
WELCOME TO CLASS!

let’s introduce ourselves

what is a “Microprocessor”?

CLASS 1

The Microprocessor, also known as the
Central Processing Unit (CPU), is the

brain of all computers and many
household and electronic devices

what is a microprocessor?

What is a microprocessor?

Multiple MPUs, working together, are

the "hearts" of datacenters, super-

computers, communications products,

and other digital devices

MPU ARCHITECTURE

INTEL 8085 MPU
ARCHITECTURE

HISTORY

ENIAC (Electronic Numerical Integrator

And Computer) was the world’s first

general-purpose computer

1946

HISTORY

The first microprocessor was the Intel

4004, introduced in 1971

INTEL 4004

2019

Intel Core i9-9900KS Processor
18 Billion Transistors

A CPU (central processing unit) is the
part of a computer that executes

instructions. This can be implemented
using a single IC, a number of ICs,
discrete transistors or a room full of

vacuum tubes

microprocessor vs CPU

A microprocessor is a single-chip
implementation of a CPU

microprocessor vs CPU

Nowadays pretty much all CPUs for
general use are microprocessors, causing

the two terms to be practically
synonymous

microprocessor vs CPU

MPU vs MCU

what is a microcontroller?

A microcontroller is a computer

present in a single integrated circuit

which is dedicated to perform one task

and execute one specific application

what is a microcontroller?

MCUs contain memory, programmable
input/output peripherals as well a

processor

what is a microcontroller?

MCUs are mostly designed for embedded
applications and are heavily used in
automatically controlled electronic

devices such as cellphones, cameras,
microwave ovens, washing machines,

etc.

MCUs come in different shapes, sizes and
coni©️gAuerrcanaCotlleigeoofnthes

MICROCONTROLLERS
CONTROL CIRCUITS

IN-EAR PULSE BIODATA ACQUISITION

PASSWORD BASED DOOR LOCK SYSTEM

Copyright©️American College of the
MiddleEast. 2020.

ENGINE CONTROL UNIT

ARCHITECTURE OF A MICROCONTROLLER

in order to work, MCUs need:

1. Power

2. A program (code) to follow

3. Inputs and Outputs (HW & SW)

in order to work, MCUs need:

1. Power

2. A program (code) to follow

3. Inputs and Outputs (HW & SW)

DIGITAL COMPONENTS

in order to work, MCUs need:

1. Power

2. A program (code) to follow

3. Inputs and Outputs (HW & SW)

DATA REPRESENTATION

DIGITAL COMPONENTS

basic electronic components

Ohm’s law

Boolean logic

understand variables

OHM’S LAW

V = I x R

BOOLEAN LOGIC

BASIC ELECTRONIC COMPONENTS

Copyright©️American College of the
MiddleEast. 2020.

DATA REPRESENTATION

binary system

hexadecimal system

decimal system

how to alternate between them

binary to decimal

binary to decimal

binary to decimal

Copyright©️American College of the
MiddleEast. 2020.

By adding together ALL the decimal number
values from right to left at the positions that

are represented by a “1” gives us:
(256) + (64) + (32) + (4) + (1) = 35710

or three hundred and fifty seven as a decimal
number.

binary to decimal

binary to decimal

binary system units

Today, as micro-controller or
microprocessor systems become
increasingly larger, the individual

binary digits (bits) are now grouped
together into 8’s to form a single BYTE

file system units

BINARY TO DECIMAL SUMMARY
_

▪ A “BIT” is the abbreviated term derived from BInary digiT

▪ A Binary system has only two states, Logic “0” and Logic “1”
giving a base of 2

▪ A Decimal system uses 10 different digits, 0 to 9 giving it a
base of 10

▪ A Binary number is a weighted number who’s weighted value
increases from right to left

▪ The weight of a binary digit doubles from right to left
▪ A decimal number can be converted to a binary number by

using the sum-of-weights method
▪ When we convert numbers from binary to decimal, or

decimal to binary, subscripts are used to avoid errors

hexadecimal to decimal

THANK YOU

CLASS 2

CLASS 1 REVIEW

what is a “Microprocessor”?

The Microprocessor, also known as the
Central Processing Unit (CPU), is the

brain of all computers and many
household and electronic devices

what is a microprocessor?

MPU vs MCU

what is a microcontroller?

A microcontroller is a computer

present in a single integrated circuit

which is dedicated to perform one task

and execute one specific application

what is a microcontroller?

MCUs contain memory, programmable
input/output peripherals as well a

processor

in order to work, MCUs need:

1. Power

2. A program (code) to follow

3. Inputs and Outputs (HW & SW)

DIGITAL COMPONENTS

basic electronic components

Ohm’s law

Boolean logic

understand variables

DATA REPRESENTATION

binary system

hexadecimal system

decimal system

how to alternate between them

binary to decimal

binary to decimal

binary to decimal

CLASS 2

▪ INTRODUCTION TO ASSEMBLY LANGUAGE
▪ ADDING AND SUBSTRACTING VALUES
▪ REGISTERS AND OPERATIONS
▪ TRIS AND PORT REGISTERS
▪ LED BLINK

what is a “Assembly
Language”?

ASSEMBLY LANGUAGE IS AN EXTREMELY
LOW-LEVEL PROGRAMMING LANGUAGE

THAT HAS A 1-TO-1 CORRESPONDENCE TO
MACHINE CODE — THE SERIES OF BINARY
INSTRUCTIONS WHICH MOVE VALUES IN

AND OUT OF REGISTERS IN A CPU

GENERAL OPERATIONS

MOVLW 0xFF
MOVWF PORTA
ADDLW b101
SUBLW 25

BCF RP1
BSF RP0

ADDING AND SUBSTRACTING

A + B

MOVLW A A

A + B

w

w

ADDLW B

10 + 20

LET’S PRACTICE

0xF0 + 0x01

LET’S PRACTICE

A - B

MOVLW A A

A - B

w

w

SUBLW B

50 - 10

LET’S PRACTICE

0xFF - 0xAA

LET’S PRACTICE

REGISTERS AND OPERATIONS

To change from Bank 0 to Bank 1 we talk
to the STATUS register. We do this by
setting the RP0 and RP1 bits. In most
cases we’ll be moving only between Bank
0 and Bank 1, thus we can just modify the
value of the bit 5 of the STATUS register.

STATUS

TRISD is in BANK 1
BSF STATUS, 5

PORTD is in BANK 0
BCF STATUS, 5

BANK SELECTION

BANK SELECTION

TRISD is in BANK 1

BCF STATUS, RP1

BSF STATUS, RP0

PORTD is in BANK 0

BCF STATUS, RP1

BCF STATUS, RP0

W REGISTER

The W register is a general register in
which you can put any value that you
wish. Once you have assigned a value to
W, you can add it to another value, or
move.

MOVLW

The MOVLW command means ‘Move Literal
Value Into W’, which in English means put
the value that follows directly into the W
register.

MOVLW 0xAA

MOVWF

This instruction means “Move The
Contents Of W Into The Register Address
That Follows”.

MOVWF TRISB

TRIS AND PORT REGISTERS

TRIS

We use the TRIS Register to program a pin
to be an output or an input by simply
sending a 0 (out) or a 1 (in) to the
relevant bit in the register.

MOVLW 0xFF
MOVWF TRISB

PORT

To send one of our output pins high, we
simply send a ‘1’ to the corresponding bit
in our PORTx register.

MOVLW 0xFF
MOVWF PORTx

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

TRISB

TRISx

MCUPBO

input

1

PC5

output

0

PORTB.0 = 1
BSF TRISB, 0

PORTC.5 = 0
TRISC, 5BCF

TRISx

PORTB

input

MCU PORTC

output

TRISx

0xFF -> TRISB

0x00 -> TRISC

TRISx

MOVLW 0xFF

MOVWF TRISB

CLRF TRISC

TURN LEDs ON AND OFF

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

ORG 0x00
BCF STATUS, RP1
BSF STATUS, RP0
CLRF TRISB
MAIN
BCF STATUS, RP1
BCF STATUS, RP0
MOVLW 0xFF
MOVWF PORTB
END

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

ORG 0x00
BSF STATUS, 5
CLRF TRISB
MAIN
BCF STATUS, 5
MOVLW 0xAA
MOVWF PORTB
END

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

PORTC

PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

PORTD

THANK YOU

CLASS 3

CLASS 3

▪ Review INTRODUCTION TO ASSEMBLY
LANGUAGE

▪ ADDING AND SUBSTRACTING VALUES
▪ REGISTERS AND OPERATIONS
▪ TRIS AND PORT REGISTERS
▪ LED BLINK

what is a “Assembly
Language”?

ASSEMBLY LANGUAGE IS AN EXTREMELY
LOW-LEVEL PROGRAMMING LANGUAGE

THAT HAS A 1-TO-1 CORRESPONDENCE TO
MACHINE CODE — THE SERIES OF BINARY
INSTRUCTIONS WHICH MOVE VALUES IN

AND OUT OF REGISTERS IN A CPU

GENERAL OPERATIONS

MOVLW 0xFF
MOVWF PORTA
ADDLW b101
SUBLW 25
BCF RP1
BSF RP0

ADDING AND SUBSTRACTING

A + B

MOVLW A A

A + B

w

w

ADDLW B

0xF0 + 0x01

LET’S PRACTICE

A - B

MOVLW B B

A - B

w

w

SUBLW A

SUBLW subtract W from Literal Operation: k-(W)->W

0xFF - 0xAA

LET’S PRACTICE

REGISTERS AND OPERATIONS

To change from Bank 0 to Bank 1 we talk
to the STATUS register. We do this by
setting the RP0 and RP1 bits. In most
cases we’ll be moving only between Bank
0 and Bank 1, thus we can just modify the
value of the bit 5 of the STATUS register.

STATUS

TRISD is in BANK 1

BCF

BCF

STATUS, RP1

STATUS, RP0

BCF STATUS, RP1

BSF STATUS, RP0

PORTD is in BANK 0

TRISD is in BANK 1

BCF STATUS, RP1
BSF STATUS, RP0

PORTD is in BANK 0

BCF

BCF

STATUS, RP1

STATUS, RP0

STATUS

IRP RP1 RP0 TO PD Z DC C

4 3 2 1 06 57

1: BANK1
0: BANK0

0: BANK0
BANK1

STATUS, 5

IRP RP1 RP0 TO PD Z DC C

7 6 5 4 3 2 1 0

1: BANK1
0: BANK0

0: BANK0
BANK1

TRISD is in BANK 1
BSF STATUS, 5

PORTD is in BANK 0
BCF STATUS, 5

BANK SELECTION

BANK SELECTION

BANK SELECTION

W REGISTER

The W register is a general register in
which you can put any value that you
wish. Once you have assigned a value to
W, you can add it to another value, or
move.

MOVLW

The MOVLW command means ‘Move Literal
Value Into W’, which in English means put
the value that follows directly into the W
register.

MOVLW 0xAA

MOVWF

This instruction means “Move The
Contents Of W Into The Register Address
That Follows”.

MOVWF TRISB

TRIS AND PORT REGISTERS

TRIS

We use the TRIS Register to program a pin
to be an output or an input by simply
sending a 0 or a 1 to the relevant bit in
the register.

MOVLW 0xFF
MOVWF TRISB

TRIS

USE PORT
TO WRITE

USE PORT
TO READ

PORT

To send one of our output pins high, we
simply send a ‘1’ to the corresponding bit
in our PORTx register.

MOVLW 0xFF
MOVWF PORTx

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

TRISB

TRISx

MCUPBO

input

1

PC5

output

0

PORTB.0 = 1
BSF TRISB, 0

PORTC.5 = 0
TRISC, 5BCF

TRISx

PORTB

input

MCU PORTC

output

TRISx

0xFF -> TRISB

0x00 -> TRISC

TRISx

MOVLW 0xFF

MOVWF TRISB

CLRF TRISC

TURN LEDs ON AND OFF

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

ORG 0x00
BSF STATUS, 5
CLRF TRISB
MAIN
BCF STATUS, 5
MOVLW 0xFF
MOVWF PORTB
END

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

ORG 0x00
BSF STATUS, 5
CLRF TRISB
MAIN
BCF STATUS, 5
MOVLW 0xAA
MOVWF PORTB
END

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

PORTC

1

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

PORTA

2

PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

PORTE

3

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY

THE FIRST THREE LEDS OF PORTB

4

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON

THE EVEN BITS OF PORTA

5

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON

THE ODD BITS OF PORTD

6

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY

THE LAST TWO LEDS OF PORTC

7

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON

THE EVEN BITS OF PORTB
AND THE ODD BITS OF PORTC

8

THANK YOU

CLASS 4

CLASS 3 REVIEW

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

TURN LEDs ON AND OFF

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

ORG 0x00
BSF STATUS, 5
CLRF TRISB
MAIN
BCF STATUS, 5
MOVLW 0xFF
MOVWF PORTB
END

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

ORG 0x00
BSF STATUS, 5
CLRF TRISB
MAIN
BCF STATUS, 5
MOVLW 0xAA
MOVWF PORTB
END

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

PORTC

1

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

PORTA

2

PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

PORTE

3

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY

THE FIRST THREE LEDS OF PORTB

4

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON

THE EVEN BITS OF PORTA

5

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON

THE ODD BITS OF PORTD

6

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY

THE LAST TWO LEDS OF PORTC

7

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON

THE EVEN BITS OF PORTB
AND THE ODD BITS OF PORTC

8

CLASS 4

▪ TURN ON LEDs
▪ 7-SEGMENT DISPLAY
▪ BASICS OF CENTRAL PROCESSING UNIT

TURN LEDS ON AND OFF

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

PORTA

ORG 0x00
BSF STATUS, 5
CLRF TRISA
MAIN
BCF STATUS, 5
MOVLW 0x99
MOVWF PORTA
END

7-SEGMENT DISPLAY

7-SEGMENT DISPLAY

COMMON CATHODE

7-SEGMENT DISPLAY

7-SEGMENT DISPLAY
Decimal DP g f e d c b a Hex

0 0 0 1 1 1 1 1 1 3F

1 0 0 0 0 0 1 1 0 06

2 0 1 0 1 1 0 1 1 5B

3 0 1 0 0 1 1 1 1 4F

4 0 1 1 0 0 1 1 0 66

5 0 1 1 0 1 1 0 1 6D

6 0 1 1 1 1 1 0 1 7D

7 0 0 0 0 0 1 1 1 07

8 0 1 1 1 1 1 1 1 7F

9 0 1 1 0 0 1 1 1 67

7-SEGMENT DISPLAY

SHOW NUMBER “0”
IN ALL THE 7-SEG DISPLAYS

7-SEGMENT DISPLAY

COMMON CATHODE

7-SEGMENT DISPLAY
Decimal DP g f e d c b a Hex

0 0 0 1 1 1 1 1 1 3F

1 0 0 0 0 0 1 1 0 06

2 0 1 0 1 1 0 1 1 5B

3 0 1 0 0 1 1 1 1 4F

4 0 1 1 0 0 1 1 0 66

5 0 1 1 0 1 1 0 1 6D

6 0 1 1 1 1 1 0 1 7D

7 0 0 0 0 0 1 1 1 07

8 0 1 1 1 1 1 1 1 7F

9 0 1 1 0 0 1 1 1 67

ORG 0x00
BSF STATUS, 5
CLRF TRISA
CLRF TRISD
MAIN
BCF STATUS, 5
MOVLW 0xFF
MOVWF PORTA
MOVLW 0x3F
MOVWF PORTD
END

7-SEGMENT DISPLAY

SHOW NUMBER “5”
IN THE FIRST TWO 7-SEG DISPLAYS

1

7-SEGMENT DISPLAY

SHOW CHARACTER “H”
IN THE FIRST AND LAST 7-SEG DISPLAY

2

7-SEGMENT DISPLAY

SHOW CHARACTER “A”
IN THE SECOND AND THIRD 7-SEG DISPLAY

3

7-SEGMENT DISPLAY

SHOW THE 7-SEG DISPLAY OUTPUT
IF PORTD=0xC9

4

CENTRAL PROCESSING UNIT

Also known as Microprocessor, handles

all instructions it receives from

hardware and software running on the

computer

CPU

INTEL PENTIUM

CENTRAL PROCESSING UNIT

▪ The processor is placed and secured
into a compatible CPU socket found on
the motherboard

▪ Processors produce heat, so they are
covered with a heat sink to keep them
cool and running smoothly

WHAT DOES THE CPU DO?

▪ Takes input from a peripheral
(keyboard, mouse, printer, etc) or
computer program

▪ Interprets what it needs

▪ Outputs information to your monitor, or
perform the requested task

WHAT DOES THE CPU DO?

WHAT DOES THE CPU DO?

INPUTS OUTPUTS

HISTORY

THE FIRST MICROPROCESSOR WAS THE
INTEL 4004, INTRODUCED IN 1971

INTEL 4004

1971

2019

Intel Core i9-9900KS Processor
18 Billion Transistors

COMPONENTS OF THE CPU

The primary components are:

• The ALU (Arithmetic Logic Unit) that
performs mathematical, logical, and
decision operations and

• The CU (Control Unit) that directs all of
the processors operations.

COMPONENTS OF THE CPU

COMPONENTS OF THE CPU

MACHINE CYCLE

The control unit has the task of decoding
the instructions, interpreting them by

generating the appropriate signals to be
sent to the executing organs at the clock

pulse rate

CONTROL UNIT

The control unit's activity is generally
divided into three main phases:

▪ Fetch

▪ Decode

▪ Execute

CONTROL UNIT

The arithmetic-logic unit is formed by a
set of circuits capable of performing

elementary arithmetic operations such as
addition, subtraction, increment, decay,
multiplication, division, data exchange

between registers and control operations

ARITHMETIC LOGIC UNIT

HOW FAST DOES
A CPU TRANSFER DATA?

Like any device that utilizes electrical
signals, the data travels very near the
speed of light, which is approximately

300,000,000 m/s

CPU TRANSFER DATA SPEED

▪ This speed depends on the medium
(type of metal in the wire) through
which the signal is traveling.

▪ Most electrical signals are traveling at
about 75 to 90% the speed of light.

CPU TRANSFER DATA SPEED

The clock speed of a CPU is the number
of instructions it can process in any given

second, measured in gigahertz (GHz)

CPU CLOCK SPEED

For example, a CPU has a clock speed of
1 Hz if it can process one piece of

instruction every second. Extrapolating
this to a more real-world example: a CPU

with a clock speed of 3.0 GHz can
process 3 billion instructions each second

CPU CLOCK SPEED

Some devices have a single-core processor
while others may have a dual-core (or quad-

core, etc.) processor. As might already be
apparent, having two processor units

working side by side means that the CPU
can simultaneously manage twice the
instructions every second, drastically

improving performance

CPU CORES

MPU ARCHITECTURE

1

THANK YOU

CLASS 5

Quiz review

CLASS – WEEK 4

ASSEMBLY LANGUAGE

▪ IF STATEMENT
▪ READ INPUTS

IF STATEMENT

IF STATEMENT

IF STATEMENT

IF STATEMENT

IF STATEMENT

IF STATEMENT IN ASSEMBLY

IF STATEMENT IN ASSEMBLY

BTFSC (Bit Test File Skip if Clear)

BTFSS (Bit Test File Skip if Set)

BTFSC (Bit Test File Skip if Clear)

IF THE LOGIC AT LOCATION F IS HIGH (1),

THEN THE BTFSC FUNCTION WILL NOT

SKIP THE NEXT LINE OF CODING

BTFSS (Bit Test File Skip if Set)

IF THE LOGIC AT LOCATION F IS HIGH (1),

THEN THE BTFSS FUNCTION WILL SKIP

THE NEXT LINE OF CODING

MCU SYSTEM

PUSH BUTTON

PB5

LED

PD5

ORG 0x00
BSF STATUS, 5
BSF TRISB, 5
CLRF TRISD
MAIN
BCF STATUS, 5
BTFSC PORTB,5
GOTO LEDON
GOTO LEDOFF

LEDON

BSF PORTD,5
GOTO MAIN

LEDOFF

BCF PORTD, 5
GOTO MAIN
END

ORG 0x00
BSF STATUS, 5
BSF TRISB, 5
CLRF TRISD
MAIN
BCF STATUS, 5
BTFSS PORTB, 5
GOTO LEDOFF
GOTO LEDON

LEDON

BSF PORTD, 5
GOTO MAIN

LEDOFF

BCF PORTD, 5
GOTO MAIN
END

MCU SYSTEM

PUSH BUTTON

PB7

7-SEGMENT
DISPLAY

IF STATEMENT IN ASSEMBLY

IF PB7 ==1

SHOW “H” IN
ALL 7-SEG DISP

SHOW “0” IN
ALL 7-SEG DISP

YESNO

ORG 0x00
BSF STATUS, 5
BSF TRISB, 7
CLRF TRISA
CLRF TRISD
MAIN
BCF STATUS, 5
BTFSC PORTB, 7
GOTO SHOWH

GOTO SHOWZ

SHOWH
MOVLW 0x0F
MOVWF PORTA
MOVLW 0x76
MOVWF PORTD

GOTO MAIN
SHOWZ

MOVLW 0x0F
MOVWF PORTA
MOVLW 0x3F
MOVWF PORTD

GOTO MAIN
END

MCU SYSTEM

PUSH BUTTON

PA0

LEDS ON
PORTD

IF STATEMENT IN ASSEMBLY

IF PA0 ==1

EVEN BITS
OF PORTD

ODD BITS
OF PORTD

YESNO

THANK YOU

CLASS 6

CLASS 5 REVIEW

7-SEGMENT DISPLAY

7-SEGMENT DISPLAY

COMMON CATHODE

7-SEGMENT DISPLAY

3

SHOW CHARACTER “C”
IN THE FOURTH AND SECOND 7-SEG DISPLAYS

7-SEGMENT DISPLAY

SHOW THE 7-SEG DISPLAY OUTPUT
IF PORTA=0x09 AND PORTD=0x6B

4

CLASS – WEEK 6

ASSEMBLY LANGUAGE

▪ IF STATEMENT
▪ READ INPUTS
▪ FUNCTIONS

IF STATEMENT

IF STATEMENT

IF STATEMENT

IF STATEMENT

IF STATEMENT

IF STATEMENT IN ASSEMBLY

IF STATEMENT IN ASSEMBLY

BTFSC (Bit Test File Skip if Clear)

BTFSS (Bit Test File Skip if Set)

BTFSC (Bit Test File Skip if Clear)

IF THE LOGIC AT LOCATION F IS HIGH (1),
THEN THE BTFSC FUNCTION WILL NOT

SKIP THE NEXT LINE OF CODING

BTFSS (Bit Test File Skip if Set)

IF THE LOGIC AT LOCATION F IS HIGH (1),
THEN THE BTFSS FUNCTION WILL SKIP

THE NEXT LINE OF CODING

MCU SYSTEM

PUSH BUTTON

PB5

LED

PD5

ORG 0x00
BSF STATUS, 5
BSF TRISB, 5
CLRF TRISD
MAIN
BCF STATUS, 5
BTFSC PORTB, 5

GOTO LEDON
GOTO LEDOFF

LEDON
BSF PORTD, 5

GOTO MAIN

LEDOFF
BCF PORTD, 5

GOTO MAIN
END

ORG 0x00
BSF STATUS, 5
BSF TRISB, 5
CLRF TRISD
MAIN
BCF STATUS, 5
BTFSS PORTB, 5

GOTO LEDOFF
GOTO LEDON

LEDON
BSF PORTD, 5

GOTO MAIN

LEDOFF
BCF PORTD, 5

GOTO MAIN
END

MCU SYSTEM

PUSH BUTTON

PB7

7-SEGMENT
DISPLAY

IF STATEMENT IN ASSEMBLY

IF PB7 ==1

SHOW “H” IN
ALL 7-SEG DISP

SHOW “0” IN
ALL 7-SEG DISP

YESNO

ORG 0x00
BSF STATUS, 5
BSF TRISB, 7
CLRF TRISA
CLRF TRISD
MAIN
BCF STATUS, 5
BTFSC PORTB, 7

GOTO SHOWH
GOTO SHOWZ

SHOWH
MOVLW 0x0F
MOVWF PORTA
MOVLW 0x76
MOVWF PORTD

GOTO MAIN
SHOWZ

MOVLW 0x0F
MOVWF PORTA
MOVLW 0x3F
MOVWF PORTD

GOTO MAIN
END

MCU SYSTEM

PUSH BUTTON

PA0

LEDS ON
PORTD

IF STATEMENT IN ASSEMBLY

IF PA0 ==1

EVEN BITS
OF PORTD

ODD BITS
OF PORTD

YESNO

MCU SYSTEM

PUSH BUTTON

PE1

7-SEGMENT
DISPLAY

IF STATEMENT IN ASSEMBLY

IF PE1 ==1

SHOW “o” IN THE
2ND AND 3RD

7-SEG DISP

SHOW “8” IN THE
1ST AND 4TH

7-SEG DISP

YESNO

MCU SYSTEM

PUSH BUTTON

PB5

LEDS ON
PORTC
PORTD

IF STATEMENT IN ASSEMBLY

IF PB5 ==1

OPPOSITE
PORTC = 0xC3
PORTD = 0x0F

YESNO

CLASS 6

ASSEMBLY LANGUAGE

▪ Delays

Instruction Descriptions

Instruction Descriptions

EX1: Calculate the delay created by the below code segment if oscillator of 4 MHz. (Assume the number
5 is loaded into Counter)

LOOP
DECFSZ
GOTO

Counter,F
LOOP

Solution:

No. of cycles = 5 X(1 +2) = 15
Delay by this code= No. of cycles X Instruction cycle

= 15 X (4 X 0.25uS)
= 15 us

EX2: Calculate the delay created by the below code segment if oscillator of 8 MHz. (Assume the number
5 is loaded into Counter)

LOOP
DECFSZ
GOTO

Counter , F
LOOP

Solution:

No. of cycles = 5 X(1 +2) = 15
Delay by this code= No. of cycles X Instruction cycle

= 15 X (0.5uS)
= 7.5 us

EX3: Calculate the delay created by the Loop in the below code segment oscillator of 4 MHz:

Counter1 EQU 35H

START

MOVLW
MOVWF

0F2H
Counter1

LOOP
DECFSZ
GOTO

Counter1,F
LOOP

END

Solution:

No. of cycles in Loop =
No. of cycles in code =

[242 X (1 +2)] = 726
1 + 1 + 726= 728

Delay by this code= No. of cycles X Instruction cycle
= 728 X (4 X 0.25uS)
= 728 uS

EX 2: Calculate the delay created by the Loop in the below code segment oscillator of 8 MHz:

Counter1 EQU70H

START

MOVLW
MOVWF

0F2H
Counter1

LOOP
DECFSZ
GOTO

Counter1,F
LOOP

END

Solution:

No. of cycles in Loop =
No. of cycles in code =

[242 X (1 +2)] = 726
1 + 1 + 726= 728

Delay by this code= No. of cycles X Instruction cycle
= 728 X (0.5 uS)
= 364 uS

CLASS 6

ASSEMBLY LANGUAGE

▪ CONDITIONAL STATEMENT: BTFSC, BTFSS
▪ READ MULTIPLE INPUTS
▪ FUNCTIONS

MCU SYSTEM

4

PUSH BUTTONS:

PE0
PE1

LEDS
PORTD

IF PE0 IS PRESSED THEN
TURN ON ODD BITS OF PORTD

ELSE IF PE1 IS PRESSED THEN
TURN ON EVEN BITS OF PORTD

ELSE
TURN OFF ALL BITS OF PORTD

END IF

4

PSEUDOCODE

FLOWCHAR
T

4

?

FLOWCHAR
T

4

MCU SYSTEM

PUSH BUTTONS:

PA3
PA4

7-SEGMENT
DISPLAY

5

SHOW “3” ON THE
FIRST TWO
7-SEG DISP

YES
IF PA3 ==1

SHOW “ - ”
ON ALL THE
7-SEG DISP

NO
IF PA4 ==1

SHOW “E” ON THE
LAST TWO

7-SEG DISP

5

YES

NO

FLOWCHAR
T

MCU SYSTEM

BUTTONS:
PB7

PB6

LEDS
PORTC

7-SEGMENT
DISPLAY

6

SHOW “P” ON THE
2ND AND 3RD

7-SEG DISP

PORTC = 0x0F

YES
IF PB7 ==1

TURN OFF
EVERYTHING

NO
IF PB6 ==1

SHOW “d” ON THE
4TH AND 1ST

7-SEG DISP

PORTC = 0xF0

6

YES

NO

FLOWCHAR
T

THANK YOU

This is a good video to remember or learn the
basics of C Programming Language

www.youtube.com/watch?v=3lQEunpmtRA

You have the direct link on your Moodle page

http://www.youtube.com/watch?v=3lQEunpmtRA

CLASS CONTENT

C LANGUAGE

▪ C LANGUAGE SYNTAX
▪ INPUTS AND OUTPUTS
▪ BLINK LEDS
▪ 7-SEGMENT DISPLAY

C PROGRAM
STRUCTURE

COMMENTS

▪ COMMENTS ARE PARTS OF THE PROGRAM
USED TO CLARIFY THE OPERATION

▪ COMMENTS ARE IGNORED AND NOT
COMPILED INTO EXECUTABLE CODE BY THE
COMPILER

▪ (/* */) DESIGNATES LONG COMMENTS
▪ (//) DESIGNATES SHORT COMMENTS

DATA TYPES

VARIABLES

ANY NUMBER CHANGING ITS VALUE DURING
PROGRAM OPERATION IS CALLED A VARIABLE.

E.G. if the program adds two numbers (number1
and number2), it is necessary to have a value to
represent what we in everyday life call the sum.

in this case number1, number2 and sum are
variables.

VARIABLE DECLARATION

▪ EVERY VARIABLE MUST BE DECLARED PRIOR
TO BEING USED FOR THE FIRST TIME IN THE
PROGRAM.

▪ VARIABLES ARE STORED IN THE RAM
MEMORY.

E.G. int gate1; // Declare name and type of variable gate1

VARIABLE DECLARATION

▪ VARIABLE NAMES CAN INCLUDE ANY OF THE
ALPHABETICAL CHARACTERS (A-Z), THE
DIGITS 0-9 AND THE UNDERSCORE
CHARACTER (“_”).

▪ THE COMPILER IS CASE SENSITIVE AND
DIFFERENTIATES BETWEEN CAPITAL AND
SMALL LETTERS.

VARIABLE DECLARATION

▪ FUNCTIONS AND VARIABLES NAMES USUALLY
CONTAIN LOWER CASE CHARACTERS, WHILE
CONSTANT NAMES CONTAIN UPPERCASE
CHARACTERS.

VARIABLE DECLARATION

▪ VARIABLE NAMES MUST NOT START WITH A
DIGIT.

▪ SOME OF THE NAMES CANNOT BE USED AS
VARIABLE NAMES AS ALREADY BEING USED
BY THE COMPILER ITSELF. SUCH NAMES ARE
CALLED THE KEY WORDS.

INTEGER CONSTANTS

A CONSTANT IS A NUMBER OR A CHARACTER HAVING
FIXED VALUE THAT CANNOT BE CHANGED DURING

PROGRAM EXECUTION

const int MINIMUM = -100; // Declare constant
MINIMUN

ARITHMETIC OPERATORS

ASSIGNMENT OPERATORS

INCREMENT AND DECREMENT OPERATORS

INCREMENT AND DECREMENT OPERATORS

RELATIONAL OPERATORS

LOGIC OPERATORS

BITWISE OPERATORS

CONDITIONAL OPERATORS

A CONDITION IS A COMMON INGREDIENT OF THE
PROGRAM. WHEN MET, IT IS NECESSARY TO PERFORM
ONE OUT OF SEVERAL OPERATIONS. IN OTHER WORDS
'IF THE CONDITION IS MET (...), DO (...). OTHERWISE,

IF THE CONDITION IS NOT MET, DO (...)' .

CONDITIONAL OPERANDS IF-ELSE AND SWITCH
ARE USED IN CONDITIONAL OPERATIONS.

CONDITIONAL OPERATOR: IF-ELSE

if(expression)
operation1;

else
operation2;

if(expression)
{ operation1;

operation2;}
else
{ operation3;

operation4; }

CONDITIONAL OPERATOR: SWITCH
switch (selector) { // Selector is of char or int type
case constant1:
operation1; // Group of operators are executed if
... // selector and constant1 are equal
break;
case constant2:
operation2; // Group of operators are executed if
... // selector and constant2 are equal
break;
...
default:
expected_operation;// Group of operators are executed if no
... // constant is equal to selector
break;

PROGRAM LOOP

IT IS OFTEN NECESSARY TO REPEAT A CERTAIN
OPERATION FOR A COUPLE OF TIMES IN THE PROGRAM.

A SET OF COMMANDS BEING REPEATED IS CALLED THE
PROGRAM LOOP.

HOW MANY TIMES IT WILL BE EXECUTED, I.E. HOW
LONG THE PROGRAM WILL STAY IN THE LOOP,
DEPENDS ON THE CONDITIONS TO LEAVE THE LOOP.

WHILE LOOP

while(expression)
{

commands;
...

}

WHILE LOOP

THE COMMANDS ARE EXECUTED REPEATEDLY
(THE PROGRAM REMAINS IN THE LOOP) UNTIL

THE EXPRESSION BECOMES FALSE.

IF THE EXPRESSION IS FALSE ON ENTRY TO THE
LOOP, THEN THE LOOP WILL NOT BE EXECUTED
AND THE PROGRAM WILL PROCEED FROM THE

END OF THE WHILE LOOP.

ENDLESS LOOP

while(1)
{

... // Expressions enclosed within
// curly brackets will be

... // endlessly executed (endless
// loop).

}

FOR LOOP

for(initial_expression; condition_expression; change_expression)
{

operation;
...

}

FOR LOOP

for(k=1; k<5; k++) // Increase variable k 5 times (from 1 to 5)

{
operation; // repeat expression operation every time

...
}

Operation is to be performed five times. After that, it
will be validated by checking that the expression k<5 is
false (after 5 iterations k=5) and the program will exit

the for loop.

DO-WHILE LOOP

do
{

operation;
...

} while (check_condition);

DO-WHILE LOOP

// Set initial valuea = 0;
do
{

a = a+1; // Operation in progress
}
while (a <= 10); // Check condition

MCU SYSTEMS

TURN LEDs ON AND OFF

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PORTB = 0xFF

void main()
{

TRISB = 0x00;
PORTB=0x00;
while(1)
{

PORTB=0xFF;
}

}

7-SEGMENT DISPLAY

SHOW NUMBER “0”

void main()
{

TRISA = 0x00;
TRISD = 0x00;
PORTA=0x00;
PORTD=0x00;

while(1)
{

PORTA=0x0F;
PORTD=0x3F;

}
}

MCU SYSTEM

PUSH BUTTON

PB7 +
PB6 -

7-SEGMENT
DISPLAY

0-9

int mask(int num) {
switch (num)
{
case 0 : return 0x3F;
case 1 : return 0x06;
case 2 : return 0x5B;
case 3 : return 0x4F;
case 4 : return 0x66;
case 5 : return 0x6D;
case 6 : return 0x7D;
case 7 : return 0x07;
case 8 : return 0x7F;
case 9 : return 0x6F;

} //case end
}

void main()
{
int counter1;

TRISA = 0x00;
TRISB = 0xFF;
TRISC = 0x00;
TRISD = 0x00;
PORTA=0x00;
PORTD=0x00;
counter1=0;

while(1)
{

PORTA=0x0F;
PORTD=mask(counter1);
Delay_ms(300);
if (PORTB.B7 == 1) // button_A: Increase Value
{

counter1++;
Delay_ms(100);

}
else if (PORTB.B6 == 1) // button_B: Decrease Value
{

counter1--;
Delay_ms(100);

}
if (counter1>9)
{ counter1=0;}
if (counter1<0)
{ counter1=9;}

}
}

THANK YOU

Lecture 8

C LANGUAGE

▪ INPUTS AND OUTPUTS
▪ BLINK LEDS
▪ 7-SEGMENT DISPLAY

MCU SYSTEMS

TURN LEDs ON AND OFF

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

PORTB

PORTB = 0xFF

void main()
{

TRISB = 0x00;
PORTB=0x00;
while(1)
{

PORTB=0xFF;
}

}

7-SEGMENT DISPLAY

SHOW NUMBER “0”

void main()
{

TRISA = 0x00;
TRISD = 0x00;
PORTA=0x00;
PORTD=0x00;

while(1)
{

PORTA=0xFF;
PORTD=0x3F;

}
}

MCU SYSTEM

PUSH BUTTON

PB7 +
PB6 -

7-SEGMENT
DISPLAY

0-9

int mask(int num) {

switch (num)

{

case 0 : return 0x3F;

case 1 : return 0x06;
case 2 : return 0x5B;

case 3 : return 0x4F;

case 4 : return 0x66;

case 5 : return 0x6D;

case 6 : return 0x7D;

case 7 : return 0x07;

case 8 : return 0x7F;

case 9 : return 0x6F;

} //case end

}

void main()

{

int counter1;

TRISA = 0x00;

TRISB = 0xFF;

TRISC = 0x00;

TRISD = 0x00;

PORTA=0;

PORTD=0;

counter1=0;

while(1)
{

PORTA=0xFF;
PORTD=mask(counter1);
Delay_ms(300);
if (PORTB.B7 == 1) // button_A: Increase Value
{
counter1++;
Delay_ms(100);

}
else if (PORTB.B6 == 1) // button_B: Decrease Value
{
counter1--;
Delay_ms(100);

}
if (counter1>9)
{ counter1=0;}
if (counter1<0)
{ counter1=9;}

}
}

THANK YOU

Lecture 9

C LANGUAGE

▪ Review 7-SEGMENT DISPLAY
▪ ANALOGUE TO DIGITAL CONVERTER

MCU SYSTEM

PUSH BUTTON

PB1 +
PB0 -

7-SEGMENT
DISPLAY

0-9

int mask(int num) {

switch (num)

{
case 0 : return 0x3F;

case 1 : return 0x06;

case 2 : return 0x5B;

case 3 : return 0x4F;

case 4 : return 0x66;

case 5 : return 0x6D;

case 6 : return 0x7D;

case 7 : return 0x07;

case 8 : return 0x7F;

case 9 : return 0x6F;

} //case end
}

void main()

{
int counter1;

TRISA = 0x00;

TRISB = 0xFF;

TRISC = 0x00;

TRISD = 0x00;

PORTA=0;

PORTD=0;

counter1=0;

while(1)
{

PORTA=0xFF;
PORTD=mask(counter1);
Delay_ms(300);
if (PORTB.B1 == 0) // button_A: Increase Value
{
counter1++;
Delay_ms(100);

}
else if (PORTB.B0 == 0) // button_B: Decrease Value
{
counter1--;
Delay_ms(100);

}
if (counter1>9)
{ counter1=0;}
if (counter1<0)
{ counter1=9;}

}
}

ANALOGUE TO DIGITAL
CONVERTER

ADC

▪ Analog-to-digital (ADC) converters are
among the most widely used devices for
data acquisition.

▪ Digital Computer use binary (discrete)
values, but in the physical world is analog
(continuous) values.

▪ Examples of physical quantities:
Temperature, Humidity, Pressure, Velocity

▪ A physical quantity is converted to
electrical (Voltage, Current) signals using
a device called transducer (also referred
as sensors).

▪ Sensors for temperature, velocity,
pressure, light etc. produce an output that
is voltage (or current).

ADC

▪ Microcontroller → read digital values only.

▪ Therefore, ADC converter is needed to
translate (convert) the analog signals to
digital numbers, so that the
microcontroller can read and process them

ADC

ADC RESOLUTION
▪ ADC has n-bit resolution, where n = 8, 10, 12, 16 or even 24 bits.

▪ The higher-resolution ADC provides a smaller step size, where
step size is the smallest change that can be discerned by an ADC.

▪ Can control the step size with the help of Vref.

n-bit No. of steps Step size (mV)

8 28 = 256 5/256 = 19.53

10 210 = 1024 5/1024 = 4.88

12 212 = 4096 5/4096 = 1.2

16 216 = 65,536 5/65,536 = 0.076

Assuming VREF = 5 V

* Step Size (Resolution): is the smallest change that can be discerned by an ADC

ADC RESOLUTION

▪ Vref is an input voltage used for the reference voltage.

▪ The voltage connected to this pin, along with the resolution of

the ADC chip, dictate the step size.

▪ In some applications, we need the differential reference

voltage where Vref = Vref(+) – Vref(-).

▪ Vref(-) pin is connected to ground, Vref(+) pin is used as the

Vref.

▪ Example: If we need the analog input to be 0 to 5 V, Vref is

connected to 5 V

ADC REFERENCE VOLTAGE (VREF)

ADC REFERENCE VOLTAGE (VREF)

▪ For an 8-bit ADC, the step size is Vref/256.

▪ If Vref = 4 V, the step size is 4 V/256 = 15.62 mV.

▪ If need a step size of 10 mV, then Vref = 256 x 10 mV = 2.56 V.

▪ For the 10-bit ADC, the step size is Vref/1024.

▪ If Vref = 5 V, the step size is 5 V/1024 = 4.88 mV.

DIGITAL DATA OUTPUT
▪ Digital data output:

▪ 8-bit ADC: D0-D7

▪ 10-bit ADC: D0-D9

▪ To calculate output voltage:

Dout = Vin / Step Size

Digital data output
(in decimal):

8-bit (D0-D7)= 256
10-bit (D0-D9) = 1024

Analog Input
Voltage

Resolution: the smallest change
8-bit:Vref/256 OR
10-bit: Vref/1024

DIGITAL DATA OUTPUT

Example:
Vref = 2.56, Vin = 1.7 V.
Calculate the D0 - D9 output?

Solution:
Step Size = 2.56/1024 = 2.5 mV
Dout = 1.7/2.5 mV = 680 (Decimal)
D0 - D9 = 1010101000

DIGITAL DATA OUTPUT
▪ Digital data output:

▪ 8-bit ADC: D0-D7

▪ 10-bit ADC: D0-D9

▪ To calculate output voltage:

Dout = Vin *MDout/ Vref

Digital data output
(in decimal):

8-bit (D0-D7)= 256
10-bit (D0-D9) = 1024

Analog Input
Voltage

8-bit: 255
10-bit: 1023

5V for
PIC16F877A

DIGITAL DATA OUTPUT

Example:
Vref = 2.56, Vin = 1.7 V.
Calculate the D0 - D9 output?

Solution:
Dout = 1.7*1023/2.56 = 679.36 ≈ 680 (Decimal)
D0 - D9 = 1010101000

ADC USING PIC16F877A

There are only FOUR registers that you
need to understand to configure the ADC.
They are ADCON0, ADCON1, ADRESH and

ADRESL.

ADC USING PIC16F877A

▪ The two most important ones are ADCON0
and ADCON1.

▪ ADRESH and ADRESL are just the registers
where the ADC stores the result of the
conversion.

ADC USING PIC16F877A

ADCON0

ADCON0: Conversion Clock Select

The user has to select the correct clock
conversion. The period must be at least
more than 1.6us to obtain an accurate
conversion

For example, we use a 8MHz oscillator on
the PIC16F877A. So if we select Fosc/4,
that’s 2MHz and the period is just 500ns and
it’s far less than the 1.6us required.
What if we select Fosc/16? That will give us
0.5MHz and the period is 2us. That is more
than 1.6us so it can be selected
Thus, ADCON0 is now 01xx xxxx

ADCON0: Conversion Clock Select

ADCON0: Analogue Channel Select

The ADC can only have one input at a time
so the user must select which pin to use

ADCON0: Analogue Channel Select

Referring to the PIC16F877A pinout diagram:

These are the available Analog
Channels.

If we use Analog Channel 0
(which is PA0), ADCON0 will be

set to 0100 0xxx

ADCON0: ADC Initialization

We set all these bits to 0 because this is just
the initialization, the actual program has yet to
start (Later in the code we will individually set
these bits to enable ADC)
ADCON0 is set to be 0100 0000

ADCON1

ADCON1

ADCON1: A/D Result Format Select

The ADFM bit determines how the result of the ADC is
justified. Since the ADC on the PIC16F877A has 10-bits
of resolution, logically a single register (that has 8
bits) is not enough to contain the 10-bits result.
Therefore, two registers are required to store the
results. ADRESH and ADRESL (H is the high byte while
L is the low byte).

ADCON1: A/D Result Format Select

Two registers will allow us to store up to 16 bits, but
since there are only 10 bits, we have the flexibility to
align it right justified or left justified

ADCON1: A/D Result Format Select

If the application doesn’t need the 10-bit accuracy, 8
bits is more than enough. So we can just take the
result in ADRESH and ignore the remaining two least
significant bits in ADRESL (we cannot ignore the two
highest significant bit because that will cause the
result to be inaccurate). That makes it easier to move
values to other registers. Yes, the accuracy of the
result will be slightly affected but it’s not critical in
applications where we don’t need accuracy.
The value of ADCON1 is 0xxx xxxx

ADCON1: Conversion Clock Select

Next is the ADCS2 bit. We agreed that Fosc/16 is
adequate, thus we selected it in ADCON0. But for
Fosc/16, we need to set the ADCS2 bit in ADCON1 as
well. The value of ADCON1 will be 01xx xxxx.

ADCON1: Port Configuration Control

ADCON1: Port Configuration Control

The most important part of the ADC configuration is to
select the mode for each Analog channel. As shown
before, we have Analog Channels 0 to 7. All these
inputs can either be set to analog or digital. Referring
to the table above, if we don’t need any analog
inputs and require more digital pins (let’s say for a few
LCDs), we can set the PCFG3:0 bits to be 011x. But in
the case we do need the Analog inputs, we will set all
of them to be in analog mode.
Therefore, the final value for ADCON1 is 0100 0000

ADCON1: Port Configuration Control

One important thing to note is that we’ve selected Vdd
as the Vref+ and Vss as the Vref-, that means that our
conversion range is from 0V to 5V. If we need it to be
other than that, we can set a custom Vref value by
choosing other configurations of PCFG3:0.

void ADC_initVal()
{
ADCON0=01000000;
ADCON1=01000000;

}

void main()
{
unsigned int adc_Dout;
char txt[7];
TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)
{

ADCON0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

}
}

void ADC_initVal()
{
ADCON0=01000000;
ADCON1=01000000;

}

void main()
{
unsigned int adc_Dout;
char txt[7];
TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)
{

ADCON0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

}
}

void main()
{

unsigned int adc_Dout;
char txt[7];
TRISA = 0x01;
UART1_Init(9600);
Delay_ms(100);
while(1)
{ adc_Dout = ADC_Read(0);

Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

}
}

THANK YOU

Lecture 10

C LANGUAGE

▪ Review and continue ANALOGUE TO
DIGITAL CONVERTER

ANALOGUE TO DIGITAL
CONVERTER

ADC

▪ Analog-to-digital (ADC) converters are
among the most widely used devices for
data acquisition.

▪ Digital Computer use binary (discrete)
values, but in the physical world is analog
(continuous) values.

▪ Examples of physical quantities:
Temperature, Humidity, Pressure, Velocity

▪ A physical quantity is converted to
electrical (Voltage, Current) signals using
a device called transducer (also referred
as sensors).

▪ Sensors for temperature, velocity,
pressure, light etc. produce an output that
is voltage (or current).

ADC

▪ Microcontroller → read digital values only.

▪ Therefore, ADC converter is needed to
translate (convert) the analog signals to
digital numbers, so that the
microcontroller can read and process them

ADC

ADC RESOLUTION
▪ ADC has n-bit resolution, where n = 8, 10, 12, 16 or even 24 bits.

▪ The higher-resolution ADC provides a smaller step size, where
step size is the smallest change that can be discerned by an ADC.

▪ Can control the step size with the help of Vref.

n-bit No. of steps Step size (mV)

8 28 = 256 5/256 = 19.53

10 210 = 1024 5/1024 = 4.88

12 212 = 4096 5/4096 = 1.2

16 216 = 65,536 5/65,536 = 0.076

Assuming VREF = 5 V

* Step Size (Resolution): is the smallest change that can be discerned by an ADC

ADC RESOLUTION

▪ Vref is an input voltage used for the reference voltage.

▪ The voltage connected to this pin, along with the resolution of

the ADC chip, dictate the step size.

▪ In some applications, we need the differential reference

voltage where Vref = Vref(+) – Vref(-).

▪ Vref(-) pin is connected to ground, Vref(+) pin is used as the

Vref.

▪ Example: If we need the analog input to be 0 to 5 V, Vref is

connected to 5 V

ADC REFERENCE VOLTAGE (VREF)

ADC REFERENCE VOLTAGE (VREF)

▪ For an 8-bit ADC, the step size is Vref/256.

▪ If Vref = 4 V, the step size is 4 V/256 = 15.62 mV.

▪ If need a step size of 10 mV, then Vref = 256 x 10 mV = 2.56 V.

▪ For the 10-bit ADC, the step size is Vref/1024.

▪ If Vref = 5 V, the step size is 5 V/1024 = 4.88 mV.

DIGITAL DATA OUTPUT
▪ Digital data output:

▪ 8-bit ADC: D0-D7

▪ 10-bit ADC: D0-D9

▪ To calculate output voltage:

Dout = Vin / Step Size

Digital data output
(in decimal):

8-bit (D0-D7)= 256
10-bit (D0-D9) = 1024

Analog Input
Voltage

Resolution: the smallest change
8-bit:Vref/256 OR
10-bit: Vref/1024

DIGITAL DATA OUTPUT

Example:
Vref = 2.56, Vin = 1.7 V.
Calculate the D0 - D9 output?

Solution:
Step Size = 2.56/1024 = 2.5 mV
Dout = 1.7/2.5 mV = 680 (Decimal)
D0 - D9 = 1010101000

DIGITAL DATA OUTPUT
▪ Digital data output:

▪ 8-bit ADC: D0-D7

▪ 10-bit ADC: D0-D9

▪ To calculate output voltage:

Dout = Vin *MDout/ Vref

Digital data output
(in decimal):

8-bit (D0-D7)= 256
10-bit (D0-D9) = 1024

Analog Input
Voltage

8-bit: 255
10-bit: 1023

5V for
PIC16F877A

DIGITAL DATA OUTPUT

Example:
Vref = 2.56, Vin = 1.7 V.
Calculate the D0 - D9 output?

Solution:
Dout = 1.7*1023/2.56 = 679.36 ≈ 680 (Decimal)
D0 - D9 = 1010101000

ADC USING PIC16F877A

There are only FOUR registers that you
need to understand to configure the ADC.
They are ADCON0, ADCON1, ADRESH and

ADRESL.

ADC USING PIC16F877A

▪ The two most important ones are ADCON0
and ADCON1.

▪ ADRESH and ADRESL are just the registers
where the ADC stores the result of the
conversion.

ADC USING PIC16F877A

ADCON0

ADCON0: Conversion Clock Select

The user has to select the correct clock
conversion. The period must be at least
more than 1.6us to obtain an accurate
conversion

For example, we use a 8MHz oscillator on
the PIC16F877A. So if we select Fosc/4,
that’s 2MHz and the period is just 500ns and
it’s far less than the 1.6us required.
What if we select Fosc/16? That will give us
0.5MHz and the period is 2us. That is more
than 1.6us so it can be selected
Thus, ADCON0 is now 01xx xxxx

ADCON0: Conversion Clock Select

ADCON0: Analogue Channel Select

The ADC can only have one input at a time
so the user must select which pin to use

ADCON0: Analogue Channel Select

Referring to the PIC16F877A pinout diagram:

These are the available Analog
Channels.

If we use Analog Channel 0
(which is PA0), ADCON0 will be

set to 0100 0xxx

ADCON0: ADC Initialization

We set all these bits to 0 because this is just
the initialization, the actual program has yet to
start (Later in the code we will individually set
these bits to enable ADC)
ADCON0 is set to be 0100 0000

ADCON1

ADCON1

ADCON1: A/D Result Format Select

The ADFM bit determines how the result of the ADC is
justified. Since the ADC on the PIC16F877A has 10-bits
of resolution, logically a single register (that has 8
bits) is not enough to contain the 10-bits result.
Therefore, two registers are required to store the
results. ADRESH and ADRESL (H is the high byte while
L is the low byte).

ADCON1: A/D Result Format Select

Two registers will allow us to store up to 16 bits, but
since there are only 10 bits, we have the flexibility to
align it right justified or left justified

ADCON1: A/D Result Format Select

If the application doesn’t need the 10-bit accuracy, 8
bits is more than enough. So we can just take the
result in ADRESH and ignore the remaining two least
significant bits in ADRESL (we cannot ignore the two
highest significant bit because that will cause the
result to be inaccurate). That makes it easier to move
values to other registers. Yes, the accuracy of the
result will be slightly affected but it’s not critical in
applications where we don’t need accuracy.
The value of ADCON1 is 0xxx xxxx

ADCON1: Conversion Clock Select

Next is the ADCS2 bit. We agreed that Fosc/16 is
adequate, thus we selected it in ADCON0. But for
Fosc/16, we need to set the ADCS2 bit in ADCON1 as
well. The value of ADCON1 will be 01xx xxxx.

ADCON1: Port Configuration Control

ADCON1: Port Configuration Control

The most important part of the ADC configuration is to
select the mode for each Analog channel. As shown
before, we have Analog Channels 0 to 7. All these
inputs can either be set to analog or digital. Referring
to the table above, if we don’t need any analog
inputs and require more digital pins (let’s say for a few
LCDs), we can set the PCFG3:0 bits to be 011x. But in
the case we do need the Analog inputs, we will set all
of them to be in analog mode.
Therefore, the final value for ADCON1 is 0100 0000

ADCON1: Port Configuration Control

One important thing to note is that we’ve selected Vdd
as the Vref+ and Vss as the Vref-, that means that our
conversion range is from 0V to 5V. If we need it to be
other than that, we can set a custom Vref value by
choosing other configurations of PCFG3:0.

void ADC_initVal()
{
ADCON0=01000000;
ADCON1=01000000;

}

void main()
{
unsigned int adc_Dout;
char txt[7];
TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)
{

ADCON0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

}
}

void ADC_initVal()
{
ADCON0=01000000;
ADCON1=01000000;

}

void main()
{
unsigned int adc_Dout;
char txt[7];
TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)
{

ADCON0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

}
}

void main()
{

unsigned int adc_Dout;
char txt[7];
TRISA = 0x01;
UART1_Init(9600);
Delay_ms(100);
while(1)
{ adc_Dout = ADC_Read(0);

Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

}
}

THANK YOU

Lecture 11

C LANGUAGE

▪ SERIAL Communication

SERIAL COMMUNICATION

SERIAL COMMUNICATION

The UART (Universal Asynchronous
Receiver Transmitter) is the universal

communication component located within
the PIC and can be used as transmitter or

as receiver

We want to transmit 8 bits: 11001100

Tx

1

1

0

0

1

1

0

0

Rx

PARALLEL COMMUNICATION

We want to transmit 8 bits: 11001100

Tx Rx1 1 0 0 1 1 0 0

SERIAL COMMUNICATION

The information is sent from the transmitter
in sequence, bit after bit, with fixed baud
rate, carried by a common clock frequency

SYNCHRONOUS DATA TRANSFER

Tx Rx

SYNCHRONOUS DATA TRANSFER

The information is divided into frames, and
each frame has a “Start” bit and a “Stop” bit.
The “Start” bit marks the beginning of a new

frame, the “Stop” bit marks the end.
Frames of information are not necessarily

transmitted at equal time space, since they
are independent of the clock.

ASYNCHRONOUS DATA TRANSFER

Tx RxDATA DATA DATA

ASYNCHRONOUS DATA TRANSFER

Tx Rx

Tx

Rx

Tx

Rx

Tx

Rx

Tx

Rx

simplex

half - duplex

full - duplex

DATA TRANSFER OPERATION MODES

FUNCTIONS
type FuncName([arg1, arg2,...])

{

// function code – some logic

}

1. When you see a function first read the description – do you
need it?

2. Then you need to check what the function returns. (void
doesn‘t return anything)

3. What is the name of the function?
4. Does it have any arguments? If it does make sure to provide

literals/constants/variables of the same type.

// Initialize UART module at 9600 bps

// Wait for UART module to stabilize

void main()

{
char uart_rd;

UART1_Init(9600);

Delay_ms(100);

UART1_Write_Text("Start");

UART1_Write(13);

UART1_Write(10);

while (1) // Endless loop

{ If (UART1_Data_Ready()) // If data is received,

{
uart_rd = UART1_Read();

UART1_Write(uart_rd);
// read the received data,

// and send data via UART
}

}

}

THANK YOU

CLASS 10

C LANGUAGE

▪ REVIEW
▪ INTERRUPTS
▪ TIMERS AND COUNTERS

REVIEW

SERIAL COMMUNICATION

REMOTE CONTROL: ON/OFF LED

WIRELESS

void main() {
TRISA=0x0F;
UART1_Init(9600);
Delay_ms(100);
while(1) {
if(PORTA.B0==1) {

UART1_Write(0x01); }
else if(PORTA.B1==1) {
UART1_Write(0x02); }

}
}

TX
MCU

void main() {
char data_rx;
TRISC=0x00;
UART1_Init(9600); Delay_ms(100);
while(1) {
if (UART1_Data_Ready()==1) {
data_rx=UART1_Read();
if(data_rx==0x01) {
PORTC.B0=1; }

else if(data_rx==0x02) {
PORTC.B0=0; } }

} }
RX
MCU

ANALOGUE TO DIGITAL
CONVERTER

Microcontrollers are capable of detecting
binary signals: is the button pressed or not?

THESE ARE DIGITAL SIGNALS

ADC

▪ Analog-to-digital (ADC) converters are
among the most widely used devices for
data acquisition.

▪ Digital Computer use binary (discrete)
values, but in the physical world is analog
(continuous) values.

▪ Examples of physical quantities:
Temperature, Humidity, Pressure, Velocity

▪ A physical quantity is converted to
electrical (Voltage, Current) signals using
a device called transducer (also referred
as sensors).

▪ Sensors for temperature, velocity,
pressure, light etc. produce an output that
is voltage (or current).

ADC

▪ Microcontroller → read digital values only.

▪ Therefore, an ADC converter is needed to
translate (convert) the analog signals to
digital numbers, so that the
microcontroller can read and process them

ADC

CALCULATE THE DOUT

VREF=5 V.
VIN=3 V.
RESOLUTION=10 Bits.
DOUT=?

CALCULATE THE DOUT

VREF=5 V → MDOUT=1023
VIN=3 V → DOUT=?

DOUT= (VIN* MDOUT)/REF

DOUT= (3*1023)/5

DOUT= 613.8 → 614

A Temperature Sensor is connected to the PIC16F877A
ADC Channel 0. The ADC has a Reference Voltage of 5V
and a 10-Bit resolution. When the Temperature Sensor
measures 100 ºC the DOUT is equal to the MAX DOUT
for 10-Bit resolution.
When the temperature is higher than 40 ºC an LED
should be turned ON to indicate that is too hot to go
outside. Otherwise it should remain OFF. The LED is
connected to PD0.

TEMPERATURE MONITOR

TEMPERATURE MONITOR

PIC16F877AINPUT OUTPUT

ADC CHANNEL 0

PA0

LED

PD0

>40

CALCULATE THE DOUT FOR 40 ºC

VREF=5 V → MDOUT=1023
TEMP_IN=100 ºC → DOUT=1023
TEMP_IN=40 ºC → DOUT=?

DOUT= (40*1023)/100

DOUT= 409.2 → 409

void main() {
int temp_rd;
TRISA=0X01;
TRISD.B0=0; PORTD.B0=0;
while(1) {
temp_rd = ADC_Read(0);
if(temp_rd>409)
{PORTD.B0=1;}
else
{PORTD.B0=0;}

}
} TM

CLASS CONTENT

C LANGUAGE

▪ INTERRUPTS
▪ TIMERS AND COUNTERS

INTERRUPTS

INTERRUPTS

MICROCONTROLLERS ARE USED TO
PERFORM A SET OF PROGRAMMED TASKS

WHICH GENERATE THE NECESSARY
OUTPUTS BASED ON THE INPUTS

INTERRUPTS

BUT, WHILE THE MCU IS BUSY WITH
EXECUTING ONE SEGMENT OF CODE

THERE MIGHT BE AN EMERGENCY
SITUATION WHERE ANOTHER SEGMENT
OF CODE NEEDS IMMEDIATE ATTENTION

INTERRUPTS

THIS OTHER SEGMENT OF CODE THAT
NEEDS IMMEDIATE ATTENTION SHOULD
BE TREATED AS AN INTERRUPT, AND IT
SERVES A SPECIAL TASK KNOWN AS

INTERRUPT SERVICE ROUTINE (ISR) OR
INTERRUPT HANDLER

INTERRUPTS

E.G. LET’S IMAGINE THAT YOU ARE
PLAYING YOUR FAVORITE GAME ON YOUR

PHONE AND THE MCU INSIDE YOUR
PHONE IS BUSY THROWING ALL THE

GRAPHICS THAT ARE NEEDED FOR YOU
TO ENJOY THE GAME.

INTERRUPTS

SUDDENLY YOUR MOTHER CALLS TO YOUR
NUMBER. THE WORST THING THAT COULD

HAPPEN IS THAT YOUR MOBILE’S MCU
NEGLECTS YOUR MOM’S CALL SINCE YOU
ARE BUSY PLAYING A GAME. TO PREVENT

THIS FROM HAPPENING WE USE
SOMETHING CALLED INTERRUPTS.

INTERRUPTS

THESE INTERRUPTS WILL ALWAYS BE
ACTIVE LISTENING FOR SOME PARTICULAR

ACTIONS TO HAPPEN AND WHEN THEY
OCCUR, A SEGMENT OF CODE WILL BE

EXECUTED AND THEN THE PROGRAM WILL
RETURN TO THE MAIN ROUTINE

▪EXTERNAL INTERRUPTS
(HARDWARE INTERRUPTS)

▪INTERNAL INTERRUPTS
(SOFTWARE INTERRUPTS)

INTERRUPTS

EXTERNAL INTERRUPTS

• GENERATED BY EXTERNAL HARDWARE
AT CERTAIN PINS OF THE MCU

• THESE INTERRUPTIONS CAN GE
TRIGGERED BY THE USER

INTERNAL INTERRUPTS

• GENERATED BY A SEGMENT OF CODE

INTERRUPTS IN PIC16F877A

▪ EXTERNAL
▪ TIMER 0
▪ TIMER 1
▪ RB PORT CHANGE
▪ PARALLEL SLAVE PORT READ/WRITE
▪ A/D CONVERTER
▪ USART RECEIVE

INTERRUPTS IN PIC16F877A

▪ USART TRANSMIT
▪ SYNCHRONOUS SERIAL PORT
▪ CCP1 (CAPTURE, COMPARE, PWM)
▪ CCP2 (CAPTURE, COMPARE, PWM)
▪ TMR2 TO PR2 MATCH
▪ COMPARATOR
▪ EEPROM WRITE OPERATION
▪ BUS COLLISION

INTERRUPTS IN PIC16F877A
THE 5 REGISTERS THAT USED TO CONTROL THE
OPERATION OF INTERRUPTS IN PIC 16F877A
MICROCONTROLLER :

▪ INTCON
▪ PIE1
▪ PIR1
▪ PIE2
▪ PIR2

EXTERNAL INTERRUPT
EXAMPLE

INTCON REGISTER

INTCON Register is a readable and writeable
register which contains various enable and flag

bits for External and Internal Interrupts.

INTCON REGISTER

▪ GIE – Global Interrupt Enable
1 – Enables all unmasked interrupts
0 – Disables all interrupts

▪ PEIE – Peripheral Interrupt Enable
1 – Enables all unmasked peripheral interrupts
0 – Disables all peripheral interrupts

INTCON REGISTER

▪ TMR0IE – Timer 0 Overflow Interrupt Enable
1 – Enables the TMR0 interrupt
0 – Disables the TMR0 interrupt

▪ INTE – RB0/INT External Interrupt Enable
1 – Enables the RB0/INT external interrupt
0 – Disables the RB0/INT external interrupt

INTCON REGISTER

▪ RBIE – RB Port Change Interrupt Enable
1 – Enables the RB port change interrupt
0 – Disables the RB port change interrupt

▪ TMR0IF – Timer 0 Overflow Interrupt Flag
1 – TMR0 register has overflowed. It must be
cleared in software.
0 – TMR0 register did not overflow

INTCON REGISTER

▪ INTF – RB0/INT External Interrupt Flag
1 – The RB0/INT external interrupt occurred.
It must be cleared in software.
0 – The RB0/INT external interrupt did not
occur

INTCON REGISTER

▪ RBIF – RB Port Change Interrupt Flag
1 – At least one of the RB7 – RB4 pins
changed state, a mismatch condition will
continue to set the bit. Reading PORTB will
end the mismatch condition and allow the bit
to be cleared. It must be cleared in software.
0 – None of the RB7 – RB4 pins have changed
state

INTCON REGISTER

▪ INTEDG bit of OPTION_REG Register is
the Interrupt Edge Select bit. When it is
1 interrupt is on rising edge of RB0/INT
pin and when it is 0 interrupt is on
falling edge of RB0/INT pin.

EXAMPLE

A PUSH BUTTON SWITCH IS CONNECTED TO
THE EXTERNAL INTERRUPT PIN INT OF THE

PIC MICROCONTROLLER.
WHEN THIS BUTTON IS PRESSED, THE

MICROCONTROLLER IS INTERRUPTED AND
THE ISR IS EXECUTED. THE ISR TOGGLES
THE STATUS OF PORTC FOR 1 SECOND.

EXAMPLE – MIKROC CODE

INTERRUPTS CAN BE EASILY HANDLED BY
USING RESERVED WORD “INTERRUPT”.

MIKROC PRO FOR PIC MICROCONTROLLERS
IMPLICITLY DECLARES A FUNCTION

“INTERRUPT” TO HANDLE INTERRUPTS
WHICH CANNOT BE REDECLARED

void main()
{

TRISD = 0x00; // To configure PORTD as output port

OPTION_REG.INTEDG = 1; //Set Rising Edge Trigger for INT

// Enable The Global Interrupt

// Enable INT

//Set some value at PORTD

INTCON.GIE = 1;
INTCON.INTE = 1;
while(1)
{

PORTD = 0x00;
}

}

void interrupt()
{
INTCON.INTF=0;

// ISR

// Clear the interrupt 0 flag

PORTD=~PORTD; // Invert (Toggle) the value at PORTD

Delay_ms(1000); // Delay for 1 sec

}

while(1)

void interrupt()

1 sec

Infinite loop where it clears (sets to 0) all bits on PORTD.

TIMERS AND COUNTERS

TIMERS AND COUNTERS

MANY TIMES, WE PLAN AND BUILD
SYSTEMS THAT PERFORM VARIOUS
PROCESSES THAT DEPEND ON TIME

SIMPLE EXAMPLE OF THIS PROCESS IS
THE DIGITAL WRISTWATCH. THE ROLE OF
THIS ELECTRONIC SYSTEM IS TO DISPLAY

TIME IN A VERY PRECISE MANNER AND
CHANGE THE DISPLAY EVERY SECOND
(FOR SECONDS), EVERY MINUTE (FOR

MINUTES) AND SO ON.

TIMERS AND COUNTERS

TO PERFORM THE STEPS WE'VE LISTED,
THE SYSTEM MUST USE A TIMER, WHICH
NEEDS TO BE VERY ACCURATE IN ORDER

TO TAKE NECESSARY ACTIONS.THE CLOCK
IS ACTUALLY A CORE OF ANY ELECTRONIC

SYSTEM.

TIMERS AND COUNTERS

PIC MICROCONTROLLERS ARE EQUIPPED
WITH ONE OR MORE PRECISION TIMING

SYSTEMS KNOWN AS TIMERS.

TIMERS AND COUNTERS

TIMERS CAN BE USED TO PERFORM A
VARIETY OF TIME PRECISION FUNCTIONS,

SUCH AS GENERATING EVENTS AT
SPECIFIC TIMES, MEASURING THE

DURATION OF AN EVENT, KEEPING DATE
AND TIME RECORD, COUNTING EVENTS,

ETC.

TIMERS AND COUNTERS

THE MICROCONTROLLER PIC16F877 HAS 3
DIFFERENT TIMERS:

PIC TIMER0
PIC TIMER1
PIC TIMER2

TIMERS AND COUNTERS

THE TIMER0 MODULE TIMER/COUNTER HAS THE
FOLLOWING FEATURES:

▪ 8-BIT TIMER/COUNTER
▪ READABLE AND WRITABLE
▪ 8-BIT SOFTWARE PROGRAMMABLE PRESCALER
▪ INTERNAL (4 MHZ) OR EXTERNAL CLOCK SELECT
▪ INTERRUPT ON OVERFLOW FROM 0xFF TO 0x00
▪ EDGE SELECT (RISING OR FALLING) FOR EXTERNAL

CLOCK

TIMERS AND COUNTERS

TIMER0 HAS A REGISTER CALLED TMR0
REGISTER, WHICH IS 8 BITS OF SIZE.
WE CAN WRITE THE DESIRED VALUE INTO
THE REGISTER WHICH WILL BE INCREMENT
AS THE PROGRAM PROGRESSES. FREQUENCY
VARIES DEPENDING ON THE PRESCALER.
MAXIMUM VALUE THAT CAN BE ASSIGNED TO
THIS REGISTER IS 255.

TIMERS AND COUNTERS

TMR0IF - TMR0 Overflow Interrupt Flag bit.
The TMR0 interrupt is generated when the TMR0
register overflows from 0xFF to 0x00. This overflow
sets bit TMR0IF (INTCON<2>). You can initialize the
value of this register to what ever you want (not
necessarily "0").
We can read the value of the register TMR0 and write
into. We can reset its value at any given moment
(write) or we can check if there is a certain numeric
value that we need (read).

TIMERS AND COUNTERS

WE CAN USE THESE TIMERS FOR VARIOUS
IMPORTANT PURPOSES. WE MAINLY USED

“DELAY PROCEDURES” TO IMPLEMENT
SOME DELAY IN THE PROGRAM, THAT WAS

COUNTING UP TO A SPECIFIC VALUE,
BEFORE THE PROGRAM COULD BE

CONTINUED

TIMERS AND COUNTERS

THANK YOU

	Slide 1: WELCOME TO CLASS!
	Slide 2: let’s introduce ourselves
	Slide 3: what is a “Microprocessor”?
	Slide 4: CLASS 1
	Slide 5: what is a microprocessor?
	Slide 6: What is a microprocessor?
	Slide 7: MPU ARCHITECTURE
	Slide 8: INTEL 8085 MPU ARCHITECTURE
	Slide 9
	Slide 10
	Slide 11: HISTORY
	Slide 12: 1946
	Slide 13: HISTORY
	Slide 14: INTEL 4004
	Slide 15
	Slide 16: 2019
	Slide 17: Intel Core i9-9900KS Processor 18 Billion Transistors
	Slide 18
	Slide 19: microprocessor vs CPU
	Slide 20
	Slide 21: microprocessor vs CPU
	Slide 22: MPU vs MCU
	Slide 23: what is a microcontroller?
	Slide 24
	Slide 25: what is a microcontroller?
	Slide 26
	Slide 27: MICROCONTROLLERS CONTROL CIRCUITS
	Slide 28
	Slide 29
	Slide 30: IN-EAR PULSE BIODATA ACQUISITION
	Slide 31: PASSWORD BASED DOOR LOCK SYSTEM
	Slide 32: ENGINE CONTROL UNIT
	Slide 33: ARCHITECTURE OF A MICROCONTROLLER
	Slide 34: in order to work, MCUs need:
	Slide 35: in order to work, MCUs need:
	Slide 36: in order to work, MCUs need:
	Slide 37: DIGITAL COMPONENTS
	Slide 38
	Slide 39: BOOLEAN LOGIC
	Slide 40: BASIC ELECTRONIC COMPONENTS
	Slide 41: DATA REPRESENTATION
	Slide 42: binary to decimal
	Slide 43: binary to decimal
	Slide 44: binary to decimal
	Slide 45: binary to decimal
	Slide 46: binary to decimal
	Slide 47: binary system units
	Slide 48: Today, as micro-controller or microprocessor systems become increasingly larger, the individual binary digits (bits) are now grouped together into 8’s to form a single BYTE
	Slide 49: file system units
	Slide 50: BINARY TO DECIMAL SUMMARY
	Slide 51: hexadecimal to decimal
	Slide 52: THANK YOU
	Slide 1: CLASS 2
	Slide 2: CLASS 1 REVIEW
	Slide 3: what is a “Microprocessor”?
	Slide 4: what is a microprocessor?
	Slide 5: MPU vs MCU
	Slide 6: what is a microcontroller?
	Slide 7
	Slide 8
	Slide 9: in order to work, MCUs need:
	Slide 10: DIGITAL COMPONENTS
	Slide 11: DATA REPRESENTATION
	Slide 12: binary to decimal
	Slide 13: binary to decimal
	Slide 14: binary to decimal
	Slide 15: CLASS 2
	Slide 16: what is a “Assembly Language”?
	Slide 17
	Slide 18
	Slide 19: ADDING AND SUBSTRACTING
	Slide 20: A
	Slide 21
	Slide 22
	Slide 23: A
	Slide 24
	Slide 25
	Slide 26: REGISTERS AND OPERATIONS
	Slide 27: STATUS
	Slide 28: TRISD is in BANK 1
	Slide 29: BANK SELECTION
	Slide 30: BANK SELECTION
	Slide 31: TRISD is in BANK 1
	Slide 32: W REGISTER
	Slide 33: MOVLW
	Slide 34: MOVWF
	Slide 35: TRIS AND PORT REGISTERS
	Slide 36: TRIS
	Slide 37: PORT
	Slide 38: PORTB
	Slide 39: PORTB
	Slide 40: PORTB
	Slide 41: TRISB
	Slide 42: TRISx
	Slide 43: PORTB.0 = 1
	Slide 44: TRISx
	Slide 45: TRISx
	Slide 46
	Slide 47: TURN LEDs ON AND OFF
	Slide 48: PORTB
	Slide 49
	Slide 50: PORTB
	Slide 51
	Slide 52
	Slide 53
	Slide 54: THANK YOU
	Slide 1: CLASS 3
	Slide 2: CLASS 3
	Slide 3: what is a “Assembly Language”?
	Slide 4
	Slide 5
	Slide 6: ADDING AND SUBSTRACTING
	Slide 7: A
	Slide 8
	Slide 9: A - B
	Slide 10
	Slide 11: REGISTERS AND OPERATIONS
	Slide 12: STATUS
	Slide 13: TRISD is in BANK 1
	Slide 14: TRISD is in BANK 1
	Slide 15: STATUS
	Slide 16: STATUS, 5
	Slide 17: TRISD is in BANK 1
	Slide 18: BANK SELECTION
	Slide 19: BANK SELECTION
	Slide 20: BANK SELECTION
	Slide 21: W REGISTER
	Slide 22: MOVLW
	Slide 23: MOVWF
	Slide 24: TRIS AND PORT REGISTERS
	Slide 25: TRIS
	Slide 26: TRIS
	Slide 27: PORT
	Slide 28: PORTB
	Slide 29: PORTB
	Slide 30: PORTB
	Slide 31: TRISB
	Slide 32: TRISx
	Slide 33: PORTB.0 = 1
	Slide 34: TRISx
	Slide 35: TRISx
	Slide 36
	Slide 37: TURN LEDs ON AND OFF
	Slide 38: PORTB
	Slide 39
	Slide 40: PORTB
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 1: CLASS 4
	Slide 2: CLASS 3 REVIEW
	Slide 3: PORTB
	Slide 4: TURN LEDs ON AND OFF
	Slide 5: PORTB
	Slide 6
	Slide 7: PORTB
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: CLASS 4
	Slide 18: TURN LEDS ON AND OFF
	Slide 19
	Slide 20
	Slide 21: 7-SEGMENT DISPLAY
	Slide 22
	Slide 23: 7-SEGMENT DISPLAY
	Slide 24: 7-SEGMENT DISPLAY
	Slide 25: 7-SEGMENT DISPLAY
	Slide 26
	Slide 27: 7-SEGMENT DISPLAY
	Slide 28
	Slide 29: 7-SEGMENT DISPLAY
	Slide 30: 7-SEGMENT DISPLAY
	Slide 31: 7-SEGMENT DISPLAY
	Slide 32: 7-SEGMENT DISPLAY
	Slide 33: CENTRAL PROCESSING UNIT
	Slide 34: CPU
	Slide 35: INTEL PENTIUM
	Slide 36: CENTRAL PROCESSING UNIT
	Slide 37: WHAT DOES THE CPU DO?
	Slide 38: WHAT DOES THE CPU DO?
	Slide 39: WHAT DOES THE CPU DO?
	Slide 40
	Slide 41
	Slide 42: INTEL 4004
	Slide 43
	Slide 44: 2019
	Slide 45: Intel Core i9-9900KS Processor 18 Billion Transistors
	Slide 46
	Slide 47: COMPONENTS OF THE CPU
	Slide 48: COMPONENTS OF THE CPU
	Slide 49: COMPONENTS OF THE CPU
	Slide 50: MACHINE CYCLE
	Slide 51: CONTROL UNIT
	Slide 52: CONTROL UNIT
	Slide 53: ARITHMETIC LOGIC UNIT
	Slide 54: HOW FAST DOES A CPU TRANSFER DATA?
	Slide 55: CPU TRANSFER DATA SPEED
	Slide 56: CPU TRANSFER DATA SPEED
	Slide 57
	Slide 58: CPU CLOCK SPEED
	Slide 59: CPU CORES
	Slide 60: MPU ARCHITECTURE
	Slide 61
	Slide 62
	Slide 1: CLASS 5
	Slide 2: Quiz review
	Slide 3
	Slide 4: CLASS – WEEK 4
	Slide 5: IF STATEMENT
	Slide 6: IF STATEMENT
	Slide 7: IF STATEMENT
	Slide 8: IF STATEMENT
	Slide 9: IF STATEMENT
	Slide 10: IF STATEMENT IN ASSEMBLY
	Slide 11
	Slide 12: BTFSC (Bit Test File Skip if Clear)
	Slide 13
	Slide 14: MCU SYSTEM
	Slide 15
	Slide 16
	Slide 17: MCU SYSTEM
	Slide 18: IF STATEMENT IN ASSEMBLY
	Slide 19
	Slide 20: MCU SYSTEM
	Slide 21: IF STATEMENT IN ASSEMBLY
	Slide 22
	Slide 1: CLASS 6
	Slide 2: CLASS 5 REVIEW
	Slide 3: 7-SEGMENT DISPLAY
	Slide 4
	Slide 5: 7-SEGMENT DISPLAY
	Slide 6: 7-SEGMENT DISPLAY
	Slide 7: CLASS – WEEK 6
	Slide 8: IF STATEMENT
	Slide 9: IF STATEMENT
	Slide 10: IF STATEMENT
	Slide 11: IF STATEMENT
	Slide 12: IF STATEMENT
	Slide 13: IF STATEMENT IN ASSEMBLY
	Slide 14
	Slide 15
	Slide 16: BTFSS (Bit Test File Skip if Set)
	Slide 17: MCU SYSTEM
	Slide 18
	Slide 19
	Slide 20: MCU SYSTEM
	Slide 21: IF STATEMENT IN ASSEMBLY
	Slide 22
	Slide 23: MCU SYSTEM
	Slide 24: IF STATEMENT IN ASSEMBLY
	Slide 25: MCU SYSTEM
	Slide 26: IF STATEMENT IN ASSEMBLY
	Slide 27: MCU SYSTEM
	Slide 28: IF STATEMENT IN ASSEMBLY
	Slide 29: CLASS 6
	Slide 30: Instruction Descriptions
	Slide 31: Instruction Descriptions
	Slide 32
	Slide 33: EX1: Calculate the delay created by the below code segment if oscillator of 4 MHz. (Assume the number 5 is loaded into Counter)
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: CLASS 6
	Slide 39: MCU SYSTEM
	Slide 40: PSEUDOCODE
	Slide 41: FLOWCHAR T
	Slide 42: FLOWCHAR T
	Slide 43
	Slide 44: MCU SYSTEM
	Slide 45: FLOWCHAR T
	Slide 46
	Slide 47: MCU SYSTEM
	Slide 48: FLOWCHAR T
	Slide 49
	Slide 50
	Slide 1
	Slide 2: CLASS CONTENT
	Slide 3
	Slide 4: C PROGRAM STRUCTURE
	Slide 5: COMMENTS
	Slide 6: DATA TYPES
	Slide 7: VARIABLES
	Slide 8: VARIABLE DECLARATION
	Slide 9: VARIABLE DECLARATION
	Slide 10: VARIABLE DECLARATION
	Slide 11: VARIABLE DECLARATION
	Slide 12: INTEGER CONSTANTS
	Slide 13: ARITHMETIC OPERATORS
	Slide 14: ASSIGNMENT OPERATORS
	Slide 15: INCREMENT AND DECREMENT OPERATORS
	Slide 16: INCREMENT AND DECREMENT OPERATORS
	Slide 17: RELATIONAL OPERATORS
	Slide 18: LOGIC OPERATORS
	Slide 19: BITWISE OPERATORS
	Slide 20: CONDITIONAL OPERATORS
	Slide 21: CONDITIONAL OPERATOR: IF-ELSE
	Slide 22: CONDITIONAL OPERATOR: SWITCH
	Slide 23: PROGRAM LOOP
	Slide 24: WHILE LOOP
	Slide 25: WHILE LOOP
	Slide 26: ENDLESS LOOP
	Slide 27: FOR LOOP
	Slide 28: FOR LOOP
	Slide 29: DO-WHILE LOOP
	Slide 30: DO-WHILE LOOP
	Slide 31: MCU SYSTEMS
	Slide 32: TURN LEDs ON AND OFF
	Slide 33
	Slide 34: PORTB = 0xFF
	Slide 35: 7-SEGMENT DISPLAY
	Slide 36
	Slide 37: MCU SYSTEM
	Slide 38
	Slide 39
	Slide 40: while(1) {
	Slide 41: THANK YOU
	Slide 1: Lecture 8
	Slide 2: MCU SYSTEMS
	Slide 3: TURN LEDs ON AND OFF
	Slide 4
	Slide 5: PORTB = 0xFF
	Slide 6: 7-SEGMENT DISPLAY
	Slide 7
	Slide 8: MCU SYSTEM
	Slide 9
	Slide 10
	Slide 11: while(1) {
	Slide 12
	Slide 1: Lecture 9
	Slide 2: MCU SYSTEM
	Slide 3: int mask(int num) { switch (num) {
	Slide 4: void main() {
	Slide 5: while(1) {
	Slide 6: ANALOGUE TO DIGITAL CONVERTER
	Slide 7: ADC
	Slide 8: ADC
	Slide 9: ADC
	Slide 10: ADC RESOLUTION
	Slide 11: ADC RESOLUTION
	Slide 12: ADC REFERENCE VOLTAGE (VREF)
	Slide 13: ADC REFERENCE VOLTAGE (VREF)
	Slide 14: DIGITAL DATA OUTPUT
	Slide 15: DIGITAL DATA OUTPUT
	Slide 16: DIGITAL DATA OUTPUT
	Slide 17: DIGITAL DATA OUTPUT
	Slide 18: ADC USING PIC16F877A
	Slide 19: ADC USING PIC16F877A
	Slide 20: ADC USING PIC16F877A
	Slide 21: ADCON0
	Slide 22: ADCON0: Conversion Clock Select
	Slide 23: ADCON0: Conversion Clock Select
	Slide 24: ADCON0: Analogue Channel Select
	Slide 25: ADCON0: Analogue Channel Select
	Slide 26: ADCON0: ADC Initialization
	Slide 27: ADCON1
	Slide 28: ADCON1
	Slide 29: ADCON1: A/D Result Format Select
	Slide 30: ADCON1: A/D Result Format Select
	Slide 31: ADCON1: A/D Result Format Select
	Slide 32: ADCON1: Conversion Clock Select
	Slide 33: ADCON1: Port Configuration Control
	Slide 34: ADCON1: Port Configuration Control
	Slide 35: ADCON1: Port Configuration Control
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 1: Lecture 10
	Slide 2: ANALOGUE TO DIGITAL CONVERTER
	Slide 3: ADC
	Slide 4: ADC
	Slide 5: ADC
	Slide 6: ADC RESOLUTION
	Slide 7: ADC RESOLUTION
	Slide 8: ADC REFERENCE VOLTAGE (VREF)
	Slide 9: ADC REFERENCE VOLTAGE (VREF)
	Slide 10: DIGITAL DATA OUTPUT
	Slide 11: DIGITAL DATA OUTPUT
	Slide 12: DIGITAL DATA OUTPUT
	Slide 13: DIGITAL DATA OUTPUT
	Slide 14: ADC USING PIC16F877A
	Slide 15: ADC USING PIC16F877A
	Slide 16: ADC USING PIC16F877A
	Slide 17: ADCON0
	Slide 18: ADCON0: Conversion Clock Select
	Slide 19: ADCON0: Conversion Clock Select
	Slide 20: ADCON0: Analogue Channel Select
	Slide 21: ADCON0: Analogue Channel Select
	Slide 22: ADCON0: ADC Initialization
	Slide 23: ADCON1
	Slide 24: ADCON1
	Slide 25: ADCON1: A/D Result Format Select
	Slide 26: ADCON1: A/D Result Format Select
	Slide 27: ADCON1: A/D Result Format Select
	Slide 28: ADCON1: Conversion Clock Select
	Slide 29: ADCON1: Port Configuration Control
	Slide 30: ADCON1: Port Configuration Control
	Slide 31: ADCON1: Port Configuration Control
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 1: Lecture 11
	Slide 2: SERIAL COMMUNICATION
	Slide 3: SERIAL COMMUNICATION
	Slide 4: PARALLEL COMMUNICATION
	Slide 5: SERIAL COMMUNICATION
	Slide 6: SYNCHRONOUS DATA TRANSFER
	Slide 7: SYNCHRONOUS DATA TRANSFER
	Slide 8: ASYNCHRONOUS DATA TRANSFER
	Slide 9: ASYNCHRONOUS DATA TRANSFER
	Slide 10: DATA TRANSFER OPERATION MODES
	Slide 11: FUNCTIONS
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 1: CLASS 10
	Slide 2: REVIEW
	Slide 3: SERIAL COMMUNICATION
	Slide 4
	Slide 5: void main() { TRISA=0x0F; UART1_Init(9600);
	Slide 6: void main() { char data_rx; TRISC=0x00;
	Slide 7
	Slide 8
	Slide 9: ANALOGUE TO DIGITAL CONVERTER
	Slide 10: Microcontrollers are capable of detecting binary signals: is the button pressed or not?
	Slide 11: ADC
	Slide 12: ADC
	Slide 13: ADC
	Slide 14: CALCULATE THE DOUT
	Slide 15: CALCULATE THE DOUT
	Slide 16: TEMPERATURE MONITOR
	Slide 17: TEMPERATURE MONITOR
	Slide 18: CALCULATE THE DOUT FOR 40 ºC
	Slide 19: void main() { int temp_rd; TRISA=0X01;
	Slide 20
	Slide 21: CLASS CONTENT
	Slide 22: INTERRUPTS
	Slide 23: INTERRUPTS
	Slide 24: INTERRUPTS
	Slide 25: INTERRUPTS
	Slide 26: INTERRUPTS
	Slide 27: INTERRUPTS
	Slide 28: INTERRUPTS
	Slide 29: INTERRUPTS
	Slide 30: EXTERNAL INTERRUPTS
	Slide 31: INTERNAL INTERRUPTS
	Slide 32: INTERRUPTS IN PIC16F877A
	Slide 33: INTERRUPTS IN PIC16F877A
	Slide 34: INTERRUPTS IN PIC16F877A
	Slide 35: EXTERNAL INTERRUPT EXAMPLE
	Slide 36: INTCON REGISTER
	Slide 37: INTCON REGISTER
	Slide 38: INTCON REGISTER
	Slide 39: INTCON REGISTER
	Slide 40: INTCON REGISTER
	Slide 41: INTCON REGISTER
	Slide 42: INTCON REGISTER
	Slide 43: EXAMPLE
	Slide 44: EXAMPLE – MIKROC CODE
	Slide 45: void main() {
	Slide 46: void interrupt() {
	Slide 47: while(1)
	Slide 48
	Slide 49: TIMERS AND COUNTERS
	Slide 50
	Slide 51: TIMERS AND COUNTERS
	Slide 52: TIMERS AND COUNTERS
	Slide 53
	Slide 54: TIMERS AND COUNTERS
	Slide 55: TIMERS AND COUNTERS
	Slide 56: TIMERS AND COUNTERS
	Slide 57: TIMERS AND COUNTERS
	Slide 58: TIMERS AND COUNTERS
	Slide 59: TIMERS AND COUNTERS
	Slide 60

