Concurrency and
Parallels computing

What is Concurrency

» It refers to the execution of multiple instruction sequences at
the same time. It occurs in an operating system when multiple
process threads are executing concurrently. These threads can

interact with one another via shared memory or message

passing.

Interprocess communication

* Processes within a system may be independent or
cooperating

* Cooperating process can affect or be affected by other
processes, including sharing data.

* Cooperating processes need interprocess communication
(IPC)

* Two models of [PC:

» Shared memory

» Message passing

(a) Message passing. (b) shared memory.

process A — I: process A
-] process B shared memory
process B
message queue
—>Mp| My M2 M3 ... |Mp e
kemel
kernel

(@) (b)

Difference between

Concurrency and Parallelism in

Operating System

» Concurrency and parallelism are related but not the same
terms, and they are sometimes confused. The key distinction
between concurrency and parallelism is that concurrency is
concerned with dealing with several things simultaneously or
managing concurrent events while essentially hiding latency.

In contrast, parallelism is about doing multiple tasks

simultaneously that help to increase the system speed.

Problems in Concurrency

There are various problems in concurrency. Some of them are
as follows:

» Locating the programming errors

It's difficult to SfPOt a programming error because reports are usually repeatable due to the
varying states of shared components each time the code is executed.

» Sharing Global Resources

Sharing global resources is difficult. If two processes utilize a global variable and both
alter the variable's value, the order in which the many changes are executed is critical.

» Locking the channel

It could be inefficient for the OS to lock the resource and prevent other processes from
using it.

» Optimal Allocation of Resources

It is challenging for the OS to handle resource allocation properly

Concurrency and
Parallels computing

Process concept Program vs
process

Program is passive entity stored on disk
(executable file), process is active

» Program becomes process when executable
file loaded into memory -

» Execution of program started via GUlI mouse
clicks, command line entry of its name, etc -

~ One program can be several processes

Diagram of process state

/

interrupt exit

admitted

terminated

I/O or event completion schedulﬂer dispatch I/O or event wait

Background

0 Processes can execute concurrently

0 May be interrupted at any time, partially completing
execution

0 Concurrent access to shared data may result in data
inconsistency

0 Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

0 lllustration of the problem:
Suppose that we wanted to provide a solution to the

consumer-producer problem that fills a//the buffers. We can
do so by having an integer counter that keeps track of the

number of full buffers. Initially, counter is setto 0. Itis
incremented by the producer after it produces a new buffer
and is decremented by the consumer after it consumes a
buffer.

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER SIZE)
; /* do nothing */
buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

counter++;

Consumer

while (true) /{
while (counter == 0)

: /* do nothing */
next consumed = buffer[out]:
out = (out + 1) % BUFFER SIZE;
counter--;

/* consume the item in next consumed */

Race condition

B counter++ could be implemented as

registerl = counter
registerl = registerl + 1
counter = registerl

B counter-- could be implemented as
register2 = counter
register2 = register2 -1

counter = register2

m Consider this execution interleaving with “count = 57 initially:

SO: producer execute registerl = counter {registerl = 5}
S1: producer execute registerl = registerl + 1 {registerl = 6}
S2: consumer execute register?2 counter {register2 = 5}

S3: consumer execute register?2 register2 - 1 {register2 = 4}
S4: producer execute counter = registerl {counter = 6}
S5: consumer execute counter = register2 {counter = 4}

Race condition

® Processes P, and P, are creating child processs using the fork () system
call

®m Race condition on kernel variable next available pid which represents

the next available process identifier (pid)
R P

pid_t child = fork (); pid_t child = fork ();

request request
pid pid

©
£ next_available_pid = 2615
return return
2615 2615
child = 2615 child = 2615
Y

® Unless there is mutual exclusion, the same pid could be assigned to two
different processes!

Critical Section Problem

m Consider system of nprocesses{p, P --- Ppn.1}
m Each process has critical section segment of code
e Process may be changing common variables, updating
table, writing file, etc
e \When one process in critical section, no other may be in its
critical section
B Critical section problemis to design protocol to solve this

m Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,

then remainder section

Critical section

m General structure of process P;

do {

entry section

critical section

exit section

remainder section

} while (true);

Solution to Critical-Section
Problem

1. Mutual Exclusion - If process P;is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section
and there exist some ﬁrocesses that wish to enter their
critical section, then the selection of the processes that will
enter the critical section next cannot be postponed
indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the n processes

Critical-Section Handling in OS

Two approaches depending on if kernel is
preemptive or non- preemptive

° Preemptive - allows preemption of process when
running in kernel mode

° Non-preemptive - runs until exits kernel mode,
blocks, or voluntarily yields CPU

* Essentially free of race conditions in kernel mode

Concurrency and
Parallels computing

Algorithm 1 strict alternation

-0 Shared variables:

0 int turn;
initially turn = 0
1 turn - i = P, can enter its critical section
0 Process P,

do {
while (turn !'=1) ;
critical section
turn = j;
reminder section
} while (1);

dof dof
while(turn!=i); while(turn!=j);
critical section critical section

turn=j; turn=i;
reminder section reminder section

} while(1); } while(1);

Satisfies mutual exclusion, but not
progress

Algorithm 2

0 Shared variables

' boolean flag[2];
initially flag [0] = flag [1] = false.

1 flag [i] = true = P, ready to enter its critical section
0 Process P,

do {
flag[i] := true;
while (flag[j]) ;

critical section
flag [i] = false;
remainder section
} while (1);

o]
dof
flagli]:=true;
while(flag[j]);
critical section
flagli]=false;
reminder

section
Wwhile(1);

o]
dof
flag[j]:=true;
while(flagl[i]);
critical section
flag[j]=false;
reminder

section
Wwhile(1);

Satisfies mutual exclusion, but not progress

Algorithm 2

0 Shared variables

" boolean flag[2];
initially flag [0] = flag [1] = false.

1 flag [i] = true = P, ready to enter its critical section
0 Process P,

do {

while (flag[j]) ;
flag[i] ;= true; S, Swap

-

critical section
flag [i] = false;
remainder section
} while (1);

——

mutual exclusion is not satisfied

Peterson's solution

0 Not guaranteed to work on modern architectures! (But good
algorithmic description of solving the problem)

Two process solution

Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted

0 The two processes share two variables:
0 int turn;
0 boolean flag[2]

0 The variable turn indicates whose turn it is to enter the critical
section

0 The f£flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process P; is
ready!

Algorithm for Process P;

while (true) {
flad{i] = true;
turn = j;
while (flag[j] && turn = = j)

’

/* critical section */

flag[i] = false;

/* remainder section */

while (true) {
flag[i] = true;
turn = j;
while (flag[j] && turn = = j)

’

/* critical section */

flag[i])] = false;

/* remainder section */

while (true) {
flag(3)] = true;
turn“i i;
while (flag[j] && turn

’

/* critical section */

flag[j] = false;

/* remainder section */

Peterson's solution

0 Provable that the three CS requirement are met:
1. Mutual exclusion is preserved

P; enters CS only if:
either flag[j] = false Or turn = i

2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

Peterson's solution

0 Although useful for demonstrating an algorithm, Peterson’s Solution is not
guaranteed to work on modern architectures.

0 Understanding why it will not work is also useful for better understanding
race conditions.

0 To improve performance, processors and/or compilers may reorder
operations that have no dependencies.

For single-threaded this is ok as the result will always be the same.

For multithreaded the reordering may produce inconsistent or unexpected
results!

Code Optimizations Wreak Havoc
with Multiple Threads

// Compile with "/platform:x86 /0" and run it NOT under the debugger
internal static class StrangeBehavior {
private static Boolean s_stopWorker = false;

public static void Main() {
Console.WriteLine("Main: letting worker run for 5 seconds");
Thread t = new Thread(Worker); t.Start();
Thread.Sleep(5000);
s_stopWorker = true;
Console.WriteLine("Main: waiting for worker to stop");
t.Join();

private static void Worker(Object o) {
Int32 x = 0;
while (!s_stopWorker) x++;
Console.WriteLine("Worker: x={0}", x);

} g //lcompiler optimizes to this:

Int32 x=0;
If('s_stopWorker)

While(true) x++;
Console.WriteLine(“Worker: x={0}’, x);

Code Optimizations Cause Problems

class OutOfProgramOrder {
private Boolean m_flag
private Int32 m_value

false;
9;

public void Threadl() {
// These could execute in reverse order
m_value = 5;
m_flag = true;

}

public void Thread2() {
// m_value could be read before m_flag
if (m_flag)
Display(m_value); // Nothing or 5?

Two threads share the data:
boolean flag = false;
int x = 0;

Thread 1 performs

while ('flagqg)

print x

Thread 2 performs

x = 100;
flag = true

What is the expected output?

Peterson’s Solution

100 is the expected output.
However, the operations for Thread 2 may be reordered:

flag = true;
x = 100;

If this occurs, the output may be 0!
The effects of instruction reordering in Peterson’s Solution

process j ——» | turn =1 >| ﬂag[0]=true]—>| cs ;

process, ———————| turn = 0, flag(1] = true |——» | cs =

time

Synchronization hardware

0 Many systems provide hardware support for implementing the
critical section code.

0 Uniprocessors — could disable interrupts
0 Currently running code would execute without preemption
0 Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
0 We will look at three forms of hardware support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables

Memory Barriers

» Memory model are the memory guarantees a computer
architecture makes to application programs.

» Memory models may be either:

~ Strongly ordered - where a memory modification of one
processor is immediately visible to all other processors.

~ Weakly ordered - where a memory modification of one
processor may not be immediately visible to all other
processors.

» A memory barrier is an instruction that forces any change
in memory to be propagated (made visible) to all other
processors.

Memory Barrier

0 We could add a memory barrier to the following instructions to ensure
Thread 1 outputs 100:

0 Thread 1 now performs

while (!'flagqg)
memory barrier();
print Xx

0 Thread 2 now performs

x = 100;
memory barrier();
flag = true

Hardware Instructions

0 Special hardware instructions that allow us to either fest-and-modify the
content of a word, or to swap the contents of two words atomically
(uninterruptibly.)

Test-and-Set instruction
0 Compare-and-Swap instruction

Atomic Variables

» Typically, instructions such as compare-and-
swap are used as building blocks for other
synchronization tools.

» One tool is an atomic variable that provides
atomic (uninterruptible) updates on basic
data types such as integers and booleans.

» For example, the increment () operation on
the atomic variable sequence ensures

sequence IS incremented without

Interruption:

increment (&sequence) ;

Atomic Variables

» The increment () function can be
implemented as follows:

void increment (atomic int *v)

{

int temp;

do {
temp = *v;

}
while (temp !=
(compare and swap (v, temp, temp+l)) ;

}

Atomic Variables

It is important to note that although atomic variables provide atomic
updates, they do not entirely solve race conditions in all circumstances. For
example, in the bounded-buffer problem described in Section 6.1, we could use
an atomic integer for count. This would ensure that the updates to count were
atomic. However, the producer and consumer processes also have while loops
whose condition depends on the value of count. Consider a situation in which
the buffer is currently empty and two consumers are looping while waiting for
count > 0. If a producer entered one item in the buffer, both consumers could
exit their while loops (as count would no longer be equal to 0) and proceed to
consume, even though the value of count was only set to 1.

Solution to the critical
section problem

semaphore

* Semaphore S — integer variable
* Can only be accessed via two indivisible (atomic) operations
— wait() and signal()
* Originally called P() and V()
* Definition of the wait() operation
wait(s) {
while (S <= 9)
5 // busy wait
S==3
}
* Definition of the signal() operation
signal(s) {
S++;

}

Semaphore

* To overcome the problem of busy waiting in semaphore,
we can modify the defining of the wait and signal operation.

* When a process executes the wait operation and find the
value of semaphore is not positive, it must wait. However
rather than engaging in a busy waiting, the process can block
itself 1in waiting queue associated with each semaphore.

* In this case the state of the process is waiting in the
semaphore queue.

Implementation of wait: Implementation of signal:

wait (S){ Signal (S){

value--; value++;

if (value < 0) { if (value <= 0) {

add this remove a

process to waiting queue process P from the waiting queue
block(); } wakeup(P); }

} }

Queue Semaphore

Critical Section

* Deadlock — two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes.

* LetS and Q be two semaphores initialized to 1

PO
wait(S);
wait(Q);

signal(S);
signal(Q);

Pl
wait(Q);
wait(S);

signal(Q);
signal(S);

0 Other forms of deadlock:

Starvation - indefinite blocking

0 A process may never be removed from the semaphore queue in which it is
suspended

0 Priority Inversion — Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

0 Solved via priority-inheritance protocol

Priority inheritance protocol

0 Consider the scenario with three processes P1, P2, and P3. P1 has
the highest priority, P2 the next highest, and P3 the lowest. Assume a
resouce P3 is assigned a resource R that P1 wants. Thus, P1 must
wait for P3 to finish using the resource. However, P2 becomes
runnable and preempts P3. What has happened is that P2 - a process
with a lower priority than P1 - has indirectly prevented P3 from gaining
acdaess to the resource.

0 To prevent this from occurring, a priority inheritance protocol is
used. This simply allows the priority of the highest thread waiting to
access a shared resource to be assigned to the thread currently using
the resource. Thus, the current owner of the resource is assigned the
priority of the highest priority thread wishing to acquire the resource.

System model

0 System consists of resources
0 Resourcetypes Ry, R,, ..., R,
CPU cycles, memory space, l/0O devices

0 Each resource type R has W/ instances.
0 Each process utilizes a resource as follows:

0 request

0 use

0 release

p—

Deadlock in Multithreaded
Applications

/* thread_one runs in this function */
void *do_work_one(void *param)
{
pthread mutex_lock(&first _mutex) ;
pthread mutex_lock(&second mutex) ;
/%%
* Do some work
*/
pthread_mutex_unlock(&second_mutex) ;
pthread mutex_unlock (&first_mutex) ;

pthread_exit(0);

}

/* thread_two runs in this function */
void *do_work_two(void *param)
{
pthread_mutex_lock(&second mutex) ;
pthread mutex_lock(&first_mutex) ;
/%%
* Do some work
x/
pthread mutex unlock(&first mutex) ;
pthread mutex._unlock(&second-mutex) ;

pthread_exit(0);

Deadlock in Multithreaded
Applications

0 Deadlock is possible if thread 1 acquires first mutex and thread 2
acquires second mutex. Thread 1 then waits for second mutex and

thread 2 waits for 1 first mutex.
0 Can be illustrated with a resource allocation graph:

first_mutex second_mutex

7

thread_two

Deadlock characterization

Deadlock can arise if four conditions hold simultaneously.

0 Mutual exclusion: only one process at a time can use a
resource

0 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

0 No preemption: aresource can be released only voluntarily
by the process holding it, after that process has completed
its task

0 Circular wait: there exists a set {P,, Py, ..., P,} of waiting
processes such that P, is waiting for a resource that 1s held
by P;, P, 1s waiting for a resource that 1s held by P,, ..., P, |

1s waiting for a resource that is held by P,, and P, is waiting

for a resource that is held by P,,.

W —_

Resource allocation graph

A set of vertices Vand a set of edges E.

0 Vis partitioned into two types:

0o P={F,, P, ..., P}, the set consisting of all the processes
in the system

0 R={Ry, R,, ..., R}, the set consisting of all resource
types in the system

0 request edge — directed edge P,— R,

0 assignment edge — directed edge @-—> P;

Resource allocation graph example

. R, R,
0 One instance of R1
0 Two instances of R2 \ \
0 One instance of R3
. 2BRG

0 Three instance of R4
0 T1 holds one instance of R2 and is

waiting for an instance of R1 \./
0 T2 holds one instance of R1, one * .

instance of R2, and is waiting for an R, .

instance of R3 R,

0 T3 is holds one instance of R3

Resource allocation graph with a
deadlock

R, R,

E] E)
\ \

\

Graph with a cycle but no
Deadlock

R,

i\

JRVAN

Basic Facts

0 |If graph contains no cycles = no deadlock
0 If graph contains a cycle =
0 if only one instance per resource type, then deadlock

0 if several instances per resource type, possibility of
deadlock

Methods for handling Deadlocks

0 Ensure that the system will never enter a deadlock
state:

0 Deadlock prevention
0 Deadlock avoidance

0 Allow the system to enter a deadlock state and then
recover

0 Ignore the problem and pretend that deadlocks never
occur in the system.

Deadlock prevention

Invalidate one of the four necessary conditions for deadlock:

0 Mutual Exclusion — not required for sharable resources
(e.qg., read-only files); must hold for non-sharable resources

0 Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

0 Require process to request and be allocated all its
resources before it begins execution, or allow process
to request resources only when the process has none
allocated to it.

0 Low resource utilization; starvation possible

0 No Preemption —

0 If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released

0 Preempted resources are added to the list of resources
for which the process is waiting

0 Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

0 Circular Wait — impose a total ordering of all resource types,
and require that each process requests resources in an
increasing order of enumeration

Solution to the critical
section problem

Deadlock avoidance

Requires that the system has some additional a prioriinformation
available

0 Simplest and most useful model requires that each process
declare the maximum number of resources of each type
that it may need

0 The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can never
be a circular-wait condition

0 Resource-allocation sfateis defined by the number of
available and allocated resources, and the maximum
demands of the processes

Safe State

0 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

0 System is in safe state if there exists a sequence <P,, P,, ..., P>
of ALL the processes in the systems such that for each P;, the
resources that P, can still request can be satisfied by currently
available resources + resources held by all the 2, with j< /

0 Thatis:

0 If P, resource needs are not immediately available, then 2, can
wait until all Z,have finished

0 When F;is finished, 7, can obtain needed resources, execute,
return allocated resources, and terminate

0 When P, terminates, A, .4 can obtain its needed resources, and
SO on

Basic Facts

0 If a system is in safe state = no deadlocks

0 |If a system is in unsafe state — possibility of deadlock

0 Avoidance = ensure that a system will never enter an
unsafe state.

Avoidance Algorithms

0 Single instance of a resource type
1 Use a resource-allocation graph

0 Multiple instances of a resource type
0 Use the Banker’ s Algorithm

Resource- Allocation Graph Scheme

0 Claim edge P, — R;indicated that process /, may request
resource R, represented by a dashed line

0 Claim edge converts to request edge when a process requests
a resource

0 Request edge converted to an assignment edge when the
resource is allocated to the process

0 When a resource is released by a process, assignment edge
reconverts to a claim edge

0 Resources must be claimed & prior/in the system

Resource-Allocation Graph

R,

Unsafe State In Resource-Allocation Graph

R.

Resource-Allocation Graph Algorithm

Suppose that process £, requests a resource R,

The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource allocation
graph

Banker’s Algorithm

0 Multiple instances of resources
0 Each process must a priori claim maximum use

0 When a process requests a resource it may have to wait

0 When a process gets all its resources it must return them in a
finite amount of time

To illustrate, consider a system with twelve resources and three threads:
T,, T, and T,. Thread T, requires ten resources, thread T, may need as many
as four, and thread T, may need up to nine resources. Suppose that, at time

ty, thread T, is holding five resources, thread T, is holding two r‘j%(:urccs, and
thread T, is holding two resources. (Thus, there are three free resurces.)

Maximum Needs Current Needs

" 10 5
T, 4 2
T, 9 2

Data Structures for Banker’s
Algorithm

Let 7= number of processes, and /7 = number of resources types.

0 Available: Vector of length /. If available [] = 4, there are k&
instances of resource type &, available

0 Max: n x mmatrix. If Max[/j] = k, then process P, may request at
most kinstances of resource type R,

0 Allocation: nx mmatrix. If Allocation[//] = Athen P;is currently
allocated kinstances of A,

0 Need. nx mmatrix. If Needij] = k, then P,may need A more
instances of R;to complete its task

Need (i j]= Maxij — Allocation [i,/

Safety Algorithm

1. Let Work and Finish be vectors of length /77 and n, respecti
Initialize:

Work = Available
Finish [= falsefor i=0,1, ..., n-1

2. Find an 7such that both:
(a) Finish []] = false
(b) Need,; < Work
If no such 7exists, go to step 4

3. Work= Work + Allocation;
Finish{] = true
go to step 2

4. If Finish [== true for all /, then the system is in a safe state

Resource-Request Algorithm for Process £;

Request; = request vector for process P, If Request;[j] = kthen
process P;wants kinstances of resource type R;

1. If Request; < Need;go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Request; < Available, go to step 3. Otherwise P; must wait,
since resources are not available

3. Pretend to allocate requested resources to P;by modifying the
state as follows:

Available = Available — Request;,
Allocation;= Allocation;+ Request,;
Need;= Need,- Request;

1 If safe = the resources are allocated to P;

0 If unsafe = P;must wait, and the old resource-allocation state
is restored

0 S processes A, through £j;
3 resource types:

A (10 instances), B (dSinstances), and C (7 instances)
0 Snapshot at time 7

Allocation Max Avallable
ABC ABC ABC
P, 010 793 334
P, 200 322
P, 302 902
Py 219 2:2.2

P 002 433

The content of the matrix Need is defined to be Max — Allocation

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

The system is in a safe state since the sequence < P,, P, Py, P, Fp>
satisfies safety criteria

Available

Need

Max

Allocation

p0O
pl

p2

p3

pa

