WELCOME TO CLASS!

let’s introduce ourselves

what is a "Microprocessor”?

CLASS 1

what is a microprocessor?

The Microprocessor, also known as the
Central Processing Unit (CPU), is the
brain of all computers and many
household and electronic devices

What is a microprocessor?

Multiple MPUs, working together, are
the "hearts" of datacenters, super-
computers, communications products,
and other digital devices

TR

ol &y

INTEL 8085 MPU
ARCHITECTURE

INTA# RST 6.5 TRAP sID soD Intel 8085 Microarchitecture

Address Bus Address Bus Data Bus

INTR t RST 5.5 l RST 7.5 l t
i i ' ‘
Interrupt Control ool
8 Bit internal Data Bus
Accumulator Temp. . e
Register
(8 Bit) —
eg.
(8Bit)
D Reg.
(8 Bit)
Instruction G | HReg
Decoder and ‘é, (G .
: S e
Machine & G B
q«c[e Program Counter
Encoding (16 Bit)
Incrementer/Decrementer
Address Latch
Address Bus (High).
8Bt
» Multiplexer
x2 =l Timing and Control
LK . sTATUS ROL
x1 —>| GEN VRESEI' ,M : STATUS . CONT Address Buffer Data/Address Buffer
A :
CLK oUT RESETOUT | HLDA SO Sl g b3 ?g*
RESET IN# HOLD =| READY J“ g
Y et a0 e o B e L T S -
i Address i
i Coau | ALE _I'L Latch :
i : i
| ! | l i
)
; MEMW# Iow# :
! MEMR# IOR# AEHD R
) 1

2t g SeRniqede) eIpay MmN

:n.éﬂ.

e .-"DD(

ni”

LTTTEIRIAT] —E
[T ETH T BT

._E_______._:_a___n:_. L

. @ L
T 5 ElE
s__l_________ﬁ_-_______________________ i G mm m“_s________m____@ “w“mg”

©

@]

i3 m
> 4 .m.. 2 -
, v

_______________:__.w

T LEs

.
il

.,.r: _.T... b | & « =
= = - RUELIE i s
_-__E______________-_______________________ﬁ“ﬁ“ itk 1101 !
e 34 4% ,= 1 5 1: —m umn“““ m .m

*

1013u0) O/
“Yonu0) Atowayy ‘Aejdsig/m uady Ew~m>m

HISTORY

ENIAC (Electronic Numerical Integrator
And Computer) was the world’s first
general-purpose computer

- g g
gl T
b

AT & o g I

L L I BT ey ',.r,;,_.,g"
UL T BT T e I e
| W W e e

o G O S a . :’ '—-

]
=3
53

BEOEHAERED

P
g 1'3_?&“&3

F=annn

raf

Ui i g pESEY

HISTORY

The first microprocessor was the Intel
4004, introduced in 1971

INTEL 4004

Introduced Nov., 1971 by Intel
2250 transistors

108 kHz, 60,000 ops/sec

16 pins DIP (Dual in-line package)

10-micron process

Targeted use: Calculators

Instruction set: 46 instructions (of which 41 were 8 bits
wide and 5 were 16 bits wide)

Cost: less than S100

R
Wty

-~
o

INTRODUCING ICE LAKE: 10NM CPU

T NWSUNNYCOVECORES

Up to 4 Cores / 8 Threads
Up to 4.1GHz A

EE %»wmaw

; . El Memory Co

. LY
it | |

?trﬁl er| |

NEV/ CONVERGED CHASSIS FABRIC

High Bandwidth / Low Latency
IP and Core Scalable :

NEWMEMORYCONTROLLER |

LP4/x-3733 4x32b up to 32GB
DDR4-3200 2x64b up to 64GB

FIRST INTEGRATED THUNDERBOLT "3

Ring =~ -~

i
by
i

T

=]

i aging

v g

L
Sl ok

2019

1/ GENTI GRAPHICS

‘Mp to 64EU and 1.1GHz
 >1TFLOP :

1111 2X MEDIA ENCODERS
Up to 4K60 10b 4:4:4
\hUptOBK3010b420 y

=, -

/ 3XDISPLAY PIPES

Upto 5K60-or 4K120
7‘;"1 4,BT.2020

Full 4x DP/USB/PCle mux on-die
Up to 40Gbps bi-directional per port

HEWIMAGE PROCESSING UNIT 4
Upto 16MP
Up to 1080p120, 4K30

.

) Intel Confidential. Internal Use Only - Embargoed until 11 p.m. PT on May 27.

SE 99OOKS Processo‘

<3

.

AMD NVIDIA.

QUALCONVW

microprocessor vs CPU

A CPU (central processing unit) is the
part of a computer that executes

Instructions.

his can be implemented

using a single IC, a number of ICs,
discrete transistors or a room full of
vacuum tubes

microprocessor vs CPU

A microprocessor is a single-chip
implementation of a CPU

microprocessor vs CPU

Nowadays pretty much all CPUs for
general use are microprocessors, causing
the two terms to be practically
SYNnonymous

MPU vs MCU

PERIPHERALS

what is a microcontroller?

A microcontroller is a computer
present in a single integrated circuit
which is dedicated to perform one task
and execute one specific application

what is a microcontroller?

MCUs contain memory, programmable
input/output peripherals as well a
processor

what is a microcontroller?

MCUs are mostly designed for embedded
applications and are heavily used in
automatically controlled electronic
devices such as cellphones, cameras,
microwave ovens, washing machines,
etc.

MCUs come in different shapes, sizes and
c@urations

MICROCONTROLLERS
CONTROL CIRCUITS

PORT 1.0-
PORT 1.7

PORT 3.0 -
PORT 3.7

Vcc

¢—

RST

¢—

GND

v
E RAM EEPROM o ::> PORT 0.0 —
-
o (FLASH) . PORT 0.7
b . EA
—>1 CPU | »ALE
— 2 » PSEN\
A A I
P~ TIMERS, COUNTERS, - PORT 2.0-
] 'no'z INTERRUPTS, SERIAL ,_°== :> PORT 2.7
4 PORT, SFRs, WATCH N
DOG
XTALL XTAL2 v

INPUT PROCESS OUTPUT

o= @

g R
W | analogue } > l\hmil:l'l‘.:tl:lI.'lI‘I'CI'l‘.lI|.lEI'
"y

IN-EAR PULSE BIODATA ACQUISITION

ECG
. PRESS
ssssss
. {: PG
ERAT
ssssss
EEEEEEEEEEE
nnnnnn
] iGunther V1.0

#§ PRESSURE SENSOR | PPG-SENSOR @ ECG ELECTRODE

PASSWORD BASED DOOR LOCK SYSTEM

ENGINE CONTROL UNIT

ARCHITECTURE OF A MICROCONTROLLER

Oscillator § ‘ T0 T1 T2
0-20MHz |
Internal —— ,

Oscillator
3k Program
— Memory 8K

A/D ‘ a2l (35 instructions)
Converter i

EEPROM (256)
Vref , _ ' Interrupts WDT

modules S—

RESET

/O Ports (25mA 9Power 8upplye
PortA ! PortB ! PortC /! PortD " PortE | 2 -55V

in order to work, MCUs need:

1. Power
2. A program (code) to follow
3. Inputs and Outputs (HW & SW)

in order to work, MCUs need:

Power

2. A program (code) to follow
Inputs and Outputs (HW & SW)

DIGITAL COMPONENTS

in order to work, MCUs need:

1. Power
A program (code) to follow
3. Inputs and Outputs (HW & SW)

DATA REPRESENTATION

DIGITAL COMPONENTS

basic electronic components

Ohm’s law

Boolean logic

understand variables

OHM’'S LAW

V=IxR

BOOLEAN LOGIC

AB

00
01

10
11

AB

00
01

10
11

1

AB

00
01

10
11

AB

0
01

NOR

AB

10
11

OR

XNOR

BASIC ELECTRONIC COMPONENTS

D Diode D_ And gate

—| |- Capacitor } Nand gate
LWL Inductor D Or gate
—MW— Resistor

j wo— Nor gate

— |+_ DC voltage

source jD— Xor gate

AC voltage

source _DO_ Inverter
Copyright @American College of the {NGt gatE‘}

Middle East. 2020.

DATA REPRESENTATION

binary system

hexadecimal system

decimal system

how to alternate between them

MSB Binary Digit LSB

28

binary to decimal

27

26

25

24

23

22

21

20

256

128

64

32

16

binary to decimal

Binary number - 1010

1 x (29)

-

1 0 1 0
+ | 0x(2®) | + | 1 x(2V)

0 x (2°)

'

10 (Decimal Equivalent)

binary to decimal

Decimal Digit Value | 256 | 128 | 64 | 32| 16

Binary Digit Value 10 |1|1]0

Copyright @American College of the
Middle East. 2020.

binary to decimal

By adding together ALL the decimal number
values from right to left at the positions that
are represented by a "1” gives us:
(256) + (64) + (32) + (4) + (1) = 3574
or three hundred and fifty seven as a decimal

number.

binary to decimal

Decimal Digit Value | 256 | 128 | 64 | 32| 16

Binary Digit Value

binary system units

Number of Binary Digits (bits)

1 Bit

4 Nibble

8 Byte

16 Word
32 Double Word
64 Quad Word

oday, as micro-controller or
microprocessor systems become
increasingly larger, the individual
binary digits (bits) are now grouped
together into 8’s to form a single BYTE

file system units

1,024 (210) kilobyte (kb)
1,048,576 (229) Megabyte (Mb)
1,073,741,824 (2°39) Gigabyte (Gb)

avery long number! (249) Terabyte (Th)

BINARY TO DECIMAL SUMMARY

A "BIT” is the abbreviated term derived from Blnary digiT
A Binary system has only two states, Logic "0” and Logic “1”
giving a base of 2
A Decimal system uses 10 different digits, 0 to 9 giving it a
base of 10
A Binary number is a weighted number who's weighted value
increases from right to left
The weight of a binary digit doubles from right to left
A decimal number can be converted to a binary number by
using the sum-of-weights method

= When we convert numbers from binary to decimal, or

decimal to binary, subscripts are used to avoid errors

hexadecimal to decimal

<

U<

O <

10 x 16° = 40960
5x162= 1280

9x16'= 144

THANK YOU

CLASS 2

CLASS 1 REVIEW

what is a "Microprocessor”?

what is a microprocessor?

The Microprocessor, also known as the
Central Processing Unit (CPU), is the
brain of all computers and many
household and electronic devices

MPU vs MCU

PERIPHERALS

what is a microcontroller?

A microcontroller is a computer
present in a single integrated circuit
which is dedicated to perform one task
and execute one specific application

what is a microcontroller?

MCUs contain memory, programmable
input/output peripherals as well a
processor

INPUT PROCESS OUTPUT

o= @

g R
W | analogue } > l\hmil:l'l‘.:tl:lI.'lI‘I'CI'l‘.lI|.lEI'
"y

in order to work, MCUs need:

1. Power
2. A program (code) to follow
3. Inputs and Outputs (HW & SW)

DIGITAL COMPONENTS

basic electronic components

Ohm’s law

Boolean logic

understand variables

DATA REPRESENTATION

binary system

hexadecimal system

decimal system

how to alternate between them

MSB Binary Digit LSB

28

binary to decimal

27

26

25

24

23

22

21

20

256

128

64

32

16

binary to decimal

Binary number - 1010

1 x (29)

-

1 0 1 0
+ | 0x(2®) | + | 1 x(2V)

0 x (2°)

'

10 (Decimal Equivalent)

binary to decimal

Decimal Digit Value | 256|128 |64 |32| 16| 8

Binary Digit Value 1|0 |1|1|0]0

CLASS 2

INTRODUCTION TO ASSEMBLY LANGUAGE
ADDING AND SUBSTRACTING VALUES
REGISTERS AND OPERATIONS

TRIS AND PORT REGISTERS

LED BLINK

what is a "Assembly
Language”?

ASSEMBLY LANGUAGE IS AN EXTREMELY
LOW-LEVEL PROGRAMMING LANGUAGE
THAT HAS A 1-TO-1 CORRESPONDENCE TO
MACHINE CODE — THE SERIES OF BINARY
INSTRUCTIONS WHICH MOVE VALUES IN
AND OUT OF REGISTERS IN A CPU

GENERAL OPERATIONS

MOVLW OxFF
MOVWEF PORTA
ADDLW b101
SUBLW 25

BCF RP1
BSF RPO

ADDING AND SUBSTRACTING

A+ B

MOVLW A

ADDLW B

A+ B

LET'S PRACTICE

10 + 20

LET'S PRACTICE

OxFO + 0xO01

A-B
MOVLW A

SUBLW B

LET'S PRACTICE

50 - 10

LET'S PRACTICE

OxXFF - OxXAA

REGISTERS AND OPERATIONS

STATUS

To change from Bank O to Bank 1 we talk
to the STATUS register. We do this by
setting the RPO and RP1 bits. In most
cases we'll be moving only between Bank
0 and Bank 1, thus we can just modify the
value of the bit 5 of the STATUS register.

TRISD is in BANK 1

BSF STATUS, 5

PORTD is in BANK O

BCF STATUS, 5

BANK SELECTION

PIC16F87XA

FIGURE 2-3: PIC16F876A/877A REGISTER FILE MAP
File File File File
Address Address Address Address

Indirect addr.”!| ooh Indirect addr) | o Indirect addr!” | 100n Indirect addr.”)| 180n
TMRO 01h OPTION_REG | 81h TMRO 101h OPTION_REG| 181h
PCL 02h PCL 82h PCL 102h PCL 182h
STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR mh FSR 84h FSR 104"] FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h 107h 187h
PORTDI" | 08h TRISD!) 88h 108h 188h
PORTEM | 0%h TRISEM agh 109h 189h

General General General

Purpose Purpose Purpose

F?L?nersaé Register Regi)gter Register

Rerge(s)ter 80 Bytes 80 Bytes 80 Bytes
96 Bytes EFh 16Fh 1EFh
accesses FOh accesses 170n accesses 1Fon

70h-7Fh 70h-7Fh 70h-7Fh
7Fh FFh 17Fh 1FFh

Bank 0 Bank 1 Bank 2 Bank 3

BANK SELECTION

RP1:RPO Bank
00 0
01 1
10 2
11 3

TRISD is in BANK 1

BCF STATUS, RP1
BSF STATUS, RPO

PORTD is in BANK O

BCF STATUS, RP1
BCF STATUS, RPO

W REGISTER

The W register is a general register in
which you can put any value that you
wish. Once you have assigned a value to

W, you can add it to another value, or
move.

MOVLW

The MOVLW command means ‘Move Literal
Value Into W', which in English means put

the value that follows directly into the W
register.

MOVLW O0OxAA

MOVWF

This instruction means “Move The
Contents Of W Into The Register Address
That Follows”.

MOVWF TRISB

TRIS AND PORT REGISTERS

TRIS

We use the TRIS Register to program a pin
to be an output or an input by simply

sending a 0 (out) or a 1 (in) to the
relevant bit in the register.

MOVLW OxFF
MOVWF TRISB

PORT

To send one of our output pins high, we
simply send a ‘1’ to the corresponding bit
iIn our PORTX register.

MOVLW OxFF
MOVWEF PORTX

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

2R EEEEE

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

FRERE ER KRR

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

¥ R Y RY ORGP

TRISB

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

SR SRR RS

TRISX

PBO mp JY(e[f =) PC5

iInput output
1 0

PORTB.0 =1

BSF TRISB, 0

PORTC.5 = 0

BCF TRISC, 5

TRISX

PORTB mp RV[elV}l) PORTC

Input output

TRISX

OXFF -> TRISB
PORTB mp RY[lV} mp PORTC

input output OXOO -> TRISC

TRISX

MOVLW OxFF
PORTB mup RUIGVN mp PORTC MOVWF TRISB

input output CLRF TRISC

TURN LEDs ON AND OFF

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

FRERE ER KRR

ORG 0x00

BCF STATUS, RP1
BSF STATUS, RPO
CLRF TRISB

MAIN

BCF STATUS, RP1
BCF STATUS, RPO
MOVLW OxFF
MOVWF PORTB

END

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

¥ R Y RY ORGP

ORG 0x00

BSF STATUS, 5
CLRF TRISB
MAIN

BCF STATUS, 5
MOVLW OxAA
MOVWF PORTB
END

PORTC

PC7 PC6 PC5 PC4 PC3 PC2 PC1l PCO

LY R R RR Y%

PORTD

PD/7 PD6 PD5 PD4 PD3 PD2 PD1 PDO

¥ ¥ R RR ¥ ¥ ¥

THANK YOU

CLASS 3

CLASS 3

Review INTRODUCTION TO ASSEMBLY
LANGUAGE

ADDING AND SUBSTRACTING VALUES
REGISTERS AND OPERATIONS

TRIS AND PORT REGISTERS

LED BLINK

what is a "Assembly
Language”?

ASSEMBLY LANGUAGE IS AN EXTREMELY
LOW-LEVEL PROGRAMMING LANGUAGE
THAT HAS A 1-TO-1 CORRESPONDENCE TO
MACHINE CODE — THE SERIES OF BINARY
INSTRUCTIONS WHICH MOVE VALUES IN
AND OUT OF REGISTERS IN A CPU

GENERAL OPERATIONS

MOVLW OxFF
MOVWEF PORTA
ADDLW b101
SUBLW 25
BCF RP1

BSF RPO

ADDING AND SUBSTRACTING

A+ B

MOVLW A

ADDLW B

A+ B

LET'S PRACTICE

OxFO + 0xO01

A-B

MOVLW B

SUBLW A

A-DB

SUBLW subtract W from Literal Operation: k-(W)->W

LET'S PRACTICE

OxXFF - OxXAA

REGISTERS AND OPERATIONS

STATUS

To change from Bank O to Bank 1 we talk
to the STATUS register. We do this by
setting the RPO and RP1 bits. In most
cases we'll be moving only between Bank
0 and Bank 1, thus we can just modify the
value of the bit 5 of the STATUS register.

TRISD is in BANK 1

BCF STATUS, RP1
BSF STATUS, RPO

PORTD is in BANK O

BCF STATUS, RP1
BCF STATUS, RPO

TRISD is in BANK 1

BCF

S

A
A

US, RP1

[BSF

S

US, RPO | <=

PORTD is in BANK O

STATUS, RP1

BCF

[BCF

STATUS, RPO | <4

STATUS

[1RPTRP1[RPO]J TOJPD] Z JDC] C]

/ ii Wi‘ 4

0: BANKO
BANK1

3

1: BANK1
0: BANKO

2

1 O

TRISD is in BANK 1

BCF STATUS, RP1
|[BSF STATUS, RPQ| <4mmm

PORTD is in BANK O

BCF STATUS, RP1
[BCF STATUS, RPQ| 4=m

STATUS, 5

[1RPJRP1[RPO[TO]PD] Z JDC] C |
7 6|5|4 3 2 1 0
I I TRISD is in BANK 1
0: BANKO 1: BANK1 (SFSTATUS, RPO] e
BANK1 0: BANKO PORTD is in BANK 0

BCF STATUS, RP1
|BCF_ STATUS, RPQ| 4mmm

TRISD is in BANK 1

BSF STATUS, 5

PORTD is in BANK O

BCF STATUS, 5

BANK SELECTION

PIC16F87XA

FIGURE 2-3: PIC16F876A/877A REGISTER FILE MAP
File File File File
Address Address Address Address

Indirect addr.”!| ooh Indirect addr) | o Indirect addr!” | 100n Indirect addr.”)| 180n
TMRO 01h OPTION_REG | 81h TMRO 101h OPTION_REG| 181h
PCL 02h PCL 82h PCL 102h PCL 182h
STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR mh FSR 84h FSR 104"] FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h 107h 187h
PORTDI" | 08h TRISD!) 88h 108h 188h
PORTEM | 0%h TRISEM agh 109h 189h

General General General

Purpose Purpose Purpose

F?L?nersaé Register Regi)gter Register

Rerge(s)ter 80 Bytes 80 Bytes 80 Bytes
96 Bytes EFh 16Fh 1EFh
accesses FOh accesses 170n accesses 1Fon

70h-7Fh 70h-7Fh 70h-7Fh
7Fh FFh 17Fh 1FFh

Bank 0 Bank 1 Bank 2 Bank 3

BANK SELECTION

RP1:RPO Bank
00 0
01 1
10 2
11 3

BANK SELECTION

RP1:RPO Bank
00 0
01 1
10 2
11 3

W REGISTER

The W register is a general register in
which you can put any value that you
wish. Once you have assigned a value to

W, you can add it to another value, or
move.

MOVLW

The MOVLW command means ‘Move Literal
Value Into W', which in English means put

the value that follows directly into the W
register.

MOVLW O0OxAA

MOVWF

This instruction means “Move The
Contents Of W Into The Register Address
That Follows”.

MOVWF TRISB

TRIS AND PORT REGISTERS

TRIS

We use the TRIS Register to program a pin
to be an output or an input by simply
sending a 0 or a 1 to the relevant bit in

the register.

MOVLW OxFF
MOVWF TRISB

TRIS

USE PORT
TO WRITE N

OUTPUT = 0O
INPUT = 1]

USE PORT ¢
TO READ

PORT

To send one of our output pins high, we
simply send a ‘1’ to the corresponding bit
iIn our PORTX register.

MOVLW OxFF
MOVWEF PORTX

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

EEEEEEE

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

FRERE ER KRR

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

¥ R Y RY ORGP

TRISB

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

SR SRR RS

TRISX

PBO mp JY(e[f =) PC5

iInput output
1 0

PORTB.0 =1

BSF TRISB, 0

PORTC.5 = 0

BCF TRISC, 5

TRISX

PORTB mp RV[elV}l) PORTC

Input output

TRISX

OXFF -> TRISB
PORTB mp RY[lV} mp PORTC

input output OXOO -> TRISC

TRISX

MOVLW OXxFF
PORTB mup RUIGVN mp PORTC MOVWF TRISB

input output CLRF TRISC

TURN LEDs ON AND OFF

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

FRERE ER KRR

ORG 0x00

BSF STATUS, 5
CLRF TRISB
MAIN

BCF STATUS, 5
MOVLW OxFF
MOVWF PORTB
END

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

¥ R Y RY ORGP

ORG 0x00

BSF STATUS, 5
CLRF TRISB
MAIN

BCF STATUS, 5
MOVLW OxAA
MOVWF PORTB
END

PORTC

PC7 PC6 PC5 PC4 PC3 PC2 PC1l PCO

PORTA

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

PORTE

PE/ PE6 PE5 PE4 PE3 PE2 PE1 PEO

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY
THE FIRST THREE LEDS OF PORTB

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON
THE EVEN BITS OF PORTA

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON
THE ODD BITS OF PORTD

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY
THE LAST TWO LEDS OF PORTC

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON
THE EVEN BITS OF PORTB
AND THE ODD BITS OF PORTC

THANK YOU

CLASS 4

CLASS 3 REVIEW

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

¥ R Y RY ORGP

TURN LEDs ON AND OFF

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

FRERE ER KRR

ORG 0x00

BSF STATUS, 5
CLRF TRISB
MAIN

BCF STATUS, 5
MOVLW OxFF
MOVWF PORTB
END

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

¥ R Y RY ORGP

ORG 0x00

BSF STATUS, 5
CLRF TRISB
MAIN

BCF STATUS, 5
MOVLW OxAA
MOVWF PORTB
END

PORTC

PC7 PC6 PC5 PC4 PC3 PC2 PC1l PCO

PORTA

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

PORTE

PE/ PE6 PE5 PE4 PE3 PE2 PE1 PEO

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY
THE FIRST THREE LEDS OF PORTB

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON
THE EVEN BITS OF PORTA

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON
THE ODD BITS OF PORTD

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON ONLY
THE LAST TWO LEDS OF PORTC

WRITE AN ASSEMBLY PROGRAM IN
ORDER TO TURN ON
THE EVEN BITS OF PORTB
AND THE ODD BITS OF PORTC

CLASS 4

= TURN ON LEDs
= /-SEGMENT DISPLAY
= BASICS OF CENTRAL PROCESSING UNIT

TURN LEDS ON AND OFF

PORTA

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO

ORG 0x00

BSF STATUS, 5
CLRF TRISA
MAIN

BCF STATUS, 5
MOVLW 0x99
MOVWF PORTA
END

/-SEGMENT DISPLAY

/-SEGMENT DISPLAY

o =
$a. 2 M.
S b Y |

ﬁ'
f e P-I- . — o
o .—H— g ®
‘H"“ Comm on v-
Cathode —

COMMON CATHODE

b Ib Ib lbf' Ibfl
£

/-SEGMENT DISPLAY

2

a
]

| lbfl Tl l

. Ic el lc Ic Ic el Ic Ic eI Ic Ic
ey (o] VTt

/-SEGMENT DISPLAY

HeXx
3F

06
5B
4F

66
6D
/D
07/

/F

67

DP

Decimal

/-SEGMENT DISPLAY

HIEININ
Uy
SHOW NUMBER "0”

IN ALL THE 7-SEG DISPLAYS

/-SEGMENT DISPLAY

o =
$a. 2 M.
S b Y |

ﬁ'
f e P-I- . — o
o .—H— g ®
‘H"“ Comm on v-
Cathode —

COMMON CATHODE

/-SEGMENT DISPLAY

HeXx

3F

06
5B
4F

66
6D
/D
07

/F

67

DP

Decimal

ORG 0x00

BS
CL
CL

:S'
RF -

'RISA

RF *

MAIN
BCF STATUS

MOVLW OxFF

'RISD

'ATUS,

5

MOVWF PORTA

MOVLW 0Ox3F

MOVWF PORTD

EN

D

HE

ol

HE

(]

/-SEGMENT DISPLAY

ajalula
SHOW NUMBER "5"

IN THE FIRST TWO 7-SEG DISPLAYS
1

/-SEGMENT DISPLAY

SHOW CHARACTER "H”"
IN THE FIRST AND LAST 7-SEG DISPLAY

/-SEGMENT DISPLAY

B HEE B
L) L]
SHOW CHARACTER "A”

IN THE SECOND AND THIRD 7-SEG DISPLAY
3

/-SEGMENT DISPLAY

SHOW THE 7-SEG DISPLAY OUTPUT
IF PORTD=0xC9

CENTRAL PROCESSING UNIT

CPU

Also known as Microprocessor, handles
all instructions it receives from
hardware and software running on the
computer

INTEL PENTIUM

CENTRAL PROCESSING UNIT

= The processor is placed and secured
into a compatible CPU socket found on
the motherboard

= Processors produce heat, so they are
covered with a heat sink to keep them
cool and running smoothly

WHAT DOES THE CPU DO?

WHAT DOES THE CPU DQO?

= Takes input from a peripheral
(keyboard, mouse, printer, etc) or
computer program

= Interprets what it needs

= Qutputs information to your monitor, or
perform the requested task

WHAT DOES THE CPU DQO?

-»EE-»
L [Q
g g " Q..

INPUT PROCESS OUTPUT

o= @

g b
W | analogue } > l\hl!‘lil:l'l‘.:tl:lI.'lI‘I'CI'l‘.lI|.lEl'
"y

HISTORY

THE FIRST MICROPROCESSOR WAS THE
INTEL 4004, INTRODUCED IN 1971

INTEL 4004

1971

R
Wty

-~
o

INTRODUCING ICE LAKE: 10NM CPU

T NWSUNNYCOVECORES

Up to 4 Cores / 8 Threads
Up to 4.1GHz A

EE %»wmaw

; . El Memory Co

. LY
it | |

?trﬁl er| |

NEV/ CONVERGED CHASSIS FABRIC

High Bandwidth / Low Latency
IP and Core Scalable :

NEWMEMORYCONTROLLER |

LP4/x-3733 4x32b up to 32GB
DDR4-3200 2x64b up to 64GB

FIRST INTEGRATED THUNDERBOLT "3

Ring =~ -~

i
by
i

T

=]

i aging

v g

L
Sl ok

2019

1/ GENTI GRAPHICS

‘Mp to 64EU and 1.1GHz
 >1TFLOP :

1111 2X MEDIA ENCODERS
Up to 4K60 10b 4:4:4
\hUptOBK3010b420 y

=, -

/ 3XDISPLAY PIPES

Upto 5K60-or 4K120
7‘;"1 4,BT.2020

Full 4x DP/USB/PCle mux on-die
Up to 40Gbps bi-directional per port

HEWIMAGE PROCESSING UNIT 4
Upto 16MP
Up to 1080p120, 4K30

.

) Intel Confidential. Internal Use Only - Embargoed until 11 p.m. PT on May 27.

SE 99OOKS Processo‘

<3

.

AMD NVIDIA.

QUALCONVW

COMPONENTS OF THE CPU

COMPONENTS OF THE CPU

The primary components are:

 The ALU (Arithmetic Logic Unit) that
performs mathematical, logical, and
decision operations and

« The CU (Control Unit) that directs all of
the processors operations.

COMPONENTS OF THE CPU

CENTRAL PROCESSING UNIT
PROCESSOR

MACHINE CYCLE

Step 2 decode instructions into commands Step 3 execute commands

step1 [| Control Unit ALU T
Fetch Step 4
instruction Store results
from memo in memory
¢ Main Memory <

CONTROL UNIT

The control unit has the task of decoding
the instructions, interpreting them by
generating the appropriate signals to be
sent to the executing organs at the clock
pulse rate

CONTROL UNIT

The control unit's activity is generally
divided into three main phases:

= Fetch
= Decode
= Execute

ARITHMETIC LOGIC UNIT

The arithmetic-logic unit is formed by a
set of circuits capable of performing
elementary arithmetic operations such as
addition, subtraction, increment, decay,
multiplication, division, data exchange
between registers and control operations

HOW FAST DOES
A CPU TRANSFER DATA?

CPU TRANSFER DATA SPEED

Like any device that utilizes electrical

signals, the data travels very near the

speed of light, which is approximately
300,000,000 m/s

CPU TRANSFER DATA SPEED

= This speed depends on the medium
(type of metal in the wire) through
which the signal is traveling.

= Most electrical signals are traveling at
about 75 to 90% the speed of light.

CPU CLOCK SPEED

The clock speed of a CPU is the number
of instructions it can process in any given
second, measured in gigahertz (GHz)

CPU CLOCK SPEED

For example, a CPU has a clock speed of
1 Hz if it can process one piece of
instruction every second. Extrapolating
this to a more real-world example: a CPU
with a clock speed of 3.0 GHz can
process 3 billion instructions each second

CPU CORES

Some devices have a single-core processor
while others may have a dual-core (or quad-
core, etc.) processor. As might already be
apparent, having two processor units
working side by side means that the CPU
can simultaneously manage twice the
instructions every second, drastically
improving performance

TR

ol &y

THANK YOU

CLASS 5

Quiz review

CLASS - WEEK 4

ASSEMBLY LANGUAGE

» [F STATEMENT
= READ INPUTS

IF STATEMENT

IF STATEMENT

IF (A = TRUE)
Then B

Else C

End IF

TRUE FALSE

(e),

IF STATEMENT

If It's raining
TRUE / FALS

m Open your Wear |

L umbrella vyour Cap

IF STATEMENT

PN

ittt

IF STATEMENT

IF STATEMENT IN ASSEMBLY

IF (A = TRUE)
Then B
Else C
End IF
TRUE FALSE
\ \
B c

IF STATEMENT IN ASSEMBLY
BTFSC (Bit Test File Skip if Clear)

BTFSS (Bit Test File Skip if Set)

BTFSC (Bit Test File Skip if Clear)

IF THE LOGIC AT LOCATION F IS HIGH (1),
THEN THE BTFSC FUNCTION WILL NOT
SKIP THE NEXT LINE OF CODING

BTFSS (Bit Test File Skip if Set)

IF THE LOGIC AT LOCATION F IS HIGH (1),
THEN THE BTFSS FUNCTION WILL SKIP
THE NEXT LINE OF CODING

MCU SYSTEM

INPUT PROCESS OUTPUT

) LED
= % PD5
PUSH BUTTON ﬁmicmcnntmller:_l LED

PB5 .

ORG 0x00

BSF STATUS, 5
BSF TRISB, 5
CLRF TRISD
MAIN

BCF STATUS, 5
BTFSC PORTB,5
GOTO LEDON
GOTO LEDOFF

@
LEDON
BSF PORTD,5
GOTO MAIN

LEDOFF

BCF PORTD, 5
GOTO MAIN
END

ORG 0x00 ¥

BSF STATUS, 5 LEDON

BSF TRISB, 5 BSF PORTD, 5
CLRF TRISD GOTO MAIN
MAIN

BCF STATUS, 5 LEDOFF
BTFSS PORTB, 5 BCF PORTD, 5
GOTO LEDOFF GOTO MAIN

GOTO LEDON END

MCU SYSTEM

INPUT PROCESS OUTPUT

/-SEGMENT

% DISPLAY

PUSH BUTTON —zmicrucnntruller:_—'r B B B B
PB/

IF STATEMENT IN ASSEMBLY

SHOW "0" IN SHOW “H” IN
ALL 7-SEG DISP ALL 7-SEG DISP

ORG 0x00

BSF STATUS, 5

BSF TRISB, 7

CLRF TRISA

CLRF TRISD

MAIN

BCF STATUS, 5

BTFSC PORTB, 7
GOTO SHOWH

GOTO SHOWZ

¥

SHOWH
MOVLW 0x0F
MOVWF PORTA
MOVLW 0x76
MOVWF PORTD
GOTO MAIN
SHOWZ
MOVLW 0OxOF
MOVWF PORTA
MOVLW 0Ox3F

MOVWF PORTD
GOTO MAIN
END

MCU SYSTEM

INPUT PROCESS OUTPUT

. .. _ LEDS ON
PUSH BUTTON microcontroller——
Avib "~ PORTD

IF STATEMENT IN ASSEMBLY

ODD BITS EVEN BITS
OF PORTD OF PORTD

THANK YOU

CLASS 6

CLASS 5 REVIEW

/-SEGMENT DISPLAY

/-SEGMENT DISPLAY

o =
$a. 2 . |
s3I 3

f e H"’- —
g.—H—- g e *
‘h‘h"“‘{lnmmm v-
Cathode —

COMMON CATHODE

/-SEGMENT DISPLAY

SHOW CHARACTER "C”
IN THE FOURTH AND SECOND 7-SEG DISPLAYS

/-SEGMENT DISPLAY

SHOW THE 7-SEG DISPLAY OUTPUT
IF PORTA=0x09 AND PORTD=0x6B

CLASS - WEEK 6

ASSEMBLY LANGUAGE

= IF STATEMENT
= READ INPUTS
= FUNCTIONS

IF STATEMENT

IF STATEMENT

IF (A = TRUE)
Then B

Else C

End IF

JRUE FALSE

(o -)

IF STATEMENT

PR NN
&gl F T

If It's raining
TRUE / FALS

m Open your Wear

L umbrella vyour Cap

IF STATEMENT

IF STATEMENT

IF STATEMENT IN ASSEMBLY

IF (A = TRUE)
Then B
Else C
EEEEE
TRUE FALSE
\ Y
B c

IF STATEMENT IN ASSEMBLY
BTFSC (Bit Test File Skip if Clear)

BTFSS (Bit Test File Skip if Set)

BTFSC (Bit Test File Skip if Clear)

IF THE LOGIC AT LOCATION F IS HIGH (1),
THEN THE BTFSC FUNCTION WILL NOT
SKIP THE NEXT LINE OF CODING

BTFSS (Bit Test File Skip if Set)

IF THE LOGIC AT LOCATION F IS HIGH (1),
THEN THE BTFSS FUNCTION WILL SKIP
THE NEXT LINE OF CODING

MCU SYSTEM

INPUT PROCESS OUTPUT

LED

% PD5

PUSH BUTTON ﬁmicmmntmllerzé LED
PB5 N

ORG 0x00 ¥

BSF STATUS, 5 LEDON

BSF TRISB, 5 BSF PORTD, 5

CLRF TRISD GOTO MAIN

MAIN

BCF STATUS, 5 LEDOFF

BTFSC PORTB, 5 BCF PORTD, 5
GOTO LEDON GOTO MAIN

GOTO LEDOFF END

ORG 0x00 ¥

BSF STATUS, 5 LEDON

BSF TRISB, 5 BSF PORTD, 5

CLRF TRISD GOTO MAIN

MAIN

BCF STATUS, 5 LEDOFF

BTFSS PORTB, 5 BCF PORTD, 5
GOTO LEDOFF GOTO MAIN

GOTO LEDON END

MCU SYSTEM

INPUT PROCESS OUTPUT

/-SEGMENT

S % DISPLAY
PUSH BUTTON ﬁmicmcnntmuer:ir B B B B
PB/

IF STATEMENT IN ASSEMBLY

SHOW “0” IN SHOW “H" IN
ALL 7-SEG DISP ALL 7-SEG DISP

SHOWH

ORG 0x00 MOVLW OxOF

BSF STATUS, 5 MOVWF PORTA

BSF TRISB, 7 MOVLW 0x76

CLRF TRISA MOVWF PORTD

CLRF TRISD GOTO MAIN

MAIN SHOWZ

BCF STATUS, 5 MOVLW 0OxOF

BTFSC PORTB, 7 MOVWF PORTA
GOTO SHOWH MOVLW 0Ox3F

GOTO SHOWZ MOVWF PORTD

GOTO MAIN

¥ END

MCU SYSTEM

INPUT PROCESS OUTPUT

. . LEDS ON
PUSH BUTTON microcontroller —————
vt "~ PORTD

IF STATEMENT IN ASSEMBLY

ODD BITS EVEN BITS
OF PORTD OF PORTD

MCU SYSTEM

INPUT PROCESS OUTPUT

/-SEGMENT

S % DISPLAY
PUSH BUTTON ﬁmicmcnntmuer:ir B B B B
PE1

IF STATEMENT IN ASSEMBLY

SHOW "8” IN THE SHOW “o” IN THE
15T AND 4TH 2ND AND 3RD
/-SEG DISP /-SEG DISP

MCU SYSTEM

INPUT PROCESS OUTPUT

PUSHPBBUSTTON ﬁmimmntmue.;ﬁ—.. 585,:8

IF STATEMENT IN ASSEMBLY

PORTC = 0XC3
PORTD = OXOF OPPOSITE

CLASS 6

ASSEMBLY LANGUAGE

= Delays

Instruction Descriptions

DECF Decrement f
Syntax: [label] DECFfd
Operands: 0=<f<127
de [0,1]
Operation: (f) - 1 — (destination)
Status Affected: Z
Description: Decrement register T If 'd’is "0,

the result is stored in the W
register. If 'd"is "1’, the result is
stored back in register .

INCF Increment f
Syntax: [label] INCF fd
Operands: 0=f=127
de [0,1]
Operation: (f) + 1 — (destination)
Status Affected: Z
Description: The contents of reqgister 'f" are

incremented. If 'd"is "0, the result
Is placed in the W register. If 'd’ is
‘1’, the result is placed back in
register f.

Instruction Descriptions

DECFSZ Decrement f, Skip if 0
Syntax: [label] DECFSZ fd
Operands: 0<f<127

de [0,1]
Operation: (f) - 1 — (destination);

Status Affected:

Description:

skip if result =0
None

The contents of register f" are
decremented. If ‘'d"is '0’, the result
is placed in the W register. If 'd’ is
‘1’, the result is placed back in
register f.

If the result is “1’, the next instruc-
tion is executed. If the result is "0’,
then a NOP is executed instead,
making it a 2 TCY instruction.

INCFSZ Increment f, Skip if 0
Syntax: [label]l] INCFSZ fd
Operands: 0<f<127

de [0,1]
Operation: (f) + 1 — (destination),

skip ifresult=0
Status Affected: None
Description: The contents of register ' are

incremented. If 'd’" 1s "0, the result
is placed in the W register. If 'd’ is
‘1, the result is placed back in
register f.

If the result is "1’, the next instruc-
tion is executed. If the resultis ‘0,
a NOP is executed instead, making
it a 2 TCY instruction.

The following table indicates the cycles required from each instruction to be executed:

Instruction Cycles
BTESS lor2
BTESC lor2
INCFSZ 1lor2
DECFSZ lor2
GOTO Always 2
CALL Always 2
RETURN Always 2
RETLW Always 2
RETFIE Always 2

All other will require 1 mstruction cycle to be executed.

EX1: Calculate the delay created by the below code segment if oscillator of 4 MHz. (Assume the number
5 is loaded into Counter)

LOOP
DECFSZ Counter,F
GOTO LOOP

Solution:

No. of cycles =5 X(1 +2) =15

Delay by this code= No. of cycles X Instruction cycle
=15 X (4 X0.25uS)
=15us

EX2: Calculate the delay created by the below code segment if oscillator of 8 MHz. (Assume the number
5 is loaded into Counter)

LOOP

DECFSZ Counter, F
GOTO LOOP
Solution:

No. of cycles =5 X(1 +2) =15

Delay by this code= No. of cycles X Instruction cycle
=15 X (0.5uS)
=7.5us

EX3: Calculate the delay created by the Loop in the below code segment oscillator of 4 MHz:

Counterl EQU

START

MOVLW OF2H
MOVWF Counterl

LOOP
DECFSZ Counterl,F
GOTO LOOP

END

Solution:

No. of cyclesinLoop= [242X(1+2)]=726
No. of cyclesincode= 1+1+726=728

Delay by this code= No. of cycles X Instruction cycle
=728 X (4 X0.25uS)
=728 uS

EX 2: Calculate the delay created by the Loop in the below code segment oscillator of 8 MHz:

Counterl

START

MOVLW
MOVWEF

LOOP
DECFSZ
GOTO

END

EQU70H

OF2H
Counterl

Counterl,F
LOOP

Solution:

No. of cyclesinLoop= [242X(1+2)]=726
No. of cyclesincode= 1+1+726=728

Delay by this code= No. of cycles X Instruction cycle
=728 X (0.5uS)
=364 uS

FIGLIRIE 2-3:- PHC1SFa876AMET A REGISTER FILE MAF

Flll= Flll= Flha s
SAddrasa sddrasa Addrasa Sodreas
marect soor. "' | oon Inmrect acor ™| o Imdirect addr™] 1006 Inmirect ador. T | gs0n
TRAFRO ain T HEOH_ RE S E1h TrRARD 101N R TR REs]| 1810
| = i I aZn F= T et I EZ2h Pl 1 032N Pl 1832
ETATIS a3n STATLS B3N STATLUS 103N STATUWS 15
FSR 0=t FSR Ban FSR 1O4n FSR 184
= T asn TR ESh 1O 135
PR T oEn TRISE BSH PORTEB 10O&EnNn TRISE 15&h
R T aFn TS ETH 107N 187
PR TN OEn TRIsD O ESh 108N 13=h
DR T= a=n TRISED] Eoh 10Sm 1S3oh
=CLATH L] P LAaT B PCLATH 105N gE= TR
I TS M asn 1T i BSh P 1oBn pE=1=1,
L] [alad] 2] PIE T B EEDWATA 1= 13sh
=R ach PIE= B EE A 10C=h 190N
TrAFR 1L aEm =L BEh EEDATH 1DEm 18Eh
TEAFE1H aFn BFh EEADRH 10FR 13FN
T AN 10n oah 110N 190
TeI== 11h S P Z=1h 111h 191
T2 12n PRz L=2eed o 11Z=n 19=h
SSPELFE 13N e = T 113h 13N
SSPCN 1=4n SSPS AT DAk 114n 194
[=n==T_F TN 15 Oes 1y 115h 195 h
o S] 15N DS 11&h 1oEnR
o 1O 17N oTh Senaral 117h =EreEra 197
ST 1ENn THSTA === 1 E-ﬂ.&g"'j'gf:} 115nh Eléép;ﬁ;:: pE=1-1}1
THRES 154 SPBRC == 16 Byies 113N 16 Ewl=E 199
RICRES 1=mn = 11smn g =T
[ae: e 18N SR 11Emn eE=1=0)1
Ll med o b o | 1=h = Pl i =] 11 h 1= h
e e] 1=h CWRCT SN 110h 19Dn
ADRESH 1EN ADRESL o= 1T1ER 19ER
o o et e] 1TFh AT T =i 1T1Fn 1aFm
20N Ah 1=om 148 0
Zemie=ral SeErnsra =ereral
Purposes Prp=os= L e
SL-.E__FE.E'EII FReqglst=r Reglster Fagkster
FRegister =0 Syt=s a0 Byhes B Bytes
oE Eybes =E=n 15Fh 1EFHh
S EEESE Fon BCCEEESE e SCEEEREE nEan
FToOhR—FFh F -7 Fn FOh - TFN
TFHR FFh 17FR 1FFhR
Bark O Sane T Eank 2 Bank =

O waimpismented data me-smory o-cathors, resd Ss "o
= Mot & physhcal reglster
Moba 1: These reglsbers are not implermenisd on the PIC 1I6FETSA
ZF: These reglsiers are ressersed; malmiain thess reglsters clear

CLASS 6

ASSEMBLY LANGUAGE

= CONDITIONAL STATEMENT: BTFSC, BTFSS
= READ MULTIPLE INPUTS
= FUNCTIONS

MCU SYSTEM

INPUT PROCESS OUTPUT

LEDS
Z % PORTD
PUSH BUTTONS: ﬁmicmmntmllerzé LED

PEO .
PE1

PSEUDOCODE

IF PEO IS PRESSED THEN

TURN ON ODD BITS OF PORTD
ELSE IF PE1 IS PRESSED THEN

TURN ON EVEN BITS OF PORTD
ELSE

TURN OFF ALL BITS OF PORTD
END IF

FLOWCHAR
T

2

FLOWCHAR
T

NO YES
TURN ON
NO YES ODD LEDS OF
l l PORTD
TURN OFF TURN ON
ALL BITS OF EVEN LEDS OF

PORTD PORTD

MCU SYSTEM

INPUT

PUSH BUTTONS:
PA3
PA4

PROCESS

OUTPUT

/-SEGMENT
DISPLAY

~-ddoo

FLOWCHAR
T

NO YES

A\ 4

SHOW "“3” ON THE

NO YES FIRST TWO
/-SEG DISP
SHOW * - ” SHOW “E” ON THE
ON ALL THE LAST TWO
7-SEG DISP 7-SEG DISP

MCU SYSTEM

INPUT PROCESS OUTPUT

- . LEDS

PORTC

BUTTONS: microcontroller
PB7 L J—a 7-SEGMENT

PB6 DISPLAY

FLOWCHAR

T

NO

A 4

TURN OFF
EVERYTHING

NO

IF PB6 ==

YES

A\ 4

YES

A\ 4

SHOW “P” ON THE
2ND AND 3RD
7-SEG DISP

PORTC = OxO0F

SHOW “d” ON THE
4™ AND 1sT
7-SEG DISP

PORTC = OxFO

THANK YOU

This is a good video to remember or learn the
basics of C Programming Language

www.youtube.com/watch?v=3IQEunpmtRA

You have the direct link on your Moodle page

http://www.youtube.com/watch?v=3lQEunpmtRA

CLASS CONTENT

C LANGUAGE

C LANGUAGE SYNTAX
INPUTS AND OUTPUTS
BLINK LEDS
/-SEGMENT DISPLAY

mikroC

PRO tor PIC

C PROGRAM
STRUCTURE

cutable code and

/* Text between these signs is not compiled into exe-

represents a comment. */

// This sign is used for short comments
// within one program line

[}

/* Program name:

* Configuration:
MCU:
Oscillator:

Notes: - This
of PORTB pins

LED_demo

PIC16F887

HS, 08.0000 MHz
example demonstrates change
logic state v/

Comments —-—-—wuy

-- Function .--s ~----—. Comments -,

void main() {

TRISB = 0;

PORTB = 0b01010101;

!)

// All PORTB pins are configured as outputs
// Logic state of port B pins

Type of function

Function name
L

vbid main () {

Command; \\\————————-
Command; i

End of function

Start of function
No parameters in this function
End of command

COMMENTS

COMMENTS ARE PARTS OF THE PROGRAM
USED TO CLARIFY THE OPERATION
COMMENTS ARE IGNORED AND NOT
COMPILED INTO EXECUTABLE CODE BY THE
COMPILER

(/* */) DESIGNATES LONG COMMENTS
(//) DESIGNATES SHORT COMMENTS

DATA TYPES

Type Size (bits) Arithmetic Type
bit 1 unsigned integer
char 8 signed or unsigned integer
unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
short long 24 signed integer
unsigned short long 24 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 24 real
double 24 or 32 real

VARIABLES

ANY NUMBER CHANGING ITS VALUE DURING
PROGRAM OPERATION IS CALLED A VARIABLE.

E.G. if the program adds two numbers (numberl
and number?2), it is necessary to have a value to
represent what we in everyday life call the sum.
in this case numberl, number2 and sum are
variables.

VARIABLE DECLARATION

= EVERY VARIABLE MUST BE DECLARED PRIOR
TO BEING USED FOR THE FIRST TIME IN THE
PROGRAM.

= VARIABLES ARE STORED IN THE RAM
MEMORY.

E.G. Int gate 1 , // Declare name and type of variable gatel

VARIABLE DECLARATION

= VARIABLE NAMES CAN INCLUDE ANY OF THE
ALPHABETICAL CHARACTERS (A-Z), THE
DIGITS 0-9 AND THE UNDERSCORE
CHARACTER (“_").

= THE COMPILER IS CASE SENSITIVE AND

DIFFERENTIATES BETWEEN CAPITAL AND
SMALL LETTERS.

VARIABLE DECLARATION

= FUNCTIONS AND VARIABLES NAMES USUALLY
CONTAIN LOWER CASE CHARACTERS, WHILE
CONSTANT NAMES CONTAIN UPPERCASE
CHARACTERS.

VARIABLE DECLARATION

= VARIABLE NAMES MUST NOT START WITH A

DIGIT.

SOME OF THE NAMES CANNOT BE USED AS
VARIABLE NAMES AS ALREADY BEING USED
BY THE COMPILER ITSELF. SUCH NAMES ARE
CALLED THE KEY WORDS.

INTEGER CONSTANTS

A CONSTANT IS A NUMBER OR A CHARACTER HAVING
FIXED VALUE THAT CANNOT BE CHANGED DURING
PROGRAM EXECUTION

Radix Format Example
binary Obnumber or OBnumber 0b10011010
octal Onumber 0763
decimal number 129
hexadecimal Oxnumber or OXnumber Ox2F

const int MINIMUM = -100; // Declare constant
MINIMUN

ARITHMETIC OPERATORS

Operator Operation
+ Addition
- Subtraction

*

Multiplication

/ Division

% Reminder

ASSIGNMENT OPERATORS

Example
Operator , :

Expression | Equivalent
+= a+=38 a=a+3
= a-==8 a=a-38
= a’™=38 a=a*8
/= al/=8 a=al/8
%= a %=38 a=a%a8

INCREMENT AND DECREMENT OPERATORS

Operator | Example Description
++3
++ Variable "a" is incremented by 1
a++
--b | |
3 Variable "b" is decremented by 1

INCREMENT AND DECREMENT OPERATORS

e ++1i will increment the value of i, and then return the incremented value.

i=1;
j = ++:i.j
(1 is 2, J is 2)

e i++ will increment the value of i , but return the original value that i held before being
incremented.

i
]
(1 is 2, J is 1)

1;
it++;

RELATIONAL OPERATORS

Operator Meaning Example Truth condition
> is greater than b>a if b is greater than a
>= is greater than or equal to a>=>5 If a is greater than or equal to 5
< is less than a<b ifalslessthanb
<= is less than or equal to a<=b if a Is less than or equal to b
@ is equal to a== if a Is equal to 6
I= is not equal to al=b ifals notequaltob

LOGIC OPERATORS

Operator Logical AND Operator Logical OR
Operand1 | Operand2 | Result Operand1 | Operand2 | Result
0 0 0 0 0 0
&& 0 1 0 | 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1
Operator Logical NOT
Operand1 | Result

0

1

1

0

BITWISE OPERATORS

Operand Meaning Example Result
~ Bitwise complement =~b b=5 a=-
<< Shift left a=b<<2 | b=11110011 a=11001100
>> Shift right a=b>3 | b=11110011 a=00011110
L _ a= 11100011 _
& Bitwise AND c=ad&hb b = 11001100 c = 11000000
L _ a = 11100011 _
Bitwise OR c=alb b = 11001100 c=11101111
R L _ a = 11100011 _
Bitwise EXOR c=a’b b = 11001100 c =00101111

CONDITIONAL OPERATORS

A CONDITION IS A COMMON INGREDIENT OF THE
PROGRAM. WHEN MET, IT IS NECESSARY TO PERFORM
ONE OUT OF SEVERAL OPERATIONS. IN OTHER WORDS
'IF THE CONDITION IS MET (...), DO (...). OTHERWISE,

IF THE CONDITION IS NOT MET, DO (...)" .

CONDITIONAL OPERANDS IF-ELSE AND SWITCH
ARE USED IN CONDITIONAL OPERATIONS.

CONDITIONAL OPERATOR: IF-ELSE

if(expression)

if(expression) { operationl;
operationl; operation2; }

else else
operation?2; { operation3;

operation4; }

CONDITIONAL OPERATOR: SWITCH

switch (selector) { // Selector is of char or int type
case constantl:

operationl; // Group of operators are executed if
... // selector and constantl are equal

break;

case constant2:

operation2; // Group of operators are executed if
... // selector and constant2 are equal

break;

default:

expected_operation;// Group of operators are executed if no
... // constant is equal to selector

break;

PROGRAM LOOP

IT IS OFTEN NECESSARY TO REPEAT A CERTAIN
OPERATION FOR A COUPLE OF TIMES IN THE PROGRAM.

A SET OF COMMANDS BEING REPEATED IS CALLED THE
PROGRAM LOOQOP.

HOW MANY TIMES IT WILL BE EXECUTED, I.E. HOW
LONG THE PROGRAM WILL STAY IN THE LOOP,
DEPENDS ON THE CONDITIONS TO LEAVE THE LOOP.

WHILE LOOP

while(expression)

{

commands;

WHILE LOOP

THE COMMANDS ARE EXECUTED REPEATEDLY
(THE PROGRAM REMAINS IN THE LOOP) UNTIL
THE EXPRESSION BECOMES FALSE.

IF THE EXPRESSION IS FALSE ON ENTRY TO THE
LOOP, THEN THE LOOP WILL NOT BE EXECUTED
AND THE PROGRAM WILL PROCEED FROM THE

END OF THE WHILE LOOP.

ENDLESS LOOP

while(1)
{
... // Expressions enclosed within
// curly brackets will be
... // endlessly executed (endless

// loop).

FOR LOOP

fO I"(initial_expression; condition_expression; cha nge_expression)

{

operation;

FOR LOOP

fOr(k= 1, k< 5, K+ +) // Increase variable k 5 times (from 1 to 5)
{

Op€E ratiOn; // repeat expression operation every time

»

Operation is to be performed five times. After that, it
will be validated by checking that the expression k<5 is
false (after 5 iterations k=5) and the program will exit

the for loop.

DO-WHILE LOOP

do
{

operation;

+ while (check_condition);

DO-WHILE LOOP

a=_0; // Set initial value
do
{
a=a+1; // Operation in progress
by

while (a <= 10); // Check condition

MCU SYSTEMS

OPEN FEEDBACK SYSTEM

CLOSED-LOOP FEEDBACK SYSTEM

Output

Feedback

TURN LEDs ON AND OFF

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

R ERE RRKRE

PORTB = OxFF

void main()

{

»

TRISB = 0x00:
PORTB=0x00:
while(1)
{

PORTB=0xFF:

»

/-SEGMENT DISPLAY

SHOW NUMBER "0”

\ 4

void main() while(1)

{ {
TRISA = 0x00; PORTA=0xO0F;
TRISD = 0x00; PORTD=0x3F;
PORTA=0x00; >
PORTD=0x00; >

\ 4

MCU SYSTEM

INPUT PROCESS OUTPUT

/-SEGMENT

2 % DISPLAY

PusH BUTION | (et [§ §
PB6 - o

int mask(int num) {

switch (num)

{
case 0 : return Ox3F;
case 1 : return 0x06;
case 2 : return Ox5B;
case 3 : return Ox4F;
case 4 : return 0x66;
case 5 : return 0x6D;
case 6 : return 0x7D;
case 7 : return 0x07;
case 8 : return Ox7F;
case 9 : return Ox6F;

¥ //case end

’ $

$

void main()

{

int counterl;
TRISA = 0x00;
TRISB = OxFF;
TRISC = 0x00;
TRISD = 0x00;
PORTA=0x00;
PORTD=0x00;

counterl=0;

while(1)
{
PORTA=0x0F;
PORTD=mask(counterl);
Delay_ms(300);
if (PORTB.B7 == 1) // button_A: Increase Value
{
counterl++;
Delay_ms(100);

b
else if (PORTB.B6 == 1) // button_B: Decrease Value

{
counterl--;
Delay_ms(100);
b
if (counter1>9)
{ counter1=0;}
if (counter1<0)
{ counterl1=9;}

THANK YOU

Lecture 8

C LANGUAGE

= INPUTS AND OUTPUTS
= BLINK LEDS
= /-SEGMENT DISPLAY

MCU SYSTEMS

OPEN FEEDBACK SYSTEM

CLOSED-LOOP FEEDBACK SYSTEM

Output

Feedback

TURN LEDs ON AND OFF

PORTB

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

FRERE ER KRR

PORTB = OxFF

void main()

1
TRISB = 0x00;
PORTB=0x00;
while(1)
1

PORTB=0xFF;

y

y

/-SEGMENT DISPLAY

L L L L

SHOW NUMBER "0”

¥

void main() while(1)

{ {
TRISA = 0x00; PORTA=0xFF;
TRISD = 0x00; PORTD=0x3F;
PORTA=0x00; ¥
PORTD=0x00;)

¥

MCU SYSTEM

INPUT PROCESS OUTPUT

/-SEGMENT

& DISPLAY

PUSPHBB7UT_|'_I'ON ﬁmicmmntm“e'fﬁ—* B B B B
PB6 - o

int mask(int num) {
switch (num)

{

case 0 : return Ox3F;

case 1 : return 0x06;
case 2 : return Ox5B;

case 3 : return Ox4F;
case 4 : return 0x66;
case 5 : return 0x6D;
case 6 : return 0x7/D;
case 7/ : return 0x07;
case 8 : return Ox7F;
case 9 : return Ox6F;

} //case end

’ ¥

\ 4

void main()

{

int counterl;

TRISA = 0x00;
TRISB = OxFF;
TRISC = 0x00;
TRISD = 0x00;
PORTA=0;
PORTD=0;
counterl=0;

while(1)
{
PORTA=0xFF;
PORTD=mask(counterl);
Delay_ms(300);
if (PORTB.B7 == 1) // button_A: Increase Value
{
counterl++;
Delay_ms(100);

b
else if (PORTB.B6 == 1) // button_B: Decrease Value

{
counterl--;
Delay_ms(100);
b
if (counter1>9)
{ counter1=0;}
if (counter1<0)
{ counter1=9;}

THANK YOU

Lecture 9

C LANGUAGE

= Review 7-SEGMENT DISPLAY
= ANALOGUE TO DIGITAL CONVERTER

MCU SYSTEM

INPUT PROCESS OUTPUT

/-SEGMENT

& DISPLAY

PUSPHBE:JLUT:ON ﬁmicmmntm“e'fﬁ—* B B B B
PBO - o

int mask(int num) {

switch (num)

{
case 0 : return Ox3F;
case 1 : return 0x06;
case 2 : return Ox5B;
case 3 : return Ox4F;
case 4 : return 0x66;
case 5 : return 0x6D;
case 6 : return 0x7D;
case 7 : return 0x07;
case 8 : return Ox7F;
case 9 : return Ox6F;

} //case end

) \ 4

\ 4

void main()

{

int counterl;
TRISA = 0x00;
TRISB = OxFF;
TRISC = 0x00;
TRISD = 0x00;
PORTA=0;
PORTD=0;

counterl=0;

while(1)
{
PORTA=0xFF;
PORTD=mask(counterl);
Delay_ms(300);
if (PORTB.B1 == 0) // button_A: Increase Value
{
counterl++;
Delay_ms(100);

b
else if (PORTB.BO == 0) // button_B: Decrease Value

{
counterl--;
Delay_ms(100);
b
if (counter1>9)
{ counter1=0;}
if (counter1<0)
{ counter1=9;}

ANALOGUE TO DIGITAL
CONVERTER

ADC

= Analog-to-digital (ADC) converters are
among the most widely used devices for
data acquisition.

= Digital Computer use binary (discrete)
values, but in the physical world is analog
(continuous) values.

= Examples of physical quantities:
Temperature, Humidity, Pressure, Velocity

ADC

= A physical quantity is converted to
electrical (Voltage, Current) signals using

a device called transducer (also referred
as sensors).

= Sensors for temperature, velocity,

pressure, light etc. produce an output that
is voltage (or current).

ADC

= Microcontroller = read digital values only.

» Therefore, ADC converter is needed to

translate (convert) the analog signals to
digital numbers, so that the

microcontroller can read and process them

ADC RESOLUTION

= ADC has n-bit resolution, where n = 8, 10, 12, 16 or even 24 bits.

= The higher-resolution ADC provides a smaller step size, where
step size is the smallest change that can be discerned by an ADC.

= Can control the step size with the help of Vref.

n-bit No. of steps Step size (mV)
8 28 = 256 5/256 = 19.53
10 210=1024 5/1024 = 4.88
12 212 = 4096 5/4096 = 1.2
16 216 = 65,536 5/65,536 = 0.076

Assuming Vpegr =5V

* Step Size (Resolution): is the smallest change that can be discerned by an ADC

ADC RESOLUTION

10.00
8.75
7.50

6.25

Amplitude
(Volts) >-00

3.75
2.50

1.25

_ e 16-bit Resolution o

=== 3-bit Resolution

50 100 150

Time (ms)

ADC REFERENCE VOLTAGE (Vggr)

Vref is an input voltage used for the reference voltage.

The voltage connected to this pin, along with the resolution of
the ADC chip, dictate the step size.

In some applications, we need the differential reference
voltage where Vref = Vref(+) - Vref(-).

Vref(-) pin is connected to ground, Vref(+) pin is used as the
Vref.

Example: If we need the analog input to be 0 to 5V, V¢t iS
connected to 5V

ADC REFERENCE VOLTAGE (Vggr)

= For an 8-bit ADC, the step size is Vref/256.

= If Vref = 4V, the step size is 4 V/256 = 15.62 mV.
= If need a step size of 10 mV, then Vref = 256 x 10 mV = 2.56 V.

= For the 10-bit ADC, the step size is Vref/1024.
= If Vref = 5V, the step sizeis 5 V/1024 = 4.88 mV.

DIGITAL DATA OUTPUT

= Digital data output:
= 8-bit ADC: D0O-D7
= 10-bit ADC: D0O-D9
= To calculate output voltage:

Dout = Vin / Step Size

<\ ™~

Digital data output

(in decimal): Analog Input Resolution: the smallest change
_ Voltage 8-bit:Vref/256 OR
8-bit (DO-D7)= 256 10-bit: Vref/1024

10-bit (D0-D9) = 1024

DIGITAL DATA OUTPUT

Example:
Vies = 2.56, Vi, = 1.7 V.
Calculate the DO - D9 output?

Solution:

Step Size = 2.56/1024 = 2.5 mV
Dout = 1.7/2.5 mV = 680 (Decimal)
DO - DS = 1010101000

DIGITAL DATA OUTPUT

= Digital data output:
= 8-bit ADC: D0O-D7
= 10-bit ADC: D0O-D9
= To calculate output voltage:

Dout = Vin *MDout/ Vref

<V N N

Digital data output
(in decimal): Analog Input 8-bit: 255 5V for
Voltage 10-bit: 1023 PIC16F877A

8-bit (D0-D7)= 256
10-bit (D0-D9) = 1024

DIGITAL DATA OUTPUT

Example:
Vies = 2.56, Vi, = 1.7 V.
Calculate the DO - D9 output?

Solution:

Dout = 1.7%¥1023/2.56 = 679.36 ~ 680 (Decimal)
DO - D9 = 1010101000

ADC USING PIC16F877A

ADC USING PIC16F877A

There are only FOUR registers that you
need to understand to configure the ADC.
They are ADCONO, ADCON1, ADRESH and

ADRESL.

ADC USING PIC16F877A

= The two most important ones are ADCONO
and ADCONL1.

= ADRESH and ADRESL are just the registers

where the ADC stores the result of the
conversion.

ADCONO

RMW-0 RAV-0 RW-0 RW-0 RAW-0 RAW-0 U-0 RAW-0
ADCS1 ADCS0 CHS2 CHS1 CHS0 [GO/DONE — ADON
bit 7 bit 0

bit7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCONO bits in bold)

jfucc%gl <A03[5}$:gg?:su= Clock Conversion

] o0 Fosci2

i} 01 Foscia

i} 10 Fosci32

1} 11 Frec (clock derived from the internal A/D RC oscillator)
1 o0 Foscid

1 01 Fosci16

1 10 FosciBd

1 11 Frec (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHSO0: Analog Channel Select bits

000 = Channel 0 (AND)
001 = Channel 1 (ANT)
010 = Channel 2 (AN2)
011 = Channel 3 (AN3)
100 = Channel 4 (AN4)
101 = Channel 5 (ANS5)
110 = Channel & (ANG)
111 = Channel 7 (ANT)

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically
cleared by hardware when the A/D conversion is complete)
0 = A/D conversion not in progress

bit 1 Unimplemented: Read as ‘0’
bit 0 ADON: A/D On bit

1 = A/D converter module is powered up
0 = A/D converter module is shut-off and consumes no operating current

ADCONO: Conversion Clock Select

bit 7-5 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCOMOD bits in bold)

<ADCEDr | <ADCSTARCSH Clock Conversion

] oo Fosci2

] 01 Fosc/a

] 10 Fosc/3z

i 11 Frc (clock derived from the internal A/D RC oscillator)
1 0o Foscid

1 01 FoscMB

1 10 Foscibd

1 11 Frec (clock derived from the internal A/D RC oscillator)

The user has to select the correct clock
conversion. The period must be at least
more than 1.6us to obtain an accurate
conversion

ADCONO: Conversion Clock Select

For example, we use a 8MHz oscillator on
the PIC16F877A. So if we select Fosc/4,
that's 2MHz and the period is just 500ns and
it's far less than the 1.6us required.

What if we select Fosc/16? That will give us
0.5MHz and the period is 2us. That is more
than 1.6us so it can be selected

Thus, ADCONO is now 01xX XXXX

ADCONO: Analogue Channel Select

bit 5-3 CHS2:CHSO0: Analog Channel select bits

000 = Channel 0 (AND)
001 = Channel 1 (AN1)
010 = Channel 2 (AN2)
011 = Channel 3 (AN3)
100 = Channel 4 (AN4)
101 = Channel 5 (AN5)
110 = Channel 6 (ANG)
111 = Channel 7 (ANT)

The ADC can only have one input at a time
so the user must select which pin to use

ADCONO: Analogue Channel Select

Referring to the PIC16F877A pinout diagram:

] RAO/ANO «— [2
These are the available Analog RAT/ANT =— 0 3
RA2/AN2/VREF-/CVREF «—» [4

Cha N nEIS. RA3/AN3/VREF+ «— [5
RA5/AN4/§QOUT -7

REO/RD/AN5 «-—» [8

If we use Analog Channel O RE1WRIANG = O 9
(which is PAO), ADCONO will be e i b

set to 0100 Oxxx

ADCONO: ADC Initialization

bit 2 GO/DONE: A/D Conversion Status bit
When ADON = 1:
1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically
cleared by hardware when the A/D conversion is complete)
0 = AJ/D conversion not in progress
bit 1 Unimplemented: Read as ‘0
bit 0 ADON: A/D On bit
1 = A/D converter module is powered up
0 = A/D converter module is shut-off and consumes no operating current

We set all these bits to O because this is just
the initialization, the actual program has yet to
start (Later in the code we will individually set
these bits to enable ADC)

ADCONQO is set to be 0100 0000

ADCON

1

R/W-D R/W-D u-0 U-0 R/W-D RW-0 R/W-0 R/W-0
ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGOD
bit 7 bit 0

bit 7 ADFM: A/D Result Format Select bit

bit 6

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as ‘0.
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as ‘0’

ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

ADCON1 ADCONO L
<ADCS2> | <ADCS1:ADCS0> ClackComvacsion
0 00 Fosc/2
0 01 Fosc/8
0 10 Fosc/32
0 ol FRC (clock derived from the internal A/D RC oscillator)
1 00 Fosci/4
1 01 Fosc/16
1 10 Fosc/64
1 11 FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as ‘0’

ADCON1

RAW-0 RAW-0 U-0 U-0 RAW-0 RAW-0 RW-0 RW-0
ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGO
bit 7 bit 0

bit 30 PCFG3:PCFGO: A/D Port Configuration Control bits

PCFG

<3:05 | AN7 | ANG | ANS | AN4 | AN3 | AN2 | ANT | ANO | VREF+ | VRer- | CIR
ooco | A | A | A | A A A A | A | VoD | Vss | &0
ooo1 | A | A | A | A [vrer+| A A | A | an3 [vss [7
oo10 | D | D | D | A A A A | A | voo | Vss | 50
oo11 | D | D | D | A [vrert| A A | A | AN3 | vss | an
o100 | D | D| D | D A D A | A | voo | vss | a0
p101 | D | D | D | D [vrert| D A | A | AN3 | vss | 21
o11x | D | D | D | D D D D | D — — | o
1000 | A | A | A | A |VRer+|VrRer-| A | A | AN3 | AN2 | 62
w01 | D | D| A | A A A A | A | voo | vss | 60
1010 | D | D | A | A [vrert| A A | A | AN3 | vss | an
1011 | D | D | A | A [vrer+ |[vrer-| A | A | AN3 | aN2 | 42
1200 D | D| D | A [vrer+ |[vrer-| A | A | AN3 | aN2 | 32
1201 | D | D | D | D |VReF+ |VRer-| A | A | AN3 | AN2 | 22
1110 | D | D | D | D D D D [A | voo [vss | 10
1111 | D | D | D | D |[verer+ |[vrer- | D | A | AN3 | aN2 | 12

A= Analog input D = Digital /O

C/R = # of analog input channels/# of A/D voltage references

ADCON1: A/D Result Format Select

R/W-D R/W-D u-0 U-0 R/W-D RW-0 R/W-0 R/W-0
ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGOD
bit 7 bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as ‘0’
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as ‘0"

The ADFM bit determines how the result of the ADC is
justified. Since the ADC on the PIC16F877A has 10-bits
of resolution, logically a single register (that has 8
bits) is not enough to contain the 10-bits result.
Therefore, two registers are required to store the

results. ADRESH and ADRESL (H is the high byte while
L is the low byte).

ADCON1: A/D Result Format Select

FIGURE 11-4: A/D RESULT JUSTIFICATION
| 10-bit Result
ADFM = 1 ADFM =0
- A N - A ~
7 2107 0 7 0765 0
000000 | , 0000 00
Y - Y ’ b Y - Y
ADRESH ADRESL ADRESH ADRESL
10-bit Result 10-bit Result
Right Justified Left Justified
Two registers will allow us to store up to 16 bits, but

since there are only 10 bits, we have the flexibility to
align it right justified or left justified

ADCON1: A/D Result Format Select

If the application doesn’t need the 10-bit accuracy, 8
bits is more than enough. So we can just take the
result in ADRESH and ignore the remaining two least
significant bits in ADRESL (we cannot ignore the two
highest significant bit because that will cause the
result to be inaccurate). That makes it easier to move
values to other registers. Yes, the accuracy of the
result will be slightly affected but it’s not critical in
applications where we don’t need accuracy.

The value of ADCON1 is OxxX XXXX

ADCON1: Conversion Clock Select

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

ADCON1 ADCONO .
<ADCS2> | <ADCS1:ADCS0> Clock Conversion

0 (01 Foscl2

0 o1 Fosc/8

0 10 Fosci32

0 11 Frc (clock derived from the internal A/D RC oscillator)

1 o0 Fosc/d

1 01 Fasci16

1 10 Foscicd

1 11 Frec (clock derived from the intemal A/D RC oscillator)

Next is the ADCS2 bit. We agreed that Fosc/16 is
adequate, thus we selected it in ADCONO. But for
Fosc/16, we need to set the ADCS2 bit in ADCON1 as
well. The value of ADCON1 will be 01xx xxxX.

ADCON1: Port Configuration Control

bit 5-4 Unimplemented: Read as ‘0’
bit 3-0 PCFG3:PCFGO: A/D Port Configuration Control bits

zgz{f ANT | ANG | AN5 | AN4 | AN3 ANZ2 | AN1 | ANO | VREF+ | VREF- | C/R
o000 A A A A A A A A oD Vss 8/0
0001 A A i} A | VREF+ A A A AN3 Vss il
0010 D D D il A i) A A VoD Vss 5/0
0011 D D D A | VREF+ i} A A AN3 Vss 41
0100 D D D D A D A A VDD Vss 3/0
0101 D D D D VREF+ D A A AN3 Vss 211
011x D D D D D D D D — — 0/0
1000 A A A A | VREF+ | VREF- | A A AN3 | AN2 G/2
1001 D D A il A i) A A VoD Vss &/0
1010 D D A A | VREF+ i} A A AN3 Vss 51
1011 D D A A VREF+ | WREF- A A AN AMNZ 4/2
1100 D D D A VREF+ | WREF- A A AN3 ANZ 32
1101 D D D D | VREF+ | VREF- | A A AN3 | ANZ2 | 2/2
1110 D D D D D D D A VoD Vss 1/0
1111 D D D D | VREF+ | VREF- D A AMN3 | AN2 12

A = Analog input D = Digital /O
C/IR=#of analng iﬂpl,lt channelsf# of A/D voltage references

ADCON1: Port Configuration Control

The most important part of the ADC configuration is to
select the mode for each Analog channel. As shown
before, we have Analog Channels 0 to 7. All these
inputs can either be set to analog or digital. Referring
to the table above, if we don’t need any analog

inputs and require more digital pins (let’s say for a few
LCDs), we can set the PCFG3:0 bits to be 011x. But in
the case we do need the Analog inputs, we will set all
of them to be in analog mode.

Therefore, the final value for ADCON1 is 0100 0000

ADCON1: Port Configuration Control

One important thing to note is that we’ve selected Vdd
as the Vref+ and Vss as the Vref-, that means that our
conversion range is from 0OV to 5V. If we need it to be
other than that, we can set a custom Vref value by
choosing other configurations of PCFG3:0.

void ADC_initVal()

{
ADCON0=01000000;
ADCON1=01000000;

¥

void main()

{

unsigned int adc_Dout;
char txt[7];

TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)

{

“ N

ADCONO0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

void ADC_initVal()

{
ADCONO0=01000000;
ADCON1=01000000;

¥

void main()

{

unsigned int adc_Dout;
char txt[7];

TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)

{

“ N

ADCONO0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

void main()

{

unsigned int adc_Dout;

char txt[7];

TRISA = 0x01;

UART1_Init(9600);

Delay_ms(100);

while(1)

{ adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

THANK YOU

Lecture 10

C LANGUAGE

= Review and continue ANALOGUE TO
DIGITAL CONVERTER

ANALOGUE TO DIGITAL
CONVERTER

ADC

= Analog-to-digital (ADC) converters are
among the most widely used devices for
data acquisition.

= Digital Computer use binary (discrete)
values, but in the physical world is analog
(continuous) values.

= Examples of physical quantities:
Temperature, Humidity, Pressure, Velocity

ADC

= A physical quantity is converted to
electrical (Voltage, Current) signals using

a device called transducer (also referred
as sensors).

= Sensors for temperature, velocity,

pressure, light etc. produce an output that
is voltage (or current).

ADC

= Microcontroller = read digital values only.

» Therefore, ADC converter is needed to

translate (convert) the analog signals to
digital numbers, so that the

microcontroller can read and process them

ADC RESOLUTION

= ADC has n-bit resolution, where n = 8, 10, 12, 16 or even 24 bits.

= The higher-resolution ADC provides a smaller step size, where
step size is the smallest change that can be discerned by an ADC.

= (Can control the step size with the help of Vref.

n-bit No. of steps Step size (mV)
8 28 = 256 5/256 = 19.53
10 210=1024 5/1024 = 4.88
12 212 = 4096 5/4096 = 1.2
16 216 = 65,536 5/65,536 = 0.076

Assuming Vpegr =5V

* Step Size (Resolution): is the smallest change that can be discerned by an ADC

ADC RESOLUTION

10.00
8.75
7.50

6.25

Amplitude
(Volts) >-00

3.75
2.50

1.25

_ e 16-bit Resolution o

=== 3-bit Resolution

50 100 150

Time (ms)

ADC REFERENCE VOLTAGE (Vggr)

Vref is an input voltage used for the reference voltage.

The voltage connected to this pin, along with the resolution of
the ADC chip, dictate the step size.

In some applications, we need the differential reference
voltage where Vref = Vref(+) - Vref(-).

Vref(-) pin is connected to ground, Vref(+) pin is used as the
Vref.

Example: If we need the analog input to be 0 to 5V, V,¢ is
connected to 5V

ADC REFERENCE VOLTAGE (Vggr)

= For an 8-bit ADC, the step size is Vref/256.

= If Vref = 4V, the step size is 4 V/256 = 15.62 mV.
= If need a step size of 10 mV, then Vref = 256 x 10 mV = 2.56 V.

= For the 10-bit ADC, the step size is Vref/1024.
= If Vref = 5V, the step sizeis 5 V/1024 = 4.88 mV.

DIGITAL DATA OUTPUT

= Digital data output:
= 8-bit ADC: D0O-D7
= 10-bit ADC: D0O-D9
= To calculate output voltage:

Dout = Vin / Step Size

<\ ™~

Digital data output

(in decimal): Analog Input Resolution: the smallest change
_ Voltage 8-bit:Vref/256 OR
8-bit (DO-D7)= 256 10-bit: Vref/1024

10-bit (D0-D9) = 1024

DIGITAL DATA OUTPUT

Example:
Vies = 2.56, Vi, = 1.7 V.
Calculate the DO - D9 output?

Solution:

Step Size = 2.56/1024 = 2.5 mV
Dout = 1.7/2.5 mV = 680 (Decimal)
DO - DS = 1010101000

DIGITAL DATA OUTPUT

= Digital data output:
= 8-bit ADC: D0O-D7
= 10-bit ADC: D0O-D9
= To calculate output voltage:

Dout = Vin *MDout/ Vref

<V N N

Digital data output
(in decimal): Analog Input 8-bit: 255 5V for
Voltage 10-bit: 1023 PIC16F877A

8-bit (D0-D7)= 256
10-bit (D0-D9) = 1024

DIGITAL DATA OUTPUT

Example:
Vies = 2.56, Vi, = 1.7 V.
Calculate the DO - D9 output?

Solution:

Dout = 1.7%¥1023/2.56 = 679.36 ~ 680 (Decimal)
DO - D9 = 1010101000

ADC USING PIC16F877A

ADC USING PIC16F877A

There are only FOUR registers that you
need to understand to configure the ADC.
They are ADCONO, ADCON1, ADRESH and

ADRESL.

ADC USING PIC16F877A

= The two most important ones are ADCONO
and ADCONL1.

= ADRESH and ADRESL are just the registers

where the ADC stores the result of the
conversion.

ADCONO

RMW-0 RAV-0 RW-0 RW-0 RAW-0 RAW-0 U-0 RAW-0
ADCS1 ADCS0 CHS2 CHS1 CHS0 [GO/DONE — ADON
bit 7 bit 0

bit7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCONO bits in bold)

jfucc%gl <A03[5}$:gg?:su= Clock Conversion

] o0 Fosci2

i} 01 Foscia

i} 10 Fosci32

1} 11 Frec (clock derived from the internal A/D RC oscillator)
1 o0 Foscid

1 01 Fosci16

1 10 FosciBd

1 11 Frec (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHSO0: Analog Channel Select bits

000 = Channel 0 (AND)
001 = Channel 1 (ANT)
010 = Channel 2 (AN2)
011 = Channel 3 (AN3)
100 = Channel 4 (AN4)
101 = Channel 5 (ANS5)
110 = Channel & (ANG)
111 = Channel 7 (ANT)

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically
cleared by hardware when the A/D conversion is complete)
0 = A/D conversion not in progress

bit 1 Unimplemented: Read as ‘0’
bit 0 ADON: A/D On bit

1 = A/D converter module is powered up
0 = A/D converter module is shut-off and consumes no operating current

ADCONO: Conversion Clock Select

bit 7-5 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCOMOD bits in bold)

<ADCEDr | <ADCSTARCSH Clock Conversion

] oo Fosci2

] 01 Fosc/a

] 10 Fosc/3z

i 11 Frc (clock derived from the internal A/D RC oscillator)
1 0o Foscid

1 01 FoscMB

1 10 Foscibd

1 11 Frec (clock derived from the internal A/D RC oscillator)

The user has to select the correct clock
conversion. The period must be at least
more than 1.6us to obtain an accurate
conversion

ADCONQO: Conversion Clock Select

For example, we use a 8MHz oscillator on
the PIC16F877A. So if we select Fosc/4,
that's 2MHz and the period is just 500ns and
it's far less than the 1.6us required.

What if we select Fosc/16? That will give us
0.5MHz and the period is 2us. That is more
than 1.6us so it can be selected

Thus, ADCONO is now 01xX XXXX

ADCONO: Analogue Channel Select

bit 5-3 CHS2:CHSO0: Analog Channel select bits

000 = Channel 0 (AND)
001 = Channel 1 (AN1)
010 = Channel 2 (AN2)
011 = Channel 3 (AN3)
100 = Channel 4 (AN4)
101 = Channel 5 (AN5)
110 = Channel 6 (ANG)
111 = Channel 7 (ANT)

The ADC can only have one input at a time
so the user must select which pin to use

ADCONO: Analogue Channel Select

Referring to the PIC16F877A pinout diagram:

] RAO/ANO «— [2
These are the available Analog RAT/ANT =— 0 3
RA2/AN2/VREF-/CVREF «—» [4

Cha N nEIS. RA3/AN3/VREF+ «— [5
RA5/AN4/§QOUT -7

REO/RD/AN5 «-—» [8

If we use Analog Channel O RE1WRIANG = O 9
(which is PAO), ADCONO will be e i b

set to 0100 Oxxx

ADCONQO: ADC Initialization

bit 2 GO/DONE: A/D Conversion Status bit
When ADON = 1:
1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically
cleared by hardware when the A/D conversion is complete)
0 = AJ/D conversion not in progress
bit 1 Unimplemented: Read as ‘0
bit 0 ADON: A/D On bit
1 = A/D converter module is powered up
0 = A/D converter module is shut-off and consumes no operating current

We set all these bits to 0 because this is just
the initialization, the actual program has yet to
start (Later in the code we will individually set
these bits to enable ADC)

ADCONQO is set to be 0100 0000

ADCON

1

R/W-D R/W-D u-0 U-0 R/W-D RW-0 R/W-0 R/W-0
ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGOD
bit 7 bit 0

bit 7 ADFM: A/D Result Format Select bit

bit 6

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as ‘0.
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as ‘0’

ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

ADCON1 ADCONO L
<ADCS2> | <ADCS1:ADCS0> ClackComvacsion
0 00 Fosc/2
0 01 Fosc/8
0 10 Fosc/32
0 ol FRC (clock derived from the internal A/D RC oscillator)
1 00 Fosci/4
1 01 Fosc/16
1 10 Fosc/64
1 11 FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as ‘0’

ADCON1

RAW-0 RAW-0 U-0 U-0 RAW-0 RAW-0 RW-0 RW-0
ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGO
bit 7 bit 0

bit 30 PCFG3:PCFGO: A/D Port Configuration Control bits

PCFG

<3:05 | AN7 | ANG | ANS | AN4 | AN3 | AN2 | ANT | ANO | VREF+ | VRer- | CIR
ooco | A | A | A | A A A A | A | VoD | Vss | &0
ooo1 | A | A | A | A [vrer+| A A | A | an3 [vss [7
oo10 | D | D | D | A A A A | A | voo | Vss | 50
oo11 | D | D | D | A [vrert| A A | A | AN3 | vss | an
o100 | D | D| D | D A D A | A | voo | vss | a0
p101 | D | D | D | D [vrert| D A | A | AN3 | vss | 21
o11x | D | D | D | D D D D | D — — | o
1000 | A | A | A | A |VRer+|VrRer-| A | A | AN3 | AN2 | 62
w01 | D | D| A | A A A A | A | voo | vss | 60
1010 | D | D | A | A [vrert| A A | A | AN3 | vss | an
1011 | D | D | A | A [vrer+ |[vrer-| A | A | AN3 | aN2 | 42
1200 D | D| D | A [vrer+ |[vrer-| A | A | AN3 | aN2 | 32
1201 | D | D | D | D |VReF+ |VRer-| A | A | AN3 | AN2 | 22
1110 | D | D | D | D D D D [A | voo [vss | 10
1111 | D | D | D | D |[verer+ |[vrer- | D | A | AN3 | aN2 | 12

A= Analog input D = Digital /O

C/R = # of analog input channels/# of A/D voltage references

ADCON1: A/D Result Format Select

R/W-D R/W-D u-0 U-0 R/W-D RW-0 R/W-0 R/W-0
ADFM ADCS2 — — PCFG3 PCFG2 PCFG1 PCFGOD
bit 7 bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as ‘0’
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as ‘0"

The ADFM bit determines how the result of the ADC is
justified. Since the ADC on the PIC16F877A has 10-bits
of resolution, logically a single register (that has 8
bits) is not enough to contain the 10-bits result.
Therefore, two registers are required to store the

results. ADRESH and ADRESL (H is the high byte while
L is the low byte).

ADCON1: A/D Result Format Select

FIGURE 11-4: A/D RESULT JUSTIFICATION
| 10-bit Result
ADFM = 1 ADFM =0
- A N - A ~
7 2107 0 7 0765 0
000000 | , 0000 00
Y - Y ’ b Y - Y
ADRESH ADRESL ADRESH ADRESL
10-bit Result 10-bit Result
Right Justified Left Justified
Two registers will allow us to store up to 16 bits, but

since there are only 10 bits, we have the flexibility to
align it right justified or left justified

ADCON1: A/D Result Format Select

If the application doesn’t need the 10-bit accuracy, 8
bits is more than enough. So we can just take the
result in ADRESH and ignore the remaining two least
significant bits in ADRESL (we cannot ignore the two
highest significant bit because that will cause the
result to be inaccurate). That makes it easier to move
values to other registers. Yes, the accuracy of the
result will be slightly affected but it’s not critical in
applications where we don’t need accuracy.

The value of ADCON1 is OxxX XXXX

ADCON1: Conversion Clock Select

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

ADCON1 ADCONO .
<ADCS2> | <ADCS1:ADCS0> Clock Conversion

0 (01 Foscl2

0 o1 Fosc/8

0 10 Fosci32

0 11 Frc (clock derived from the internal A/D RC oscillator)

1 o0 Fosc/d

1 01 Fasci16

1 10 Foscicd

1 11 Frec (clock derived from the intemal A/D RC oscillator)

Next is the ADCS2 bit. We agreed that Fosc/16 is
adequate, thus we selected it in ADCONO. But for
Fosc/16, we need to set the ADCS2 bit in ADCON1 as
well. The value of ADCON1 will be 01xx xXxxX.

ADCON1: Port Configuration Control

bit 5-4 Unimplemented: Read as ‘0’
bit 3-0 PCFG3:PCFGO: A/D Port Configuration Control bits

zgz{f ANT | ANG | AN5 | AN4 | AN3 ANZ2 | AN1 | ANO | VREF+ | VREF- | C/R
o000 A A A A A A A A oD Vss 8/0
0001 A A i} A | VREF+ A A A AN3 Vss il
0010 D D D il A i) A A VoD Vss 5/0
0011 D D D A | VREF+ i} A A AN3 Vss 41
0100 D D D D A D A A VDD Vss 3/0
0101 D D D D VREF+ D A A AN3 Vss 211
011x D D D D D D D D — — 0/0
1000 A A A A | VREF+ | VREF- | A A AN3 | AN2 G/2
1001 D D A il A i) A A VoD Vss &/0
1010 D D A A | VREF+ i} A A AN3 Vss 51
1011 D D A A VREF+ | WREF- A A AN AMNZ 4/2
1100 D D D A VREF+ | WREF- A A AN3 ANZ 32
1101 D D D D | VREF+ | VREF- | A A AN3 | ANZ2 | 2/2
1110 D D D D D D D A VoD Vss 1/0
1111 D D D D | VREF+ | VREF- D A AMN3 | AN2 12

A = Analog input D = Digital /O
C/IR=#of analng iﬂpl,lt channelsf# of A/D voltage references

ADCON1: Port Configuration Control

The most important part of the ADC configuration is to
select the mode for each Analog channel. As shown
before, we have Analog Channels 0 to 7. All these
inputs can either be set to analog or digital. Referring
to the table above, if we don’t need any analog

inputs and require more digital pins (let’s say for a few
LCDs), we can set the PCFG3:0 bits to be 011x. But in
the case we do need the Analog inputs, we will set all
of them to be in analog mode.

Therefore, the final value for ADCON1 is 0100 0000

ADCON1: Port Configuration Control

One important thing to note is that we've selected Vdd
as the Vref+ and Vss as the Vref-, that means that our
conversion range is from 0V to 5V. If we need it to be
other than that, we can set a custom Vref value by
choosing other configurations of PCFG3:0.

void ADC_initVal()

{
ADCONO0=01000000;
ADCON1=01000000;

¥

void main()

{

unsigned int adc_Dout;
char txt[7];

TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)

{

“ N

ADCONO0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

void ADC_initVal()

{
ADCONO0=01000000;
ADCON1=01000000;

¥

void main()

{

unsigned int adc_Dout;
char txt[7];

TRISA = 0x01;
ADC_initVal();
UART1_Init(9600);
Delay_ms(100);

while(1)

{

“ N

ADCONO0=01000001;
adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

10 // Main function where the program execution begins
11+ void main() {

12 // Declare a variable to store ADC output

13 unsigned int adc_Dout;

14

15 /! Array to store the ADC output as a string

// Function to initialize ADC settings char txt[7];

- vold ADC initVal() {
// Set ADC control registers
// ADCONO: ADC enabled and set up;

1 5

2 7

3 3 // Configure TRISA register for ADC input
4 3

5 // ADCON1: Configure ADC conversion clock?) TRISA = 0x01;
6 1

7 2

8 3

// (setting RAO as analog input)

ADCONO = 0x40; // 01000000 in binary
ADCON1 = 0x40; // 01000000 in binary // Initialize ADC settings

ADC_initVal();

+
24
25 // Initialize UART communication with a baud rate of 9600
26 UART1_Init(9600);
27
28 // Delay to allow UART to initialize properly

29 Delay ms(100);

31 // Start an infinite loop

32~ while(1) {

33 // Start ADC conversion at channel 0
34 ADCONO = 0x41; // 01000001 in binary
35

36 // Read ADC value from channel 0

37 adc_Dout = ADC Read(0);

38

39 // Delay to allow ADC conversion to complete
40 Delay_ms(200);

41

42 // Convert integer ADC value to string
43 IntToStr(adc Dout, txt);

44

45 // Send ADC value over UART

46 UART1 Write Text("ADC:");

47 UART1 Write Text(txt);

48 UART1_Write(13); // Carrliage Return

49 UART1 Write(10); // Line Feed

50 }

51}

void main()

{

unsigned int adc_Dout;

char txt[7];

TRISA = 0x01;

UART1_Init(9600);

Delay_ms(100);

while(1)

{ adc_Dout = ADC_Read(0);
Delay_ms(200);
IntToStr(adc_Dout, txt);
UART1_Write_Text("ADC:");
UART1_Write_Text(txt);
UART1_Write(13);
UART1_Write(10);

THANK YOU

Lecture 11

C LANGUAGE

= SERIAL Communication

SERIAL COMMUNICATION

SERIAL COMMUNICATION

The UART (Universal Asynchronous
Receiver Transmitter) is the universal
communication component located within
the PIC and can be used as transmitter or
as receiver

PARALLEL COMMUNICATION

We want to transmit 8 bits: 11001100

C]

—
—
—

a8
[o]
a
N e
a
[o]
[]

SERIAL COMMUNICATION

We want to transmit 8 bits: 11001100

SYNCHRONOUS DATA TRANSFER

The information is sent from the transmitter
in sequence, bit after bit, with fixed baud
rate, carried by a common clock frequency

SYNCHRONOUS DATA TRANSFER
>

Data is sampled at either

rising or falling edge of
C clock pulses /

Clock Pulses

Clock Line

Data Line

ASYNCHRONOUS DATA TRANSFER

The information is divided into frames, and
each frame has a "Start” bit and a “"Stop” bit.
The “Start” bit marks the beginning of a new

frame, the “"Stop” bit marks the end.
Frames of information are not necessarily
transmitted at equal time space, since they
are independent of the clock.

ASYNCHRONOUS DATA TRANSFER

Idle Stop Bit
Then Idle

H L}l 1}y0}1)y0 O0}J1j0 L| H

Data Line
8 Bit Data
11010010

Start Bit Parity Bit
Always LOW For this set of data,
even parity is LOW

DATA TRANSFER OPERATION MODES

simplex

half - duplex

—
—

full - duplex

FUNCTIONS

type FuncName()
{

// function code - some logic

1. When you see a function first read the description — do you
need it?
2. Then you need to check what the function returns. (void
doesn't return anything)
. What is the name of the function?
. Does it have any arguments? If it does make sure to provide
literals/constants/variables of the same type.

S W

Delay_ms

Prototype void Delay ms (const unsigned long time in ms);

Returns MNothing.

Description Creates a software delay in duration of time in ms milliseconds (a3 constant). Range of applicable
constants depends on the oscillator frequency.

This is an "“inline” routine; code is generated in the place of the call, so the call doesn't count
against the nested call limit. This routine generates nested loops using registers k13, R12, R11 and
R10. The number of used registers varies from 0 to 4, depending on requested time in ms.

Requires Mothing.

Example Delay ma(1000); /% One second pause #/

UARTx_Init

Prototype void URRTx Init(const unsigned long kaud rate);

Returns Mothing.

Description Configures and initializes the UART module.
The internal UART module module is set to:

receiver enabled
transmitter enabled
frame size 8 bits

1 STOP bit

parity mode disabled
asynchronous operation

Parameters :
m baud rate: requested baud rate

Refer to the device data sheet for baud rates allowed for specific Fosc,

I:III MNote :

s Calculation of the UART baud rate value is carried out by the compiler, as it would
produce a relatively large code if performed on the library level.
Therefore, compiler needs to know the value of the parameter in the compile time.
That is why this parameter needs to be a constant, and not a variable.

. (% mikroC PRO for PIC Help

1]
ey

&
Badls)

rpik_rju‘E Support mikroE Forum

Contents | Index | Search | Favortes|

(£ The Preprocessor
(=423 mikroC PRO for PIC Libraries
(=13 Hardware Libraries

=] ADC Library

CAN Library

CANSPI Library

Compact Fash Library
EEPROM Library

[£] Epson S1D13700 Graphic Led
Ethemet PIC18FocJ60 Library
Flash Memory Library
Graphic Led Library

12C Library

12C Remappable Library
Keypad Library

Led Library

Manchester Code Library
Memory Manager Library
Mutti Media Card Library
OneWire Library

Peripheral Pin Select Library
Port Expander Library

PS/2 Library

PWM Library

PWM Remappable Library
RS-485 Library

Software 12C Library
Software SPI Library
Software UART Library
Sound Library

SPI Library

SP| Ethemet Library

SP| Ethemet ENC24J600 Libre
SP| Graphic Led Library

SPI Led Library

SPI Led8 Library

SPI T6963C Graphic Led Libra
SP| Remappable Library
STMPE610 Library

T6963C Graphic Led Library
TFT Display Library

TFT 16bit Display Library
Touch Panel Library
Touch Panel TFT Library

<

fc UART Library
a mikroC PRO for PIC Libraries > Hardware Libraries >
-
UARTx_Data_Ready
Prototype char UARTx Data Ready():
Returns
= 1 if data is ready for reading |
= 0 if there is no data in the receive register ‘
Description Use the function to test if data in receive buffer is ready for reading. ™
Requires MCU with the UART module.
The UART module must be initialized before using this routine. See the UARTx_Init routine.
Example // If data i1s ready, read it:
if (UART1 Data_Ready() == 1) {
receive = UART1 Read():
}
UARTx_Tx_ldle
Prototype char UARTx Tx Idle():;
= Returns
= 1 if the data has been transmitted
= 0 otherwise
Description Use the function to test if the transmit shift register is empty or not.
H Requires UART HW module must be initialized and communication established before using this function. See
UARTx_Init.
0 | " LIS

UARTx_Data_Ready

Prototype char UARTx Data Ready():

Returns
m 1 if data is ready for reading
m 0 if there is no data in the receive register

Description Use the function to test if data in recerve buffer is ready for reading.

Requires MCU with the UART module.

The UART module must be initialized before using this routine. See the UARTx_Init routine.

Example A4 If data 15 ready, read 1t:
if (UART]1 Data Beady({) == 1) |
receive = URRT1 Read():

1

UART Read

Prototype char UART Read();

Returns Returns the received byte.

Description Function receives a byte via UART. Use the function UART_Data_Ready to test if data is ready first.

Requires UART HW module must be initialized and communication established before using this function. See UARTx_Init.

Example // If dats 1s ready, read it:
if (UART Data_Ready() == 1) {
receive = UART Read():

}

UART_Write

Prototype void U.’—:R:_Wri:e (char da:a_} y

Returns Nothing.

Description The function transmits a byte via the UART module.

This is a generic routine which uses the active UART module previously activated by the UART_Set_Active routine.

Parameters :

» data: data to be sent

Requires UART HW module must be initialized and communication established before using this function. See UARTx_Init.

Example unsigned char _data = 0x1E;

URRT Write(_data):

UARTx_Read_Text

Prototype

Returns

Description

Requires

Example

void URRTx Read Text (char *Cutput, char *Delimiter, char Attempts);
Nothing.
Reads characters received via UART until the delimiter sequence is detected. The read sequence is

stored in the parameter cutpur; delimiter sequence is stored in the parameter delimiter.

This is a blocking call: the delimiter sequence is expected, otherwise the procedure exits (if the
delimiter is not found).

Parameters :

m Cutput: received text

m Delimiter: sequence of characters that identifies the end of a received string

= Lttempts: defines number of received characters in which Delimiter sequence is expected.
If Attempts is set to 255, this routine will continuously try to detect the Delimiter
sequence.

UART HW module must be initialized and communication established before using this function. See
UARTx_Init.
Read text until the sequence "OK" is received, and send back what's been received:

TURART1_Imit (4800); S 1nitislize UARTI1 module
Delay ms(100);

while (1) [
if (UART1_Data_Ready() == 1) { f/ if data 15 received
TART1 Read Text{output, "OK", 10): Sf reads text until 'OK' 1s found
TURRT1_Write_Text {output): S/ sends back text
}

UARTx_Write_Text

Prototype void UARTx Write Text(char * UART text):

Returns Nothing.

Description Sends text via UART. Text should be zero terminated.

Parameters :

» UZRT_text: text to be sent

Requires UART HW module must be initialized and communication established before using this function. See UARTx_Init.
Example Read text until the sequence "OK" is received, and send back what's been received:
UARTL Init{4800); // initizlize UART! module

Delay ms(100);

while (1) {
if (UART1 Data Ready() == 1) { [/ 1if dats is received
UART1 Read_Text(output, "CK", 10); /[reads text until '
UARTL Write Text (output); // sends back text

C Language: strcmp function
(String Compare)

In the C Programming Language, the stremp function returns a negative, zero, or positive integer depending
whether the object pointed to by s7 is less than, equal to, or greater than the object pointed to by s2.

Syntax

The syntax for the strcmp function in the C Language is:

I int strcmp(const char *sl1, const char *s2);

Parameters or Arguments

s7
An array to compare.

s2
An array to compare.

Returns

The strcmp function returns an integer. The return values are as follows:

Return Value Explanation

(8] s7 and s2 are equal
Negative integer The stopping character in s7 was less than the stopping character in s2

Positive integer The stopping character in s7 was greater than the stopping character in s2

Required Header

In the C Language. the required header for the strcmp function is:

I #include <string.h>

IntToStr

Prototype void IntToStr(int input, char *output):;

Description Converts input signed integer number to a string. The output string has fixed width of 7
characters including null character at the end (string termination). The output string is right
justified and the remaining positions on the left (if any) are filled with blanks.

Parameters
m input: signed integer number to be converted
m cutput: destination string
Returns MNothing.
Requires Destination string should be at least 7 characters in length.
Example int j = -4220;
char txt[7];
IntToStr{j, txt); S/ LtxL 15 " -£220" (one blank hkere)

Notes Mone.

FloatToStr

Prototype unsigned char FloatToStr (float frnum, unsigned char *str);

Description Converts a floating point number to a string.

The output string is left justified and null terminated after the last digit.

Parameters
» fnum: floating point number to be converted
= str: destinabion string
Returns
s 3 if input number is NaM
» 2 if input number is -INF
= 1 if input number is +INF
» 0 if conversion was successful
Requires Destination string should be at least 14 characters in length.
Example float £f1 = -374.2;

float ££2 = 123.456789;
float ££f3 = 0.000001234;
char txt[l15]:

FlocatTocStr{ffl, txt); // Etxkt 1s "-374.2"
FloatTeStr(f£2, tat); J/ txt is "123.45&7"
FlocatToStr{ff3, txt); // txt 1s "1.234e-g"

Notes Given floating point number will be truncated to 7 most significant digits before conversion.

void main()

{

char uart_rd;
UART1_Init(9600); // Initialize UART module at 9600 bps
Delay_ms(100); // Wait for UART module to stabilize

UART1_Write_Text("Start");

UART1_Write(13);

UART1_Write(10);

while (1) // Endless loop

{ If (UART1_Data_Ready()) // If data is received,

{
uart_rd = UART1_Read(); // read the received data,

UART1_Write(uart_rd); // and send data via UART
b

1

// Main function where the

2 // program execution begins
3~ void main() {

// Declare a variable to store
// the received UART data
char uart _rd;

// Initialize UART1 communication
// with a baud rate of 9600
UART1 Init(9600):

// Wait for 100 milliseconds to allow
// the UART to initialize properly
Delay ms(100);

// Send the text "Start" followed by
// a carriage return and line feed
UART1 Write Text("Start");
UART1_Write(13); // Carriage Return
UART1 Write(10); // Line Feed

22
23~
24
25~

// Start an infinite loop
while (1) {
// Check if data is avalilable to be read from UART1
if (UART1_Data_Ready()) {
// Read the received data into the uart_rd variable
uart_rd = UART1 Read();

// Echo the received data back over UART1
UART1 Write(uart_rd);

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 . 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 c 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 % 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 8 26 & 70 46 r 102 66 f
7 7 [BELL] 9 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 20) 73 49 | 105 69 i
10 A [LINE FEED] 42 2A * 74 A) 106 6A
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C : 76 4C L 108 6C |
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 60 m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F 0 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 o0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 u 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 & 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 B8 58 s 120 78 x
25 19 [END OF MEDIUM] 57 38 9 89 50 Y 121 79 y
26 1A [SUBSTITUTE] 58 34 90 5A z 122 TA 2
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C = 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50] 125 0}
30 1E [RECORD SEPARATOR] 62 3E > 94 SE - 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F - 127 7F [DEL]

THANK YOU

CLASS 10

C LANGUAGE

= REVIEW
= INTERRUPTS
= TIMERS AND COUNTERS

REVIEW

SERIAL COMMUNICATION

REMOTE CONTROL: ON/OFF LED

INPUT |w

Wl PAO
I PA1
ON / OFF

X

MCU

(©,

WIRELESS

RX » OUTPUT
MCU

void main() {
TRISA=0XOF ;
UART1_Init(9600);
Delay ms(100);
while(1) {
if(PORTA.BO==1) {
UART1_Write(Ox01); }
else if(PORTA.Bl==1) {
UART1 Write(Ox02); }

X

MCU

void main() {
char data rx;
TRISC=0x00;
UART1 Init(9600); Delay ms(100);
while(1) {
if (UART1 Data Ready()==1) {
data_rx=UART1 Read();
if(data _rx==0x01) {
PORTC.BO=1; }
else if(data_rx==0x02) {
PORTC.BO=0; } }

bl

RX

MCU

1~ void main() {

2 // Set the lower half of PORTA as input

3 TRISA = 0x0F;

4 // Initialize UART communication with a baud rate of 9600
5 UART1_Init(9600);

6 // Delay for allowing UART to initialize properly
7 Delay_ms(100);

8 // Start an infinite loop

9~ while(1) {

10 // Check if bit 0 of PORTA (PORTA.B0O) is high
11~ iT(PORTA.BO == 1) {

12 // Send 0x01 over UART

13 UART1_Write(0x01);

14 }

15 // Check if bit 1 of PORTA (PORTA.B1) is high
16~ else 1f(PORTA.B1 == 1) {

17 // Send 0x02 over UART

18 UART1_Write(0x02):

19 +

20 +

21 1

1~ void main() {

00~ O U R W

11~
12
13~
14
15
16
17
18~
19
20
21
22~
23
24
25
26
27

// Variable to store received data
char data_rx;
// Set PORTC as output (0x00 = all bits as output)
TRISC = 0x00;
// Initialize UART communication with a baud rate of 9600
UART1 Init(9600);
// Delay for allowing UART to initialize properly
Delay_ms(100);
// Start an infinite loop
while(1) {
// Check if data is available to read from UART
1T (UART1_Data_Ready() == 1) {
// Read the received data
data_rx = UART1 _Read():

// Check the received data

if(data_rx == 0x01) {
// Set bit 0 of PORTC (PORTC.BO) high
PORTC.BO = 1;

}

else if(data rx == 0x02) {
// Set bit 0 of PORTC (PORTC.BO) low
PORTC.BO = 0;

ANALOGUE TO DIGITAL
CONVERTER

Microcontrollers are capable of detecting
binary signals: is the button pressed or not?

THESE ARE DIGITAL SIGNALS

ADC

= Analog-to-digital (ADC) converters are
among the most widely used devices for
data acquisition.

= Digital Computer use binary (discrete)
values, but in the physical world is analog
(continuous) values.

= Examples of physical quantities:
Temperature, Humidity, Pressure, Velocity

ADC

= A physical quantity is converted to
electrical (Voltage, Current) signals using

a device called transducer (also referred
as sensors).

= Sensors for temperature, velocity,

pressure, light etc. produce an output that
is voltage (or current).

ADC

= Microcontroller - read digital values only.

= Therefore, an ADC converter is needed to

translate (convert) the analog signals to
digital numbers, so that the

microcontroller can read and process them

CALCULATE THE DOUT

VREF=5 V.

VIN=3 V.
RESOLUTION=10 Bits.
DOUT="?

CALCULATE THE DOUT

VREF=5V - MDOUT=1023
VIN=3V - DOUT=?

DOUT= (VIN* MDOUT)/REF
DOUT= (3*1023)/5

DOUT= 613.8 - 614

VREF=5 V.
VIN=3 V.
RES=10 Bits.
DOUT="?

TEMPERATURE MONITOR

A Temperature Sensor is connected to the PIC16F877A
ADC Channel 0. The ADC has a Reference Voltage of 5V
and a 10-Bit resolution. When the Temperature Sensor
measures 100 °C the DOUT is equal to the MAX DOUT
for 10-Bit resolution.

When the temperature is higher than 40 °C an LED
should be turned ON to indicate that is too hot to go
outside. Otherwise it should remain OFF. The LED is
connected to PDO.

TEMPERATURE MONITOR

INPUT

»

PIC16F877A

i B

ADC CHANNEL O

»

OUTPUT

o

LED
PDO

CALCULATE THE DOUT FOR 40 °C

VREF=5V -> MDOUT=1023
TEMP_IN=100 °C - DOUT=1023
TEMP_IN=40 °C - DOUT="

DOUT= (40%1023)/100
DOUT= 409.2 > 409

void main() {

int temp rd;

TRISA=0X01;

TRISD.BO=0; PORTD.B9=0;

while(1l) {
temp _rd = ADC Read(9);
if(temp rd>409)
{PORTD.BO=1;}
else
{PORTD.B0=0;}

™

1~ void main() {

Co ~ O U B WM

11~
12
13
14
15
16~
17
18
19
20~
21
22
23
24
75

1

// Declare a variable to store the analog signal reading
int temp_rd;
// Configure PORTA as input (bit 0 of PORTA is set as an input)
TRISA = 0x01;
// Configure bit 0 of PORTD as an output
TRISD.BO = 0;
// Initialize PORTD.BO to low (0)
PORTD.BO = 0;
// Start an infinite loop
while(1) {
// Read the analog signal from channel 0 using ADC
temp_rd = ADC_Read(0);

// Check 1f the analog reading is greater than 409
if(temp_rd > 409) {
// If the reading is greater than 409, set PORTD.BO to high (1)

PORTD.BO = 1;

+

else {
// If the reading is not greater than 409, set PORTD.BO to low (0)
PORTD.BO = 0O;

+

CLASS CONTENT

C LANGUAGE

= INTERRUPTS
= TIMERS AND COUNTERS

INTERRUPTS

INTERRUPTS

MICROCONTROLLERS ARE USED TO
PERFORM A SET OF PROGRAMMED TASKS
WHICH GENERATE THE NECESSARY
OUTPUTS BASED ON THE INPUTS

INTERRUPTS

BUT, WHILE THE MCU IS BUSY WITH
EXECUTING ONE SEGMENT OF CODE
THERE MIGHT BE AN EMERGENCY
SITUATION WHERE ANOTHER SEGMENT
OF CODE NEEDS IMMEDIATE ATTENTION

INTERRUPTS

THIS OTHER SEGMENT OF CODE THAT
NEEDS IMMEDIATE ATTENTION SHOULD
BE TREATED AS AN INTERRUPT, AND IT
SERVES A SPECIAL TASK KNOWN AS
INTERRUPT SERVICE ROUTINE (ISR) OR
INTERRUPT HANDLER

INTERRUPTS

E.G. LET'S IMAGINE THAT YOU ARE
PLAYING YOUR FAVORITE GAME ON YOUR
PHONE AND THE MCU INSIDE YOUR
PHONE IS BUSY THROWING ALL THE
GRAPHICS THAT ARE NEEDED FOR YOU
TO ENJOY THE GAME.
»

INTERRUPTS

SUDDENLY YOUR MOTHER CALLS TO YOUR
NUMBER. THE WORST THING THAT COULD
HAPPEN IS THAT YOUR MOBILE'S MCU
NEGLECTS YOUR MOM'’S CALL SINCE YOU
ARE BUSY PLAYING A GAME. TO PREVENT
THIS FROM HAPPENING WE USE
® SOMETHING CALLED INTERRUPTS.

INTERRUPTS

THESE INTERRUPTS WILL ALWAYS BE
ACTIVE LISTENING FOR SOME PARTICULAR
ACTIONS TO HAPPEN AND WHEN THEY
OCCUR, A SEGMENT OF CODE WILL BE
EXECUTED AND THEN THE PROGRAM WILL
RETURN TO THE MAIN ROUTINE

INTERRUPTS

"EXTERNAL INTERRUPTS
(HARDWARE INTERRUPTS)

s INTERNAL INTERRUPTS
(SOFTWARE INTERRUPTS)

EXTERNAL INTERRUPTS

GENERATED BY EXTERNAL HARDWARE
AT CERTAIN PINS OF THE MCU

THESE INTERRUPTIONS CAN GE
TRIGGERED BY THE USER

INTERNAL INTERRUPTS

« GENERATED BY A SEGMENT OF CODE

INTERRUPTS IN PIC16F877A

EXTERNAL

TIMER O

TIMER 1

RB PORT CHANGE

PARALLEL SLAVE PORT READ/WRITE
A/D CONVERTER

USART RECEIVE

INTERRUPTS IN PIC16F877A

USART TRANSMIT

SYNCHRONOUS SERIAL PORT
CCP1 (CAPTURE, COMPARE, PWM)
CCP2 (CAPTURE, COMPARE, PWM)
TMR2 TO PR2 MATCH
COMPARATOR

EEPROM WRITE OPERATION

BUS COLLISION

INTERRUPTS IN PIC16F877A

THE 5 REGISTERS THAT USED TO CONTROL THE
OPERATION OF INTERRUPTS IN PIC 16F877A
MICROCONTROLLER :

= INTCON
= PIE1
= PIR1
= PIE2
= PIR2

EXTERNAL INTERRUPT
EXAMPLE

INTCON REGISTER

INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x
GIE PEIE TMROIE INTE RBIE TMROIF INTF RBIF
bit 7 bit 0

INTCON Register is a readable and writeable
register which contains various enable and flag
bits for External and Internal Interrupts.

INTCON REGISTER

= GIE - Global Interrupt Enable
1 - Enables all unmasked interrupts
O - Disables all interrupts

= PEIE - Peripheral Interrupt Enable
1 — Enables all unmasked peripheral interrupts
O - Disables all peripheral interrupts

INTCON REGISTER

= TMROIE - Timer 0 Overflow Interrupt Enable
1 — Enables the TMRO interrupt
O - Disables the TMRO interrupt

= INTE - RBO/INT External Interrupt Enable
1 - Enables the RBO/INT external interrupt
O — Disables the RBO/INT external interrupt

INTCON REGISTER

= RBIE - RB Port Change Interrupt Enable
1 — Enables the RB port change interrupt
0 — Disables the RB port change interrupt

= TMROIF - Timer 0 Overflow Interrupt Flag
1 - TMRO register has overflowed. It must be

cleared in software.
0 — TMRO register did not overflow

INTCON REGISTER

= INTF - RBO/INT External Interrupt Flag
1 — The RBO/INT external interrupt occurred.
It must be cleared in software.
O — The RBO/INT external interrupt did not
occur

INTCON REGISTER

RBIF — RB Port Change Interrupt Flag

1 — At least one of the RB7 — RB4 pins
changed state, a mismatch condition will
continue to set the bit. Reading PORTB wiill
end the mismatch condition and allow the bit
to be cleared. It must be cleared in software.
O — None of the RB7 — RB4 pins have changed
state

INTCON REGISTER

= INTEDG bit of OPTION_REG Register is
the Interrupt Edge Select bit. When it is
1 interrupt is on rising edge of RBO/INT
pin and when it is O interrupt is on
falling edge of RBO/INT pin.

EXAMPLE

A PUSH BUTTON SWITCH IS CONNECTED TO
THE EXTERNAL INTERRUPT PIN INT OF THE
PIC MICROCONTROLLER.

WHEN THIS BUTTON IS PRESSED, THE
MICROCONTROLLER IS INTERRUPTED AND
THE ISR IS EXECUTED. THE ISR TOGGLES
THE STATUS OF PORTC FOR 1 SECOND.

EXAMPLE - MIKROC CODE

INTERRUPTS CAN BE EASILY HANDLED BY
USING RESERVED WORD “INTERRUPT".
MIKROC PRO FOR PIC MICROCONTROLLERS
IMPLICITLY DECLARES A FUNCTION
"INTERRUPT” TO HANDLE INTERRUPTS
WHICH CANNOT BE REDECLARED

void main()

{

¥

TRISD = 0x00; // To configure PORTD as output port
OPTION _REG.INTEDG = 1; //set Rising Edge Trigger for INT
INTCON.GIE = 1; // Enable The Global Interrupt
INTCON.INTE = 1; // Enable INT

while(1)

{

PORTD = Ox00; //Set some value at PORTD

¥

»

void interrupt() // ISR
{
INTCON.INTF=0; // Clear the interrupt 0 flag
PORTD=~PORTD; // Invert (Toggle) the value at PORTD
Delay ms(1000); // Delay for 1 sec

¥

while(1)
PD/7 PD6 PD5 PD4 PD3 PD2 PD1 PDO
O 0000000
void interrupt()
PD7 PD6 PD5 PD4 PD3 PD2 PD1 PDO

PD/ PD6 PD5 PD4 PD3 PD2 PD1 PDO

1 sec

1 void main()

27 {

3 TRISD = 0x00; // Configure all pins of PORTD as outputs

4 OPTION_REG.INTEDG = 1; // Set Rising Edge Trigger for INT (external interrupt)

5 INTCON.GIE = 1; // Enable global interrupts

6 INTCON. INTE = 1; // Enable external interrupt

7 while(1)

8~ {

9 PORTD = 0x00; // Clear all bits on PORTD (initialize to 0)
1?) Infinite loop where it clears (sets to 0) all bits on PORTD.
12 wvoid interrupt()

13- {

14 INTCON. INTF = 0; // Clear the external interrupt flag

15 PORTD = ~PORTD; // Toggle the state of all bits on PORTD
16 Delay ms(1000); // Delay for 1000 milliseconds (1 second)

17 1}

TIMERS AND COUNTERS

TIMERS AND COUNTERS

MANY TIMES, WE PLAN AND BUILD
SYSTEMS THAT PERFORM VARIOUS
PROCESSES THAT DEPEND ON TIME

TIMERS AND COUNTERS

SIMPLE EXAMPLE OF THIS PROCESS IS
THE DIGITAL WRISTWATCH. THE ROLE OF
THIS ELECTRONIC SYSTEM IS TO DISPLAY

TIME IN A VERY PRECISE MANNER AND

CHANGE THE DISPLAY EVERY SECOND

(FOR SECONDS), EVERY MINUTE (FOR

MINUTES) AND SO ON.

TIMERS AND COUNTERS

TO PERFORM THE STEPS WE'VE LISTED,
THE SYSTEM MUST USE A TIMER, WHICH
NEEDS TO BE VERY ACCURATE IN ORDER
TO TAKE NECESSARY ACTIONS.THE CLOCK
IS ACTUALLY A CORE OF ANY ELECTRONIC
SYSTEM.

TIMERS AND COUNTERS

PIC MICROCONTROLLERS ARE EQUIPPED
WITH ONE OR MORE PRECISION TIMING
SYSTEMS KNOWN AS TIMERS.

TIMERS AND COUNTERS

TIMERS CAN BE USED TO PERFORM A
VARIETY OF TIME PRECISION FUNCTIONS,
SUCH AS GENERATING EVENTS AT
SPECIFIC TIMES, MEASURING THE
DURATION OF AN EVENT, KEEPING DATE
AND TIME RECORD, COUNTING EVENTS,
ETC.

TIMERS AND COUNTERS

THE MICROCONTROLLER PIC16F877 HAS 3
DIFFERENT TIMERS:

PIC TIMERO
PIC TIMER1
PIC TIMERZ2

TIMERS AND COUNTERS

THE TIMERO MODULE TIMER/COUNTER HAS THE
FOLLOWING FEATURES:

8-BIT TIMER/COUNTER

READABLE AND WRITABLE

8-BIT SOFTWARE PROGRAMMABLE PRESCALER
INTERNAL (4 MHZ) OR EXTERNAL CLOCK SELECT
INTERRUPT ON OVERFLOW FROM OxFF TO 0x00
EDGE SELECT (RISING OR FALLING) FOR EXTERNAL
CLOCK

TIMERS AND COUNTERS

TIMERO HAS A REGISTER CALLED TMRO
REGISTER, WHICH IS 8 BITS OF SIZE.

WE CAN WRITE THE DESIRED VALUE INTO
THE REGISTER WHICH WILL BE INCREMENT
AS THE PROGRAM PROGRESSES. FREQUENCY
VARIES DEPENDING ON THE PRESCALER.
MAXIMUM VALUE THAT CAN BE ASSIGNED TO
THIS REGISTER IS 255.

TIMERS AND COUNTERS

TMROIF - TMRO Overflow Interrupt Flag bit.

The TMRO interrupt is generated when the TMRO
register overflows from OxFF to O0x00. This overflow
sets bit TMROIF (INTCON<2>). You can initialize the
value of this register to what ever you want (not
necessarily "0").

We can read the value of the register TMRO and write
into. We can reset its value at any given moment

(write) or we can check if there is a certain numeric
value that we need (read).

TIMERS AND COUNTERS

WE CAN USE THESE TIMERS FOR VARIOUS
IMPORTANT PURPOSES. WE MAINLY USED
"DELAY PROCEDURES” TO IMPLEMENT
SOME DELAY IN THE PROGRAM, THAT WAS
COUNTING UP TO A SPECIFIC VALUE,
BEFORE THE PROGRAM COULD BE
CONTINUED

THANK YOU

	Slide 1: WELCOME TO CLASS!
	Slide 2: let’s introduce ourselves
	Slide 3: what is a “Microprocessor”?
	Slide 4: CLASS 1
	Slide 5: what is a microprocessor?
	Slide 6: What is a microprocessor?
	Slide 7: MPU ARCHITECTURE
	Slide 8: INTEL 8085 MPU ARCHITECTURE
	Slide 9
	Slide 10
	Slide 11: HISTORY
	Slide 12: 1946
	Slide 13: HISTORY
	Slide 14: INTEL 4004
	Slide 15
	Slide 16: 2019
	Slide 17: Intel Core i9-9900KS Processor 18 Billion Transistors
	Slide 18
	Slide 19: microprocessor vs CPU
	Slide 20
	Slide 21: microprocessor vs CPU
	Slide 22: MPU vs MCU
	Slide 23: what is a microcontroller?
	Slide 24
	Slide 25: what is a microcontroller?
	Slide 26
	Slide 27: MICROCONTROLLERS CONTROL CIRCUITS
	Slide 28
	Slide 29
	Slide 30: IN-EAR PULSE BIODATA ACQUISITION
	Slide 31: PASSWORD BASED DOOR LOCK SYSTEM
	Slide 32: ENGINE CONTROL UNIT
	Slide 33: ARCHITECTURE OF A MICROCONTROLLER
	Slide 34: in order to work, MCUs need:
	Slide 35: in order to work, MCUs need:
	Slide 36: in order to work, MCUs need:
	Slide 37: DIGITAL COMPONENTS
	Slide 38
	Slide 39: BOOLEAN LOGIC
	Slide 40: BASIC ELECTRONIC COMPONENTS
	Slide 41: DATA REPRESENTATION
	Slide 42: binary to decimal
	Slide 43: binary to decimal
	Slide 44: binary to decimal
	Slide 45: binary to decimal
	Slide 46: binary to decimal
	Slide 47: binary system units
	Slide 48: Today, as micro-controller or microprocessor systems become increasingly larger, the individual binary digits (bits) are now grouped together into 8’s to form a single BYTE
	Slide 49: file system units
	Slide 50: BINARY TO DECIMAL SUMMARY
	Slide 51: hexadecimal to decimal
	Slide 52: THANK YOU
	Slide 1: CLASS 2
	Slide 2: CLASS 1 REVIEW
	Slide 3: what is a “Microprocessor”?
	Slide 4: what is a microprocessor?
	Slide 5: MPU vs MCU
	Slide 6: what is a microcontroller?
	Slide 7
	Slide 8
	Slide 9: in order to work, MCUs need:
	Slide 10: DIGITAL COMPONENTS
	Slide 11: DATA REPRESENTATION
	Slide 12: binary to decimal
	Slide 13: binary to decimal
	Slide 14: binary to decimal
	Slide 15: CLASS 2
	Slide 16: what is a “Assembly Language”?
	Slide 17
	Slide 18
	Slide 19: ADDING AND SUBSTRACTING
	Slide 20: A
	Slide 21
	Slide 22
	Slide 23: A
	Slide 24
	Slide 25
	Slide 26: REGISTERS AND OPERATIONS
	Slide 27: STATUS
	Slide 28: TRISD is in BANK 1
	Slide 29: BANK SELECTION
	Slide 30: BANK SELECTION
	Slide 31: TRISD is in BANK 1
	Slide 32: W REGISTER
	Slide 33: MOVLW
	Slide 34: MOVWF
	Slide 35: TRIS AND PORT REGISTERS
	Slide 36: TRIS
	Slide 37: PORT
	Slide 38: PORTB
	Slide 39: PORTB
	Slide 40: PORTB
	Slide 41: TRISB
	Slide 42: TRISx
	Slide 43: PORTB.0 = 1
	Slide 44: TRISx
	Slide 45: TRISx
	Slide 46
	Slide 47: TURN LEDs ON AND OFF
	Slide 48: PORTB
	Slide 49
	Slide 50: PORTB
	Slide 51
	Slide 52
	Slide 53
	Slide 54: THANK YOU
	Slide 1: CLASS 3
	Slide 2: CLASS 3
	Slide 3: what is a “Assembly Language”?
	Slide 4
	Slide 5
	Slide 6: ADDING AND SUBSTRACTING
	Slide 7: A
	Slide 8
	Slide 9: A - B
	Slide 10
	Slide 11: REGISTERS AND OPERATIONS
	Slide 12: STATUS
	Slide 13: TRISD is in BANK 1
	Slide 14: TRISD is in BANK 1
	Slide 15: STATUS
	Slide 16: STATUS, 5
	Slide 17: TRISD is in BANK 1
	Slide 18: BANK SELECTION
	Slide 19: BANK SELECTION
	Slide 20: BANK SELECTION
	Slide 21: W REGISTER
	Slide 22: MOVLW
	Slide 23: MOVWF
	Slide 24: TRIS AND PORT REGISTERS
	Slide 25: TRIS
	Slide 26: TRIS
	Slide 27: PORT
	Slide 28: PORTB
	Slide 29: PORTB
	Slide 30: PORTB
	Slide 31: TRISB
	Slide 32: TRISx
	Slide 33: PORTB.0 = 1
	Slide 34: TRISx
	Slide 35: TRISx
	Slide 36
	Slide 37: TURN LEDs ON AND OFF
	Slide 38: PORTB
	Slide 39
	Slide 40: PORTB
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 1: CLASS 4
	Slide 2: CLASS 3 REVIEW
	Slide 3: PORTB
	Slide 4: TURN LEDs ON AND OFF
	Slide 5: PORTB
	Slide 6
	Slide 7: PORTB
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: CLASS 4
	Slide 18: TURN LEDS ON AND OFF
	Slide 19
	Slide 20
	Slide 21: 7-SEGMENT DISPLAY
	Slide 22
	Slide 23: 7-SEGMENT DISPLAY
	Slide 24: 7-SEGMENT DISPLAY
	Slide 25: 7-SEGMENT DISPLAY
	Slide 26
	Slide 27: 7-SEGMENT DISPLAY
	Slide 28
	Slide 29: 7-SEGMENT DISPLAY
	Slide 30: 7-SEGMENT DISPLAY
	Slide 31: 7-SEGMENT DISPLAY
	Slide 32: 7-SEGMENT DISPLAY
	Slide 33: CENTRAL PROCESSING UNIT
	Slide 34: CPU
	Slide 35: INTEL PENTIUM
	Slide 36: CENTRAL PROCESSING UNIT
	Slide 37: WHAT DOES THE CPU DO?
	Slide 38: WHAT DOES THE CPU DO?
	Slide 39: WHAT DOES THE CPU DO?
	Slide 40
	Slide 41
	Slide 42: INTEL 4004
	Slide 43
	Slide 44: 2019
	Slide 45: Intel Core i9-9900KS Processor 18 Billion Transistors
	Slide 46
	Slide 47: COMPONENTS OF THE CPU
	Slide 48: COMPONENTS OF THE CPU
	Slide 49: COMPONENTS OF THE CPU
	Slide 50: MACHINE CYCLE
	Slide 51: CONTROL UNIT
	Slide 52: CONTROL UNIT
	Slide 53: ARITHMETIC LOGIC UNIT
	Slide 54: HOW FAST DOES A CPU TRANSFER DATA?
	Slide 55: CPU TRANSFER DATA SPEED
	Slide 56: CPU TRANSFER DATA SPEED
	Slide 57
	Slide 58: CPU CLOCK SPEED
	Slide 59: CPU CORES
	Slide 60: MPU ARCHITECTURE
	Slide 61
	Slide 62
	Slide 1: CLASS 5
	Slide 2: Quiz review
	Slide 3
	Slide 4: CLASS – WEEK 4
	Slide 5: IF STATEMENT
	Slide 6: IF STATEMENT
	Slide 7: IF STATEMENT
	Slide 8: IF STATEMENT
	Slide 9: IF STATEMENT
	Slide 10: IF STATEMENT IN ASSEMBLY
	Slide 11
	Slide 12: BTFSC (Bit Test File Skip if Clear)
	Slide 13
	Slide 14: MCU SYSTEM
	Slide 15
	Slide 16
	Slide 17: MCU SYSTEM
	Slide 18: IF STATEMENT IN ASSEMBLY
	Slide 19
	Slide 20: MCU SYSTEM
	Slide 21: IF STATEMENT IN ASSEMBLY
	Slide 22
	Slide 1: CLASS 6
	Slide 2: CLASS 5 REVIEW
	Slide 3: 7-SEGMENT DISPLAY
	Slide 4
	Slide 5: 7-SEGMENT DISPLAY
	Slide 6: 7-SEGMENT DISPLAY
	Slide 7: CLASS – WEEK 6
	Slide 8: IF STATEMENT
	Slide 9: IF STATEMENT
	Slide 10: IF STATEMENT
	Slide 11: IF STATEMENT
	Slide 12: IF STATEMENT
	Slide 13: IF STATEMENT IN ASSEMBLY
	Slide 14
	Slide 15
	Slide 16: BTFSS (Bit Test File Skip if Set)
	Slide 17: MCU SYSTEM
	Slide 18
	Slide 19
	Slide 20: MCU SYSTEM
	Slide 21: IF STATEMENT IN ASSEMBLY
	Slide 22
	Slide 23: MCU SYSTEM
	Slide 24: IF STATEMENT IN ASSEMBLY
	Slide 25: MCU SYSTEM
	Slide 26: IF STATEMENT IN ASSEMBLY
	Slide 27: MCU SYSTEM
	Slide 28: IF STATEMENT IN ASSEMBLY
	Slide 29: CLASS 6
	Slide 30: Instruction Descriptions
	Slide 31: Instruction Descriptions
	Slide 32
	Slide 33: EX1: Calculate the delay created by the below code segment if oscillator of 4 MHz. (Assume the number 5 is loaded into Counter)
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: CLASS 6
	Slide 39: MCU SYSTEM
	Slide 40: PSEUDOCODE
	Slide 41: FLOWCHAR T
	Slide 42: FLOWCHAR T
	Slide 43
	Slide 44: MCU SYSTEM
	Slide 45: FLOWCHAR T
	Slide 46
	Slide 47: MCU SYSTEM
	Slide 48: FLOWCHAR T
	Slide 49
	Slide 50
	Slide 1
	Slide 2: CLASS CONTENT
	Slide 3
	Slide 4: C PROGRAM STRUCTURE
	Slide 5: COMMENTS
	Slide 6: DATA TYPES
	Slide 7: VARIABLES
	Slide 8: VARIABLE DECLARATION
	Slide 9: VARIABLE DECLARATION
	Slide 10: VARIABLE DECLARATION
	Slide 11: VARIABLE DECLARATION
	Slide 12: INTEGER CONSTANTS
	Slide 13: ARITHMETIC OPERATORS
	Slide 14: ASSIGNMENT OPERATORS
	Slide 15: INCREMENT AND DECREMENT OPERATORS
	Slide 16: INCREMENT AND DECREMENT OPERATORS
	Slide 17: RELATIONAL OPERATORS
	Slide 18: LOGIC OPERATORS
	Slide 19: BITWISE OPERATORS
	Slide 20: CONDITIONAL OPERATORS
	Slide 21: CONDITIONAL OPERATOR: IF-ELSE
	Slide 22: CONDITIONAL OPERATOR: SWITCH
	Slide 23: PROGRAM LOOP
	Slide 24: WHILE LOOP
	Slide 25: WHILE LOOP
	Slide 26: ENDLESS LOOP
	Slide 27: FOR LOOP
	Slide 28: FOR LOOP
	Slide 29: DO-WHILE LOOP
	Slide 30: DO-WHILE LOOP
	Slide 31: MCU SYSTEMS
	Slide 32: TURN LEDs ON AND OFF
	Slide 33
	Slide 34: PORTB = 0xFF
	Slide 35: 7-SEGMENT DISPLAY
	Slide 36
	Slide 37: MCU SYSTEM
	Slide 38
	Slide 39
	Slide 40: while(1) {
	Slide 41: THANK YOU
	Slide 1: Lecture 8
	Slide 2: MCU SYSTEMS
	Slide 3: TURN LEDs ON AND OFF
	Slide 4
	Slide 5: PORTB = 0xFF
	Slide 6: 7-SEGMENT DISPLAY
	Slide 7
	Slide 8: MCU SYSTEM
	Slide 9
	Slide 10
	Slide 11: while(1) {
	Slide 12
	Slide 1: Lecture 9
	Slide 2: MCU SYSTEM
	Slide 3: int mask(int num) { switch (num) {
	Slide 4: void main() {
	Slide 5: while(1) {
	Slide 6: ANALOGUE TO DIGITAL CONVERTER
	Slide 7: ADC
	Slide 8: ADC
	Slide 9: ADC
	Slide 10: ADC RESOLUTION
	Slide 11: ADC RESOLUTION
	Slide 12: ADC REFERENCE VOLTAGE (VREF)
	Slide 13: ADC REFERENCE VOLTAGE (VREF)
	Slide 14: DIGITAL DATA OUTPUT
	Slide 15: DIGITAL DATA OUTPUT
	Slide 16: DIGITAL DATA OUTPUT
	Slide 17: DIGITAL DATA OUTPUT
	Slide 18: ADC USING PIC16F877A
	Slide 19: ADC USING PIC16F877A
	Slide 20: ADC USING PIC16F877A
	Slide 21: ADCON0
	Slide 22: ADCON0: Conversion Clock Select
	Slide 23: ADCON0: Conversion Clock Select
	Slide 24: ADCON0: Analogue Channel Select
	Slide 25: ADCON0: Analogue Channel Select
	Slide 26: ADCON0: ADC Initialization
	Slide 27: ADCON1
	Slide 28: ADCON1
	Slide 29: ADCON1: A/D Result Format Select
	Slide 30: ADCON1: A/D Result Format Select
	Slide 31: ADCON1: A/D Result Format Select
	Slide 32: ADCON1: Conversion Clock Select
	Slide 33: ADCON1: Port Configuration Control
	Slide 34: ADCON1: Port Configuration Control
	Slide 35: ADCON1: Port Configuration Control
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 1: Lecture 10
	Slide 2: ANALOGUE TO DIGITAL CONVERTER
	Slide 3: ADC
	Slide 4: ADC
	Slide 5: ADC
	Slide 6: ADC RESOLUTION
	Slide 7: ADC RESOLUTION
	Slide 8: ADC REFERENCE VOLTAGE (VREF)
	Slide 9: ADC REFERENCE VOLTAGE (VREF)
	Slide 10: DIGITAL DATA OUTPUT
	Slide 11: DIGITAL DATA OUTPUT
	Slide 12: DIGITAL DATA OUTPUT
	Slide 13: DIGITAL DATA OUTPUT
	Slide 14: ADC USING PIC16F877A
	Slide 15: ADC USING PIC16F877A
	Slide 16: ADC USING PIC16F877A
	Slide 17: ADCON0
	Slide 18: ADCON0: Conversion Clock Select
	Slide 19: ADCON0: Conversion Clock Select
	Slide 20: ADCON0: Analogue Channel Select
	Slide 21: ADCON0: Analogue Channel Select
	Slide 22: ADCON0: ADC Initialization
	Slide 23: ADCON1
	Slide 24: ADCON1
	Slide 25: ADCON1: A/D Result Format Select
	Slide 26: ADCON1: A/D Result Format Select
	Slide 27: ADCON1: A/D Result Format Select
	Slide 28: ADCON1: Conversion Clock Select
	Slide 29: ADCON1: Port Configuration Control
	Slide 30: ADCON1: Port Configuration Control
	Slide 31: ADCON1: Port Configuration Control
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 1: Lecture 11
	Slide 2: SERIAL COMMUNICATION
	Slide 3: SERIAL COMMUNICATION
	Slide 4: PARALLEL COMMUNICATION
	Slide 5: SERIAL COMMUNICATION
	Slide 6: SYNCHRONOUS DATA TRANSFER
	Slide 7: SYNCHRONOUS DATA TRANSFER
	Slide 8: ASYNCHRONOUS DATA TRANSFER
	Slide 9: ASYNCHRONOUS DATA TRANSFER
	Slide 10: DATA TRANSFER OPERATION MODES
	Slide 11: FUNCTIONS
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 1: CLASS 10
	Slide 2: REVIEW
	Slide 3: SERIAL COMMUNICATION
	Slide 4
	Slide 5: void main() { TRISA=0x0F; UART1_Init(9600);
	Slide 6: void main() { char data_rx; TRISC=0x00;
	Slide 7
	Slide 8
	Slide 9: ANALOGUE TO DIGITAL CONVERTER
	Slide 10: Microcontrollers are capable of detecting binary signals: is the button pressed or not?
	Slide 11: ADC
	Slide 12: ADC
	Slide 13: ADC
	Slide 14: CALCULATE THE DOUT
	Slide 15: CALCULATE THE DOUT
	Slide 16: TEMPERATURE MONITOR
	Slide 17: TEMPERATURE MONITOR
	Slide 18: CALCULATE THE DOUT FOR 40 ºC
	Slide 19: void main() { int temp_rd; TRISA=0X01;
	Slide 20
	Slide 21: CLASS CONTENT
	Slide 22: INTERRUPTS
	Slide 23: INTERRUPTS
	Slide 24: INTERRUPTS
	Slide 25: INTERRUPTS
	Slide 26: INTERRUPTS
	Slide 27: INTERRUPTS
	Slide 28: INTERRUPTS
	Slide 29: INTERRUPTS
	Slide 30: EXTERNAL INTERRUPTS
	Slide 31: INTERNAL INTERRUPTS
	Slide 32: INTERRUPTS IN PIC16F877A
	Slide 33: INTERRUPTS IN PIC16F877A
	Slide 34: INTERRUPTS IN PIC16F877A
	Slide 35: EXTERNAL INTERRUPT EXAMPLE
	Slide 36: INTCON REGISTER
	Slide 37: INTCON REGISTER
	Slide 38: INTCON REGISTER
	Slide 39: INTCON REGISTER
	Slide 40: INTCON REGISTER
	Slide 41: INTCON REGISTER
	Slide 42: INTCON REGISTER
	Slide 43: EXAMPLE
	Slide 44: EXAMPLE – MIKROC CODE
	Slide 45: void main() {
	Slide 46: void interrupt() {
	Slide 47: while(1)
	Slide 48
	Slide 49: TIMERS AND COUNTERS
	Slide 50
	Slide 51: TIMERS AND COUNTERS
	Slide 52: TIMERS AND COUNTERS
	Slide 53
	Slide 54: TIMERS AND COUNTERS
	Slide 55: TIMERS AND COUNTERS
	Slide 56: TIMERS AND COUNTERS
	Slide 57: TIMERS AND COUNTERS
	Slide 58: TIMERS AND COUNTERS
	Slide 59: TIMERS AND COUNTERS
	Slide 60

