Ischemic Heart Disease (IHD)

There are two coronary arteries – left & right – originate from the root of ascending aorta.

1- **Left coronary artery** : Passes forward & to the left in the left atrioventricular

groove for a short distance & then divides into :

a) **Anterior descending artery :** passes downward in anterior interventricular groove to the apex & then turns backward to meet *posterior descending artery*.

b) **Circumflex artery :** runs posteriorly in the left atrioventricular groove to meet the *right coronary* .

2- **Right coronary artery** : runs in right atrioventricular groove to the posterior surface of the heart to meet the *circumflex artery*.

posteriorly, it gives the **posterior descending artery** which runs in the posterior interventricular groove to meet the *anterior descending artery*.

Balanced circulation:

- The left coronary artery supplies :

LA, LV, anterior wall of interventricular septum.

- The right coronary artery supplies :

RA, RV, posterior wall of interventricular septum.

Left coronary predominance :

-The left coronary supplies also: posterior wall of right ventricle.

Right coronary predominance :

- The right coronary supplies also: posterior wall of left ventricle .

□ Asymptomatic (*silent*).

□ Angina.

□ Myocardial infarction.

□ Heart failure.

 \Box Arrhythmia.

 \Box Sudden death

Angina Pectoris

Definition :

It is a **clinical syndrome** of chest pain due to imbalance between oxygen supply & demands of the myocardium.

Etiology :

I.

1) Decrease in quantity :

a) Coronary artery disease :

□ Atherosclerosis. (*most common cause*)

 \Box Arteritis : polyarteritis nodosa , SLE .

□ Coronary spasm .

 \Box Coronary embolism .

 $\hfill\square$ Coronary osteial stenosis of syphilis .

 \Box Congenital anomalies .

b) As a part of $\boldsymbol{LCOP}:\boldsymbol{AS}$, \boldsymbol{LSHF} .

2) Decrease in quality :

 \Box Anemia.

□ Hypoxia.

II.

 \Box Ventricular hypertrophy .

□ Tachycardia .

Risk factors for atherosclerosis:

Non modifiable :

□ Age .

 \Box Sex : male > female .

 \Box +ve family history .

Modifiable :

□ **Hyper**tension : cause endothelial damage.

□ **Hyper**glycemia

 \Box **Hyper**lipidemia especially LDL .

□ **Hyper**uricemia .

 \Box Sedentary life style .

 \Box Smoking.

 $\hfill\square$ Stress & type A personality .

Clinical picture :

Symptoms : Chest pain with the following 7 criteria :

Common (classic) Less common Never

1) Site :
Retrosternal

Often the patient places his

clenched hand over the upper

sternum.

Any site of i chest:

 \Box Scapular.

□ Infraclavicular.

 \Box Epigastrium.

□ Left infra mammary

Detient never

points with his

finger.

2) Character: \Box Compressing.

 \Box Constricting.

 \Box Heaviness.

□ Squeezing.

 \Box Burning. \Box

□ Discomfort.

 \Box Stitching.

 \Box Pricking.

3) Radiation : \Box Left shoulder &

inner side of the left

arm up to little

finger.

 \Box Neck, jaw or teeth.

 \Box Right shoulder.

 \Box Back.

 \Box Epigastric area.

 \Box Below epigastrium.

4) Duration : Less than 15 min More than 15 min Never seconds or hours.

5) Precipitating factors :

- Exercise. - Cold weather. - Heavy meals. - Smoking.

- Sexual intercourse - Stress .

N.B : Many patients report a fixed threshold for angina, which occurs

predictably at a certain level of activity.

6) Relieving factors :

- Rest, but occasionally the pain disappears with continued exercise (walk through angin a)

- Sublingual nitrates.

7) Association :

- Sweating - Dizziness - Dyspnea :may occur due to LVF .

- Fear of death (angor animi) - Eructation at the end of the attack.

Signs: (during the attack) usually no abnormal finding

o Pallor, tachycardia & hypertension (secondary to sympathetic stimulation).

o S1: weak.

o S2: reversed splitting.

o S_3 : due to LVF.

o Murmur of MR : due to papillary muscle dysfunction.

o In between the attacks : Physical examination is important to exclude anemia &

valvular stenosis.

NB : I can say that the great significance of cardiac examination in a case of Angina is just

for reassurance & no one can blame me !!!!!!!

Types of Angina :

1) Stable angina: (typical)

o The pain is relatively constant as regard to severity, precipitating factors & relief.

o Same amount of exercise always reproduces the pain & relieved by rest.

2) Unstable angina : (is considered intermediate syndrome between stable

angina & MI)

i. Change in the character of existing chronic angina: ↑ frequency, severity or duration

ii. Angina of **r**ecent onset .

iii. Angina at rest .

iv. Post infarction angina is considered unstable angina .

3) Variant angina : (*Prinzmetal's angina*)

□ Caused by **spasm** of coronary artery with or without underlying atherosclerosis .

□ Unpredictable , at rest .

 $\hfill\square$ Transient ST elevation on ECG .

□ Treatment :

 \Box β blockers are **contraindicated** (\uparrow *coronary spasm*) .

□ Nitrate & Ca Channel blockers are drugs of choice.

Decubitus Angina : usually on lying down (occurs in HF).

Nocturnal Angina : It awakens the patient from sleep , associated with dreaming .

Angina of Lewis : in cases of AR, it is nocturnal & prolonged.

Acute coronary syndrome :MI & unstable angina .

Investigation :

1-ECG:

A) Resting ECG :

□ In between the attacks :

 \Box usually normal.

 $\hfill\square$ ECG of old MI .

During the attack:

□ ST segment : depressed. (*more than 1mm*)

 \Box T wave : Inverted .

B) Exercise ECG : (in between the attacks only)

- The patient is exercises on a treadmill & ECG changes & vital signs are recorded.

- Stress test can be done with dobutamine in patients unable to do exertion.

- Stress test is considered +ve when : *one or more* of these changes are present :

□ **Symptom** : Typical anginal pain during the test.

□ Sign : Fall in blood pressure (10 mmHg or more) suggests ischemia

 \Box **ECG** : Depressed ST segment > 1mm .

NB : Exercise test can be **misleading** as there are :

 \Box False negative test : So normal test doesn't exclude IHD .

□ False positive test :especially in patients with left ventricular hypertrophy.

Stress test is contraindicated in :

- Acute attacks. - Severe AS.

- Severe hypertension. - Congestive heart failure.

- Orthopedic problems.

2- Echo & dobutamine Echo : may show abnormal motion of the myocardium .

3- Cardiac scan : (Radioactive Thallium 201)

Thallium 201: is taken up by healthy myocardium & not by ischemic myocardium (*cold spot*)

4- Coronary angiography: (coronary catheter)

 $\hfill\square$ To detect the site & severity of coronary occlusion.

 $\hfill\square$ It's generally used to determine whether mechanical revascularization

(CABG

or PTCA) is possible & to guide this therapy.

5- Laboratory investigations:

 $\hfill\square$ For risk factors :Blood glucose level , Plasma lipid (cholesterol).

 $\hfill\square$ Cardiac enzymes : normal .

Treatment : 4

 \square Reassurance & sedation. \square No smoking.

 \Box Treatment of hyperlipidemia. \Box Control of hypertension.

 \Box Control of diabetes. \Box Weight loss.

 \Box Change of life style (regular exercise program).

in between the attacks

i. Nitrates :

Action :

 \Box Venodilator \Box \Box preload (venous return) \Box \Box myocardial oxygen demand.

 $\hfill\square$ Coronary dilatation $\hfill\square$ increase coronary blood flow. (mild effect)

Preparation :

□ Nitroglycerine (*nitromack*) : 2.5 mg twice daily orally or transdermal patches.

□ Isosorbid dinitrate (*dinitra*) : 10-20 mg twice daily.

 \Box Isosorbid mononitrate (*effox*): 20-40 mg twice daily.

Side effects :

□ **H**eadache.

□ **H**ypotension.

□ Tolerance : so start with minimal effective dose with nitrate free interval periods.

ii. β blockers :

Action :

Reduce oxygen demand since they reduce heart rate, blood pressure & contractility.

Preparation :

 $\hfill\square$ Propranolol (indral) : non selective β blocker .

 $\hfill\square$ Atenolol (ateno), Metoprolol (betaloc) , Bisoprolol (concor) : Selective β blockers.

 \square Carvedilol (cardilol) : β blocker with an arteriolar vasodilating action.

Side effects :

□ Lung : **B**ronchospasm.

 \Box Heart : Bradycardia , Heart block.

□ Depression , Impotence.

iii. Calcium channel blockers :

Action :

 \Box Reduce oxygen demand by : \Box -ve inotropic action.

 \Box \Box afterload (arteriolar dilators).

□ Coronary dilator : increase coronary blood flow (*effective in variant*

angina)

Preparation :

 \Box Verapamil (*Isopten*): great -ve inotropic & weak vasodilator: 80 mg

t.d.s.

 \Box Diltiazem : 60 mg twice daily.

 \Box Nifedipine (*adalat*): mainly vasodilator & weak -ve inotropic: 10 - 20

mg t.d.s.

□ Recently : **Amlodipine** (*norvasc*) : mainly vasodilator .

Side effects :

□ Headache.

□ Hypotension.

□ Precipitation of Heart failure.

Peripheral edema.

□ Verapamil & Diltiazem : bradycardia & heart block.

iv. Antiplatelet :

□ **Aspirin** : 75 mg single dose : it improves the prognosis.

□ Clopidogrel (*plavix*) :expensive.

Indications :

□ Angina not responding to medical treatment.

 \Box Post infarction angina to improve the prognosis.

Techniques :

1- PTCA (Percutaneous Transluminal Coronary Angioplasty):

Introduction of balloon or *stent* to dilate the stenotic artery(*balloon-tipped catheter*)

Indication of PTCA :

Stenosis of one or two vessels only (except left main coronary artery)

2- CABG (Coronary Artery Bypass Graft):

Grafting a piece of saphenous vein or internal mammary artery between the aorta &

the coronary artery distal to any obstruction.

Indication of CABG :

 \Box Stenosis of 3 or more vessels.

 $\hfill\square$ Stenosis of left main coronary artery.

 \Box Complete rest.

 $\hfill\square$ Nitroglycerine (0.5 mg) or isosorbide dinitrate (5mg) sublingually &

repeated up to 3

times successively with interval of 3 minutes.

NB : If the patient is not relieved after the use of 2-3 tablets ,the patient should be *immediately*

transferred to hospital & evaluated for the possibility of myocardial infarction.

Myocardial infarction

Definition :

Ischemic necrosis of part of the cardiac muscle due to sudden , persistent

& complete

cessation of its blood supply.

Etiology :

□ Thrombosis on top of atherosclerosis. ♫♫

- $\hfill\square$ Coronary embolism (rare).
- \Box Severe coronary spasm.

Pathology :

Site:

1- Occlusion of the left anterior descending artery \Box anterior infarction.

- 2- Occlusion of the circumflex artery \Box lateral infarction.
- 3- Occlusion of the right coronary artery \Box inferior infarction.

Types :

□ Transmural infarction (ST elevation myocardial infarction - STEMI

): infarction of full

thickness of the ventricular wall.

□ Subendocardial infarction (Non ST elevation myocardial infarction -NSTEMI) :

Transient or incomplete vessel occlusion.

Clinical picture : Pain and/or complications

I. Similar to *angina* but :

□ More severe, it may be severe enough to be described as the worst pain the patient has ever felt.

□ Radiates more : may below epigastric area but never below umbilicus.

 \Box More prolonged : up to several hours.

□ Unrelated to precipitating factors : may at rest.

□ Not relieved by rest or sublingual nitrate.

□ Associations: like angina & may also associated with complications.

NB: Painless infarction:

o Elderly.

o Diabetic neuropathy.

o Patient under anesthesia.

o Transplanted heart (denervated).

II. 6 early & 6 late

Early complications : 6 items

1- Shock : see p133

Cardiogenic shock Neurogenic shock

Caused by massive infarction (> 40% of the

cardiac muscle) leading to severe pump failure

& high jugular venous pressure.

C/P: Hypotension , tachycardia ,pulmonary edema.

ttt: The same as acute pulmonary edema &

mechanical assist devices: intraaortic

balloon counterpulsation.

Prognosis : very bad.

Caused by severe pain (vagal stimulation).

C/P: Hypotension, bradycardia.

ttt: morphine.

Prognosis : good .

2- Acute heart failure : with normal heart size.

3- Arrhythmia :

- All types may occur.
- The most serious are : VT, CHB.

4- Myocardial rupture :

 \Box Rupture of the septum \Box acquired VSD .

 \Box Rupture of papillary muscles \Box acute MR \Box acute heart failure.

□ Rupture of the ventricular free wall □ blood fills the pericardium □ cardiac tamponade.

5- Dry pericarditis : Hemorrhagic pericardial effusion may develop

especially with

thrombolytic therapy.

6- Sudden death:

 \Box Arrhythmia (VT , VF) : most deaths occur during few hours after MI .

□ Acute heart failure.

 \Box Cardiogenic shock.

□ Cardiac rupture.

Late complications : 6 items

1- Post infarction syndrome : (Dressler's syndrome) within 4 weeks or

more

Autoimmune phenomenon in response to necrotic cardiac tissue

characterized by :

- Pericarditis - Pleurisy - Pneumonitis -fever.

2- Post infarction angina :

Due to affection of other diseased coronaries.

3- Myocardial aneurysm : (dilatation of the scar tissue of MI)

 $\hfill\square$ On examination : double apex .

 $\hfill\square$ ECG : persistent ST segment elevation .

□ Fate : - **R**efractory heart failure.

- **R**upture aneurysm.

- Recurrent embolism.

- Recurrent arrhythmia.

4- Thrombo-embolism :

□ **Mural thrombosis** :(*infarction* □ *rough surface* □ *thrombosis* □

systemic emboli)

 \Box **DVT** : due to prolonged recumbency \Box pulmonary embolism .

5- Frozen shoulder : stiffness with limitation of movement due to :

Pain \square reflex arteriolar spasm & ischemia.

 \square may be psychic.

6- Complications of treatment: anticoagulant, prolonged bed rest,....

Signs : (not specific) nothing or anything

 $\hfill\square$ The physical examination may be entirely normal.

 $\hfill\square$ **P**allor , sweating , nausea , vomiting & fever.

 \square **P**ulse :

o Tachycardia : sympathetic stimulation , cardiogenic shock .

o Bradycardia : neurogenic shock , HB , inferior MI.

o Irregular : arrhythmias.

o weak : LVF.

NB : Bradycardia is often seen with inferior MI because the right

coronary artery

supplies the SA node.

□ **B**lood pressure :

o Hypertension : sympathetic stimulation .

o Hypotension : LVF , shock .

□ Cardiac auscultation :

o S1 : weak.

o S2 : reversed splitting.

o S3 : due to LVF.

o S4 : due to decreased myocardial compliance.

o Murmur : of MR , VSD .

o Pericardial rub : Dry pericarditis.

 \Box Congested neck vein : in right ventricular infarction.

Differential Diagnosis :

Causes of acute chest pain :

o Ischemic heart diseases : Angina, MI.

o Pulmonary embolism.

o Aortic dissection.

o Pneumothorax.

o Acute dry pericarditis.

o Cardiac neurosis.

o Esophageal spasm, Perforating peptic ulcer, Cholecystitis.

Investigations:

1- Cardiac enzymes :

Cardiac enzymes are released into blood from necrotic heart muscle after

an acute MI.

Marker Initial rise Return to normal Notes

Creatine phosphokinase

(CPK)

4-8 h 2-4 days Non specific because it

may rise in damaged

skeletal muscles or brain.

CPK-MB 4-8 h 2-4 days It's isoenzyme of CPK,

specific to cardiac muscle

Lactic dehydrogenase

(*LDH*)

10 h 1-2 weeks Not specific .

Troponin (cTnT , cTnI) 2-6 h 1 week Most sensitive & specific

markers of myocardial

damage .

2- ECG :

$\hfill\square$ In transmural infarction (ST Elevation MI):

1. Convex **elevation** of ST segment .

2. **T wave :**

□ Tall (hyperacute) in the first few minutes after vessel occlusion (*the earliest change*)

 $\hfill\square$ later on : Inverted T wave (representing sever ischemia)

3. Finally, **pathological Q waves** occur, representing significant

myocardial necrosis

& replacement by scar tissue.

$\hfill\square$ In subendocardial infarction (Non ST Elevation MI) :

- 1. ST segment : normal or depressed.
- 2. No pathological Q waves (non Q wave MI)
- 3. T wave : inverted.

NB: The ECG may be normal during the first few hours of infarction .

In old MI : The only residual change is the pathological Q wave.

3- Echocardiography :

□ Ventricular wall motion abnormalities.

 $\hfill\square$ Complications : MR , myocardial aneurysm.

4- Cardiac scan : Like angina .

5- Coronary angiography :

reveals which vessels have been affected and the extent of damage.

6- Leukocytosis , \uparrow **ESR :** as there is tissue damage.

Treatment : 3 🗆 🗆

I.

1- Rapid transfer to hospital is a must (Time lost is lives lost) .

- 2- Oxygen inhalation.
- 3- Analgesics for pain \square Morphine 5 10 mg IV

4- For ventricular arrhythmias \Box Lidocaine 50 – 100 mg IV ??

5- For heart block \Box Atropine 0.5 - 1 mg IV.

II.

1- General :

a. Admission to CCU (coronary care unit) with hemodynamic monitoring

& continuous ECG

b. Oxygen inhalation .

c. Complete rest .

d. Diet : Light frequent meals & avoid constipation .

e. Sedative : Diazepam .

f. Aspirin : is now considered an essential element (325 mg initial dose then75 mg daily-oral)

g. ACE Inhibitor: Oral therapy e.g. Lisinopril 5mg on day1 & 2, then 10 mg daily.

NB : ACE Inhibitors are vasodilator that reduce cardiac work & decrease myocardial energy requirement .

ACE Inhibitors also have inhibitory effect on the cardiac **remodeling**.

2- Relieving of chest pain :

a. Morphine (4 mg IV every 5 to 10 minutes as needed)

b. Nitroglycerine .

c. β blockers .

3- Thrombolytic therapy : (time is muscle)

- The earlier that thrombolytic therapy is given after the onset of chest

pain, the greater the

benefit (thrombolytic therapy is beneficial up to 6 hours but may be given for up to 12 hours)

Drugs :

o Streptokinase : 1.5 million units IV over 60 min. may cause allergy .

o Urokinase .

o Alteplase (tissue plasminogen activator - tPA)

The important issue in thrombolytic therapy is not which drug to use, but how quickly to use it .

- Anticoagulant (*heparin*) & antiplatetelet (*aspirin*) are given with & after thrombolytic

therapy to reduce the risk of reocclusion.

Contrindication : the major risk is Bleeding

□ Bleeding disorders.

 \Box Major surgery within past 2 weeks .

 \Box Recent cerebral hemorrhage within past 12 months.

 $\hfill\square$ Active internal bleeding e.g. peptic ulcer.

 \Box Sever hypertension.

 $\hfill\square$ Diabetic retinopathy with recent bleed.

□ Aortic dissection.

Pericarditis.

4- Angioplasty : Percutaneous Transluminal Coronary Angioplasty (

PTCA):

- Introduction of balloon or stent to dilate the stenotic artery (balloon-

tipped catheter)

- More effective than thrombolytic therapy (fewer complication , shorter

hospitalization).

to relieve pain of post infarction angina.

5- Treatment of early complications : e.g. :

 \Box Acute heart failure .

 \Box Arrhythmia.

 \Box Cardiogenic shock.

III.

1. Reassurance & rehabilitation (gradual return to normal activity).

2. Treatment of post infarction angina.

3. Treatment of precipitating factors e.g. hyperlipidemia .

4. Treatment of late complications e.g. myocardial aneurysm : aneurysmectomy .

5. Aspirin & β blockers (*decrease the risk of post infarction angina* & *reinfarction*).

Acute coronary syndrome :

1- Unstable angina.

2- ST elevation MI.

3- Non ST elevation MI.

Percutaneous Transluminal Coronary Angioplasty

(PTCA)

N.B: Source:

In Capsule Series

Internal Medicine

Cardiology

Second edition

By :

Dr. Ahmad M.Mowafy