Spina Bifida (Spinal Dysraphism) (Neural Tube Defects)

Amr M. Tayel Lecturer of neurosurgery South Valley university

Objectives

Definition

- Pathology and types
- Etiology
- Associated pathology
- Diagnosis
- Management

Spina Bifida definition

Spina Bifida Latin "split spine"

Failure in closure of the neural tube during early embryologic development leading to midline defect.

Pathology

- Neural tube formation days 18-27
- Neural folds fuse in midline days 22-23
- Disjunction of superficial ectoderm from neural tube
- Failure of any step → dysraphia → maldevelopment of the neural structures and adjacent mesodermal structures

Types of spina bifida

- spina bifida cystica (manifesta):
- ✓ Menigeocel
- ✓ Meningeomyelocele
- ✓ Lipomeningocele
- ✓ Lipomyelomeningeocele
- \checkmark Myelocele = neural tissue

spina bifida occulta

 Meningocele = meninges + CSF
 Meningomyelocele = meninges + neural tissue + CSF

(It is the most clinically seen)

Lipomeningocele
lipomyelomeningeocele
Myelocele = neural tissue

Spina bifida occulta:

condition involving nonfusion of the halves of the vertebral arches without disturbance of the underlying neural tissue

Nutritional deficiency / Metabolic defect
 Folic acid deficiency

- Teratogens
 - Valproic acid, carbamezapine, cytochalasins, calcium channel blockers
- Genetics
 - Lower risk in blacks, increased risk caucasian
 - Increased risk if previous child with NTD
 - Point mutations in folate receptor genes C677G, A127T

Associated pathology

(mostly with meningeomyelocele)

Arnold-Chiari Malformation Type II

- $\sim 80\%$ incidence with MMC
- $\sim 20\%$ develop symptoms of brainstem dysfunction:
 - Dysphagia
 - Poor feeding
 - Recurrent Aspiration
 - Vocal cord paralysis
 - Stridor
 - Apnea
 - Abnormal responses to hypoxia, hypercapnea
- Hydrocephalus.

Figure 22-14. Magnetic resonance image of a patient with a Chiari II malformation. The small posterior fossa results in both upward and downward herniation of brain tissue. The short arrow indicates a "beaked" tectum showing upward herniation while the curved arrow indicates downward herniation of the cerebellar tonsils through the foramen magnum (thin arrow).

Pulmonary: Sequellae of recurrent aspiration

CV: Congenital cardiac defects: ASD, VSD, ToF, fallot.

□ GI : Neurogenic bowel dysfunction / incontinence, loss of anal ton

<u>GU:</u> Urinary incontinence/obstruction, Recurrent UTIs/pyelonephritis.

MSK: motor paralysis, Kyphoscoliosis, Clubfoot, Hip dislocation.

<u>Spinal cord:</u> tethard cord, diastematomyelia.

IMMUNE: High risk population for latex allergy (up to 50%).

Skin: tuft of hair or pigmentation, midline dimple, hemangioma.

The most associated anomalies with meningeomyelocele

- 1. Lower limb paralysis and bone deformities (club foot).
- 2. <u>Bladder and bowel functions.</u>
- 3. <u>Association with hydrocephalus</u> (Arnold_Chiari malformation)
- 4. Abnormalities of the vertebral column.

⇒ Ultrasonography For locating back lesion vs. cranial signs

 \Rightarrow Amniocentesis for AFP

Primary Closure of MMC

If ruptured: Emergency neonatal surgery

If intact sac: Goal closure within 24-48 hr of delivery before colonization of bacteria

MMC Other Surgical Procedures

VP Shunting

- Hydrocephalus 15% at primary closure
- 80-90% post-closure

Brain stem (Posterior fossa) decompression

Genitourinary procedures

- High incidence of bladder extrophy
- Vesicoureteral reflux 2° neurogenic bladder
- Urethral dilation
- Vesicostomy

Orthopedic Revisions

- Club foot
- Hip dislocation
- **Spine revision**: for deformities

Best Wishes