
Digital Image Processing

Asst. Prof. Dr. Hammam Alshazly

Faculty of Computers and Artificial Intelligence,
South Valley National University

This book presents in-depth the fundamental methods and

applications of digital image processing.

November 2024

Table of Contents

1 Introduction 1
1.1 Overview . 1
1.2 What Is Digital Image Processing? 2
1.3 Steps in Digital Image Processing 3
1.4 Advantages and Disadvantages 8
1.5 Summary . 9

2 Intensity Transformation and Spatial Filtering 11
2.1 Background . 11

2.1.1 Intensity Transformations 11
2.1.2 About the Examples in This Chapter 14

2.2 Basic Intensity Transformation Functions 15
2.2.1 Image Negatives 16
2.2.2 Log Transformations 16
2.2.3 Power-Law (Gamma) Transformations 19
2.2.4 Piecewise-Linear Transformation Functions 24

2.3 Histogram Processing . 30
2.3.1 Histogram Equalization 33
2.3.2 Histogram Matching (Specification) 38

2.4 Fundamentals of Spatial Filtering 41
2.4.1 The Mechanics of Spatial Filtering 42
2.4.2 Spatial Correlation and Convolution 44

iv Table of Contents

2.4.3 Vector Representation of Linear Filtering 49
2.4.4 Generating Spatial Filter Masks 50

2.5 Smoothing Spatial Filters 51
2.5.1 Smoothing Linear Filters 51
2.5.2 Order-Statistic (Nonlinear) Filters 54

2.6 Sharpening Spatial Filters 56
2.6.1 Foundation . 56
2.6.2 Using the Second Derivative for Image Sharpening-

The Laplacian . 60
2.6.3 Using First-Order Derivatives for (Nonlinear) Image

Sharpening-The Gradient 63

3 Image Compression 69
3.1 Fundamentals . 71

3.1.1 Coding Redundancy 72
3.1.2 Spatial and Temporal Redundancy 75
3.1.3 Irrelevant Information 77
3.1.4 Measuring Image Information 78
3.1.5 Fidelity Criteria . 81
3.1.6 Image Compression Models 84
3.1.7 Image Formats and Compression Standards 86

3.2 Some Basic Compression Methods 87
3.2.1 Huffman Coding 88
3.2.2 LZW Coding . 90
3.2.3 Run-Length Coding 93

3.3 summary . 95

4 Image Segmentation 97
4.1 Fundamentals . 98
4.2 Point, Line, and Edge Detection 101

4.2.1 Background . 102

Table of Contents v

4.2.2 Detection of Isolated Points 107
4.2.3 Line Detection . 109
4.2.4 Edge Models . 112
4.2.5 Basic Edge Detection 116
4.2.6 More Advanced Techniques for Edge Detection . . . 128

4.3 Summary . 134

CHAPTER 1

INTRODUCTION

1.1 Overview

In our increasingly visual world, digital images have become ubiquitous -
from the photos we capture on our smartphones to the high-resolution satellite
imagery used for scientific research and commercial applications. As our
ability to generate, collect, and store digital images has grown exponentially,
the need to understand how to process, analyze, and extract meaningful
information from these visual data sources has become more important than
ever.

Digital image processing is an interdisciplinary field that sits at the inter-
section of computer science, electrical engineering, and applied mathematics.
It involves the development and application of algorithms and techniques to
perform a wide range of operations on digital images, such as enhancement,
filtering, restoration, segmentation, and compression.

The applications of digital image processing are vast and diverse, spanning
fields as varied as medical imaging, remote sensing, surveillance, autonomous
vehicles, and artistic image manipulation. By applying sophisticated algo-
rithms to digital image data, we can unlock powerful capabilities, such as the
ability to automate the detection of tumors in medical scans, monitor crop
health from satellite imagery, or enable self-driving cars to navigate safely.

1

Introduction

In this book, we will take a deep dive into the fundamental principles
and techniques of digital image processing. We start by exploring the basics
of digital image representation and the various file formats, and coordinate
systems used to store and work with visual data. From there, we move on
to cover core image processing operations, such as filtering, enhancement,
image compression, and image segmentation.

So let’s get started on our journey into the world of digital image process-
ing!

1.2 What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f (x,y), where x
and y are spatial (plane) coordinates, and the amplitude of f at any pair of
coordinates (x,y) is called the intensity or gray level of the image at that point.
When x,y, and the intensity values of f are all finite, discrete quantities, we
call the image a digital image. The field of digital image processing refers
to processing digital images by means of a digital computer. Note that a
digital image is composed of a finite number of elements, each of which has
a particular location and value. These elements are called picture elements,
image elements, pels, and pixels. Pixel is the term used most widely to denote
the elements of a digital image.

Types of Images

1. Binary Image: The binary image, as its name suggests, contains only
two pixel elements, i.e., 0 and 1, where 0 refers to black and 1 refers to
white. This image is also known as Monochrome.

2. Black and White Image: The image which consists of only black and
white color is called a BLACK AND WHITE IMAGE.

3. 8 bit COLOR FORMAT: It is the most famous image format. It
has 256 different shades of colors in it and is commonly known as

2

1.3 Steps in Digital Image Processing

Grayscale Image. In this format, 0 stands for Black, 255 stands for
White, and 127 stands for Gray.

4. 16 bit COLOR FORMAT: It is a color image format. It has 65,536
different colors in it. It is also known as High Color Format. In this
format, the distribution of color is not the same as that of Grayscale
images.

A 16 bit format is actually divided into three further formats: Red, Green, and
Blue. That famous RGB format.

The Image as a Matrix

As we know, images are represented in rows and columns. Mathematically,
an image can be represented as a function f (x,y), where (x,y) are the pixel
coordinates. The image is of size M×N, and can be expressed as a matrix:

f (x,y) =

f (0,0) f (0,1) · · · f (0,N −1)
f (1,0) f (1,1) · · · f (1,N −1)

...
...

f (M−1,0) f (M−1,1) · · · f (M−1,N −1)

 (1.1)

where f(x,y) is the image matrix with M rows and N columns. Every
element of this matrix is called image element, picture element, or pixel.

1.3 Steps in Digital Image Processing

It is helpful to divide the material covered in the following chapters into
the two broad categories: methods whose input and output are images, and
methods whose inputs may be images but whose outputs are attributes ex-
tracted from those images. This organization is summarized in Fig. 1.1. The
diagram does not imply that every process is applied to an image. Rather, the

3

Introduction

intention is to convey an idea of all the methodologies that can be applied
to images for different purposes and possibly with different objectives. The
discussion in this section may be viewed as a brief overview of the material
in the remainder of the book.

Figure 1.1: Fundamental steps in digital image processing.

Image acquisition is the first process in Fig. 1.1. Note that acquisition
could be as simple as being given an image that is already in digital form.
Generally, the image acquisition stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so that the
result is more suitable than the original for a specific application. The word
specific is important here, because it establishes at the outset that enhancement
techniques are problem oriented. Thus, for example, a method that is quite
useful for enhancing X-ray images may not be the best approach for enhancing
satellite images taken in the infrared band of the electromagnetic spectrum.

4

1.3 Steps in Digital Image Processing

There is no general “theory” of image enhancement. When an image is
processed for visual interpretation, the viewer is the ultimate judge of how
well a particular method works. Enhancement techniques are so varied, and
use so many different image processing approaches, that it is difficult to
assemble a meaningful body of techniques suitable for enhancement in one
chapter without extensive background development. For this reason, and also
because beginners in the field of image processing generally find enhance-
ment applications visually appealing, interesting, and relatively simple to
understand, we use image enhancement as examples when introducing new
concepts in the following chapters. The material in the next two chapters span
many of the methods used traditionally for image enhancement.

Image restoration is an area that also deals with improving the appear-
ance of an image. It is the process of recovering an image from a degraded
version—usually a blurred and noisy image. It is a fundamental problem
in image processing, and it also provides a testbed for more general inverse
problems. However, unlike enhancement, which is subjective, image restora-
tion is objective, in the sense that restoration techniques tend to be based on
mathematical or probabilistic models of image degradation. Enhancement,
on the other hand, is based on human subjective preferences regarding what
constitutes a “good” enhancement result.

Color image processing is an area that has been gaining in importance
because of the significant increase in the use of digital images over the Internet.
The topics cover a number of fundamental concepts in color models and basic
color processing in a digital domain. Color is used as the basis for extracting
features of interest in an image.

Wavelets are the foundation for representing images in various degrees of
resolution. In particular, this material is used in for image data compression
and for pyramidal representation, in which images are subdivided successively
into smaller regions. Wavelets based transform are mathematical tools which
are used to extract information from images. A significant benefit it has over

5

Introduction

Fourier transforms is temporal resolution which signifies that it can captures
both frequency and location information of the images

Compression, as the name implies, deals with techniques for reducing the
storage required to save an image, or the bandwidth required to transmit it.
Although storage technology has improved significantly over the past decade,
the same cannot be said for transmission capacity.This is true particularly in
uses of the Internet, which are characterized by significant pictorial content.
Image compression is familiar (perhaps inadvertently) to most users of com-
puters in the form of image file extensions, such as the jpg file extension used
in the JPEG (Joint Photographic Experts Group) image compression standard.

Morphological processing deals with tools for extracting image compo-
nents that are useful in the representation and description of shape. The
material in this chapter begins a transition from processes that output images
to processes that output image attributes.

Segmentation procedures partition an image into its constituent parts or
objects. In general, autonomous segmentation is one of the most difficult
tasks in digital image processing. A rugged segmentation procedure brings
the process a long way toward successful solution of imaging problems that
require objects to be identified individually. On the other hand, weak or erratic
segmentation algorithms almost always guarantee eventual failure. In general,
the more accurate the segmentation, the more likely recognition is to succeed.

Representation and description almost always follow the output of a
segmentation stage, which usually is raw pixel data, constituting either the
boundary of a region (i.e., the set of pixels separating one image region from
another) or all the points in the region itself. In either case, converting the data
to a form suitable for computer processing is necessary. The first decision
that must be made is whether the data should be represented as a boundary or
as a complete region. Boundary representation is appropriate when the focus
is on external shape characteristics, such as corners and inflections. Regional
representation is appropriate when the focus is on internal properties, such

6

1.3 Steps in Digital Image Processing

as texture or skeletal shape. In some applications, these representations
complement each other. Choosing a representation is only part of the solution
for transforming raw data into a form suitable for subsequent computer
processing.A method must also be specified for describing the data so that
features of interest are highlighted. Description, also called feature selection,
deals with extracting attributes that result in some quantitative information of
interest or are basic for differentiating one class of objects from another.

Recognition is the process that assigns a label (e.g., “vehicle”) to an object
based on its descriptors. Image recognition is the process of identifying an
object or a feature in an image or video. It is used in many applications
like defect detection, medical imaging, and security surveillance. Image
recognition is a crucial technique in many applications, and is the main driver
in deep learning applications like: Visual Inspection, Image Classification,
Automated Driving, and Robotics(e.g., Image recognition can be used by
robots to identify objects and enhance autonomous navigation by identifying
locations or objects on their path).

So far we have said nothing about the need for prior knowledge or about
the interaction between the knowledge base and the processing modules in Fig.
1.1. Knowledge about a problem domain is coded into an image processing
system in the form of a knowledge database. This knowledge may be as
simple as detailing regions of an image where the information of interest
is known to be located, thus limiting the search that has to be conducted in
seeking that information. The knowledge base also can be quite complex, such
as an interrelated list of all major possible defects in a materials inspection
problem or an image database containing high-resolution satellite images
of a region in connection with change-detection applications. In addition to
guiding the operation of each processing module, the knowledge base also
controls the interaction between modules. This distinction is made in Fig. 1.1
by the use of double-headed arrows between the processing modules and the

7

Introduction

knowledge base, as opposed to single-headed arrows linking the processing
modules.

1.4 Advantages and Disadvantages

The following points highlight the balance between the capabilities and chal-
lenges associated with digital image processing.

Advantages of Digital Image Processing:

1. Improved image quality: Digital image processing algorithms can
improve the visual quality of images, making them clearer, sharper, and
more informative.

2. Automated image-based tasks: Digital image processing can au-
tomate many image-based tasks, such as object recognition, pattern
detection, and measurement.

3. Increased efficiency: Digital image processing algorithms can process
images much faster than humans, making it possible to analyze large
amounts of data in a short amount of time.

4. Increased accuracy: Digital image processing algorithms can provide
more accurate results than humans, especially for tasks that require
precise measurements or quantitative analysis.

Disadvantages of Digital Image Processing:

1. High computational cost: Some digital image processing algorithms
are computationally intensive and require significant computational
resources.

2. Limited interpretability: Some digital image processing algorithms
may produce results that are difficult for humans to interpret, especially
for complex or sophisticated algorithms.

8

1.5 Summary

3. Dependence on quality of input: The quality of the output of digital
image processing algorithms is highly dependent on the quality of the
input images. Poor quality input images can result in poor quality
output.

4. Limitations of algorithms: Digital image processing algorithms have
limitations, such as the difficulty of recognizing objects in cluttered or
poorly lit scenes, or the inability to recognize objects with significant
deformations or occlusions.

1.5 Summary

The main purpose of the material presented in this chapter is to provide a
sense of perspective about the origins of digital image processing and, more
important, about current and future areas of application of this technology.
Although the coverage of these topics in this chapter was necessarily incom-
plete due to space limitations, it should have left you with a clear impression
of the breadth and practical scope of digital image processing. As we proceed
in the following chapters with the development of image processing theory
and applications, numerous examples are provided to keep a clear focus on
the utility and promise of these techniques. Upon concluding the study of the
final chapter, a reader of this book will have arrived at a level of understanding
that is the foundation for most of the work currently underway in this field.

9

CHAPTER 2

INTENSITY TRANSFORMATION AND
SPATIAL FILTERING

2.1 Background

2.1.1 Intensity Transformations

All the image processing techniques discussed in this section are implemented
in the spatial domain, which is simply the plane containing the pixels of
an image. The spatial domain techniques operate directly on the pixels
of an image as opposed, for example, to the frequency domain in which
operations are performed on the Fourier transform of an image, rather than
on the image itself. As you will learn in progressing through the book, some
image processing tasks are easier or more meaningful to implement in the
spatial domain while others are best suited for other approaches. Generally,
spatial domain techniques are more efficient computationally and require less
processing resources to implement.

The spatial domain processes we discuss in this chapter can be denoted
by the expression

g(x,y) = T [f (x,y)] (2.1)

11

Intensity Transformation and Spatial Filtering

Figure 2.1: A 3×3 neighborhood about a point (x,y) in an image in the
spatial domain. The neighborhood is moved from pixel to pixel in the image

to generate an output image.

where f (x,y) is the input image, g(x,y) is the output image, and T is an
operator on f defined over a neighborhood of point (x,y). The operator can
apply to a single image (our principal focus in this chapter) or to a set of
images, such as performing the pixel-by-pixel sum of a sequence of images
for noise reduction. The point (x,y) shown is an arbitrary location in the
image, and the small region shown containing the point is a neighborhood
of (x,y). Typically, the neighborhood is rectangular, centered on (x,y), and
much smaller in size than the image. Other neighborhood shapes, such as
digital approximations to circles, are used sometimes, but rectangular shapes
are by far the most prevalent because they are much easier to implement
computationally.

The process that Fig. 2.1 illustrates consists of moving the origin of the
neighborhood from pixel to pixel and applying the operator T to the pixels in
the neighborhood to yield the output at that location. Thus, for any specific
location (x,y), the value of the output image g at those coordinates is equal
to the result of applying T to the neighborhood with origin at (x,y) in f . For
example, suppose that the neighborhood is a square of size 3× 3, and that
operator T is defined as "compute the average intensity of the neighborhood."

12

2.1 Background

Consider an arbitrary location in an image, say (100,150). Assuming that
the origin of the neighborhood is at its center, the result, g(100,150), at
that location is computed as the sum of f (100,150) and its 8-neighbors,
divided by 9 (i.e., the average intensity of the pixels encompassed by the
neighborhood). The origin of the neighborhood is then moved to the next
location and the procedure is repeated to generate the next value of the output
image g. Typically, the process starts at the top left of the input image
and proceeds pixel by pixel in a horizontal scan, one row at a time. When
the origin of the neighborhood is at the border of the image, part of the
neighborhood will reside outside the image. The procedure is either to ignore
the outside neighbors in the computations specified by T , or to pad the image
with a border of 0 s or some other specified intensity values. The thickness of
the padded border depends on the size of the neighborhood.

The procedure just described is called spatial filtering, in which the
neighborhood, along with a predefined operation, is called a spatial filter
(also referred to as a spatial mask, kernel, template, or window). The type of
operation performed in the neighborhood determines the nature of the filtering
process.

The smallest possible neighborhood is of size 1×1. In this case, g depends
only on the value of f at a single point (x,y) and T in Eq. (2.1) becomes an
intensity (also called gray-level or mapping) transformation function of the
form

s = T (r) (2.2)

where, for simplicity in notation, s and r are variables denoting, respec-
tively, the intensity of g and f at any point (x,y). For example, if T (r) has the
form in Fig. 2.2(a), the effect of applying the transformation to every pixel of
f to generate the corresponding pixels in g would be to produce an image of
higher contrast than the original by darkening the intensity levels below k and
brightening the levels above k. In this technique, sometimes called contrast

13

Intensity Transformation and Spatial Filtering

stretching, values of r lower than k are compressed by the transformation
function into a narrow range of s, toward black. The opposite is true for
values of r higher than k. Observe how an intensity value r0 is mapped to
obtain the corresponding value s0. In the limiting case shown in Fig. 2.2(b),
T (r) produces a two-level (binary) image. A mapping of this form is called
a thresholding function. Some fairly simple, yet powerful, processing ap-
proaches can be formulated with intensity transformation functions. In this
chapter, we use intensity transformations principally for image enhancement.

Figure 2.2: Intensity transformation functions. (a) Contrast stretching
function. (b) Thresholding function.

2.1.2 About the Examples in This Chapter

Although intensity transformations and spatial filtering span a broad range of
applications, most of the examples in this chapter are applications to image
enhancement. Enhancement is the process of manipulating an image so that
the result is more suitable than the original for a specific application. The word
specific is important here because it establishes at the outset that enhancement
techniques are problem oriented. Thus, for example, a method that is quite

14

2.2 Basic Intensity Transformation Functions

useful for enhancing X-ray images may not be the best approach for enhancing
satellite images taken in the infrared band of the electromagnetic spectrum.
There is no general "theory" of image enhancement. When an image is
processed for visual interpretation, the viewer is the ultimate judge of how
well a particular method works. When dealing with machine perception, a
given technique is easier to quantify. For example, in an automated character-
recognition system, the most appropriate enhancement method is the one that
results in the best recognition rate, leaving aside other considerations such as
computational requirements of one method over another.

2.2 Basic Intensity Transformation Functions

Intensity transformations are among the simplest of all image processing
techniques. The values of pixels, before and after processing, will be denoted
by r and s, respectively. As indicated in the previous section, these values are
related by an expression of the form s = T (r), where T is a transformation
that maps a pixel value r into a pixel value s. Because we are dealing with
digital quantities, values of a transformation function typically are stored in
a one-dimensional array and the mappings from r to s are implemented via
table lookups. For an 8 -bit environment, a lookup table containing the values
of T will have 256 entries.

As an introduction to intensity transformations, consider Fig. 2.3, which
shows three basic types of functions used frequently for image enhancement:
linear (negative and identity transformations), logarithmic (log and inverse-
log transformations), and power-law (nth power and nth root transformations).
The identity function is the trivial case in which output intensities are identical
to input intensities. It is included in the graph only for completeness.

15

Intensity Transformation and Spatial Filtering

2.2.1 Image Negatives

The negative of an image with intensity levels in the range [0,L−1] is obtained
by using the negative transformation shown in Fig. 2.3, which is given by the
expression

s = L−1− r (2.3)

Reversing the intensity levels of an image in this manner produces the
equivalent of a photographic negative. This type of processing is particularly
suited for enhancing white or gray detail embedded in dark regions of an
image, especially when the black areas are dominant in size. Figure 2.4 shows
an example.

2.2.2 Log Transformations

The general form of the log transformation in Fig. 2.3 is

s = c log(1+ r) (2.4)

where c is a constant, and it is assumed that r ≥ 0. The shape of the
log curve in Fig. 2.3 shows that this transformation maps a narrow range
of low intensity values in the input into a wider range of output levels. The
opposite is true of higher values of input levels. We use a transformation of
this type to expand the values of dark pixels in an image while compressing
the higher-level values. The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig.
2.3 would accomplish this spreading/compressing of intensity levels in an
image, but the power-law transformations discussed in the next section are
much more versatile for this purpose. The log function has the important
characteristic that it compresses the dynamic range of images with large
variations in pixel values. A classic illustration of an application in which

16

2.2 Basic Intensity Transformation Functions

Figure 2.3: Some basic intensity transformation functions. All curves were
scaled to fit in the range shown.

‘

pixel values have a large dynamic range is the Fourier spectrum. At the
moment, we are concerned only with the image characteristics of spectra. It is
not unusual to encounter spectrum values that range from 0 to 106 or higher.
While processing numbers such as these presents no problems for a computer,
image display systems generally will not be able to reproduce faithfully such
a wide range of intensity values. The net effect is that a significant degree of
intensity detail can be lost in the display of a typical Fourier spectrum.

17

Intensity Transformation and Spatial Filtering

Figure 2.4: An example of a negative image obtained using the negative
transformation in Eq. (2.3).

Figure 2.5: (a) Fourier spectrum. (b) Result of applying the log
transformation in Eq.2.4 with c = 1.

As an illustration of log transformations, Fig. 2.5(a) shows a Fourier
spectrum with values in the range 0 to 1.5×106. When these values are scaled
linearly for display in an 8 -bit system, the brightest pixels will dominate
the display, at the expense of lower (and just as important) values of the
spectrum. The effect of this dominance is illustrated vividly by the relatively

18

2.2 Basic Intensity Transformation Functions

small area of the image in Fig. 2.5(a) that is not perceived as black. If, instead
of displaying the values in this manner, we first apply Eq. (2.4) (with c = 1
in this case) to the spectrum values, then the range of values of the result
becomes 0 to 6.2 , which is more manageable. Figure 2.5(b) shows the result
of scaling this new range linearly and displaying the spectrum in the same
8-bit display. The wealth of detail visible in this image as compared to an
unmodified display of the spectrum is evident from these pictures. Most of
the Fourier spectra seen in image processing publications have been scaled in
just this manner.

2.2.3 Power-Law (Gamma) Transformations

Power-law transformations have the basic form

s = crγ (2.5)

where c and γ are positive constants. Sometimes Eq. (2.5) is written as
s = c(r+ ε)γ to account for an offset (that is, a measurable output when the
input is zero). However, offsets typically are an issue of display calibration
and as a result they are normally ignored in Eq. (2.5). Plots of s versus
r for various values of γ are shown in Fig. 2.6. As in the case of the log
transformation, power-law curves with fractional values of γ map a narrow
range of dark input values into a wider range of output values, with the
opposite being true for higher values of input levels. Unlike the log function,
however, we notice here a family of possible transformation curves obtained
simply by varying γ . As expected, we see in Fig. that curves generated with
values of γ > 1 have exactly the opposite effect as those generated with values
of γ < 1. Finally, we note that Eq. (2.5) reduces to the identity transformation
when c = γ = 1.

A variety of devices used for image capture, printing, and display respond
according to a power law. By convention, the exponent in the power-law

19

Intensity Transformation and Spatial Filtering

Figure 2.6: Plots of the equation s = crγ for various values of γ (c=1 in all
cases). All curves were scaled to fit in the range shown.

equation is referred to as gamma [hence our use of this symbol in Eq. (2.5)].
The process used to correct these power-law response phenomena is called
gamma correction. For example, cathode ray tube (CRT) devices have an
intensity-to-voltage response that is a power function, with exponents varying
from approximately 1.8 to 2.5 . With reference to the curve for γ = 2.5 in
Fig. 2.6, we see that such display systems would tend to produce images that
are darker than intended. This effect is illustrated in Fig. 2.7. Figure 2.7(a)
shows a simple intensity-ramp image input into a monitor. As expected, the
output of the monitor appears darker than the input, as Fig. 2.7(b) shows.

20

2.2 Basic Intensity Transformation Functions

Gamma correction in this case is straightforward. All we need to do is
preprocess the input image before inputting it into the monitor by performing
the transformation s = r1/2.5 = r0.4. The result is shown in Fig. 2.7(c). When
input into the same monitor, this gamma-corrected input produces an output
that is close in appearance to the original image, as Fig. 2.7(d) shows. A
similar analysis would apply to other imaging devices such as scanners and
printers. The only difference would be the device-dependent value of gamma.

Gamma correction is important if displaying an image accurately on a
computer screen is of concern. Images that are not corrected properly can
look either bleached out, or, what is more likely, too dark. Trying to reproduce
colors accurately also requires some knowledge of gamma correction because
varying the value of gamma changes not only the intensity, but also the ratios
of red to green to blue in a color image. Gamma correction has become
increasingly important in the past few years, as the use of digital images
for commercial purposes over the Internet has increased. It is not unusual
that images created for a popular Web site will be viewed by millions of
people, the majority of whom will have different monitors and/or monitor
settings. Some computer systems even have partial gamma correction built
in. Also, current image standards do not contain the value of gamma with
which an image was created, thus complicating the issue further. Given these
constraints, a reasonable approach when storing images in a Web site is to
preprocess the images with a gamma that represents an "average" of the types
of monitors and computer systems that one expects in the open market at any
given point in time.

In addition to gamma correction, power-law transformations are useful
for general-purpose contrast manipulation. Figure 2.8(a) shows a magnetic
resonance image (MRI) of an upper thoracic human spine with a fracture
dislocation and spinal cord impingement. The fracture is visible near the
vertical center of the spine, approximately one-fourth of the way down from
the top of the picture. Because the given image is predominantly dark, an

21

Intensity Transformation and Spatial Filtering

Figure 2.7: (a) Intensity ramp image.(b) Image as viewed on a simulated
monitor with a gamma of 2.5. (c) Gamma corrected image. (d) Corrected

image as viewed on the same monitor. Compare (d) and (a).

22

2.2 Basic Intensity Transformation Functions

expansion of intensity levels is desirable. This can be accomplished with
a power-law transformation with a fractional exponent. The other images
shown in the figure were obtained by processing Fig. 2.8(a) with the power-
law transformation function of Eq. (2.5). The values of gamma corresponding
to images (b) through (d) are 0.6,0.4, and 0.3 , respectively (the value of c
was 1 in all cases). We note that, as gamma decreased from 0.6 to 0.4 , more
detail became visible. A further decrease of gamma to 0.3 enhanced a little
more detail in the background, but began to reduce contrast to the point where
the image started to have a very slight "washed-out" appearance, especially in
the background. By comparing all results, we see that the best enhancement
in terms of contrast and discernable detail was obtained with γ = 0.4. A value
of γ = 0.3 is an approximate limit below which contrast in this particular
image would be reduced to an unacceptable level.

Figure 2.8: (a) Magnetic resonance image (MRI) of a fractured human spine.
(b)–(d) Results of applying the transformation in Eq. 2.5

23

Intensity Transformation and Spatial Filtering

Figure 2.9(a) shows the opposite problem of Fig.2.8(a). The image to be
processed now has a washed-out appearance, indicating that a compression
of intensity levels is desirable. This can be accomplished with Eq. (2.5)
using values of γ greater than 1. The results of processing Fig. 2.9(a) with
γ = 3.0,4.0, and 5.0 are shown in Fig. 2.9(b) through (d). Suitable results
were obtained with gamma values of 3.0 and 4.0 , the latter having a slightly
more appealing appearance because it has higher contrast. The result obtained
with γ = 5.0 has areas that are too dark, in which some detail is lost. The dark
region to the left of the main road in the upper left quadrant is an example of
such an area.

2.2.4 Piecewise-Linear Transformation Functions

A complementary approach to the methods discussed in the previous three
sections is to use piecewise linear functions. The principal advantage of piece-
wise linear functions over the types of functions we have discussed thus far is
that the form of piecewise functions can be arbitrarily complex. In fact, as you
will see shortly, a practical implementation of some important transformations
can be formulated only as piecewise functions. The principal disadvantage of
piecewise functions is that their specification requires considerably more user
input.

Contrast Stretching

One of the simplest piecewise linear functions is a contrast-stretching trans-
formation. Low-contrast images can result from poor illumination, lack of
dynamic range in the imaging sensor, or even the wrong setting of a lens aper-
ture during image acquisition. Contrast stretching is a process that expands
the range of intensity levels in an image so that it spans the full intensity range
of the recording medium or display device.

24

2.2 Basic Intensity Transformation Functions

Figure 2.9: (a) Aerial image. (b)–(d) Results of applying the transformation
in Eq. 2.5

Figure 2.10(a) shows a typical transformation used for contrast stretching.
The locations of points (r1,s1) and (r2,s2) control the shape of the trans-
formation function. If r1 = s1 and r2 = s2, the transformation is a linear
function that produces no changes in intensity levels. If r1 = r2,s1 = 0 and
s2 = L−1, the transformation becomes a thresholding function that creates
a binary image. Intermediate values of (r1,s1) and (r2,s2) produce various
degrees of spread in the intensity levels of the output image, thus affecting

25

Intensity Transformation and Spatial Filtering

its contrast. In general, r1 ≤ r2 and s1 ≤ s2 is assumed so that the function
is single valued and monotonically increasing. This condition preserves the
order of intensity levels, thus preventing the creation of intensity artifacts in
the processed image.

Figure 2.10(b) shows an 8-bit image with low contrast. Figure 2.10(c)
shows the result of contrast stretching, obtained by setting (r1,s1) = (rmin,0)
and (r2,s2) = (rmax,L−1), where rmin and rmax denote the minimum and
maximum intensity levels in the image, respectively. Thus, the transformation
function stretched the levels linearly from their original range to the full range
[0,L− 1]. Finally, Fig.2.10(d) shows the result of using the thresholding
function defined previously, with (r1,s1) = (m,0) and (r2,s2) = (m,L−1),
where m is the mean intensity level in the image. The original image on which
these results are based is a scanning electron microscope image of pollen,
magnified approximately 700 times.

Intensity-level slicing

Highlighting a specific range of intensities in an image often is of interest.
Applications include enhancing features such as masses of water in satellite
imagery and enhancing flaws in X-ray images. The process, often called
intensity-level slicing, can be implemented in several ways, but most are
variations of two basic themes. One approach is to display in one value
(say, white) all the values in the range of interest and in another (say, black)
all other intensities. This transformation, shown in Fig. 2.11(a), produces
a binary image. The second approach, based on the transformation in Fig.
2.11(b), brightens (or darkens) the desired range of intensities but leaves all
other intensity levels in the image unchanged.

26

2.2 Basic Intensity Transformation Functions

Figure 2.10: Contrast stretching. (a) Form of transformation function. (b) A
low-contrast image. (c) Result of contrast stretching. (d) Result of

thresholding.

Bit-plane slicing

Pixels are digital numbers composed of bits. For example, the intensity of
each pixel in a 256 -level gray-scale image is composed of 8 bits (i.e., one
byte). Instead of highlighting intensity-level ranges, we could highlight the
contribution made to total image appearance by specific bits. As Fig. 2.12
illustrates, an 8-bit image may be considered as being composed of eight 1-bit

27

Intensity Transformation and Spatial Filtering

Figure 2.11: (a) This transformation highlights intensity range [A, B] and
reduces all other intensities to a lower level. (b) This transformation

highlights range [A, B] and preserves all other intensity levels.

planes, with plane 1 containing the lowest-order bit of all pixels in the image
and plane 8 all the highest-order bits.

Figure 2.12: Bit-plane representation of an 8-bit image.

Figure 2.13(a) shows an 8-bit gray-scale image and Figs. 2.13(b) through
(i) are its eight 1-bit planes, with Fig. 2.13(b) corresponding to the lowest-
order bit. Observe that the four higher-order bit planes, especially the last
two, contain a significant amount of the visually significant data. The lower-
order planes contribute to more subtle intensity details in the image. The

28

2.2 Basic Intensity Transformation Functions

original image has a gray border whose intensity is 194 . Notice that the
corresponding borders of some of the bit planes are black (0), while others
are white (1). To see why, consider a pixel in, say, the middle of the lower
border of Fig. 2.13(a). The corresponding pixels in the bit planes, starting
with the highest-order plane, have values 1 1 0 0 0 0 1 0, which is the binary
representation of decimal 194.The value of any pixel in the original image
can be similarly reconstructed from its corresponding binary-valued pixels in
the bit planes.

In terms of intensity transformation functions, it is not difficult to show
that the binary image for the 8th bit plane of an 8-bit image can be obtained
by processing the input image with a thresholding intensity transformation
function that maps all intensities between 0 and 127 to 0 and maps all levels
between 128 and 255 to 1. The binary image in Fig. 2.13(i) was obtained
in just this manner. Decomposing an image into its bit planes is useful for

Figure 2.13: (a) An 8-bit gray-scale image of size 500×1192 pixels. (b)
through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least

significant bit. Each bit plane is a binary image.

analyzing the relative importance of each bit in the image, a process that
aids in determining the adequacy of the number of bits used to quantize the
image. Also, this type of decomposition is useful for image compression,
in which fewer than all planes are used in reconstructing an image. For

29

Intensity Transformation and Spatial Filtering

example, Fig. 2.14(a) shows an image reconstructed using bit planes 8 and
7. The reconstruction is done by multiplying the pixels of the nth plane by
the constant 2n−1. This is nothing more than converting the nth significant
binary bit to decimal. Each plane used is multiplied by the corresponding
constant, and all planes used are added to obtain the gray scale image. Thus,
to obtain Fig. 2.14(a), we multiplied bit plane 8 by 128, bit plane 7 by 64, and
added the two planes. Although the main features of the original image were
restored, the reconstructed image appears flat, especially in the background.
This is not surprising because two planes can produce only four distinct
intensity levels. Adding plane 6 to the reconstruction helped the situation, as
Fig. 2.14(b) shows. Note that the background of this image has perceptible
false contouring. This effect is reduced significantly by adding the 5th plane
to the reconstruction, as Fig. 2.14(c) illustrates. Using more planes in the
reconstruction would not contribute significantly to the appearance of this
image. Thus, we conclude that storing the four highest-order bit planes would
allow us to reconstruct the original image in acceptable detail. Storing these
four planes instead of the original image requires 50% less storage (ignoring
memory architecture issues).

Figure 2.14: Images reconstructed using (a) bit planes 8 and 7; (b) bit planes
8, 7, and 6; and (c) bit planes 8, 7, 6, and 5. Compare (c) with Fig. 2.13(a).

2.3 Histogram Processing

The histogram of a digital image with intensity levels in the range [0,L−1] is
a discrete function h(rk) = nk, where rk is the kt th intensity value and nk is
the number of pixels in the image with intensity rk. It is common practice to

30

2.3 Histogram Processing

normalize a histogram by dividing each of its components by the total number
of pixels in the image, denoted by the product MN, where, as usual, M and
N are the row and column dimensions of the image. Thus, a normalized
histogram is given by p(rk) = rk/MN, for k = 0,1,2, . . . ,L− 1. Loosely
speaking, p(rk) is an estimate of the probability of occurrence of intensity
level rk in an image. The sum of all components of a normalized histogram is
equal to 1.

Histograms are the basis for numerous spatial domain processing tech-
niques. Histogram manipulation can be used for image enhancement, as
shown in this section. In addition to providing useful image statistics, we
shall see in subsequent chapters that the information inherent in histograms
also is quite useful in other image processing applications, such as image
compression and segmentation. Histograms are simple to calculate in soft-
ware and also lend themselves to economic hardware implementations, thus
making them a popular tool for real-time image processing.

As an introduction to histogram processing for intensity transformations,
consider Fig. 2.15, which is the pollen image of Fig. 2.10 shown in four basic
intensity characteristics: dark, light, low contrast, and high contrast. The right
side of the figure shows the histograms corresponding to these images. The
horizontal axis of each histogram plot corresponds to intensity values, rk. The
vertical axis corresponds to values of h(rk) = nk or p(rk) = nk/MN if the
values are normalized. Thus, histograms may be viewed graphically simply
as plots of h(rk) = nk versus rk or p(rk) = nk/MN versus rk.

We note in the dark image that the components of the histogram are
concentrated on the low (dark) side of the intensity scale. Similarly, the
components of the histogram of the light image are biased toward the high
side of the scale. An image with low contrast has a narrow histogram located
typically toward the middle of the intensity scale. For a monochrome image
this implies a dull, washed-out gray look. Finally, we see that the components
of the histogram in the high-contrast image cover a wide range of the intensity

31

Intensity Transformation and Spatial Filtering

Figure 2.15: Four basic image types: dark, light, low contrast, high contrast,
and their corresponding histograms.

32

2.3 Histogram Processing

scale and, further, that the distribution of pixels is not too far from uniform,
with very few vertical lines being much higher than the others. Intuitively,
it is reasonable to conclude that an image whose pixels tend to occupy the
entire range of possible intensity levels and, in addition, tend to be distributed
uniformly, will have an appearance of high contrast and will exhibit a large
variety of gray tones. The net effect will be an image that shows a great deal
of gray-level detail and has high dynamic range. It will be shown shortly
that it is possible to develop a transformation function that can automatically
achieve this effect, based only on information available in the histogram of
the input image.

2.3.1 Histogram Equalization

Consider for a moment continuous intensity values and let the variable r
denote the intensities of an image to be processed. As usual, we assume
that r is in the range [0,L−1], with r = 0 representing black and r = L−1
representing white. For r satisfying these conditions, we focus attention on
transformations (intensity mappings) of the form

s = T (r) 0 ≤ r ≤ L−1 (2.6)

that produce an output intensity level s for every pixel in the input image
having intensity r. We assume that:
(a) T (r) is a monotonically increasing function in the interval 0 ≤ r ≤ L−1;
and
(b) 0 ≤ T (r)≤ L−1 for 0 ≤ r ≤ L−1.

In some formulations to be discussed later, we use the inverse

r = T−1(s) 0 ≤ s ≤ L−1 (2.7)

33

Intensity Transformation and Spatial Filtering

in which case we change condition (a) to
(a′)T (r) is a strictly monotonically increasing function in the interval 0 ≤ r ≤
L−1.

The requirement in condition (a) that T (r) be monotonically increasing
guarantees that output intensity values will never be less than corresponding
input values, thus preventing artifacts created by reversals of intensity. Con-
dition (b) guarantees that the range of output intensities is the same as the
input. Finally, condition (a′) guarantees that the mappings from s back to
r will be one-to-one, thus preventing ambiguities. Figure 2.16(a) shows a
function that satisfies conditions (a) and (b). Here, we see that it is possible
for multiple values to map to a single value and still satisfy these two condi-
tions. That is, a monotonic transformation function performs a one-to-one
or many-to-one mapping. This is perfectly fine when mapping from r to s.
However, Fig.2.16(a) presents a problem if we wanted to recover the values
of r uniquely from the mapped values (inverse mapping can be visualized by
reversing the direction of the arrows). This would be possible for the inverse
mapping of sk in Fig. 2.16(a), but the inverse mapping of sq is a range of
values, which, of course, prevents us in general from recovering the original
value of r that resulted in sq. As Fig. 2.16(b) shows, requiring that T (r) be
strictly monotonic guarantees that the inverse mappings will be single valued
(i.e., the mapping is one-to-one in both directions). This is a theoretical
requirement that allows us to derive some important histogram processing
techniques later in this chapter. Because in practice we deal with integer
intensity values, we are forced to round all results to their nearest integer
values. Therefore, when strict monotonicity is not satisfied, we address the
problem of a non-unique inverse transformation by looking for the closest
integer matches.

The intensity levels in an image may be viewed as random variables in
the interval [0,L−1]. A fundamental descriptor of a random variable is its
probability density function (PDF). Let pr(r) and ps(s) denote the PDFs of

34

2.3 Histogram Processing

Figure 2.16: (a) Monotonically increasing function, showing how multiple
values can map to a single value. (b) Strictly monotonically increasing

function. This is a one-to-one mapping, both ways.

r and s, respectively, where the subscripts on p are used to indicate that pr

and ps are different functions in general. A fundamental result from basic
probability theory is that if pr(r) and T (r) are known, and T (r) is continuous
and differentiable over the range of values of interest, then the PDF of the
transformed (mapped) variable s can be obtained using the simple formula

ps(s) = pr(r)
∣∣∣∣dr
ds

∣∣∣∣ (2.8)

Thus, we see that the PDF of the output intensity variable, s, is determined
by the PDF of the input intensities and the transformation function used [recall
that r and s are related by T (r)].

A transformation function of particular importance in image processing
has the form

s = T (r) = (L−1)
∫ r

0
pr(w)dw (2.9)

35

Intensity Transformation and Spatial Filtering

where w is a dummy variable of integration. The right side of this equation
is recognized as the cumulative distribution function (CDF) of random
variable r. Because PDFs always are positive, and recalling that the integral
of a function is the area under the function, it follows that the transformation
function of Eq. (2.9) satisfies condition (a) because the area under the function
cannot decrease as r increases. When the upper limit in this equation is
r = (L−1), the integral evaluates to 1 (the area under a PDF curve always is
1), so the maximum value of s is (L−1) and condition (b) is satisfied also.

To find the ps(s) corresponding to the transformation just discussed, we
use Eq. 2.8. We know from Leibniz’s rule in basic calculus that the derivative
of a definite integral with respect to its upper limit is the integrand evaluated
at the limit. That is,

ds
dr

=
dT (r)

dr
= (L−1)

d
dr

[∫ r

0
pr(w)dw

]
= (L−1)pr(r) (2.10)

Substituting this result for dr/ds in Eq. (2.8), and keeping in mind that
all probability values are positive, yields

ps(s) = pr(r)
∣∣∣∣dr
ds

∣∣∣∣= pr(r)
∣∣∣∣ 1
(L−1)pr(r)

∣∣∣∣= 1
L−1

0 ≤ s ≤ L−1 (2.11)

We recognize the form of ps(s) in the last line of this equation as a
uniform probability density function. Simply stated, we have demonstrated
that performing the intensity transformation in Eq. (2.9) yields a random
variable, s, characterized by a uniform PDF. It is important to note from this
equation that T (r) depends on pr(r) but, as Eq. (2.11) shows, the resulting
ps(s) always is uniform, independently of the form of pr(r). Figure 2.17
illustrates these concepts.

For discrete values, we deal with probabilities (histogram values) and
summations instead of probability density functions and integrals. As men-

36

2.3 Histogram Processing

Figure 2.17: (a) An arbitrary PDF. (b) Result of applying the transformation
in Eq. (2.9) to all intensity levels, r. The resulting intensities, s, have a

uniform PDF, independently of the form of the PDF of the r ’s.

tioned earlier, the probability of occurrence of intensity level rk in a digital
image is approximated by

pr (rk) =
nk

MN
k = 0,1,2, . . . ,L−1 (2.12)

where MN is the total number of pixels in the image, nk is the number of
pixels that have intensity rk, and L is the number of possible intensity levels
in the image (e.g., 256 for an 8-bit image). As noted in the beginning of this
section, a plot of pr (rk) versus rk is commonly referred to as a histogram.

The discrete form of the transformation in Eq. (2.9) is

sk = T (rk) = (L−1)
k

∑
j=0

pr
(
r j
)
=

(L−1)
MN

k

∑
j=0

n j k = 0,1,2, . . . ,L−1

(2.13)
Thus, a processed (output) image is obtained by mapping each pixel in

the input image with intensity rk into a corresponding pixel with level sk in
the output image, using Eq. (2.13). The transformation (mapping) T (rk) in
this equation is called a histogram equalization or histogram linearization
transformation. It is not difficult to show that this transformation satisfies
conditions (a) and (b) stated previously in this section.

37

Intensity Transformation and Spatial Filtering

Example: Histogram Equalization.

The left column in Fig. 2.18 shows the four images from Fig. 2.15, and the
center column shows the result of performing histogram equalization on each
of these images. The first three results from top to bottom show significant
improvement. As expected, histogram equalization did not have much effect
on the fourth image because the intensities of this image already span the full
intensity scale.

The third column in Fig. 2.18 shows the histograms of the equalized
images. It is of interest to note that, while all these histograms are different,
the histogram equalized images themselves are visually very similar. This is
not unexpected because the basic difference between the images on the left
column is one of contrast, not content. In other words, because the images
have the same content, the increase in contrast resulting from histogram
equalization was enough to render any intensity differences in the equalized
images visually indistinguishable. Given the significant contrast differences
between the original images, this example illustrates the power of histogram
equalization as an adaptive contrast enhancement tool.

2.3.2 Histogram Matching (Specification)

As indicated in the preceding discussion, histogram equalization automatically
determines a transformation function that seeks to produce an output image
that has a uniform histogram. When automatic enhancement is desired, this
is a good approach because the results from this technique are predictable
and the method is simple to implement. We show in this section that there are
applications in which attempting to base enhancement on a uniform histogram
is not the best approach. In particular, it is useful sometimes to be able to
specify the shape of the histogram that we wish the processed image to have.
The method used to generate a processed image that has a specified histogram
is called histogram matching or histogram specification.

38

2.3 Histogram Processing

Figure 2.18: Left column: images from Fig. 2.15. Center column:
corresponding histogram equalized images. Right column: histograms of the

images in the center column.

39

Intensity Transformation and Spatial Filtering

Let sk be a discrete random variable with the property

sk = T (rk) = (L−1)
k

∑
j=0

pr
(
r j
)
=

(L−1)
MN

k

∑
j=0

n j k = 0,1,2, . . . ,L−1

(2.14)

where, MN is the total number of pixels in the image, n j is the number
of pixels that have intensity value r j, and L is the total number of possible
intensity levels in the image. Similarly, given a specific value of sk,

Suppose that we define a random variable z with the property

G
(
zq
)
= (L−1)

q

∑
i=0

pz (zi) (2.15)

for a value of q, so that
G
(
zq
)
= sk (2.16)

where pz (zi), is the i th value of the specified histogram. As before, we find
the desired value zq by obtaining the inverse transformation:

zq = G−1 (sk) (2.17)

In other words, this operation gives a value of z for each value of s; thus,
it performs a mapping from s to z.

In practice, we do not need to compute the inverse of G. Because we deal
with intensity levels that are integers (e.g., 0 to 255 for an 8 -bit image), it
is a simple matter to compute all the possible values of G using Eq. (2.15)
for q = 0,1,2, . . . ,L−1. These values are scaled and rounded to their nearest
integer values spanning the range [0,L−1]. The values are stored in a table.
Then, given a particular value of sk, we look for the closest match in the
values stored in the table. If, for example, the 64th entry in the table is the
closest to sk, then q = 63 (recall that we start counting at 0) and z63 is the
best solution to Eq. (2.16). Thus, the given value sk would be associated
with z63 (i.e., that specific value of sk would map to z63). Because the z s are

40

2.4 Fundamentals of Spatial Filtering

intensities used as the basis for specifying the histogram pz(z), it follows that
z0 = 0, z1 = 1, . . . ,zL−1 = L−1, so z63 would have the intensity value 63 . By
repeating this procedure, we would find the mapping of each value of sk to
the value of zq that is the closest solution to Eq. (2.16). These mappings are
the solution to the histogram-specification problem.

Recalling that the sk s are the values of the histogram-equalized image,
we may summarize the histogram-specification procedure as follows:

1. Compute the histogram pr(r) of the given image, and use it to find
the histogram equalization transformation in Eq. (2.14). Round the
resulting values, sk, to the integer range [0,L−1].

2. Compute all values of the transformation function G using the Eq.
(2.15) for q = 0,1,2, . . . ,L−1, where pz (zi) are the values of the speci-
fied histogram. Round the values of G to integers in the range [0,L−1].
Store the values of G in a table.

3. For every value of sk,k = 0,1,2, . . . ,L−1, use the stored values of G
from step 2 to find the corresponding value of zq so that G

(
zq
)

is closest
to sk and store these mappings from s to z. When more than one value
of zq satisfies the given sk (i.e., the mapping is not unique), choose the
smallest value by convention.

4. Form the histogram-specified image by first histogram-equalizing the
input image and then mapping every equalized pixel value, sk, of this
image to the corresponding value zq in the histogram-specified image
using the mappings found in step 3. As in the continuous case, the
intermediate step of equalizing the input image is conceptual. It can be
skipped by combining the two transformation functions, T and G−1.

2.4 Fundamentals of Spatial Filtering

In this section, we introduce several basic concepts underlying the use of
spatial filters for image processing. Spatial filtering is one of the principal

41

Intensity Transformation and Spatial Filtering

tools used in this field for a broad spectrum of applications, so it is highly
advisable that you develop a solid understanding of these concepts. The
examples in this section deal mostly with the use of spatial filters for image
enhancement.

The name filter is borrowed from frequency domain processing, which is
the topic of the next chapter, where “filtering” refers to accepting (passing) or
rejecting certain frequency components. For example, a filter that passes low
frequencies is called a lowpass filter.The net effect produced by a lowpass filter
is to blur (smooth) an image.We can accomplish a similar smoothing directly
on the image itself by using spatial filters (also called spatial masks, kernels,
templates, and windows). In fact, there is a one-to-one correspondence
between linear spatial filters and filters in the frequency domain. However,
spatial filters offer considerably more versatility because, as you will see later,
they can be used also for nonlinear filtering, something we cannot do in the
frequency domain.

2.4.1 The Mechanics of Spatial Filtering

In Fig. 2.1, we explained briefly that a spatial filter consists of (1) a neigh-
borhood, (typically a small rectangle), and (2) a predefined operation that is
performed on the image pixels encompassed by the neighborhood. Filtering
creates a new pixel with coordinates equal to the coordinates of the center of
the neighborhood, and whose value is the result of the filtering operation. A
processed (filtered) image is generated as the center of the filter visits each
pixel in the input image. If the operation performed on the image pixels is
linear, then the filter is called a linear spatial filter. Otherwise, the filter is
nonlinear. We focus attention first on linear filters and then illustrate some
simple nonlinear filters.

Figure 2.19 illustrates the mechanics of linear spatial filtering using a
3×3 neighborhood. At any point (x,y) in the image, the response, g(x,y), of
the filter is the sum of products of the filter coefficients and the image pixels

42

2.4 Fundamentals of Spatial Filtering

Figure 2.19: The mechanics of linear spatial filtering using a 3×3 filter
mask. The form chosen to denote the coordinates of the filter mask

coefficients simplifies writing expressions for linear filtering.

encompassed by the filter:

g(x,y) = w(−1,−1) f (x−1,y−1)+w(−1,0) f (x−1,y)+ . . .

+w(0,0) f (x,y)+ . . .+w(1,1) f (x+1,y+1)

43

Intensity Transformation and Spatial Filtering

Observe that the center coefficient of the filter, w(0,0), aligns with the pixel
at location (x,y). For a mask of size m×n, we assume that m = 2a+1 and
n = 2b+1, where a and b are positive integers. This means that our focus in
the following discussion is on filters of odd size, with the smallest being of
size 3×3. In general, linear spatial filtering of an image of size M×N with a
filter of size m×n is given by the expression:

g(x,y) =
a

∑
s=−a

b

∑
t=−b

w(s, t) f (x+ s,y+ t)

where x and y are varied so that each pixel in w visits every pixel in f .

2.4.2 Spatial Correlation and Convolution

There are two closely related concepts that must be understood clearly when
performing linear spatial filtering. One is correlation and the other is convo-
lution. Correlation is the process of moving a filter mask over the image and
computing the sum of products at each location, exactly as explained in the
previous section. The mechanics of convolution are the same, except that the
filter is first rotated by 180◦. The best way to explain the differences between
the two concepts is by example. We begin with a 1-D illustration.

Figure 2.20(a) shows a 1-D function, f , and a filter, w , and Fig. 2.20(b)
shows the starting position to perform correlation. The first thing we note is
that there are parts of the functions that do not overlap. The solution to this
problem is to pad f with enough 0 s on either side to allow each pixel in w
to visit every pixel in f . If the filter is of size m, we need m−10 s on either
side of f . Figure 2.20(c) shows a properly padded function. The first value of
correlation is the sum of products of f and w for the initial position shown in
Fig. 2.20(c) (the sum of products is 0). This corresponds to a displacement
x = 0. To obtain the second value of correlation, we shift w one pixel location
to the right (a displacement of x = 1) and compute the sum of products. The
result again is 0 . In fact, the first nonzero result is when x = 3, in which case

44

2.4 Fundamentals of Spatial Filtering

the 8 in w overlaps the 1 in f and the result of correlation is 8. Proceeding in
this manner, we obtain the full correlation result in Fig. 2.20(g). Note that it
took 12 values of x (i.e., x = 0,1,2, . . . ,11) to fully slide w past f so that each
pixel in w visited every pixel in f . Often, we like to work with correlation
arrays that are the same size as f , in which case we crop the full correlation
to the size of the original function, as Fig. 2.20(h) shows.

Figure 2.20: Illustration of 1-D correlation and convolution of a filter with a
discrete unit impulse. Note that correlation and convolution are functions of

displacement.

45

Intensity Transformation and Spatial Filtering

There are two important points to note from the discussion in the preceding
paragraph. First, correlation is a function of displacement of the filter. In
other words, the first value of correlation corresponds to zero displacement of
the filter, the second corresponds to one unit displacement, and so on. The
second thing to notice is that correlating a filter w with a function that contains
all 0 s and a single 1 yields a result that is a copy of w, but rotated by 180◦.
We call a function that contains a single 1 with the rest being 0 s a discrete
unit impulse. So we conclude that correlation of a function with a discrete
unit impulse yields a rotated version of the function at the location of the
impulse.

The concept of convolution is a cornerstone of linear system theory. We
saw in the previous paragraph that correlation yields a copy of the function
also, but rotated by 180◦. Therefore, if we pre-rotate the filter and perform
the same sliding sum of products operation, we should be able to obtain the
desired result. As the right column in Fig. 2.20 shows, this indeed is the case.
Thus, we see that to perform convolution all we do is rotate one function by
180◦ and perform the same operations as in correlation. As it turns out, it
makes no difference which of the two functions we rotate.

The preceding concepts extend easily to images, as Fig. 2.21 shows. For a
filter of size m×n, we pad the image with a minimum of m−1 rows of 0s at
the top and bottom and n−1 columns of 0s on the left and right. In this case,
m and n are equal to 3, so we pad f with two rows of 0s above and below
and two columns of 0s to the left and right, as Fig. 2.21(b) shows. Figure
2.21(c) shows the initial position of the filter mask for performing correlation,
and Fig. 2.21(d) shows the full correlation result. Figure 2.21(e) shows the
corresponding cropped result. Note again that the result is rotated by 180◦.
For convolution, we pre-rotate the mask as before and repeat the sliding sum
of products just explained. Figures 2.21 (f) through (h) show the result. You
see again that convolution of a function with an impulse copies the function

46

2.4 Fundamentals of Spatial Filtering

Figure 2.21: Correlation (middle row) and convolution (last row) of a 2-D
filter with a 2-D discrete, unit impulse. The 0s are shown in gray to simplify

visual analysis.

at the location of the impulse. It should be clear that, if the filter mask is
symmetric, correlation and convolution yield the same result.

If, instead of containing a single 1, image f in Fig. 2.21 had contained
a region identically equal to w, the value of the correlation function (after

47

Intensity Transformation and Spatial Filtering

normalization) would have been maximum when w was centered on that
region of f .

Summarizing the preceding discussion in equation form, we have that the
correlation of a filter w(x,y) of size m×n with an image f (x,y), denoted as
w(x,y)⋆ f (x,y), is given by the equation listed at the end of the last section,
which we repeat here for convenience:

w(x,y)⋆ f (x,y) =
a

∑
s=−a

b

∑
t=−b

w(s, t) f (x+ s,y+ t) (2.18)

This equation is evaluated for all values of the displacement variables x and
y so that all elements of w visit every pixel in f , where we assume that f has
been padded appropriately. As explained earlier, a=(m−1)/2,b=(n−1)/2,
and we assume for notational convenience that m and n are odd integers.

In a similar manner, the convolution of w(x,y) and f (x,y), denoted by
w(x,y)⋆ f (x,y), is given by the expression

w(x,y)⋆ f (x,y) =
a

∑
s=−a

b

∑
t=−b

w(s, t) f (x− s,y− t) (2.19)

where the minus signs on the right flip f (i.e., rotate it by 180◦). Flipping
and shifting f instead of w is done for notational simplicity and also to follow
convention. The result is the same. As with correlation, this equation is
evaluated for all values of the displacement variables x and y so that every
element of w visits every pixel in f , which we assume has been padded
appropriately. You should expand Eq. (2.19) for a 3×3 mask and convince
yourself that the result using this equation is identical to the example in Fig.
2.21. In practice, we frequently work with an algorithm that implements Eq.
(2.18). If we want to perform correlation, we input w into the algorithm; for
convolution, we input w rotated by 180◦. The reverse is true if an algorithm
that implements Eq. (2.19) is available instead.

48

2.4 Fundamentals of Spatial Filtering

2.4.3 Vector Representation of Linear Filtering

When interest lies in the characteristic response, R, of a mask either for
correlation or convolution, it is convenient sometimes to write the sum of
products as

R = w1z1 +w2z2 + . . .+wmnzmn =
mn

∑
k=1

wkzk = wT z (2.20)

where the w s are the coefficients of an m× n filter and the z s are the
corresponding image intensities encompassed by the filter. If we are interested
in using Eq. (2.20) for correlation, we use the mask as given. To use the same
equation for convolution, we simply rotate the mask by 180◦, as explained
in the last section. It is implied that Eq. (2.20) holds for a particular pair
of coordinates (x,y). You will see in the next section why this notation is
convenient for explaining the characteristics of a given linear filter.

Figure 2.22: Another representation of a general 3×3 filter mask.

As an example, Fig. 2.22 shows a general 3×3 mask with coefficients
labeled as above. In this case, Eq. (2.20) becomes

R = w1z1 +w2z2 + . . .+w9z9 =
9

∑
k=1

wkzk = wT z (2.21)

49

Intensity Transformation and Spatial Filtering

where w and z are 9-dimensional vectors formed from the coefficients of
the mask and the image intensities encompassed by the mask, respectively.

2.4.4 Generating Spatial Filter Masks

Generating an m× n linear spatial filter requires that we specify mn mask
coefficients. In turn, these coefficients are selected based on what the filter
is supposed to do, keeping in mind that all we can do with linear filtering
is to implement a sum of products. For example, suppose that we want to
replace the pixels in an image by the average intensity of a 3×3 neighborhood
centered on those pixels. The average value at any location (x,y) in the image
is the sum of the nine intensity values in the 3× 3 neighborhood centered
on (x,y) divided by 9 . Letting zi, i = 1,2, . . . ,9, denote these intensities, the
average is

R =
1
9

9

∑
i=1

zi

But this is the same as Eq. (2.21) with coefficient values wi = 1/9. In other
words, a linear filtering operation with a 3×3 mask whose coefficients are
1/9 implements the desired averaging. As we discuss in the next section, this
operation results in image smoothing. We discuss in the following sections a
number of other filter masks based on this basic approach.

In some applications, we have a continuous function of two variables, and
the objective is to obtain a spatial filter mask based on that function. For
example, a Gaussian function of two variables has the basic form

h(x,y) = e−
x2+y2

2σ2

where σ is the standard deviation and, as usual, we assume that coordi-
nates x and y are integers. To generate, say, a 3×3 filter mask from this func-
tion, we sample it about its center. Thus, w1 = h(−1,−1),w2 = h(−1,0), . . .,

50

2.5 Smoothing Spatial Filters

w9 = h(1,1). An m×n filter mask is generated in a similar manner. Recall
that a 2-D Gaussian function has a bell shape, and that the standard deviation
controls the "tightness" of the bell.

Generating a nonlinear filter requires that we specify the size of a neigh-
borhood and the operation(s) to be performed on the image pixels contained in
the neighborhood. For example, recalling that the max operation is nonlinear,
a 5×5 max filter centered at an arbitrary point (x,y) of an image obtains the
maximum intensity value of the 25 pixels and assigns that value to location
(x,y) in the processed image. Nonlinear filters are quite powerful, and in
some applications can perform functions that are beyond the capabilities of
linear filters.

2.5 Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise reduction. Blurring is
used in preprocessing tasks, such as removal of small details from an image
prior to (large) object extraction, and bridging of small gaps in lines or curves.
Noise reduction can be accomplished by blurring with a linear filter and also
by nonlinear filtering.

2.5.1 Smoothing Linear Filters

The output (response) of a smoothing, linear spatial filter is simply the average
of the pixels contained in the neighborhood of the filter mask. These filters
sometimes are called averaging filters. As mentioned in the previous section,
they also are referred to a lowpass filters.

The idea behind smoothing filters is straightforward. By replacing the
value of every pixel in an image by the average of the intensity levels in the
neighborhood defined by the filter mask, this process results in an image with
reduced “sharp” transitions in intensities. Because random noise typically
consists of sharp transitions in intensity levels, the most obvious application

51

Intensity Transformation and Spatial Filtering

of smoothing is noise reduction. However, edges (which almost always
are desirable features of an image) also are characterized by sharp intensity
transitions, so averaging filters have the undesirable side effect that they blur
edges.Another application of this type of process includes the smoothing of
false contours that result from using an insufficient number of intensity levels.
A major use of averaging filters is in the reduction of “irrelevant” detail in an
image. By “irrelevant” we mean pixel regions that are small with respect to
the size of the filter mask.

Figure 2.23 shows two 3×3 smoothing filters. Use of the first filter yields
the standard average of the pixels under the mask. This can best be seen by
substituting the coefficients of the mask into Eq. (2.21):

R =
1
9

9

∑
i=1

zi

which is the average of the intensity levels of the pixels in the 3× 3
neighborhood defined by the mask, as discussed earlier. Note that, instead of
being 1/9, the coefficients of the filter are all 1 s . The idea here is that it is
computationally more efficient to have coefficients valued 1. At the end of the
filtering process the entire image is divided by 9 . An m×n mask would have
a normalizing constant equal to 1/mn. A spatial averaging filter in which all
coefficients are equal sometimes is called a box filter.

Figure 2.23: Two 3×3 smoothing (averaging) filter masks.The constant
multiplier in front of each mask is equal to 1 divided by the sum of the values

of its coefficients, as is required to compute an average.

52

2.5 Smoothing Spatial Filters

The second mask in Fig. 2.23 is a little more interesting. This mask yields
a so called weighted average, terminology used to indicate that pixels are
multiplied by different coefficients, thus giving more importance (weight)
to some pixels at the expense of others. In the mask shown in Fig. 2.23(b)
the pixel at the center of the mask is multiplied by a higher value than any
other, thus giving this pixel more importance in the calculation of the average.
The other pixels are inversely weighted as a function of their distance from
the center of the mask. The diagonal terms are further away from the center
than the orthogonal neighbors (by a factor of

√
2) and, thus, are weighed

less than the immediate neighbors of the center pixel. The basic strategy
behind weighing the center point the highest and then reducing the value of
the coefficients as a function of increasing distance from the origin is simply
an attempt to reduce blurring in the smoothing process. We could have chosen
other weights to accomplish the same general objective. However, the sum
of all the coefficients in the mask of Fig. 2.23(b) is equal to 16, an attractive
feature for computer implementation because it is an integer power of 2 . In
practice, it is difficult in general to see differences between images smoothed
by using either of the masks in Fig. 2.23, or similar arrangements, because
the area spanned by these masks at any one location in an image is so small.

With reference to Eq. (2.183.4-1), the general implementation for filtering
an M×N image with a weighted averaging filter of size m×n (m and n odd)
is given by the expression

g(x,y) =
∑

a
s=−a ∑

b
t=−b w(s, t) f (x+ s,y+ t)

∑
a
s=−a ∑

b
t=−b w(s, t)

(2.22)

The parameters in this equation are as defined in Eq. (2.183.4-1). As
before, it is understood that the complete filtered image is obtained by ap-
plying Eq. (2.22) for x = 0,1,2, . . . ,M − 1 and y = 0,1,2, . . . ,N − 1. The
denominator in Eq. (2.22) is simply the sum of the mask coefficients and,
therefore, it is a constant that needs to be computed only once.

53

Intensity Transformation and Spatial Filtering

2.5.2 Order-Statistic (Nonlinear) Filters

Order-statistic filters are nonlinear spatial filters whose response is based
on ordering (ranking) the pixels contained in the image area encompassed
by the filter, and then replacing the value of the center pixel with the value
determined by the ranking result. The best-known filter in this category is the
median filter, which, as its name implies, replaces the value of a pixel by the
median of the intensity values in the neighborhood of that pixel (the original
value of the pixel is included in the computation of the median). Median
filters are quite popular because, for certain types of random noise, they
provide excellent noise-reduction capabilities, with considerably less blurring
than linear smoothing filters of similar size. Median filters are particularly
effective in the presence of impulse noise, also called salt-and-pepper noise
because of its appearance as white and black dots superimposed on an image.

The median, ξ , of a set of values is such that half the values in the set
are less than or equal to ξ , and half are greater than or equal to ξ . In order
to perform median filtering at a point in an image, we first sort the values
of the pixel in the neighborhood, determine their median, and assign that
value to the corresponding pixel in the filtered image. For example, in a 3×3
neighborhood the median is the 5th largest value, in a 5×5 neighborhood it
is the 13th largest value, and so on. When several values in a neighborhood
are the same, all equal values are grouped. For example, suppose that a 3×3
neighborhood has values (10,20,20,20,15,20,20,25,100). These values are
sorted as (10,15, 20,20,20,20,20,25,100), which results in a median of 20
. Thus, the principal function of median filters is to force points with distinct
intensity levels to be more like their neighbors. In fact, isolated clusters of
pixels that are light or dark with respect to their neighbors, and whose area is
less than m2/2 (one-half the filter area), are eliminated by an m×m median
filter. In this case "eliminated" means forced to the median intensity of the
neighbors. Larger clusters are affected considerably less.

54

2.5 Smoothing Spatial Filters

Although the median filter is by far the most useful order-statistic filter in
image processing, it is by no means the only one. The median represents the
50th percentile of a ranked set of numbers, but recall from basic statistics that
ranking lends itself to many other possibilities. For example, using the 100th
percentile results in the so-called max filter, which is useful for finding the
brightest points in an image. The response of a 3×3 max filter is given by
R = max{zk | k = 1,2, . . . ,9}. The 0th percentile filter is the min filter, used
for the opposite purpose.

Figure 2.24: (a) X-ray image of circuit board corrupted by salt-and-pepper
noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction

with a 3×3 median filter.

Figure 2.24(a) shows an X-ray image of a circuit board heavily corrupted
by salt-and-pepper noise.To illustrate the point about the superiority of median
filtering over average filtering in situations such as this, we show in Fig.
2.24(b) the result of processing the noisy image with a 3×3 neighborhood
averaging mask, and in Fig. 2.24(c) the result of using a 3×3 median filter.
The averaging filter blurred the image and its noise reduction performance
was poor. The superiority in all respects of median over average filtering in
this case is quite evident. In general, median filtering is much better suited
than averaging for the removal of salt-and-pepper noise.

55

Intensity Transformation and Spatial Filtering

2.6 Sharpening Spatial Filters

The principal objective of sharpening is to highlight transitions in intensity.
Uses of image sharpening vary and include applications ranging from elec-
tronic printing and medical imaging to industrial inspection and autonomous
guidance in military systems. In the last section, we saw that image blur-
ring could be accomplished in the spatial domain by pixel averaging in a
neighborhood. Because averaging is analogous to integration, it is logical
to conclude that sharpening can be accomplished by spatial differentiation.
This section deals with various ways of defining and implementing operators
for sharpening by digital differentiation. Fundamentally, the strength of the
response of a derivative operator is proportional to the degree of intensity
discontinuity of the image at the point at which the operator is applied. Thus,
image differentiation enhances edges and other discontinuities (such as noise)
and deemphasizes areas with slowly varying intensities.

2.6.1 Foundation

In the two sections that follow, we consider in some detail sharpening filters
that are based on first- and second-order derivatives, respectively. Before
proceeding with that discussion, however, we stop to look at some of the
fundamental properties of these derivatives in a digital context. To simplify
the explanation, we focus attention initially on one-dimensional derivatives.
In particular, we are interested in the behavior of these derivatives in areas
of constant intensity, at the onset and end of discontinuities (step and ramp
discontinuities), and along intensity ramps. These types of discontinuities can
be used to model noise points, lines, and edges in an image. The behavior of
derivatives during transitions into and out of these image features also is of
interest.

The derivatives of a digital function are defined in terms of differences.
There are various ways to define these differences. However, we require that

56

2.6 Sharpening Spatial Filters

any definition we use for a first derivative (1) must be zero in areas of constant
intensity; (2) must be nonzero at the onset of an intensity step or ramp; and (3)
must be nonzero along ramps. Similarly, any definition of a second derivative
(1) must be zero in constant areas; (2) must be nonzero at the onset and end of
an intensity step or ramp; and (3) must be zero along ramps of constant slope.
Because we are dealing with digital quantities whose values are finite, the
maximum possible intensity change also is finite, and the shortest distance
over which that change can occur is between adjacent pixels.

A basic definition of the first-order derivative of a one-dimensional func-
tion f (x) is the difference

∂ f
∂x

= f (x+1)− f (x) (2.23)

We used a partial derivative here in order to keep the notation the same
as when we consider an image function of two variables, f (x,y), at which
time we will be dealing with partial derivatives along the two spatial axes.
Use of a partial derivative in the present discussion does not affect in any
way the nature of what we are trying to accomplish. Clearly, ∂ f/∂x = d f/dx
when there is only one variable in the function; the same is true for the second
derivative.

We define the second-order derivative of f (x) as the difference

∂ 2 f
∂x2 = f (x+1)+ f (x−1)−2 f (x) (2.24)

It is easily verified that these two definitions satisfy the conditions stated
above. To illustrate this, and to examine the similarities and differences
between first- and second-order derivatives of a digital function, consider the
example in Fig. 2.25.

Figure 2.25(b) (center of the figure) shows a section of a scan line (inten-
sity profile). The values inside the small squares are the intensity values in
the scan line, which are plotted as black dots above it in Fig. 2.25(a). The

57

Intensity Transformation and Spatial Filtering

Figure 2.25: Illustration of the first and second derivatives of a 1-D digital
function representing a section of a horizontal intensity profile from an image.

In (a) and (c) data points are joined by dashed lines as a visualization aid.

dashed line connecting the dots is included to aid visualization. As the figure
shows, the scan line contains an intensity ramp, three sections of constant in-
tensity, and an intensity step. The circles indicate the onset or end of intensity
transitions. The first- and second-order derivatives computed using the two
preceding definitions are included below the scan line in Fig. 2.25(b), and are
plotted in Fig. 2.25(c). When computing the first derivative at a location x,
we subtract the value of the function at that location from the next point. So
this is a "look-ahead" operation. Similarly, to compute the second derivative

58

2.6 Sharpening Spatial Filters

at x, we use the previous and the next points in the computation. To avoid a
situation in which the previous or next points are outside the range of the scan
line, we show derivative computations in Fig. 2.25 from the second through
the penultimate points in the sequence.

Let us consider the properties of the first and second derivatives as we
traverse the profile from left to right. First, we encounter an area of constant
intensity and, as Figs. 2.25(b) and (c) show, both derivatives are zero there,
so condition (1) is satisfied for both. Next, we encounter an intensity ramp
followed by a step, and we note that the first-order derivative is nonzero at
the onset of the ramp and the step; similarly, the second derivative is nonzero
at the onset and end of both the ramp and the step; therefore, property (2) is
satisfied for both derivatives. Finally, we see that property (3) is satisfied also
for both derivatives because the first derivative is nonzero and the second is
zero along the ramp. Note that the sign of the second derivative changes at
the onset and end of a step or ramp. In fact, we see in Fig. 2.25(c) that in
a step transition a line joining these two values crosses the horizontal axis
midway between the two extremes. This zero crossing property is quite useful
for locating edges.

Edges in digital images often are ramp-like transitions in intensity, in
which case the first derivative of the image would result in thick edges be-
cause the derivative is nonzero along a ramp. On the other hand, the second
derivative would produce a double edge one pixel thick, separated by zeros.
From this, we conclude that the second derivative enhances fine detail much
better than the first derivative, a property that is ideally suited for sharpening
images. Also, as you will learn later in this section, second derivatives are
much easier to implement than first derivatives, so we focus our attention
initially on second derivatives.

59

Intensity Transformation and Spatial Filtering

2.6.2 Using the Second Derivative for Image Sharpening-
The Laplacian

In this section we consider the implementation of 2-D, second-order deriva-
tives and their use for image sharpening. The approach basically consists
of defining a discrete formulation of the second-order derivative and then
constructing a filter mask based on that formulation. We are interested in
isotropic filters, whose response is independent of the direction of the discon-
tinuities in the image to which the filter is applied. In other words, isotropic
filters are rotation invariant, in the sense that rotating the image and then
applying the filter gives the same result as applying the filter to the image first
and then rotating the result.

It can be shown that the simplest isotropic derivative operator is the
Laplacian, which, for a function (image) f (x,y) of two variables, is defined
as

∇
2 f =

∂ 2 f
∂x2 +

∂ 2 f
∂y2 (2.25)

Because derivatives of any order are linear operations, the Laplacian is a
linear operator. To express this equation in discrete form, we use the definition
in Eq. (2.24), keeping in mind that we have to carry a second variable. In the
x-direction, we have

∂ 2 f
∂x2 = f (x+1,y)+ f (x−1,y)−2 f (x,y) (2.26)

and, similarly, in the y-direction we have

∂ 2 f
∂y2 = f (x,y+1)+ f (x,y−1)−2 f (x,y) (2.27)

Therefore, it follows from the preceding three equations that the discrete
Laplacian of two variables is

60

2.6 Sharpening Spatial Filters

∇
2 f (x,y) = f (x+1,y)+ f (x−1,y)+ f (x,y+1)+ f (x,y−1)−4 f (x,y)

(2.28)

This equation can be implemented using the filter mask in Fig. 2.26
(a), which gives an isotropic result for rotations in increments of 90◦. The
mechanics of implementation are for linear smoothing filters. We simply are
using different coefficients here.

The diagonal directions can be incorporated in the definition of the digital
Laplacian by adding two more terms to Eq. (2.28), one for each of the two
diagonal directions. The form of each new term is the same as either Eq.
(2.26) or (2.27), but the coordinates are along the diagonals. Because each
diagonal term also contains a −2 f (x,y) term, the total subtracted from the
difference terms now would be −8 f (x,y). Figure 2.26(b) shows the filter
mask used to implement this new definition. This mask yields isotropic results
in increments of 45◦. You are likely to see in practice the Laplacian masks
in Figs. 2.26(c) and (d). They are obtained from definitions of the second
derivatives that are the negatives of the ones we used in Eqs. (2.26) and (2.27).
As such, they yield equivalent results, but the difference in sign must be kept
in mind when combining (by addition or subtraction) a Laplacian-filtered
image with another image.

Because the Laplacian is a derivative operator, its use highlights intensity
discontinuities in an image and deemphasizes regions with slowly varying
intensity levels. This will tend to produce images that have grayish edge lines
and other discontinuities, all superimposed on a dark, featureless background.
Background features can be "recovered" while still preserving the sharpening
effect of the Laplacian simply by adding the Laplacian image to the original.
As noted in the previous paragraph, it is important to keep in mind which
definition of the Laplacian is used. If the definition used has a negative center
coefficient, then we subtract, rather than add, the Laplacian image to obtain

61

Intensity Transformation and Spatial Filtering

Figure 2.26: (a) Filter mask used to implement Eq. 2.28 (b) Mask used to
implement an extension of this equation that includes the diagonal terms. (c)

and (d) Two other implementations of the Laplacian found frequently in
practice.

a sharpened result. Thus, the basic way in which we use the Laplacian for
image sharpening is

g(x,y) = f (x,y)+ c
[
∇

2 f (x,y)
]

(2.29)

62

2.6 Sharpening Spatial Filters

where f (x,y) and g(x,y) are the input and sharpened images, respectively.
The constant is c =−1 if the Laplacian filters in Fig. 3.37(a) or (b) are used,
and c = 1 if either of the other two filters is used.

2.6.3 Using First-Order Derivatives for (Nonlinear) Image
Sharpening-The Gradient

First derivatives in image processing are implemented using the magnitude of
the gradient. For a function f (x,y), the gradient of f at coordinates (x,y) is
defined as the two-dimensional column vector

∇ f ≡ grad(f)≡

[
gx

gy

]
=

[
∂ f
∂x
∂ f
∂y

]
(2.30)

This vector has the important geometrical property that it points in the
direction of the greatest rate of change of f at location (x,y).

The magnitude (length) of vector ∇ f , denoted as M(x,y), where

M(x,y) = mag(∇ f) =
√

g2
x +g2

y (2.31)

is the value at (x,y) of the rate of change in the direction of the gradient vector.
Note that M(x,y) is an image of the same size as the original, created when x
and y are allowed to vary over all pixel locations in f . It is common practice
to refer to this image as the gradient image (or simply as the gradient when
the meaning is clear).

Because the components of the gradient vector are derivatives, they are
linear operators. However, the magnitude of this vector is not because of the
squaring and square root operations. On the other hand, the partial derivatives
in Eq. (2.30) are not rotation invariant (isotropic), but the magnitude of the
gradient vector is. In some implementations, it is more suitable computa-
tionally to approximate the squares and square root operations by absolute

63

Intensity Transformation and Spatial Filtering

values:
M(x,y)≈ |gx|+

∣∣gy
∣∣ (2.32)

This expression still preserves the relative changes in intensity, but the
isotropic property is lost in general. However, as in the case of the Laplacian,
the isotropic properties of the discrete gradient defined in the following
paragraph are preserved only for a limited number of rotational increments
that depend on the filter masks used to approximate the derivatives. As it turns
out, the most popular masks used to approximate the gradient are isotropic at
multiples of 90◦. These results are independent of whether we use Eq. (2.31)
or (2.32), so nothing of significance is lost in using the latter equation if we
choose to do so.

As in the case of the Laplacian, we now define discrete approximations to
the preceding equations and from there formulate the appropriate filter masks.
In order to simplify the discussion that follows, we will use the notation
in Fig. 2.27(a) to denote the intensities of image points in a 3× 3 region.
For example, the center point, z5, denotes f (x,y) at an arbitrary location,
(x,y);z1 denotes f (x−1,y−1); and so on. The simplest approximations to
a first-order derivative that satisfy the conditions stated in that section are
gx = (z8 − z5) and gy = (z6 − z5). Two other definitions proposed by Roberts
in the early development of digital image processing use cross differences:

gx = (z9 − z5) and gy = (z8 − z6) (2.33)

If we use Eqs. (2.31) and (2.33), we compute the gradient image as

M(x,y) =
[
(z9 − z5)

2 +(z8 − z6)
2
]1/2

(2.34)

If we use Eqs.(2.32) and (2.33), then

M(x,y)≈ |z9 − z5|+ |z8 − z6| (2.35)

64

2.6 Sharpening Spatial Filters

Figure 2.27: A 3×3 region of an image (the z s are intensity values). (b)-(c)
Roberts cross gradient operators. (d)-(e) Sobel operators. All the mask

coefficients sum to zero, as expected of a derivative operator.

where it is understood that x and y vary over the dimensions of the image in
the manner described earlier. The partial derivative terms needed in equation
(2.33) can be implemented using the two linear filter masks in Figs. 2.27(b)
and (c). These masks are referred to as the Roberts cross-gradient operators.

65

Intensity Transformation and Spatial Filtering

Masks of even sizes are awkward to implement because they do not have
a center of symmetry. The smallest filter masks in which we are interested
are of size 3×3. Approximations to gx and gy using a 3×3 neighborhood
centered on z5 are as follows:

gx =
∂ f
∂x

= (z7 +2z8 + z9)− (z1 +2z2 + z3) (2.36)

and
gy =

∂ f
∂y

= (z3 +2z6 + z9)− (z1 +2z4 + z7) (2.37)

These equations can be implemented using the masks in Figs. 2.27(d) and
(e). The difference between the third and first rows of the 3×3 image region
implemented by the mask in Fig. 2.27(d) approximates the partial derivative
in the x-direction, and the difference between the third and first columns in the
other mask approximates the derivative in the y-direction. After computing
the partial derivatives with these masks, we obtain the magnitude of the
gradient as before. For example, substituting gx and gy into Eq. (2.32) yields

M(x,y)≈| (z7 +2z8 + z9)− (z1 +2z2 + z3) |
+ |(z3 +2z6 + z9)− (z1 +2z4 + z7)|

(2.38)

The masks in Figs. 2.27(d) and (e) are called the Sobel operators. The
idea behind using a weight value of 2 in the center coefficient is to achieve
some smoothing by giving more importance to the center point. Note that the
coefficients in all the masks shown in Fig. 2.27 sum to 0, indicating that they
would give a response of 0 in an area of constant intensity, as is expected of a
derivative operator.

As mentioned earlier, the computations of gx and gy are linear operations
because they involve derivatives and, therefore, can be implemented as a sum
of products using the spatial masks in Fig. 2.27. The nonlinear aspect of
sharpening with the gradient is the computation of M(x,y) involving squaring
and square roots, or the use of absolute values, all of which are nonlinear

66

2.6 Sharpening Spatial Filters

operations. These operations are performed after the linear process that yields
gx and gy.

67

CHAPTER 3

IMAGE COMPRESSION

Image compression, the art and science of reducing the amount of data
required to represent an image, is one of the most useful and commercially
successful technologies in the field of digital image processing. The number
of images that are compressed and decompressed daily is staggering, and
the compressions and decompressions themselves are virtually invisible to
the user. Anyone who owns a digital camera, surfs the web, or watches the
latest Hollywood movies on Digital Video Disks (DVDs) benefits from the
algorithms and standards discussed in this chapter.

To better understand the need for compact image representations, consider
the amount of data required to represent a two-hour standard definition (SD)
television movie using 720×480×24 bit pixel arrays. A digital movie (or
video) is a sequence of video frames in which each frame is a full-color still
image. Because video players must display the frames sequentially at rates
near 30 fps (frames per second), SD digital video data must be accessed at

30
frames

sec
× (720×480)

pixels
frame

×3
bytes
pixel

= 31,104,000 bytes /sec

and a two-hour movie consists of

69

Image Compression

31,104,000
bytes
sec

×
(
602) sec

hr
×2hrs ∼= 2.24×1011 bytes

or 224 GB (gigabytes) of data. Twenty-seven 8.5 GB dual-layer DVDs
(assuming conventional 12 cm disks) are needed to store it. To put a two-hour
movie on a single DVD, each frame must be compressed-on average-by a
factor of 26.3. The compression must be even higher for high definition (HD)
television, where image resolutions reach 1920×1080×24 bits/image.

Web page images and high-resolution digital camera photos also are
compressed routinely to save storage space and reduce transmission time.
For example, residential Internet connections deliver data at speeds ranging
from 56 Kbps (kilobits per second) via conventional phone lines to more
than 12 Mbps (megabits per second) for broadband. The time required to
transmit a small 128×128×24 bit full-color image over this range of speeds
is from 7.0 to 0.03 seconds. Compression can reduce transmission time by a
factor of 2 to 10 or more. In the same way, the number of uncompressed full-
color images that an 8 -megapixel digital camera can store on a 1-GB flash
memory card [about forty-one 24 MB (megabyte) images] can be similarly
increased. In addition to these applications, image compression plays an
important role in many other areas, including televideo conferencing, remote
sensing, document and medical imaging, and facsimile transmission (FAX).
An increasing number of applications depend on the efficient manipulation,
storage, and transmission of binary, gray-scale, and color images.

In this chapter, we introduce the theory and practice of digital image
compression. We examine the most frequently used compression techniques
and describe the industry standards that make them useful. The material is in-
troductory in nature and applicable to both still image and video applications.

70

3.1 Fundamentals

3.1 Fundamentals

The term data compression refers to the process of reducing the amount of
data required to represent a given quantity of information. In this definition,
data and information are not the same thing; data are the means by which
information is conveyed. Because various amounts of data can be used
to represent the same amount of information, representations that contain
irrelevant or repeated information are said to contain redundant data. If we
let b and b′ denote the number of bits (or information-carrying units) in two
representations of the same information, the relative data redundancy R of
the representation with b bits is

R = 1− 1
C

(3.1)

where C, commonly called the compression ratio, is defined as

C =
b
b′

(3.2)

If C = 10 (sometimes written 10:1), for instance, the larger representation
has 10 bits of data for every 1 bit of data in the smaller representation.

The corresponding relative data redundancy of the larger representation is
0.9 (R = 0.9), indicating that 90% of its data is redundant.

In the context of digital image compression, b in Eq. (3.2) usually is the
number of bits needed to represent an image as a 2-D array of intensity values.
The 2-D intensity arrays are the preferred formats for human viewing and
interpretation-and the standard by which all other representations are judged.
When it comes to compact image representation, however, these formats are
far from optimal. Two-dimensional intensity arrays suffer from three principal
types of data redundancies that can be identified and exploited:

1. Coding redundancy. A code is a system of symbols (letters, numbers,
bits, and the like) used to represent a body of information or set of

71

Image Compression

events. Each piece of information or event is assigned a sequence of
code symbols, called a code word. The number of symbols in each
code word is its length. The 8 -bit codes that are used to represent
the intensities in most 2-D intensity arrays contain more bits than are
needed to represent the intensities.

2. Spatial and temporal redundancy. Because the pixels of most 2-D
intensity arrays are correlated spatially (i.e., each pixel is similar to or
dependent on neighboring pixels), information is unnecessarily repli-
cated in the representations of the correlated pixels. In a video sequence,
temporally correlated pixels (i.e., those similar to or dependent on pixels
in nearby frames) also duplicate information.

3. Irrelevant information. Most 2-D intensity arrays contain information
that is ignored by the human visual system and/or extraneous to the
intended use of the image. It is redundant in the sense that it is not
used.

The computer-generated images in Figs. 3.1(a) through (c) exhibit each of
these fundamental redundancies. As will be seen in the next three sections,
compression is achieved when one or more redundancy is reduced or elimi-
nated.

3.1.1 Coding Redundancy

In Chapter 2, we developed techniques for image enhancement by histogram
processing, assuming that the intensity values of an image are random quan-
tities. In this section, we use a similar formulation to introduce optimal
information coding.

Assume that a discrete random variable rk in the interval [0,L−1] is used
to represent the intensities of an M×N image and that each rk occurs with
probability pr (rk), which is expressed as:

72

3.1 Fundamentals

Figure 3.1: Computer generated 256×256×8 bit images with (a) coding
redundancy, (b) spatial redundancy, and (c) irrelevant information. (Each was
designed to demonstrate one principal redundancy but may exhibit others as

well.)

pr (rk) =
nk

MN
k = 0,1,2, . . . ,L−1 (3.3)

where L is the number of intensity values, and nk is the number of times
that the k th intensity appears in the image. If the number of bits used to
represent each value of rk is l (rk), then the average number of bits required
to represent each pixel is

Lavg =
L−1

∑
k=0

l (rk) pr (rk) (3.4)

That is, the average length of the code words assigned to the various
intensity values is found by summing the products of the number of bits used
to represent each intensity and the probability that the intensity occurs. The
total number of bits required to represent an M ×N image is MNLavg. If
the intensities are represented using a natural m-bit fixed-length code, the
right-hand side of Eq. (3.4) reduces to m bits. That is, Lavg = m when m is
substituted for l (rk). The constant m can be taken outside the summation,
leaving only the sum of the pr (rk) for 0 ≤ k ≤ L−1, which, of course, equals
1 .

73

Image Compression

Example: A simple illustration of variable-length coding

The computer-generated image in Fig.3.1(a) has the intensity distribution
shown in the second column of Table 3.1. If a natural 8-bit binary code
(denoted as code 1 in Table 3.1) is used to represent its 4 possible intensities,
Lavg - the average number of bits for code 1 -is 8 bits, because l1 (rk) = 8 bits
for all rk.

Table 3.1: Example of variable-length coding.

rk pr (rk) Code 1 ll (rk) Code 2 l2 (rk)
r87 = 87 0.25 01010111 8 01 2
r128 = 128 0.47 10000000 8 1 1
r186 = 186 0.25 11000100 8 000 3
r255 = 255 0.03 11111111 8 001 3
rk for k ̸= 87,128,186,255 0 - 8 - 0

On the other hand, if the scheme designated as code 2 in Table 3.1 is used,
the average length of the encoded pixels is, in accordance with Eq. (3.4),

Lavg = 0.25(2)+0.47(1)+0.25(3)+0.03(3) = 1.81 bits

The total number of bits needed to represent the entire image is MNLavg =

256×256×1.81 or 118,621. From Eqs. (3.2) and (3.1), the resulting com-
pression and corresponding relative redundancy are

C =
256×256×8

118,621
=

8
1.81

≈ 4.42

and
R = 1− 1

4.42
= 0.774

respectively. Thus 77.4% of the data in the original 8-bit 2-D intensity
array is redundant.

The compression achieved by code 2 results from assigning fewer bits
to the more probable intensity values than to the less probable ones. In the

74

3.1 Fundamentals

resulting variable-length code, r128-the image’s most probable intensity-is
assigned the 1 -bit code word 1 [of length l2 (r128) = 1], while r255-its least
probable occurring intensity - is assigned the 3 -bit code word 001 [of length
l2 (r255) = 3]. Note that the best fixed-length code that can be assigned to the
intensities of the image in Fig. 3.1(a) is the natural 2 -bit counting sequence
{00,01,10,11}, but the resulting compression is only 8/2 or 4 : 1-about 10%
less than the 4.42:1 compression of the variable-length code.

As the preceding example shows, coding redundancy is present when the
codes assigned to a set of events (such as intensity values) do not take full
advantage of the probabilities of the events. Coding redundancy is almost
always present when the intensities of an image are represented using a natural
binary code. The reason is that most images are composed of objects that
have a regular and somewhat predictable morphology (shape) and reflectance,
and are sampled so that the objects being depicted are much larger than the
picture elements. The natural consequence is that, for most images, certain
intensities are more probable than others (that is, the histograms of most
images are not uniform). A natural binary encoding assigns the same number
of bits to both the most and least probable values, failing to minimize Eq.
(3.4) and resulting in coding redundancy.

3.1.2 Spatial and Temporal Redundancy

Consider the computer-generated collection of constant intensity lines in Fig.
3.1(b). In the corresponding 2-D intensity array:

1. All 256 intensities are equally probable. As Fig. 3.2 shows, the his-
togram of the image is uniform.

2. Because the intensity of each line was selected randomly, its pixels are
independent of one another in the vertical direction.

3. Because the pixels along each line are identical, they are maximally
correlated (completely dependent on one another) in the horizontal
direction.

75

Image Compression

Figure 3.2: The intensity histogram of the image in Fig. 3.1(b).

The first observation tells us that the image in Fig. 3.1(b) — when
represented as a conventional 8 -bit intensity array-cannot be compressed
by variablelength coding alone. Unlike the image of Fig. 3.1(a), whose
histogram was not uniform, a fixed-length 8 -bit code in this case minimizes
Eq. (3.4). Observations 2 and 3 reveal a significant spatial redundancy that
can be eliminated, for instance, by representing the image in Fig. 3.1(b) as a
sequence of run-length pairs, where each run-length pair specifies the start of
a new intensity and the number of consecutive pixels that have that intensity.
A run-length based representation compresses the original 2-D, 8-bit intensity
array by (256×256×8)/[(256+256)×8] or 128 : 1. Each 256 -pixel line
of the original representation is replaced by a single 8 -bit intensity value and
length 256 in the run-length representation.

In most images, pixels are correlated spatially (in both x and y) and
in time (when the image is part of a video sequence). Because most pixel
intensities can be predicted reasonably well from neighboring intensities, the
information carried by a single pixel is small. Much of its visual contribution
is redundant in the sense that it can be inferred from its neighbors. To reduce
the redundancy associated with spatially and temporally correlated pixels, a
2-D intensity array must be transformed into a more efficient but usually "non-

76

3.1 Fundamentals

Figure 3.3: (a) Histogram of the image in Fig. 3.1(c) and (b) a histogram
equalized version of the image.

visual" representation. For example, run-lengths or the differences between
adjacent pixels can be used. Transformations of this type are called mappings.
A mapping is said to be 3.1 if the pixels of the original 2-D intensity array
can be reconstructed without error from the transformed data set; otherwise
the mapping is said to be irreversible.

3.1.3 Irrelevant Information

One of the simplest ways to compress a set of data is to remove superfluous
data from the set. In the context of digital image compression, information
that is ignored by the human visual system or is extraneous to the intended
use of an image are obvious candidates for omission. Thus, the computer-
generated image in Fig. 3.1(c), because it appears to be a homogeneous field
of gray, can
be represented by its average intensity alone-a single 8 -bit value. The original
256×256×8 bit intensity array is reduced to a single byte; and the resulting
compression is (256× 256× 8)/8 or 65,536 : 1. Of course, the original
256× 256× 8 bit image must be recreated to view and/or analyze it - but
there would be little or no perceived decrease in reconstructed image quality.

77

Image Compression

Figure 3.3(a) shows the histogram of the image in Fig. 3.1(c). Note that
there are several intensity values (intensities 125 through 131) actually present.
The human visual system averages these intensities, perceives only the average
value, and ignores the small changes in intensity that are present in this case.
Figure 3.3 (b), a histogram equalized version of the image in Fig. 3.1(c),
makes the intensity changes visible and reveals two previously undetected
regions of constant intensity-one oriented vertically and the other horizontally.
If the image in Fig. 3.1(c) is represented by its average value alone, this
"invisible" structure (i.e., the constant intensity regions) and the random
intensity variations surrounding them-real information-is lost. Whether or
not this information should be preserved is application dependent. If the
information is important, as it might be in a medical application (like digital X-
ray archival), it should not be omitted; otherwise, the information is redundant
and can be excluded for the sake of compression performance.

We conclude the section by noting that the redundancy examined here is
fundamentally different from the redundancies discussed in Sections 3.1.1
and 3.1.2. Its elimination is possible because the information itself is not
essential for normal visual processing and/or the intended use of the image.
Because its omission results in a loss of quantitative information, its removal
is commonly referred to as quantization. This terminology is consistent with
normal use of the word, which generally means the mapping of a broad range
of input values to a limited number of output values. Because information is
lost, quantization is an irreversible operation.

3.1.4 Measuring Image Information

In the previous sections, we introduced several ways to reduce the amount of
data used to represent an image. The question that naturally arises is this: How
few bits are actually needed to represent the information in an image? That
is, is there a minimum amount of data that is sufficient to describe an image
without losing information? Information theory provides the mathematical

78

3.1 Fundamentals

framework to answer this and related questions. Its fundamental premise is
that the generation of information can be modeled as a probabilistic process
that can be measured in a manner that agrees with intuition. In accordance
with this supposition, a random event E with probability P(E) is said to
contain

I(E) = log
1

P(E)
=− logP(E) (3.5)

units of information. If P(E) = 1 (that is, the event always occurs), I(E) =
0 and no information is attributed to it. Because no uncertainty is associated
with the event, no information would be transferred by communicating that
the event has occurred [it always occurs if P(E) = 1].

The base of the logarithm in Eq. (3.5) determines the unit used to measure
information. If the base m logarithm is used, the measurement is said to be in
m-ary units. If the base 2 is selected, the unit of information is the bit. Note
that if P(E) = 1

2 , I(E) = − log2
1
2 , or 1 bit. That is, 1 bit is the amount of

information conveyed when one of two possible equally likely events occurs.
A simple example is flipping a coin and communicating the result.

Given a source of statistically independent random events from a discrete
set of possible events {a1,a2, . . . ,aJ} with associated probabilities {P(a1) ,
P(a2) , . . . ,P(aJ)}, the average information per source output, called the
entropy of the source, is

H =−
J

∑
j=1

P
(
a j
)

logP
(
a j
)

(3.6)

The a j in this equation are called source symbols. Because they are
statistically independent, the source itself is called a zero-memory source.

If an image is considered to be the output of an imaginary zero-memory
"intensity source," we can use the histogram of the observed image to estimate
the symbol probabilities of the source. Then the intensity source’s entropy
becomes

79

Image Compression

H̃ =−
L−1

∑
k=0

pr (rk) log2 pr (rk) (3.7)

where variables L,rk, and pr (rk) are as defined earlier. Because the base 2
logarithm is used, Eq. (3.7) is the average information per intensity output of
the imaginary intensity source in bits. It is not possible to code the intensity
values of the imaginary source (and thus the sample image) with fewer than
H̃ bits/pixel.

Example: Image entropy estimates

The entropy of the image in Fig. 3.1(a) can be estimated by substituting the
intensity probabilities from Table 3.1 into Eq. (3.7):

H̃ =− [0.25log2 0.25+0.47log2 0.47+0.25log2 0.25+0.03log2 0.03]

≈−[0.25(−2)+0.47(−1.09)+0.25(−2)+0.03(−5.06)]

≈ 1.6614 bits/pixel

In a similar manner, the entropies of the images in Fig. 3.1(b) and (c)
can be shown to be 8 bits/pixel and 1.566 bits/pixel, respectively. Note that
the image in Fig. 3.1(a) appears to have the most visual information, but
has almost the lowest computed entropy -1.66 bits/pixel. The image in Fig.
3.1(b) has almost five times the entropy of the image in (a), but appears to
have about the same (or less) visual information; and the image in Fig. 3.1(c),
which seems to have little or no information, has almost the same entropy as
the image in (a). The obvious conclusion is that the amount of entropy and
thus information in an image is far from intuitive.

80

3.1 Fundamentals

3.1.5 Fidelity Criteria

In Section 3.1.3, it was noted that the removal of "irrelevant visual" infor-
mation involves a loss of real or quantitative image information. Because
information is lost, a means of quantifying the nature of the loss is needed.
Two types of criteria can be used for such an assessment: (1) objective fidelity
criteria and (2) subjective fidelity criteria.

When information loss can be expressed as a mathematical function of
the input and output of a compression process, it is said to be based on
an objective fidelity criterion. An example is the root-mean-square (rms)
error between two images. Let f (x,y) be an input image and f̂ (x,y) be an
approximation of f (x,y) that results from compressing and subsequently
decompressing the input. For any value of x and y, the error e(x,y) between
f (x,y) and f̂ (x,y) is

e(x,y) = f̂ (x,y)− f (x,y) (3.8)

so that the total error between the two images is

M−1

∑
x=0

N−1

∑
y=0

[f̂ (x,y)− f (x,y)]

where the images are of size M×N. The root-mean-square error, erms, be-
tween f (x,y) and f̂ (x,y) is then the square root of the squared error averaged
over the M×N array, or

erms =

[
1

MN

M−1

∑
x=0

N−1

∑
y=0

[f̂ (x,y)− f (x,y)]2
]1/2

(3.9)

If f̂ (x,y) is considered [by a simple rearrangement of the terms in Eq.
(3.8)] to be the sum of the original image f (x,y) and an error or "noise" signal
e(x,y), the mean-square signal-to-noise ratio of the output image, denoted
SNRms, can be defined as:

81

Image Compression

SNRms =
∑

M−1
x=0 ∑

N−1
y=0 f̂ (x,y)2

∑
M−1
x=0 ∑

N−1
y=0 [f̂ (x,y)− f (x,y)]2

(3.10)

The rms value of the signal-to-noise ratio, denoted SNRrms, is obtained
by taking the square root of Eq. (3.10).

While objective fidelity criteria offer a simple and convenient way to
evaluate information loss, decompressed images are ultimately viewed by
humans. So, measuring image quality by the subjective evaluations of people
is often more appropriate. This can be done by presenting a decompressed
image to a cross section of viewers and averaging their evaluations. The
evaluations may be made using an absolute rating scale or by means of side-
by-side comparisons of f (x,y) and f̂ (x,y). Table 3.2 shows one possible
absolute rating scale. Side-by-side comparisons can be done with a scale
such as {−3,−2,−1,0,1,2,3} to represent the subjective evaluations {much
worse, worse, slightly worse, the same, slightly better, better, much better },
respectively. In either case, the evaluations are based on subjective fidelity
criteria.

Figure 3.4 shows three different approximations of the image in Fig.
3.1(a). Using Eq. (3.9) with Fig. 3.1(a) for f (x,y) and the images in Figs.
3.4 (a) through (c) as f̂ (x,y), the computed rms errors are 5.17,15.67, and
14.17 intensity levels, respectively. In terms of rms error - an objective fidelity
criterionthe three images in Fig. 3.4 are ranked in order of decreasing quality
as {(a),(c),(b)}.

Example: Image quality comparisons:

Figures 3.4(a) and (b) are typical of images that have been compressed and
subsequently reconstructed. Both retain the essential information of the
original image-like the spatial and intensity characteristics of its objects. And
their rms errors correspond roughly to perceived quality. Figure 3.4(a), which
is practically as good as the original image, has the lowest rms error, while Fig.

82

3.1 Fundamentals

Table 3.2: Rating scale of the Television Allocations Study Organization.

Value Rating Description

1 Excellent
An image of extremely high quality, as good as you could

desire.

2 Fine
An image of high quality, providing enjoyable viewing.

Interference is not objectionable.

3 Passable
An image of acceptable quality. Interference is not

objectionable.

4 Marginal
An image of poor quality; you wish you could improve it.

Interference is somewhat objectionable.

6 Inferior
A very poor image, but you could watch it. Objectionable

interference is definitely present.
An image so bad that you could not watch it.

Figure 3.4: Three approximations of the image in Fig. 3.1(a).

3.4(b) has more error but noticeable degradation at the boundaries between
objects. This is exactly as one would expect.

Figure 3.4(c) is an artificially generated image that demonstrates the
limitations of objective fidelity criteria. Note that the image is missing large
sections of several important lines (i.e., visual information), and has small
dark squares (i.e., artifacts) in the upper right quadrant. The visual content
of the image is misleading and certainly not as accurate as the image in (b),
but it has less rms error -14.17 versus 15.67 intensity values. A subjective
evaluation of the three images using Table 3.2 might yield an excellent rating

83

Image Compression

Figure 3.5: Functional block diagram of a general image compression
system.

for (a), a passable or marginal rating for (b), and an inferior of unusable rating
for (c). The rms error measure, on the other hand, ranks (c) ahead of (b).

3.1.6 Image Compression Models

As Fig. 3.5 shows, an image compression system is composed of two distinct
functional components: an encoder and a decoder. The encoder performs
compression, and the decoder performs the complementary operation of
decompression. Both operations can be performed in software, as is the
case in Web browsers and many commercial image editing programs, or in a
combination of hardware and firmware, as in commercial DVD players. A
codec is a device or program that is capable of both encoding and decoding.

Input image f (x, . . .) is fed into the encoder, which creates a compressed
representation of the input. This representation is stored for later use, or
transmitted for storage and use at a remote location. When the compressed
representation is presented to its complementary decoder, a reconstructed out-
put image f̂ (x, . . .) is generated. In still-image applications, the encoded input
and decoder output are f (x,y) and f̂ (x,y), respectively; in video applications,
they are f (x,y, t) and f̂ (x,y, t), where discrete parameter t specifies time. In
general, f̂ (x, . . .) may or may not be an exact replica of f (x, . . .). If it is, the

84

3.1 Fundamentals

compression system is called error free, lossless, or information preserving.
If not, the reconstructed output image is distorted and the compression system
is referred to as lossy.

The encoding or compression process

The encoder of Fig. 3.5 is designed to remove the redundancies through
a series of three independent operations. In the first stage of the encoding
process, a mapper transforms f (x, . . .) into a (usually nonvisual) format
designed to reduce spatial and temporal redundancy. This operation generally
is reversible and may or may not reduce directly the amount of data required
to represent the image. Run-length coding is an example of a mapping that
normally yields compression in the first step of the encoding process. The
mapping of an image into a set of less correlated transform coefficients is
an example of the opposite case (the coefficients must be further processed
to achieve compression). In video applications, the mapper uses previous
(and in some cases future) video frames to facilitate the removal of temporal
redundancy.

The quantizer in Fig. 3.5 reduces the accuracy of the mapper’s output
in accordance with a pre-established fidelity criterion. The goal is to keep
irrelevant information out of the compressed representation. This operation
is irreversible. It must be omitted when error-free compression is desired.
In video applications, the bit rate of the encoded output is often measured
(in bits/second) and used to adjust the operation of the quantizer so that a
predetermined average output rate is maintained. Thus, the visual quality of
the output can vary from frame to frame as a function of image content.

In the third and final stage of the encoding process, the symbol coder of
Fig. 3.5 generates a fixed- or variable-length code to represent the quantizer
output and maps the output in accordance with the code. In many cases, a
variable-length code is used. The shortest code words are assigned to the
most frequently occurring quantizer output values-thus minimizing coding

85

Image Compression

redundancy. This operation is reversible. Upon its completion, the input
image has been processed for the removal of each of the three redundancies
described earlier.

The decoding or decompression process

The decoder of Fig. 3.5 contains only two components: a symbol decoder
and an inverse mapper. They perform, in reverse order, the inverse operations
of the encoder’s symbol encoder and mapper. Because quantization results
in irreversible information loss, an inverse quantizer block is not included
in the general decoder model. In video applications, decoded output frames
are maintained in an internal frame store (not shown) and used to reinsert the
temporal redundancy that was removed at the encoder.

3.1.7 Image Formats and Compression Standards

In the context of digital imaging, an image file format is a standard way to
organize and store image data. It defines how the data is arranged and the
type of compression-if any-that is used. An image container is similar to
a file format but handles multiple types of image data. Image compression
standards, on the other hand, define procedures for compressing and decom-
pressing images - that is, for reducing the amount of data needed to represent
an image. These standards are the underpinning of the widespread acceptance
of image compression technology.

Figure 3.6 lists the most important image compression standards, file
formats, and containers in use today, grouped by the type of image handled.
The entries in black are international standards sanctioned by the International
Standards Organization (ISO), the International Electrotechnical Commission
(IEC), and/or the International Telecommunications Union (ITU-T)-a United
Nations (UN) organization that was once called the Consultative Committee of
the International Telephone and Telegraph (CCITT). Two video compression

86

3.2 Some Basic Compression Methods

Figure 3.6: Some popular image compression standards, file formats, and
containers. Internationally sanctioned entries are shown in black; all others

are grayed.

standards, VC-1 by the Society of Motion Pictures and Television Engineers
(SMPTE) and AVS by the Chinese Ministry of Information Industry (MII),
are also included. Note that they are shown in gray, which is used in Fig.
3.6 to denote entries that are not sanctioned by an international standards
organization.

3.2 Some Basic Compression Methods

In this section, we describe the principal lossy and error-free compression
methods in use today. Our focus is on methods that have proven useful
in mainstream binary, continuous-tone still images, and video compression
standards. The standards themselves are used to demonstrate the methods
presented.

87

Image Compression

3.2.1 Huffman Coding

One of the most popular techniques for removing coding redundancy is due
to Huffman. When coding the symbols of an information source individually,
Huffman coding yields the smallest possible number of code symbols per
source symbol. In practice, the source symbols may be either the intensities
of an image or the output of an intensity mapping operation (pixel differences,
run lengths, and so on).

The first step in Huffman’s approach is to create a series of source reduc-
tions by ordering the probabilities of the symbols under consideration and
combining the lowest probability symbols into a single symbol that replaces
them in the next source reduction. Figure 3.7 illustrates this process for binary
coding (K-ary Huffman codes can also be constructed). At the far left, a
hypothetical set of source symbols and their probabilities are ordered from
top to bottom in terms of decreasing probability values. To form the first
source reduction, the bottom two probabilities, 0.06 and 0.04 , are combined
to form a "compound symbol" with probability 0.1 . This compound symbol
and its associated probability are placed in the first source reduction column
so that the probabilities of the reduced source also are ordered from the most
to the least probable. This process is then repeated until a reduced source
with two symbols (at the far right) is reached.

The second step in Huffman’s procedure is to code each reduced source,
starting with the smallest source and working back to the original source.
The minimal length binary code for a two-symbol source, of course, are the
symbols 0 and 1. As Fig. 3.8 shows, these symbols are assigned to the two
symbols on the right (the assignment is arbitrary; reversing the order of the 0
and 1 would work just as well). As the reduced source symbol with probability
0.6 was generated by combining two symbols in the reduced source to its left,
the 0 used to code it is now assigned to both of these symbols, and a 0 and
1 are arbitrarily appended to each to distinguish them from each other. This
operation is then repeated for each reduced source until the original source is

88

3.2 Some Basic Compression Methods

Figure 3.7: Huffman source reductions.

Figure 3.8: Huffman code assignment procedure.

reached. The final code appears at the far left in Fig. 8.8. The average length
of this code is

Lavg = (0.4)(1)+(0.3)(2)+(0.1)(3)+(0.1)(4)+(0.06)(5)+(0.04)(5)

= 2.2bits/ pixel

and the entropy of the source is 2.14 bits/symbol.

Huffman’s procedure creates the optimal code for a set of symbols and
probabilities subject to the constraint that the symbols be coded one at a
time. After the code has been created, coding and/or error-free decoding
is accomplished in a simple lookup table manner. The code itself is an

89

Image Compression

instantaneous uniquely decodable block code. It is called a block code
because each source symbol is mapped into a fixed sequence of code symbols.
It is instantaneous because each code word in a string of code symbols can be
decoded without referencing succeeding symbols. It is uniquely decodable
because any string of code symbols can be decoded in only one way. Thus,
any string of Huffman encoded symbols can be decoded by examining the
individual symbols of the string in a left-to-right manner. For the binary code
of Fig. 3.8, a left-to-right scan of the encoded string 010100111100 reveals
that the first valid code word is 01010 , which is the code for symbol a3. The
next valid code is 011 , which corresponds to symbol a1. Continuing in this
manner reveals the completely decoded message to be a3a1a2a2a6.

3.2.2 LZW Coding

The techniques covered in the previous sections are focused on the removal
of coding redundancy. In this section, we consider an error-free compression
approach that also addresses spatial redundancies in an image. The technique,
called Lempel-Ziv-Welch (LZW) coding, assigns fixed-length code words to
variable length sequences of source symbols. A key feature of LZW coding is
that it requires no a priori knowledge of the probability of occurrence of the
symbols to be encoded. Despite the fact that until recently it was protected
under a United States patent, LZW compression has been integrated into a
variety of mainstream imaging file formats, including GIF, TIFF, and PDF.
The PNG format was created to get around LZW licensing requirements.

LZW coding is conceptually very simple. At the onset of the coding
process, a codebook or dictionary containing the source symbols to be coded
is constructed. For 8-bit monochrome images, the first 256 words of the dic-
tionary are assigned to intensities 0,1,2, . . . ,255. As the encoder sequentially
examines image pixels, intensity sequences that are not in the dictionary are
placed in algorithmically determined (e.g., the next unused) locations. If
the first two pixels of the image are white, for instance, sequence "255-255"

90

3.2 Some Basic Compression Methods

might be assigned to location 256, the address following the locations re-
served for intensity levels 0 through 255 . The next time that two consecutive
white pixels are encountered, code word 256 , the address of the location
containing sequence 255− 255, is used to represent them. If a 9 -bit, 512
-word dictionary is employed in the coding process, the original (8+8) bits
that were used to represent the two pixels are replaced by a single 9 -bit code
word. Clearly, the size of the dictionary is an important system parameter.
If it is too small, the detection of matching intensity-level sequences will be
less likely; if it is too large, the size of the code words will adversely affect
compression performance.

EXAMPLE: LZW coding

Consider the following 4×4, 8-bit image of a vertical edge:

39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126

Table 3.3 details the steps involved in coding its 16 pixels. A 512-word
dictionary with the following starting content is assumed:

Dictionary Location Entry
0 0
1 1
...

...
255 255
256 -

...
...

511 -

91

Image Compression

Locations 256 through 511 initially are unused.
The image is encoded by processing its pixels in a left-to-right, top-to-bottom
manner. Each successive intensity value is concatenated with a variablecol-
umn 1 of Table 3.3 -called the "currently recognized sequence." As can be
seen, this variable is initially null or empty. The dictionary is searched for
each concatenated sequence and if found, as was the case in the first row of
the table, is replaced by the newly concatenated and recognized (i.e., located
in the dictionary) sequence. This was done in column 1 of row 2 . No output
codes are generated, nor is the dictionary altered. If the concatenated sequence
is not found, however, the address of the currently recognized sequence is
output as the next encoded value, the concatenated but unrecognized sequence
is added to the dictionary, and the currently recognized sequence is initialized
to the current pixel value. This occurred in row 2 of the table. The last two
columns detail the intensity sequences that are added to the dictionary when
scanning the entire 4× 4 image. Nine additional code words are defined.
At the conclusion of coding, the dictionary contains 265 code words and
the LZW algorithm has successfully identified several repeating intensity
sequences-leveraging them to reduce the original 128-bit image to 90 bits
(i.e., 109 -bit codes). The encoded output is obtained by reading the third
column from top to bottom. The resulting compression ratio is 1.42:1.

A unique feature of the LZW coding just demonstrated is that the coding
dictionary or code book is created while the data are being encoded. Re-
markably, an LZW decoder builds an identical decompression dictionary as it
decodes simultaneously the encoded data stream. It is left as an exercise to
the reader (see Problem 8.20) to decode the output of the preceding example
and reconstruct the code book. Although not needed in this example, most
practical applications require a strategy for handling dictionary overflow. A
simple solution is to flush or reinitialize the dictionary when it becomes full
and continue coding with a new initialized dictionary. A more complex op-
tion is to monitor compression performance and flush the dictionary when it

92

3.2 Some Basic Compression Methods

Table 3.3: LZW coding example.

Currently
Recognized
Sequence

Pixel Being
Processed

Encoded
Output

Dictionary
Location

(Code Word)
Dictionary Entry

39 39
39 39 39 256 39−39
126 126 39 257 39−126
126 126 126 258 126−126
39 39 126 259 126−39

39−39 39 39−39−126
126 126 256 260 126−126−39

126−126 126
39 39 258 261 39−39−126−126

39−39 39 126−39−39
39−39−126 126 260 262 39−126−126

126 126
126−39 39 259 263

39 126
39−126 126 257 264

126 126

becomes poor or unacceptable. Alternatively, the least used dictionary entries
can be tracked and replaced when necessary.

3.2.3 Run-Length Coding

Images with repeating intensities along their rows (or columns) can often
be compressed by representing runs of identical intensities as run-length
pairs, where each run-length pair specifies the start of a new intensity and the
number of consecutive pixels that have that intensity. The technique, referred
to as run-length encoding (RLE), was developed in the 1950s and became,
along with its 2-D extensions, the standard compression approach in facsimile
(FAX) coding. Compression is achieved by eliminating a simple form of
spatial redundancy - groups of identical intensities. When there are few (or
no) runs of identical pixels, run-length encoding results in data expansion.

93

Image Compression

Table 3.4: BMP absolute coding mode options. In this mode, the first byte of
the BMP pair is 0.

Second Byte Value Condition
0 End of line
1 End of image
2 Move to a new position

3−255 Specify pixels individually

Example: RLE in the BMP file format:

The BMP file format uses a form of run-length encoding in which image
data is represented in two different modes: encoded and absolute-and either
mode can occur anywhere in the image. In encoded mode, a two byte RLE
representation is used. The first byte specifies the number of consecutive
pixels that have the color index contained in the second byte. The 8-bit color
index selects the run’s intensity (color or gray value) from a table of 256
possible intensities.

In absolute mode, the first byte is 0 and the second byte signals one of
four possible conditions, as shown in Table 3.4. When the second byte is 0
or 1 , the end of a line or the end of the image has been reached. If it is 2 ,
the next two bytes contain unsigned horizontal and vertical offsets to a new
spatial position (and pixel) in the image. If the second byte is between 3 and
255, it specifies the number of uncompressed pixels that follow-with each
subsequent byte containing the color index of one pixel. The total number of
bytes must be aligned on a 16-bit word boundary.

Run-length encoding is particularly effective when compressing binary
images. Because there are only two possible intensities (black and white),
adjacent pixels are more likely to be identical. In addition, each image
row can be represented by a sequence of lengths only - rather than length-
intensity pairs. The basic idea is to code each contiguous group (i.e., run)
of 0 s or 1 s encountered in a left to right scan of a row by its length and to

94

3.3 summary

establish a convention for determining the value of the run. The most common
conventions are (1) to specify the value of the first run of each row, or (2) to
assume that each row begins with a white run, whose run length may in fact
be zero.

Although run-length encoding is in itself an effective method of compress-
ing binary images, additional compression can be achieved by variable-length
coding the run lengths themselves. The black and white run lengths can be
coded separately using variable-length codes that are specifically tailored to
their own statistics.

3.3 summary

The principal objectives of this chapter were to present the theoretic founda-
tion of digital image compression and to describe the most commonly used
compression methods. compression plays a key role in document image stor-
age and transmission, the Internet, and commercial video distribution (e.g.,
DVDs). It is one of the few areas of image processing that has received a suf-
ficiently broad commercial appeal to warrant the adoption of widely accepted
standards. The main advantages of compression are reductions in storage
hardware, data transmission time, and communication bandwidth. This can
result in significant cost savings. Compressed files require significantly less
storage capacity than uncompressed files, meaning a significant decrease in
expenses for storage.

95

CHAPTER 4

IMAGE SEGMENTATION

The material in this chapter begins a transition from image processing methods
whose inputs and outputs are images, to methods in which the inputs are
images but the outputs are attributes extracted from those images.

Segmentation subdivides an image into its constituent regions or objects.
The level of detail to which the subdivision is carried depends on the problem
being solved. That is, segmentation should stop when the objects or regions
of interest in an application have been detected. For example, in the auto-
mated inspection of electronic assemblies, interest lies in analyzing images of
products with the objective of determining the presence or absence of specific
anomalies, such as missing components or broken connection paths. There is
no point in carrying segmentation past the level of detail required to identify
those elements.

Segmentation of nontrivial images is one of the most difficult tasks in
image processing. Segmentation accuracy determines the eventual success or
failure of computerized analysis procedures. For this reason, considerable care
should be taken to improve the probability of accurate segmentation. In some
situations, such as in industrial inspection applications, at least some measure
of control over the environment typically is possible. The experienced image
processing system designer invariably pays considerable attention to such
opportunities. In other applications, such as autonomous target acquisition,
the system designer has no control over the operating environment, and the

97

Image Segmentation

usual approach is to focus on selecting the types of sensors most likely to
enhance the objects of interest while diminishing the contribution of irrelevant
image detail. A good example is the use of infrared imaging by the military
to detect objects with strong heat signatures, such as equipment and troops in
motion.

Most of the segmentation algorithms in this chapter are based on one of
two basic properties of intensity values: discontinuity and similarity. In the
first category, the approach is to partition an image based on abrupt changes
in intensity, such as edges. The principal approaches in the second category
are based on partitioning an image into regions that are similar according to a
set of predefined criteria.

4.1 Fundamentals

Let R represent the entire spatial region occupied by an image. We may
view image segmentation as a process that partitions R into n subregions,
R1,R2, . . . ,Rn, such that
(a)

⋃n
i=1 Ri = R.

(b) Ri is a connected set i = 1,2, . . . ,n.
(c) Ri ∩R j =∅ for all i and j, i ̸= j.
(d) Q(Ri) = TRUE for i = 1,2, . . . ,n.
(e) Q

(
Ri ∪R j

)
= FALSE for any adjacent regions Ri and R j.

Here, Q(Rk) is a logical predicate defined over the points in set Rk, and
∅ is the null set. The symbols ∪ and ∩ represent set union and intersection,
respectively. Two regions Ri and R j are said to be adjacent if their union
forms a connected set.

Condition (a) indicates that the segmentation must be complete; that
is, every pixel must be in a region. Condition (b) requires that points in a
region be connected in some predefined sense (e.g., the points must be 4 -
or 8 -connected). Condition (c) indicates that the regions must be disjoint.

98

4.1 Fundamentals

Condition (d) deals with the properties that must be satisfied by the pixels in
a segmented region-for example, Q(Ri) = TRUE if all pixels in Ri have the
same intensity level. Finally, condition (e) indicates that two adjacent regions
Ri and R j must be different in the sense of predicate Q.†

Thus, we see that the fundamental problem in segmentation is to partition
an image into regions that satisfy the preceding conditions. Segmentation
algorithms for monochrome images generally are based on one of two basic
categories dealing with properties of intensity values: discontinuity and
similarity. In the first category, the assumption is that boundaries of regions
are sufficiently different from each other and from the background to allow
boundary detection based on local discontinuities in intensity. Edge-based
segmentation is the principal approach used in this category. Region-based
segmentation approaches in the second category are based on partitioning an
image into regions that are similar according to a set of predefined criteria.

Figure 4.1(a) shows an image of a region of constant intensity superim-
posed on a darker background, also of constant intensity. These two regions
comprise the overall image region. Figure 4.1(b) shows the result of comput-
ing the boundary of the inner region based on intensity discontinuities. Points
on the inside and outside of the boundary are black (zero) because there are
no discontinuities in intensity in those regions. To segment the image, we
assign one level (say, white) to the pixels on, or interior to, the boundary and
another level (say, black) to all points exterior to the boundary. Figure 4.1(c)
shows the result of such a procedure. We see that conditions (a) through
(c) stated at the beginning of this section are satisfied by this result. The
predicate of condition (d) is: If a pixel is on, or inside the boundary, label it
white; otherwise label it black. We see that this predicate is TRUE for the
points labeled black and white in Figure 4.1(c). Similarly, the two segmented
regions (object and background) satisfy condition (e).

0† In general, Q can be a compound expression such as, for example, Q(Ri) = TRUE if
the average intensity of the pixels in Ri is less than mi, AND if the standard deviation of their
intensity is greater than σi, where mi and σi are specified constants.

99

Image Segmentation

Figure 4.1: (a) Image containing a region of constant intensity. (b) Image
showing the boundary of the inner region, obtained from intensity

discontinuities. (c) Result of segmenting the image into two regions. (d)
Image containing a textured region. (e) Result of edge computations. Note
the large number of small edges that are connected to the original boundary,
making it difficult to find a unique boundary using only edge information. (f)

Result of segmentation based on region properties.

100

4.2 Point, Line, and Edge Detection

The next three images illustrate region-based segmentation. Figure 10.1(d)
is similar to Fig. 10.1(a), but the intensities of the inner region form a textured
pattern. Figure 10.1(e) shows the result of computing the edges of this
image. Clearly, the numerous spurious changes in intensity make it difficult
to identify a unique boundary for the original image because many of the
nonzero intensity changes are connected to the boundary, so edge-based
segmentation is not a suitable approach. We note however, that the outer
region is constant, so all we need to solve this simple segmentation problem
is a predicate that differentiates between textured and constant regions. The
standard deviation of pixel values is a measure that accomplishes this, because
it is nonzero in areas of the texture region and zero otherwise. Figure 10.1(f)
shows the result of dividing the original image into subregions of size 4×4.
Each subregion was then labeled white if the standard deviation of its pixels
was positive (i.e., if the predicate was TRUE) and zero otherwise. The result
has a "blocky" appearance around the edge of the region because groups of
4×4 squares were labeled with the same intensity. Finally, note that these
results also satisfy the five conditions stated at the beginning of this section.

4.2 Point, Line, and Edge Detection

The focus of this section is on segmentation methods that are based on
detecting sharp, local changes in intensity. The three types of image features
in which we are interested are isolated points, lines, and edges. Edge pixels
are pixels at which the intensity of an image function changes abruptly, and
edges (or edge segments) are sets of connected edge pixels. Edge detectors
are local image processing methods designed to detect edge pixels. A line
may be viewed as an edge segment in which the intensity of the background
on either side of the line is either much higher or much lower than the intensity
of the line pixels. In fact, as we discuss in the following section, lines give

101

Image Segmentation

rise to so-called "roof edges." Similarly, an isolated point may be viewed as a
line whose length and width are equal to one pixel.

4.2.1 Background

As we discussed earlier, local averaging smooths an image. Given that
averaging is analogous to integration, it should come as no surprise that
abrupt, local changes in intensity can be detected using derivatives. For
reasons that will become evident shortly, first- and second-order derivatives
are particularly well suited for this purpose.

Derivatives of a digital function are defined in terms of differences. There
are various ways to approximate these differences but, we require that any
approximation used for a first derivative (1) must be zero in areas of constant
intensity; (2) must be nonzero at the onset of an intensity step or ramp; and
(3) must be nonzero at points along an intensity ramp. Similarly, we require
that an approximation used for a second derivative (1) must be zero in areas
of constant intensity; (2) must be nonzero at the onset and end of an intensity
step or ramp; and (3) must be zero along intensity ramps. Because we are
dealing with digital quantities whose values are finite, the maximum possible
intensity change is also finite, and the shortest distance over which a change
can occur is between adjacent pixels.

We obtain an approximation to the first-order derivative at point x of a
one-dimensional function f (x) by expanding the function f (x+∆x) into a
Taylor series about x, letting ∆x = 1, and keeping only the linear terms. The
result is the digital difference

∂ f
∂x

= f ′(x) = f (x+1)− f (x) (4.1)

We used a partial derivative here for consistency in notation when we
consider an image function of two variables, f (x,y), at which time we will be

102

4.2 Point, Line, and Edge Detection

dealing with partial derivatives along the two spatial axes. Clearly, ∂ f/∂x =
d f/dx when f is a function of only one variable.

We obtain an expression for the second derivative by differentiating Equa-
tion 4.1 with respect to x :

∂ 2 f
∂x2 =

∂ f ′(x)
∂x

= f ′(x+1)− f ′(x)

= f (x+2)− f (x+1)− f (x+1)+ f (x)

= f (x+2)−2 f (x+1)+ f (x)

where the second line follows from Eq. 4.1. This expansion is about point
x+1. Our interest is on the second derivative about point x, so we subtract 1
from the arguments in the preceding expression and obtain the result

∂ 2 f
∂x2 = f ′′(x) = f (x+1)+ f (x−1)−2 f (x) (4.2)

It easily is verified that Eqs. 4.1 and 4.2 satisfy the conditions stated at
the beginning of this section regarding derivatives of the first and second
order. To illustrate this, and also to highlight the fundamental similarities
and differences between first- and second-order derivatives in the context of
image processing, consider Fig. 4.2.

Figure 4.2(a) shows an image that contains various solid objects, a line,
and a single noise point. Figure 4.2(b) shows a horizontal intensity profile
(scan line) of the image approximately through its center, including the
isolated point. Transitions in intensity between the solid objects and the
background along the scan line show two types of edges: ramp edges (on the
left) and step edges (on the right). As we discuss later, intensity transitions
involving thin objects such as lines often are referred to as roof edges. Figure
4.2(c) shows a simplification of the profile, with just enough points to make
it possible for us to analyze numerically how the first- and second-order
derivatives behave as they encounter a noise point, a line, and the edges of
objects. In this simplified diagram the transition in the ramp spans four pixels,

103

Image Segmentation

the noise point is a single pixel, the line is three pixels thick, and the transition
of the intensity step takes place between adjacent pixels. The number of
intensity levels was limited to eight for simplicity.

Consider the properties of the first and second derivatives as we traverse
the profile from left to right. Initially, we note that the first-order derivative is
nonzero at the onset and along the entire intensity ramp, while the second-
order derivative is nonzero only at the onset and end of the ramp. Because
edges of digital images resemble this type of transition, we conclude that
first-order derivatives produce "thick" edges and second-order derivatives
much finer ones. Next we encounter the isolated noise point. Here, the
magnitude of the response at the point is much stronger for the second- than
for the first-order derivative. This is not unexpected, because a second-order
derivative is much more aggressive than a first-order derivative in enhancing
sharp changes. Thus, we can expect second-order derivatives to enhance fine
detail (including noise) much more than first-order derivatives. The line in
this example is rather thin, so it too is fine detail, and we see again that the
second derivative has a larger magnitude. Finally, note in both the ramp and
step edges that the second derivative has opposite signs (negative to positive
or positive to negative) as it transitions into and out of an edge. This "double-
edge" effect is an important characteristic that, can be used to locate edges.
The sign of the second derivative is used also to determine whether an edge
is a transition from light to dark (negative second derivative) or from dark to
light (positive second derivative), where the sign is observed as we move into
the edge.

In summary, we arrive at the following conclusions: (1) First-order deriva-
tives generally produce thicker edges in an image. (2) Second-order deriva-
tives have a stronger response to fine detail, such as thin lines, isolated points,
and noise. (3) Second-order derivatives produce a double-edge response at
ramp and step transitions in intensity. (4) The sign of the second derivative

104

4.2 Point, Line, and Edge Detection

Figure 4.2: (a) An image. (b) Horizontal intensity profile through the center
of the image, including the isolated noise point. (c) Simplified profile (the
points are joined by dashes for clarity). The image strip corresponds to the

intensity profile, and the numbers in the boxes are the intensity values of the
dots shown in the profile.

105

Image Segmentation

Figure 4.3: A general 3×3 spatial filter mask.

can be used to determine whether a transition into an edge is from light to
dark or dark to light.

The approach of choice for computing first and second derivatives at every
pixel location in an image is to use spatial filters. For the 3×3 filter mask
in Fig. 4.3, the procedure is to compute the sum of products of the mask
coefficients with the intensity values in the region encompassed by the mask.
That is, the response of the mask at the center point of the region is

R = w1z1 +w2z2 + · · ·+w9z9 =
9

∑
k=1

wkzk (4.3)

where zk is the intensity of the pixel whose spatial location corresponds to
the location of the k th coefficient in the mask. In other words, computation of
derivatives based on spatial masks is spatial filtering of an image with those
masks, as explained in those sections.

106

4.2 Point, Line, and Edge Detection

4.2.2 Detection of Isolated Points

Based on the conclusions reached in the preceding section, we know that
point detection should be based on the second derivative, which implies using
the Laplacian:

∇
2 f (x,y) =

∂ 2 f
∂x2 +

∂ 2 f
∂y2 (4.4)

where the partials are obtained using Eq. (4.2):

∂ 2 f (x,y)
∂x2 = f (x+1,y)+ f (x−1,y)−2 f (x,y) (4.5)

and

∂ 2 f (x,y)
∂y2 = f (x,y+1)+ f (x,y−1)−2 f (x,y) (4.6)

The Laplacian is then

∇
2 f (x,y) = f (x+1,y)+ f (x−1,y)+ f (x,y+1)+ f (x,y−1)−4 f (x,y)

(4.7)

As explained, this expression can be implemented using a specific mask.
Also, as explained in that section, we can extend Eq. 4.7 to include the
diagonal terms. Using the Laplacian mask in Fig. 4.4 (a), we say that a point
has been detected at the location (x,y) on which the mask is centered if the
absolute value of the response of the mask at that point exceeds a specified
threshold. Such points are labeled 1 in the output image and all others are
labeled 0 , thus producing a binary image. In other words, the output is

107

Image Segmentation

obtained using the following expression:

g(x,y) =

1 if |R(x,y)| ≥ T

0 otherwise
(4.8)

where g is the output image, T is a non-negative threshold, and R is given
by Eq. (4.3). This formulation simply measures the weighted differences
between a pixel and its 8 -neighbors. Intuitively, the idea is that the intensity
of an isolated point will be quite different from its surroundings and thus will
be easily detectable by this type of mask. The only differences in intensity
that are considered of interest are those large enough (as determined by T)
to be considered isolated points. Note that, as usual for a derivative mask,
the coefficients sum to zero, indicating that the mask response will be zero in
areas of constant intensity.

We illustrate segmentation of isolated points in an image with the aid of
Fig. 4.4(b), which is an X-ray image of a turbine blade from a jet engine. The
blade has a porosity in the upper-right quadrant of the image, and there is a
single black pixel embedded within the porosity. Figure 4.4(c) is the result of
applying the point detector mask to the X-ray image, and Fig. 4.4(d) shows
the result of using Eq. (4.8) with T equal to 90% of the highest absolute
pixel value of the image in Fig. 4.4(c). The single pixel is clearly visible
in this image (the pixel was enlarged manually to enhance its visibility).
This type of detection process is rather specialized, because it is based on
abrupt intensity changes at single-pixel locations that are surrounded by
a homogeneous background in the area of the detector mask. When this
condition is not satisfied, other methods discussed in this chapter are more
suitable for detecting intensity changes.

108

4.2 Point, Line, and Edge Detection

Figure 4.4: (a) Point detection (Laplacian) mask. (b) X-ray image of turbine
blade with a porosity. The porosity contains a single black pixel. (c) Result
of convolving the mask with the image. (d) Result of using Eq. (4.8) showing

a single point (the point was enlarged to make it easier to see).

4.2.3 Line Detection

The next level of complexity is line detection. Based on the discussion
in Section 4.2.1, we know that for line detection we can expect second
derivatives to result in a stronger response and to produce thinner lines than
first derivatives. Thus, we can use the Laplacian mask in Fig. 4.4(a) for
line detection also, keeping in mind that the double-line effect of the second
derivative must be handled properly. The following example illustrates the
procedure.

Using the Laplacian for line detection:

Figure 4.5(a) shows a 486×486 (binary) portion of a wire-bond mask for an
electronic circuit, and Fig. 4.5(b) shows its Laplacian image. Because the

109

Image Segmentation

Figure 4.5: (a) Original image. (b) Laplacian image; the magnified section
shows the positive/negative double-line effect characteristic of the Laplacian.

(c) Absolute value of the Laplacian. (d) Positive values of the Laplacian.

Laplacian image contains negative values, scaling is necessary for display. As
the magnified section shows, mid gray represents zero, darker shades of gray
represent negative values, and lighter shades are positive. The double-line
effect is clearly visible in the magnified region.

At first, it might appear that the negative values can be handled simply
by taking the absolute value of the Laplacian image. However, as Fig. 4.5(c)
shows, this approach doubles the thickness of the lines. A more suitable
approach is to use only the positive values of the Laplacian (in noisy situa-

110

4.2 Point, Line, and Edge Detection

tions we use the values that exceed a positive threshold to eliminate random
variations about zero caused by the noise). As the image in Fig. 4.5(d) shows,
this approach results in thinner lines, which are considerably more useful.
Note in Figs. 4.5(b) through (d) that when the lines are wide with respect to
the size of the Laplacian mask, the lines are separated by a zero "valley."

This is not unexpected. For example, when the 3× 3 filter is centered
on a line of constant intensity 5 pixels wide, the response will be zero, thus
producing the effect just mentioned. When we talk about line detection, the
assumption is that lines are thin with respect to the size of the detector. Lines
that do not satisfy this assumption are best treated as regions and handled by
the edge detection methods discussed later in this section.

The Laplacian detector in Fig. 4.4(a) is isotropic, so its response is
independent of direction (with respect to the four directions of the 3× 3
Laplacian mask: vertical, horizontal, and two diagonals). Often, interest lies
in detecting lines in specified directions. Consider the masks in Fig. 4.6.
Suppose that an image with a constant background and containing various
lines (oriented at 0◦, ±45◦, and 90◦) is filtered with the first mask. The
maximum responses would occur at image locations in which a horizontal
line passed through the middle row of the mask. This is easily verified by
sketching a simple array of 1 s with a line of a different intensity (say, 5 s)
running horizontally through the array. A similar experiment would reveal
that the second mask in Fig. 4.6 responds best to lines oriented at +45◦; the
third mask to vertical lines; and the fourth mask to lines in the −45◦ direction.
The preferred direction of each mask is weighted with a larger coefficient
(i.e., 2) than other possible directions. The coefficients in each mask sum to
zero, indicating a zero response in areas of constant intensity.

Let R1,R2,R3, and R4 denote the responses of the masks in Fig. 10.6,
from left to right, where the Rs are given by Eq. (4.3). Suppose that an
image is filtered (individually) with the four masks. If, at a given point in

111

Image Segmentation

Figure 4.6: Line detection masks.

the image, |Rk| >
∣∣R j

∣∣, for all j ̸= k, that point is said to be more likely
associated with a line in the direction of mask k. For example, if at a point in
the image, |R1|>

∣∣R j
∣∣ for j = 2,3,4, that particular point is said to be more

likely associated with a horizontal line. Alternatively, we may be interested
in detecting lines in a specified direction. In this case, we would use the
mask associated with that direction and threshold its output, as in Eq. (4.8).
In other words, if we are interested in detecting all the lines in an image in
the direction defined by a given mask, we simply run the mask through the
image and threshold the absolute value of the result. The points that are left
are the strongest responses which, for lines 1 pixel thick, correspond closest
to the direction defined by the mask. The following example illustrates this
procedure.

4.2.4 Edge Models

Edge detection is the approach used most frequently for segmenting images
based on abrupt (local) changes in intensity. We begin by introducing several
ways to model edges and then discuss a number of approaches for edge
detection.

Edge models are classified according to their intensity profiles. A step
edge involves a transition between two intensity levels occurring ideally over
the distance of 1 pixel. Figure 4.7(a) shows a section of a vertical step edge

112

4.2 Point, Line, and Edge Detection

and a horizontal intensity profile through the edge. Step edges occur, for
example, in images generated by a computer for use in areas such as solid
modeling and animation. These clean, ideal edges can occur over the distance
of 1 pixel, provided that no additional processing (such as smoothing) is used
to make them look "real." Digital step edges are used frequently as edge
models in algorithm development.

In practice, digital images have edges that are blurred and noisy, with
the degree of blurring determined principally by limitations in the focusing
mechanism (e.g., lenses in the case of optical images), and the noise level
determined principally by the electronic components of the imaging system.
In such situations, edges are more closely modeled as having an intensity
ramp profile, such as the edge in Fig. 4.7(b). The slope of the ramp is
inversely proportional to the degree of blurring in the edge. In this model, we
no longer have a thin (1 pixel thick) path. Instead, an edge point now is any
point contained in the ramp, and an edge segment would then be a set of such
points that are connected.

Figure 4.7: From left to right, models (ideal representations) of a step, a
ramp, and a roof edge, and their corresponding intensity profiles.

A third model of an edge is the so-called roof edge, having the characteris-
tics illustrated in Fig. 4.7(c). Roof edges are models of lines through a region,
with the base (width) of a roof edge being determined by the thickness and
sharpness of the line. In the limit, when its base is 1 pixel wide, a roof edge is
really nothing more than a 1 -pixel-thick line running through a region in an
image. Roof edges arise, for example, in range imaging, when thin objects

113

Image Segmentation

(such as pipes) are closer to the sensor than their equidistant background
(such as walls). The pipes appear brighter and thus create an image similar
to the model in Fig. 4.7(c). As mentioned earlier, other areas in which roof
edges appear routinely are in the digitization of line drawings and also in
satellite images, where thin features, such as roads, can be modeled by this
type of edge.

Figure 4.8(a) shows the image from which the segment in Fig. 4.7(b)
was extracted. Figure 4.8(b) shows a horizontal intensity profile. This figure
shows also the first and second derivatives of the intensity profile. As in
the discussion in Section 4.2.1, moving from left to right along the intensity
profile, we note that the first derivative is positive at the onset of the ramp and
at points on the ramp, and it is zero in areas of constant intensity. The second
derivative is positive at the beginning of the ramp, negative at the end of the
ramp, zero at points on the ramp, and zero at points of constant intensity.
The signs of the derivatives just discussed would be reversed for an edge that
transitions from light to dark. The intersection between the zero intensity axis
and a line extending between the extrema of the second derivative marks a
point called the zero crossing of the second derivative.

We conclude from these observations that the magnitude of the first
derivative can be used to detect the presence of an edge at a point in an image.
Similarly, the sign of the second derivative can be used to determine whether
an edge pixel lies on the dark or light side of an edge. We note two additional
properties of the second derivative around an edge: (1) it produces two values
for every edge in an image (an undesirable feature); and (2) its zero crossings
can be used for locating the centers of thick edges, as we show later in this
section. Some edge models make use of a smooth transition into and out
of the ramp. However, the conclusions reached using those models are the
same as with an ideal ramp, and working with the latter simplifies theoretical
formulations. Finally, although attention thus far has been limited to a 1-D
horizontal profile, a similar argument applies to an edge of any orientation

114

4.2 Point, Line, and Edge Detection

Figure 4.8: (a) Two regions of constant intensity separated by an ideal
vertical ramp edge. (b) Detail near the edge, showing a horizontal intensity

profile, together with its first and second derivatives.

in an image. We simply define a profile perpendicular to the edge direction
at any desired point and interpret the results in the same manner as for the
vertical edge just discussed.

We conclude this section by noting that there are three fundamental steps
performed in edge detection:

1. Image smoothing for noise reduction. The need for this step is amply
illustrated by the results in the second and third columns of Fig. 4.9.

2. Detection of edge points. As mentioned earlier, this is a local operation
that extracts from an image all points that are potential candidates to
become edge points.

3. Edge localization. The objective of this step is to select from the
candidate edge points only the points that are true members of the set

115

Image Segmentation

of points comprising an edge. The remainder of this section deals with
techniques for achieving these objectives.

4.2.5 Basic Edge Detection

As illustrated in the previous section, detecting changes in intensity for the
purpose of finding edges can be accomplished using first- or second-order
derivatives. We discuss first-order derivatives in this section and work with
second-order derivatives in Section 4.2.6.

The image gradient and its properties

The tool of choice for finding edge strength and direction at location (x,y) of
an image, f , is the gradient, denoted by ∇ f , and defined as the vector

∇ f ≡ grad(f)≡

[
gx

gy

]
=

[
∂ f
∂x
∂ f
∂y

]
(4.9)

This vector has the important geometrical property that it points in the
direction of the greatest rate of change of f at location (x,y).

The magnitude (length) of vector ∇ f , denoted as M(x,y), where

M(x,y) = mag(∇ f) =
√

g2
x +g2

y (4.10)

is the value of the rate of change in the direction of the gradient vector.
Note that gx,gy, and M(x,y) are images of the same size as the original,
created when x and y are allowed to vary over all pixel locations in f . It is
common practice to refer to the latter image as the gradient image, or simply
as the gradient when the meaning is clear. The summation, square, and square
root operations are array operations.

The direction of the gradient vector is given by the angle

116

4.2 Point, Line, and Edge Detection

Figure 4.9: First column: Images and intensity profiles of a ramp edge
corrupted by random Gaussian noise of zero mean and standard deviations of

0.0,0.1,1.0, and 10.0 intensity levels, respectively. Second column:
First-derivative images and intensity profiles. Third column:

Second-derivative images and intensity profiles.

117

Image Segmentation

α(x,y) = tan−1
[

gy

gx

]
(4.11)

measured with respect to the x-axis. As in the case of the gradient image,
α(x,y) also is an image of the same size as the original created by the array
division of image gy by image gx. The direction of an edge at an arbitrary
point (x,y) is orthogonal to the direction, α(x,y), of the gradient vector at the
point.

Figure 4.11(a) shows a zoomed section of an image containing a straight
edge segment. Each square shown corresponds to a pixel, and we are inter-
ested in obtaining the strength and direction of the edge at the point high-
lighted with a box. The pixels in gray have value 0 and the pixels in white
have value 1 . We show following this example that an approach for com-
puting the derivatives in the x - and y-directions using a 3×3 neighborhood
centered about a point consists simply of subtracting the pixels in the top
row of the neighborhood from the pixels in the bottom row to obtain the
partial derivative in the x-direction. Similarly, we subtract the pixels in the
left column from the pixels in the right column to obtain the partial derivative
in the y-direction. It then follows, using these differences as our estimates of
the partials, that ∂ f/∂x =−2 and ∂ f/∂y = 2 at the point in question. Then,

∇ f =

[
gx

gy

]
=

[
∂ f
∂x
∂ f
∂y

]
=

[
−2
2

]
from which we obtain M(x,y) = 2

√
2 at that point. Similarly, the direction

of the gradient vector at the same point follows from Eq. (4.11): α(x,y) =
tan−1 (gy/gx) = −45◦, which is the same as 135◦ measured in the positive
direction with respect to the x-axis. Figure 4.11(b) shows the gradient vector
and its direction angle.

Figure 4.11(c) illustrates the important fact mentioned earlier that the edge
at a point is orthogonal to the gradient vector at that point. So the direction
angle of the edge in this example is α −90◦ = 45◦. All edge points in Fig.

118

4.2 Point, Line, and Edge Detection

Figure 4.10: Using the gradient to determine edge strength and direction at a
point. Note that the edge is perpendicular to the direction of the gradient

vector at the point where the gradient is computed. Each square in the figure
represents one pixel.

4.11(a) have the same gradient, so the entire edge segment is in the same
direction. The gradient vector sometimes is called the edge normal. When
the vector is normalized to unit length by dividing it by its magnitude, the
resulting vector is commonly referred to as the edge unit normal.

Gradient operators

Obtaining the gradient of an image requires computing the partial derivatives
∂ f/∂x and ∂ f/∂y at every pixel location in the image. We are dealing with
digital quantities, so a digital approximation of the partial derivatives over a
neighborhood about a point is required. From Section 4.2.1 we know that

gx =
∂ f (x,y)

∂x
= f (x+1,y)− f (x,y) (4.12)

and

gy =
∂ f (x,y)

∂y
= f (x,y+1)− f (x,y) (4.13)

These two equations can be implemented for all pertinent values of x and
y by filtering f (x,y) with the 1-D masks in Fig. 4.11.

119

Image Segmentation

Figure 4.11: One-dimensional masks used to implement Eqs. (4.12) & (4.13).

When diagonal edge direction is of interest, we need a 2-D mask. The
Roberts cross-gradient operators are one of the earliest attempts to use 2-D
masks with a diagonal preference. Consider the 3×3 region in Fig.4.12(a).
The Roberts operators are based on implementing the diagonal differences

gx =
∂ f
∂x

= (z9 − z5) (4.14)

and

gy =
∂ f
∂y

= (z8 − z6) (4.15)

These derivatives can be implemented by filtering an image with the
masks in Figs. 4.12(b) and (c).

Masks of size 2× 2 are simple conceptually, but they are not as useful
for computing edge direction as masks that are symmetric about the center
point, the smallest of which are of size 3×3. These masks take into account
the nature of the data on opposite sides of the center point and thus carry
more information regarding the direction of an edge. The simplest digital
approximations to the partial derivatives using masks of size 3×3 are given
by

gx =
∂ f
∂x

= (z7 + z8 + z9)− (z1 + z2 + z3) (4.16)

120

4.2 Point, Line, and Edge Detection

Figure 4.12: A 3×3 region of an image (the z ’s are intensity values) and
various masks used to compute the gradient at the point labeled z5.

121

Image Segmentation

and

gy =
∂ f
∂y

= (z3 + z6 + z9)− (z1 + z4 + z7) (4.17)

In these formulations, the difference between the third and first rows of the
3×3 region approximates the derivative in the x-direction, and the difference
between the third and first columns approximate the derivate in the y-direction.
Intuitively, we would expect these approximations to be more accurate than
the approximations obtained using the Roberts operators. Equations (4.16)
and (4.17) can be implemented over an entire image by filtering f with the two
masks in Figs. 4.12(d) and (e). These masks are called the Prewitt operators.

A slight variation of the preceding two equations uses a weight of 2 in the
center coefficient:

gx =
∂ f
∂x

= (z7 +2z8 + z9)− (z1 +2z2 + z3) (4.18)

and

gy =
∂ f
∂y

= (z3 +2z6 + z9)− (z1 +2z4 + z7) (4.19)

It can be shown that using a 2 in the center location provides image
smoothing. Figures 4.12(f) and (g) show the masks used to implement Eqs.
(4.18) and (4.19). These masks are called the Sobel operators.

The Prewitt masks are simpler to implement than the Sobel masks, but,
the slight computational difference between them typically is not an issue.
The fact that the Sobel masks have better noise-suppression (smoothing)
characteristics makes them preferable because, as mentioned in the previous
section, noise suppression is an important issue when dealing with derivatives.
Note that the coefficients of all the masks in Fig. 4.12 sum to zero, thus giving
a response of zero in areas of constant intensity, as expected of a derivative
operator.

122

4.2 Point, Line, and Edge Detection

Figure 4.13: Prewitt and Sobel masks for detecting diagonal edges.

The masks just discussed are used to obtain the gradient components gx

and gy at every pixel location in an image. These two partial derivatives are
then used to estimate edge strength and direction. Computing the magnitude
of the gradient requires that gx and gy be combined in the manner shown in
Eq. (4.10). However, this implementation is not always desirable because of
the computational burden required by squares and square roots. An approach
used frequently is to approximate the magnitude of the gradient by absolute
values:

M(x,y)≈ |gx|+
∣∣gy

∣∣ (4.20)

This equation is more attractive computationally, and it still preserves
relative changes in intensity levels. The price paid for this advantage is that
the resulting filters will not be isotropic (invariant to rotation) in general.
However, this is not an issue when masks such as the Prewitt and Sobel masks
are used to compute gx and gy, because these masks give isotropic results

123

Image Segmentation

only for vertical and horizontal edges. Results would be isotropic only for
edges in those two directions, regardless of which of the two equations is
used. In addition, Eqs. (4.10) and (4.20) give identical results for vertical and
horizontal edges when the Sobel or Prewitt masks are used.

It is possible to modify the 3× 3 masks in Fig. 4.12 so that they have
their strongest responses along the diagonal directions. Figure 4.13 shows
the two additional Prewitt and Sobel masks needed for detecting edges in the
diagonal directions.

Illustration of the 2-D gradient magnitude and angle.

Figure 4.14 illustrates the absolute value response of the two components
of the gradient, |gx| and

∣∣gy
∣∣, as well as the gradient image formed from

the sum of these two components. The directionality of the horizontal and
vertical components of the gradient is evident in Figs. 4.14(b) and (c). Note,
for example, how strong the roof tile, horizontal brick joints, and horizontal
segments of the windows are in Fig. 4.14(b) compared to other edges. By
contrast, Fig. 4.14(c) favors features such as the vertical components of
the façade and windows. It is common terminology to use the term edge
map when referring to an image whose principal features are edges, such as
gradient magnitude images. The intensities of the image in Fig. 4.14(a) were
scaled to the range [0,1]. We use values in this range to simplify parameter
selection in the various methods for edge detection discussed in this section.

Figure 4.15 shows the gradient angle image computed using Eq. (4.11). In
general, angle images are not as useful as gradient magnitude images for edge
detection, but they do complement the information extracted from an image
using the magnitude of the gradient. For instance, the constant intensity areas
in Fig. 4.14(a), such as the front edge of the sloping roof and top horizontal
bands of the front wall, are constant in Fig. 4.15, indicating that the gradient
vector direction at all the pixel locations in those regions is the same.

124

4.2 Point, Line, and Edge Detection

Figure 4.14: (a) Original image of size 834×1114 pixels, with intensity
values scaled to the range [0,1]. (b) |gx|, the component of the gradient in the
x-direction, obtained using the Sobel mask in Fig. 4.12(f) to filter the image.

(c)
∣∣gy

∣∣, obtained using the mask in Fig. 4.12(g). (d) The gradient image,
|gx|+

∣∣gy
∣∣.

The original image in Fig. 4.14(a) is of reasonably high resolution (834×
1114 pixels), and at the distance the image was acquired, the contribution
made to image detail by the wall bricks is significant. This level of fine detail
often is undesirable in edge detection because it tends to act as noise, which
is enhanced by derivative computations and thus complicates detection of
the principal edges in an image. One way to reduce fine detail is to smooth
the image. Figure 4.16 shows the same sequence of images as in Fig. 4.14,
but with the original image smoothed first using a 5× 5 averaging filter
(see Section 3.5 regarding smoothing filters). The response of each mask
now shows almost no contribution due to the bricks, with the results being
dominated mostly by the principal edges.

125

Image Segmentation

Figure 4.15: Gradient angle image computed using Eq. (4.11). Areas of
constant intensity in this image indicate that the direction of the gradient

vector is the same at all the pixel locations in those regions.

It is evident in Figs. 4.14 and 4.16 that the horizontal and vertical Sobel
masks do not differentiate between edges oriented in the ±45◦ directions. If
it is important to emphasize edges along the diagonal directions, then one
of the masks in Fig. 4.13 should be used. Figures 4.17(a) and (b) show
the absolute responses of the 45◦ and −45◦ Sobel masks, respectively. The
stronger diagonal response of these masks is evident in these figures. Both
diagonal masks have similar response to horizontal and vertical edges but, as
expected, their response in these directions is weaker than the response of the
horizontal and vertical masks, as discussed earlier.

Combining the gradient with thresholding

The results in Fig. 4.16 show that edge detection can be made more selective
by smoothing the image prior to computing the gradient. Another approach
aimed at achieving the same basic objective is to threshold the gradient
image. For example, Fig. 4.18(a) shows the gradient image from Fig. 4.14(d)

126

4.2 Point, Line, and Edge Detection

Figure 4.16: Same sequence as in Fig. 4.14, but with the original image
smoothed using a 5×5 averaging filter prior to edge detection.

Figure 4.17: Diagonal edge detection. (a) Result of using the mask in Fig.
4.12 (b) Result of using the mask in Fig. 4.12(d).The input image in both

cases was Fig. 4.16(a).

thresholded, in the sense that pixels with values greater than or equal to 33%
of the maximum value of the gradient image are shown in white, while pixels

127

Image Segmentation

Figure 4.18: (a) Thresholded version of the image in Fig. 4.14(d), with the
threshold selected as 33% of the highest value in the image; this threshold
was just high enough to eliminate most of the brick edges in the gradient

image. (b) Thresholded version of the image in Fig. 4.16(d), obtained using a
threshold equal to 33% of the highest value in that image.

below the threshold value are shown in black. Comparing this image with Fig.
4.16(d), we see that there are fewer edges in the thresholded image, and that
the edges in this image are much sharper (see, for example, the edges in the
roof tile). On the other hand, numerous edges, such as the 45◦ line defining
the far edge of the roof, are broken in the thresholded image.

When interest lies both in highlighting the principal edges and on main-
taining as much connectivity as possible, it is common practice to use both
smoothing and thresholding. Figure 4.18(b) shows the result of thresholding
Fig. 4.16(d), which is the gradient of the smoothed image. This result shows
a reduced number of broken edges; for instance, compare the 45° edges in
Figs. 4.18(a) and (b). Of course, edges whose intensity values were severely
attenuated due to blurring (e.g., the edges in the tile roof) are likely to be
totally eliminated by thresholding.

4.2.6 More Advanced Techniques for Edge Detection

The edge-detection methods discussed in the previous section are based
simply on filtering an image with one or more masks, with no provisions

128

4.2 Point, Line, and Edge Detection

being made for edge characteristics and noise content. In this section, we
discuss more advanced techniques that make an attempt to improve on simple
edge detection methods by taking into account factors such as image noise
and the nature of edges themselves.

The Marr-Hildreth edge detector

One of the earliest successful attempts at incorporating more sophisticated
analysis into the edge-finding process is attributed to Marr and Hildreth. Edge-
detection methods in use at the time were based on using small operators
(such as the Sobel masks), as discussed in the previous section. Marr and
Hildreth argued (1) that intensity changes are not independent of image scale
and so their detection requires the use of operators of different sizes; and (2)
that a sudden intensity change will give rise to a peak or trough in the first
derivative or, equivalently, to a zero crossing in the second derivative.

These ideas suggest that an operator used for edge detection should have
two salient features. First and foremost, it should be a differential operator
capable of computing a digital approximation of the first or second derivative
at every point in the image. Second, it should be capable of being "tuned" to
act at any desired scale, so that large operators can be used to detect blurry
edges and small operators to detect sharply focused fine detail.

Marr and Hildreth argued that the most satisfactory operator fulfilling
these conditions is the filter ∇2G where, ∇2 is the Laplacian operator,(
∂ 2/∂x2 +∂ 2/∂y2), and G is the 2-D Gaussian function

G(x,y) = e−
x2+y2

2σ2 (4.21)

with standard deviation σ (sometimes σ is called the space constant). To find
an expression for ∇2G we perform the following differentiations:

129

Image Segmentation

∇
2G(x,y) =

∂ 2G(x,y)
∂x2 +

∂ 2G(x,y)
∂y2 (4.22)

=
∂

∂x

[
−x
σ2 e−

x2+y2

2σ2

]
+

∂

∂y

[
−y
σ2 e−

x2+y2

2σ2

]
(4.23)

=

[
x2

σ4 −
1

σ2

]
e−

x2+y2

2σ2 +

[
y2

σ4 −
1

σ2

]
e−

x2+y2

2σ2 (4.24)

Collecting terms gives the final expression:

∇
2G(x,y) =

[
x2 + y2 −2σ2

σ4

]
e−

x2+y2

2σ2 (4.25)

This expression is called the Laplacian of a Gaussian (LoG).

Figures 4.19(a) through (c) show a 3-D plot, image, and cross section of
the negative of the LoG function (note that the zero crossings of the LoG
occur at x2 + y2 = 2σ2, which defines a circle of radius

√
2σ centered on the

origin). Because of the shape illustrated in Fig. 4.19(a), the LoG function
sometimes is called the Mexican hat operator. Figure 4.19(d) shows a 5×5
mask that approximates the shape in Fig. 4.19(a) (in practice we would use
the negative of this mask). This approximation is not unique. Its purpose is
to capture the essential shape of the LoG function; in terms of Fig. 4.19(a),
this means a positive, central term surrounded by an adjacent, negative region
whose values increase as a function of distance from the origin, and a zero
outer region. The coefficients must sum to zero so that the response of the
mask is zero in areas of constant intensity.

Masks of arbitrary size can be generated by sampling Eq. (4.25) and
scaling the coefficients so that they sum to zero. A more effective approach
for generating a LoG filter is to sample Eq. (4.21) to the desired n×n size
and then convolve the resulting array with a Laplacian mask, such as the
mask in Fig. 4.4(a). Because convolving an image array with a mask whose

130

4.2 Point, Line, and Edge Detection

Figure 4.19: (a) Three-dimensional plot of the negative of the LoG. (b)
Negative of the LoG displayed as an image. (c) Cross section of (a) showing

zero crossings. (d) 5×5 mask approximation to the shape in (a). The
negative of this mask would be used in practice.

coefficients sum to zero yields a result whose elements also sum to zero, this
approach automatically satisfies the requirement that the sum of the LoG filter
coefficients be zero. We discuss the issue of selecting the size of LoG filter
later in this section.

There are two fundamental ideas behind the selection of the operator
∇2G. First, the Gaussian part of the operator blurs the image, thus reducing
the intensity of structures (including noise) at scales much smaller than σ .
The Gaussian function is smooth in both the spatial and frequency domains,
and is thus less likely to introduce artifacts (e.g., ringing) not present in the
original image. The other idea concerns ∇2, the second derivative part of the

131

Image Segmentation

filter. Although first derivatives can be used for detecting abrupt changes in
intensity, they are directional operators. The Laplacian, on the other hand,
has the important advantage of being isotropic (invariant to rotation), which
not only corresponds to characteristics of the human visual system but also
responds equally to changes in intensity in any mask direction, thus avoiding
having to use multiple masks to calculate the strongest response at any point
in the image.

The Marr-Hildreth algorithm consists of convolving the LoG filter with
an input image, f (x,y),

g(x,y) =
[
∇

2G(x,y)
]
⋆ f (x,y) (4.26)

and then finding the zero crossings of g(x,y) to determine the locations of
edges in f (x,y). Because these are linear processes, Eq. (4.26) can be written
also as

g(x,y) = ∇
2[G(x,y)⋆ f (x,y)] (4.27)

indicating that we can smooth the image first with a Gaussian filter and
then compute the Laplacian of the result. These two equations give identical
results.

The Marr-Hildreth edge-detection algorithm may be summarized as fol-
lows:

1. Filter the input image with an n×n Gaussian lowpass filter obtained
by sampling Eq. (4.21).

2. Compute the Laplacian of the image resulting from Step 1 using, for
example, the 3×3 mask in Fig. 4.4(a). [Steps 1 and 2 implement Eq.
(4.27).]

3. Find the zero crossings of the image from Step 2.

To specify the size of the Gaussian filter, recall that about 99.7% of the
volume under a 2-D Gaussian surface lies between ±3σ about the mean.

132

4.2 Point, Line, and Edge Detection

Thus, as a rule of thumb, the size of an n×n LoG discrete filter should be
such that n is the smallest odd integer greater than or equal to 6σ . Choosing
a filter mask smaller than this will tend to "truncate" the LoG function, with
the degree of truncation being inversely proportional to the size of the mask;
using a larger mask would make little difference in the result.

One approach for finding the zero crossings at any pixel, p, of the filtered
image, g(x,y), is based on using a 3×3 neighborhood centered at p. A zero
crossing at p implies that the signs of at least two of its opposing neighboring
pixels must differ. There are four cases to test: left/right, up/down, and the
two diagonals. If the values of g(x,y) are being compared against a threshold
(a common approach), then not only must the signs of opposing neighbors
be different, but the absolute value of their numerical difference must also
exceed the threshold before we can call p a zero-crossing pixel.

Zero crossings are the key feature of the Marr-Hildreth edge-detection
method. The approach discussed in the previous paragraph is attractive
because of its simplicity of implementation and because it generally gives
good results. If the accuracy of the zero-crossing locations found using this
method is inadequate in a particular application, then a technique proposed
by Huertas and Medioni for finding zero crossings with subpixel accuracy
can be employed.

A procedure used sometimes to take into account the fact mentioned ear-
lier that intensity changes are scale dependent is to filter an image with various
values of σ . The resulting zero-crossings edge maps are then combined by
keeping only the edges that are common to all maps. This approach can yield
useful information, but, due to its complexity, it is used in practice mostly as
a design tool for selecting an appropriate value of σ to use with a single filter.

Marr and Hildreth noted that it is possible to approximate the LoG filter
in Eq. (4.25) by a difference of Gaussians (DoG):

DoG(x,y) =
1

2πσ2
1

e
− x2+y2

2σ2
1 − 1

2πσ2
2

e
− x2+y2

2σ2
2 (4.28)

133

Image Segmentation

with σ1 > σ2. Experimental results suggest that certain "channels" in the
human vision system are selective with respect to orientation and frequency,
and can be modeled using Eq. (4.28) with a ratio of standard deviations
of 1.75:1. Marr and Hildreth suggested that using the ratio 1.6:1 preserves
the basic characteristics of these observations and also provides a closer
"engineering" approximation to the LoG function. To make meaningful
comparisons between the LoG and DoG, the value of σ for the LoG must be
selected as in the following equation so that the LoG and DoG have the same
zero crossings:

σ
2 =

σ2
1 σ2

2
σ2

1 −σ2
2

ln
[

σ2
1

σ2
2

]
(4.29)

Although the zero crossings of the LoG and DoG will be the same when
this value of σ is used, their amplitude scales will be different. We can make
them compatible by scaling both functions so that they have the same value
at the origin.

Both the LoG and the DoG filtering operations can be implemented with
1-D convolutions instead of using 2-D convolutions directly. For an image of
size M×N and a filter of size n×n doing so reduces the number of multipli-
cations and additions for each convolution from being proportional to n2MN
for 2-D convolutions to being proportional to nMN for 1-D convolutions.This
implementation difference is significant. For example, if n = 25, a 1-D im-
plementation will require on the order of 12 times fewer multiplication and
addition operations than using 2-D convolution.

4.3 Summary

Image segmentation is an essential preliminary step in most automatic picto-
rial pattern recognition and scene analysis applications. As indicated in the
previous sections, the choice of one segmentation technique over another is

134

4.3 Summary

dictated mostly by the peculiar characteristics of the problem being consid-
ered. The methods discussed in this chapter, although far from exhaustive,
are representative of techniques commonly used in practice.

Image segmentation is typically used to locate objects and boundaries
(lines, curves, etc.) in images. More precisely, image segmentation is the
process of assigning a label to every pixel in an image such that pixels with
the same label share certain characteristics.

135

	Table of Contents
	1 Introduction
	1.1 Overview
	1.2 What Is Digital Image Processing?
	1.3 Steps in Digital Image Processing
	1.4 Advantages and Disadvantages
	1.5 Summary

	2 Intensity Transformation and Spatial Filtering
	2.1 Background
	2.1.1 Intensity Transformations
	2.1.2 About the Examples in This Chapter

	2.2 Basic Intensity Transformation Functions
	2.2.1 Image Negatives
	2.2.2 Log Transformations
	2.2.3 Power-Law (Gamma) Transformations
	2.2.4 Piecewise-Linear Transformation Functions

	2.3 Histogram Processing
	2.3.1 Histogram Equalization
	2.3.2 Histogram Matching (Specification)

	2.4 Fundamentals of Spatial Filtering
	2.4.1 The Mechanics of Spatial Filtering
	2.4.2 Spatial Correlation and Convolution
	2.4.3 Vector Representation of Linear Filtering
	2.4.4 Generating Spatial Filter Masks

	2.5 Smoothing Spatial Filters
	2.5.1 Smoothing Linear Filters
	2.5.2 Order-Statistic (Nonlinear) Filters

	2.6 Sharpening Spatial Filters
	2.6.1 Foundation
	2.6.2 Using the Second Derivative for Image Sharpening-The Laplacian
	2.6.3 Using First-Order Derivatives for (Nonlinear) Image Sharpening-The Gradient

	3 Image Compression
	3.1 Fundamentals
	3.1.1 Coding Redundancy
	3.1.2 Spatial and Temporal Redundancy
	3.1.3 Irrelevant Information
	3.1.4 Measuring Image Information
	3.1.5 Fidelity Criteria
	3.1.6 Image Compression Models
	3.1.7 Image Formats and Compression Standards

	3.2 Some Basic Compression Methods
	3.2.1 Huffman Coding
	3.2.2 LZW Coding
	3.2.3 Run-Length Coding

	3.3 summary

	4 Image Segmentation
	4.1 Fundamentals
	4.2 Point, Line, and Edge Detection
	4.2.1 Background
	4.2.2 Detection of Isolated Points
	4.2.3 Line Detection
	4.2.4 Edge Models
	4.2.5 Basic Edge Detection
	4.2.6 More Advanced Techniques for Edge Detection

	4.3 Summary

