
Dr. Emad Ali Ahmed

SOFTWARE ENGINEERING

Contents

1. Introduction to Software Engineering…………………. 1

2. Software Processes………………………………………. 12

3. Software Requirements…………………………………. 25

4. System modeling………………………………………… 49

5. Architectural Design…………………………………….. 70

6. Design and implementation…………………………….. 79

7. Software Development Life Cycle (SDLC)…………….. 90

8. Software Requirements Specification (SRS)…………. 99

Software Engineering

Objectives.

understand what software engineering is and why it is important

By the end of this lecture, you will...

 Understand what software engineering is .

 Understand why software engineering is important .

 Know answers to key questions related to the software

engineering discipline.

1 Introduction to Software Engineering

Software Engineering

Preface

We can't run the modern world without software. National

infrastructures and utilities are controlled by computer-based systems

and most electrical products include a computer and controlling

software. Industrial manufacturing and distribution are completely

computerized, as is the financial system. Entertainment, including the

music industry, computer games, and film and television, is software

intensive. Therefore, software engineering is essential for the

functioning of national and inter- national societies.

Software systems are abstract and intangible. They are not constrained

by the properties of materials, governed by physical laws, or by

manufacturing processes. This simplifies software engineering, as

there are no natural limits to the potential of software. However,

because of the lack of physical constraints, software systems can

quickly become extremely complex, difficult to understand, and

expensive to change. There are many different types of software

systems, from simple embedded systems to complex, worldwide

information systems. It is pointless to look for universal notations,

methods, or techniques for software engineering because different

types of software require different approaches. Developing an

organizational information system is completely different from

developing a controller for a scientific instrument. Neither of these

systems has much in common with a graphics-intensive computer

Software Engineering

game. All of these applications need software engineering; they do not

all need the same software engineering techniques.

Software engineers can be rightly proud of their achievements. Of

course, we still have problems developing complex software but,

without software engineering, we would not have explored space,

would not have the Internet or modern telecommunications. All forms

of travel would be more dangerous and expensive. Software

engineering has contributed a great deal and I am convinced that its

contributions in the 21st century will be even greater.

Virtually all

countries depend

on complex

computer-based

systems.

Activity

Think about all the devices

and systems that you

encounter in your everyday

life which have software

controlling them…

List as many as you can

Software Engineering

Professional software development

Lots of people write programs. People in business write

spreadsheet programs to simplify their jobs, scientists and engineers

write programs to process their experimental data, and hobbyists write

programs for their own interest and enjoyment. However, the vast

majority of software development is a professional activity where

software is developed for specific business purposes, for inclusion in

other devices, or as software products such as information systems,

CAD systems, etc. Professional software, intended for use by someone

apart from its developer, is usually developed by teams rather than

individuals. It is maintained and changed throughout its life.

Software engineering is intended to support professional

software development, rather than individual programming. It includes

techniques that support program specification, design, and evolution,

none of which are normally relevant for per- sonal software

development.

However, when we are talking about software engineering, software is

not just the programs themselves but also all associated documentation

and configuration data that is required to make these programs operate

correctly. A professionally developed software system is often more

than a single program. The system usually consists of a number of

separate programs and configuration files that are used to set up these

programs. It may include system documentation, which describes the

picture of the system; user documentation, which explains how to use

Software Engineering

the system, and web- sites for users to download recent product

information.

Many people think that software is simply another word for

computer programs. The following figure shows software

components:

This is one of the important differences between professional and

amateur software development. If you are writing a program for

yourself, no one else will use it and you don't have to worry about

writing program guides, documenting the program design, etc.

However, if you are writing software that other people will use and

other engineers will change then you usually have to provide

additional information as well as the code of the program.

Software

Programs

Documentatio
n

Data

System
Documentation

User
Documentation

Software Engineering

To help you to get a broad view of what software engineering is

about, the following questions summarized some frequently asked

questions.

 What is software?

Computer programs and associated documentation. Software products

may be developed for a particular customer or may be developed for a

general market.

 What are the attributes of good software?

Good software should deliver the required functionality and

performance to the user and should be maintainable, dependable, and

usable.

 what is software engineering?

Software engineering is an engineering discipline that is concerned

with all aspects of software production.

 what are the fundamental software engineering activities ?

a) Software specification. What does the customer need? What are the

constraints?

b) Software development. Design & programming.

c) Software validation. Checking whether it meets requirements.

d) Software evolution. Modifications (e.g. customer/market).

 What is the difference between software engineering and

computer science ?

Software Engineering

Computer science focuses on theory and fundamentals.

Software engineering is concerned with the practicalities of

developing and delivering useful software.

 What is the difference between software engineering and

system engineering ?

System engineering is concerned with all aspects of computer-based

systems development including hardware, software, and process

engineering. Software engineering is part of this more general process.

 what are the key challenges facing software engineering ?

Coping with increasing diversity, demands for reduced delivery times,

and developing trustworthy software.

 What are the costs of software engineering?

Roughly 60% of software costs are development costs; 40% are testing

costs. For custom software, evolution costs often exceed development

costs.

 What are the best software engineering techniques and

methods ?

While all software projects have to be professionally managed and

developed, different techniques are appropriate for different types of

system. For example, games should always be developed using a series

of prototypes whereas safety critical control systems require a

Software Engineering

complete and analyzable specification to be developed. You can't,

therefore, say that one method is better than another.

 What differences has the Web made to software engineering?

The Web has led to the availability of software services and the

possibility of developing highly distributed service-based systems.

Web-based systems development has led to important advances in

programming languages and software reuse.

Software engineers are concerned with developing software products

(i.e., software which can be sold to a customer). There are two kinds

of software products:

1. Generic products These are stand-alone systems that are

produced by a development organization and sold on the open

market to any customer who is able to buy them. Examples of

this type of product include software for PCs such as databases,

word processors, drawing packages, and project-management

tools. It also includes, so called vertical applications designed

for some specific purpose such as library information systems,

accounting systems, or systems for maintaining dental records .

2. Customized (or bespoke) products These are systems that are

commissioned by a particular customer. A software contractor

develops the software especially for that customer. Examples of

Software Engineering

this type of software include control systems for electronic

devices, systems written to support a particular business

process, and air traffic control systems .

An important difference between these types of software is that, in

generic products, the organization that develops the software controls

the software specification. For custom products, the specification is

usually developed and controlled by the organization that is buying the

software. The software developers must work to that specification.

However, the distinction between these system product types is

becoming increasingly blurred. More and more system are now being

built with a generic product as a base, which is then adapted to suit the

requirements of a customer. Enterprise Resource Planning (ERP)

systems, such as the SAP system, are the best examples of this

approach. Here, a large and complex system is adapted 1or a company

by incorporating information about business rules and processes,

reports required, and so on .

When we talk about the quality of professional software, we have to

take into account that the software is used and changed by people apart

from its developers. Quality is therefore not just concerned with what

the software does. Rather, it has to include the software's behavior

while it is executing and the structure and organization of the system

programs and associated documentation. This is reflected in so-called

quality or non-functional software attributes. Examples of these

Software Engineering

attributes are the software's response time to a user query and the under

standability of the program code.

The specific set of attributes that you might expect from a software

system obviously depends on its application. Therefore, a banking

system must be secure, an interactive game must be responsive, a

telephone switching system must be reliable, and so on.

The important of Software Engineering:

Complex systems need a disciplined approach for designing,

developing and managing them.

Software Development Crises

Projects were: Late - Over budget – Unreliable - Difficult to maintain -

Performed poorly.

Software Engineering

Software errors….the cost.

Errors in computer software can have devastating effects.

Therefore …

A well-disciplined approach to software development and

management is necessary. This is called engineering.

Activity

Try to collect or mention some of the software crises

around the world

Software Engineering

Objectives.

understand the idea of a software process- a coherent set of activities

for software production.

By the end of this lecture, you will...

 Know about the fundamental process activities of software

requirements, software development, testing and evolution.

 Know about Components of Software.

 Understand the concepts of software processes and software

processes models .

2 Software Processes

Software Engineering

Software is the set of instructions in the form of programs to govern

the computer system and to process the hardware components. To

produce a software product the set of activities is used. This set is

called a software process.

Software processes in software engineering refer to the methods and

techniques used to develop and maintain software.

There are many different software processes but all must include four

activities that are fundamental to software engineering.

There four basic key process activities are:

• Software Specifications: In this process, detailed description of

a software system to be developed with its functional and non-

functional requirements .

• Software Development: In this process, designing,

programming, documenting, testing, and bug fixing is done .

• Software Validation: In this process, evaluation software

product is done to ensure that the software meets the business

requirements as well as the end users needs .

• Software Evolution: It is a process of developing software

initially, then timely updating it for various reasons.

Components of Software: There are three main components of the

software:

Software Engineering

1. Program: A computer program is a list of instructions that tell a

computer what to do .

2. Documentation: Source information about the product

contained in design documents, detailed code comments…..

etc .

3. Operating Procedures: Set of step-by-step instructions

compiled by an organization to help workers carry out complex

routine operations.

Other Software Components are:

1. Code: the instructions that a computer executes in order to perform

a specific task or set of tasks .

2. Data: the information that the software uses or manipulates .

3. User interface: the means by which the user interacts with the

software, such as buttons, menus, and text fields .

4. Libraries: pre-written code that can be reused by the software to

perform common tasks .

5. Documentation: information that explains how to use and

maintain the software, such as user manuals and technical guides.

6. Test cases: a set of inputs, execution conditions, and expected

outputs that are used to test the software for correctness and

reliability .

7. Configuration files: files that contain settings and parameters that

are used to configure the software to run in a specific environment .

Software Engineering

8. Build and deployment scripts: scripts or tools that are used to

build, package, and deploy the software to different environments .

9. Metadata: information about the software, such as version

numbers, authors, and copyright information.

All these components are important for software development, testing

and deployment.

Software Process Model

A software process model is an abstraction of the actual process, which

is being described. It can also be defined as a simplified representation

of a software process. Each model represents a process from a specific

perspective.

Need for Process Model:

The software development team must decide the process model that is

to be used for software product development and then the entire team

must adhere to it. This is necessary because the software product

development can then be done systematically. Each team member will

understand what is the next activity and how to do it. Thus, process

model will bring the definiteness and discipline in overall development

process. Every process model consists of definite entry and exit

criteria for each phase. Hence the transition of the product through

various phases is definite.

The process models that I cover here are:

Software Engineering

 The Waterfall Model: It is a sequential design process in which

progress is seen as flowing steadily downwards.

Advantages of waterfall model are :

▪ Clear and defined phases of development make it easy to plan

and manage the project .

▪ It is well-suited for projects with well-defined and unchanging

requirements .

Disadvantages of waterfall model are :

▪ Changes made to the requirements during the development

phase can be costly and time-consuming .

▪ It can be difficult to know how long each phase will take,

making it difficult to estimate the overall time and cost of the

project .

▪ It does not have much room for iteration and feedback

throughout the development process.

Software Engineering

The Incremental Process Model is also known as the Successive

version model. This article focuses on discussing the Incremental

Process Model in detail.

The Incremental Model develops the software in smaller, iterative

cycles, delivering a working version early and adding features

incrementally. This approach offers more flexibility and lower risk.

In Incremental Model Multiple development cycles take place and

these cycles are divided into more smaller modules. Generally, a

working software in incremental model is produced during first

module Each subsequent release of the module adds function to the

previous release. In incremental model, process continues till the

complete system is achieved.

Characteristics of Incremental Process Model

1. System development is divided into several smaller projects .

https://www.geeksforgeeks.org/software-engineering-incremental-process-model/

Software Engineering

2. To create a final complete system, partial systems are

constructed one after the other.

3. Priority requirements are addressed first .

4. The requirements for that increment are frozen once they are

created .

Advantages of the Incremental Process Model

1. Prepares the software fast .

2. Clients have a clear idea of the project .

3. Changes are easy to implement .

4. Provides risk handling support, because of its iterations .

5. Adjusting the criteria and scope is flexible and less costly .

6. Comparing this model to others, it is less expensive .

7. The identification of errors is simple.

Disadvantages of the Incremental Process Model

1. A good team and proper planned execution are required .

2. Because of its continuous iterations the cost increases .

3. Issues may arise from the system design if all needs are not

gathered upfront throughout the program lifecycle .

4. Every iteration step is distinct and does not flow into the next .

5. It takes a lot of time and effort to fix an issue in one unit if it

needs to be corrected in all the units.

The incremental model is an understandable alternative to the

waterfall model. There are several iterations of smaller cycles

comprising requirements, design, programming, and testing, each

resulting in a software prototype.

Software Engineering

Differences between Waterfall Model and Incremental Model

S. No. Waterfall Model Incremental Model

Documentation
Need for Detailed Documentation

in the waterfall model is Necessary.

The need for Detailed

Documentation in the incremental

model is Necessary but not too

much.

Planning
In the waterfall model, early stage

planning is necessary.

In an incremental model, early-

stage planning is also necessary.

Risk
There is a high amount of risk in

the waterfall model.

There is a low amount of risk in the

incremental model.

Waiting Time

for Running

Software

There is a long waiting time for

running software in the waterfall

model.

There is a short waiting time for

running software in the incremental

model.

Handling Large

Projects

The waterfall model can’t handle

large projects.

The incremental model also can’t

handle large projects.

Flexibility to

Change

Flexibility to change in the

waterfall model is Difficult.

Flexibility to change in incremental

model is Easy.

Cost
The cost of the Waterfall model is

Low.

The cost of the incremental model is

also Low.

Testing

Testing is done in the waterfall

model after the completion of the

coding phase.

Testing is done in the incremental

model after every iteration of the

phase.

Returning to

Previous Phases

Returning to the previous

stage/phase in the waterfall model

is not possible.

Returning to the previous

stage/phase in the incremental

model is possible.

Team Size
In the waterfall model, a large team

is required.

In an incremental model large team

is not required.

Phases

Overlapping

In the waterfall model overlapping

of phases is not possible.

In incremental model overlapping

of phases is possible.

Development

Cycles

There is only one cycle in the

waterfall model.

Multiple development cycles take

place in the incremental model.

Customer

Involvement

The customer is involved only at

the beginning of development.

In incremental model, customer

involvement is intermediate.

Framework

Type
The linear framework type is used.

Linear with iterative framework

type is used.

Customer

Control

The customer is having least

control over the administrator.

The customer has more control over

the administrator in comparison to

the waterfall model.

Reusability Reusability is the least possible.
Reusability is possible to some

extent.

Software Engineering

The Agile Model was primarily designed to help a project adapt

quickly to change requests. So, the main aim of the Agile model is to

facilitate quick project completion. To accomplish this task, agility is

required. Agility is achieved by fitting the process to the project and

removing activities that may not be essential for a specific project.

Also, anything that is a waste of time and effort is avoided. The Agile

Model refers to a group of development processes. These processes

share some basic characteristics but do have certain subtle differences

among themselves.

Steps in the Agile Model

The agile model is a combination of iterative and incremental process

models. The steps involve in agile SDLC models are :

Requirement
gathering

Design the
Requirement

s

Construction /
Iteration

Testing / Quality
Assurance

Deployment

Feedback

Software Engineering

When To Use the Agile Model ?

✓ When frequent modifications need to be made, this method is

implemented .

✓ When a highly qualified and experienced team is available .

✓ When a customer is ready to have a meeting with the team all

the time .

✓ when the project needs to be delivered quickly .

✓ Projects with few regulatory requirements or not certain

requirements .

✓ projects utilizing a less-than-strict current methodology

✓ Those undertakings where the product proprietor is easily

reachable

✓ Flexible project schedules and budgets .

Advantages of the Agile Model

1. Working through Pair programming produces well-written

compact programs which have fewer errors as compared to

programmers working alone .

2. It reduces the total development time of the whole project .

3. Agile development emphasizes face-to-face communication

among team members, leading to better collaboration and

understanding of project goals.

4. Customer representatives get the idea of updated software

products after each iteration. So, it is easy for him to change any

requirement if needed.

Software Engineering

5. Agile development puts the customer at the center of the

development process, ensuring that the end product meets their

needs .

Disadvantages of the Agile Model

1. The lack of formal documents creates confusion and important

decisions taken during different phases can be misinterpreted

at any time by different team members .

2. It is not suitable for handling complex dependencies .

3. The agile model depends highly on customer interactions so if

the customer is not clear, then the development team can be

driven in the wrong direction.

4. Agile development models often involve working in short

sprints, which can make it difficult to plan and forecast project

timelines and deliverables. This can lead to delays in the

project and can make it difficult to accurately estimate the

costs and resources needed for the project .

5. Agile development models require a high degree of expertise

from team members, as they need to be able to adapt to

changing requirements and work in an iterative environment.

This can be challenging for teams that are not experienced in

agile development practices and can lead to delays and

difficulties in the project .

Software Engineering

6. Due to the absence of proper documentation, when the project

completes and the developers are assigned to another project,

maintenance of the developed project can become a problem.

Agile development models prioritize flexibility, collaboration, and

customer satisfaction. They focus on delivering working software

in short iterations, allowing for quick adaptation to changing

requirements. While Agile offers advantages like faster delivery and

customer involvement, it may face challenges with complex

dependencies and lack of formal documentation. Overall, Agile is

best suited for projects requiring rapid development, continuous

feedback, and a highly skilled team.

Conclusion

Software processes provide structured methods for developing and

maintaining software. They include approaches like Waterfall for

linear projects, Agile for flexibility, Scrum for teamwork, and

DevOps for automation and collaboration. Each has unique

strengths, tailored to different project needs. Choosing the right

process enhances efficiency and product quality.

questions

What are the four 4 main activities of the software process?

What are the three types of software process models?

What is a software scope?

Software Engineering

A well-defined range that includes every action taken to create and

distribute the software product is known as the software scope.

Is waterfall iterative or incremental?

A waterfall model is neither iterative nor incremental model.

Which model is incremental?

The incremental model is an understandable alternative to the

waterfall model. There are several iterations of smaller cycles

comprising requirements, design, programming, and testing, each

resulting in a software prototype.

What is the second name of incremental model?

Which of the following is not one of the principles of the agile software

development method?

(A) Following the plan

(B) Embrace change

(C) Customer involvement

(D) Incremental delivery

Software Engineering

Objectives.

Introduce software requirements and to discuss the processes

involved in discovering and documenting these requirements.

By the end of this lecture, you will...

 understand the concepts of user and system requirements and

why these requirements should be written in different ways.

 understand the differences between functional and

nonfunctional software requirements.

 understand the principal requirements engineering activities

of elicitation, analysis and validation, and the relationships

between these activities .

3 Software Requirements

Software Engineering

The requirements for a system are the descriptions of what the system

should do the services that it provides and the constraints on its

operation. These requirements reflect the needs of customers for a

system that serves a certain purpose such as controlling a device,

placing an order, or finding information. The process of finding out,

analyzing, documenting and checking these services and constraints is

called requirements engineering (RE).

If a company wishes to let a contract for a large software development

project, it must define its needs in a sufficiently abstract way that a

solution is not predefined. The requirements must be written so that

several contractors can bid for the contract, offering, perhaps,

different ways of meeting the client organization’s needs. Once a

contract has been awarded, the contractor must write a system

definition for the client in more detail so that the client understands

and can validate what the software will do. Both of these documents

may be called the requirements document for the system.

Some of the problems that arise during the requirements engineering

process are a result of failing to make a clear separation between these

different levels of description. I distinguish between them by using the

term ‘user requirements’ to mean the high-level abstract requirements

and ‘system requirements’ to mean the detailed description of what the

system should do. User requirements and system requirements may be

defined as follows :

Software Engineering

1. User requirements are statements, in a natural language plus

diagrams, of what services the system is expected to provide to

system users and the constraints under which it must operate .

2. System requirements are more detailed descriptions of the

software system’s functions, services, and operational

constraints. The system requirements document (sometimes

called a functional specification) should define exactly what is

to be implemented. It may be part of the contract between the

system buyer and the software developers.

What are Software Requirements ?

According to IEEE standard 729, a requirement is defined as

follows :

1. A condition or capability needed by a user to solve a problem

or achieve an objective

2. A condition or capability that must be met or possessed by a

system or system component to satisfy a contract, standard,

specification or other formally imposed documents

3. A documented representation of a condition or capability, as

in 1 and 2.

Classification of Software Requirements is important in the software

development process. It organizes our requirements into different

categories that make them easier to manage, prioritize, and track. The

Software Engineering

main types of Software Requirements are functional, non-functional,

and domain requirements.

1 .Functional Requirements

Definition: Functional requirements describe what the software should

do. They define the functions or features that the system must have .

Examples:

User Authentication: The system must allow users to log in using a

username and password .

Search Functionality: The software should enable users to search for

products by name or category .

Report Generation: The system should be able to generate sales

reports for a specified date range .

Software Engineering

Explanation: Functional requirements specify the actions that the

software needs to perform. These are the basic features and

functionalities that users expect from the software.

2 .Non-functional Requirements

Definition: Non-functional requirements describe how the software

performs a task rather than what it should do. They define the quality

attributes, performance criteria, and constraints.

Examples :

Performance: The system should process 1,000 transactions per

second .

Usability: The software should be easy to use and have a user-friendly

interface .

Reliability: The system must have 99.9% uptime .

Security: Data must be encrypted during transmission and storage .

Explanation: Non-functional requirements are about the system’s

behavior, quality, and constraints. They ensure that the software meets

certain standards of performance, usability, reliability, and security .

4. Domain Requirements

Definition: Domain requirements are specific to the domain or

industry in which the software operates. They include terminology,

rules, and standards relevant to that particular domain.

Software Engineering

Examples :

Healthcare: The software must comply with HIPAA regulations for

handling patient data.

Finance: The system should adhere to GAAP standards for financial

reporting .

E-commerce: The software should support various payment gateways

like PayPal, Stripe, and credit cards .

Explanation: Domain requirements reflect the unique needs and

constraints of a particular industry. They ensure that the software is

relevant and compliant with industry-specific regulations and

standards.

What are Functional Requirements ?

Functional Requirements are the requirements that the end user

specifically demands as basic facilities that the system should offer. It

can be a calculation, data manipulation, business process, user

interaction, or any other specific functionality that defines what

function a system is likely to perform. All these functionalities need to

be necessarily incorporated into the system as a part of the contract.

These are represented or stated in the form of input to be given to the

system, the operation performed and the output expected .

Software Engineering

• They are the requirements stated by the user which one can see

directly in the final product, unlike the non-functional

requirements. For example, in a hospital management system, a

doctor should be able to retrieve the information of his patients .

• Each high-level functional requirement may involve several

interactions or dialogues between the system and the outside

world .

• To accurately describe the functional requirements, all scenarios

must be enumerated .

• There are many ways of expressing functional requirements

e.g., natural language, a structured or formatted language with

no rigorous syntax, and formal specification language with

proper syntax .

• Functional Requirements in Software Engineering are also

called Functional Specification .

What are Non-functional Requirements ?

These are basically the quality constraints that the system must satisfy

according to the project contract. Nonfunctional requirements, not

related to the system functionality, rather define how the system should

perform the priority or extent to which these factors are implemented

varies from one project to other. They are also called non-behavioral

requirements. They basically deal with issues like :

Software Engineering

✓ Portability

✓ Security

✓ Maintainability

✓ Reliability

✓ Scalability

✓ Performance

✓ Reusability

✓ Flexibility

Non-functional requirements are classified into the following types :

✓ Interface constraints

✓ Performance constraints: response time, security, storage space, etc .

✓ Operating constraints

✓ Life cycle constraints: maintainability, portability, etc .

✓ Economic constraints

The process of specifying non-functional requirements requires the

knowledge of the functionality of the system, as well as the knowledge

of the context within which the system will operate .

They are divided into two main categories

Execution qualities: These consist of thing like security and usability,

which are observable at run time.

Software Engineering

Evolution qualities: These consist of things like testability,

maintainability, extensibility, and scalability that are embodied in the

static structure of the software system .

What are Domain requirements ?

Domain requirements are the requirements that are characteristic of a

particular category or domain of projects. Domain requirements can

be functional or nonfunctional. Domain requirements engineering is a

continuous process of proactively defining the requirements for all

foreseeable applications to be developed in the software product line.

The basic functions that a system of a specific domain must necessarily

exhibit come under this category. For instance, in academic software

that maintains records of a school or college, the functionality of being

able to access the list of faculty and list of students of each grade is a

domain requirement. These requirements are therefore identified from

that domain model and are not user-specific.

Other Classifications of Software Requirements

Other common classifications of software requirements can be:

1. User requirements: These requirements describe what the end-

user wants from the software system. User requirements are

usually expressed in natural language and are typically gathered

through interviews, surveys, or user feedback.

2. System requirements: These requirements specify the

technical characteristics of the software system, such as its

Software Engineering

architecture, hardware requirements, software components, and

interfaces. System requirements are typically expressed in

technical terms and are often used as a basis for system design.

3. Business requirements: These requirements describe the

business goals and objectives that the software system is

expected to achieve. Business requirements are usually

expressed in terms of revenue, market share, customer

satisfaction, or other business metrics.

4. Regulatory requirements: These requirements specify the

legal or regulatory standards that the software system must

meet. Regulatory requirements may include data privacy,

security, accessibility, or other legal compliance requirements.

5. Interface requirements: These requirements specify the

interactions between the software system and external systems

or components, such as databases, web services, or other

software applications.

6. Design requirements: These requirements describe the

technical design of the software system. They include

information about the software architecture, data structures,

algorithms, and other technical aspects of the software.

By classifying software requirements, it becomes easier to manage,

prioritize, and document them effectively. It also helps ensure that all

Software Engineering

important aspects of the system are considered during the development

process.

Advantages of Classifying Software Requirements

1. Better organization: Classifying software requirements helps

organize them into groups that are easier to manage, prioritize,

and track throughout the development process.

2. Improved communication: Clear classification of

requirements makes it easier to communicate them to

stakeholders, developers, and other team members. It also

ensures that everyone is on the same page about what is

required.

3. Increased quality: By classifying requirements, potential

conflicts or gaps can be identified early in the development

process. This reduces the risk of errors, omissions, or

misunderstandings, leading to higher-quality software.

4. Improved traceability: Classifying requirements helps

establish traceability, which is essential for demonstrating

compliance with regulatory or quality standards.

Disadvantages of classifying software requirements

1. Complexity: Classifying software requirements can be

complex, especially if there are many stakeholders with

different needs or requirements. It can also be time-consuming

to identify and classify all the requirements.

Software Engineering

2. Rigid structure: A rigid classification structure may limit the

ability to accommodate changes or evolving needs during the

development process. It can also lead to a siloed approach that

prevents the integration of new ideas or insights.

3. Misclassification: Misclassifying requirements can lead to

errors or misunderstandings that can be costly to correct later in

the development process.

Overall, the advantages of classifying software requirements outweigh

the disadvantages, as it helps ensure that the software system meets the

needs of all stakeholders and is delivered on time, within budget, and

with the required quality.

Conclusion

Classifying software requirements provides numerous benefits, such

as better organization, improved communication, increased quality,

and enhanced traceability. By systematically categorizing the

requirements development teams can be sure that the software meets

the requirements of stakeholders while observing standards and

delivered with efficiency and effectiveness.

Questions

What are the 3 types of Software Requirements?

Who defines software requirements?

Software requirements are defined by stakeholders, including users,

clients, developers, and business analysts.

Software Engineering

Requirements Engineering Process in Software Engineering

Requirements Engineering is the process of identifying, eliciting,

analyzing, specifying, validating, and managing the needs and

expectations of stakeholders for a software system.

Requirements Engineering Process

1. Feasibility Study

2. Requirements elicitation

3. Requirements specification

4. Requirements for verification and validation

5. Requirements management

Software Engineering

1. Feasibility Study

The feasibility study mainly concentrates on below five mentioned

areas below. Among these Economic Feasibility Study is the most

important part of the feasibility analysis and the Legal Feasibility

Study is less considered feasibility analysis.

1. Technical Feasibility: In Technical Feasibility current resources

both hardware software along required technology are

analyzed/assessed to develop the project. This technical

feasibility study reports whether there are correct required

resources and technologies that will be used for project

development. Along with this, the feasibility study also analyzes

the technical skills and capabilities of the technical team,

whether existing technology can be used or not, whether

maintenance and up-gradation are easy or not for the chosen

technology, etc.

2. Operational Feasibility: In Operational Feasibility degree of

providing service to requirements is analyzed along with how

easy the product will be to operate and maintain after

deployment. Along with these other operational scopes are

determining the usability of the product, Determining suggested

solution by the software development team is acceptable or not,

etc.

Software Engineering

3. Economic Feasibility: In the Economic Feasibility study cost

and benefit of the project are analyzed. This means under this

feasibility study a detailed analysis is carried out will be cost of

the project for development which includes all required costs for

final development hardware and software resources required,

design and development costs operational costs, and so on. After

that, it is analyzed whether the project will be beneficial in terms

of finance for the organization or not.

4. Legal Feasibility: In legal feasibility, the project is ensured to

comply with all relevant laws, regulations, and standards. It

identifies any legal constraints that could impact the project and

reviews existing contracts and agreements to assess their effect

on the project’s execution. Additionally, legal feasibility

considers issues related to intellectual property, such as patents

and copyrights, to safeguard the project’s innovation and

originality.

5. Schedule Feasibility: In schedule feasibility, the project

timeline is evaluated to determine if it is realistic and

achievable. Significant milestones are identified, and deadlines

are established to track progress effectively. Resource

availability is assessed to ensure that the necessary resources are

accessible to meet the project schedule. Furthermore, any time

constraints that might affect project delivery are considered to

Software Engineering

ensure timely completion. This focus on schedule feasibility is

crucial for the successful planning and execution of a project.

2. Requirements Elicitation

It is related to the various ways used to gain knowledge about the

project domain and requirements. The various sources of domain

knowledge include customers, business manuals, the existing software

of the same type, standards, and other stakeholders of the project. The

techniques used for requirements elicitation include interviews,

brainstorming, task analysis, Delphi technique, prototyping,

etc. Elicitation does not produce formal models of the requirements

understood. Instead, it widens the domain knowledge of the analyst

and thus helps in providing input to the next stage.

Requirements elicitation is the process of gathering information about

the needs and expectations of stakeholders for a software system. This

is the first step in the requirements engineering process and it is critical

to the success of the software development project. The goal of this

step is to understand the problem that the software system is intended

to solve and the needs and expectations of the stakeholders who will

use the system.

Several techniques can be used to elicit requirements, including:

• Interviews: These are one-on-one conversations with

stakeholders to gather information about their needs and

expectations.

Software Engineering

• Surveys: These are questionnaires that are distributed to

stakeholders to gather information about their needs and

expectations.

• Focus Groups: These are small groups of stakeholders who are

brought together to discuss their needs and expectations for the

software system.

• Observation: This technique involves observing the

stakeholders in their work environment to gather information

about their needs and expectations.

• Prototyping: This technique involves creating a working model

of the software system, which can be used to gather feedback

from stakeholders and to validate requirements.

It’s important to document, organize, and prioritize the requirements

obtained from all these techniques to ensure that they are complete,

consistent, and accurate.

3. Requirements Specification

This activity is used to produce formal software requirement models.

All the requirements including the functional as well as the non-

functional requirements and the constraints are specified by these

models in totality. During specification, more knowledge about the

problem may be required which can again trigger the elicitation

process. The models used at this stage include ER diagrams, data flow

Software Engineering

diagrams (DFDs), function decomposition diagrams (FDDs), data

dictionaries, etc.

Requirements specification is the process of documenting the

requirements identified in the analysis step in a clear, consistent, and

unambiguous manner. This step also involves prioritizing and

grouping the requirements into manageable chunks.

The goal of this step is to create a clear and comprehensive document

that describes the requirements for the software system. This document

should be understandable by both the development team and the

stakeholders.

Several types of requirements are commonly specified in this step,

including

1. Functional Requirements: These describe what the software

system should do. They specify the functionality that the system

must provide, such as input validation, data storage, and user

interface.

2. Non-Functional Requirements: These describe how well the

software system should do it. They specify the quality attributes

of the system, such as performance, reliability, usability, and

security.

3. Constraints: These describe any limitations or restrictions that

must be considered when developing the software system.

Software Engineering

4. Acceptance Criteria: These describe the conditions that must

be met for the software system to be considered complete and

ready for release.

To make the requirements specification clear, the requirements should

be written in a natural language and use simple terms, avoiding

technical jargon, and using a consistent format throughout the

document. It is also important to use diagrams, models, and other

visual aids to help communicate the requirements effectively.

Once the requirements are specified, they must be reviewed and

validated by the stakeholders and development team to ensure that they

are complete, consistent, and accurate.

4. Requirements Verification and Validation

Verification: It refers to the set of tasks that ensures that the software

correctly implements a specific function.

Validation: It refers to a different set of tasks that ensures that the

software that has been built is traceable to customer requirements. If

requirements are not validated, errors in the requirement definitions

would propagate to the successive stages resulting in a lot of

modification and rework. The main steps for this process include:

1. The requirements should be consistent with all the other

requirements i.e. no two requirements should conflict with each

other.

2. The requirements should be complete in every sense.

Software Engineering

3. The requirements should be practically achievable.

Reviews, buddy checks, making test cases, etc. are some of the

methods used for this.

Requirements verification and validation (V&V) is the process of

checking that the requirements for a software system are complete,

consistent, and accurate and that they meet the needs and expectations

of the stakeholders. The goal of V&V is to ensure that the software

system being developed meets the requirements and that it is

developed on time, within budget, and to the required quality.

1. Verification is checking that the requirements are complete,

consistent, and accurate. It involves reviewing the requirements

to ensure that they are clear, testable, and free of errors and

inconsistencies. This can include reviewing the requirements

document, models, and diagrams, and holding meetings and

walkthroughs with stakeholders.

2. Validation is the process of checking that the requirements meet

the needs and expectations of the stakeholders. It involves

testing the requirements to ensure that they are valid and that the

software system being developed will meet the needs of the

stakeholders. This can include testing the software system

through simulation, testing with prototypes, and testing with the

final version of the software.

Software Engineering

3. Verification and Validation is an iterative process that occurs

throughout the software development life cycle. It is important

to involve stakeholders and the development team in the V&V

process to ensure that the requirements are thoroughly reviewed

and tested.

It’s important to note that V&V is not a one-time process, but it should

be integrated and continue throughout the software development

process and even in the maintenance stage.

5. Requirements Management

Requirement management is the process of analyzing, documenting,

tracking, prioritizing, and agreeing on the requirement and controlling

the communication with relevant stakeholders. This stage takes care of

the changing nature of requirements. It should be ensured that the SRS

is as modifiable as possible to incorporate changes in requirements

specified by the end users at later stages too. Modifying the software

as per requirements in a systematic and controlled manner is an

extremely important part of the requirements engineering process.

Requirements management is the process of managing the

requirements throughout the software development life cycle,

including tracking and controlling changes, and ensuring that the

requirements are still valid and relevant. The goal of requirements

management is to ensure that the software system being developed

Software Engineering

meets the needs and expectations of the stakeholders and that it is

developed on time, within budget, and to the required quality.

Several key activities are involved in requirements management,

including:

1. Tracking and controlling changes: This involves monitoring

and controlling changes to the requirements throughout the

development process, including identifying the source of the

change, assessing the impact of the change, and approving or

rejecting the change.

2. Version control: This involves keeping track of different

versions of the requirements document and other related

artifacts.

3. Traceability: This involves linking the requirements to other

elements of the development process, such as design, testing,

and validation.

4. Communication: This involves ensuring that the requirements

are communicated effectively to all stakeholders and that any

changes or issues are addressed promptly.

5. Monitoring and reporting: This involves monitoring the

progress of the development process and reporting on the status

of the requirements.

Requirements management is a critical step in the software

development life cycle as it helps to ensure that the software system

Software Engineering

being developed meets the needs and expectations of stakeholders and

that it is developed on time, within budget, and to the required quality.

It also helps to prevent scope creep and to ensure that the requirements

are aligned with the project goals.

Tools Involved in Requirement Engineering

• Observation report

• Questionnaire (survey, poll)

• Use cases

• User stories

• Requirement workshop

• Mind mapping

• Roleplaying

• Prototyping

Conclusion

As the project develops and new information becomes available, the

iterative requirements engineering process may involve going back

and reviewing earlier phases. Throughout the process, stakeholders in

the project must effectively communicate and collaborate to guarantee

that the software system satisfies user needs and is in line with the

company’s overall goals.

Questions

1. What is requirements engineering?

Software Engineering

Requirements engineering is the process of identifying, analyzing, documenting,

and managing the needs and expectations of stakeholders for a software system.

2. Why is requirements engineering important?

It ensures that the software meets the needs of its users, is delivered on time, within

budget, and to the required quality standards.

3. What are the main steps in the requirements engineering

process?

The main steps are feasibility study, requirements elicitation, requirements

specification, requirements verification and validation, and requirements

management.

4. How does requirements validation differ from requirements

verification?

Verification checks that the requirements are correctly specified and error-free,

while validation ensures that the requirements meet the needs and expectations of

the stakeholders.

5. What techniques are used to gather requirements?

Techniques include interviews, surveys, focus groups, observation, and

prototyping, which help collect detailed information about stakeholder needs and

expectations.

Software Engineering

Objectives.

Introduce some types of system model that may be developed as

part of the requirements engineering and system design processes.

By the end of this lecture, you will...

 Understand how graphical models can be used to represent

software systems.

 introduced to some of the diagram types in the Unified

Modeling Language (UML) and how these diagrams may be

used in system modeling.

 understand why different types of models are required and the

fundamental system modeling perspectives of context,

interaction, structure, and behavior .

4 System modeling

Software Engineering

What is UML?

Unified Modeling Language (UML) is a standardized visual modeling

language that is a versatile, flexible, and user-friendly method for

visualizing a system’s design. Software system artifacts can be

specified, visualized, built, and documented with the use of UML.

• We use UML diagrams to show the behavior and structure of a

system.

• UML helps software engineers, businessmen, and system

architects with modeling, design, and analysis.

Why do we need UML?

We need UML (Unified Modeling Language) to visually represent and

communicate complex system designs, facilitating better

understanding and collaboration among stakeholders. Below is why

we need UML:

• Complex applications need collaboration and planning from

multiple teams and hence require a clear and concise way to

communicate amongst them.

• Businessmen do not understand code. So, UML becomes

essential to communicate with non-programmers about essential

requirements, functionalities, and processes of the system.

Software Engineering

• A lot of time is saved down the line when teams can visualize

processes, user interactions, and the static structure of the

system.

Types of UML Diagrams

UML is linked with object-oriented design and analysis. UML makes

use of elements and forms associations between them to form

diagrams. Diagrams in UML can be broadly classified as (It is up to the

student to write a brief research paper).

When to Use UML Diagrams

• When a system’s general structure needs to be represented,

UML diagrams can help make it clearer how various parts work

together, which facilitates idea sharing between stakeholders.

• When collecting and recording system requirements, UML

diagrams, such as use case diagrams, can help you clearly grasp

user demands by showing how users will interact with the

system.

• If you’re involved in database design, class diagrams are great

for illustrating the relationships among various data entities,

ensuring your data model is well-organized.

• When working with team members or clients, UML diagrams

act as a shared language that connects technical and non-

technical stakeholders, improving overall understanding and

alignment.

Software Engineering

Common Challenges in UML Modeling

Below are the common challenges in UML Modeling:

• Accurately representing complex system requirements can be

difficult, leading to either oversimplification or overwhelming

detail.

• Team members may interpret the model differently, resulting in

inconsistencies and misunderstandings about its purpose.

• Keeping UML diagrams current as the system evolves can be

time-consuming, risking outdated representations if not

managed effectively.

• Agile promotes teamwork, but sometimes UML diagrams are

complicated and only a few people understand them. It can be

hard to make sure everyone can contribute to and use the

diagrams effectively.

Benefits of Using UML Diagrams

Below are the benefits of using UML Diagrams:

• Developers and stakeholders may communicate using a single

visual language thanks to UML’s standardized approach to

system model representation.

• Developers, designers, testers, and business users are just a few

of the stakeholders with whom UML diagrams may effectively

communicate.

Software Engineering

• UML diagrams make it easier to see the linkages, processes, and

parts of a system.

• One useful tool for documentation is a UML diagram. They

offer an ordered and systematic method for recording a system’s

behavior, architecture, and design, among other elements.

Finally, Unified Modeling Language (UML) is like a blueprint for

software developers. It helps them plan and design complex systems

by creating diagrams that show how different parts of the system will

work together. We'll look at the advantages and disadvantages of

UML. Understanding these can help developers use UML effectively

and avoid its pitfalls, making their projects more successful.

Advantages of Unified Modeling Language (UML)

Below are the advantages of UML:

• Standardization:

o UML provides a standardized way of representing system

models, ensuring that developers and stakeholders can

communicate using a common visual language.

• Communication:

o UML diagrams serve as a powerful communication tool

between stakeholders, including developers, designers,

testers, and business users. They help in conveying

complex ideas more understandably.

Software Engineering

• Visualization:

o UML diagrams facilitate the visualization of system

components, relationships, and processes. This visual

representation aids in understanding and designing

complex systems.

• Documentation:

o UML diagrams can be used as effective documentation

tools. They provide a structured and organized way to

document various aspects of a system, such as

architecture, design, and behavior.

• Analysis and Design:

o UML supports both the analysis and design phases of

software development. It helps in modeling the

requirements of a system and then transforming them into

a design that can be implemented.

Disadvantages of Unified Modeling Language (UML)

Below are the disadvantages of UML:

• Complexity:

o UML can be complex, especially for beginners. Learning

all the aspects of UML and becoming proficient in using

it may require a significant investment of time and effort.

Software Engineering

• Overhead:

o In some cases, creating and maintaining detailed UML

diagrams can be time-consuming. For small and simple

projects, the overhead of creating extensive UML

documentation may not be justified.

• Ambiguity:

o Interpretation of UML diagrams can be subjective,

leading to potential ambiguity. Different individuals may

interpret the same diagram in slightly different ways,

causing confusion.

• Learning Curve:

o Due to its extensive features and diagrams, there is a steep

learning curve associated with UML. Teams may need

training and experience to use it effectively.

• Over-Modeling or Under-Modeling:

o There is a risk of over-modeling (creating too many

unnecessary details) or under-modeling (omitting

important details) in UML diagrams. Striking the right

balance is crucial for their effectiveness.

Software Engineering

System modeling is the process of developing abstract models of a

system, with each model presenting a different view or perspective of

that system. It is about representing a system using some kind of

graphical notation, which is now almost always based on notations in

the Unified Modeling Language (UML). Models help the analyst to

understand the functionality of the system; they are used to

communicate with customers.

Models can explain the system from different perspectives:

• An external perspective, where you model the context or

environment of the system.

• An interaction perspective, where you model the interactions

between a system and its environment, or between the

components of a system.

• A structural perspective, where you model the organization of

a system or the structure of the data that is processed by the

system.

• A behavioral perspective, where you model the dynamic

behavior of the system and how it responds to events.

Five types of UML diagrams that are the most useful for system

modeling:

• Activity diagrams, which show the activities involved in a

process or in data processing.

• Use case diagrams, which show the interactions between a

system and its environment.

• Sequence diagrams, which show interactions between actors

and the system and between system components.

Software Engineering

• Class diagrams, which show the object classes in the system and

the associations between these classes.

• State diagrams, which show how the system reacts to internal

and external events.

Models of both new and existing system are used

during requirements engineering. Models of the existing

systems help clarify what the existing system does and can be used as

a basis for discussing its strengths and weaknesses. These then lead to

requirements for the new system. Models of the new system are used

during requirements engineering to help explain the proposed

requirements to other system stakeholders. Engineers use these models

to discuss design proposals and to document the system for

implementation.

▪ Context and process models

▪ Context models are used to illustrate the operational context of

a system - they show what lies outside the system boundaries.

Social and organizational concerns may affect the decision on

where to position system boundaries. Architectural models

show the system and its relationship with other systems.

▪ System boundaries are established to define what is inside and

what is outside the system. They show other systems that are

used or depend on the system being developed. The position of

the system boundary has a profound effect on the system

requirements. Defining a system boundary is a political

Software Engineering

judgment since there may be pressures to develop system

boundaries that increase/decrease the influence or workload of

different parts of an organization.

▪ Context models simply show the other systems in the

environment, not how the system being developed is used in that

environment. Process models reveal how the system being

developed is used in broader business processes. UML activity

diagrams may be used to define business process models.

▪ The example below shows a UML activity diagram describing

the process of involuntary detention and the role of MHC-PMS

(mental healthcare patient management system) in it.

Software Engineering

▪ Interaction models

Types of interactions that can be represented in a model:

• Modeling user interaction is important as it helps to identify

user requirements.

• Modeling system-to-system interaction highlights the

communication problems that may arise.

• Modeling component interaction helps us understand if a

proposed system structure is likely to deliver the required

system performance and dependability.

Use cases were developed originally to support requirements

elicitation and now incorporated into the UML. Each use case

represents a discrete task that involves external interaction with a

system. Actors in a use case may be people or other systems. Use cases

can be represented using a UML use case diagram and in a more

detailed textual/tabular format.

Simple use case diagram:

Use case description in a tabular format:

Software Engineering

Use case title Transfer data

Description

A receptionist may transfer data from the MHC-PMS to a

general patient record database that is maintained by a

health authority. The information transferred may either be

updated personal information (address, phone number, etc.)

or a summary of the patient's diagnosis and treatment.

Actor(s) Medical receptionist, patient records system (PRS)

Preconditions

Patient data has been collected (personal information,

treatment summary);

The receptionist must have appropriate security

permissions to access the patient information and the PRS.

Postconditions PRS has been updated

Main success

scenario

1. Receptionist selects the "Transfer data" option from the

menu.

2. PRS verifies the security credentials of the receptionist.

3. Data is transferred.

4. PRS has been updated.

Extensions

2a. The receptionist does not have the necessary security

credentials.

2a.1. An error message is displayed.

2a.2. The receptionist backs out of the use case.

UML sequence diagrams are used to model the interactions between

the actors and the objects within a system. A sequence diagram shows

the sequence of interactions that take place during a particular use case

or use case instance. The objects and actors involved are listed along

Software Engineering

the top of the diagram, with a dotted line drawn vertically from these.

Interactions between objects are indicated by annotated arrows.

▪ Structural models

▪ Structural models of software display the organization of a

system in terms of the components that make up that system and

their relationships. Structural models may be static models, which

show the structure of the system design, or dynamic models,

which show the organization of the system when it is executing. You

create structural models of a system when you are discussing and

designing the system architecture.

▪ UML class diagrams are used when developing an object-oriented

system model to show the classes in a system and the associations

Software Engineering

between these classes. An object class can be thought of as a

general definition of one kind of system object. An association is a

link between classes that indicates that there is some relationship

between these classes. When you are developing models during the

early stages of the software engineering process, objects represent

something in the real world, such as a patient, a prescription,

doctor, etc.

Generalization is an everyday technique that we use to manage

complexity. In modeling systems, it is often useful to examine the

classes in a system to see if there is scope for generalization. In object-

oriented languages, such as Java, generalization is implemented using

the class inheritance mechanisms built into the language. In a

generalization, the attributes and operations associated with higher-

Software Engineering

level classes are also associated with the lower-level classes. The

lower-level classes are subclasses inherit the attributes and operations

from their super classes. These lower-level classes then add more

specific attributes and operations.

An aggregation model shows how classes that are collections are

composed of other classes. Aggregation models are similar to the

part-of relationship in semantic data models.

Software Engineering

▪ Behavioral models

Behavioral models are models of the dynamic behavior of a system

as it is executing. They show what happens or what is supposed to

happen when a system responds to a stimulus from its environment.

Two types of stimuli:

• Some data arrives that has to be processed by the system.

• Some event happens that triggers system processing. Events

may have associated data, although this is not always the case.

Many business systems are data-processing systems that are primarily

driven by data. They are controlled by the data input to the system,

with relatively little external event processing. Data-driven

models show the sequence of actions involved in processing input data

and generating an associated output. They are particularly useful

during the analysis of requirements as they can be used to show end-

to-end processing in a system. Data-driven models can be created

using UML activity diagrams:

Software Engineering

Data-driven models can also be created using UML sequence

diagrams:

Real-time systems are often event-driven, with minimal data

processing. For example, a landline phone switching system responds

to events such as 'receiver off hook' by generating a dial tone. Event-

driven models show how a system responds to external and internal

events. It is based on the assumption that a system has a finite number

of states and that events (stimuli) may cause a transition from one state

to another. Event-driven models can be created using UML state

diagrams:

Software Engineering

Software Engineering

Conclusion

• A model is an abstract view of a system that ignores some system

details. Complementary system models can be developed to show

the system’s context, interactions, structure, and behavior.

• Context models show how a system that is being modeled is

positioned in an environment with other systems and processes.

They help define the boundaries of the system to be developed.

• Use case diagrams and sequence diagrams are used to describe the

interactions between user the system being designed and users/other

systems. Use cases describe interactions between a system and

external actors; sequence diagrams add more information to these

by showing interactions between system objects.

• Structural models show the organization and architecture of a

system. Class diagrams are used to define the static structure of

classes in a system and their associations.

• Behavioral models are used to describe the dynamic behavior of an

executing system. This can be modeled from the perspective of the

data processed by the system or by the events that stimulate

responses from a system.

• Activity diagrams may be used to model the processing of data,

where each activity represents one process step.

• State diagrams are used to model a system’s behavior in response to

internal or external events.

Software Engineering

Questions & Answers

1. The Unified Modeling Language (UML) has become an effective standard for

software modelling. How many different notations does it have?

a) Three

b) Four

c) Six

d) Nine

Explanation: The different notations of UML include the nine UML diagrams

namely class, object, sequence, collaboration, activity, state-chart, component,

deployment and use case diagrams.

2. Which model in system modelling depicts the dynamic behavior of the

system?

a) Context Model

b) Behavioral Model

c) Data Model

d) Object Model

Explanation: Behavioral models are used to describe the dynamic behavior of an

executing system. This can be modeled from the perspective of the data

processed by the system or by the events that stimulate responses from a system.

3. Which model in system modelling depicts the static nature of the system?

a) Behavioral Model

b) Context Model

c) Data Model

d) Structural Model

Explanation: Structural models show the organization and architecture of a

system. These are used to define the static structure of classes in a system and

their associations

Software Engineering

4. Which perspective in system modelling shows the system or data architecture.

a) Structural perspective

b) Behavioral perspective

c) External perspective

d) All of the mentioned

Explanation: Structural perspective is used to define the static structure of

classes in a system and their associations.

5. Which system model is being depicted by the ATM operations shown below:

a) Structural model

b) Context model

c) Behavioral model

d) Interaction model

Explanation: Context models are

used to illustrate the operational

context of a system. They show what lies outside the system boundaries.

 6. The UML supports event-based modeling using ____________ diagrams.

a) Deployment

b) Collaboration

c) State chart

d) All of the mentioned

Explanation: State diagrams show system states and events that cause

transitions from one state to another.

7. Activity diagrams are used to model the processing of data.

a) True

b) False

Explanation: The statement mentioned is true and each activity represents one

process step.

Software Engineering

Objectives.

Introduce the concepts of software architecture and architectural

design.

By the end of this lecture, you will...

 Understand why the architectural design of software is

important .

 Introduced to the idea of architectural patterns, well-tried

ways of organizing system architectures, which can be reused

in system designs.

5 Architectural Design

Software Engineering

The software needs an architectural design to represent the design of

the software. IEEE defines architectural design as “the process of

defining a collection of hardware and software components and their

interfaces to establish the framework for the development of a

computer system.” The software that is built for computer-based

systems can exhibit one of these many architectural styles.

Architectural design is concerned with understanding how a system

should be organized and designing the overall structure of that system.

Architectural design is the first stage in the software design process. It

is the critical link between design and requirements engineering, as it

identifies the main structural components in a system and the

relationships between them. The output of the architectural design

process is an architectural model that describes how the system is

organized as a set of communicating components.

To help you understand what I mean by system architecture, consider

the following Figure.

Software Engineering

This shows an abstract model of the architecture for a packing robot

system that shows the components that have to be developed. This

robotic system can pack different kinds of object. It uses a vision

component to pick out objects on a conveyor, identify the type of

object, and select the right kind of packaging. The system then moves

objects from the delivery conveyor to be packaged. It places packaged

objects on another conveyor. The architectural model shows these

components and the links between them.

In practice, there is a significant overlap between the processes of

requirements engineering and architectural design. Ideally, a system

specification should not include any design information. This is

unrealistic except for very small systems. Architectural decomposition

is usually necessary to structure and organize the specification.

Therefore, as part of the requirements engineering process, you might

propose an abstract system architecture where you associate groups of

system functions or features with large-scale components or sub-

systems. You can then use this decomposition to discuss the

requirements and features of the system with stakeholders.

Software architecture is important because it affects the performance,

robustness, distributability and maintainability of a system (Bosch,

2000). As Bosch discusses, individual components implement the

functional system requirements. The nonfunctional requirements

depend on the system architecture—the way in which these

components are organized and communicate. In many systems, non-

Software Engineering

functional requirements are also influenced by individual components,

but there is no doubt that the architecture of the system is the dominant

influence.

Bass et al. (2003) discuss three advantages of explicitly designing and

documenting software architecture:

1. Stakeholder communication the architecture is a high-level

presentation of the system that may be used as a focus for

discussion by a range of different stakeholders.

2. System analysis Making the system architecture explicit at an

early stage in the system development requires some analysis.

Architectural design decisions have a profound effect on

whether or not the system can meet critical requirements such

as performance, reliability, and maintainability.

3. Large-scale reuse A model of a system architecture is a

compact, manageable description of how a system is organized

and how the components interoperate. The system architecture

is often the same for systems with similar requirements and so

can support large-scale software reuse.

System architectures are often modeled using simple block

diagrams, as in the above figure. Each box in the diagram

represents a component. Boxes within boxes indicate that the

component has been decomposed to sub-components. Arrows

mean that data and or control signals are passed from component to

component in the direction of the arrows.

Software Engineering

System Category Consists of

• A set of components (eg: a database, computational modules)

that will perform a function required by the system.

• The set of connectors will help in coordination, communication,

and cooperation between the components.

• Conditions that define how components can be integrated to

form the system.

• Semantic models that help the designer to understand the overall

properties of the system.

The use of architectural styles is to establish a structure for all the

components of the system.

Taxonomy of Architectural Styles

1] Data centered architectures:

• A data store will reside at the center of this architecture and is

accessed frequently by the other components that update, add,

delete, or modify the data present within the store.

• The figure illustrates a typical data-centered style. The client

software accesses a central repository. Variations of this

approach are used to transform the repository into a blackboard

when data related to the client or data of interest for the client

change the notifications to client software.

• This data-centered architecture will promote integrability. This

means that the existing components can be changed and new

Software Engineering

client components can be added to the architecture without the

permission or concern of other clients.

• Data can be passed among clients using the blackboard

mechanism.

Advantages of Data centered architecture:

• Repository of data is independent of clients

• Client works independent of each other

• It may be simple to add additional clients.

• Modification can be very easy

2] Data flow architectures:

• This kind of architecture is used when input data is transformed

into output data through a series of computational manipulative

components.

• The figure represents pipe-and-filter architecture since it uses

both pipe and filter and it has a set of components called filters

connected by lines.

Software Engineering

• Pipes are used to transmitting data from one component to the

next.

• Each filter will work independently and is designed to take data

input of a certain form and produces data output to the next filter

of a specified form. The filters don’t require any knowledge of

the working of neighboring filters.

• If the data flow degenerates into a single line of transforms, then

it is termed as batch sequential. This structure accepts the batch

of data and then applies a series of sequential components to

transform it.

Advantages of Data Flow architecture:

• It encourages upkeep, repurposing, and modification.

• With this design, concurrent execution is supported.

Disadvantage of Data Flow architecture:

• It frequently degenerates to batch sequential system

• Data flow architecture does not allow applications that require

greater user engagement.

• It is not easy to coordinate two different but related streams

Software Engineering

3] Call and Return architectures

It is used to create a program that is easy to scale and modify. Many sub-styles

exist within this category. Two of them are explained below.

• Remote procedure call architecture: This component is used to present

in a main program or sub program architecture distributed among multiple

computers on a network.

• Main program or Subprogram architectures: The main program

structure decomposes into number of subprograms or function into a

control hierarchy. Main program contains number of subprograms that can

invoke other components.

4] Object Oriented architecture

The components of a system encapsulate data and the operations that must be

applied to manipulate the data. The coordination and communication between the

components are established via the message passing.

Characteristics of Object-Oriented architecture:

• Object protect the system’s integrity.

• An object is unaware of the depiction of other items.

Software Engineering

Advantage of Object-Oriented architecture:

• It enables the designer to separate a challenge into a collection of

autonomous objects.

• Other objects are aware of the implementation details of the object,

allowing changes to be made without having an impact on other objects.

5] Layered architecture

• A number of different layers are defined with each layer performing a well-

defined set of operations. Each layer will do some operations that becomes

closer to machine instruction set progressively.

• At the outer layer, components will receive the user interface operations

and at the inner layers, components will perform the operating system

interfacing (communication and coordination with OS)

• Intermediate layers to utility services and application software functions.

Conclusion

▪ A software architecture is a description of how a software system is

organized. Properties of a system such as performance, security, and

availability are influenced by the architecture used.

▪ Architectural design decisions include decisions on the type of application,

the distribution of the system, the architectural styles to be used, and the

ways in which the architecture should be documented and evaluated.

▪ Architectures may be documented from several different perspectives or

views. Possible views include a conceptual view, a logical view, a process

view, a development view, and a physical view.

▪ Architectural patterns are a means of reusing knowledge about generic

system architectures. They describe the architecture, explain when it may

be used, and discuss its advantages and disadvantages.

Software Engineering

Objectives.

introduce object-oriented software design using the UML and

highlight important implementation concerns.

By the end of this lecture, you will...

 understand the most important activities in a general, object-

oriented design process .

 understand some of the different models that may be used to

document an object-oriented design.

 know about the idea of design patterns and how these are a

way of reusing design knowledge and experience.

6 Design and implementation

Software Engineering

Software design and implementation is the stage in the software

engineering process at which an executable software system is

developed. For some simple systems, software design and

implementation is software engineering, and all other activities are

merged with this process. However, for large systems, software design

and implementation is only one of a set of processes (requirements

engineering, verification and validation, etc.) involved in software

engineering.

Software design and implementation activities are invariably

interleaved. Software design is a creative activity in which you identify

software components and their relationships, based on a customer’s

requirements. Implementation is the process of realizing the design as

a program. Sometimes, there is a separate design stage and this design

is modeled and documented. At other times, a design is in the

programmer’s head or roughly sketched on a whiteboard or sheets of

paper. Design is about how to solve a problem, so there is always a

design process. However, it isn’t always necessary or appropriate to

describe the design in detail using the UML or other design description

language.

Design and implementation are closely linked and you should

normally take implementation issues into account when developing a

design. For example, using the UML to document a design may be the

right thing to do if you are programming in an object-oriented

language such as Java or C#. It is less useful, I think, if you are

Software Engineering

developing in a dynamically typed language like Python and makes no

sense at all if you are implementing your system by configuring an off-

the-shelf package. Agile methods usually work from informal sketches

of the design and leave many design decisions to programmers.

Therefore, I don’t cover programming topics here. Instead, this lecture

has two aims:

1. To show how system modeling and architectural design

are put into practice in developing an object-oriented

software design.

2. To introduce important implementation issues that are not

usually covered in programming books. These include

software reuse, configuration management, and open-

source development.

Object-oriented design using the UML.

An object-oriented system is made up of interacting objects that

maintain their own local state and provide operations on that state. The

representation of the state is private and cannot be accessed directly

from outside the object. Object-oriented design processes involve

designing object classes and the relationships between these classes.

These classes define the objects in the system and their interactions.

When the design is realized as an executing program, the objects are

created dynamically from these class definitions.

Software Engineering

Object-oriented systems are easier to change than systems developed

using functional approaches. Objects include both data and operations

to manipulate that data. They may therefore be understood and

modified as stand-alone entities. Changing the implementation of an

object or adding services should not affect other system objects.

Because objects are associated with things, there is often a clear

mapping between real world entities (such as hardware components)

and their controlling objects in the system. This improves the

understandability, and hence the maintainability, of the design.

To develop a system design from concept to detailed, object-oriented

design, there are several things that you need to do:

1. Understand and define the context and the external interactions

with the system.

2. Design the system architecture.

3. Identify the principal objects in the system.

4. Develop design models.

5. Specify interfaces.

Like all creative activities, design is not a clear-cut, sequential process.

You develop a design by getting ideas, proposing solutions, and

refining these solutions as information becomes available. You

inevitably have to backtrack and retry when problems arise.

Sometimes you explore options in detail to see if they work; at other

Software Engineering

times you ignore details until late in the process. Consequently, I have

deliberately not illustrated this process as a simple diagram because

that would imply design can be thought of as a neat sequence of

activities. In fact, all of the above activities are interleaved and so

influence each other.

System context and interactions.

The first stage in any software design process is to develop an

understanding of the relationships between the software that is being

designed and its external environment. This is essential for deciding

how to provide the required system functionality and how to structure

the system to communicate with its environment. Understanding of the

context also lets you establish the boundaries of the system.

Setting the system boundaries helps you decide what features are

implemented in the system being designed and what features are in

other associated systems. In this case, you need to decide how

functionality is distributed between the control system for all of the

weather stations, and the embedded software in the weather station

itself.

System context models and interaction models present complementary

views of the relationships between a system and its environment:

1. A system context model is a structural model that demonstrates

the other systems in the environment of the system being

developed.

Software Engineering

2. An interaction model is a dynamic model that shows how the

system interacts with its environment as it is used.

The context model of a system may be represented using associations.

Associations simply show that there are some relationships between

the entities involved in the association. The nature of the relationships

is now specified. You may therefore document the environment of the

system using a simple block diagram, showing the entities in the

system and their associations. This is illustrated in the following Figure

(System context for the weather station).

When you model the interactions of a system with its environment you

should use an abstract approach that does not include too much detail.

One way to do this is to use a use case model. Each use case represents

an interaction with the system. Each possible interaction is named in

an ellipse and the external entity involved in the interaction is

represented by a stick figure.

Software Engineering

The use case model for the weather station is shown in the following

Figure. This shows that the weather station interacts with the weather

information system to report weather data and the status of the weather

station hardware. Other interactions are with a control system that can

issue specific weather station control commands. A stick figure is used

in the UML to represent other systems as well as human users.

Design models:

Design or system models, show the objects or object classes in a

system. They also show the associations and relationships between

these entities. These models are the bridge between the system

requirements and the implementation of a system. They have to be

abstract so that unnecessary detail doesn’t hide the relationships

Software Engineering

between them and the system requirements. However, they also have

to include enough detail for programmers to make implementation

decisions.

Generally, you get around this type of conflict by developing models

at different levels of detail. Where there are close links between

requirements engineers, designers, and programmers, then abstract

models may be all that are required. Specific design decisions may be

made as the system is implemented, with problems resolved through

informal discussions. When the links between system specifiers,

designers, and programmers are indirect (e.g., where a system is being

designed in one part of an organization but implemented elsewhere),

then more detailed models are likely to be needed.

An important step in the design process, therefore, is to decide on the

design models that you need and the level of detail required in these

models. This depends on the type of system that is being developed.

You design a sequential data-processing system in a different way from

an embedded real-time system, so you will need different design

models. The UML supports 13 different types of models but, you rarely

use all of these. Minimizing the number of models that are produced

reduces the costs of the design and the time required to complete the

design process.

When you use the UML to develop a design, you will normally

develop two kinds of design model:

Software Engineering

1. Structural models, which describe the static structure of the

system using object classes and their relationships. Important

relationships that may be documented at this stage are

generalization (inheritance) relationships, uses/used-by

relationships, and composition relationships.

2. Dynamic models, which describe the dynamic structure of the

system and show the interactions between the system objects.

Interactions that may be documented include the sequence of

service requests made by objects and the state changes that are

triggered by these object interactions.

In the early stages of the design process, I think there are three models

that are particularly useful for adding detail to use case and

architectural models:

1. Subsystem models, which that show logical groupings of objects

into coherent subsystems. These are represented using a form of

class diagram with each subsystem shown as a package with

enclosed objects. Subsystem models are static (structural)

models.

2. Sequence models, which show the sequence of object

interactions. These are represented using a UML sequence or a

collaboration diagram. Sequence models are dynamic models.

State machine model, which show how individual objects change their

state in response to events. These are represented in the UML using

state diagrams. State machine models are dynamic models.

Software Engineering

A subsystem model is a useful static model as it shows how a design is

organized into logically related groups of objects. As well as

subsystem models, you may also design detailed object models,

showing all of the objects in the systems and their associations

(inheritance, generalization, aggregation, etc.). However, there is a

danger in doing too much modeling. You should not make detailed

decisions about the implementation that really should be left to the

system programmers.

Sequence models are dynamic models that describe, for each mode of

interaction, the sequence of object interactions that take place. When

documenting a design, you should produce a sequence model for each

significant interaction. If you have developed a use case model then

there should be a sequence model for each use case that you have

identified.

State diagrams are useful high-level models of a system or an object’s

operation. You don’t usually need a state diagram for all of the objects

in the system. Many of the objects in a system are relatively simple

and a state model adds unnecessary detail to the design.

For further reading, refer to SOFTWARE ENGINEERING-Ninth Edition-Ian Sommerville

chapter 7.

Software Engineering

Conclusion

• Software design and implementation are interleaved activities.

The level of detail in the design depends on the type of system

being developed and whether you are using a plan-driven or

agile approach.

• The process of object-oriented design includes activities to

design the system architecture, identify objects in the system,

describe the design using different object models, and document

the component interfaces.

• A range of different models may be produced during an object-

oriented design process. These include static models (class

models, generalization models, association models) and

dynamic models (sequence models, state machine models).

• Component interfaces must be defined precisely so that other

objects can use them. A UML interface stereotype may be used

to define interfaces.

• When developing software, you should always consider the

possibility of reusing existing software, either as components,

services, or complete systems.

Software Engineering

Software development life cycle (SDLC) is a structured process that is

used to design, develop, and test good-quality software. SDLC, or

software development life cycle, is a methodology that defines the

entire procedure of software development step-by-step.

SDLC is a process followed for software building within a software

organization. SDLC consists of a precise plan that describes how to

develop, maintain, replace, and enhance specific software. The life

cycle defines a method for improving the quality of software and the

all-around development process.

Stages of the Software Development Life Cycle

SDLC specifies the task(s) to be performed at various stages by a

software engineer or developer. It ensures that the end product is able

7 Software Development Life Cycle

(SDLC)

Software Engineering

to meet the customer’s expectations and fits within the overall budget.

Hence, it’s vital for a software developer to have prior knowledge of

this software development process. SDLC is a collection of these six

stages, and the stages of SDLC are as follows:

 The SDLC Model involves six phases or stages while developing

any software.

Stage-1: Planning and Requirement Analysis

Planning is a crucial step in everything, just as in software

development. In this same stage, requirement analysis is also

performed by the developers of the organization. This is attained from

customer inputs, and sales department/market surveys.

https://www.geeksforgeeks.org/sdlc-models-types-phases-use

Software Engineering

The information from this analysis forms the building blocks of a basic

project. The quality of the project is a result of planning. Thus, in this

stage, the basic project is designed with all the available information.

Stage-2: Defining Requirements

In this stage, all the requirements for the target software are specified.

These requirements get approval from customers, market analysts, and

stakeholders.

This is fulfilled by utilizing SRS (Software Requirement

Specification). This is a sort of document that specifies all those things

that need to be defined and created during the entire project cycle.

Software Engineering

Stage-3: Designing Architecture

SRS is a reference for software designers to come up with the best

architecture for the software. Hence, with the requirements defined in

SRS, multiple designs for the product architecture are present in the

Design Document Specification (DDS).

This DDS is assessed by market analysts and stakeholders. After

evaluating all the possible factors, the most practical and logical design

is chosen for development.

Stage-4: Developing Product

At this stage, the fundamental development of the product starts. For

this, developers use a specific programming code as per the design in

the DDS. Hence, it is important for the coders to follow the protocols

set by the association. Conventional programming tools like

compilers, interpreters, debuggers, etc. are also put into use at this

stage. Some popular languages like C/C++, Python, Java, etc. are put

into use as per the software regulations.

https://www.geeksforgeeks.org/software-requirement-specification-srs-format

Software Engineering

Stage-5: Product Testing and Integration

After the development of the product, testing of the software is

necessary to ensure its smooth execution. Although, minimal testing is

conducted at every stage of SDLC. Therefore, at this stage, all the

probable flaws are tracked, fixed, and retested. This ensures that the

product confronts the quality requirements of SRS.

Documentation, Training, and Support: Software documentation is an

essential part of the software development life cycle. A well-written

document acts as a tool and means to information repository necessary

to know about software processes, functions, and maintenance.

Documentation also provides information about how to use the

product. Training in an attempt to improve the current or future

employee performance by increasing an employee’s ability to work

through learning, usually by changing his attitude and developing his

skills and understanding.

Software Engineering

Stage-6: Deployment and Maintenance of Products

After detailed testing, the conclusive product is released in phases as

per the organization’s strategy. Then it is tested in a real industrial

environment. It is important to ensure its smooth performance. If it

performs well, the organization sends out the product as a whole. After

retrieving beneficial feedback, the company releases it as it is or with

auxiliary improvements to make it further helpful for the customers.

However, this alone is not enough. Therefore, along with the

deployment, the product’s supervision.

Software Engineering

What is the need for SDLC?

SDLC is a method, approach, or process that is followed by a software

development organization while developing any software. SDLC

models were introduced to follow a disciplined and systematic method

while designing software. With the software development life cycle,

the process of software design is divided into small parts, which makes

the problem more understandable and easier to solve. SDLC comprises

a detailed description or step-by-step plan for designing, developing,

testing, and maintaining the software.

Real Life Example of SDLC

Developing a banking application using SDLC:

• Planning and Analysis: During this stage, business

stakeholders’ requirements about the functionality and features

of banking application will be gathered by program managers

and business analysts. Detailed SRS (Software Requirement

Specification) documentation will be produced by them.

Together with business stakeholders, business analysts will

analyse and approve the SRS document.

• Design: Developers will receive SRS documentation.

Developers will read over the documentation and comprehend

the specifications. Web pages will be designed by designers.

High level system architecture will be prepared by developers.

Software Engineering

• Development: During this stage, development will code. They

will create the web pages and APIs needed to put the feature into

practice.

• Testing: Comprehensive functional testing will be carried out.

They will guarantee that the banking platform is glitch-free and

operating properly.

• Deployment and Maintenance: The code will be made

available to customers and deployed. Following this

deployment, the customer can access the online banking. The

same methodology will be used to create any additional

features.

Conclusion

In conclusion, we now know that the Software Development

Life Cycle (SDLC) in software engineering is an important

framework for the better and more structured development of

optimized software programs. In a world full of rapid evolution

in technology, SDLC phases plays a crucial role in enabling some

good and innovative solutions for helping users and

organizations. Also, it’s better to adapt SDLC principles to

achieve software development goals effectively.

Software Engineering

Questions

How does SDLC work?

The SDLC involves planning the project, gathering requirements, designing the

system, coding the software, testing it for issues, deploying it to users, and

maintaining it post-release. Each phase ensures the software meets user needs

and functions correctly, from start to finish.

What are the main phases of SDLC?

The main phases of SDLC include Requirements, Design, Implementation

(Coding), Testing, Deployment, and Maintenance. These phases represent the

stages a software project goes through from initiation to completion.

Why is SDLC important?

SDLC ensures a structured and organized approach to software development,

leading to the creation of reliable and high-quality software. It helps manage

resources efficiently, reduces development time, and minimizes the risk of project

failure.

What are the key objectives of SDLC?

The key objectives of SDLC include delivering a high-quality product, meeting

customer requirements, managing project resources effectively, minimizing

risks, and providing a clear and transparent development process.

How does SDLC differ from Agile methodology?

SDLC is a more traditional, sequential approach to software development, while

Agile is an iterative and flexible methodology. SDLC follows a structured path,

while Agile allows for incremental development with frequent reassessment and

adaptation.

Which of the following is not a life cycle model?

(A) Spiral model

(B) Prototyping model

(C) Waterfall model

(D) Capability maturity model

Software Engineering

What Is a Software Requirement Specification?

A software requirement specification describes what the product does

and how we expect it to perform. It is the main point of reference for

the entire team.

Software requirement specification (SRS) is a complete document or

description of the requirements of a system or software application. In

other words, “SRS is a document that describes what the features

of the software will be and what its behaviour will be, i.e. how it

will perform.” The advantage of SRS is that it takes less time and

effort for developers to develop software. What SRS is is like the

layout of the software which the user can review and see whether it

(SRS) is made according to his needs or not. We learned about

software requirement specification, what it is, now let us read its

features.

A software requirement specification (SRS) includes information about

all the functional and non-functional requirements for a given piece of

software. The SRS serves as the main point of reference for

the software development team who’ll build the software product, as

well as for all other involved stakeholders.

8 Software Requirements Specification

(SRS)

Software Engineering

A software requirements specification (SRS) is a description of a

software system to be developed. In order to write a good SRS, some

common practices have to be followed which are as follows:

Communication Practices or Principles:

1. Listen to the speaker and concentrate on what is being said.

2. Prepare before you meet, by searching, researching and

understanding the problem.

3. Someone should facilitate the meeting and should have an

agenda.

4. Face to Face communication is best but also have a document

or presentation to focus on discussion.

5. Strive for collaborations and decisions.

6. Document all the decisions.

Planning Practices or Principles:

1. Understand the scope of the project.

2. Involve the customer in the planning activity.

3. Recognize that planning is iterative and things will change.

4. Estimation should be done based on only what you know.

5. Consider the risk and it should be defined in the plan.

6. Be realistic on how much can be done on each day.

7. Define how you ensure quality can be achieved.

Construction Deployment Practices or Principles:

1. Understand the problem you are trying to solve.

2. Understand basic design principles and concepts.

Software Engineering

3. Pick a programming language that meets the need of the

software to be built.

4. Create a set of unit test cases that will be applied once the

component you code is completed.

5. Constraint your algorithm by structured programming practices.

6. Understand the software architecture and create interfaces that

are compatible with it.

7. Keep conditional logic as simple as possible.

8. Write a code that is self-documenting.

What Are the Components of a Software Requirement Specification (SRS)?

• Introduction

• Product Description

• Software Requirements

• External Interface Requirements

• Non-Functional Requirements

Do We Need Software Requirement Specification?

Yes, because an SRS acts as the single source of truth for the lifecycle

of the software. The SRS will contain information about all the

software components that make up the product or deliverable. The

SRS describes those components in detail so the reader can understand

what the software does functionally as well as how, and for what

purpose, it’s been developed. Finally, the SRS will contain sections

that describe the target non-functional behavior of the software

product, which include performance and security.

Software Engineering

Why Is a Software Requirement Specification Important?

Having a solid SRS is of massive importance to software projects.

This documentation brings everyone involved to the same shared

understanding about the project’s purpose and scope. This

documentation helps avoid misalignment between development teams

so everyone understands the software’s function, how it should behave

and for what users it is intended.

Through the SRS, teams gain a common understanding of the project’s

deliverable early on, which creates time for clarification and

discussion that otherwise only happens later (during the actual

development phase). This means teams are more likely to deliver a

software product that fits the original scope and functionality as set

forth in the SRS, and that are in line with user, customer and

stakeholder expectations.

How to Write Software Requirement Specification

Writing an SRS is just as important as making sure all relevant

participants in the project actually review the document and approve it

before kicking off the build phase of the project. Here’s how to

structure your own SRS.

Introduction

This section presents the purpose of the document, any specific

conventions around language used and definitions of specific terms

(such as acronyms or references to other supporting documents), the

Software Engineering

document’s intended audience and finally, the specific scope of the

software project.

Product Description

This section outlines the high-level context that motivates the software

product’s development, including a summary of its main features and

functionality. A very important component of the product description

is an explanation of the product’s intended user, what processes

developers will use to accomplish their goal and for which type of

environment this product is most well suited (business, customer,

industry and so forth). The product descriptions will also contain any

external dependency by which the product’s development will be

affected.

Software Requirements

The meat of the document, the software requirements section,

describes in detail how the software will behave and the functionality

it offers the user.

For example, a functional requirement may state a user will be able to

upload videos using the user interface.

Detailed requirement information is usually laid out in the document

as a written list of requirements broken down by key topic areas that

are specific to the product. For example, gaming software may have

functional requirements specific to players and the surrounding

environment. Otherwise, you might have an external attachment to a

Software Engineering

requirements template wherein this template is a simple file that

contains a granular list, or table, of requirements with key information

(description of the requirement, who it’s for, which version of the

product it refers to and more).

External Interface Requirements

This section contains a description of how the user interacts with the

software product through its interface, as well as a description of the

hardware necessary to support that interface.

In addition, this section usually features a description of how the

software will communicate with other software using the various

available communication standards. For example, you might have

descriptions of compatible message formats (such as audio or visual)

as well as standards for the data size the product can send or receive

by way of a specific user action.

Non-Functional Requirements

This section speaks to the software’s target behavior considering

performance, security, safety and quality. Questions this section may

answer include:

• Performance: How fast do users receive results upon executing

a certain action?

• Security: How will the software manage data privacy?

• Safety: Is there any potential harm the product may create and

what guardrails exist to protect the user, the company and

(potentially) the public at large?

• Quality: How reliable is the product?

Software Engineering

Conclusion:

So, the Software Requirements Specification is an important part of

successful software development projects. This all-encompassing

guide brings together stakeholders, helps in project planning and

directs development activities. Whatever the changes, in the end it

makes client satisfaction its own. Ignoring the importance of a correct

SRS can there- fore mean project failure, increased costs in

development, and dissatisfied stakeholders. Therefore, developing a

powerful SRS is the first step on the road to success, for any software

developer worthy of his salt.

