

There are various problems in concurrency. Some of them are
as follows:

Program is passive entity stored on disk
(executable file), process is active

 Program becomes process when executable
file loaded into memory •

 Execution of program started via GUI mouse
clicks, command line entry of its name, etc •

 One program can be several processes

 counter++ could be implemented as

 register1 = counter

 register1 = register1 + 1

 counter = register1

 counter-- could be implemented as

 register2 = counter

 register2 = register2 - 1

 counter = register2

 Consider this execution interleaving with “count = 5” initially:

 S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that will
enter the critical section next cannot be postponed
indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes

 Two approaches depending on if kernel is
preemptive or non- preemptive
◦ Preemptive – allows preemption of process when

running in kernel mode

◦ Non-preemptive – runs until exits kernel mode,
blocks, or voluntarily yields CPU

 Essentially free of race conditions in kernel mode

do{
 while(turn!=i);
 critical section
 turn=j;
 reminder section

} while(1);

do{
 while(turn!=j);
 critical section
 turn=i;
 reminder section

} while(1);

pi pj

do{
 flag[i]:=true;
 while(flag[j]);
 critical section
 flag[i]=false;
 reminder
section
}while(1);

do{
 flag[j]:=true;
 while(flag[i]);
 critical section
 flag[j]=false;
 reminder
section
}while(1);

pi pj

Peterson's solution

//compiler optimizes to this:
Int32 x=0;
If(!s_stopWorker)
While(true) x++;
Console.WriteLine(“Worker: x={0}”, x);

Synchronization hardware

 Memory model are the memory guarantees a computer
architecture makes to application programs.

 Memory models may be either:

 Strongly ordered – where a memory modification of one
processor is immediately visible to all other processors.

 Weakly ordered – where a memory modification of one
processor may not be immediately visible to all other
processors.

 A memory barrier is an instruction that forces any change
in memory to be propagated (made visible) to all other
processors.

Atomic Variables

 Typically, instructions such as compare-and-
swap are used as building blocks for other
synchronization tools.

 One tool is an atomic variable that provides
atomic (uninterruptible) updates on basic
data types such as integers and booleans.

 For example, the increment() operation on
the atomic variable sequence ensures
sequence is incremented without
interruption:
increment(&sequence);

Atomic Variables
 The increment() function can be

implemented as follows:

void increment(atomic_int *v)

{

 int temp;

 do {

 temp = *v;

 }

 while (temp !=

(compare_and_swap(v,temp,temp+1));

}

Atomic Variables

semaphore

Priority inheritance protocol

System model

Resource allocation graph example

Resource allocation graph with a
deadlock

Graph with a cycle but no
Deadlock

Basic Facts

Safe State

Resource- Allocation Graph Scheme

Banker’s Algorithm

e

