

INTERNET

PROTOCOLS
PROGRAMMING

2025

IFORMATION
TECHNOLOGY

1

Chapter 1

Basics of Networking

Introduction

The term ‘‘computer network’’ to mean a collection of autonomous computers

interconnected by a single technology.

Two computers are said to be interconnected if they are able to exchange

information. The connection need not be via a copper wire; fiber optics, microwaves,

infrared, and communication satellites can also be used.

Networks come in many sizes, shapes and forms. They are usually connected

together to make larger networks, with the Internet being the most well-known

example of a network of networks

Networking enables communication and information sharing of any kind.

It is a process of connecting two or more devices to allow them to exchange

information. A collection of such interconnected devices is called a network.

There are a lot of networks that we can observe in our physical world: airline or

powerline networks or cities interconnected with one another via highways are some

good examples.

In much the same way, there are numerous networks in information technology;

the most prominent and well-known of which is the internet, the global network of

networks that connects myriad devices .

Uses of Computer Networks

Among all of the essentials for human existence, the need to interact with others

ranks just below our need to sustain life.

Communication is almost as important to us as our reliance on air, water, food, and

shelter.

The methods that we use to share ideas and information are constantly changing and

evolving.

Whereas the human network was once limited to face-to-face conversations, media

breakthroughs continue to extend the reach of our communications.

2

 From the printing press to television, each new development has improved and

enhanced our communication. As with every advance in communication technology,

the creation and interconnection of robust data networks is having a profound effect.

Early data networks were limited to exchanging character-based information

between connected computer systems. Current networks have evolved to

Definition Network

A network is a set of devices (often referred to as nodes) connected by

communication links.

A node can be a computer, printer, or any other device capable of sending and/or

receiving data generated by other nodes on the network.

Most networks use distributed processing, in which a task is divided among

multiple computers. Instead of one single large machine being responsible for all

aspects of a process, separate computers (usually a personal computer or

workstation) handle a subset.

The Elements of Computer Network

The Figure 1.1 shows elements of a typical network, including devices, medium,

rules, and messages.

Networking is a very graphically oriented subject, and icons are commonly used to

represent networking devices. There are many of common networking devices that

are used to networking as shown in Figure 1.2.

Figure 1-1. The main components of computer network.

3

Types of networks

The internet contains many more networks, which differ by scale or other

properties, within itself: for example, local area networks (LANs), which typically

link computers located in close proximity to one another. Machines in companies

or other institutions (banks, universities, etc.) or even your home devices

connected to a router comprise such a network.

There are also bigger or smaller types of networks like PANs (personal area

network) which can simply be your smartphone connected to a laptop via

Bluetooth, MANs (metropolitan area network), which can interconnect devices in

Figure 1-2. Common Networking Symbols

4

the entire city, and WANs (wide area network), which can cover entire countries or

the whole world. And yes, the biggest WAN network is the internet itself.

It goes without saying that computer networks can be very complex and consist of

many elements. One of the most basic and crucial primitives is a communication

protocol.

How Internet Works?

The Internet is the world’s most fascinating invention to date. The journey started

back in 1969 as a part of a research program and by the time of the ’90s, it

became a sensation among everyone. Today, if you’re reading this, you should be

thankful for the Internet. But have you ever thought about How Simple Internet

Works?

• There are mainly two components present by which the Internet works e.g.

Packets and Protocols.

• Ethernet, IP, HTTP, TCP, and UDP comprise the basic infrastructure of the

Internet.

• There are only five simple steps involved in the Working Principle of

Internet.

• Along with 3G/4G/5G, the DSL and Dial-up are other important Connecting

Modes.

• There are mainly three protocols involved in the Internet Working Method

e.g. TCP, HTTP, and FTP.

• Switches and Routers, the Physical Infrastructure are the main pillars of the

Internet

What Are The Components of the Internet?

• Generally, two main components uphold the functionality of the Internet,

they are:

1. Packets

2. Protocols

In networking, the data that is being transmitted through the internet is sent via

small segments/chunks which are later translated into bits, and the packets get

5

routed to their endpoint (destination) through different networking devices i.e.

routers or switches.

 Later, once the packet arrives at the receiver’s end, that small chunks of data get

reassembled to utilize or check the data that he/she requested. That’s why they are

used to push ease in networking and large data can be easily sent by sending small

units and this whole process of sending/receiving small bits is known as Packet

Switching.

An Example to Understand the Complete Concept:

• Let’s say a user wants to load an image from the internet so the moment the

user clicks over the image, the whole image will not open in one go. A small

amount of data will start going from the server and will reach the endpoint

(user) and the moment all data reaches the user’s system, the image will open

on the user’s end.

• Those small packets are being sent via wires, radio waves, etc. of the internet

and once they complete their fetching, the user will be able to view the whole

image. Theoretically, a packet may consist of 1000-1500 bytes depending

upon the structure and connection.

What is the Basic Infrastructure of the Internet?

• On the other end, do you know what a challenging task could be? Connecting

two computers with the help of any communication method. To solve the

connection issue, protocols were introduced. It is a standardized method of

performing certain tasks and data formatting so that two or more devices can

communicate with each other.

Protocols :-

• A network protocol is a set of established rules that specify how to format,

send and receive data so that computer network endpoints, including

computers, servers, routers and virtual machines, can communicate despite

differences in their underlying infrastructures, designs or standards.

• To successfully send and receive information, devices on both sides of a

communication exchange must accept and follow protocol conventions.

In networking, support for protocols can be built into the software, hardware

or both.

6

• Without network protocols, computers and other devices would not know how

to engage with each other. As a result, except for specialty networks built

around a specific architecture, few networks would be able to function, and

the internet as we know it wouldn't exist. Virtually all network end users rely

on network protocols for connectivity.

How network protocols work: The OSI model

• Network protocols break larger processes into discrete, narrowly defined

functions and tasks across every level of the network. In the standard model,

known as the Open Systems Interconnection (OSI) model, one or more

network protocols govern activities at each layer in the telecommunication

exchange.

• Lower layers deal with data transport, while the upper layers in the OSI model

deal with software and applications.

• Network protocols break larger processes into discrete, narrowly defined

functions and tasks across every level of the network. In the standard model,

known as the Open Systems Interconnection (OSI) model, one or more

network protocols govern activities at each layer in the telecommunication

exchange.

• Lower layers deal with data transport, while the upper layers in the OSI model

deal with software and applications.

• To understand how network protocols function, it's crucial to understand the

workings of the seven layers of the OSI model:

1- Physical layer. The physical layer is the initial layer that physically connects

two interoperable systems.

It controls simplex or duplex modem transmissions and transfers data in bits.

Additionally, it oversees the hardware that connects the network interface card

(NIC) to the network, including the wiring, cable terminators, topography and

voltage levels.

•

https://www.techtarget.com/searchnetworking/definition/OSI
https://www.techtarget.com/searchnetworking/definition/OSI

7

2. Data-link layer. The data-link layer is responsible for the error-free delivery of

data from one node to another over the physical layer.

It's also the firmware layer of the NIC. It puts datagrams together into frames and

gives each frame the start and stop flags. Additionally, it fixes issues brought on by

broken, misplaced or duplicate frames.

3. Network layer. The network layer is concerned with information flow regulation,

switching and routing between workstations. Additionally, it divides up datagrams

from the transport layer into error-free and smaller datagrams.

4. Transport layer. The transport layer transfers services from the network layer to

the application layer and breaks down data into data frames for error checking at the

network segment level.

This also ensures that a fast host on a network doesn't overtake a slower one.

Essentially, the transport layer ensures that the entire message is delivered from

beginning to end. It also confirms a successful data transmission and retransmitting

of the data if an error is discovered.

https://www.techtarget.com/searchnetworking/definition/Data-Link-layer

8

5. Session layer. The session layer establishes a connection between two

workstations that need to communicate. In addition to ensuring security, this

layer oversees connection establishment, session maintenance

and authentication.

6. Presentation layer. The presentation layer is also known as the translation

layer because it retrieves the data from the application layer and formats it for

transmission over the network. It addresses the proper representation of data,

including the syntax and semantics of information. The presentation layer is

also in charge of managing file-level security and transforming data to

network standards.

7. Application layer. The application layer, which is the top layer of the

network, oversees relaying user application requests to lower levels. File

transfer, email, remote login, data entry and other common applications take

place at this layer.

Every packet transmitted and received over a network contains binary data. Most

computing protocols add a header at the beginning of each network packet to

store information about the sender and the message's intended destination. Some

protocols may also include a footer at the end with additional information.

Network protocols process these headers and footers as part of the data moving

among devices in order to identify messages of their own kind.

Types of network communication protocols

Communication protocols specify the rules of how and in what format information

should be sent and received. These protocols are assembled into a hierarchy to

manage the various tasks involved in network communication.

In other words, some protocols handle how hardware receives, sends, or routes

packets, while others are more high-level and are concerned, for example, with

application-level communication etc.

Some commonly used and widely well-known network communication protocols

include:

Wi-Fi

An example of a link layer protocol, meaning it sits very close to the hardware and

is responsible for physically sending data from one device to another in a wireless

environment.

9

IP (Internet Protocol)

IP is a network layer protocol mainly responsible for routing packets and IP

addressing.

TCP (Transmission Control Protocol)

A reliable, connection-oriented protocol that provides full duplex communication

and ensures data integrity and delivery. This is a transport layer protocol, which

manages connections, detects errors, and controls information flow.

UDP (User Datagram Protocol)

A protocol from the same protocol suite as TCP. The main difference is that UDP is

a more simple, fast, but unreliable connectionless protocol that does not perform

any delivery checks and follows the paradigm of “fire-and-forget.” As TCP, UPD is

also located on the transport layer.

HTTP (Hypertext Transfer Protocol)

An application layer protocol and the most commonly used protocol for browser-

to-server communication on the web, used to serve websites in particular. It goes

without saying that this article that you are reading right now was also served via

HTTP. HTTP protocol builds on top of TCP and manages and transfers information

relevant to web applications like headers, which are used to transfer metadata and

cookies, different HTTP methods (GET, POST, DELETE, UPDATE) etc.

MQTT (Message Queue Telemetry Transport)

Another example of an application-level protocol used for devices with limited

processing power and battery life, operating in unreliable network conditions (for

example, gas sensors on a mining site or simply a smart light bulb in your house).

MQTT is a standard messaging protocol used in IoT (Internet of Things). It is both

lightweight and simple to use, designed with built-in retransmission mechanisms

for enhanced reliability. If you're interested in using this protocol with Python, you

can read this Python MQTT guide that provides an in-depth overview of the Paho

MQTT client.

An important observation is that all the abovementioned protocols use sockets

under the hood but add their own logic and data processing on top. This is due to

sockets being a low-level interface for any network communications in modern

devices as we will discuss in the next section.

10

Key Concepts and Terms

Of course, there are a lot of other important concepts and terms used in the context

of networks. Here is a quick run-down on some of the most prominent ones that

may arise in the rest of the tutorial:

• Packet: a standard unit of data transmission in a computer network (one

could colloquially compare it to the term “message”).

• Endpoint: a destination where packets arrive.

• IP address: a numerical identifier that uniquely identifies a device on the

network. An example of an IP address is: 192.168.0.0

• Ports: a numerical identifier that uniquely identifies a process that is

running on a device and handles particular network communications: for

example, it serves your website over HTTP. While an IP address identifies

the device, a port identifies the application (every application is a process or

consists of processes). Some well-known port examples are: port 80, which

is conventionally used by server applications to manage HTTP traffic, and

port 443 for HTTPS (secure HTTP).

• Gateway: a special kind of network node (device) which serves as an access

point from one network to another. These networks may even use different

protocols, so some protocol translation might be necessary to be performed

by the gateway. An example of a gateway can be a router which connects a

home local network to the Internet.

11

Chapter 2

IP Protocol

A majority of the internet uses a protocol suite called the Internet Protocol Suite also

known as the TCP/IP protocol suite.

This suite is a combination of protocols which encompasses a number of different

protocols for different purpose and need. Because the two major protocols in this

suites are TCP (Transmission Control Protocol) and IP (Internet Protocol), this is

commonly termed as TCP/IP Protocol suite.

This protocol suite has its own reference model which it follows over the internet.

In contrast with the OSI model, this model of protocols contains less layers.

• This model is indifferent to the actual hardware implementation, i.e. the

physical layer of OSI Model. This is why this model can be implemented on

almost all underlying technologies. Transport and Internet layers correspond

to the same peer layers. All three top layers of OSI Model are compressed

together in single Application layer of TCP/IP Model.

12

Internet Protocol version 4

Internet Protocol version 4 (IPv4) is the fourth version in the development of

the Internet Protocol (IP) and the first version of the protocol to be widely

deployed.

IPv4 is described in IETF publication RFC 791 (September 1981), replacing an

earlier definition (RFC 760, January 1980).

Internet Protocol version 4 (IPv4) is the fourth version in the development of

the Internet Protocol (IP) and the first version of the protocol to be widely

deployed.

IPv4 is described in IETF publication RFC 791 (September 1981), replacing

an earlier definition (RFC 760, January 1980).

IPv4 - Packet Structure

Internet Protocol being a layer-3 protocol (OSI) takes data Segments from layer-4

(Transport) and divides it into packets. IP packet encapsulates data unit received

from above layer and add to its own header information.

The encapsulated data is referred to as IP Payload. IP header contains all the

necessary information to deliver the packet at the other end.

13

IP header

• IP header includes many relevant information including Version Number, is

4.

IPv4 – Addressing

• IPv4 supports three different types of addressing modes. −

14

(1) Unicast Addressing Mode

(2) Broadcast Addressing Mode

(3) Multicast Addressing Mode

Unicast Addressing Mode

In this mode, data is sent only to one destined host. The Destination Address

field contains 32- bit IP address of the destination host. Here the client sends

data to the targeted server −

Broadcast Addressing Mode

• In this mode, the packet is addressed to all the hosts in a network segment.

The Destination Address field contains a special broadcast address,

i.e. 255.255.255.255. When a host sees this packet on the network, it is bound

to process it. Here the client sends a packet, which is entertained by all the

Servers –

15

Multicast Addressing Mode

This mode is a mix of the previous two modes, i.e. the packet sent is neither

destined to a single host nor all the hosts on the segment. In this packet, the

Destination Address contains a special address which starts with 224.x.x.x and can

be entertained by more than one host.

Here a server sends packets which are entertained by more than one servers. Every

network has one IP address reserved for the Network Number which represents the

network and one IP address reserved for the Broadcast Address, which represents

all the hosts in that network.

Hierarchical Addressing Scheme

• IPv4 uses hierarchical addressing scheme. An IP address, which is 32-bits in

length, is divided into two or three parts as depicted –

16

A single IP address can contain information about the network and its sub-network

and ultimately the host. This scheme enables the IP Address to be hierarchical

where a network can have many sub-networks which in turn can have many hosts.

Subnet Mask

The 32-bit IP address contains information about the host and its network. It is

very necessary to distinguish both. For this, routers use Subnet Mask, which is as

long as the size of the network address in the IP address. Subnet Mask is also 32

bits long. If the IP address in binary is ANDed with its Subnet Mask, the result

yields the Network address. For example, say the IP Address is 192.168.1.152 and

the Subnet Mask is 255.255.255.0 then –

This way the Subnet Mask helps extract the Network ID and the Host from an IP

Address. It can be identified now that 192.168.1.0 is the Network number and

192.168.1.152 is the host on that network.

Binary Representation

• The positional value method is the simplest form of converting binary from

decimal value. IP address is 32 bit value which is divided into 4 octets. A

binary octet contains 8 bits and the value of each bit can be determined by

the position of bit value '1' in the octet.

17

• Positional value of bits is determined by 2 raised to power (position – 1),

that is the value of a bit 1 at position 6 is 2^(6-1) that is 2^5 that is 32. The

total value of the octet is determined by adding up the positional value of

bits. The value of 11000000 is 128+64 = 192. Some examples are shown in

the table below −

• IPv4 - Address Classes

18

• Internet Protocol hierarchy contains several classes of IP Addresses to be

used efficiently in various situations as per the requirement of hosts per

network. Broadly, the IPv4 Addressing system is divided into five classes of

IP Addresses. All the five classes are identified by the first octet of IP

Address.

• The first octet referred here is the left most of all. The octets numbered as

follows depicting dotted decimal notation of IP Address −

•

When calculating hosts' IP addresses, 2 IP addresses are decreased because

they cannot be assigned to hosts, i.e. the first IP of a network is network

number and the last IP is reserved for Broadcast IP.

19

Chapter 3

Python Network Programming

Understanding Sockets

Python provides two levels of access to network programming. These are :-

• Low-Level Access: At the low level, you can access the basic socket support

of the operating system. You can implement client and server for both

connection-oriented and connectionless protocols.

• High-Level Access: At the high level allows to implement protocols like

HTTP, FTP, etc.

Consider a bidirectional communication channel, the sockets are the endpoints of

this communication channel. These sockets (endpoints) can communicate within a

process, between processes on the same machine, or between processes on different

machines. Sockets use different protocols for determining the connection type for

port-to-port communication between clients and servers.

A socket is an interface (gate) for communication between different processes

located on the same or different machines. In the latter case, we speak about network

sockets.

Network sockets abstract away connection management. You can think of them as

connection handlers. In Unix systems, in particular, sockets are simply files that

support the same write-read operations but send all the data over the network.

When a socket is in listening or connecting state, it is always bound to a combination

of an IP address plus a port number which identifies the host (machine/device) and

the process.

20

Socket Terms

How socket connections work

Sockets can listen for incoming connections or perform outbound connections

themselves. When a connection is established, the listening socket (server socket)

gets additionally bound to the IP and the port of the connecting side.

Or alternatively, a new socket which is now bound to two pairs of IP addresses and

port numbers of a listener and a requestor is created. This way, two connected sockets

on different machines can identify one another and share a single connection for data

transmission without blocking the listening socket that in the meantime continues

listening for other connections.

In case of the connecting socket (client socket), it gets implicitly bound to the ip

address of the device and a random accessible port number upon connection

initiation. Then, upon connection establishment, a binding to the other

21

communication side’s IP and port happens in much the same way as for a listening

socket but without creating a new socket.

Sockets in the context of networks

One can say that a socket is a connection endpoint (traffic destination) which is on

one side associated with the host machine's IP address and the port number of the

application for which the socket was created, and on the other, it is associated to the

IP address and the port of the application running on another machine to which the

connection is established.

Socket programming

When we talk about socket programming, we instantiate socket objects in our code

and perform operations on them (listen, connect, receive, send etc.). In this context,

sockets are simply special objects we create in our program that have special

methods for working with network connections and traffic.

Under the hood those methods call your operating system kernel, or more

specifically, the network stack, which is a special part of the kernel responsible for

managing network operations.

Sockets and client-server communication

Now, it’s also important to mention that sockets often appear in the context of client-

server communication.

The idea is simple: sockets relate to connections; they are connection handlers. On

the web, whenever you want to send or receive some data, you initiate a connection

(which is being initiated through the interface called sockets).

Now, either you or the party you are trying to connect to acts as a server and another

party as a client. While a server serves data to clients, clients proactively connect

and request data from a server. A server listens via a listening socket for new

connections, establishes them, gets the client’s requests, and communicates the

requested data in its response to the client.

On the other hand, a client creates a socket using the IP address and port of the server

it wishes to connect to, initiates a connection, communicates its request to the server,

and receives data in response. This seamless exchange of information between the

client and server sockets forms the backbone of various network applications.

22

Sockets as a base for network protocols

The fact that sockets form a backbone also means that there are various protocols

built and used on top of them. Very common ones are UDP and TCP, which we have

briefly talked about already. Sockets that use one of these transport protocols are

called UDP or TCP sockets.

IPC sockets

Apart from network sockets, there are also other types. For example, IPC (Inter

Process Communication) sockets. IPC sockets are meant to transfer data between

processes on the same machine, whereas network sockets can do the same across

the network.

The good thing about IPC sockets is that they avoid a lot of the overhead of

constructing packets and resolving the routes to send the data. Since in the context

of IPC sender and receiver are local processes, communication via IPC sockets

typically has lower latency.

Unix-sockets

A good example of IPC sockets are Unix-sockets which are, as with everything in

Unix, just files on the filesystem. They are not identified by the IP address and port

but rather by the file path on the filesystem.

Network sockets as IPC sockets

Note that you can just as well use network sockets for inter-process

communications if both server and receiver are on localhost (i.e., have an IP

address 127.0.0.1).

Of course, on the one hand, this adds additional latency because of the overhead

associated with processing your data by the network stack, but on the other hand,

this allows us not to worry about the underlying operating system, as network

sockets are present and work on all systems as opposed to IPC sockets which are

specific to a given OS or OS-family.

Python Socket Library

For socket programming in Python, we use the official built-in Python socket

library consisting of functions, constants, and classes that are used to create,

23

manage and work with sockets. Some commonly used functions of this library

include:

• socket(): Creates a new socket.

• bind(): Associates the socket to a specific address and port.

• listen(): Starts listening for incoming connections on the socket.

• accept(): Accepts a connection from a client and returns a new socket for

communication.

• connect(): Establishes a connection to a remote server.

• send(): Sends data through the socket.

• recv(): Receives data from the socket.

• close(): Closes the socket connection.

Python Socket Example

• Let’s take a look at socket programming with a practical example written in

Python. Here, our goal is to connect two applications and make them

communicate with one another. We will be using Python socket library to

create a server socket application that will communicate and exchange

information with a client across a network.

• Considerations and limitations

• Note, however, that for educational purposes, our example is simplified, and

the applications will be running locally and not talk over the actual network -

we will use a loopback localhost address to connect the client to the server.

• This means that both client and server will run on the same machine and the

client will be initiating a connection to the same machine it is running on,

albeit to a different process that represents the server.

• Running on different machines

Alternatively, you could have your applications on two different devices and have

them both connected to the same Wi-Fi router, which would form a local area

network. Then the client running on one device could connect to the server

running on a different machine.

24

In this case, however, you would need to know the IP addresses that your router

assigned to your devices and use them instead of localhost (127.0.0.1) loopback IP

address (to see IP addresses, use ifconfig terminal command for Unix-like systems

or ipconfig - for Windows). After you obtain the IP addresses of your applications,

you can change them in the code accordingly, and the example will still work.

Creating socket server in Python

Let’s start with creating a socket server (Python TCP server, in particular, since it

will be working with TCP sockets, as we will see), which will exchange messages

with clients. To clarify the terminology, while technically any server is a socket

server, since sockets are always used under the hood to initiate network

connections, we use the phrase “socket server” because our example explicitly

makes use of socket programming.

So, follow the steps below:

Creating python file with some boilerplate

• Create a file named server.py

• Import the socket module in your Python script.

• Add a function called run_server. We will be adding most of our code there.

When you add your code to the function, don’t forget to properly indent it:

• Instantiating socket object

• As a next step, in run_server, create a socket object using

the socket.socket() function.

• The first argument (socket.AF_INET) specifies the IP address family for

IPv4 (other options include: AF_INET6 for IPv6 family and AF_UNIX for

Unix-sockets)

• The second argument (socket.SOCK_STREAM) indicates that we are using

a TCP socket.

• In case of using TCP, the operating system will create a reliable connection

with in-order data delivery, error discovery and retransmission, and flow

control. You will not have to think about implementing all those details.

25

• There is also an option for specifying a UDP

socket: socket.SOCK_DGRAM. This will create a socket which implements

all the features of UDP under the hood.

• In case you want to go more low-level than that and build your own

transport layer protocol on top of the TCP/IP network layer protocol used by

sockets, you can use socket.RAW_SOCKET value for the second argument.

In this case the operating system will not handle any higher level protocol

features for you and you will have to implement all the headers, connection

confirmation and retransmission functionalities yourself if you need them.

There are also other values that you can read about in the documentation.

• Binding server socket to IP address and port

• Define the hostname or server IP and port to indicate the address which the

server will be reachable from and where it will listen for incoming

connections. In this example, the server is listening on the local machine - this

is defined by the server_ip variable set to 127.0.0.1 (also called localhost).

• The port variable is set to 8000, which is the port number that the server

application will be identified by the operating system (It is recommended to

use values above 1023 for your port numbers to avoid collisions with ports

used by system processes).

• Prepare the socket to receive connections by binding it to the IP address and

port which we have defined before.

•

• Listening for incoming connections

• et up a listening state in the server socket using the listen function to be

able to receive incoming client connections.

https://docs.python.org/2/library/socket.html#socket.SOCK_STREAM

26

• This function accepts an argument called backlog which specifies the

maximum number of queued unaccepted connections. In this example,

we use the value 0 for this argument. This means that only a single client

can interact with the server. A connection attempt of any client

performed while the server is working with another client will be refused.

• If you specify a value that is bigger than 0, say 1, it tells the operating

system how many clients can be put into the queue before

the accept method is called on them.

• Once accept is called a client is removed from the queue and is no longer

counted towards this limit. This may become clearer once you see further

parts of the code, but what this parameter essentially does can be

illustrated as follows: once your listening server receives the connection

request it will add this client to the queue and proceed to accepting it’s

request. If before the server was able to internally call accept on the first

client, it receives a connection request from a second client, it will push

this second client to the same queue provided that there is enough space

in it. The size of exactly this queue is controlled by the backlog

argument. As soon as the server accepts the first client, this client is

removed from the queue and the server starts communicating with it. The

second client is still left in the queue, waiting for the server to get free

and accept the connection.

• If you omit the backlog argument, it will be set to your system’s default

(under Unix, you can typically view this default in

the /proc/sys/net/core/somaxconn file).

Accepting incoming connections

Next, wait and accept incoming client connections. The accept method stalls the execution

thread until a client connects. Then it returns a tuple pair of (conn, address), where address

is a tuple of the client's IP address and port, and conn is a new socket object which shares

a connection with the client and can be used to communicate with it.

accept creates a new socket to communicate with the client instead of binding the listening

socket (called server in our example) to the client's address and using it for the

communication, because the listening socket needs to listen to further connections from

27

other clients, otherwise it would be blocked. Of course, in our case, we only ever handle a

single client and refuse all the other connections while doing so, but this will be more

relevant once we get to the multithreaded server example.

Creating communication loop

As soon as a connection with the client has been established (after calling

the accept method), we initiate an infinite loop to communicate. In this loop, we perform a

call to the recv method of the client_socket object. This method receives the specified

number of bytes from the client - in our case 1024.

1024 bytes is just a common convention for the size of the payload, as it’s a power of two

which is potentially better for optimization purposes than some other arbitrary value. You

are free to change this value however you like though.

Since the data received from the client into the request variable is in raw binary form, we

transformed it from a sequence of bytes into a string using the decode function.

Then we have an if statement, which breaks out of the communication loop in case we

receive a ”close” message. This means that as soon as our server gets a ”close” string in

request, it sends the confirmation back to the client and terminates its connection with it.

Otherwise, we print the received message to the console. Confirmation in our case is just

sending a ”closed” string to the client.

Note that the lower method that we use on the request string in the if statement, simply

converts it to lowercase. This way we don’t care whether the close string was originally

written using uppercase or lowercase characters.

28

Sending response back to client

Now we should handle the normal response of the server to the client (that is when the

client doesn’t wish to close the connection). Inside the while loop, right

after print(f"Received: {request}"), add the following lines, which will convert a response

string (”accepted” in our case) to bytes and send it to the client. This way whenever server

receives a message from the client which is not ”close”, it will send out

the ”accepted” string in response:

Freeing resources

Once we break out from the infinite while loop, the communication with the client is

complete, so we close the client socket using the close method to release system resources.

We also close the server socket using the same method, which effectively shuts down our

server. In a real world scenario, we would of course probably want our server to continue

listening to other clients and not shut down after communicating with just a single one, but

don’t worry, we will get to another example further below.

29

For now, add the following lines after the infinite while loop:

Note: don’t forget to call the run_server function at the end of

your server.py file. Simply use the following line of code:

Complete server socket code example

Here is the complete server.py source code:

30

Note that in order not to convolute and complicate this basic example, we omitted the

error handling. You would of course want to add try-except blocks and make sure that

you always close the sockets in the finally clause.

31

Creating Client Socket in Python

After setting up your server, the next step is to set up a client that will connect

and send requests to your server. So, let’s start with the steps below:

Creating python file with some boilerplate

• Create a new file named client.py

• Import the socket library:

• Define the run_client function where we will place all our code:

Instantiating socket object

Next, use the socket.socket() function to create a TCP socket object which serves as the

client's point of contact with the server.

Establish a connection with the server using the connect method on the client socket

object. Note that we did not bind the client socket to any IP address or port. This is

normal for the client, because connect will automatically choose a free port and pick up

an IP address that provides the best route to the server from the system’s network

interfaces (127.0.0.1 in our case) and bind the client socket to those.

Creating communication loop

After having established a connection, we start an infinite communication loop

to send multiple messages to the server. We get input from the user using

32

Python’s built-in input function, then encode it into bytes and trim to be 1024

bytes at max. After that we send the message to the server using client.send.

Handling server’s response

Once the server receives a message from the client, it responds to it. Now, in

our client code, we want to receive the server's response. For that, in the

communication loop, we use the recv method to read 1024 bytes at most. Then

we convert the response from bytes into a string using decode and then check if

it is equal to the value ”closed”. If this is the case, we break out of the loop

which as we later see, will terminate the client’s connection. Otherwise, we

print the server’s response into the console.

Freeing resources

Finally, after the while loop, close the client socket connection using the close method.

This ensures that resources are properly released and the connection is terminated (i.e.

when we receive the “closed” message and break out of the while loop).

33

Note: Again, don’t forget to call the run_client function, which we have implemented

above, at the end of the file as follows:

Complete client socket code example

Here is the complete client.py code:

34

Test your client and server

To test the the server and client implementation that we wrote above, perform the

following:

• Open two terminal windows simultaneously.

• In one terminal window, navigate to the directory where the server.py file is

located and run the following command to start the server:

This will bind the server socket to the localhost address (127.0.0.1) on port 8000 and start

listening for incoming connections.

In the other terminal, navigate to the directory where the client.py file is located and run

the following command to start the client:

This will prompt for user input. You can then type in your message and press Enter. This

will transfer your input to the server and display it in its terminal window. The server will

send its response to the client and the latter will ask you for the input again. This will

continue until you send the ”close” string to the server.

35

Working with Multiple Clients – Multithreading

We have seen how a server responds to requests from a single client in the

previous example, however, in many practical situations, numerous clients may

need to connect to a single server at once. This is where multithreading comes

in. Multithreading is used in situations where you need to handle several tasks

(e.g. execute multiple functions) concurrently (at the same time).

The idea is to spawn a thread which is an independent set of instructions that can

be handled by the processor. Threads are much more lightweight than the

processes because they actually live within a process itself and you don’t have

to allocate a lot of resources for themselves.

Limitations of multithreading in python

Note that multithreading in Python is limited. Standard Python implementation (CPython)

cannot run threads truly in parallel. Only a single thread is allowed to execute at a time due

to the global interpreter lock (GIL). This is, however, a separate topic, which we are not

going to discuss. For the sake of our example, using limited CPython threads is enough

and gets the point across. In a real-world scenario, however, if you are going to use Python,

you should look into asynchronous programming. We are not going to talk about it now,

because it is again a separate topic and it usually abstracts away some low-level socket

operations which we specifically focus on in this article.

Multithreaded server example

Let's look at the example below on how multithreading may be added to your

server to handle a large number of clients. Note that this time we will also add

some basic error handling using the try-except-finally blocks. To get started,

follow the steps below:

Creating thread-spawning server function

In your python file, import the socket and threading modules to be able to work

with both sockets and threads:

36

Define the run_server function which will, as in the example above, create a server socket,

bind it and listen to the incoming connections. Then call accept in an infinite while loop.

This will always keep listening for new connections. After accept gets an incoming

connection and returns, create a thread using threading.Thread constructor. This thread will

execute the handle_client function which we are going to define later, and

pass client_socket and addr to it as arguments (addr tuple holds an IP address and a port of

the connected client). After the thread is created, we call start on it to begin its execution.

Remember that accept call is blocking, so on the first iteration of the while loop, when we

reach the line with accept, we halt and wait for a client connection without executing

anything else. As soon as the client connects, accept method returns, and we continue the

execution: spawn a thread, which will handle said client and go to the next iteration where

we will again halt at the accept call waiting for another client to connect.

At the end of the function, we have some error handling which ensures that the server

socket is always closed in case something unexpected happens.

37

Note that the server in our example will only be stopped in case an unexpected error

occurs. Otherwise, it will listen for the clients indefinitely, and you will have to kill the

terminal if you want to stop it.

Creating client-handling function to run in separate thread

Now, above the run_server function, define another one called handle_client. This

function will be the one executing in a separate thread for every client’s connection. It

receives the client's socket object and the addr tuple as arguments.

Inside this function, we do the same as we did in a single threaded example plus some

error handling: we start a loop to get messages from the client using recv.

Then we check if we got a close message. If so, we respond with the ”closed” string and

close the connection by breaking out of the loop. Otherwise, we print out the client’s

request string into the console and proceed to the next loop iteration to receive the next

client’s message.

At the end of this function, we have some error handling for unexpected cases

(except clause), and also a finally clause where we release client_socket using close.

This finally clause will always be executed no matter what, which ensures that the client

socket is always properly released.

38

When handle_client returns, the thread which executes it, will also be automatically

released.

Note: Don’t forget to call the run_server function at the end of your file.

Complete multithreaded server code example

Now, let's put the complete multithreading server code together:

39

40

Note: In a real-world code, to prevent possible problems like race situations or data

inconsistencies while dealing with multithreaded servers, it's vital to take thread safety

and synchronization techniques into consideration. In our simple example this is,

however, not a problem.

Client example with basic error handling

Now that we have a server implementation able to handle multiple clients concurrently,

we could use the same client implementation as seen above in the first basic examples to

initiate connection, or we could update it slightly and add some error handling. Below

you can find the code, which is identical to the previous client example with an addition

of try-except blocks:

41

42

Testing the multithreading example

If you want to test the multi-client implementation, open several terminal windows for

clients and one for the server. First start the server with python server.py. After that start a

couple clients using python client.py. In the server terminal windows you will see how

new clients get connected to the server. You can now proceed with sending messages

from different clients by entering text into the respective terminals and all of them will be

handled and printed to the console on the server side.

Socket Programming Applications in Data Science

While every network application uses sockets created by the OS under the hood, there are

numerous systems that heavily rely on socket programming specifically, either for certain

special use cases or to improve the performance. But how exactly is socket programming

useful in the context of data science? Well, it definitely plays a meaningful role,

whenever there is a need to receive or send huge amounts of data fast. Hence, socket

programming is mainly used for data collection and real-time processing, distributed

computing, and inter-process communication. But let's have a closer look at some

particular applications in the field of data science.

Real-time data collection

Sockets are widely used to collect real-time data from different sources for further

processing, forwarding to a database or to an analytics pipeline etc. For example, a socket

can be used to instantly receive data from a financial system or social media API for

subsequent processing by data scientists.

Distributed computing

Data scientists may use socket connectivity to distribute the processing and computation

of huge data sets across multiple machines. Socket programming is commonly used in

Apache Spark and other distributed computing frameworks for communication between

the nodes.

Model deployment

43

Socket programming can be used when serving machine learning models to the users,

allowing for instantaneous delivery of predictions and suggestions. In order to facilitate

real-time decision-making, data scientists may use performant socket-based server

applications that take in large amounts of data, process it using trained models to provide

predictions, and then rapidly return the findings to the client.

Inter-Process Communication (IPC)

Sockets can be used for IPC, which allows different processes running on the same

machine to communicate with each other and exchange data. This is useful in data

science to distribute complex and resource intensive computations across multiple

processes. In fact, Python’s subprocessing library is often used for this purpose: it spawns

several processes to utilize multiple processor cores and increase application performance

when performing heavy calculations. Communication between such processes may be

implemented via IPC sockets.

Collaboration and communication

Socket programming allows for real-time communication and collaboration among data

scientists. In order to facilitate effective collaboration and knowledge sharing, socket-

based chat apps or collaborative data analysis platforms are used.

It’s worth saying that in many of the above applications, data scientists might not be

directly involved in working with sockets. They would typically use libraries, frameworks,

and systems that abstract away all the low-level details of socket programming. However,

under the hood all such solutions are based on socket communication and utilize socket

programming.

Socket Programming Challenges and Best Practices

Because sockets are a low-level concept of managing connections, developers working

with them have to implement all the required infrastructure around to create robust and

reliable applications. This of course comes with a lot of challenges. However, there are

some best practices and general guidelines one may follow to overcome these issues.

Below are some of the most often encountered problems with socket programming, along

with some general tips:

44

Connection management

Working with many connections at a time; managing multiple clients, and

ensuring efficient handling of concurrent requests can certainly be challenging

and non-trivial. It requires careful resource management and coordination to

avoid bottlenecks

Best practices

• Keep track of active connections using data structures like lists or dictionaries. Or

use advanced techniques like connection pooling which also help with scalability.

• Use threading or asynchronous programming techniques to handle multiple client

connections at the same time.

• Close connections properly to release resources and avoid memory leaks.

Error handling

Dealing with errors, such as connection failures, timeouts, and data

transmission issues, is crucial. Handling these errors and providing appropriate

feedback to the clients can be challenging, especially when doing low-level

socket programming.

Best practices

• Use try-except-finally blocks to catch and handle specific types of errors.

• Provide informative error messages and consider employing logging to aid in

troubleshooting.

Scalability and performance

Ensuring optimal performance and minimizing latency are key concerns when

dealing with high-volume data streams or real-time applications.

Best practices

45

• Optimize your code for performance by minimizing unnecessary data processing

and network overhead.

• Implement buffering techniques to efficiently handle large data transfers.

• Consider load balancing techniques to distribute client requests across multiple

server instances.

Security and authentication

Securing socket-based communication and implementing proper

authentication mechanisms can be difficult. Ensuring data privacy, preventing

unauthorized access, and protecting against malicious activities require careful

consideration and implementation of secure protocols.

Best practices

• Utilize SSL/TLS security protocols to ensure secure data transmission by

encrypting the information.

• Ensure client identity by implementing secure authentication methods like token-

based authentication, public-key cryptography, or username/password.

• Ensure that confidential data, such as passwords or API keys, are safeguarded and

encrypted or ideally not stored at all (only their hashes if needed).

Network reliability and resilience

Dealing with network interruptions, fluctuating bandwidth, and unreliable

connections can pose challenges. Maintaining a stable connection, handling

disconnections gracefully, and implementing reconnection mechanisms are

essential for robust networked applications.

Best practices

• Use keep-alive messages to detect inactive or dropped connections.

• Implement timeouts to avoid indefinite blocking and ensure timely response

handling.

• Implement exponential backoff reconnection logic to establish a connection again

if it's lost.

46

Code maintainability

Last but not the least mention is code maintainability. Because of the low-level nature of

socket programming, developers find themselves writing more code. This might quickly

turn into an unmaintainable spaghetti code, so it’s essential to organize and structure it as

early as possible and spend extra effort on planning your code’s architecture.

Best practices

• Break up your code into classes or functions which ideally shouldn’t be too long.

• Write unit tests early on by mocking your client and server implementations

• Consider using more high-level libraries to deal with connections unless you

absolutely must use socket programming.

Wrap-up: Socket programming in Python

Sockets are an integral part of all network applications. In this article, we have

looked into socket programming in Python. Here are the key points to

remember:

• Sockets are interfaces that abstract away connection management.

• Sockets enable communication between different processes (usually a client and a

server) locally or over a network.

• In Python, working with sockets is done through the socket library, which among

the rest, provides a socket object with various methods

like recv, send, listen, close.

• Socket programming has various applications useful in data science, including

data collection, inter-process communication, and distributed computing.

• Challenges in socket programming include connection management, data

integrity, scalability, error handling, security, and code maintainability.

With socket programming skills, developers can create efficient, real-time

network applications. By mastering the concepts and best practices, they can

harness the full potential of socket programming to develop reliable and

scalable solutions.

However, socket programming is a very low-level technique, which is difficult

to use because application engineers have to take every little detail of

application communication into account.

47

Nowadays, we very often do not need to work with sockets directly as they are

typically handled by the higher level libraries and frameworks, unless there is a

need to really squeeze the performance out of the application or scale it.

However, understanding sockets and having some insights into how things

work under the hood leads to a better overall awareness as a developer or a

data scientist and is always a good idea.

48

Chapter 4

Building TCP server in Python

Creating a TCP server in Python is straightforward, thanks to the built-in socket library.

Here’s a simple example of a TCP server that can accept multiple client connections and

respond to basic messages.

Step-by-Step Guide

1. Import the socket library.

2. Set up the server socket with the appropriate IP address and port.

3. Bind the server to the IP and port, and then put it into listening mode.

4. Accept client connections in a loop and handle communication.

Here’s the code:

49

Explanation

• Create a socket: socket.socket(socket.AF_INET, socket.SOCK_STREAM)

initializes a TCP socket using IPv4.

• Bind: server_socket.bind((HOST, PORT)) binds the socket to a specific IP and

port.

• Listen: server_socket.listen(5) puts the socket into listening mode, with a max of 5

queued connections.

• Accept: server_socket.accept() accepts an incoming connection, providing a new

client_socket and the client’s address.

• Receive and Send: Inside the while loop, client_socket.recv(1024) reads data, and

client_socket.sendall(data) sends it back (an echo).

50

Run the Server

Save the code in a file, e.g., tcp_server.py, and run it in the terminal with:

This server will run until you stop it, and it’s ready to accept client connections.

Client Code (for Testing)

For testing, you could use this simple client code to connect and send

messages:

This code sends a message to the server, receives the echo, and prints it.

51

Chapter 5

Understanding IP address and ports

An IP address and a port are two fundamental concepts for networking, helping identify

and communicate with devices and services across networks.

IP Address

An IP (Internet Protocol) address is a unique identifier assigned to each device

on a network, allowing it to communicate with other devices. It functions

similarly to a mailing address but is used for internet traffic.

Types of IP Addresses

1. IPv4 (e.g., 192.168.1.1):

o The most common version, made up of four numbers (octets) separated by

dots.

o Each number is between 0 and 255, giving around 4.3 billion unique

addresses.

o Format: xxx.xxx.xxx.xxx (where xxx ranges from 0-255).

2. IPv6 (e.g., 2001:0db8:85a3:0000:0000:8a2e:0370:7334):

o Developed to handle the growing number of devices on the internet.

o Contains eight groups of hexadecimal numbers, separated by colons.

o Allows a much larger address space than IPv4.

Types of IP Addresses by Scope

• Public IP: The IP address assigned by an internet service provider, used to

communicate with devices outside the local network.

• Private IP: Used within a local network, like in a home or business (e.g.,

192.168.0.1), and not accessible from the internet directly.

Ports

A port is a communication endpoint used to distinguish different types of

services or applications on a device with the same IP address. While the IP

address identifies the device, the port number identifies the specific process or

service on that device.

• Port Number Range: Ports range from 0 to 65535.

o Well-known Ports (0-1023): Assigned to common protocols (e.g., HTTP

on port 80, HTTPS on port 443, FTP on port 21).

o Registered Ports (1024-49151): Typically used for less common or

proprietary services.

52

o Dynamic/Private Ports (49152-65535): Used for temporary or private

connections, like random assignments for outgoing connections.

Example of IP and Port Usage

Consider the example 192.168.1.10:8080:

• 192.168.1.10 is the IP address, identifying the device on the network.

• 8080 is the port, specifying the service running on that device, such as a web

server.

How They Work Together in TCP/IP Communication

1. When a client wants to connect to a server, it uses both the IP address (to identify

the server's device) and the port (to specify the service).

2. A connection request with this combination reaches the server.

3. The server receives the request on the specified port and passes it to the

application listening on that port.

IP addresses identify devices, while ports specify services or processes on those devices,

enabling multiple applications to operate on the same machine simultaneously.

53

Chapter 6

Error Handling and expectation

In Python, error handling and setting expectations are essential when working with

network protocols, as connections can be unreliable, data can be malformed, and other

issues may arise. Here's how you can handle errors effectively while implementing

protocols (like TCP) in Python, using try-except blocks, timeouts, and validation.

Key Error Handling Concepts in Network Protocols

1. Connection Errors: Issues that arise when connecting to a remote server (e.g.,

server down, network unreachable).

2. Timeouts: When a network operation takes too long and times out.

3. Data Errors: Issues with data integrity or formatting in the protocol.

4. Resource Management: Ensuring sockets and connections are properly closed in

error situations.

Manage Errors and Expectation in Socket Programming

Error management and setting clear expectations in socket programming are

essential for developing reliable network applications. Here's a breakdown of best

practices and strategies for handling errors and managing expectations in socket

programming, especially using Python.

1. Handling Common Socket Errors

Types of Common Errors:

• Connection Errors: Occur when trying to connect to a server that is down or

unreachable.

• Timeouts: When a read or write operation takes too long.

54

• Data Transmission Errors: Issues with data encoding/decoding or unexpected

data formats.

• Resource Limitations: Exceeding the number of allowed sockets, hitting OS-

imposed limits, or running out of memory.

Example Code with Error Handling

55

Setting Clear Expectations for Protocols

When creating a network service, define clear expectations around:

2.1 Message Format

• Define Encoding: Use a common encoding (e.g., UTF-8) for text-based

messages.

• Structure Messages: Use structured formats like JSON, XML, or custom

delimiters to help both client and server parse messages correctly.

2.2 Connection Lifecycle

56

• Define Connection Timeouts: Set reasonable timeouts for connection

attempts, read, and write operations, which prevents the client/server from

waiting indefinitely.

• Handshake and Heartbeat Messages: For persistent connections, use a

handshake or heartbeat message to ensure both parties are active and

synchronized.

2.3 Response Codes and Acknowledgments

• Define Expected Responses: Use codes like OK, ERROR, or numeric codes

(e.g., 200 for success, 500 for error) to signal the outcome of a request.

• Acknowledge Receipt: After receiving a message, send a short

acknowledgment to let the sender know it was received.

3. Strategies for Robust Error Management

3.1 Retry Logic

For intermittent issues like connection timeouts, retrying after a short delay is

often effective. Here’s an example:

3.2 Graceful Shutdown with finally

Ensure all sockets are closed when the program ends, even if an error occurs.

Use a try-except-finally block to ensure cleanup.

57

3.3 Logging for Diagnostics

In production, use logging to capture errors and events:

3.4 Using Select for Multiplexing and Timeout Management

For applications that need to handle multiple clients or check for incoming data

without blocking indefinitely, the select module allows multiplexing and efficient

timeout management:

58

Handling errors in socket programming is about anticipating network-related

issues and implementing strategies to deal with them effectively:

• Use timeouts to avoid long waits.

• Wrap operations in try-except blocks to catch and manage errors.

• Define and document protocols (message structure, responses) to ensure clear

expectations.

• Log errors to diagnose problems and improve reliability.

These practices make your application more reliable, resilient, and easier to

maintain.

Example: TCP Server with Error Handling

Here’s an example TCP server with enhanced error handling and comments to

explain each part.

59

60

Explanation and Best Practices for Error Handling

1. Socket Creation and Binding:

o Wrap socket creation in a try-except block to catch issues like invalid

configurations or permissions.

o If binding fails (e.g., port is already in use), the server will display an

error and exit.

2. Accepting Connections:

o server_socket.accept() may raise an error if there are issues with the

connection or system limits.

o By enclosing it in a try-except block, we can manage errors

gracefully.

3. Timeouts:

61

o client_socket.settimeout(5.0) sets a timeout of 5 seconds on operations

for the connected client.

o If no data is received within the timeout, the socket.timeout exception

is raised, allowing the server to handle it.

4. Data Decoding:

o In data.decode('utf-8'), if the data is not in UTF-8 format, a

UnicodeDecodeError will be raised.

o Catching this error prevents issues with malformed data and keeps the

server stable.

5. Resource Management:

o Using with client_socket: ensures that the client socket is properly

closed after use.

o server_socket.close() is called in the finally block to release resources

if the server shuts down.

6. Graceful Shutdown with KeyboardInterrupt:

o This allows the server to shut down gracefully when you press Ctrl+C,

closing the socket and printing a message.

Setting Expectations with Protocols

Protocols generally define specific expectations for the communication process,

like data format and responses.

1. Define the Data Format:

o Specify encoding (e.g., UTF-8), length limits, or message structure in

both server and client code.

2. Use Acknowledgments:

o Confirm received data with the client to ensure message integrity.

3. Define Protocol-Specific Responses:

o Implement standardized responses (e.g., “OK”, “ERROR”) that

clients and servers can interpret.

This approach ensures the server can handle unexpected situations without

crashing, making it robust and reliable for real-world applications.

62

Chapter 7

Concurrent connection with thread

To handle multiple client connections simultaneously in a Python TCP server,

you can use threads. Each client connection is managed in a separate thread,

allowing the server to process multiple requests concurrently. Here’s how you

can build a multithreaded TCP server.

Steps to Create a Multithreaded TCP Server

1. Set up the server socket to listen for incoming client connections.

2. Use the threading module to create a new thread for each client connection.

3. Define a handler function to manage each client’s connection

independently within its own thread.

4. Graceful shutdown to manage all threads and resources properly.

Example Code

Here's a Python example that implements a multithreaded TCP server. Each

time a client connects, a new thread is spawned to handle that client's requests.

63

64

Explanation

1. Main Server Loop:

o server_socket.listen() puts the server in listening mode.

o server_socket.accept() blocks and waits for a new client connection.

Once a client connects, it returns a client_socket and client_address.

2. Client Handler Function (handle_client):

o This function manages communication with a specific client. It reads

messages sent by the client, processes them, and sends a response.

o If the client disconnects or there’s an error, the function breaks out of

the loop and closes the connection.

3. Creating Threads:

o Each client connection is handled in a new thread:

threading.Thread(target=handle_client, args=(client_socket,

client_address)).

o Setting daemon=True makes sure that all threads will close

automatically when the main program exits.

4. Error Handling:

o Inside the handler function, a try-except block manages any

exceptions for that client, allowing other client threads to run

independently.

Running the Server

To run the server, save it as tcp_threaded_server.py and run it:

Sample Client Code for Testing

To test this multithreaded server, you can create multiple clients using this

sample client code:

65

Run multiple instances of this client code to simulate multiple concurrent

connections.

Using threads allows the server to handle multiple clients at once, where each

client has its own thread that operates independently. This approach works well

for I/O-bound tasks, such as handling network requests, and it’s relatively easy

to implement in Python using the threading module. However, if your

application requires a highly scalable solution, consider using asynchronous

programming with asyncio or a dedicated framework like Twisted or

SocketServer.

66

Chapter 8

Client Server application

Creating a client-server application in Python allows two-way communication

between a client and a server. Below is an example of a simple TCP client-

server application using Python’s socket library. The server accepts multiple

client connections, and each client can send messages to the server, which the

server echoes back.

TCP Server Code (with Multithreading)

This server code listens for connections and creates a new thread for each

client, allowing it to handle multiple clients concurrently.

67

TCP Client Code

This client connects to the server, sends a message, and prints the server's

response. You can run multiple instances of this client to test concurrent

connections.

68

Running the Application

1. Start the Server:

Save the server code in a file, e.g., tcp_server.py, and run it in the terminal:

2. Run the Client:

• Save the client code in another file, e.g., tcp_client.py.

• Open a separate terminal for each client instance and run

• Each client will prompt you to enter a message, which will be sent to the server.

The server will echo the message back.

3. Test Concurrent Connections:

Start multiple instances of the client (tcp_client.py) to connect to the server

simultaneously. Each client will get a response from the server in its terminal.

69

Benefits of This Structure
• Concurrency: Using threads on the server allows multiple clients to connect

simultaneously.

• Error Handling: The server manages each client connection independently,

so an issue with one client won’t affect others.

• Resource Management: Using with statements for sockets ensures they are

closed properly after each session.

This setup creates a simple yet effective TCP-based client-server application, ideal

for small-scale network programs and a solid foundation for more complex

applications.

70

Chapter 9

UDP Sockets

UDP (User Datagram Protocol) is a connectionless protocol, making it a great

choice for applications that require fast, low-latency communication and can

tolerate occasional packet loss, such as video streaming or online gaming. Unlike

TCP, UDP does not guarantee the delivery or order of packets, and there is no need

to establish or terminate a connection.

Here's how to create a UDP client-server application in Python.

UDP Server Code

A UDP server listens on a specified IP address and port. When it receives data, it

processes it and can send a response back to the client.

71

UDP Client Code

The client sends data to the server and waits for a response. Since UDP is

connectionless, there is no need to establish or close a connection.

Running the Application

1. Start the Server:

o Save the server code in a file (e.g., udp_server.py) and run it in a

terminal

2. Run the Client:

o Save the client code in another file (e.g., udp_client.py).

o Open a separate terminal and run:

• Enter a message when prompted, and the client will send this message to the

server. The server will echo it back, and the client will display the server's

response.

72

Explanation of the Code
1. Server Code:

o The server creates a UDP socket and binds it to a specified host and

port.

o recvfrom() receives a message from any client along with the client's

address. Since UDP is connectionless, each message is independent.

o The server sends a response back to the client using sendto().

2. Client Code:

o The client sends a message to the server with sendto(), specifying the

server's address.

o It then waits for a response from the server using recvfrom().

UDP Key Differences and Considerations

• Connectionless: Unlike TCP, UDP does not establish a connection. Each

message is independent.

• No Guarantees: UDP does not guarantee message delivery or order.

Messages may be lost, duplicated, or arrive out of sequence.

• Lower Latency: UDP has lower overhead compared to TCP, making it

suitable for time-sensitive applications.

• Use Cases: Suitable for applications like DNS queries, online gaming, and

live video streaming where occasional packet loss is acceptable.

This example demonstrates a simple and efficient UDP-based client-server setup

for small applications or foundational learning on datagram-based communication.

73

Chapter 10

Security practices in socket programming

Security is a critical consideration in socket programming, as it involves data

communication over a network that could be susceptible to attacks such as

interception, modification, or denial of service. Here are some best practices to

enhance the security of socket-based applications in Python.

1. Use TLS/SSL for Encrypted Communication

Encrypting data in transit prevents eavesdroppers from reading sensitive

information. Use the ssl module in Python to wrap sockets with TLS/SSL.

Example of an Encrypted Socket Server

74

In this example, you’ll need to create a certificate and private key using tools like

openSSL.

Generating Certificates with OpenSSL

2.Implement Authentication and Authorization

Authentication verifies the client’s identity, while authorization ensures clients can

only access resources they are permitted to use. Here are two common methods:

• Client Certificate Authentication: In a more secure TLS setup, require clients

to present a valid certificate. You can use ssl.Purpose.CLIENT_AUTH to

enforce client certificates.

• Token-Based Authentication: The server may require clients to authenticate

using a token (e.g., a JWT) before allowing access to specific resources.

3. Use Non-Blocking Mode and Limit Connections

To prevent denial-of-service (DoS) attacks:

75

• Limit concurrent connections: Restrict the maximum number of

simultaneous clients to prevent resource exhaustion.

• Non-blocking sockets: Use non-blocking sockets or set timeouts to prevent

resource lock-ups from hanging clients.

Setting Socket Timeouts

4.Input Validation and Sanitization

To avoid injection attacks and unexpected crashes, validate all input from clients

before processing:

o Check for expected format and size: Restrict data length and ensure it

matches the expected structure.

o Encode and escape special characters if using user input in commands,

file paths, or database queries.

5.Handle Exceptions Securely

Ensure that any network-related or data-processing exceptions are handled

securely to avoid leaks or unintended behavior.

76

6. Log Security Events

Logging connection attempts, errors, and unusual behavior (e.g., repeated

invalid login attempts) helps detect suspicious activity and audit events.

7. Secure Configuration Settings

Use secure settings and configurations to harden your application:

• Bind to specific IP addresses: If your server should only be accessible within

a network, bind it to the private IP, e.g., 127.0.0.1.

• Randomize Ports: For added security, avoid using well-known ports if

possible.

• Set TCP options: You can set socket options to improve security and

performance, such as SO_REUSEADDR.

8. Update Python and Dependencies Regularly

77

Keep your Python interpreter and libraries up to date with security patches,

especially when using libraries that handle sensitive information, such as ssl or

cryptography.

9. Restrict Network Permissions

Limit the network permissions of your application to the minimum necessary,

especially if it runs on a server with sensitive information.

10. Avoid Hardcoding Sensitive Information

Sensitive information, such as API keys or passwords, should not be hardcoded.

Instead, use environment variables or secure secrets management tools.

By combining TLS/SSL, implementing authentication, validating input, logging

events, and using secure configurations, you can create a more secure socket-

based application. These practices are essential for mitigating risks and building

a more resilient and trustworthy networked application.

