as follows.

- **Divide:** Divide the *n*-element sequence to be sorted into two subsequences of n/2 elements each.
- **Conquer:** Sort the two subsequences recursively using merge sort.

**Combine:** Merge the two sorted subsequences to produce the sorted answer.

The recursion "bottoms out" when the sequence to be sorted has length 1, in which case there is no work to be done, since every sequence of length 1 is already in sorted order.

The key operation of the merge sort algorithm is the merging of two sorted sequences in the "combine" step. We merge by calling an auxiliary procedure MERGE(A, p, q, r), where A is an array and p, q, and r are indices into the array such that  $p \le q < r$ . The procedure assumes that the subarrays  $A[p \dots q]$  and  $A[q+1 \dots r]$  are in sorted order. It **merges** them to form a single sorted subarray that replaces the current subarray  $A[p \dots r]$ .

Our MERGE procedure takes time  $\Theta(n)$ , where n = r - p + 1 is the total number of elements being merged, and it works as follows. Returning to our cardplaying motif, suppose we have two piles of cards face up on a table. Each pile is sorted, with the smallest cards on top. We wish to merge the two piles into a single sorted output pile, which is to be face down on the table. Our basic step consists of choosing the smaller of the two cards on top of the face-up piles, removing it from its pile (which exposes a new top card), and placing this card face down onto the output pile. We repeat this step until one input pile is empty, at which time we just take the remaining input pile and place it face down onto the output pile. Computationally, each basic step takes constant time, since we are comparing just the two top cards. Since we perform at most n basic steps, merging takes  $\Theta(n)$  time.

The following pseudocode implements the above idea, but with an additional twist that avoids having to check whether either pile is empty in each basic step. We place on the bottom of each pile a *sentinel* card, which contains a special value that we use to simplify our code. Here, we use  $\infty$  as the sentinel value, so that whenever a card with  $\infty$  is exposed, it cannot be the smaller card unless both piles have their sentinel cards exposed. But once that happens, all the nonsentinel cards have already been placed onto the output pile. Since we know in advance that exactly r - p + 1 cards will be placed onto the output pile, we can stop once we have performed that many basic steps.

MERGE(A, p, q, r)

1  $n_1 = q - p + 1$ 2  $n_2 = r - q$ 3 let  $L[1 \dots n_1 + 1]$  and  $R[1 \dots n_2 + 1]$  be new arrays 4 **for** i = 1 **to**  $n_1$ L[i] = A[p+i-1]5 6 **for** j = 1 **to**  $n_2$ R[j] = A[q+j]7  $L[n_1+1] = \infty$ 8 9  $R[n_2+1] = \infty$ 10 i = 111 i = 1for k = p to r12 if  $L[i] \leq R[j]$ 13 14 A[k] = L[i]15 i = i + 1else A[k] = R[j]16 17 i = i + 1

In detail, the MERGE procedure works as follows. Line 1 computes the length  $n_1$  of the subarray A[p ...q], and line 2 computes the length  $n_2$  of the subarray A[q + 1...r]. We create arrays L and R ("left" and "right"), of lengths  $n_1 + 1$  and  $n_2 + 1$ , respectively, in line 3; the extra position in each array will hold the sentinel. The **for** loop of lines 4–5 copies the subarray A[p ...q] into  $L[1...n_1]$ , and the **for** loop of lines 6–7 copies the subarray A[q + 1...r] into  $R[1...n_2]$ . Lines 8–9 put the sentinels at the ends of the arrays L and R. Lines 10–17, illus-



**Figure 2.3** The operation of lines 10–17 in the call MERGE(A, 9, 12, 16), when the subarray A[9..16] contains the sequence  $\langle 2, 4, 5, 7, 1, 2, 3, 6 \rangle$ . After copying and inserting sentinels, the array L contains  $\langle 2, 4, 5, 7, \infty \rangle$ , and the array R contains  $\langle 1, 2, 3, 6, \infty \rangle$ . Lightly shaded positions in A contain their final values, and lightly shaded positions in L and R contain values that have yet to be copied back into A. Taken together, the lightly shaded positions always comprise the values originally in A[9..16], along with the two sentinels. Heavily shaded positions in A contain values that have already been copied back into A. (a)–(h) The arrays A, L, and R, and their respective indices k, i, and j prior to each iteration of the loop of lines 12–17.

trated in Figure 2.3, perform the r - p + 1 basic steps by maintaining the following loop invariant:

At the start of each iteration of the **for** loop of lines 12–17, the subarray A[p..k-1] contains the k - p smallest elements of  $L[1..n_1 + 1]$  and  $R[1..n_2 + 1]$ , in sorted order. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

We must show that this loop invariant holds prior to the first iteration of the **for** loop of lines 12–17, that each iteration of the loop maintains the invariant, and that the invariant provides a useful property to show correctness when the loop terminates.

**Initialization:** Prior to the first iteration of the loop, we have k = p, so that the subarray A[p . . k - 1] is empty. This empty subarray contains the k - p = 0 smallest elements of L and R, and since i = j = 1, both L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.



**Figure 2.3, continued** (i) The arrays and indices at termination. At this point, the subarray in A[9..16] is sorted, and the two sentinels in L and R are the only two elements in these arrays that have not been copied into A.

- **Maintenance:** To see that each iteration maintains the loop invariant, let us first suppose that  $L[i] \leq R[j]$ . Then L[i] is the smallest element not yet copied back into A. Because  $A[p \dots k-1]$  contains the k p smallest elements, after line 14 copies L[i] into A[k], the subarray  $A[p \dots k]$  will contain the k p + 1 smallest elements. Incrementing k (in the **for** loop update) and i (in line 15) reestablishes the loop invariant for the next iteration. If instead L[i] > R[j], then lines 16–17 perform the appropriate action to maintain the loop invariant.
- **Termination:** At termination, k = r + 1. By the loop invariant, the subarray A[p ... k 1], which is A[p ... r], contains the k p = r p + 1 smallest elements of  $L[1... n_1 + 1]$  and  $R[1... n_2 + 1]$ , in sorted order. The arrays L and R together contain  $n_1 + n_2 + 2 = r p + 3$  elements. All but the two largest have been copied back into A, and these two largest elements are the sentinels.

To see that the MERGE procedure runs in  $\Theta(n)$  time, where n = r - p + 1, observe that each of lines 1–3 and 8–11 takes constant time, the **for** loops of lines 4–7 take  $\Theta(n_1 + n_2) = \Theta(n)$  time,<sup>7</sup> and there are *n* iterations of the **for** loop of lines 12–17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort algorithm. The procedure MERGE-SORT(A, p, r) sorts the elements in the subarray A[p ...r]. If  $p \ge r$ , the subarray has at most one element and is therefore already sorted. Otherwise, the divide step simply computes an index q that partitions A[p ...r] into two subarrays: A[p ...q], containing  $\lceil n/2 \rceil$  elements, and A[q + 1...r], containing  $\lfloor n/2 \rfloor$  elements.<sup>8</sup>

MERGE-SORT(A, p, r)

1 **if** p < r2  $q = \lfloor (p+r)/2 \rfloor$ 3 MERGE-SORT(A, p, q)4 MERGE-SORT(A, q+1, r)5 MERGE(A, p, q, r)

To sort the entire sequence  $A = \langle A[1], A[2], \dots, A[n] \rangle$ , we make the initial call MERGE-SORT(A, 1, A.length), where once again A.length = n. Figure 2.4 illustrates the operation of the procedure bottom-up when n is a power of 2. The algorithm consists of merging pairs of 1-item sequences to form sorted sequences of length 2, merging pairs of sequences of length 2 to form sorted sequences of length 4, and so on, until two sequences of length n/2 are merged to form the final sorted sequence of length n.

#### 2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, we can often describe its running time by a *recurrence equation* or *recurrence*, which describes the overall running time on a problem of size n in terms of the running time on smaller inputs. We can then use mathematical tools to solve the recurrence and provide bounds on the performance of the algorithm.

<sup>&</sup>lt;sup>7</sup>We shall see in Chapter 3 how to formally interpret equations containing  $\Theta$ -notation.

<sup>&</sup>lt;sup>8</sup>The expression  $\lceil x \rceil$  denotes the least integer greater than or equal to x, and  $\lfloor x \rfloor$  denotes the greatest integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify that setting q to  $\lfloor (p+r)/2 \rfloor$  yields subarrays A[p ...q] and A[q+1...r] of sizes  $\lceil n/2 \rceil$  and  $\lfloor n/2 \rfloor$ , respectively, is to examine the four cases that arise depending on whether each of p and r is odd or even.



**Figure 2.4** The operation of merge sort on the array A = (5, 2, 4, 7, 1, 3, 2, 6). The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

A recurrence for the running time of a divide-and-conquer algorithm falls out from the three steps of the basic paradigm. As before, we let T(n) be the running time on a problem of size n. If the problem size is small enough, say  $n \le c$ for some constant c, the straightforward solution takes constant time, which we write as  $\Theta(1)$ . Suppose that our division of the problem yields a subproblems, each of which is 1/b the size of the original. (For merge sort, both a and b are 2, but we shall see many divide-and-conquer algorithms in which  $a \ne b$ .) It takes time T(n/b) to solve one subproblem of size n/b, and so it takes time aT(n/b)to solve a of them. If we take D(n) time to divide the problem into subproblems and C(n) time to combine the solutions to the subproblems into the solution to the original problem, we get the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c ,\\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

In Chapter 4, we shall see how to solve common recurrences of this form.

#### Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the number of elements is not even, our recurrence-based analysis is simplified if we assume that

the original problem size is a power of 2. Each divide step then yields two subsequences of size exactly n/2. In Chapter 4, we shall see that this assumption does not affect the order of growth of the solution to the recurrence.

We reason as follows to set up the recurrence for T(n), the worst-case running time of merge sort on *n* numbers. Merge sort on just one element takes constant time. When we have n > 1 elements, we break down the running time as follows.

- **Divide:** The divide step just computes the middle of the subarray, which takes constant time. Thus,  $D(n) = \Theta(1)$ .
- **Conquer:** We recursively solve two subproblems, each of size n/2, which contributes 2T(n/2) to the running time.
- **Combine:** We have already noted that the MERGE procedure on an *n*-element subarray takes time  $\Theta(n)$ , and so  $C(n) = \Theta(n)$ .

When we add the functions D(n) and C(n) for the merge sort analysis, we are adding a function that is  $\Theta(n)$  and a function that is  $\Theta(1)$ . This sum is a linear function of n, that is,  $\Theta(n)$ . Adding it to the 2T(n/2) term from the "conquer" step gives the recurrence for the worst-case running time T(n) of merge sort:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 . \end{cases}$$
(2.1)

In Chapter 4, we shall see the "master theorem," which we can use to show that T(n) is  $\Theta(n \lg n)$ , where  $\lg n$  stands for  $\log_2 n$ . Because the logarithm function grows more slowly than any linear function, for large enough inputs, merge sort, with its  $\Theta(n \lg n)$  running time, outperforms insertion sort, whose running time is  $\Theta(n^2)$ , in the worst case.

We do not need the master theorem to intuitively understand why the solution to the recurrence (2.1) is  $T(n) = \Theta(n \lg n)$ . Let us rewrite recurrence (2.1) as

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$
(2.2)

where the constant c represents the time required to solve problems of size 1 as well as the time per array element of the divide and combine steps.<sup>9</sup>

<sup>&</sup>lt;sup>9</sup>It is unlikely that the same constant exactly represents both the time to solve problems of size 1 and the time per array element of the divide and combine steps. We can get around this problem by letting *c* be the larger of these times and understanding that our recurrence gives an upper bound on the running time, or by letting *c* be the lesser of these times and understanding that our recurrence gives a lower bound on the running time. Both bounds are on the order of  $n \lg n$  and, taken together, give a  $\Theta(n \lg n)$  running time.

Figure 2.5 shows how we can solve recurrence (2.2). For convenience, we assume that n is an exact power of 2. Part (a) of the figure shows T(n), which we expand in part (b) into an equivalent tree representing the recurrence. The cn term is the root (the cost incurred at the top level of recursion), and the two subtrees of the root are the two smaller recurrences T(n/2). Part (c) shows this process carried one step further by expanding T(n/2). The cost incurred at each of the two subnodes at the second level of recursion is cn/2. We continue expanding each node in the tree by breaking it into its constituent parts as determined by the recurrence, until the problem sizes get down to 1, each with a cost of c. Part (d) shows the resulting *recursion tree*.

Next, we add the costs across each level of the tree. The top level has total cost cn, the next level down has total cost c(n/2) + c(n/2) = cn, the level after that has total cost c(n/4) + c(n/4) + c(n/4) + c(n/4) = cn, and so on. In general, the level *i* below the top has  $2^i$  nodes, each contributing a cost of  $c(n/2^i)$ , so that the *i*th level below the top has total cost  $2^i c(n/2^i) = cn$ . The bottom level has *n* nodes, each contributing a cost of *c*.

The total number of levels of the recursion tree in Figure 2.5 is  $\lg n + 1$ , where n is the number of leaves, corresponding to the input size. An informal inductive argument justifies this claim. The base case occurs when n = 1, in which case the tree has only one level. Since  $\lg 1 = 0$ , we have that  $\lg n + 1$  gives the correct number of levels. Now assume as an inductive hypothesis that the number of levels of a recursion tree with  $2^i$  leaves is  $\lg 2^i + 1 = i + 1$  (since for any value of i, we have that  $\lg 2^i = i$ ). Because we are assuming that the input size is a power of 2, the next input size to consider is  $2^{i+1}$ . A tree with  $n = 2^{i+1}$  leaves has one more level than a tree with  $2^i$  leaves, and so the total number of levels is  $(i + 1) + 1 = \lg 2^{i+1} + 1$ .

To compute the total cost represented by the recurrence (2.2), we simply add up the costs of all the levels. The recursion tree has  $\lg n + 1$  levels, each costing cn, for a total cost of  $cn(\lg n + 1) = cn \lg n + cn$ . Ignoring the low-order term and the constant c gives the desired result of  $\Theta(n \lg n)$ .

# Exercises

# 2.3-1

Using Figure 2.4 as a model, illustrate the operation of merge sort on the array  $A = \langle 3, 41, 52, 26, 38, 57, 9, 49 \rangle$ .

### 2.3-2

Rewrite the MERGE procedure so that it does not use sentinels, instead stopping once either array L or R has had all its elements copied back to A and then copying the remainder of the other array back into A.



**Figure 2.5** How to construct a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has  $\lg n + 1$  levels (i.e., it has height  $\lg n$ , as indicated), and each level contributes a total cost of cn. The total cost, therefore, is  $cn \lg n + cn$ , which is  $\Theta(n \lg n)$ .

#### 2.3-3

Use mathematical induction to show that when n is an exact power of 2, the solution of the recurrence

$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1 \\ \text{is } T(n) = n \lg n. \end{cases}$$

# 2.3-4

We can express insertion sort as a recursive procedure as follows. In order to sort A[1..n], we recursively sort A[1..n-1] and then insert A[n] into the sorted array A[1..n-1]. Write a recurrence for the running time of this recursive version of insertion sort.

# 2.3-5

Referring back to the searching problem (see Exercise 2.1-3), observe that if the sequence A is sorted, we can check the midpoint of the sequence against v and eliminate half of the sequence from further consideration. The **binary search** algorithm repeats this procedure, halving the size of the remaining portion of the sequence each time. Write pseudocode, either iterative or recursive, for binary search. Argue that the worst-case running time of binary search is  $\Theta(\lg n)$ .

# 2.3-6

Observe that the **while** loop of lines 5–7 of the INSERTION-SORT procedure in Section 2.1 uses a linear search to scan (backward) through the sorted subarray A[1 ... j - 1]. Can we use a binary search (see Exercise 2.3-5) instead to improve the overall worst-case running time of insertion sort to  $\Theta(n \lg n)$ ?

### 2.3-7 \*

Describe a  $\Theta(n \lg n)$ -time algorithm that, given a set *S* of *n* integers and another integer *x*, determines whether or not there exist two elements in *S* whose sum is exactly *x*.

# Problems

# 2-1 Insertion sort on small arrays in merge sort

Although merge sort runs in  $\Theta(n \lg n)$  worst-case time and insertion sort runs in  $\Theta(n^2)$  worst-case time, the constant factors in insertion sort can make it faster in practice for small problem sizes on many machines. Thus, it makes sense to **coarsen** the leaves of the recursion by using insertion sort within merge sort when

subproblems become sufficiently small. Consider a modification to merge sort in which n/k sublists of length k are sorted using insertion sort and then merged using the standard merging mechanism, where k is a value to be determined.

- *a.* Show that insertion sort can sort the n/k sublists, each of length k, in  $\Theta(nk)$  worst-case time.
- **b.** Show how to merge the sublists in  $\Theta(n \lg(n/k))$  worst-case time.
- *c.* Given that the modified algorithm runs in  $\Theta(nk + n \lg(n/k))$  worst-case time, what is the largest value of k as a function of n for which the modified algorithm has the same running time as standard merge sort, in terms of  $\Theta$ -notation?
- *d.* How should we choose *k* in practice?

#### 2-2 Correctness of bubblesort

Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly swapping adjacent elements that are out of order.

BUBBLESORT(A)

1 for i = 1 to A. length -12 for j = A. length downto i + 13 if A[j] < A[j - 1]4 exchange A[j] with A[j - 1]

*a.* Let A' denote the output of BUBBLESORT(A). To prove that BUBBLESORT is correct, we need to prove that it terminates and that

$$A'[1] \le A'[2] \le \dots \le A'[n],$$
 (2.3)

where n = A.length. In order to show that BUBBLESORT actually sorts, what else do we need to prove?

The next two parts will prove inequality (2.3).

- **b.** State precisely a loop invariant for the **for** loop in lines 2–4, and prove that this loop invariant holds. Your proof should use the structure of the loop invariant proof presented in this chapter.
- *c.* Using the termination condition of the loop invariant proved in part (b), state a loop invariant for the **for** loop in lines 1–4 that will allow you to prove inequality (2.3). Your proof should use the structure of the loop invariant proof presented in this chapter.

# 4 Divide-and-Conquer

In Section 2.3.1, we saw how merge sort serves as an example of the divide-andconquer paradigm. Recall that in divide-and-conquer, we solve a problem recursively, applying three steps at each level of the recursion:

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

When the subproblems are large enough to solve recursively, we call that the *recursive case*. Once the subproblems become small enough that we no longer recurse, we say that the recursion "bottoms out" and that we have gotten down to the *base case*. Sometimes, in addition to subproblems that are smaller instances of the same problem, we have to solve subproblems that are not quite the same as the original problem. We consider solving such subproblems as part of the combine step.

In this chapter, we shall see more algorithms based on divide-and-conquer. The first one solves the maximum-subarray problem: it takes as input an array of numbers, and it determines the contiguous subarray whose values have the greatest sum. Then we shall see two divide-and-conquer algorithms for multiplying  $n \times n$  matrices. One runs in  $\Theta(n^3)$  time, which is no better than the straightforward method of multiplying square matrices. But the other, Strassen's algorithm, runs in  $O(n^{2.81})$  time, which beats the straightforward method asymptotically.

## Recurrences

Recurrences go hand in hand with the divide-and-conquer paradigm, because they give us a natural way to characterize the running times of divide-and-conquer algorithms. A *recurrence* is an equation or inequality that describes a function in terms

of its value on smaller inputs. For example, in Section 2.3.2 we described the worst-case running time T(n) of the MERGE-SORT procedure by the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1, \end{cases}$$
(4.1)

whose solution we claimed to be  $T(n) = \Theta(n \lg n)$ .

Recurrences can take many forms. For example, a recursive algorithm might divide subproblems into unequal sizes, such as a 2/3-to-1/3 split. If the divide and combine steps take linear time, such an algorithm would give rise to the recurrence  $T(n) = T(2n/3) + T(n/3) + \Theta(n)$ .

Subproblems are not necessarily constrained to being a constant fraction of the original problem size. For example, a recursive version of linear search (see Exercise 2.1-3) would create just one subproblem containing only one element fewer than the original problem. Each recursive call would take constant time plus the time for the recursive calls it makes, yielding the recurrence  $T(n) = T(n-1) + \Theta(1)$ .

This chapter offers three methods for solving recurrences—that is, for obtaining asymptotic " $\Theta$ " or "O" bounds on the solution:

- In the *substitution method*, we guess a bound and then use mathematical induction to prove our guess correct.
- The *recursion-tree method* converts the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion. We use techniques for bounding summations to solve the recurrence.
- The *master method* provides bounds for recurrences of the form

$$T(n) = aT(n/b) + f(n)$$
, (4.2)

where  $a \ge 1$ , b > 1, and f(n) is a given function. Such recurrences arise frequently. A recurrence of the form in equation (4.2) characterizes a divideand-conquer algorithm that creates a subproblems, each of which is 1/b the size of the original problem, and in which the divide and combine steps together take f(n) time.

To use the master method, you will need to memorize three cases, but once you do that, you will easily be able to determine asymptotic bounds for many simple recurrences. We will use the master method to determine the running times of the divide-and-conquer algorithms for the maximum-subarray problem and for matrix multiplication, as well as for other algorithms based on divideand-conquer elsewhere in this book. Occasionally, we shall see recurrences that are not equalities but rather inequalities, such as  $T(n) \leq 2T(n/2) + \Theta(n)$ . Because such a recurrence states only an upper bound on T(n), we will couch its solution using *O*-notation rather than  $\Theta$ -notation. Similarly, if the inequality were reversed to  $T(n) \geq 2T(n/2) + \Theta(n)$ , then because the recurrence gives only a lower bound on T(n), we would use  $\Omega$ -notation in its solution.

#### **Technicalities in recurrences**

In practice, we neglect certain technical details when we state and solve recurrences. For example, if we call MERGE-SORT on *n* elements when *n* is odd, we end up with subproblems of size  $\lfloor n/2 \rfloor$  and  $\lceil n/2 \rceil$ . Neither size is actually n/2, because n/2 is not an integer when *n* is odd. Technically, the recurrence describing the worst-case running time of MERGE-SORT is really

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 . \end{cases}$$
(4.3)

Boundary conditions represent another class of details that we typically ignore. Since the running time of an algorithm on a constant-sized input is a constant, the recurrences that arise from the running times of algorithms generally have  $T(n) = \Theta(1)$  for sufficiently small n. Consequently, for convenience, we shall generally omit statements of the boundary conditions of recurrences and assume that T(n) is constant for small n. For example, we normally state recurrence (4.1) as

$$T(n) = 2T(n/2) + \Theta(n)$$
, (4.4)

without explicitly giving values for small n. The reason is that although changing the value of T(1) changes the exact solution to the recurrence, the solution typically doesn't change by more than a constant factor, and so the order of growth is unchanged.

When we state and solve recurrences, we often omit floors, ceilings, and boundary conditions. We forge ahead without these details and later determine whether or not they matter. They usually do not, but you should know when they do. Experience helps, and so do some theorems stating that these details do not affect the asymptotic bounds of many recurrences characterizing divide-and-conquer algorithms (see Theorem 4.1). In this chapter, however, we shall address some of these details and illustrate the fine points of recurrence solution methods.

# 4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical Corporation. Like the chemicals the company produces, the stock price of the Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit of stock only one time and then sell it at a later date, buying and selling after the close of trading for the day. To compensate for this restriction, you are allowed to learn what the price of the stock will be in the future. Your goal is to maximize your profit. Figure 4.1 shows the price of the stock over a 17-day period. You may buy the stock at any one time, starting after day 0, when the price is \$100 per share. Of course, you would want to "buy low, sell high"—buy at the lowest possible price and later on sell at the highest possible price —to maximize your profit. Unfortunately, you might not be able to buy at the lowest price and then sell at the highest price 4.1, the lowest price occurs after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the lowest price or selling at the highest price. For example, in Figure 4.1, we would maximize profit by buying at the lowest price, after day 7. If this strategy always worked, then it would be easy to determine how to maximize profit: find the highest and lowest prices, and then work left from the highest price to find the lowest price, work right from the lowest price to find the highest later price, and take the pair with the greater difference. Figure 4.2 shows a simple counterexample,



**Figure 4.1** Information about the price of stock in the Volatile Chemical Corporation after the close of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical axis shows the price. The bottom row of the table gives the change in price from the previous day.



**Figure 4.2** An example showing that the maximum profit does not always start at the lowest price or end at the highest price. Again, the horizontal axis indicates the day, and the vertical axis shows the price. Here, the maximum profit of \$3 per share would be earned by buying after day 2 and selling after day 3. The price of \$7 after day 2 is not the lowest price overall, and the price of \$10 after day 3 is not the highest price overall.

demonstrating that the maximum profit sometimes comes neither by buying at the lowest price nor by selling at the highest price.

#### A brute-force solution

We can easily devise a brute-force solution to this problem: just try every possible pair of buy and sell dates in which the buy date precedes the sell date. A period of n days has  $\binom{n}{2}$  such pairs of dates. Since  $\binom{n}{2}$  is  $\Theta(n^2)$ , and the best we can hope for is to evaluate each pair of dates in constant time, this approach would take  $\Omega(n^2)$  time. Can we do better?

## A transformation

In order to design an algorithm with an  $o(n^2)$  running time, we will look at the input in a slightly different way. We want to find a sequence of days over which the net change from the first day to the last is maximum. Instead of looking at the daily prices, let us instead consider the daily change in price, where the change on day *i* is the difference between the prices after day i - 1 and after day *i*. The table in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as an array *A*, shown in Figure 4.3, we now want to find the nonempty, contiguous subarray of *A* whose values have the largest sum. We call this contiguous subarray the *maximum subarray*. For example, in the array of Figure 4.3, the maximum subarray of A[1..16] is A[8..11], with the sum 43. Thus, you would want to buy the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a profit of \$43 per share.

At first glance, this transformation does not help. We still need to check  $\binom{n-1}{2} = \Theta(n^2)$  subarrays for a period of *n* days. Exercise 4.1-2 asks you to show



**Figure 4.3** The change in stock prices as a maximum-subarray problem. Here, the subarray A[8..11], with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to the length of the subarray, when computing all  $\Theta(n^2)$  subarray sums, we can organize the computation so that each subarray sum takes O(1) time, given the values of previously computed subarray sums, so that the brute-force solution takes  $\Theta(n^2)$ time.

So let us seek a more efficient solution to the maximum-subarray problem. When doing so, we will usually speak of "a" maximum subarray rather than "the" maximum subarray, since there could be more than one subarray that achieves the maximum sum.

The maximum-subarray problem is interesting only when the array contains some negative numbers. If all the array entries were nonnegative, then the maximum-subarray problem would present no challenge, since the entire array would give the greatest sum.

#### A solution using divide-and-conquer

Let's think about how we might solve the maximum-subarray problem using the divide-and-conquer technique. Suppose we want to find a maximum subarray of the subarray A[low..high]. Divide-and-conquer suggests that we divide the subarray into two subarrays of as equal size as possible. That is, we find the midpoint, say *mid*, of the subarray, and consider the subarrays A[low..mid]and A[mid + 1..high]. As Figure 4.4(a) shows, any contiguous subarray A[i..j]of A[low..high] must lie in exactly one of the following places:

- entirely in the subarray  $A[low \dots mid]$ , so that  $low \le i \le j \le mid$ ,
- entirely in the subarray  $A[mid + 1 \dots high]$ , so that  $mid < i \le j \le high$ , or
- crossing the midpoint, so that  $low \le i \le mid < j \le high$ .

Therefore, a maximum subarray of A[low..high] must lie in exactly one of these places. In fact, a maximum subarray of A[low..high] must have the greatest sum over all subarrays entirely in A[low..mid], entirely in A[mid + 1..high], or crossing the midpoint. We can find maximum subarrays of A[low..mid] and A[mid+1..high] recursively, because these two subproblems are smaller instances of the problem of finding a maximum subarray. Thus, all that is left to do is find a



**Figure 4.4** (a) Possible locations of subarrays of A[low .. high]: entirely in A[low .. mid], entirely in A[mid + 1.. high], or crossing the midpoint mid. (b) Any subarray of A[low .. high] crossing the midpoint comprises two subarrays A[i .. mid] and A[mid + 1.. j], where  $low \le i \le mid$  and  $mid < j \le high$ .

maximum subarray that crosses the midpoint, and take a subarray with the largest sum of the three.

We can easily find a maximum subarray crossing the midpoint in time linear in the size of the subarray A[low..high]. This problem is *not* a smaller instance of our original problem, because it has the added restriction that the subarray it chooses must cross the midpoint. As Figure 4.4(b) shows, any subarray crossing the midpoint is itself made of two subarrays A[i..mid] and A[mid + 1..j], where  $low \le i \le mid$  and  $mid < j \le high$ . Therefore, we just need to find maximum subarrays of the form A[i..mid] and A[mid + 1..j] and then combine them. The procedure FIND-MAX-CROSSING-SUBARRAY takes as input the array A and the indices *low*, *mid*, and *high*, and it returns a tuple containing the indices demarcating a maximum subarray that crosses the midpoint, along with the sum of the values in a maximum subarray.

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

```
1
    left-sum = -\infty
 2
    sum = 0
 3
    for i = mid downto low
 4
         sum = sum + A[i]
 5
         if sum > left-sum
 6
             left-sum = sum
 7
             max-left = i
 8
    right-sum = -\infty
    sum = 0
 9
10
    for j = mid + 1 to high
         sum = sum + A[j]
11
12
         if sum > right-sum
13
             right-sum = sum
14
             max-right = i
15
    return (max-left, max-right, left-sum + right-sum)
```

This procedure works as follows. Lines 1–7 find a maximum subarray of the left half, A[low..mid]. Since this subarray must contain A[mid], the **for** loop of lines 3–7 starts the index *i* at mid and works down to low, so that every subarray it considers is of the form A[i..mid]. Lines 1–2 initialize the variables left-sum, which holds the greatest sum found so far, and sum, holding the sum of the entries in A[i..mid]. Whenever we find, in line 5, a subarray A[i..mid] with a sum of values greater than left-sum, we update left-sum to this subarray's sum in line 6, and in line 7 we update the variable max-left to record this index *i*. Lines 8–14 work analogously for the right half, A[mid+1..high]. Here, the **for** loop of lines 10–14 starts the index *j* at mid+1 and works up to high, so that every subarray it considers is of the form A[mid + 1..j]. Finally, line 15 returns the indices max-left and max-right that demarcate a maximum subarray crossing the midpoint, along with the sum left-sum + right-sum of the values in the subarray A[max-left..max-right].

If the subarray A[low..high] contains *n* entries (so that n = high - low + 1), we claim that the call FIND-MAX-CROSSING-SUBARRAY (*A*, *low*, *mid*, *high*) takes  $\Theta(n)$  time. Since each iteration of each of the two **for** loops takes  $\Theta(1)$ time, we just need to count up how many iterations there are altogether. The **for** loop of lines 3–7 makes *mid* – *low* + 1 iterations, and the **for** loop of lines 10–14 makes *high* – *mid* iterations, and so the total number of iterations is

$$(mid - low + 1) + (high - mid) = high - low + 1$$
$$= n.$$

With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in hand, we can write pseudocode for a divide-and-conquer algorithm to solve the maximum-subarray problem:

FIND-MAXIMUM-SUBARRAY (A, low, high)

1 .....

1 :::.1.

| 1  | $\mathbf{n} n g n == l o w$                                                                   |
|----|-----------------------------------------------------------------------------------------------|
| 2  | return (low, high, A[low]) // base case: only one element                                     |
| 3  | else $mid = \lfloor (low + high)/2 \rfloor$                                                   |
| 4  | (left-low, left-high, left-sum) =                                                             |
|    | FIND-MAXIMUM-SUBARRAY $(A, low, mid)$                                                         |
| 5  | (right-low, right-high, right-sum) =                                                          |
|    | FIND-MAXIMUM-SUBARRAY $(A, mid + 1, high)$                                                    |
| 6  | (cross-low, cross-high, cross-sum) =                                                          |
|    | FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)                                                |
| 7  | <b>if</b> <i>left-sum</i> $\geq$ <i>right-sum</i> and <i>left-sum</i> $\geq$ <i>cross-sum</i> |
| 8  | <b>return</b> ( <i>left-low</i> , <i>left-high</i> , <i>left-sum</i> )                        |
| 9  | elseif right-sum $\geq$ left-sum and right-sum $\geq$ cross-sum                               |
| 10 | <b>return</b> ( <i>right-low</i> , <i>right-high</i> , <i>right-sum</i> )                     |
| 11 | else return (cross-low, cross-high, cross-sum)                                                |

The initial call FIND-MAXIMUM-SUBARRAY (A, 1, A.length) will find a maximum subarray of A[1..n].

Similar to FIND-MAX-CROSSING-SUBARRAY, the recursive procedure FIND-MAXIMUM-SUBARRAY returns a tuple containing the indices that demarcate a maximum subarray, along with the sum of the values in a maximum subarray. Line 1 tests for the base case, where the subarray has just one element. A subarray with just one element has only one subarray—itself—and so line 2 returns a tuple with the starting and ending indices of just the one element, along with its value. Lines 3-11 handle the recursive case. Line 3 does the divide part, computing the index *mid* of the midpoint. Let's refer to the subarray A[low..mid] as the *left subarray* and to A[mid + 1..high] as the *right subarray*. Because we know that the subarray  $A[low \dots high]$  contains at least two elements, each of the left and right subarrays must have at least one element. Lines 4 and 5 conquer by recursively finding maximum subarrays within the left and right subarrays, respectively. Lines 6–11 form the combine part. Line 6 finds a maximum subarray that crosses the midpoint. (Recall that because line 6 solves a subproblem that is not a smaller instance of the original problem, we consider it to be in the combine part.) Line 7 tests whether the left subarray contains a subarray with the maximum sum, and line 8 returns that maximum subarray. Otherwise, line 9 tests whether the right subarray contains a subarray with the maximum sum, and line 10 returns that maximum subarray. If neither the left nor right subarrays contain a subarray achieving the maximum sum, then a maximum subarray must cross the midpoint, and line 11 returns it.

#### Analyzing the divide-and-conquer algorithm

Next we set up a recurrence that describes the running time of the recursive FIND-MAXIMUM-SUBARRAY procedure. As we did when we analyzed merge sort in Section 2.3.2, we make the simplifying assumption that the original problem size is a power of 2, so that all subproblem sizes are integers. We denote by T(n) the running time of FIND-MAXIMUM-SUBARRAY on a subarray of n elements. For starters, line 1 takes constant time. The base case, when n = 1, is easy: line 2 takes constant time, and so

$$T(1) = \Theta(1) . \tag{4.5}$$

The recursive case occurs when n > 1. Lines 1 and 3 take constant time. Each of the subproblems solved in lines 4 and 5 is on a subarray of n/2 elements (our assumption that the original problem size is a power of 2 ensures that n/2 is an integer), and so we spend T(n/2) time solving each of them. Because we have to solve two subproblems—for the left subarray and for the right subarray—the contribution to the running time from lines 4 and 5 comes to 2T(n/2). As we have

already seen, the call to FIND-MAX-CROSSING-SUBARRAY in line 6 takes  $\Theta(n)$  time. Lines 7–11 take only  $\Theta(1)$  time. For the recursive case, therefore, we have

$$T(n) = \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1) = 2T(n/2) + \Theta(n) .$$
(4.6)

Combining equations (4.5) and (4.6) gives us a recurrence for the running time T(n) of FIND-MAXIMUM-SUBARRAY:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 . \end{cases}$$
(4.7)

This recurrence is the same as recurrence (4.1) for merge sort. As we shall see from the master method in Section 4.5, this recurrence has the solution  $T(n) = \Theta(n \lg n)$ . You might also revisit the recursion tree in Figure 2.5 to understand why the solution should be  $T(n) = \Theta(n \lg n)$ .

Thus, we see that the divide-and-conquer method yields an algorithm that is asymptotically faster than the brute-force method. With merge sort and now the maximum-subarray problem, we begin to get an idea of how powerful the divideand-conquer method can be. Sometimes it will yield the asymptotically fastest algorithm for a problem, and other times we can do even better. As Exercise 4.1-5 shows, there is in fact a linear-time algorithm for the maximum-subarray problem, and it does not use divide-and-conquer.

## **Exercises**

## 4.1-1

What does FIND-MAXIMUM-SUBARRAY return when all elements of *A* are negative?

# 4.1-2

Write pseudocode for the brute-force method of solving the maximum-subarray problem. Your procedure should run in  $\Theta(n^2)$  time.

# *4.1-3*

Implement both the brute-force and recursive algorithms for the maximumsubarray problem on your own computer. What problem size  $n_0$  gives the crossover point at which the recursive algorithm beats the brute-force algorithm? Then, change the base case of the recursive algorithm to use the brute-force algorithm whenever the problem size is less than  $n_0$ . Does that change the crossover point?

# *4.1-4*

Suppose we change the definition of the maximum-subarray problem to allow the result to be an empty subarray, where the sum of the values of an empty subar-

ray is 0. How would you change any of the algorithms that do not allow empty subarrays to permit an empty subarray to be the result?

## 4.1-5

Use the following ideas to develop a nonrecursive, linear-time algorithm for the maximum-subarray problem. Start at the left end of the array, and progress toward the right, keeping track of the maximum subarray seen so far. Knowing a maximum subarray of A[1.. j], extend the answer to find a maximum subarray ending at index j + 1 by using the following observation: a maximum subarray of A[1.. j + 1] is either a maximum subarray of A[1.. j] or a subarray A[i.. j + 1], for some  $1 \le i \le j + 1$ . Determine a maximum subarray of the form A[i.. j + 1] in constant time based on knowing a maximum subarray ending at index j.

# 4.2 Strassen's algorithm for matrix multiplication

If you have seen matrices before, then you probably know how to multiply them. (Otherwise, you should read Section D.1 in Appendix D.) If  $A = (a_{ij})$  and  $B = (b_{ij})$  are square  $n \times n$  matrices, then in the product  $C = A \cdot B$ , we define the entry  $c_{ij}$ , for i, j = 1, 2, ..., n, by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} .$$
(4.8)

We must compute  $n^2$  matrix entries, and each is the sum of *n* values. The following procedure takes  $n \times n$  matrices *A* and *B* and multiplies them, returning their  $n \times n$  product *C*. We assume that each matrix has an attribute *rows*, giving the number of rows in the matrix.

#### SQUARE-MATRIX-MULTIPLY (A, B)

```
1 n = A.rows

2 let C be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

The SQUARE-MATRIX-MULTIPLY procedure works as follows. The **for** loop of lines 3-7 computes the entries of each row *i*, and within a given row *i*, the

**for** loop of lines 4–7 computes each of the entries  $c_{ij}$ , for each column *j*. Line 5 initializes  $c_{ij}$  to 0 as we start computing the sum given in equation (4.8), and each iteration of the **for** loop of lines 6–7 adds in one more term of equation (4.8).

Because each of the triply-nested for loops runs exactly *n* iterations, and each execution of line 7 takes constant time, the SQUARE-MATRIX-MULTIPLY procedure takes  $\Theta(n^3)$  time.

You might at first think that any matrix multiplication algorithm must take  $\Omega(n^3)$  time, since the natural definition of matrix multiplication requires that many multiplications. You would be incorrect, however: we have a way to multiply matrices in  $o(n^3)$  time. In this section, we shall see Strassen's remarkable recursive algorithm for multiplying  $n \times n$  matrices. It runs in  $\Theta(n^{\lg 7})$  time, which we shall show in Section 4.5. Since lg 7 lies between 2.80 and 2.81, Strassen's algorithm runs in  $O(n^{2.81})$  time, which is asymptotically better than the simple SQUARE-MATRIX-MULTIPLY procedure.

#### A simple divide-and-conquer algorithm

To keep things simple, when we use a divide-and-conquer algorithm to compute the matrix product  $C = A \cdot B$ , we assume that *n* is an exact power of 2 in each of the  $n \times n$  matrices. We make this assumption because in each divide step, we will divide  $n \times n$  matrices into four  $n/2 \times n/2$  matrices, and by assuming that *n* is an exact power of 2, we are guaranteed that as long as  $n \ge 2$ , the dimension n/2 is an integer.

Suppose that we partition each of A, B, and C into four  $n/2 \times n/2$  matrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \quad (4.9)$$

so that we rewrite the equation  $C = A \cdot B$  as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$
 (4.10)

Equation (4.10) corresponds to the four equations

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} , \qquad (4.11)$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} , \qquad (4.12)$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} , \qquad (4.13)$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} . (4.14)$$

Each of these four equations specifies two multiplications of  $n/2 \times n/2$  matrices and the addition of their  $n/2 \times n/2$  products. We can use these equations to create a straightforward, recursive, divide-and-conquer algorithm: SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

| 1  | n = A.rows                                                      |
|----|-----------------------------------------------------------------|
| 2  | let C be a new $n \times n$ matrix                              |
| 3  | if $n == 1$                                                     |
| 4  | $c_{11} = a_{11} \cdot b_{11}$                                  |
| 5  | else partition A, B, and C as in equations $(4.9)$              |
| 6  | $C_{11} = $ SQUARE-MATRIX-MULTIPLY-RECURSIVE $(A_{11}, B_{11})$ |
|    | + SQUARE-MATRIX-MULTIPLY-RECURSIVE $(A_{12}, B_{21})$           |
| 7  | $C_{12} = $ SQUARE-MATRIX-MULTIPLY-RECURSIVE $(A_{11}, B_{12})$ |
|    | + SQUARE-MATRIX-MULTIPLY-RECURSIVE $(A_{12}, B_{22})$           |
| 8  | $C_{21} = $ Square-Matrix-Multiply-Recursive $(A_{21}, B_{11})$ |
|    | + SQUARE-MATRIX-MULTIPLY-RECURSIVE $(A_{22}, B_{21})$           |
| 9  | $C_{22} = $ Square-Matrix-Multiply-Recursive $(A_{21}, B_{12})$ |
|    | + SQUARE-MATRIX-MULTIPLY-RECURSIVE $(A_{22}, B_{22})$           |
| 10 | notiven C                                                       |

#### 10 return C

This pseudocode glosses over one subtle but important implementation detail. How do we partition the matrices in line 5? If we were to create 12 new  $n/2 \times n/2$ matrices, we would spend  $\Theta(n^2)$  time copying entries. In fact, we can partition the matrices without copying entries. The trick is to use index calculations. We identify a submatrix by a range of row indices and a range of column indices of the original matrix. We end up representing a submatrix a little differently from how we represent the original matrix, which is the subtlety we are glossing over. The advantage is that, since we can specify submatrices by index calculations, executing line 5 takes only  $\Theta(1)$  time (although we shall see that it makes no difference asymptotically to the overall running time whether we copy or partition in place).

Now, we derive a recurrence to characterize the running time of SQUARE-MATRIX-MULTIPLY-RECURSIVE. Let T(n) be the time to multiply two  $n \times n$  matrices using this procedure. In the base case, when n = 1, we perform just the one scalar multiplication in line 4, and so

$$T(1) = \Theta(1) . \tag{4.15}$$

The recursive case occurs when n > 1. As discussed, partitioning the matrices in line 5 takes  $\Theta(1)$  time, using index calculations. In lines 6–9, we recursively call SQUARE-MATRIX-MULTIPLY-RECURSIVE a total of eight times. Because each recursive call multiplies two  $n/2 \times n/2$  matrices, thereby contributing T(n/2) to the overall running time, the time taken by all eight recursive calls is 8T(n/2). We also must account for the four matrix additions in lines 6–9. Each of these matrices contains  $n^2/4$  entries, and so each of the four matrix additions takes  $\Theta(n^2)$  time. Since the number of matrix additions is a constant, the total time spent adding matrices in lines 6–9 is  $\Theta(n^2)$ . (Again, we use index calculations to place the results of the matrix additions into the correct positions of matrix *C*, with an overhead of  $\Theta(1)$  time per entry.) The total time for the recursive case, therefore, is the sum of the partitioning time, the time for all the recursive calls, and the time to add the matrices resulting from the recursive calls:

$$T(n) = \Theta(1) + 8T(n/2) + \Theta(n^2) = 8T(n/2) + \Theta(n^2) .$$
(4.16)

Notice that if we implemented partitioning by copying matrices, which would cost  $\Theta(n^2)$  time, the recurrence would not change, and hence the overall running time would increase by only a constant factor.

Combining equations (4.15) and (4.16) gives us the recurrence for the running time of SQUARE-MATRIX-MULTIPLY-RECURSIVE:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 . \end{cases}$$
(4.17)

As we shall see from the master method in Section 4.5, recurrence (4.17) has the solution  $T(n) = \Theta(n^3)$ . Thus, this simple divide-and-conquer approach is no faster than the straightforward SQUARE-MATRIX-MULTIPLY procedure.

Before we continue on to examining Strassen's algorithm, let us review where the components of equation (4.16) came from. Partitioning each  $n \times n$  matrix by index calculation takes  $\Theta(1)$  time, but we have two matrices to partition. Although you could say that partitioning the two matrices takes  $\Theta(2)$  time, the constant of 2 is subsumed by the  $\Theta$ -notation. Adding two matrices, each with, say, k entries, takes  $\Theta(k)$  time. Since the matrices we add each have  $n^2/4$  entries, you could say that adding each pair takes  $\Theta(n^2/4)$  time. Again, however, the  $\Theta$ -notation subsumes the constant factor of 1/4, and we say that adding two  $n^2/4 \times n^2/4$ matrices takes  $\Theta(n^2)$  time. We have four such matrix additions, and once again, instead of saying that they take  $\Theta(4n^2)$  time, we say that they take  $\Theta(n^2)$  time. (Of course, you might observe that we could say that the four matrix additions take  $\Theta(4n^2/4)$  time, and that  $4n^2/4 = n^2$ , but the point here is that  $\Theta$ -notation subsumes constant factors, whatever they are.) Thus, we end up with two terms of  $\Theta(n^2)$ , which we can combine into one.

When we account for the eight recursive calls, however, we cannot just subsume the constant factor of 8. In other words, we must say that together they take 8T(n/2) time, rather than just T(n/2) time. You can get a feel for why by looking back at the recursion tree in Figure 2.5, for recurrence (2.1) (which is identical to recurrence (4.7)), with the recursive case  $T(n) = 2T(n/2) + \Theta(n)$ . The factor of 2 determined how many children each tree node had, which in turn determined how many terms contributed to the sum at each level of the tree. If we were to ignore the factor of 8 in equation (4.16) or the factor of 2 in recurrence (4.1), the recursion tree would just be linear, rather than "bushy," and each level would contribute only one term to the sum.

Bear in mind, therefore, that although asymptotic notation subsumes constant multiplicative factors, recursive notation such as T(n/2) does not.

# Strassen's method

The key to Strassen's method is to make the recursion tree slightly less bushy. That is, instead of performing eight recursive multiplications of  $n/2 \times n/2$  matrices, it performs only seven. The cost of eliminating one matrix multiplication will be several new additions of  $n/2 \times n/2$  matrices, but still only a constant number of additions. As before, the constant number of matrix additions will be subsumed by  $\Theta$ -notation when we set up the recurrence equation to characterize the running time.

Strassen's method is not at all obvious. (This might be the biggest understatement in this book.) It has four steps:

- 1. Divide the input matrices A and B and output matrix C into  $n/2 \times n/2$  submatrices, as in equation (4.9). This step takes  $\Theta(1)$  time by index calculation, just as in SQUARE-MATRIX-MULTIPLY-RECURSIVE.
- 2. Create 10 matrices  $S_1, S_2, \ldots, S_{10}$ , each of which is  $n/2 \times n/2$  and is the sum or difference of two matrices created in step 1. We can create all 10 matrices in  $\Theta(n^2)$  time.
- 3. Using the submatrices created in step 1 and the 10 matrices created in step 2, recursively compute seven matrix products  $P_1, P_2, \ldots, P_7$ . Each matrix  $P_i$  is  $n/2 \times n/2$ .
- 4. Compute the desired submatrices  $C_{11}, C_{12}, C_{21}, C_{22}$  of the result matrix C by adding and subtracting various combinations of the  $P_i$  matrices. We can compute all four submatrices in  $\Theta(n^2)$  time.

We shall see the details of steps 2–4 in a moment, but we already have enough information to set up a recurrence for the running time of Strassen's method. Let us assume that once the matrix size n gets down to 1, we perform a simple scalar multiplication, just as in line 4 of SQUARE-MATRIX-MULTIPLY-RECURSIVE. When n > 1, steps 1, 2, and 4 take a total of  $\Theta(n^2)$  time, and step 3 requires us to perform seven multiplications of  $n/2 \times n/2$  matrices. Hence, we obtain the following recurrence for the running time T(n) of Strassen's algorithm:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 . \end{cases}$$
(4.18)

We have traded off one matrix multiplication for a constant number of matrix additions. Once we understand recurrences and their solutions, we shall see that this tradeoff actually leads to a lower asymptotic running time. By the master method in Section 4.5, recurrence (4.18) has the solution  $T(n) = \Theta(n^{\lg 7})$ .

We now proceed to describe the details. In step 2, we create the following 10 matrices:

$$S_{1} = B_{12} - B_{22} ,$$
  

$$S_{2} = A_{11} + A_{12} ,$$
  

$$S_{3} = A_{21} + A_{22} ,$$
  

$$S_{4} = B_{21} - B_{11} ,$$
  

$$S_{5} = A_{11} + A_{22} ,$$
  

$$S_{6} = B_{11} + B_{22} ,$$
  

$$S_{7} = A_{12} - A_{22} ,$$
  

$$S_{8} = B_{21} + B_{22} ,$$
  

$$S_{9} = A_{11} - A_{21} ,$$
  

$$S_{10} = B_{11} + B_{12} .$$

Since we must add or subtract  $n/2 \times n/2$  matrices 10 times, this step does indeed take  $\Theta(n^2)$  time.

In step 3, we recursively multiply  $n/2 \times n/2$  matrices seven times to compute the following  $n/2 \times n/2$  matrices, each of which is the sum or difference of products of *A* and *B* submatrices:

$$\begin{array}{rcl} P_{1} &=& A_{11} \cdot S_{1} &=& A_{11} \cdot B_{12} - A_{11} \cdot B_{22} \;, \\ P_{2} &=& S_{2} \cdot B_{22} \;=& A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \;, \\ P_{3} &=& S_{3} \cdot B_{11} \;=& A_{21} \cdot B_{11} + A_{22} \cdot B_{11} \;, \\ P_{4} &=& A_{22} \cdot S_{4} \;=& A_{22} \cdot B_{21} - A_{22} \cdot B_{11} \;, \\ P_{5} &=& S_{5} \cdot S_{6} \;=& A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \;, \\ P_{6} &=& S_{7} \cdot S_{8} \;=& A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \;, \\ P_{7} &=& S_{9} \cdot S_{10} \;=& A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} \;. \end{array}$$

Note that the only multiplications we need to perform are those in the middle column of the above equations. The right-hand column just shows what these products equal in terms of the original submatrices created in step 1.

Step 4 adds and subtracts the  $P_i$  matrices created in step 3 to construct the four  $n/2 \times n/2$  submatrices of the product C. We start with

$$C_{11} = P_5 + P_4 - P_2 + P_6 \, .$$

Expanding out the right-hand side, with the expansion of each  $P_i$  on its own line and vertically aligning terms that cancel out, we see that  $C_{11}$  equals

$$\begin{array}{c} A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ & -A_{22} \cdot B_{11} + A_{22} \cdot B_{21} \\ & -A_{11} \cdot B_{22} - A_{22} \cdot B_{22} - A_{22} \cdot B_{21} + A_{12} \cdot B_{22} + A_{12} \cdot B_{21} \end{array}$$

 $A_{11} \cdot B_{11}$ 

 $+A_{12} \cdot B_{21}$ ,

which corresponds to equation (4.11).

Similarly, we set

 $C_{12} = P_1 + P_2$ ,

and so  $C_{12}$  equals

$$\begin{array}{c} A_{11} \cdot B_{12} - A_{11} \cdot B_{22} \\ + A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \end{array}$$

$$A_{11} \cdot B_{12} \qquad \qquad + A_{12} \cdot B_{22} \, ,$$

corresponding to equation (4.12).

Setting

$$C_{21} = P_3 + P_4$$

makes  $C_{21}$  equal

$$\frac{A_{21} \cdot B_{11} + A_{22} \cdot B_{11}}{-A_{22} \cdot B_{11} + A_{22} \cdot B_{21}}$$

$$A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$
,

corresponding to equation (4.13).

Finally, we set

$$C_{22} = P_5 + P_1 - P_3 - P_7,$$
  
so that  $C_{22}$  equals  
$$A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} + A_{11} \cdot B_{12} - A_{11} \cdot B_{22} + A_{22} \cdot B_{11} - A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{11} \cdot B_{12} + A_{21} \cdot B_{11} + A_{21} \cdot B_{12}$$

 $+ A_{21} \cdot B_{12}$ ,

which corresponds to equation (4.14). Altogether, we add or subtract  $n/2 \times n/2$  matrices eight times in step 4, and so this step indeed takes  $\Theta(n^2)$  time.

Thus, we see that Strassen's algorithm, comprising steps 1–4, produces the correct matrix product and that recurrence (4.18) characterizes its running time. Since we shall see in Section 4.5 that this recurrence has the solution  $T(n) = \Theta(n^{\lg 7})$ , Strassen's method is asymptotically faster than the straightforward SQUARE-MATRIX-MULTIPLY procedure. The notes at the end of this chapter discuss some of the practical aspects of Strassen's algorithm.

# **Exercises**

*Note:* Although Exercises 4.2-3, 4.2-4, and 4.2-5 are about variants on Strassen's algorithm, you should read Section 4.5 before trying to solve them.

#### 4.2-1

Use Strassen's algorithm to compute the matrix product

 $\left(\begin{array}{rrr}1 & 3\\7 & 5\end{array}\right)\left(\begin{array}{rrr}6 & 8\\4 & 2\end{array}\right).$ 

Show your work.

### 4.2-2

Write pseudocode for Strassen's algorithm.

# 4.2-3

How would you modify Strassen's algorithm to multiply  $n \times n$  matrices in which n is not an exact power of 2? Show that the resulting algorithm runs in time  $\Theta(n^{\lg 7})$ .

### 4.2-4

What is the largest k such that if you can multiply  $3 \times 3$  matrices using k multiplications (not assuming commutativity of multiplication), then you can multiply  $n \times n$  matrices in time  $o(n^{\lg 7})$ ? What would the running time of this algorithm be?

#### 4.2-5

V. Pan has discovered a way of multiplying  $68 \times 68$  matrices using 132,464 multiplications, a way of multiplying  $70 \times 70$  matrices using 143,640 multiplications, and a way of multiplying  $72 \times 72$  matrices using 155,424 multiplications. Which method yields the best asymptotic running time when used in a divide-and-conquer matrix-multiplication algorithm? How does it compare to Strassen's algorithm?
### *4.2-6*

How quickly can you multiply a  $kn \times n$  matrix by an  $n \times kn$  matrix, using Strassen's algorithm as a subroutine? Answer the same question with the order of the input matrices reversed.

# 4.2-7

Show how to multiply the complex numbers a + bi and c + di using only three multiplications of real numbers. The algorithm should take a, b, c, and d as input and produce the real component ac - bd and the imaginary component ad + bc separately.

# 4.3 The substitution method for solving recurrences

Now that we have seen how recurrences characterize the running times of divideand-conquer algorithms, we will learn how to solve recurrences. We start in this section with the "substitution" method.

The *substitution method* for solving recurrences comprises two steps:

- 1. Guess the form of the solution.
- 2. Use mathematical induction to find the constants and show that the solution works.

We substitute the guessed solution for the function when applying the inductive hypothesis to smaller values; hence the name "substitution method." This method is powerful, but we must be able to guess the form of the answer in order to apply it.

We can use the substitution method to establish either upper or lower bounds on a recurrence. As an example, let us determine an upper bound on the recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor) + n , \qquad (4.19)$$

which is similar to recurrences (4.3) and (4.4). We guess that the solution is  $T(n) = O(n \lg n)$ . The substitution method requires us to prove that  $T(n) \le cn \lg n$  for an appropriate choice of the constant c > 0. We start by assuming that this bound holds for all positive m < n, in particular for  $m = \lfloor n/2 \rfloor$ , yielding  $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$ . Substituting into the recurrence yields

$$T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$
  
$$\leq cn \lg(n/2) + n$$
  
$$= cn \lg n - cn \lg 2 + n$$
  
$$= cn \lg n - cn + n$$
  
$$\leq cn \lg n ,$$

where the last step holds as long as  $c \ge 1$ .

Mathematical induction now requires us to show that our solution holds for the boundary conditions. Typically, we do so by showing that the boundary conditions are suitable as base cases for the inductive proof. For the recurrence (4.19), we must show that we can choose the constant c large enough so that the bound  $T(n) \le cn \lg n$  works for the boundary conditions as well. This requirement can sometimes lead to problems. Let us assume, for the sake of argument, that T(1) = 1 is the sole boundary condition of the recurrence. Then for n = 1, the bound  $T(n) \le cn \lg n$  yields  $T(1) \le c1 \lg 1 = 0$ , which is at odds with T(1) = 1. Consequently, the base case of our inductive proof fails to hold.

We can overcome this obstacle in proving an inductive hypothesis for a specific boundary condition with only a little more effort. In the recurrence (4.19), for example, we take advantage of asymptotic notation requiring us only to prove  $T(n) \leq cn \lg n$  for  $n \geq n_0$ , where  $n_0$  is a constant that we get to choose. We keep the troublesome boundary condition T(1) = 1, but remove it from consideration in the inductive proof. We do so by first observing that for n > 3, the recurrence does not depend directly on T(1). Thus, we can replace T(1) by T(2)and T(3) as the base cases in the inductive proof, letting  $n_0 = 2$ . Note that we make a distinction between the base case of the recurrence (n = 1) and the base cases of the inductive proof (n = 2 and n = 3). With T(1) = 1, we derive from the recurrence that T(2) = 4 and T(3) = 5. Now we can complete the inductive proof that  $T(n) < cn \lg n$  for some constant c > 1 by choosing c large enough so that  $T(2) \le c2 \lg 2$  and  $T(3) \le c3 \lg 3$ . As it turns out, any choice of  $c \ge 2$ suffices for the base cases of n = 2 and n = 3 to hold. For most of the recurrences we shall examine, it is straightforward to extend boundary conditions to make the inductive assumption work for small n, and we shall not always explicitly work out the details.

#### Making a good guess

Unfortunately, there is no general way to guess the correct solutions to recurrences. Guessing a solution takes experience and, occasionally, creativity. Fortunately, though, you can use some heuristics to help you become a good guesser. You can also use recursion trees, which we shall see in Section 4.4, to generate good guesses.

If a recurrence is similar to one you have seen before, then guessing a similar solution is reasonable. As an example, consider the recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$$
,

which looks difficult because of the added "17" in the argument to T on the righthand side. Intuitively, however, this additional term cannot substantially affect the solution to the recurrence. When *n* is large, the difference between  $\lfloor n/2 \rfloor$  and  $\lfloor n/2 \rfloor + 17$  is not that large: both cut *n* nearly evenly in half. Consequently, we make the guess that  $T(n) = O(n \lg n)$ , which you can verify as correct by using the substitution method (see Exercise 4.3-6).

Another way to make a good guess is to prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty. For example, we might start with a lower bound of  $T(n) = \Omega(n)$  for the recurrence (4.19), since we have the term *n* in the recurrence, and we can prove an initial upper bound of  $T(n) = O(n^2)$ . Then, we can gradually lower the upper bound and raise the lower bound until we converge on the correct, asymptotically tight solution of  $T(n) = \Theta(n \lg n)$ .

### **Subtleties**

Sometimes you might correctly guess an asymptotic bound on the solution of a recurrence, but somehow the math fails to work out in the induction. The problem frequently turns out to be that the inductive assumption is not strong enough to prove the detailed bound. If you revise the guess by subtracting a lower-order term when you hit such a snag, the math often goes through.

Consider the recurrence

$$T(n) = T(|n/2|) + T(\lceil n/2 \rceil) + 1$$
.

We guess that the solution is T(n) = O(n), and we try to show that  $T(n) \le cn$  for an appropriate choice of the constant *c*. Substituting our guess in the recurrence, we obtain

$$T(n) \leq c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$
  
=  $cn + 1$ ,

which does not imply  $T(n) \le cn$  for any choice of c. We might be tempted to try a larger guess, say  $T(n) = O(n^2)$ . Although we can make this larger guess work, our original guess of T(n) = O(n) is correct. In order to show that it is correct, however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we are off only by the constant 1, a lower-order term. Nevertheless, mathematical induction does not work unless we prove the exact form of the inductive hypothesis. We overcome our difficulty by *subtracting* a lower-order term from our previous guess. Our new guess is  $T(n) \le cn - d$ , where  $d \ge 0$  is a constant. We now have

$$T(n) \leq (c \lfloor n/2 \rfloor - d) + (c \lceil n/2 \rceil - d) + 1$$
  
=  $cn - 2d + 1$   
 $\leq cn - d$ ,

as long as  $d \ge 1$ . As before, we must choose the constant *c* large enough to handle the boundary conditions.

You might find the idea of subtracting a lower-order term counterintuitive. After all, if the math does not work out, we should increase our guess, right? Not necessarily! When proving an upper bound by induction, it may actually be more difficult to prove that a weaker upper bound holds, because in order to prove the weaker bound, we must use the same weaker bound inductively in the proof. In our current example, when the recurrence has more than one recursive term, we get to subtract out the lower-order term of the proposed bound once per recursive term. In the above example, we subtracted out the constant *d* twice, once for the  $T(\lfloor n/2 \rfloor)$  term and once for the  $T(\lceil n/2 \rceil)$  term. We ended up with the inequality  $T(n) \le cn - 2d + 1$ , and it was easy to find values of *d* to make cn - 2d + 1 be less than or equal to cn - d.

### **Avoiding pitfalls**

It is easy to err in the use of asymptotic notation. For example, in the recurrence (4.19) we can falsely "prove" T(n) = O(n) by guessing  $T(n) \le cn$  and then arguing

$$T(n) \leq 2(c \lfloor n/2 \rfloor) + n$$
  
$$\leq cn + n$$
  
$$= O(n), \qquad \longleftarrow wrong!!$$

since *c* is a constant. The error is that we have not proved the *exact form* of the inductive hypothesis, that is, that  $T(n) \le cn$ . We therefore will explicitly prove that  $T(n) \le cn$  when we want to show that T(n) = O(n).

### **Changing variables**

Sometimes, a little algebraic manipulation can make an unknown recurrence similar to one you have seen before. As an example, consider the recurrence

$$T(n) = 2T\left(\left\lfloor\sqrt{n}\right\rfloor\right) + \lg n$$
,

which looks difficult. We can simplify this recurrence, though, with a change of variables. For convenience, we shall not worry about rounding off values, such as  $\sqrt{n}$ , to be integers. Renaming  $m = \lg n$  yields

$$T(2^m) = 2T(2^{m/2}) + m$$
.

We can now rename  $S(m) = T(2^m)$  to produce the new recurrence

$$S(m) = 2S(m/2) + m ,$$

which is very much like recurrence (4.19). Indeed, this new recurrence has the same solution:  $S(m) = O(m \lg m)$ . Changing back from S(m) to T(n), we obtain

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n)$$

### **Exercises**

### *4.3-1*

Show that the solution of T(n) = T(n-1) + n is  $O(n^2)$ .

### 4.3-2

Show that the solution of  $T(n) = T(\lceil n/2 \rceil) + 1$  is  $O(\lg n)$ .

### 4.3-3

We saw that the solution of  $T(n) = 2T(\lfloor n/2 \rfloor) + n$  is  $O(n \lg n)$ . Show that the solution of this recurrence is also  $\Omega(n \lg n)$ . Conclude that the solution is  $\Theta(n \lg n)$ .

### 4.3-4

Show that by making a different inductive hypothesis, we can overcome the difficulty with the boundary condition T(1) = 1 for recurrence (4.19) without adjusting the boundary conditions for the inductive proof.

### 4.3-5

Show that  $\Theta(n \lg n)$  is the solution to the "exact" recurrence (4.3) for merge sort.

# 4.3-6

Show that the solution to  $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$  is  $O(n \lg n)$ .

## 4.3-7

Using the master method in Section 4.5, you can show that the solution to the recurrence T(n) = 4T(n/3) + n is  $T(n) = \Theta(n^{\log_3 4})$ . Show that a substitution proof with the assumption  $T(n) \le cn^{\log_3 4}$  fails. Then show how to subtract off a lower-order term to make a substitution proof work.

### *4.3-8*

Using the master method in Section 4.5, you can show that the solution to the recurrence  $T(n) = 4T(n/2) + n^2$  is  $T(n) = \Theta(n^2)$ . Show that a substitution proof with the assumption  $T(n) \le cn^2$  fails. Then show how to subtract off a lower-order term to make a substitution proof work.

#### 4.3-9

Solve the recurrence  $T(n) = 3T(\sqrt{n}) + \log n$  by making a change of variables. Your solution should be asymptotically tight. Do not worry about whether values are integral.

### 4.4 The recursion-tree method for solving recurrences

Although you can use the substitution method to provide a succinct proof that a solution to a recurrence is correct, you might have trouble coming up with a good guess. Drawing out a recursion tree, as we did in our analysis of the merge sort recurrence in Section 2.3.2, serves as a straightforward way to devise a good guess. In a *recursion tree*, each node represents the cost of a single subproblem somewhere in the set of recursive function invocations. We sum the costs within each level of the tree to obtain a set of per-level costs, and then we sum all the per-level costs to determine the total cost of all levels of the recursion.

A recursion tree is best used to generate a good guess, which you can then verify by the substitution method. When using a recursion tree to generate a good guess, you can often tolerate a small amount of "sloppiness," since you will be verifying your guess later on. If you are very careful when drawing out a recursion tree and summing the costs, however, you can use a recursion tree as a direct proof of a solution to a recurrence. In this section, we will use recursion trees to generate good guesses, and in Section 4.6, we will use recursion trees directly to prove the theorem that forms the basis of the master method.

For example, let us see how a recursion tree would provide a good guess for the recurrence  $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ . We start by focusing on finding an upper bound for the solution. Because we know that floors and ceilings usually do not matter when solving recurrences (here's an example of sloppiness that we can tolerate), we create a recursion tree for the recurrence  $T(n) = 3T(n/4) + cn^2$ , having written out the implied constant coefficient c > 0.

Figure 4.5 shows how we derive the recursion tree for  $T(n) = 3T(n/4) + cn^2$ . For convenience, we assume that *n* is an exact power of 4 (another example of tolerable sloppiness) so that all subproblem sizes are integers. Part (a) of the figure shows T(n), which we expand in part (b) into an equivalent tree representing the recurrence. The  $cn^2$  term at the root represents the cost at the top level of recursion, and the three subtrees of the root represent the costs incurred by the subproblems of size n/4. Part (c) shows this process carried one step further by expanding each node with cost T(n/4) from part (b). The cost for each of the three children of the root is  $c(n/4)^2$ . We continue expanding each node in the tree by breaking it into its constituent parts as determined by the recurrence.



**Figure 4.5** Constructing a recursion tree for the recurrence  $T(n) = 3T(n/4) + cn^2$ . Part (a) shows T(n), which progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has height  $\log_4 n$  (it has  $\log_4 n + 1$  levels).

Because subproblem sizes decrease by a factor of 4 each time we go down one level, we eventually must reach a boundary condition. How far from the root do we reach one? The subproblem size for a node at depth *i* is  $n/4^i$ . Thus, the subproblem size hits n = 1 when  $n/4^i = 1$  or, equivalently, when  $i = \log_4 n$ . Thus, the tree has  $\log_4 n + 1$  levels (at depths  $0, 1, 2, \ldots, \log_4 n$ ).

Next we determine the cost at each level of the tree. Each level has three times more nodes than the level above, and so the number of nodes at depth *i* is  $3^i$ . Because subproblem sizes reduce by a factor of 4 for each level we go down from the root, each node at depth *i*, for  $i = 0, 1, 2, ..., \log_4 n - 1$ , has a cost of  $c(n/4^i)^2$ . Multiplying, we see that the total cost over all nodes at depth *i*, for  $i = 0, 1, 2, ..., \log_4 n - 1$ , is  $3^i c(n/4^i)^2 = (3/16)^i cn^2$ . The bottom level, at depth  $\log_4 n$ , has  $3^{\log_4 n} = n^{\log_4 3}$  nodes, each contributing cost T(1), for a total cost of  $n^{\log_4 3}T(1)$ , which is  $\Theta(n^{\log_4 3})$ , since we assume that T(1) is a constant.

Now we add up the costs over all levels to determine the cost for the entire tree:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n-1}cn^{2} + \Theta(n^{\log_{4}3})$$
  
$$= \sum_{i=0}^{\log_{4}n-1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$
  
$$= \frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1}cn^{2} + \Theta(n^{\log_{4}3}) \qquad \text{(by equation (A.5))}.$$

This last formula looks somewhat messy until we realize that we can again take advantage of small amounts of sloppiness and use an infinite decreasing geometric series as an upper bound. Backing up one step and applying equation (A.6), we have

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$
  
$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$
  
$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3})$$
  
$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$
  
$$= O(n^2) .$$

Thus, we have derived a guess of  $T(n) = O(n^2)$  for our original recurrence  $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ . In this example, the coefficients of  $cn^2$  form a decreasing geometric series and, by equation (A.6), the sum of these coefficients



**Figure 4.6** A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

is bounded from above by the constant 16/13. Since the root's contribution to the total cost is  $cn^2$ , the root contributes a constant fraction of the total cost. In other words, the cost of the root dominates the total cost of the tree.

In fact, if  $O(n^2)$  is indeed an upper bound for the recurrence (as we shall verify in a moment), then it must be a tight bound. Why? The first recursive call contributes a cost of  $\Theta(n^2)$ , and so  $\Omega(n^2)$  must be a lower bound for the recurrence.

Now we can use the substitution method to verify that our guess was correct, that is,  $T(n) = O(n^2)$  is an upper bound for the recurrence  $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ . We want to show that  $T(n) \le dn^2$  for some constant d > 0. Using the same constant c > 0 as before, we have

$$T(n) \leq 3T(\lfloor n/4 \rfloor) + cn^{2}$$
  

$$\leq 3d \lfloor n/4 \rfloor^{2} + cn^{2}$$
  

$$\leq 3d(n/4)^{2} + cn^{2}$$
  

$$= \frac{3}{16}dn^{2} + cn^{2}$$
  

$$\leq dn^{2},$$

where the last step holds as long as  $d \ge (16/13)c$ .

In another, more intricate, example, Figure 4.6 shows the recursion tree for

$$T(n) = T(n/3) + T(2n/3) + O(n)$$
.

(Again, we omit floor and ceiling functions for simplicity.) As before, we let c represent the constant factor in the O(n) term. When we add the values across the levels of the recursion tree shown in the figure, we get a value of cn for every level.

The longest simple path from the root to a leaf is  $n \to (2/3)n \to (2/3)^2 n \to \dots \to 1$ . Since  $(2/3)^k n = 1$  when  $k = \log_{3/2} n$ , the height of the tree is  $\log_{3/2} n$ .

Intuitively, we expect the solution to the recurrence to be at most the number of levels times the cost of each level, or  $O(cn \log_{3/2} n) = O(n \lg n)$ . Figure 4.6 shows only the top levels of the recursion tree, however, and not every level in the tree contributes a cost of cn. Consider the cost of the leaves. If this recursion tree were a complete binary tree of height  $\log_{3/2} n$ , there would be  $2^{\log_{3/2} n} = n^{\log_{3/2} 2}$ leaves. Since the cost of each leaf is a constant, the total cost of all leaves would then be  $\Theta(n^{\log_{3/2} 2})$  which, since  $\log_{3/2} 2$  is a constant strictly greater than 1, is  $\omega(n \lg n)$ . This recursion tree is not a complete binary tree, however, and so it has fewer than  $n^{\log_{3/2} 2}$  leaves. Moreover, as we go down from the root, more and more internal nodes are absent. Consequently, levels toward the bottom of the recursion tree contribute less than cn to the total cost. We could work out an accurate accounting of all costs, but remember that we are just trying to come up with a guess to use in the substitution method. Let us tolerate the sloppiness and attempt to show that a guess of  $O(n \lg n)$  for the upper bound is correct.

Indeed, we can use the substitution method to verify that  $O(n \lg n)$  is an upper bound for the solution to the recurrence. We show that  $T(n) \le dn \lg n$ , where d is a suitable positive constant. We have

$$T(n) \leq T(n/3) + T(2n/3) + cn$$
  

$$\leq d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn$$
  

$$= (d(n/3) \lg n - d(n/3) \lg 3) + (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn$$
  

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn$$
  

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn$$
  

$$= dn \lg n - dn(\lg 3 - 2/3) + cn$$
  

$$\leq dn \lg n ,$$

as long as  $d \ge c/(\lg 3 - (2/3))$ . Thus, we did not need to perform a more accurate accounting of costs in the recursion tree.

### **Exercises**

### 4.4-1

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 3T(|n/2|) + n. Use the substitution method to verify your answer.

### 4.4-2

Use a recursion tree to determine a good asymptotic upper bound on the recurrence  $T(n) = T(n/2) + n^2$ . Use the substitution method to verify your answer.

# *4.4-3*

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 4T(n/2 + 2) + n. Use the substitution method to verify your answer.

### 4.4-4

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1. Use the substitution method to verify your answer.

### 4.4-5

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = T(n-1) + T(n/2) + n. Use the substitution method to verify your answer.

### *4.4-6*

Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn, where *c* is a constant, is  $\Omega(n \lg n)$  by appealing to a recursion tree.

### 4.4-7

Draw the recursion tree for  $T(n) = 4T(\lfloor n/2 \rfloor) + cn$ , where *c* is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method.

### *4.4-8*

Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n-a) + T(a) + cn, where  $a \ge 1$  and c > 0 are constants.

### *4.4-9*

Use a recursion tree to give an asymptotically tight solution to the recurrence  $T(n) = T(\alpha n) + T((1 - \alpha)n) + cn$ , where  $\alpha$  is a constant in the range  $0 < \alpha < 1$  and c > 0 is also a constant.

# 4.5 The master method for solving recurrences

The master method provides a "cookbook" method for solving recurrences of the form

$$T(n) = aT(n/b) + f(n),$$
 (4.20)

where  $a \ge 1$  and b > 1 are constants and f(n) is an asymptotically positive function. To use the master method, you will need to memorize three cases, but then you will be able to solve many recurrences quite easily, often without pencil and paper.

The recurrence (4.20) describes the running time of an algorithm that divides a problem of size *n* into *a* subproblems, each of size n/b, where *a* and *b* are positive constants. The *a* subproblems are solved recursively, each in time T(n/b). The function f(n) encompasses the cost of dividing the problem and combining the results of the subproblems. For example, the recurrence arising from Strassen's algorithm has a = 7, b = 2, and  $f(n) = \Theta(n^2)$ .

As a matter of technical correctness, the recurrence is not actually well defined, because n/b might not be an integer. Replacing each of the *a* terms T(n/b) with either  $T(\lfloor n/b \rfloor)$  or  $T(\lceil n/b \rceil)$  will not affect the asymptotic behavior of the recurrence, however. (We will prove this assertion in the next section.) We normally find it convenient, therefore, to omit the floor and ceiling functions when writing divide-and-conquer recurrences of this form.

#### The master theorem

The master method depends on the following theorem.

#### **Theorem 4.1 (Master theorem)**

Let  $a \ge 1$  and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either  $\lfloor n/b \rfloor$  or  $\lceil n/b \rceil$ . Then T(n) has the following asymptotic bounds:

- 1. If  $f(n) = O(n^{\log_b a \epsilon})$  for some constant  $\epsilon > 0$ , then  $T(n) = \Theta(n^{\log_b a})$ .
- 2. If  $f(n) = \Theta(n^{\log_b a})$ , then  $T(n) = \Theta(n^{\log_b a} \lg n)$ .
- 3. If  $f(n) = \Omega(n^{\log_b a + \epsilon})$  for some constant  $\epsilon > 0$ , and if  $af(n/b) \le cf(n)$  for some constant c < 1 and all sufficiently large n, then  $T(n) = \Theta(f(n))$ .

Before applying the master theorem to some examples, let's spend a moment trying to understand what it says. In each of the three cases, we compare the function f(n) with the function  $n^{\log_b a}$ . Intuitively, the larger of the two functions determines the solution to the recurrence. If, as in case 1, the function  $n^{\log_b a}$  is the larger, then the solution is  $T(n) = \Theta(n^{\log_b a})$ . If, as in case 3, the function f(n) is the larger, then the solution is  $T(n) = \Theta(f(n))$ . If, as in case 2, the two functions are the same size, we multiply by a logarithmic factor, and the solution is  $T(n) = \Theta(f(n) \lg n)$ .

Beyond this intuition, you need to be aware of some technicalities. In the first case, not only must f(n) be smaller than  $n^{\log_b a}$ , it must be *polynomially* smaller.

That is, f(n) must be asymptotically smaller than  $n^{\log_b a}$  by a factor of  $n^{\epsilon}$  for some constant  $\epsilon > 0$ . In the third case, not only must f(n) be larger than  $n^{\log_b a}$ , it also must be polynomially larger and in addition satisfy the "regularity" condition that  $af(n/b) \le cf(n)$ . This condition is satisfied by most of the polynomially bounded functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f(n). There is a gap between cases 1 and 2 when f(n) is smaller than  $n^{\log_b a}$  but not polynomially smaller. Similarly, there is a gap between cases 2 and 3 when f(n) is larger than  $n^{\log_b a}$  but not polynomially larger. If the function f(n) falls into one of these gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master method to solve the recurrence.

#### Using the master method

To use the master method, we simply determine which case (if any) of the master theorem applies and write down the answer.

As a first example, consider

$$T(n) = 9T(n/3) + n$$

For this recurrence, we have a = 9, b = 3, f(n) = n, and thus we have that  $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$ . Since  $f(n) = O(n^{\log_3 9 - \epsilon})$ , where  $\epsilon = 1$ , we can apply case 1 of the master theorem and conclude that the solution is  $T(n) = \Theta(n^2)$ .

Now consider

$$T(n) = T(2n/3) + 1,$$

in which a = 1, b = 3/2, f(n) = 1, and  $n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$ . Case 2 applies, since  $f(n) = \Theta(n^{\log_b a}) = \Theta(1)$ , and thus the solution to the recurrence is  $T(n) = \Theta(\lg n)$ .

For the recurrence

$$T(n) = 3T(n/4) + n \lg n ,$$

we have a = 3, b = 4,  $f(n) = n \lg n$ , and  $n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$ . Since  $f(n) = \Omega(n^{\log_4 3 + \epsilon})$ , where  $\epsilon \approx 0.2$ , case 3 applies if we can show that the regularity condition holds for f(n). For sufficiently large n, we have that  $af(n/b) = 3(n/4) \lg(n/4) \le (3/4)n \lg n = cf(n)$  for c = 3/4. Consequently, by case 3, the solution to the recurrence is  $T(n) = \Theta(n \lg n)$ .

The master method does not apply to the recurrence

$$T(n) = 2T(n/2) + n \lg n ,$$

even though it appears to have the proper form:  $a = 2, b = 2, f(n) = n \lg n$ , and  $n^{\log_b a} = n$ . You might mistakenly think that case 3 should apply, since

 $f(n) = n \lg n$  is asymptotically larger than  $n^{\log_b a} = n$ . The problem is that it is not *polynomially* larger. The ratio  $f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$  is asymptotically less than  $n^{\epsilon}$  for any positive constant  $\epsilon$ . Consequently, the recurrence falls into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let's use the master method to solve the recurrences we saw in Sections 4.1 and 4.2. Recurrence (4.7),

$$T(n) = 2T(n/2) + \Theta(n) ,$$

characterizes the running times of the divide-and-conquer algorithm for both the maximum-subarray problem and merge sort. (As is our practice, we omit stating the base case in the recurrence.) Here, we have a = 2, b = 2,  $f(n) = \Theta(n)$ , and thus we have that  $n^{\log_b a} = n^{\log_2 2} = n$ . Case 2 applies, since  $f(n) = \Theta(n)$ , and so we have the solution  $T(n) = \Theta(n \lg n)$ .

Recurrence (4.17),

$$T(n) = 8T(n/2) + \Theta(n^2) ,$$

describes the running time of the first divide-and-conquer algorithm that we saw for matrix multiplication. Now we have a = 8, b = 2, and  $f(n) = \Theta(n^2)$ , and so  $n^{\log_b a} = n^{\log_2 8} = n^3$ . Since  $n^3$  is polynomially larger than f(n) (that is,  $f(n) = O(n^{3-\epsilon})$  for  $\epsilon = 1$ ), case 1 applies, and  $T(n) = \Theta(n^3)$ .

Finally, consider recurrence (4.18),

$$T(n) = 7T(n/2) + \Theta(n^2) ,$$

which describes the running time of Strassen's algorithm. Here, we have a = 7, b = 2,  $f(n) = \Theta(n^2)$ , and thus  $n^{\log_b a} = n^{\log_2 7}$ . Rewriting  $\log_2 7$  as  $\lg 7$  and recalling that 2.80 <  $\lg 7$  < 2.81, we see that  $f(n) = O(n^{\lg 7-\epsilon})$  for  $\epsilon = 0.8$ . Again, case 1 applies, and we have the solution  $T(n) = \Theta(n^{\lg 7})$ .

### **Exercises**

### 4.5-1

Use the master method to give tight asymptotic bounds for the following recurrences.

- a. T(n) = 2T(n/4) + 1.
- **b.**  $T(n) = 2T(n/4) + \sqrt{n}$ .
- c. T(n) = 2T(n/4) + n.
- d.  $T(n) = 2T(n/4) + n^2$ .

### 4.5-2

Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically faster than Strassen's algorithm. His algorithm will use the divideand-conquer method, dividing each matrix into pieces of size  $n/4 \times n/4$ , and the divide and combine steps together will take  $\Theta(n^2)$  time. He needs to determine how many subproblems his algorithm has to create in order to beat Strassen's algorithm. If his algorithm creates *a* subproblems, then the recurrence for the running time T(n) becomes  $T(n) = aT(n/4) + \Theta(n^2)$ . What is the largest integer value of *a* for which Professor Caesar's algorithm would be asymptotically faster than Strassen's algorithm?

## 4.5-3

Use the master method to show that the solution to the binary-search recurrence  $T(n) = T(n/2) + \Theta(1)$  is  $T(n) = \Theta(\lg n)$ . (See Exercise 2.3-5 for a description of binary search.)

### 4.5-4

Can the master method be applied to the recurrence  $T(n) = 4T(n/2) + n^2 \lg n$ ? Why or why not? Give an asymptotic upper bound for this recurrence.

### 4.5-5 \*

Consider the regularity condition  $af(n/b) \leq cf(n)$  for some constant c < 1, which is part of case 3 of the master theorem. Give an example of constants  $a \geq 1$  and b > 1 and a function f(n) that satisfies all the conditions in case 3 of the master theorem except the regularity condition.

# ★ 4.6 Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1). You do not need to understand the proof in order to apply the master theorem.

The proof appears in two parts. The first part analyzes the master recurrence (4.20), under the simplifying assumption that T(n) is defined only on exact powers of b > 1, that is, for  $n = 1, b, b^2, \ldots$ . This part gives all the intuition needed to understand why the master theorem is true. The second part shows how to extend the analysis to all positive integers n; it applies mathematical technique to the problem of handling floors and ceilings.

In this section, we shall sometimes abuse our asymptotic notation slightly by using it to describe the behavior of functions that are defined only over exact powers of b. Recall that the definitions of asymptotic notations require that

# 6 Heapsort

In this chapter, we introduce another sorting algorithm: heapsort. Like merge sort, but unlike insertion sort, heapsort's running time is  $O(n \lg n)$ . Like insertion sort, but unlike merge sort, heapsort sorts in place: only a constant number of array elements are stored outside the input array at any time. Thus, heapsort combines the better attributes of the two sorting algorithms we have already discussed.

Heapsort also introduces another algorithm design technique: using a data structure, in this case one we call a "heap," to manage information. Not only is the heap data structure useful for heapsort, but it also makes an efficient priority queue. The heap data structure will reappear in algorithms in later chapters.

The term "heap" was originally coined in the context of heapsort, but it has since come to refer to "garbage-collected storage," such as the programming languages Java and Lisp provide. Our heap data structure is *not* garbage-collected storage, and whenever we refer to heaps in this book, we shall mean a data structure rather than an aspect of garbage collection.

### 6.1 Heaps

The (*binary*) *heap* data structure is an array object that we can view as a nearly complete binary tree (see Section B.5.3), as shown in Figure 6.1. Each node of the tree corresponds to an element of the array. The tree is completely filled on all levels except possibly the lowest, which is filled from the left up to a point. An array A that represents a heap is an object with two attributes: A.length, which (as usual) gives the number of elements in the array, and A.heap-size, which represents how many elements in the heap are stored within array A. That is, although A[1..A.length] may contain numbers, only the elements in A[1..A.heap-size], where  $0 \le A.heap-size \le A.length$ , are valid elements of the heap. The root of the tree is A[1], and given the index *i* of a node, we can easily compute the indices of its parent, left child, and right child:



**Figure 6.1** A max-heap viewed as (**a**) a binary tree and (**b**) an array. The number within the circle at each node in the tree is the value stored at that node. The number above a node is the corresponding index in the array. Above and below the array are lines showing parent-child relationships; parents are always to the left of their children. The tree has height three; the node at index 4 (with value 8) has height one.

PARENT(i)1 return  $\lfloor i/2 \rfloor$ LEFT(i)

1 **return** 2*i* 

RIGHT(i)

1 return 2i + 1

On most computers, the LEFT procedure can compute 2i in one instruction by simply shifting the binary representation of *i* left by one bit position. Similarly, the RIGHT procedure can quickly compute 2i + 1 by shifting the binary representation of *i* left by one bit position and then adding in a 1 as the low-order bit. The PARENT procedure can compute  $\lfloor i/2 \rfloor$  by shifting *i* right one bit position. Good implementations of heapsort often implement these procedures as "macros" or "in-line" procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, the values in the nodes satisfy a *heap property*, the specifics of which depend on the kind of heap. In a *max-heap*, the *max-heap property* is that for every node *i* other than the root,

 $A[\text{PARENT}(i)] \ge A[i]$ ,

that is, the value of a node is at most the value of its parent. Thus, the largest element in a max-heap is stored at the root, and the subtree rooted at a node contains

values no larger than that contained at the node itself. A *min-heap* is organized in the opposite way; the *min-heap property* is that for every node i other than the root,

 $A[\text{PARENT}(i)] \leq A[i]$ .

The smallest element in a min-heap is at the root.

For the heapsort algorithm, we use max-heaps. Min-heaps commonly implement priority queues, which we discuss in Section 6.5. We shall be precise in specifying whether we need a max-heap or a min-heap for any particular application, and when properties apply to either max-heaps or min-heaps, we just use the term "heap."

Viewing a heap as a tree, we define the *height* of a node in a heap to be the number of edges on the longest simple downward path from the node to a leaf, and we define the height of the heap to be the height of its root. Since a heap of n elements is based on a complete binary tree, its height is  $\Theta(\lg n)$  (see Exercise 6.1-2). We shall see that the basic operations on heaps run in time at most proportional to the height of the tree and thus take  $O(\lg n)$  time. The remainder of this chapter presents some basic procedures and shows how they are used in a sorting algorithm and a priority-queue data structure.

- The MAX-HEAPIFY procedure, which runs in  $O(\lg n)$  time, is the key to maintaining the max-heap property.
- The BUILD-MAX-HEAP procedure, which runs in linear time, produces a maxheap from an unordered input array.
- The HEAPSORT procedure, which runs in  $O(n \lg n)$  time, sorts an array in place.
- The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY, and HEAP-MAXIMUM procedures, which run in  $O(\lg n)$  time, allow the heap data structure to implement a priority queue.

# Exercises

# *6.1-1*

What are the minimum and maximum numbers of elements in a heap of height h?

# 6.1-2

Show that an *n*-element heap has height  $\lfloor \lg n \rfloor$ .

# 6.1-3

Show that in any subtree of a max-heap, the root of the subtree contains the largest value occurring anywhere in that subtree.

### *6.1-4*

Where in a max-heap might the smallest element reside, assuming that all elements are distinct?

### 6.1-5

Is an array that is in sorted order a min-heap?

## *6.1-6*

Is the array with values (23, 17, 14, 6, 13, 10, 1, 5, 7, 12) a max-heap?

# *6.1-*7

Show that, with the array representation for storing an *n*-element heap, the leaves are the nodes indexed by  $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, \dots, n$ .

# 6.2 Maintaining the heap property

In order to maintain the max-heap property, we call the procedure MAX-HEAPIFY. Its inputs are an array A and an index i into the array. When it is called, MAX-HEAPIFY assumes that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps, but that A[i] might be smaller than its children, thus violating the max-heap property. MAX-HEAPIFY lets the value at A[i] "float down" in the max-heap so that the subtree rooted at index i obeys the max-heap property.

MAX-HEAPIFY(A, i)

l = LEFT(i)1 2 r = RIGHT(i)if l < A. heap-size and A[l] > A[i]3 4 largest = l5 else largest = i6 if  $r \leq A$ . heap-size and A[r] > A[largest]7 largest = r8 if largest  $\neq i$ 9 exchange *A*[*i*] with *A*[*largest*] 10 MAX-HEAPIFY (*A*, *largest*)

Figure 6.2 illustrates the action of MAX-HEAPIFY. At each step, the largest of the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is determined, and its index is stored in *largest*. If A[i] is largest, then the subtree rooted at node *i* is already a max-heap and the procedure terminates. Otherwise, one of the two children has the largest element, and A[i] is swapped with A[largest], which causes node *i* and its



**Figure 6.2** The action of MAX-HEAPIFY(A, 2), where A. heap-size = 10. (a) The initial configuration, with A[2] at node i = 2 violating the max-heap property since it is not larger than both children. The max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY(A, 4) now has i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call MAX-HEAPIFY(A, 9) yields no further change to the data structure.

children to satisfy the max-heap property. The node indexed by *largest*, however, now has the original value A[i], and thus the subtree rooted at *largest* might violate the max-heap property. Consequently, we call MAX-HEAPIFY recursively on that subtree.

The running time of MAX-HEAPIFY on a subtree of size n rooted at a given node i is the  $\Theta(1)$  time to fix up the relationships among the elements A[i], A[LEFT(i)], and A[RIGHT(i)], plus the time to run MAX-HEAPIFY on a subtree rooted at one of the children of node i (assuming that the recursive call occurs). The children's subtrees each have size at most 2n/3—the worst case occurs when the bottom level of the tree is exactly half full—and therefore we can describe the running time of MAX-HEAPIFY by the recurrence

$$T(n) \le T(2n/3) + \Theta(1) .$$

The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1), is  $T(n) = O(\lg n)$ . Alternatively, we can characterize the running time of MAX-HEAPIFY on a node of height *h* as O(h).

### Exercises

### *6.2-1*

Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY (A, 3) on the array A = (27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0).

## 6.2-2

Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure MIN-HEAPIFY (A, i), which performs the corresponding manipulation on a minheap. How does the running time of MIN-HEAPIFY compare to that of MAX-HEAPIFY?

## 6.2-3

What is the effect of calling MAX-HEAPIFY (A, i) when the element A[i] is larger than its children?

# 6.2-4

What is the effect of calling MAX-HEAPIFY (A, i) for i > A. heap-size/2?

# 6.2-5

The code for MAX-HEAPIFY is quite efficient in terms of constant factors, except possibly for the recursive call in line 10, which might cause some compilers to produce inefficient code. Write an efficient MAX-HEAPIFY that uses an iterative control construct (a loop) instead of recursion.

# 6.2-6

Show that the worst-case running time of MAX-HEAPIFY on a heap of size n is  $\Omega(\lg n)$ . (*Hint:* For a heap with n nodes, give node values that cause MAX-HEAPIFY to be called recursively at every node on a simple path from the root down to a leaf.)

# 6.3 Building a heap

We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an array A[1..n], where n = A.length, into a max-heap. By Exercise 6.1-7, the elements in the subarray  $A[(\lfloor n/2 \rfloor + 1)..n]$  are all leaves of the tree, and so each is

a 1-element heap to begin with. The procedure BUILD-MAX-HEAP goes through the remaining nodes of the tree and runs MAX-HEAPIFY on each one.

#### BUILD-MAX-HEAP(A)

- 1 *A.heap-size* = *A.length* 2 **for**  $i = \lfloor A.length/2 \rfloor$  **downto** 1
- 3 MAX-HEAPIFY(A, i)

Figure 6.3 shows an example of the action of BUILD-MAX-HEAP.

To show why BUILD-MAX-HEAP works correctly, we use the following loop invariant:

At the start of each iteration of the **for** loop of lines 2–3, each node i + 1, i + 2, ..., n is the root of a max-heap.

We need to show that this invariant is true prior to the first loop iteration, that each iteration of the loop maintains the invariant, and that the invariant provides a useful property to show correctness when the loop terminates.

- **Initialization:** Prior to the first iteration of the loop,  $i = \lfloor n/2 \rfloor$ . Each node  $\lfloor n/2 \rfloor + 1, \lfloor n/2 \rfloor + 2, ..., n$  is a leaf and is thus the root of a trivial max-heap.
- **Maintenance:** To see that each iteration maintains the loop invariant, observe that the children of node *i* are numbered higher than *i*. By the loop invariant, therefore, they are both roots of max-heaps. This is precisely the condition required for the call MAX-HEAPIFY (A, i) to make node *i* a max-heap root. Moreover, the MAX-HEAPIFY call preserves the property that nodes i + 1, i + 2, ..., n are all roots of max-heaps. Decrementing *i* in the **for** loop update reestablishes the loop invariant for the next iteration.
- **Termination:** At termination, i = 0. By the loop invariant, each node 1, 2, ..., n is the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of BUILD-MAX-HEAP as follows. Each call to MAX-HEAPIFY costs  $O(\lg n)$  time, and BUILD-MAX-HEAP makes O(n) such calls. Thus, the running time is  $O(n \lg n)$ . This upper bound, though correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to run at a node varies with the height of the node in the tree, and the heights of most nodes are small. Our tighter analysis relies on the properties that an *n*-element heap has height  $\lfloor \lg n \rfloor$  (see Exercise 6.1-2) and at most  $\lceil n/2^{h+1} \rceil$  nodes of any height *h* (see Exercise 6.3-3).

The time required by MAX-HEAPIFY when called on a node of height h is O(h), and so we can express the total cost of BUILD-MAX-HEAP as being bounded from above by



**Figure 6.3** The operation of BUILD-MAX-HEAP, showing the data structure before the call to MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the binary tree it represents. The figure shows that the loop index i refers to node 5 before the call MAX-HEAPIFY(A, i). (b) The data structure that results. The loop index i for the next iteration refers to node 4. (c)–(e) Subsequent iterations of the **for** loop in BUILD-MAX-HEAPIFY is called on a node, the two subtrees of that node are both max-heaps. (f) The max-heap after BUILD-MAX-HEAP finishes.

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right) \,.$$

We evaluate the last summation by substituting x = 1/2 in the formula (A.8), yielding

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2.$$

Thus, we can bound the running time of BUILD-MAX-HEAP as

$$O\left(n\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right) = O\left(n\sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$
$$= O(n).$$

Hence, we can build a max-heap from an unordered array in linear time.

We can build a min-heap by the procedure BUILD-MIN-HEAP, which is the same as BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced by a call to MIN-HEAPIFY (see Exercise 6.2-2). BUILD-MIN-HEAP produces a min-heap from an unordered linear array in linear time.

### Exercises

# *6.3-1*

Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the array  $A = \langle 5, 3, 17, 10, 84, 19, 6, 22, 9 \rangle$ .

# 6.3-2

Why do we want the loop index *i* in line 2 of BUILD-MAX-HEAP to decrease from  $\lfloor A.length/2 \rfloor$  to 1 rather than increase from 1 to  $\lfloor A.length/2 \rfloor$ ?

## 6.3-3

Show that there are at most  $\lceil n/2^{h+1} \rceil$  nodes of height *h* in any *n*-element heap.

# 6.4 The heapsort algorithm

The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input array A[1..n], where n = A.length. Since the maximum element of the array is stored at the root A[1], we can put it into its correct final position

by exchanging it with A[n]. If we now discard node *n* from the heap—and we can do so by simply decrementing *A.heap-size*—we observe that the children of the root remain max-heaps, but the new root element might violate the max-heap property. All we need to do to restore the max-heap property, however, is call MAX-HEAPIFY(*A*, 1), which leaves a max-heap in A[1..n - 1]. The heapsort algorithm then repeats this process for the max-heap of size n - 1 down to a heap of size 2. (See Exercise 6.4-2 for a precise loop invariant.)

HEAPSORT(A)

BUILD-MAX-HEAP(A)
 for i = A.length downto 2
 exchange A[1] with A[i]
 A.heap-size = A.heap-size - 1
 MAX-HEAPIFY(A, 1)

Figure 6.4 shows an example of the operation of HEAPSORT after line 1 has built the initial max-heap. The figure shows the max-heap before the first iteration of the **for** loop of lines 2–5 and after each iteration.

The HEAPSORT procedure takes time  $O(n \lg n)$ , since the call to BUILD-MAX-HEAP takes time O(n) and each of the n - 1 calls to MAX-HEAPIFY takes time  $O(\lg n)$ .

### **Exercises**

# *6.4-1*

Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array  $A = \langle 5, 13, 2, 25, 7, 17, 20, 8, 4 \rangle$ .

# 6.4-2

Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the **for** loop of lines 2–5, the subarray A[1..i] is a max-heap containing the *i* smallest elements of A[1..n], and the subarray A[i + 1..n] contains the n - i largest elements of A[1..n], sorted.

### *6.4-3*

What is the running time of HEAPSORT on an array A of length n that is already sorted in increasing order? What about decreasing order?

# 6.4-4

Show that the worst-case running time of HEAPSORT is  $\Omega(n \lg n)$ .



**Figure 6.4** The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-MAX-HEAP has built it in line 1. (b)–(j) The max-heap just after each call of MAX-HEAPIFY in line 5, showing the value of i at that time. Only lightly shaded nodes remain in the heap. (k) The resulting sorted array A.

### 6.4-5 **\***

Show that when all elements are distinct, the best-case running time of HEAPSORT is  $\Omega(n \lg n)$ .

# 6.5 **Priority queues**

Heapsort is an excellent algorithm, but a good implementation of quicksort, presented in Chapter 7, usually beats it in practice. Nevertheless, the heap data structure itself has many uses. In this section, we present one of the most popular applications of a heap: as an efficient priority queue. As with heaps, priority queues come in two forms: max-priority queues and min-priority queues. We will focus here on how to implement max-priority queues, which are in turn based on maxheaps; Exercise 6.5-3 asks you to write the procedures for min-priority queues.

A *priority queue* is a data structure for maintaining a set S of elements, each with an associated value called a *key*. A *max-priority queue* supports the following operations:

- INSERT(S, x) inserts the element x into the set S, which is equivalent to the operation  $S = S \cup \{x\}$ .
- MAXIMUM(S) returns the element of S with the largest key.
- EXTRACT-MAX(S) removes and returns the element of S with the largest key.
- INCREASE-KEY (S, x, k) increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

Among their other applications, we can use max-priority queues to schedule jobs on a shared computer. The max-priority queue keeps track of the jobs to be performed and their relative priorities. When a job is finished or interrupted, the scheduler selects the highest-priority job from among those pending by calling EXTRACT-MAX. The scheduler can add a new job to the queue at any time by calling INSERT.

Alternatively, a *min-priority queue* supports the operations INSERT, MINIMUM, EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an event-driven simulator. The items in the queue are events to be simulated, each with an associated time of occurrence that serves as its key. The events must be simulated in order of their time of occurrence, because the simulation of an event can cause other events to be simulated in the future. The simulation program calls EXTRACT-MIN at each step to choose the next event to simulate. As new events are produced, the simulator inserts them into the min-priority queue by calling INSERT.

We shall see other uses for min-priority queues, highlighting the DECREASE-KEY operation, in Chapters 23 and 24.

Not surprisingly, we can use a heap to implement a priority queue. In a given application, such as job scheduling or event-driven simulation, elements of a priority queue correspond to objects in the application. We often need to determine which application object corresponds to a given priority-queue element, and vice versa. When we use a heap to implement a priority queue, therefore, we often need to store a *handle* to the corresponding application object in each heap element. The exact makeup of the handle (such as a pointer or an integer) depends on the application. Similarly, we need to store a handle to the corresponding heap element in each application object. Here, the handle would typically be an array index. Because heap elements change locations within the array during heap operations, an actual implementation, upon relocating a heap element, would also have to update the array index in the corresponding application object. Because the details of accessing application objects depend heavily on the application and its implementation, we shall not pursue them here, other than noting that in practice, these handles do need to be correctly maintained.

Now we discuss how to implement the operations of a max-priority queue. The procedure HEAP-MAXIMUM implements the MAXIMUM operation in  $\Theta(1)$  time.

### HEAP-MAXIMUM(A)

1 return A[1]

The procedure HEAP-EXTRACT-MAX implements the EXTRACT-MAX operation. It is similar to the **for** loop body (lines 3–5) of the HEAPSORT procedure.

#### HEAP-EXTRACT-MAX(A)

- 1 if A.heap-size < 1
- 2 **error** "heap underflow"
- 3 max = A[1]
- 4 A[1] = A[A.heap-size]
- 5 A.heap-size = A.heap-size 1
- 6 MAX-HEAPIFY(A, 1)
- 7 return max

The running time of HEAP-EXTRACT-MAX is  $O(\lg n)$ , since it performs only a constant amount of work on top of the  $O(\lg n)$  time for MAX-HEAPIFY.

The procedure HEAP-INCREASE-KEY implements the INCREASE-KEY operation. An index *i* into the array identifies the priority-queue element whose key we wish to increase. The procedure first updates the key of element A[i] to its new value. Because increasing the key of A[i] might violate the max-heap property, the procedure then, in a manner reminiscent of the insertion loop (lines 5–7) of INSERTION-SORT from Section 2.1, traverses a simple path from this node toward the root to find a proper place for the newly increased key. As HEAP-INCREASE-KEY traverses this path, it repeatedly compares an element to its parent, exchanging their keys and continuing if the element's key is larger, and terminating if the element's key is smaller, since the max-heap property now holds. (See Exercise 6.5-5 for a precise loop invariant.)

HEAP-INCREASE-KEY(A, i, key)

**if** key < A[i]**error** "new key is smaller than current key" A[i] = key**while** i > 1 and A[PARENT(i)] < A[i]5 exchange A[i] with A[PARENT(i)]i = PARENT(i)

Figure 6.5 shows an example of a HEAP-INCREASE-KEY operation. The running time of HEAP-INCREASE-KEY on an *n*-element heap is  $O(\lg n)$ , since the path traced from the node updated in line 3 to the root has length  $O(\lg n)$ .

The procedure MAX-HEAP-INSERT implements the INSERT operation. It takes as an input the key of the new element to be inserted into max-heap A. The procedure first expands the max-heap by adding to the tree a new leaf whose key is  $-\infty$ . Then it calls HEAP-INCREASE-KEY to set the key of this new node to its correct value and maintain the max-heap property.

### MAX-HEAP-INSERT (A, key)

- 1 A.heap-size = A.heap-size + 1
- 2  $A[A.heap-size] = -\infty$
- 3 HEAP-INCREASE-KEY(A, A. heap-size, key)

The running time of MAX-HEAP-INSERT on an *n*-element heap is  $O(\lg n)$ .

In summary, a heap can support any priority-queue operation on a set of size n in  $O(\lg n)$  time.

# Exercises

### 6.5-1

Illustrate the operation of HEAP-EXTRACT-MAX on the heap  $A = \langle 15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1 \rangle$ .



**Figure 6.5** The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a) with a node whose index is *i* heavily shaded. (b) This node has its key increased to 15. (c) After one iteration of the **while** loop of lines 4–6, the node and its parent have exchanged keys, and the index *i* moves up to the parent. (d) The max-heap after one more iteration of the **while** loop. At this point,  $A[PARENT(i)] \ge A[i]$ . The max-heap property now holds and the procedure terminates.

### 6.5-2

Illustrate the operation of MAX-HEAP-INSERT (A, 10) on the heap A = (15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1).

# 6.5-3

Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN, HEAP-DECREASE-KEY, and MIN-HEAP-INSERT that implement a min-priority queue with a min-heap.

# 6.5-4

Why do we bother setting the key of the inserted node to  $-\infty$  in line 2 of MAX-HEAP-INSERT when the next thing we do is increase its key to the desired value?

# 7 Quicksort

The quicksort algorithm has a worst-case running time of  $\Theta(n^2)$  on an input array of *n* numbers. Despite this slow worst-case running time, quicksort is often the best practical choice for sorting because it is remarkably efficient on the average: its expected running time is  $\Theta(n \lg n)$ , and the constant factors hidden in the  $\Theta(n \lg n)$ notation are quite small. It also has the advantage of sorting in place (see page 17), and it works well even in virtual-memory environments.

Section 7.1 describes the algorithm and an important subroutine used by quicksort for partitioning. Because the behavior of quicksort is complex, we start with an intuitive discussion of its performance in Section 7.2 and postpone its precise analysis to the end of the chapter. Section 7.3 presents a version of quicksort that uses random sampling. This algorithm has a good expected running time, and no particular input elicits its worst-case behavior. Section 7.4 analyzes the randomized algorithm, showing that it runs in  $\Theta(n^2)$  time in the worst case and, assuming distinct elements, in expected  $O(n \lg n)$  time.

### 7.1 Description of quicksort

Quicksort, like merge sort, applies the divide-and-conquer paradigm introduced in Section 2.3.1. Here is the three-step divide-and-conquer process for sorting a typical subarray A[p ... r]:

- **Divide:** Partition (rearrange) the array A[p ...r] into two (possibly empty) subarrays A[p ...q 1] and A[q + 1...r] such that each element of A[p ...q 1] is less than or equal to A[q], which is, in turn, less than or equal to each element of A[q + 1...r]. Compute the index q as part of this partitioning procedure.
- **Conquer:** Sort the two subarrays A[p ... q 1] and A[q + 1...r] by recursive calls to quicksort.

**Combine:** Because the subarrays are already sorted, no work is needed to combine them: the entire array  $A[p \dots r]$  is now sorted.

The following procedure implements quicksort:

QUICKSORT(A, p, r)1 **if** p < r2 q = PARTITION(A, p, r)3 QUICKSORT(A, p, q - 1)4 QUICKSORT(A, q + 1, r)

To sort an entire array A, the initial call is QUICKSORT(A, 1, A. length).

#### Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges the subarray  $A[p \dots r]$  in place.

```
PARTITION (A, p, r)

1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i + 1] with A[r]

8 return i + 1
```

Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION always selects an element x = A[r] as a *pivot* element around which to partition the subarray A[p . . r]. As the procedure runs, it partitions the array into four (possibly empty) regions. At the start of each iteration of the **for** loop in lines 3–6, the regions satisfy certain properties, shown in Figure 7.2. We state these properties as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array index k,

```
    If p ≤ k ≤ i, then A[k] ≤ x.
    If i + 1 ≤ k ≤ j − 1, then A[k] > x.
    If k = r, then A[k] = x.
```



**Figure 7.1** The operation of PARTITION on a sample array. Array entry A[r] becomes the pivot element *x*. Lightly shaded array elements are all in the first partition with values no greater than *x*. Heavily shaded elements are in the second partition with values greater than *x*. The unshaded elements have not yet been put in one of the first two partitions, and the final white element is the pivot *x*. (a) The initial array and variable settings. None of the elements have been placed in either of the first two partitions. (b) The value 2 is "swapped with itself" and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller partition grows to include 5 and 6, and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r - 1 are not covered by any of the three cases, and the values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that each iteration of the loop maintains the invariant, and that the invariant provides a useful property to show correctness when the loop terminates.



**Figure 7.2** The four regions maintained by the procedure PARTITION on a subarray A[p ...r]. The values in A[p ...i] are all less than or equal to *x*, the values in A[i + 1...j - 1] are all greater than *x*, and A[r] = x. The subarray A[j ...r - 1] can take on any values.

- **Initialization:** Prior to the first iteration of the loop, i = p 1 and j = p. Because no values lie between p and i and no values lie between i + 1 and j 1, the first two conditions of the loop invariant are trivially satisfied. The assignment in line 1 satisfies the third condition.
- **Maintenance:** As Figure 7.3 shows, we consider two cases, depending on the outcome of the test in line 4. Figure 7.3(a) shows what happens when A[j] > x; the only action in the loop is to increment j. After j is incremented, condition 2 holds for A[j-1] and all other entries remain unchanged. Figure 7.3(b) shows what happens when  $A[j] \le x$ ; the loop increments i, swaps A[i] and A[j], and then increments j. Because of the swap, we now have that  $A[i] \le x$ , and condition 1 is satisfied. Similarly, we also have that A[j-1] > x, since the item that was swapped into A[j-1] is, by the loop invariant, greater than x.
- **Termination:** At termination, j = r. Therefore, every entry in the array is in one of the three sets described by the invariant, and we have partitioned the values in the array into three sets: those less than or equal to x, those greater than x, and a singleton set containing x.

The final two lines of PARTITION finish up by swapping the pivot element with the leftmost element greater than x, thereby moving the pivot into its correct place in the partitioned array, and then returning the pivot's new index. The output of PARTITION now satisfies the specifications given for the divide step. In fact, it satisfies a slightly stronger condition: after line 2 of QUICKSORT, A[q] is strictly less than every element of A[q + 1..r].

The running time of PARTITION on the subarray A[p ...r] is  $\Theta(n)$ , where n = r - p + 1 (see Exercise 7.1-3).

#### **Exercises**

#### 7.1-1

Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array  $A = \langle 13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11 \rangle$ .



**Figure 7.3** The two cases for one iteration of procedure PARTITION. (a) If A[j] > x, the only action is to increment j, which maintains the loop invariant. (b) If  $A[j] \le x$ , index i is incremented, A[i] and A[j] are swapped, and then j is incremented. Again, the loop invariant is maintained.

### 7.1-2

What value of q does PARTITION return when all elements in the array A[p...r] have the same value? Modify PARTITION so that  $q = \lfloor (p+r)/2 \rfloor$  when all elements in the array A[p...r] have the same value.

# 7.1-3

Give a brief argument that the running time of PARTITION on a subarray of size n is  $\Theta(n)$ .

### 7.1**-4**

How would you modify QUICKSORT to sort into nonincreasing order?

# 7.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is balanced or unbalanced, which in turn depends on which elements are used for partitioning. If the partitioning is balanced, the algorithm runs asymptotically as fast as merge sort. If the partitioning is unbalanced, however, it can run asymptotically as slowly as insertion sort. In this section, we shall informally investigate how quicksort performs under the assumptions of balanced versus unbalanced partitioning.

### Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning routine produces one subproblem with n - 1 elements and one with 0 elements. (We prove this claim in Section 7.4.1.) Let us assume that this unbalanced partitioning arises in each recursive call. The partitioning costs  $\Theta(n)$  time. Since the recursive call on an array of size 0 just returns,  $T(0) = \Theta(1)$ , and the recurrence for the running time is

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
  
=  $T(n-1) + \Theta(n)$ .

Intuitively, if we sum the costs incurred at each level of the recursion, we get an arithmetic series (equation (A.2)), which evaluates to  $\Theta(n^2)$ . Indeed, it is straightforward to use the substitution method to prove that the recurrence T(n) = $T(n-1) + \Theta(n)$  has the solution  $T(n) = \Theta(n^2)$ . (See Exercise 7.2-1.)

Thus, if the partitioning is maximally unbalanced at every recursive level of the algorithm, the running time is  $\Theta(n^2)$ . Therefore the worst-case running time of quicksort is no better than that of insertion sort. Moreover, the  $\Theta(n^2)$  running time occurs when the input array is already completely sorted—a common situation in which insertion sort runs in O(n) time.

#### **Best-case partitioning**

In the most even possible split, PARTITION produces two subproblems, each of size no more than n/2, since one is of size  $\lfloor n/2 \rfloor$  and one of size  $\lceil n/2 \rceil - 1$ . In this case, quicksort runs much faster. The recurrence for the running time is then

$$T(n) = 2T(n/2) + \Theta(n)$$

where we tolerate the sloppiness from ignoring the floor and ceiling and from subtracting 1. By case 2 of the master theorem (Theorem 4.1), this recurrence has the solution  $T(n) = \Theta(n \lg n)$ . By equally balancing the two sides of the partition at every level of the recursion, we get an asymptotically faster algorithm.

#### **Balanced partitioning**

The average-case running time of quicksort is much closer to the best case than to the worst case, as the analyses in Section 7.4 will show. The key to understand-


**Figure 7.4** A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split, yielding a running time of  $O(n \lg n)$ . Nodes show subproblem sizes, with per-level costs on the right. The per-level costs include the constant *c* implicit in the  $\Theta(n)$  term.

ing why is to understand how the balance of the partitioning is reflected in the recurrence that describes the running time.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1 proportional split, which at first blush seems quite unbalanced. We then obtain the recurrence

$$T(n) = T(9n/10) + T(n/10) + cn$$
,

on the running time of quicksort, where we have explicitly included the constant c hidden in the  $\Theta(n)$  term. Figure 7.4 shows the recursion tree for this recurrence. Notice that every level of the tree has cost cn, until the recursion reaches a boundary condition at depth  $\log_{10} n = \Theta(\lg n)$ , and then the levels have cost at most cn. The recursion terminates at depth  $\log_{10/9} n = \Theta(\lg n)$ . The total cost of quicksort is therefore  $O(n \lg n)$ . Thus, with a 9-to-1 proportional split at every level of recursion, which intuitively seems quite unbalanced, quicksort runs in  $O(n \lg n)$  time—asymptotically the same as if the split were right down the middle. Indeed, even a 99-to-1 split yields an  $O(n \lg n)$  running time. In fact, any split of *constant* proportionality yields a recursion tree of depth  $\Theta(\lg n)$ , where the cost at each level is O(n). The running time is therefore  $O(n \lg n)$  whenever the split has constant proportionality.



**Figure 7.5** (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n and produces a "bad" split: two subarrays of sizes 0 and n - 1. The partitioning of the subarray of size  $n - 1 \operatorname{costs} n - 1$  and produces a "good" split: subarrays of size (n - 1)/2 - 1 and (n - 1)/2. (b) A single level of a recursion tree that is very well balanced. In both parts, the partitioning cost for the subproblems shown with elliptical shading is  $\Theta(n)$ . Yet the subproblems remaining to be solved in (a), shown with square shading, are no larger than the corresponding subproblems remaining to be solved in (b).

## Intuition for the average case

To develop a clear notion of the randomized behavior of quicksort, we must make an assumption about how frequently we expect to encounter the various inputs. The behavior of quicksort depends on the relative ordering of the values in the array elements given as the input, and not by the particular values in the array. As in our probabilistic analysis of the hiring problem in Section 5.2, we will assume for now that all permutations of the input numbers are equally likely.

When we run quicksort on a random input array, the partitioning is highly unlikely to happen in the same way at every level, as our informal analysis has assumed. We expect that some of the splits will be reasonably well balanced and that some will be fairly unbalanced. For example, Exercise 7.2-6 asks you to show that about 80 percent of the time PARTITION produces a split that is more balanced than 9 to 1, and about 20 percent of the time it produces a split that is less balanced than 9 to 1.

In the average case, PARTITION produces a mix of "good" and "bad" splits. In a recursion tree for an average-case execution of PARTITION, the good and bad splits are distributed randomly throughout the tree. Suppose, for the sake of intuition, that the good and bad splits alternate levels in the tree, and that the good splits are best-case splits and the bad splits are worst-case splits. Figure 7.5(a) shows the splits at two consecutive levels in the recursion tree. At the root of the tree, the cost is *n* for partitioning, and the subarrays produced have sizes n - 1 and 0: the worst case. At the next level, the subarray of size n - 1 undergoes best-case partitioning into subarrays of size (n - 1)/2 - 1 and (n - 1)/2. Let's assume that the boundary-condition cost is 1 for the subarray of size 0.