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Mathematics and mathematical modelling are of central importance 

in computer science. For this reason the teaching concepts of 

mathematics in computer science have to be constantly 

reconsidered, and the choice of material and the motivation 

have to be adapted. This applies in particular to mathematical 

analysis, whose significance has to be conveyed in an environment 

where thinking in discrete structures is predominant. On the one 

hand, an analysis course in computer science has to cover the 

essential basic knowledge. On the other hand, it has to convey the 

importance of mathematical analysis in applications, especially 

those which will be encountered by computer scientists in their 

professional life.  
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Real-Valued Functions 

The notion of a function is the mathematical way of formalizing the idea that 

one or more independent quantities are assigned to one or more dependent 

quantities. Functions in general and their investigation are at the core of 

analysis. They help to model dependencies of variable quantities, from simple 

planar graphs, curves and surfaces in space to solutions of differential 

equations or the algorithmic construction of fractals. This chapter serves to 

introduce the basic concepts. The most important examples of real-valued, 

elementary functions are discussed here. These include the power functions, 

the exponential functions and their inverses.  

Basic Notions 

The simplest case of a real-valued function is a doula-row list of numbers, 

consisting of values from an independent quantity 𝑥 and corresponding values 

of a dependent quantity. 

Experiment.  To study the mapping 2y x . First choose the region D  in 

which the x -values should vary, for instance { : 1 1}D x x     . Using 

𝑦 = 𝑥2 a row vector of the same length of corresponding y -value is 

generated. Finally plots the points (𝑥1, 𝑦1), ⋯ , (𝑥𝑛, 𝑦𝑛)  in the coordinate 
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plane and connects them with line segments. The result can be seen in the 

following figure. 

 

Definition 1. A real-valued function 𝑓 with domain 𝐷 and range 𝑅 is a rule 

which assigns to every 𝑥 ∈ 𝐷 a real number 𝑦 ∈ 𝑅. 

In general, 𝐷 is an arbitrary set. In this section, however, it will be a subset of 

ℝ (the set of all real numbers). For the expression function we also use the 

word mapping. A function is denoted by 

𝑓: 𝐷 → ℝ, 𝑥 ⟼ 𝑦 = 𝑓(𝑥) 

The graph of a function 𝑓 is the set of all points (𝑥, 𝑦) with 𝑥 ∈ 𝐷, 𝑦 = 𝑓(𝑥). 

Example 1.  A part of the graph of the quadratic function 𝑓: ℝ → ℝ, 𝑓 (𝑥)  =

 𝑥2 

is shown as 
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 If one chooses the domain to be 𝐷 = ℝ, then the image is the interval 

𝑓 (𝐷)  = [0, ∞). 

Definition 2. (a) A function 𝑓: 𝐷 → 𝐵 is called injective or one-to-one, if 

different values of 𝑥 always have different function values 𝑓(𝑥): 

𝑥1 ≠ 𝑥2 ⇒  𝑓(𝑥1) ≠  𝑓(𝑥2). 

(b) A function 𝑓: 𝐷 → 𝐵 ⊂ ℝ is called surjective or onto from 𝐷 to 𝐵, if each 

𝑦 ∈ 𝐵 appears as a function value: 

∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐷 ; 𝑦 = 𝑓(𝑥). 

(c) A function 𝑓 =  𝐷 → 𝐵 is called bijective if it is injective and surjective. 

Subjectivity can always be enforced to reducing the range 𝐵; for example, 

𝑓: 𝐷 → 𝑓(𝐷) is always surjective. Likewise, injectivity can be obtained by 

restricting the domain to a subdomain. with 𝑦 = 𝑓(𝑥). The mapping  𝑥 ⟼

𝑓(𝑥) then defines the inverse of the mapping 𝑥 ↦  𝑦. 
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Bijectivity and inverse function 

Definition 3. If the function 𝑓 = 𝐷 →  𝐵:  𝑦 = 𝑓(𝑥) is bijective, then the 

function 𝑓−1: 𝐵 → 𝐷:  𝑥 = 𝑓−1(𝑦) which maps each 𝑦 ∈ 𝐵 to the unique 

𝑥 ∈ 𝐷 with 𝑦 = 𝑓(𝑥) is called the inverse function of the function 𝑓. 

Example 3. The quadratic function 𝑓(𝑥) = 𝑥2 is bijective from 𝐷 = [0, ∞) to 

𝐵 = [0, ∞). In these intervals (𝑥 ≥  0, 𝑦 ≥  0) one has 

𝑦 = 𝑥2 ⇔  𝑥 = √𝑦. 

Here √𝑦 denotes the positive square root. Thus the inverse of the quadratic 

function on the above intervals is given by 𝑓−1(𝑦) =  √𝑦 . 
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Once one has found the inverse function 𝑓−1, it is usually written with 

variables 

𝑦 =  𝑓−1(𝑥). This corresponds to flipping the graph of y = f (x) about the 

diagonal 

y = x, as is shown 

 

Some Elementary Functions 

1. Linear functions (straight lines). A linear function ℝ → ℝ  assigns each 

𝑥-value a fixed multiple as 𝑦-value, i.e., 𝑦 =  𝑘𝑥. Here  

𝑘 =
increase in height

increase in length
 =

Δ𝑦

Δ𝑥
 

Is the slop of the graph. This function presents a straight line through the 

origin. Adding an intercept 𝑑 ∈ ℝ translates the straight line 𝑑 units in 𝑦-

direction. The equation is then y = k x + d. See the following figures 
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2. Quadratic parabolas. The quadratic function with demain 𝐷 = ℤ (the set 

of all integers) in its basic form is given by 𝑦 = 𝑥2. From which 

Compression/stretching, horizontal and vertical translation are obtained via 

𝑦 = 𝑎 𝑥2,    𝑦 = (𝑥 − 𝑏)2, 𝑦 = 𝑥2 + 𝑐 

𝑎 > 1 compression in x-direction 

0 < 𝑎 < 1 stretching in x-direction 

𝑎 < 0 reflection in the x-axis 

𝑏 > 0 translation to the right 

𝑏 < 0 translation to the left 

𝑐 > 0 translation upwards 

𝑐 < 0 translation downwards 

The effect of these transformations on the graph can be seen in figure 
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quadratic function can be reduced to these cases by completing the square: 

𝑦 = 𝑎 𝑥2 + 𝑏 𝑥 + 𝑐 = a (x +
b

2a
)

2

+ c −
b2

4a
 

3. Power functions. If 𝑛 ∈ ℕ (𝑛 is an integer) the following rules apply 

𝑥𝑛 = 𝑥 ⋅ 𝑥 −⋅ 𝑥 ⋯ 𝑥     (𝑛 factors),    𝑥1 = 𝑥 

𝑥0 = 1,    𝑥−𝑛 =
1

𝑥𝑛
  (𝑥 ≠ 0). 

The behaviour of 𝑦 = 𝑥3  and 𝑦 = 𝑥4 can be seen as 

 

 

Power functions with fractional and negative exponents 
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4. Absolute value, sign and indicator function. The absolute value function 

is 

𝑦 = |𝑥| = {
𝑥,      𝑥 ≥ 0

−𝑥,     𝑥 < 0
 

Its graph is 

 

 The sign function is 

𝑦 = sign 𝑥 = {
1,        𝑥 > 0
0, 𝑥 = 0
−1,       𝑥 < 0

 

Its graph is 
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The indicator function of a subset 𝐴 ⊂ ℝ is defined as  

𝐼𝐴(𝑥) = {
𝑥,      𝑥 ∈ 𝐴
0,     𝑥 ∉ 𝐴

 

5. Exponential functions and logarithms.  

The exponential function with base a, the function 𝑦 = 𝑎𝑥, increases for 

𝑎 > 1 and decreases for 𝑎 < 1, see  

 

 the proper range is 𝐵 =  (0, ∞); the exponential function is bijective from ℝ 

to (0, ∞).  Integer powers of a number a > 0 have just been defined. 

Fractional (rational) powers give 
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𝑎1/𝑛 = √𝑎
𝑛

 , 𝑎𝑚/𝑛 = √𝑎𝑚𝑛
= ( √𝑎

𝑛
)

𝑚
 

If 𝑟 is an arbitrary real number then 𝑎𝑟 is defined by its approximations 

𝑎 𝑚/𝑛, where 
𝑚

𝑛
 is the rational approximation to 𝑟 obtained by decimal 

expansion. 

Example. 2𝜋 is defined by the sequence  

23, 23.1, 23.14, 23.141,   23.1415, ⋯ 

where 

23.1 = 231/10 = √23110
, 23.14 = 2314/100 = √2314100

 , ⋯ 

From the definition of the exponential function we obtain the following rules 

for rational exponents: 

𝑎𝑟  𝑎𝑥 = 𝑎𝑟+𝑎,    (𝑎𝑟)𝑠 = 𝑎𝑟𝑠 = (𝑎𝑠)𝑟 ,    𝑎𝑟  𝑏𝑟 = (𝑎 𝑏)𝑟. 

The inverse function is the logarithm to the base a (with domain (0, ∞) and 

range ℝ): 

𝑦 =  𝑎𝑥  ⇔  𝑥 = log𝑎 𝑦 . 

For example, log10 2 is the power by which 10 needs to be raised to obtain 2: 

2 =  10log10 2. 

Other examples are, for instance: 

2 = log10 102 ,   log10 10 = 1, log10 1 = 0, log10 0.001 = −3. 

Euler’s number 𝑒 is defined by 
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𝑒 = 1 + 1 +
1

2
+

1

6
+

1

24
+ ⋯ = ∑

1

𝑗!

∞

𝑗=0

≅ 2.718281828459 ⋯ 

The logarithm to the base 𝑒 is called natural logarithm and is denoted by log   

(or ln  ) we write log 𝑥 = log𝑒 𝑥 (ln 𝑥 = log𝑒 𝑥). 

The graphs of the exponential and logarithm functions are seen 

                   

  

We stick to the notation log 𝑥 which is used, for example in MATLAB. The  

following rules are obtained directly from the rules for the exponential 

function: 

𝑢 = 𝑒log 𝑥 ,    log 𝑢𝑣 = log 𝑢 + log 𝑣 ,    log 𝑢𝑧 = 𝑧 log 𝑢 
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𝑢 , 𝑣 > 0 and arbitrary 𝑧 ∈ ℝ. In addition, it holds that 𝑢 = log(𝑒𝑢) for all 

𝑢 ∈ ℝ and log 𝑒 = 1. Moreover, 

log
1

𝑢
= − log 𝑢,   log

𝑢

𝑣
= log 𝑢 − log 𝑣. 

6. Hyperbolic functions and their inverses.  

The hyperbolic sine, the hyperbolic cosine and the hyperbolic tangent are 

defined 

by  

sinh 𝑥 =
1

2
 (𝑒𝑥 − 𝑒−𝑥),   cosh 𝑥 =

1

2
 (𝑒𝑥 + 𝑒−𝑥),      tanh 𝑥 =

sinh 𝑥

cosh 𝑥
  

for 𝑥 ∈ ℝ. Their graphs are displayed as the following, and important 

property is that identity cosh2 𝑥 − sinh2 𝑥 = 1 for all 𝑥 ∈ ℝ. 

 

These figures shows that the hyperbolic sine is bijective as a function from 

ℝ → ℝ, 

the hyperbolic cosine is bijective as a function from [0, ∞)  →  [1, ∞), and the 

hyperbolic tangent is bijective as a function from ℝ → (−1, 1). The inverse 
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hyperbolic functions are referred to as inverse hyperbolic sine (cosine, 

tangent) or area hyperbolic sine (cosine, tangent). They can be expressed by 

means of logarithms as follows 

arsinh 𝑥 = log (𝑥 + √𝑥2 + 1)   for 𝑥 ∈ ℝ 

arcosh 𝑥 = log (𝑥 + √𝑥2 − 1)   for 𝑥 ≥ 1 

artanh 𝑥 =
1

2
log

1 + 𝑥

1 − 𝑥
  for |𝑥| < 1. 

Exercises 

1. How  does the graph of an arbitrary function 𝑦 = 𝑓(𝑥): ℝ → ℝ change 

under the transformations 

𝑦 = 𝑓(𝑎 𝑥),        𝑦 = 𝑓(𝑥 − 𝑏),          𝑦 = 𝑐 𝑓(𝑥), 𝑦 = 𝑓(𝑥) + 𝑑 

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ ? Distinguish the following different cases for 𝑎 

𝑎 < −1 ., −1 ≤  𝑎 < 0,    0 < 𝑎 ≤  1,   𝑎 ≥  1, 

and for 𝑏, 𝑐, 𝑑 the cases  

𝑏, 𝑐, 𝑑 > 0,   𝑏, 𝑐, 𝑑 < 0 

Sketch the resulting graphs. 

2. Using  the graph of the function 𝑓: 𝐷 → ℝ: 𝑥 ↦  3 𝑥4 − 2 𝑥3 − 3 𝑥2 + 1  

𝐷 = [−1,1.5|,     𝐷 = [−0,5,0.5],   𝐷 = [0.5,1.5] 

To explain the behaviour of the function for 𝑑 = ℝ and find 
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𝑓([−1,1.5]),   𝑓((−.5, .5)),   𝑓((−∞, 1]) . 

3. Which of the following functions are injective/surjective/bijective? 

 

 

7. 

 

8. 

 

9. 

 

10.  
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11. 
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Trigonometry 

Trigonometric Functions at the Triangle 

The definitions of the trigonometric functions are based on elementary 

properties of the right-angled triangle. The following figure shows a right-

angled triangle. The sides adjacent to the right angle are called legs, the 

opposite side hypotenuse. 

 

One of the basic properties of the right-angled triangle is expressed by 

Pythagoras’ theorem. 

Proposition (Pythagoras) In a right-angled triangle the sum of the squares of 

the legs equals the square of the hypotenuse 𝑎2 + 𝑏2 = 𝑐2. 

Proof. According to the figure 

 

one can easily see that 

(𝑎 + 𝑏)2 − 𝑐2 = area of the grey triangles = 2𝑎𝑏  
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From this it follows that 𝑎2 + 𝑏2 − 𝑐2 = 0. 

A fundamental fact in Thales’ intercept theorem which says that the ratios of 

the sides in a triangle are scale invariant: they do not depened on the size of 

the triangle. 

Thales' theorem. the following ratios are valid: 

𝑎

𝑐
=

𝑎′

𝑐′
,

𝑏

𝑐
=

𝑏′

𝑐′
,

𝑎

𝑏
=

𝑎′

𝑏′
 

 

The reason for this is that by changing the scale (enlargement or reduction) of 

the triangle all sides are changed by the same factor.  

Definition. (Trigonometric functions) For 0𝑜 ≤ 𝛼 ≤ 90𝑜 

sin 𝛼 =
𝑎

𝑐
=

opposite leg

hypotenuse
           (sine), 

cos 𝛼 =
𝑏

𝑐
=

adjacent leg

hypotenuse
           (cosine), 

tan 𝛼 =
𝑏

𝑐
=

opposite leg

adjacent leg
           (tangent), 

cot 𝛼 =
𝑏

𝑐
=

adjacent leg

opposite leg
           (cotangent). 
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Note that tan 𝛼 is not defined for 𝛼 = 90𝑜(since = 0 ) and that cot 𝛼 is not 

defined for 𝛼 = 0𝑜 (since 𝑎 = 0). The following identities hold true 

tan 𝛼 =
sin 𝛼

cos 𝛼
, cot 𝛼 =

cos 𝛼

sin 𝛼
,    sin 𝛼 = cos(90𝑜 − 𝛼) 

Using Pythagoras' theorem the identity can be obtained  

sin2 𝛼 + cos2 𝛼 = 1. 

The trigonometric functions have many applications in mathematics. We 

mention some of these applications. 

1. The formula for the area of a general triangle;  

 

The area of the triangle in the figure is given by 

𝐴 =
1

2
𝑐ℎ =

1

2
𝑏𝑐 sin 𝛼 =

1

2
𝑎𝑐 sin 𝛽 =

1

2
𝑎𝑐 sin 𝛾 

2. The slope of a straight line.  
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For the straight line 𝑦 = 𝑘𝑥 + 𝑑 the slope 𝑘 is the change of the 𝑦-value per 

unit change in 𝑥. It is calculated from the triangle attached to the straight line 

in above figure as 𝑘 = tan 𝛼. 

Extension of the Trigonometric Functions to ℝ 

The radian measure of the angle 𝛼 (in degrees) is defined as the length ℓ of 

the corresponding arc of the unit circle with the sign of 𝛼.  

It is generally known the circumference of the unit circle is 2𝜋 with the 

constant 

𝜋 =  3.141592653589793 ⋯ ≅
22

7
 

For the conversion between the two measures we use that 360𝑜 corresponds 

to 2𝜋 in radian measure, for short, 360𝑜 ⟷ 2𝜋[rad]. So, 

𝛼𝑜 ⟷
𝜋

180
𝛼[rad],         ℓ[rad] ⟷ (

180

𝑝𝑖
)

𝑜

 

 For 0 ≤ 𝛼 ≤
𝜋

2
 the values sin 𝛼 , cos 𝛼 , tan 𝛼 and cot 𝛼 have a simple 

interpretation on the unit circle; see the following figure 
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  One can extend the definition of the trigonometric functions for 0 ≤ 𝛼 ≤

2𝜋 by continuation with the help of the unit circle. A general point 𝑃 on the 

unit circle, which is defined by the angle 𝛼, is assigned the coordinates 

𝑃 = (cos 𝛼 , sin 𝛼) 

 

For 0 ≤ 𝛼 ≤
𝜋

2
 this is compatible with the earlier definition. For larger angles 

the sine and cosine functions are extended to the interval [0, 2𝜋] by this 

convention. For example, it follows from the above that 

sin 𝛼 = sin (𝛼 −
𝜋

2
) , cos 𝛼 = − cos (𝛼 −

𝜋

2
)   if  

𝜋

2
≤ 𝛼 ≤ 𝜋, 

sin 𝛼 = − sin(𝛼 − 𝜋) , cos 𝛼 = − cos(𝛼 − 𝜋)   if  𝜋 ≤ 𝛼 ≤ 2𝜋 

 For arbitrary values 𝛼 ∈ ℝ one finally defines sin 𝛼 and cos 𝛼 by periodic 

continuation with period 2𝜋. For this purpose one first writes 𝛼 = 𝑥 + 2𝑘𝜋 

with a unique 𝑥 ∈ [0, 2𝜋) and 𝑘 ∈ ℤ. Then one sets 

sin 𝛼 = sin(𝑥 + 2𝑘𝜋) = sin 𝑥 , cos 𝛼 = cos(𝑥 + 2𝑘𝜋) = cos 𝑥 . 
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Definition of the trigonometric functions on the unit circle 

 

Extension of the trigonometric functions on the unit circle 

The domain of the functions 𝑦 = sin 𝑥 , 𝑦 = cos 𝑥 is 𝐷 = ℝ. Their graphs are 

  

 

 

The graphs of the sine and cosine functions in the interval [−2𝜋, 2𝜋] 

 

With the help of the formulas 

tan 𝛼 =
sin 𝛼

cos 𝛼
,        cot 𝛼 =

cos 𝛼

sin 𝛼
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the tangent and cotangent functions are extended as well. Since the sine 

function equals zero for integer multiples of 𝜋 the cotangent is not defined for 

such arguments. Likewise the tangent is not defined for odd multiples of 
𝜋

2
. 

The domain of 𝑦 = tan 𝑥 is 𝐷 = {𝑥 ∈ ℝ ;  𝑥 ≠
𝜋

2
+ 𝑘𝜋, 𝑘 ∈ ℤ}, the domain of 

𝑦 = cot 𝑥 is 𝐷 = {𝑥 ∈ ℝ ;  𝑥 ≠ 𝑘𝜋, 𝑘 ∈ ℤ}. The graphs of these functions are 

  

The graphs of the tangent (left) and cotangent (right) functions 

Many relations are valid between the trigonometric functions. For example, 

the following addition theorems, which can be proven by elementary 

geometrical considerations, are valid. 

Proposition (Addition theorems) For 𝑥, 𝑦 ∈ ℝ it holds that 

sin(𝑥 + 𝑦) = sin 𝑥 cos 𝑦 + cos 𝑥 sin 𝑦 , 

cos(𝑥 + 𝑦) = cos 𝑥 cos 𝑦 − sin 𝑥 sin 𝑦. 
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Cyclometric Functions 

The cyclometric functions are inverse to the trigonometric functions in the 

appropriate bijectivity regions. 

Sine and arcsine. The sine function is bijective from the interval [−
𝜋

2
,

𝜋

2
] to 

the range [−1,1]. This part of the graph is called principal branch of the sine. 

Its inverse function is called arcsine (or sometimes inverse sine) 

arcsin  : [−1,1] → [−
𝜋

2
,
𝜋

2
] . 

According to the definition of the inverse function it follows that 

sin(arcsin 𝑦) = 𝑦  for all  𝑦 ∈ [−1,1] . 

However, the converse formula is only valid for the principal branch; i.e. 

arcsin(sin 𝑥) = 𝑥   is only valid for −
𝜋

2
≤  𝑥 ≤

𝜋

2
 . 

For example, arcsin(sin 4)  = −0.8584073 ⋯ ≠ 4. 

Cosine and arccosine. Likewise, the cosine function is bijective from the 

interval [0, 𝜋] to the range [−1,1]. Therefore, the principal branch of the 

cosine is defined as restriction of the cosine to the interval [0, 𝜋] with range 

[−1,1]. The inverse function is called arccosine (or sometimes inverse 

cosine) 

arccos  : [−1,1] → [0, 𝜋] . 
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The principal branch of the sine (left); the arcsine function (right) 

  

The principal branch of the cosine (left); the arccosine function (right) 

Tangent and arctangent. As can be seen  

 

The principal branch of the arctangent 

the restriction of the tangent to the interval (−
𝜋

2
 ,

𝜋

2
 ) is bijective. Its inverse 

function is called arctangent (or inverse tangent) 

arctan  : ℝ →  (−
𝜋

2
 ,

𝜋

2
)  . 
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To be precise this is again the principal branch of the inverse tangent. 

Application (Polar coordinates in the plane) The polar coordinates (𝑟, 𝜑) of a 

point 𝑃 = (𝑥, 𝑦) in the plane are obtained by prescribing its distance 𝑟 from 

the origin and the angle 𝜑 with the positive 𝑥-axis (in counterclockwise 

direction); see the following figure 

 

The relation between Cartesian and polar coordinates is therefore described 

by 

𝑥 = 𝑟 cos 𝜑  ,   𝑦 = 𝑟 sin 𝜑, 

where 0 ≤ 𝜑 < 2 𝜋 and 𝑟 ≥ 0. The range −𝜋 < 𝜑 ≤ \𝑝𝑖  is also often used.  

The following conversion formulas are valid 

𝑟 = √𝑥2 + 𝑦2,   𝜑 = arctan
𝑦

𝑥
, if   𝑥 > 0 ; −

𝜋

2
< 𝜑 <

𝜋

2
, 

𝜑 = sign 𝑦 ⋅ arccos
𝑥

√𝑥2 + 𝑦2
, if  𝑦 ≠  0   or  𝑥 > 0 ; −𝜋 < 𝜑 < 𝜋. 
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Exercises 

1. Using geometric considerations at suitable right-angled triangles, determine 

the values of the sine, cosine and tangent of the angles 𝛼 = 45∘, 𝛽 = 60∘,

𝛾 = 30∘. Extend your result for 𝛼 = 45∘ to the angles 135∘, 225∘, −45∘ 

with the help of the unit circle. What are the values of the angles under 

consideration in radian measure? 

2. Prove the addition theorem of the sine function 

sin(𝑥 + 𝑦) = sin 𝑥 cos 𝑦 + cos 𝑥 sin 𝑦. 

Hint. If the angles 𝑥, 𝑦 and their sum 𝑥 + 𝑦 are between 0 and 
𝜋

2
  you can 

directly argue with the help of figure   

 

The remaining cases can be reduced to this case. 

3. Prove the law of cosines 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝛼 
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Hint. Consider the triangle 

 

The segment 𝑐 is divided into two segments 𝑐1 and 𝑐2, to get two right 

triangles with common  height ℎ. Then applying the Pythagoras' theorem 

obtains the following identities  

𝑎2 = ℎ2 + 𝑐2
2,    𝑏2 = ℎ2 + 𝑐1

2,      𝑐 = 𝑐1 + 𝑐2 . 

Eliminating ℎ gives 𝑎2 = 𝑏2 + 𝑐2 − 2 𝑐 𝑐1. 

4. Compute the angles 𝛼, 𝛽, 𝛾 of the triangle with sides 𝑎 = 3, 𝑏 = 4, 𝑐 = 2. 

Hint. Use the law of cosines from Exercise 3. 

5. Prove the law of sines 

𝑎

sin 𝛼
=

𝑏

sin 𝛽
=

𝑐

sin 𝛾
 

for the general triangle. 

Hint. The first identity follows from sin 𝛼 =
ℎ

𝑏
, sin 𝛽 =

ℎ

𝑎
. 

6. Compute the missing sides and angles of the triangle with data 𝑏 = 5, 𝛼 =

43∘, 𝛾 = 62∘.  

Hint. Use the law of sines from Exercise 5. 
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7. The secant and cosecant functions are defined as the reciprocals of the 

cosine and the sine functions, respectively, 

sec 𝛼 =
1

cos 𝛼
 ,   csc 𝛼 =

1

sin 𝛼
 . 

Due to the zeros of the cosine and the sine function, the secant is not defined 

for odd multiples of 
𝜋

2
, and the cosecant is not defined for integer multiples of 

\𝑝𝑖 . 

(a) Prove the identities 1 + tan2 𝛼 = sec2 𝛼  and 1 + cot2 𝛼 = csc2 𝛼. 

(b) Plot the graph of the functions 𝑦 = sec 𝑥 and 𝑦 = csc 𝑥 for 𝑥 between 

−2 𝜋 and 2 𝜋. 
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Limits and Continuity of Functions 

In this section we introduce the notion of the limit of a function. Limits of 

functions form the basis of central themes in mathematical analysis, namely 

continuity and differentiation. It shows the behaviour of graphs of real 

functions 

𝑓: (𝑎, 𝑏) → ℝ 

while approaching a point 𝑥 in the open interval (𝑎, 𝑏) or a boundary point of 

the closed interval [𝑎, 𝑏].  

Definition 1. (Notion of the limit) 

(a) The function 𝑓 has a limit 𝑀 at a point 𝑥 ∈ (𝑎, 𝑏), if 

lim
ℎ→0

𝑓(𝑥 + ℎ) = 𝑀 

or 

𝑓(𝑥 + ℎ) →  𝑀  as  ℎ →  0. 

(b) The function 𝑓 has a right-hand limit 𝑅 at the point 𝑥 ∈ [𝑎, 𝑏), if 

lim
ℎ→0+

𝑓(𝑥 + ℎ) = 𝑅 

(c) The function 𝑓 has a left-hand limit 𝐿 at the point 𝑥 ∈ (𝑎, 𝑏], if 

𝐿 = lim
ℎ→ 0−

𝑓(𝑥 + ℎ) = lim
𝜉→𝑥−

𝑓(𝜉) . 

Definition 2. (the continuity) 
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(a) If 𝑓 has a limit 𝑀 at 𝑥 ∈ (𝑎, 𝑏) which coincides with the value of the 

function, i.e. 𝑓(𝑥) = 𝑀, then 𝑓 is called continuous at the point 𝑥. 

(b) If f  is continuous at every ( , )x a b , then f  is said to be continuous on 

the open interval ( , )a b . If in addition f  has right- and left-hand limits at the 

endpoints a  and b , it is called continuous on the closed interval [𝑎, 𝑏]. 

The following figures illustrate the idea of approaching a point x  for 0h  as 

well as possible differences between left-hand and right-hand limits and the 

value of the function. 

 

If a function f is continuous at a point x , the function evaluation can be 

interchanged with the limit: 

 lim ( ) ( ) lim .
x x

f f x f
 

 
 

   

Example 1. The quadratic function 2( )f x x  is continuous at every x  

since 

    
2 2 2( ) 2 0f x h f x x h x xh h         

as h  for any zero sequence  
1n n

h


. Therefore 



33 
 

0
lim ( ) ( ).
h

f x h f x


   

Likewise the continuity of the power functions formx x m  can be 

shown. 

Example 2. The absolute value function ( ) | |f x x  and the third root 

3( )g x x  are everywhere continuous. The former has a kink at 𝑥 = 0, the 

latter a vertical tangent; see the figure 

 

Example 3. The sign function ( ) signf x x  has different left- and right-hand 

limits 1, 1 at 0L R x    . In particular, it is discontinuous at that point. At all 

other points 0x   it is continuous; see  

 

Example 4. The square of the sign function 

2
1, 0

( ) (sign )
0, 0

x
g x x

x


  


 

has equal left- and right-hand limits at 𝑥 = 0. However, they are different 

from the value of the function (see the last figure): 
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0
lim ( ) 1 0 (0).g g





    

Therefore, 𝑔 is discontinuous at 𝑥 = 0. 

Example 5. The functions 
1

( )f x
x

  and ( ) tang x x  have vertical asymptotes 

at 𝑥 = 0 and ,
2

x k k


   , respectively, and in particular no left- or right-

hand limit at these points. At all other points, however, they are continuous.  

Example 6. The function 
1

( ) sinf x
x

  has no left- or right-hand limit at 𝑥 = 0 

but oscillates with non-vanishing amplitude; see the following figure 

 

Indeed, one obtains different limits for different zero sequences. For example, 

for 

1 1 1
, ,

/ 2 2 3 / 2 2
n n nh k l

n n n    
  

 
 

the respective limits are 

     lim 0, lim 1, lim 1.n n n
n n n

f h f k f l
  

     
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All other values in the interval [-1,1] can also be obtained as limits with the 

help of suitable zero sequences. 

Example 7. The function 
1

( ) sing x x
x

  can be continuously extended by 

𝑔(0) = 0 at 𝑥 = 0; it oscillates with vanishing amplitude  

 

Indeed, 

 
1

(0) sin 0 0n n n

n

g h g h h
h

      

for all zero sequences  
1n n

h


, thus 
0

1
lim sin 0
h

h
h
 . 

Trigonometric Limits 

Comparing the areas in the following figure shows that the area of the grey 

triangle 
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with sides cos x  and sin x  is smaller than the area of the sector which in tum is 

smaller or equal to the area of the big triangle with sides 1 and tan x . 

The area of a sector in the unit circle (with angle x  in radian measure) equals 

/ 2x  as is well-known. In summary we obtain the inequalities 

1 1
sin cos tan

2 2 2

x
x x x   

or after division by sin x  and taking the reciprocal 

sin 1
cos ,

cos

x
x

x x
   

valid for all x  with 0 | | / 2x   . 

With the help of these inequalities we can compute several important limits. 

From an elementary geometric consideration, one obtains 

1
| cos |  for ,

2 3 3
x x

 
     

and together with the previous inequalities 

sin 2 0
cos

h
h h

h
   as 0h . 

This means that 
0

limsin 0.
h

h


  

The sine function is therefore continuous at zero. From the continuity of the 

square function and the root function as well as the fact that cosh  equals the 

positive square root of 21 sin h  for small h  it follows that 
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2

0 0
limcos lim 1 sin 1.
h h

h h
 

    

With this the continuity of the sine function at every point x  can be 

proven: 

0 0
limsin( ) lim(sin cos cos sin ) sin .
h h

x h x h x h x
 

     

The inequality illustrated at the beginning of the section allows one to deduce 

one of the most important trigonometric limits. It forms the basis of the 

differentiation rules for trigonometric functions. 

Proposition. 
0

sin
lim 1
x

x

x
 . 

Proof. We combine the above result 
0

lim cos 1
x

x


  with the inequality deduced 

earlier and obtain 

0 0 0

sin 1
1 limcos lim lim 1,

cosx x x

x
x

x x  
     

and therefore 
0

sin
lim 1
x

x

x
 . 

Zeros of Continuous Functions 

The following figure 
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shows the graph of a function that is continuous on a closed interval [𝑎, 𝑏] 

and that is negative at the left endpoint and positive at the right endpoint. 

Geometrically the graph has to intersect the x -axis at least once since it has 

no jumps due to the continuity. This means that f  has to have at least one 

zero in ( , )a b . This is a criterion that guarantees the existences of a solution to 

the equation ( ) 0f x  . A first rigorous proof of this intuitively evident 

statement goes back to Bolzano. 

Proposition.(Intermediate value theorem) :[ , ]f a b   be continuous and 

( ) 0, ( ) 0f a f b  . Then there exists a point ( , )c a b  with ( ) 0f c  . 

Example 8. Calculation of 2  as the root of 2( ) 2 0f x x    in the interval 

[1,2] using the bisection method: 

 

After 5 steps the first decimal place is ascertained: 

1.40625 2 1.4375   

Experiment. Sketch the graph of the function 3 23 2y x x    on the interval 

[ 3,2] , and try to first estimate graphically one of the roots by successive 

bisection. Execute the interval bisection with the help of the applet Bisection 
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method. Assure yourself of the plausibility of the intermediate value theorem 

using the applet Animation of the intermediate value theorem. 

 

As an important application of the intermediate value theorem we now show 

that images of intervals under continuous functions are again intervals.  

Proposition. Let I   be an interval (open, half-open or closed, bounded or 

improper) and :f I   a continuous function with proper range ( )J f I . 

Then J  is also an interval. 

Proposition. Let [ , ]I a b  be a closed, bounded interval and 𝑓 ∶  𝐼 → ℝ a 

continuous function. Then the proper range 𝐽 =  𝑓 (𝐼 ) is also a closed, 

bounded 

interval. 

Corollary.  Each continuous function defined on a closed interval [ , ]I a b

attains its maximum and minimum there. 

Exercises 

1. (a) Investigate the behaviour of the functions  

2 2

2

1 1 sin
, ,

| | 1 cos

x x x x x

x x x

   

  
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in a neighbourhood of 0x   by plotting their graphs for arguments in 

1 1
2, ,2

100 100

   
    
    . 

(b) Find out by inspection of the graphs whether there are left- or right-hand 

limits at 0x  . Which value do they have? Explain your results by rearranging 

the expressions in (a). 

2. Do the following functions have a limit at the given points? If so, what is 

its value? 

(a) 3 5 10, 1y x x x    .                      (b) 
2

2

1
, 0, 1, 1

x
y x x x

x x


    


. 

(c) 
2

1 cos
, 0

x
y x

x


  . Hint. Expand with

(1 cos )x . 

(d) sign sin , 0y x x x   , 

(e) sign cos , 0y x x x     

3. Argue with the help of the intermediate value theorem that 

3( ) 5 10p x x x    has a zero in the interval [ 2,1] . Compute this zero up to four 

decimal places using the applet Bisection method. 

4. Compute all zeros of the following functions in the given interval with 

accuracy 310 , using the applet Bisection method. 

4( ) 2,

( ) cos , ;

1 1 1
( ) sin , , .

20 10

f x x I

g x x x I

h x I
x

  

  

 
   

 
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The Derivative of a Function 

Starting from the problem to define the tangent to the graph of a function, we 

introduce the derivative of a function. Two points on the graph can always be 

joined by a secant, which is a good model for the tangent whenever these 

points are close to each other. In a limiting process, the secant (discrete 

model) is replaced by the tangent (continuous model). Differential calculus, 

which is based on this limiting process, has become one of the most important 

beilding blocks of mathematical modelling. 

 

In this section we discuss the derivative of important elementary functions as 

well as general differentiation rules. Thanks to the meticulous implementation 

of these rules, expert systems such as maple have become helpful tools in 

mathematical analysis. Furthermore, we will discuss the interpretation of the 

derivative as linear approximation and as rate of change. These interpretations 

form the basis of numerous applications in science and engineering. 

 

The concept of the numerical derivative follows the opposite direction. The 

continuous model is discretised, and the derivative is replaced by a difference 

quoticnt. We carry out a detailed error analysis which allows us to find an 
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optimal approximation. Further, we will illustrate the relevance of symmetry 

in numerical procedures. 

Motivation 

Example 1. (The free fall according to Galilei') Imagine an object, which 

released at time 0t  , falls down under the influence of gravity. We are 

interested in the position ( )s t  of the object at time 0t   as well as in its 

velocity ( )v t , see the following figure. 

 

Due to the definition of velocity as change in travelled distance divided by 

change 

in time, the object has the average velocity 

average 

( ) ( )s t t s t
v

t

  



 

in the time interval [ , ]t t t . In order to obtain the instantaneous velocity 

( )v v t  we take the limit 0t   in the above formula and arrive at 

0

( ) ( )
( ) lim .

t

s t t s t
v t

t 

  



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Galilei discovered through his experiments that the travelled distance in free 

fall increases quadratically with the time passed, i.e. the law 2g
( )

2
s t t with 

29.81 m / sg   holds. Thus we obtain the expression 

2 2

0 0

( )
2 2( ) lim lim(2 )

2t t

g g
t t t

g
v t t t gt

t   

  

    


 

for the instantaneous velocity. The velocity is hence proportional to the time 

passed. 

Example 2. (The tangent problem) Consider a real function 𝑓 and two 

different points   0 0,P x f x  and ( , ( ))Q x f x  on the graph of the function. 

The uniquely defined straight line through these two points is called secant of 

the function f  through P  and Q , see Fig. 7.2.  

The slope of the secant is given by 

the difference quotient 

 0

0

( )
.

f x f xy

x x x




 
  

 

 

As x  tends to 0x  - the secant graphically turns into the tangent, provided the 

limit exists. Motivated by this idea we define the slope 
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     
0

0 0 0

0
0

( )
lim lim
x x h

f x f x f x h f x
k

x x h 

  
 


 

of the function f  at 0x . If this limit exists, we call the straight line 

   0 0y k x x f x     

the tangent to the graph of the function at the point   0 0,x f x . 

The Derivative 

Motivated by the above applications we are going to define the derivative of a 

real valued function. 

Definition 1. (Derivative) Let I   be an open interval, :f I   a real 

valued function and 0x I . 

(a) The function f  is called differentiable at 0x  if the difference quotient 

 0

0

( )f x f xy

x x x




 
 

has a (finite) limit for 
0x x . In this case one writes 

 
     

0

0 0 0

0
0

0

( )
lim lim
x x h

f x f x f x h f x
f x

x x h



 

  
 


 

and calls the limit derivative of f  at the point 0x . 

(b) The function f  is called differentiable (in the interval I  ) if ( )f x  exists 

for all x I . In this case the function : : ( )f I x f x  is called the 
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derivative of f . The process of computing f   from f  is called 

differentiation. 

 

In place of ( )f x  one often writes 
d

( )
 d

f
x

x
 or 

d
( )

d
f x

x
, respectively. The 

following examples show how the derivative of a function is obtained by 

means of the limiting process above. 

Example 3. (The constant function ( )f x c ) 

0 0 0

( ) ( ) 0
( ) lim lim lim 0.

h h h

f x h f x c c
f x

h h h



  

  
     

The derivative of a constant function is zero. 

Example 4. (The affine function ( ) )g x ax b  ) 

0 0 0

( ) ( )
( ) lim lim lim .

h h h

g x h g x ax ah b ax b
g x a a

h h



  

     
     

The derivative is the slope a  of the straight line y ax b  . 

Example 5. (The derivative of the quadratic function 2y x  ) 

2 2 2

0 0 0

( ) 2
lim lim lim(2 ) 2 .
h h h

x h x hx h
y x h x

h h



  

  
    

 

Similarly, one can show for the power function (with n ) 

1( ) ( ) .n nf x x f x n x      

Example 6. (The derivative of the square root function y x  for 0x   ) 
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1 1
lim lim lim .

( )( ) 2x x x

x x
y

x x x x x  

 

   



  

 
   

   
 

Example7. (Derivatives of the sine and cosine functions) We first recall 

that 

0

sin
lim 1
t

t

t
  

Due to 

2(cos 1)(cos 1) sint t t     

it also holds that 

0

1 1/2

cos 1 sin 1
sin 0  for 0,

cos 1

t t
t t

t t t

 


     


 

and thus 

0

cos 1
lim 0.
t

t

t


  

Hence, we find 

0

0

0 0

0 0

0 0

sin( ) sin
sin lim

sin cos cos sin sin
lim

cos 1 sin
limsin lim cos

cos 1 sin
sin lim cos lim cos .

h

h

h h

h h

x h x
x

h

x h x h x

h

h h
x x

h h

h h
x x x

h h







 

 

 

 


 



   


    

 

This proves that sin cosx x  . Likewise it can be shown that cos x   sin x . 
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Example 8. (The derivative of the exponential function with base e) 

Rearranging terms in the series expansion of the exponential function 

(Proposition C.12) we obtain 

2 3

0

e 1
1

( 1)! 2 6 24

h k

k

h h h h

h k






     


  

From that one infers 

3
| |e 1 1 | | | |

1 | | | | e .
2 6 24

h
hh h

h h
h

 
      

 
 

Letting 0h  hence gives the important limit 

0

1
lim 1.

h

h

e

h


  

The existence of the limit 

0 0

e e e 1
lim e lim e

x h x h
x x

h hh h



 

 
    

shows that the exponential function is differentiable and that  xc ex


 . 

Example 9. (New representation of Euler's number) By substituting e 1hy  

, log( 1)h y   in the above limit one obtains 

0
lim 1

log( 1)y

y

y



 

and in this way 
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1/

0 0 0

log(1 ) log(1 )
limlog(1 ) lim lim .y

y y y

y y
y

y y

 
  

  

 
     

Due to the continuity of the exponential function it further follows that 

1/

0
lim(1 ) e .y

y
y 


   

In particular, for 1/y n , we obtain a new representation of the exponential 

function 

c lim 1 .

n

a

n n





 
  

 
 

For 1   the identity 

0

1 1
e lim 1 2.718281828459

!

n

n
kn k






 
     

 
  

follows. 

Example 10. Not every continuous function is differentiable. For instance,  

, 0
( ) | |

, 0

x x
f x x

x x


  

 
 

is not differentiable at the vertex 0x  . However, it is 

differentiable for 𝑥 =  0. With  

 

1,  if 0
(| |)

1,  if 0.

x
x

x




 
 
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The function 3( )g x x  is not differentiable at 0x   

either. The reason for that is the vertical tangent. 

 

Definition 1. If the function f   is again differentiable then 

2 2

2 2 0

d d ( ) ( )
( ) ( ) ( ) lim

 d  d h

f f x h f x
f x f x x

x x h

 




 
    

is called the second derivative of f  with respect to x . Likewise higher 

derivatives are defined recursively as 

 
3 2

3 2

d d d
( ) ( )  or ( ) ( ) ,  etc. 

 d d  d
f x f x f x f x

x x x


   

   
 

 

Interpretations of the Derivative 

We introduced the derivative geometrically as the slope of the tangent, and 

we saw that the tangent to a graph of a differentiable function f  at the point 

  0 0,x f x  is given by     0 0 0 .y f x x x f x    

Example 11. Let 4( ) 1f x x   with derivative 3( ) 4f x x  . 

(i) The tangent to the graph of f  at the point (0,1)  is 

(0) ( 0) (0) 1y f x f      

and thus horizontal. 

 (ii) The tangent to the graph of 𝑓 at the point (1,2)  is 
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(1)( 1) 2 4( 1) 2 4 2.y f x x x         

The derivative allows further interpretations.  

Interpretation as linear approximation. We start off by emphasizing that 

every differentiable function f  can be written in the form 

      0 0 0 0( ) , ,f x f x f x x x R x x     

where the remainder  0,R x x  has the property 

 
0

0

0

,
lim 0.
x x

R x x

x x



 

This follows immediately from       0 0 0 0, ( )R x x f x f x f x x x    by 

dividing by 
0x x , since 

 
 0

0 0

0

( )
 as .

f x f x
f x x x

x x




 


 

Application. As we have just seen, a differentiable function f  is 

characterised by the property that 

      0 0 0 0( ) , ,f x f x f x x x R x x     

where the remainder term  0,R x x  tends faster to zero than 
0x x . Taking the 

limit 
0x x  in this equation shows in particular that every differentiable 

function is continuous. 

Application. Let g  be the function given by    0 0( ) .g x k x x f x     
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Its graph is the straight line with slope k  passing through the point   0 0,x f x . 

Since 

   
 

 0 0 0

0

0 0 0

0

( ) ,( ) ( ) f x f x k x x R x xf x g x
f x k

x x x x x x





   
   

  
 

as 0x x , the tangent with 0( )k f x  is the straight line which approximates 

the graph best. One therefore calls 

     0 0 0( )g x f x f x x x     

the linear approximation to f  at x . For x  close to 𝑥0 one can consider ( )g x  

as a good approximation to ( )f x . In applications the (possibly complicated) 

function f  is often replaced by its linear approximation g  which is easier to 

handle. 

Example 12. Let 1/2( )f x x x  . Consequently,  

1

2
1 1

( ) .
2 2

f x x
x


    

We want to find the linear approximation to the function f  at 
0x a . 

According to the formula above it holds that 

1
( ) ( )

2
x g x a x a

a
     

for x  close to a , or, alternatively with h x a  , 
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1
 for small . 

2
a h a h h

a
    

If we now substitute 1a   and 0.1h  , we obtain the approximation 

0.1
1.1 1 1.05.

2
    

The first digits of the actual value are 1.0488 

Physical interpretation as rate of change. In physical applications the 

derivative often plays the role of a rate of change. A well-known example 

from everyday life is the velocity. Consider a particle which is moving along 

a straight line. Let ( )s t  be the position where the particle is at time t . The 

average velocity is given by the quotient 

 0

0

( )s t s t

t t




 (difference in displacement divided by difference in time). 

In the limit 0t t  the average velocity turns into the instantaneous velocity 

     
 

0

0

0 0 0

0

( )d
lim .

 d t t

s t s ts
v t t s t

t t t


  


 

Note that one often writes ( )f t  instead of ( )f t  if the time t  is the argument of 

the function f . In particular, in physics the dot notation is most commonly 

used. 

Likewise one obtains the acceleration by differentiating the velocity 

( ) ( ) ( ).a t v t s t   
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The notion of velocity is also used in the modeling of other processes that 

vary over time, e.g. for growth or decay. 

Differentiation Rules 

In this section I   denotes an open interval. We first note that 

differentiation is a linear process. 

Proposition. (Linearity of the derivative) Let , :f g I   be two functions 

which are differentiable at x I  and take c . Then the functions f g  and 

c f  are differentiable at x  as well and 

 ( ( ) ( )) ( ) ( ), ( ( )) ( )f x g x f x g x cf x cf x         

Proof. The result follows from the corresponding rules for limits. The first 

statement is true because 

( ) ( )

( ) ( ) ( ( ) ( )) ( ) ( ) ( ) ( )

f x g x

f x h g x h f x g x f x h f x g x h g x

h h h
  

        
   

as 0h . The second statement follows similarly. 

Linearity together with the differentiation rule   1m mx mx


  for powers implies 

that every polynomial is differentiable. Let 

1

1 1 0( ) .n n

n np x a x a x a x a

      

Then its derivative has the form 
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1 2

1 1( ) ( 1) .n n

n np x na x n a x a  

      

For example,  7 2 63 4 5 1 21 8 5x x x x x


      . 

The following two rules allow one to determine the derivative of products and 

quotients of functions from their factors. 

Proposition. (Product rule) Let , :f g I   be two functions which are 

differentiable at x I . Then the function f g  is differentiable at x  and 

( ( ) ( )) ( ) ( ) ( ) ( ).f x g x f x g x f x g x        

Proof. This fact follows again from the corresponding rules for limits 

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

g x

f x g x

f x h g x h f x g x

h

f x h g x h f x g x h f x g x h f x g x

h h

f x h f x g x h g x
g x h f x

h h
 



 

    

         
 

   
    

 

as 0h . The required continuity of g  at x  is a consequence of Application 

7.15. 

Proposition. (Quotient rule) Let , :f g I   be two functions differentiable 

at x I  and ( ) 0g x  . Then the quotient 
f

g
 is differentiable at the point x  and 

2

( ) ( ) ( ) ( ) ( )
.

( ) ( )

f x f x g x f x g x

g x g x

      
 

 
 

In particular, 
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2

1 ( )
.

( ) ( ( ))

g x

g x g x

  
  

 
 

The proof is similar to the one for the product rule. 

Example 13 An application of the quotient rule to 
sin

tan
cos

x
x

x
  shows that  

2 2
2

2 2

cos sin 1
tan 1 tan

cos cos

x x
x x

x x

 
     

Complicated functions can often be written as a composition of simpler 

functions. For example, the function 

:[2, ) : ( ) log( 1)h x h x x     

can be interpreted as ( ) ( ( ))h x f g x  with 

:[0, ) : , :[2, ) [0, ) : log( 1).f y y g x x       

One denotes the composition of the functions f  and g  by h f g . The 

following proposition shows how such compound functions can be 

differentiated. 

Proposition.  (Chain rule) The composition of two differentiable 

functions 

g : I B  and :f B  is also differentiable and 

d
( ( )) ( ( )) ( ).

d
f g x f g x g x

x

    

In shorthand notation the rule is 
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 ( ) .f g f g g       

Proof. We write 

1 ( ( )) ( ( )) ( ) ( )
( ( ( )) ( ( )))

( ) ( )

( ( ) ) ( ( )) ( ) ( )
,

f g x h f g x g x h g x
f g x h f g x

h g x h g x h

f g x k f g x g x h g x

k h

   
   

 

   
 

 

where, due to the interpretation as a linear approximation, the expression 

( ) ( )k g x h g x    

is of the form 

( ) ( , )k g x h R x h x    

and tends to zero itself as 0h . It follows that 

0

0

d 1
( ( )) lim ( ( ( )) ( ( )))

d

( ( ) ) ( ( )) ( ) ( )
lim ( ( )) ( )

h

h

f g x f g x h f g x
x h

f g x k f g x g x h g x
f g x g x

k h



 



  

    
    

 

 

and hence the assertion of the proposition. 

The differentiation of a composite function ( ) ( ( ))h x f g x  is consequently 

performed in three steps: 

1. Identify the outer function f  and the inner function g  with 

( ) ( ( ))h x f g x . 

2. Differentiate the outer function f  at the point ( )g x , i.e. compute ( )f y  

and then substitute ( )y g x . The result is ( ( ))f g x . 
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3. Inner derivative: Differentiate the inner function g  and multiply it with 

the result of step 2. One obtains ( ) ( ( )) ( )h x f g x g x    . 

In the case of three or more compositions, the above rules have to be applied 

recursively. 

Example 14. (a) Let 3( ) (sin )h x x . We identify the outer function 3( )f y y  

and the inner function ( ) sing x x . Then, 2( ) 3(sin ) cos .h x x x    

(b) Let 
2

( ) e xh x  . We identify ( ) e yf y   and 2( )g x x  . Thus, 

2

( ) e ( 2 ).xh x x     

The last rule that we will discuss concerns the differentiation of the inverse of 

a differentiable function. 

Proposition. (Inverse function rule) Let :f I J  be bijective, differentiable 

and ( ) 0f y   for all y I . Then 1 :f J I   is also differentiable and 

 
1

1

d 1
( ) .

d ( )
f x

x f f x



 
  

In shorthand notation this rule is 

 1

1

1
f

f f




 



 

Proof. We set 1( )y f x  and 1( )f  . Due to the continuity of the inverse 

function we have that y   as x  . It thus follows that 
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 

11 1
1

1

d ( ) ( ) ( ) ( )
( ) lim lim lim

d ( ) ( )

1 1

( ) ( )

x y y

f f x y f f y
f x

x x f f y y

f y f f x

  

  

  

 


  

  

   
    

   

 

 

and hence the statement of the proposition. 

Example 15.  (Derivative of the logarithm) Since logy x  is the inverse 

function to eyx  , it follows from the inverse function rule that 

log

1 1
(log )

e x
x

x

    

for 0x  . Furthermore 

log , 0,
log | |

log( ), 0,

x x
x

x x


 

 
 

and thus 

1
(log ) , 0,

(log | |)
1 1

(log( )) ( 1) , 0.
( )

x x
x

x

x x
x x








 

 
      



 

Altogether one obtains the formula 

1
(log | |)  for 0.x x

x

    

For logarithms to the base a  one has 

 
log 1

log ,  thus log .
log log

a a

x
x x

a x a


   
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Example 16.  (Derivatives of general power functions) From loge xx   we 

infer by the chain rule that 

  log 1e xx x x
x x

    



      

Example 17.  (Derivative of the general exponential function) For 0a   we 

have logex x aa  . An application of the chain rule shows that 

   log loge e log log .x x a x a xa a a a
 

     

Example 18.  For 0x   we have logex x xx   and thus 

  loge log (log 1).x x x xx
x x x x

x

  
    

 
 

Example 19. (Derivatives of cyclometric functions) We recall the 

differentiation rules for the trigonometric functions on their principal 

branches: 

2(sin ) cos 1 sin , ,
2 2

x x x x
         

2(cos ) sin 1 cos ,0 ,x x x x          

2(tan ) 1 tan , .
2 2

x x x
        

The inverse function rule thus yields 

2 2

1 1
(arcsin ) , 1 1,

1 sin (arcsin ) 1
x x

x x

     
 

 



61 
 

2 2

1 1
(arccos ) , 1 1,

1 cos (arccos ) 1
x x

x x

 
     

 
 

2 2

1 1
(arctan ) , .

1 tan (arctan ) 1
x x

x x

      
 

 

Example 20. (Derivatives of hyperbolic and inverse hyperbolic functions) 

The derivative of the hyperbolic sine is readily computed by invoking the 

defining formula: 

   
1 1

(sinh ) e e e e cosh .
2 2

x x x xx x



   
     
 

 

Similarly, we find 2(cosh ) sinh , (tanh ) 1 tanh .x x x x     

The derivative of the inverse hyperbolic sine can be computed by means of 

the inverse function rule:  

2 2

1 1 1
(arsinh )

cosh(arsinh ) 1 sinh (arsinh ) 1
x

x x x

   
 

 

for x , where we have used the identity 2 2cosh sinh 1x x  . In a similar 

way, the derivatives of the other inverse hyperbolic functions can be 

computed on their respective domains. 

22

1 1
(arcosh ) , 1, (artanh ) , 1 1.

11
x x x x

xx

      


 

Table 7.1 Derivatives of the elementary functions ( , 0)a   

( )f x   1  x   ex   xa   log | |x   log ax    
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( )f x   0   1x    ex   logxa a    1

x
  

1

logx a
  

( )f x   sin x   cos x   tan x   arcsin x   arccos x   arctan x   

( )f x   cos x   sin x   21 tan x   
2

1

1 x
  

2

1

1 x




  

2

1

1 x
  

( )f x   sinh x   cosh x   tanh x   arsinh x   arcosh x   artanh x   

( )f x   cosh x   sinh x   21 tanh x   
2

1

1 x
  

2

1

1x 
  

2

1

1 x
  

The derivatives of the most important elementary functions are collected in 

Table 7.1. The formulas are valid on the respective domains. 

Exercises 

1. Compute the first derivative of the functions 

3

2

1 1
( ) , ( ) , ( ) cos , ( ) , ( ) tanf x x g t h x x k x t t

t x
      

using the definition of the derivative as a limit. 

2. Compute the first derivative of the functions 

 
2

3 2 2

2

1
( ) , ( ) 1 sin , ( ) 1 arctan

2 1

x
a x b x x x c t t t

x x


    

 
, 

   
2cos 12 2sin 2( ) e , ( ) , ( ) log 1

t xd t t e x x f s s s


     . 
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3. Derive the remaining formulas in Example 7.30. Start by computing the 

derivatives of the hyperbolic cosine and hyperbolic tangent. Use the inverse 

function rule to differentiate the inverse hyperbolic cosine and inverse 

hyperbolic tangent. 

4. Compute an approximation of 34  by replacing the function ( )f x x  at 

36x   by its linear approximation. How accurate is your result? 

5. Find the equation of the tangent line to the graph of the function ( )y f x  

through the point   0 0,x f x , where 2

0 0( )  and (a) e;  (b) e . 
2 log

x x
f x x x

x
     

6. Sand runs from a conveyor belt onto a heap with a velocity of 32 m / min . 

The sand forms a cone-shaped pile whose height equals 
4

3
 of the radius. With 

which velocity does the radius grow if the sand cone has a diameter of 6 m  ? 

Hint. Determine the volume V  as a function of the radius r , consider V  and 

r  as functions of time t  and differentiate the equation with respect to t . 

Compute r . 

7. Show that the thn  derivative of the power function ny x  equals !n for 1n  . 

Verify that the derivative of order 1n  of a polynomial ( ) n

np x a x   

1

1 1 0

n

na x a x a

     of degree n  equals zero. 

8. Compute the second derivative of the functions 
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 
2 2 1

( ) e , ( ) log 1 , ( ) log
1

x x
f x g x x x h x

x

 
    


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Applications of the Derivative 

This sectin is devoted to some applications of the derivative which form part 

of the basic skills in modeling. We consider features of graphs.  

Curve Sketching 

In the following we investigate some geometric properties of graphs of 

functions using the derivative: maxima and minima, intervals of monotonicity 

and convexity. We further discuss the mean value theorem which is an 

important technical tool for proofs. 

Definition 8.1 A function  : ,f a b   has 

(a) a global maximum at 0 [ , ]x a b  if  0( )  for all [ , ];f x f x x a b   

 (b) a local maximum at 0 [ , ]x a b , if there exists a neighbourhood  0U x  so 

that 

   0 0( )  for all [ , ].f x f x x U x a b    

The maximum is called strict if the strict inequality  0( )f x f x  holds in (a) 

or (b) for 0x x . 

The definition for minimum is analogous by inverting the inequalities. 

Maxima and minima are subsumed under the term extrema. The following 
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figure shows some possible situations. Note that the function there does not 

have a global minimum on the chosen interval. 

 

For points 0x  in the open interval ( , )a b  one has a simple necessary condition 

for extrema of differentiable functions: 

 

Proposition. Let 0 ( , )x a b  and f  be differentiable at 0x . If f  has a local 

maximum or minimum at 0x  then  0 0f x  . 

Proof. Due to the differentiability of f  we have 

 
       0 0 0 0

0
0 0

lim lim .
h h

f x h f x f x h f x
f x

h h



   

   
   

In the case of a maximum the slope of the secant satisfies the inequalities 

       0 0 0 0
0,  if 0 0,  if 0

f x h f x f x h f x
h h

h h

   
     

Consequently the limit  0f x  has to be greater than or equal to zero as well 

as smaller than or equal to zero, thus necessarily  0 0f x  . 
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The function 3( )f x x , whose derivative vanishes at 0x  , shows that the 

condition of the proposition is not sufficient for the existence of a maximum 

or minimum. 

The geometric content of the proposition is that in the case of differentiability 

the graph of the function has a horizontal tangent at a maximum or minimum. 

A point 0 ( , )x a b  where  0 0f x   is called a stationary point. 

Remark. The proposition shows that the following point sets have to be 

checked in order to determine the maxima and minima of a function 

:[ , ]f a b   : 

(a) the boundary points 
0 0,x a x b  ; 

(b) points 0 ( , )x a b  at which f  is not differentiable; 

(c) points 0 ( , )x a b  at which f  is differentiable and  0 0f x  . 

The following proposition is a useful technical tool for proofs. One of its 

applications lies in estimating the error of numerical methods. Similarly to the 

intermediate value theorem, the proof is based on the completeness of the real 

numbers. 

Proposition (Mean value theorem) Let f  be continuous on $[a, b]$ and 

differentiable on ( , )a b . Then there exists a point ( , )a b   such that 
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( ) ( )
( ). 

f b f a
f

b a





 

Geometrically this means that the tangent at $\xi$ has the same slope as the 

secant through ( , ( )), ( , ( ))a f a b f b . The following figure illustrates this fact. 

 

We now turn to the description of the behaviour of the slope of differentiable 

functions. 

Definition. A function :f I   is called monotonically increasing, if 

   1 2 1 2x x f x f x   for all 1 2,x x I . It is called strictly monotonically 

increasing, if    1 2 1 2 .x x f x f x    

A function f  is said to be (strictly) monotonically decreasing, if f  is 

(strictly) monotonically increasing. 

Examples of strictly monotonically increasing functions are the power 

functions nx x  with odd powers n ; a monotonically, but not strictly 

monotonically increasing function is the sign function signx x , for instance. 

The behaviour of the slope of a differentiable function can be described by the 

sign of the first derivative. 
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Proposition. For differentiable functions : ( , )f a b   the following 

implications hold: 

(a) 0f    on ( , )a b f  is monotonically increasing; 0f    on ( , )a b f  is 

strictly monotonically increasing. 

(b) 0f    on ( , )a b f  is monotonically decreasing; 0f    on ( , )a b f  is 

strictly monotonically decreasing. 

Proof. (a) According to the mean value theorem we have    2 1 ( )f x f x f   . 

 2 1x x  for a certain ( , )a b  . If 1 2x x  and ( ) 0f    then    2 1 0f x f x  . If 

( ) 0f    then    2 1 0f x f x  . Conversely 

0

( ) ( )
( ) lim 0,

h

f x h f x
f x

h





 
   

if f  is increasing. The proof for (b) is similar. 

Remark. The example 3( )f x x  shows that f  can be strictly monotonically 

increasing even if 0f    at isolated points. 

Proposition. (Criterion for local extrema) Let f  be differentiable on ( , )a b , 

0 ( , )x a b  and  0 0f x  . Then 

(a) 0 0( ) 0 for ( ) 0 for f x x x f x x x       has a local maximum in 0x , 

(b) 0 0( ) 0 for ( ) 0 for f x x x f x x x f       has a local minimum in 0x . 
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Proof. The proof follows from the previous proposition which characterises 

the monotonic behaviour as shown in  

 

Remark. (Convexity and concavity of a function graph) If 0f    holds in an 

interval then f   is monotonically increasing there. Thus the graph of f  is 

curved to the left or convex. On the other hand, if 0f   , then f   is 

monotonically decreasing and the graph of f  is curved to the right or concave 

see the following figures.  

 

Let 0x  be a point where  0 0f x  . If f   does not change its sign at 0x , then 0x  

is an inflection point. Here f  changes from positive to negative curvature or 

vice versa. 

Proposition. (Second derivative criterion for local extrema) Let f  be twice 

continuously differentiable on 0( , ), ( , )a b x a b  and  0 0f x  . 

(a) If  0 0f x   then f  has a local minimum at 0x . 
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(b) If  0 0f x   then f  has a local maximum at 0x . 

Proof. (a) Since f   is continuous, ( ) 0f x   for all x  in a neighbourhood of 

0x . According to Proposition 8.6, f   is strictly monotonically increasing in this 

neighbourhood. Because of  0 0f x   this means that  0 0f x   for 0x x  and 

( ) 0f x   for 0x x ; according to the criterion for local extrema, 0x  is a 

minimum. The assertion (b) can be shown similarly. 

 

Remark. If  0 0f x   there can either be an inflection point or a minimum or 

maximum. The functions ( ) , 3,4,5,nf x x n   supply a typical example. In 

fact, they have for n  even a global minimum at 0x  , and an inflection point 

for n  odd.  

One of the applications of the previous propositions is curve sketching, which 

is the detailed investigation of the properties of the graph of a function using 

differential calculus. Even though graphs can easily be plotted in MATLAB 

or maple it is still often necessary to check the graphical output at certain 

points using analytic methods. 

Experiment. Plot the function 

 3 4(sign 1)( 1) (sign( 1) 1) ( 2) 1/ 2y x x x x x        on the interval 2 3x    and 

try to read off the local and global extrema, the inflection points and the 
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monotonic behaviour. Check your observations using the criteria discussed 

above. 

A further application of the previous propositions consists in finding extrema, 

i.e. solving one-dimensional optimisation problems. We illustrate this topic 

using a standard example. 

Example. Which rectangle with a given perimeter has the largest area? To 

answer this question we denote the lengths of the sides of the rectangle by x  

and y . Then the perimeter and the area are given by 2 2 , .U x y F xy    

Since U  is fixed, we obtain / 2y U x  , and from that ( / 2 ),F x U x  where x  

can vary in the domain 0 / 2x U  . We want to find the maximum of the 

function F  on the interval [0, / 2]U . Since F  is differentiable, we only have to 

investigate the boundary points and the stationary points. At the boundary 

points 0x   and / 2x U  we have (0) 0F   and ( / 2) 0F U  . The stationary 

points are obtained by setting the derivative to zero ( ) / 2 2 0,F x U x    which 

brings us to / 4x U  with the function value 2( / 4) /16F U U . 

As result we get that the maximum area is obtained at / 4x U , thus in the 

case of a square. 
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Exercises 

1. Find out which of the following (continuous) functions are differentiable at 

0x   

1/2 3/2| |; | | , | | , sin(1/ ).y x x y x y x y x x     

2. Find all maxima and minima of the functions 

22

2
( )  and ( ) e . 

1

xx
f x g x x

x

 


 

3. Find the maxima of the functions 

 2 e(log ) /21
e , 0  and e e , .

x
x xy x y x

x

      

These functions represent the densities of the standard lognormal distribution 

and of the Gumbel distribution, respectively. 

4. Find all maxima and minima of the function 
4

( ) ,
1

x
f x

x



 determine on 

what intervals it is increasing or decreasing, analyse its behaviour as x , 

and sketch its graph. 

5. Find the proportions of the cylinder which has the smallest surface area F  

for a given volume V . 

Hint. 22 2 minF r h r    . Calculate the height h  as a function of the radius 

r  from 2V r h , substitute and minimise ( )F r . 
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6. (From mechanics of solids) The moment of inertia with respect to the 

central axis of a beam with rectangular cross section is 31

12
I bh  ( b  the 

width, h  the height). Find the proportions of the beam which can be cut from 

a log with circular cross section of given radius r  such that its moment of 

inertia becomes maximal. 

Hint. Write b  as function of , ( ) maxh I h  . 

7. (From soil mechanics) The mobilized cohesion m ( )c   of a failure wedge 

with sliding surface, inclined by an angle  , is 

 m

m

m

sin cos
( ) .

2cos

h
c

   





  

Here $h$ is the height of the failure wedge, m  the angle of internal friction, 

  the specific weight of the soil (see Fig. 8.10). Show that the mobilised 

cohesion 
mc  with given m, ,h    is a maximum for the angle of inclination 

m / 2 45    . 
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Antiderivatives 

The derivative of a function ( )y F x  describes its local rate of change, i.e. the 

change y  of the y -value with respect to the change x  of the x -value in the 

limit 0;x   more precisely 

0 0

( ) ( )
( ) ( ) lim lim .

x x

y F x x F x
f x F x

x x



   

  
  

 
 

Conversely, the question about the reconstruction of a function F  from its 

local rate of change f  leads to the notion of indefinite integrals which 

comprises the totality of all functions that have f  as their derivative, the 

antiderivatives of f .  

By multiplying the rate of change ( )f x  with the change x  one obtains an 

approximation to the change of the values of the function of the antiderivative 

F  in the segment of length x : 

( ) ( ) ( ) .y F x x F x f x x       

Adding up these local changes in an interval, for instance between x a  and 

x b  in steps of length x , gives an approximation to the total change 

( ) ( )F b F a . The limit 0x   (with an appropriate increase of the number of 

summands) leads to the notion of the definite integral of f  in the interval 

[𝑎, 𝑏], which is the subject we discuss later in this chapter. 
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Indefinite Integrals 

Already, it was shown that the derivative of a constant is zero. The following 

proposition shows that the converse is also true. 

Proposition. If the function F  is differentiable on ( , )a b  and ( ) 0F x   for all 

( , )x a b  then F  is constant. This means that ( )F x c  for a certain c  and 

all ( , )x a b . 

 

Proof . We choose an arbitrary 0 ( , )x a b  and set  0c F x . If now ( , )x a b  

then, according to the mean value theorem,    0 0( ) ( )F x F x F c x x   for a 

point c  between x  and 0x . Since ( ) 0F c   it follows that  0( )F x F x c  . This 

holds for all ( , )x a b , consequently F  has to be equal to the constant function 

with value c . 

 

Definition. (Antiderivatives) Let f  be a real-valued function on an interval 

( , )a b . An antiderivative of f  is a differentiable function : ( , )F a b   whose 

derivative F   equals f . 
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Example. The function 
3

( )
3

x
F x   is an antiderivative of 2( )f x x , as is 

3

( ) 5
3

x
G x   . 

This proposition implies that antiderivatives are unique up to an additive 

constant. This means that if F  and G  are antiderivatives of f  in ( , )a b . Then 

( )F x   ( )G x c  for a certain c  and all ( , )x a b . 

Proof. Since $F^{\prime}(x)-G^{\prime}(x)=f(x)-f(x)=0$ for all $x \in(a, b)$, 

an application of Proposition $10.1$ gives the desired result. 

Definition. (Indefinite integrals) The indefinite integral ( )df x x denotes the 

totality of all antiderivatives of f . 

Once a particular antiderivative F  has been found, one writes accordingly 

( )d ( ) .f x x F x c   

Example. The indefinite integral of the quadratic function is 
3

2  d
3

x
x x c  . 

Example. (a) An application of indefinite integration to the differential 

equation of the vertical throw: Let ( )w t  denote the height (in meters [𝑚]) at 

time t  (in seconds [𝑠]) of an object above ground level ( 0)w  . Then, 

( ) ( )w t v t  is the velocity of the object (positive in upward direction) and 

( ) ( )v t a t  the acceleration (positive in upward direction). In this coordinate 
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system the gravitational acceleration 2g 9.81  m / s    acts downwards, 

consequently ( ) g.a t   Velocity and distance are obtained by inverting the 

differentiation process 

  2

1 1 2 1 2 1 2

g
( ) ( )d g ( ) ( )d g d

2
v t a t t c t c w t v t t c t c t c t c t c                  

where the constants 1 2,c c  are determined by the initial conditions: 

1 (0)c v   initial velocity, 

2 (0)c w   initial height. 

(b) A concrete example-the free fall from a height of 100 m . Here  

(0) 100, (0) 0w v   

and thus 21
( ) 9.81 100.

2
w t t    

The travelled distance as a function of time is given by a parabola.  

 

The time of impact 
0t  is obtained from the condition  0 0w t  , i.e. 

2

0 0

1
0 9.81 100, 200 / 9.81 4.5[ s],

2
t t      

the velocity at impact is  0 0g 44.3[ m / s] 160[ km / h].v t t     
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Integration Formulas 

It follows immediately from the definition that indefinite integration can be 

seen as the inversion of differentiation. It is, however, only unique up to a 

constant: 

 ( )d ( ), ( )d ( ) .f x x f x g x x g x c


     

With this consideration and the differentiation Rules one easily obtains the 

basic integration formulas stated in the following table. The formulas are 

valid in the according domains. 

The formulas in Table $10.1$ are a direct consequence of those in Table 7.1. 

Experiment 10.8 Antiderivatives can be calculated in maple using the 

command int. Explanations and further integration commands can be found in 

the maple 

Table 10.1 Integrals of some elementary functions 

( )f x   , 1x      1

x
  ex    xa   

 ( )df x x   1

1

x
c










  
log | |x c   ex c   1

log

xa c
a

   

( )f x   sin x   cos x  
 

2

1

1 x
  

2

1

1 x
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 ( )df x x   cos x c    sin x c   arcsin x c   arctan x c   

( )f x   sinh x   cosh x   
2

1

1 x
  

2

1

1x 
  

 ( )df x x   cosh x c   sinh x c   arsinh x c   arcosh x c   

Functions that are obtained by combining power functions, exponential 

functions and trigonometric functions, as well as their inverses, are called 

elementary functions. The derivative of an elementary function is again an 

elementary function and can be obtained using the differentiation rules. In 

contrast to differentiation there is no general procedure for computing 

indefinite integrals. Not only does the calculation of an integral often turn out 

to be a difficult task, but there are also many elementary functions whose 

antiderivatives are not elementary. An algorithm to decide whether a 

functions has an elementary indefinite integral was first deduced by Liouville 

around 1835. This was the starting point for the field of symbolic integration. 

Example. (Higher transcendental functions) Antiderivatives of functions that 

do not possess elementary integrals are frequently called higher 

transcendental functions. We give the following examples: 

22
e  d Erf( )x x x c



     Gaussian error function; 
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e
 d ( )

x

x i x c
x

    exponential integral; 

1
 d ( )

log
x i x c

x
    logarithmic integral; 

sin
 d ( )

x
x i x c

x
    sine integral; 

2sin d ( )
2

x x x c
 

   
 

  Fresnel integral.  

Proposition. (Rules for indefinite integration) For indefinite integration the 

following rules hold: 

(a) Sum: ( ( ) ( ))d ( )d ( )df x g x x f x x g x x      

(b) Constant factor: ( )d ( )d ( )f x x f x x      

(c) Integration by parts: ( ) ( )d ( ) ( ) ( ) ( )df x g x x f x g x f x g x x     

(d) Substitution: 
( )

( ( )) ( )d ( )d
y g x

f g x g x x f y y


   

Proof. (a) and (b) are clear; (c) follows from the product rule for the 

derivative  

 ( ) ( )d ( ) ( )d ( ) ( ) ( ) ( ) d ( ( ) ( )) d ( ) ( )f x g x x f x g x x f x g x f x g x x f x g x x f x g x c            
 

which can be rewritten as 

( ) ( )d ( ) ( ) ( ) ( )d .f x g x x f x g x f x g x x     
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In this formula we can drop the integration constant c  since it is already 

contained in the notion of indefinite integrals, which appear on both sides. 

Point (d) is an immediate consequence of the chain rule according to which an 

antiderivative of ( ( )) ( )f g x g x  is given by the antiderivative of ( )f y  evaluated 

at ( )y g x . 

Example.  The following five examples show how the rules of the last table 

can be applied. 

(a) 

1
1

3
1/3 2/3

3

d 3
 d

1 2
1

3

x x
x x c x c

x

 

    

 
  . 

(b) cos  d sin sin  d sin cosx x x x x x x x x x c      , which follows via integration 

by parts: we have ( ) , ( ) cosf x x g x x  . Then, ( ) 1, ( ) sinf x g x x   . 

(c) log  d 1 log  d log  d log
x

x x x x x x x x x x c
x

         , 

via integration by parts: ( ) log , ( ) ,f x x g x x   and 
1

( ) 1, ( ) .g x f x
x

    

(d)    
2 2

2 21 1 1
sin d sin  d cos cos

2 2 2y x y x

x x x y y y c x c
 

        , which follows 

from the substitution rule with 2( ) , ( ) 2y g x x g x x   , 
1

( ) sin
2

f y y . 
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(e) 
cos

sin
tan  d  d log | | log | cos |

cos y x

x
x x x y c x c

x 
        , again after substitution 

with ( ) cos , ( ) siny g x x g x x     and ( )f y   1/ y . 

Example. (A simple expansion into partial fractions) In order to find the 

indefinite integral of  2( ) 1/ 1f x x  , we decompose the quadratic 

denominator in its linear factors 2 1 ( 1)( 1)x x x     and expand ( )f x  into 

partial fractions of the form 

2

1
.

1 1 1

A B

x x x
 

  
Resolving the fractions leads to the equation 

1 ( 1) ( 1)A x B x    . Equating coefficients results in 

( ) 0, 1A B x A B    with the obvious solution 1/ 2, 1/ 2A B   . Thus 

2

1 1 d d 1 1 1
 d (log | 1| log | 1|) log .

1 2 1 1 2 2 1

x x x
x x x C C

x x x x

 
         

    
    

Another antiderivative of  2( ) 1/ 1f x x   is ( )F x   artanh x . Thus,  

1 1 1 1
artanh log log . 

2 1 2 1

x x
x C C

x x

 
    

 
 

Inserting 0x   on both sides shows that 0C   and yields an expression of the 

inverse hyperbolic tangent in terms of the logarithm. 
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Exercises 

1. An object is thrown vertically upwards from the ground with a velocity of 

10[ m / s] . Find its height ( )w t  as a function of time t , the maximum height as 

well as the time of impact on the ground. 

Hint. Integrate 2( ) g 9.81  m / sw t        twice indefinitely and determine the 

integration constants from the initial conditions (0) 0, (0) 10w w  . 

2. Compute the following indefinite integrals by hand and with maple: 

(a)  2 4 63 5 7 dx x x x x   ,   (b) 
dx

x
 ,  (c) 

2

e  dxx x

  (substitution), 

(d) e  dxx x  (integration by parts). 

3. Compute the indefinite integrals  (a) 2cos  dx x ,     (b) 21  dx x . 

Hints. For (a) use the identity 2 1
cos (1 cos 2 )

2
x x   

for (b) use the substitution 2( ) arcsin , ( ) 1 siny g x x f y y    . 

4. Compute the indefinite integrals (a) 
2

d
 d

2 5

x
x

x x  ,     (b) 
2

d

2 3

x

x x  . 

Hints. Write the denominator in (a) in the form 2( 1) 4x   and reduce it to 

2 1y   by means of a suitable substitution. Factorize the denominator in (b). 

5. Compute the indefinite integrals (a) 
2

d
 d

2

x
x

x x ,     (b) 
2

d

2 1

x

x x  . 
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6. Compute the indefinite integrals (a) 2 sin  dx x x , (b) 2 3e  dxx x

 . 

Hint. Repeated integration by parts. 

7. Compute the indefinite integrals (a) 
e

 d
e 1

x

x
x

 ,   (b) 21  dx x  

Hint. Substitution exy   in case (a), substitution sinhy x  in case (b), 

invoking the formula 2 2cosh sinh 1y y   and repeated integration by parts or 

recourse to the definition of the hyperbolic functions. 

8. Show that the functions 
1

( ) arctan  and ( ) arctan
1

x
f x x g x

x


 


differ in the 

interval ( ,1)  by a constant. Compute this constant. Answer the same 

question for the interval (1, ) . 

9. Prove the identity  2arsinh log 1x x x   . 

Hint. Note that the functions ( ) arsinhf x x  and ( )g x    2log 1x x   have the 

same derivative. 
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Definite Integrals (Riemann's approach) 

In the previous section the notion of the definite integral of a function f  on 

an interval [𝑎, 𝑏] was already mentioned. It arises from taking limits of 

summing up expressions of the form ( )f x x . Such sums appear in many 

applications including the calculation of areas, surface areas and volumes as 

well as the calculation of lengths of curves. This section introduces the notion 

of Riemann integrals as the basic concept of definite integration. Riemann's 

approach provides an intuitive concept in many applications, as will be 

elaborated in examples at the end of the section. 

The main part of this section is dedicated to the properties of the integral. In 

particular, the two fundamental theorems of calculus are proven. The first 

theorem allows one to calculate a definite integral from the knowledge of an 

antiderivative. The second fundamental theorem states that the definite 

integral of a function f  on an interval [𝑎, 𝑥] with variable upper bound 

provides an antiderivative of f . Since the definite integral can be 

approximated, for example by Riemann sums, the second fundamental 

theorem offers a possibility to approximate the antiderivative numerically. 

This is of importance, for example, for the calculation of distribution 

functions in statistics. 
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The Riemann Integral 

Example. (From velocity to distance) How can one calculate the distance w  

which a vehicle travels between time a  and time b  if one only knows its 

velocity ( )v t  for all times a t b   ? If ( )v t v  is constant, one simply gets 

𝑤 =  𝑣 ·  (𝑏 −  𝑎). 

If the velocity ( )v t  is time-dependent, one divides the time axis into smaller 

subintervals (see the following figure): 
0 1 2 na t t t t b      .. 

 

Choosing intermediate points 1,j j jt t 
     one obtains approximately 

  1( )  for , ,j j jv t v t t t 
    if v  is a continuous function of time. The 

approximation is the more precise, the shorter the intervals 1,j jt t
    are 

chosen. The distance travelled in this interval is approximately equal to 

  1 .j j j jw v t t   The total distance covered between time a  and time b  is 

then   1

1 1

.
n n

j j j j

j j

w w v t t 

 

    Letting the length of the subintervals 1,j jt t
    

tend to zero, one expects to obtain the actual value of the distance in the limit. 

 



88 
 

Example. (Area under the graph of a nonnegative function) In a similar way 

one can try to approximate the area under the graph of a function ( )y f x  by 

using rectangles which are successively refined (Fig. 11.2). 

The sum of the areas of the rectangles 

  1

1

n

j j j

j

F f x x 



   

form an approximation to the actual area under the graph. 

The two examples are based on the same concept, the Riemann integral, 1  

which we will now introduce. Let an interval $[a, b]$ and a function 

[ , ]f a b   be given. Choosing points 
0 1 2 1 ,n na x x x x x b       the 

intervals      0 1 1 2 1, , , , , ,n nx x x x x x  form a partition Z  of the interval $[a, b]$. 

We denote the length of the largest subinterval by ( )Z , i.e. 

1, , 1( ) max .j n j jZ x x      

For arbitrarily chosen intermediate points 1,j j jx x 
     one calls the 

expression 

  1

1

n

j j j

j

S f x x 



  a Riemann sum. In order to further specify the idea of the 

limiting process above, we take a sequence 
1 2 3, , ,Z Z Z  of partitions such that 

  0NZ   as N   and corresponding Riemann sums NS . 
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Definition. A function f  is called Riemann integrable in [𝑎, 𝑏] if, for 

arbitrary sequences of partitions  
1N N

Z


 with   0NZ  , the corresponding 

Riemann sums  
1N N

S


 tend to the same limit ( )I f , independently of the 

choice of the intermediate points. This limit ( ) ( )d
b

a
I f f x x  is called the 

definite integral of f  on [𝑎, 𝑏]. 

The intuitive approach in the above introductory Examples can now be made 

precise. If the respective functions f  and v  are Riemann integrable, then the 

integral  

( )d
b

a
F f x x   

represents the area between the x -axis and the graph, and 

( )d
b

a
w v t t   

gives the total distance covered. 

The following examples illustrate the notion of Riemann inerrability. 

Example . (a) Let ( )f x c   constant. Then the area under the graph of the 

function is the area of the rectangle ( )c b a . On the other hand, any Riemann 

sum is of the form 

        

   

1 1 0 2 2 1 1

1 0 2 1 1 0 ( ).

n n n

n n n

f x x f x x f x x

c x x x x x x c x x c b a

   



     

          
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All Riemann sums are equal and thus, as expected,  d ( )
b

a
c x c b a   

(b) Let 
1

( )f x
x

  for (0,1], (0) 0x f  . This function is not integrable in [0,1]. 

The corresponding Riemann sums are of the form 

     1 2 1 1

1 2

1 1 1
0 .n n

n

x x x x x
  

       

By choosing 1  close to 0 every such Riemann sum can be made arbitrarily 

large; thus the limit of the Riemann sums does not exist. 

(c) Dirichlet's function  

( ) 1, 0, }f x x x    

is not integrable in [0,1]. The Riemann sums are of the form 

     1 1 0 1 .N n n nS f x x f x x        

If all j   then 1NS  . If one takes all j   then 0NS  ; thus the limit 

depends on the choice of intermediate points j . 

Remark. Riemann integrable functions :[ , ]f a b   are necessarily bounded. 

This fact can easily be shown by generalizing the argument in the previous 

example (b). 

The most important criteria for Riemann integrability are outlined in the 

following proposition. Its proof is simple, however, it requires a few technical 

considerations about refining partitions.  
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Proposition. (a) Every function which is bounded and monotonically 

increasing (monotonically decreasing) on an interval [𝑎, 𝑏] is Riemann 

integrable. 

(b) Every piecewise continuous function on an interval [𝑎, 𝑏] is Riemann 

integrable. 

A function is called piecewise continuous if it is continuous except for a finite 

number of points. At these points, the graph may have jumps but is required 

to have left- and right-hand limits, see the figure. 

 

Remark. By taking equidistant grid points 
0 1 1n na x x x x b       for the 

partition, i.e. 1 : ,j j

b a
x x x

n



    the Riemann sums can be written as 

 
1

.
n

N j

j

S f x


   

The transition 0x   with simultaneous increase of the number of summands 

suggests the notation ( )d .
b

a
f x x  Originally it was introduced by Leibniz with 

the interpretation as an infinite sum of infinitely small rectangles of width dx . 
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After centuries of dispute, this interpretation can be rigorously justified today 

within the framework of nonstandard analysis. 

Note that the integration variable x  in the definite integral is a bound variable 

and can be replaced by any other letter: 

( )d ( )d ( )d
b b b

a a a
f x x f t t f        

This can be used with advantage in order to avoid possible confusion with 

other bound variables. 

Proposition. (Properties of the definite integral) In the following let a b  

and $f, g$ be Riemann integrable on $[a, b]$. 

(a) Positivity: 0 in [ , ] ( )d 0, 0 in [ , ] ( )d 0.
b b

a a
f a b f x x f a b f x x        

(b) Monotonicity:  in [ , ] ( )d ( )d
b b

a a
f g a b f x x g x x     

In particular; with 
[ , ] [ , ]

inf ( ), sup ( )
x a b x a b

m f x M f x
 

   the following inequality holds 

( ) ( )d ( )
b

a
m b a f x x M b a     

(c) Sum and constant factor (linearity): 

( ( ) ( ))d ( )d ( )d ,

( )d ( )d ( ).

b b b

a a a

b b

a a

f x g x x f x x g x x

f x x f x x  

  

 

  

 
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(d) Partition of the integration domain: Let a b c   and f  be integrable in 

[𝑎, 𝑐], then ( )d ( )d ( )d .
b c c

a b a
f x x f x x f x x     If one defines 

( )d 0, ( )d ( )d ,
a a b

a b a
f x x f x x f x x      

then one obtains the validity of the sum formula even for arbitrary , ,a b c  if 

f  is integrable on the respective intervals. 

Proof. All justifications are easily obtained by considering the corresponding 

Riemann sums. (a) the interpretation of the integral as the area under the 

graph is only appropriate if 0f  . On the other hand, the interpretation of the 

integral of a velocity as travelled distance is also meaningful for negative 

velocities (change of direction). (d) is especially important for the integration 

of piecewise continuous functions. The integral is obtained as the sum of the 

single integrals. 

Fundamental Theorems of Calculus 

For a Riemann integrable function $f$ we define a new function 

( ) ( )d
x

a
F x f t t   

It is obtained by considering the upper boundary of the integration domain as 

variable. 
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Remark. For positive f , the value ( )F x  is the area under the graph of the 

function in the interval [𝑎, 𝑥]; see  

 

 

The interpretation of ( )F x  as area 

Proposition. (Fundamental theorems of calculus) Let f  be continuous in 

[𝑎, 𝑏]. Then the following assertions hold: 

(a) First fundamental theorem: If G  is an antiderivative of f  then 

( )d ( ) ( ).
b

a
f x x G b G a   

(b) Second fundamental theorem: The function 

( ) ( )d
x

a
F x f t t   

is an antiderivative of f , that is, F  is differentiable and ( ) ( )F x f x  . 

Proof. In the first step we prove the second fundamental theorem. For that let 

( , ), 0x a b h   and ( , )x h a b  . According to the proposition the function f  

has a minimum and a maximum in the interval [ , ]x x h  : 

[ , ] [ , ]( ) min ( ), ( ) max ( ).t x x h t x x hm h f t M h f t      
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The continuity of f  implies the convergence ( ) ( )m h f x  and ( ) ( )M h f x  as 

0h . According to item (b) in the proposition we have that 

( ) ( ) ( ) ( )d ( ) .
x h

x
m h h F x h F x f t t M h h



        

This shows that F  is differentiable at x  and 

0

( ) ( )
( ) lim ( ).

h

F x h F x
F x f x

h





 
   

The first fundamental theorem follows from the second fundamental theorem 

( )d ( ) ( ) ( ),
b

a
f t t F b F b F a    

since ( ) 0F a  . If G  is another antiderivative then G F c  ; hence 

( ) ( ) ( ) ( ( ) ) ( ) ( ).G b G a F b c F a c F b F a        

Thus ( ) ( ) ( )d
b

a
G b G a f x x    as well. 

Remark. For positive f , the second fundamental theorem of calculus has an 

intuitive interpretation. The value ( ) ( )F x h F x   is the area under the graph of 

the function ( )y f x  in the interval [ , ]x x h , while ( )hf x  is the area of the 

approximating rectangle of height ( )f x . The resulting approximation 

( ) ( )
( )

F x h F x
f x

h

 
  

suggests that in the limit as 0, ( ) ( )h F x f x  . 
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Applications of the first fundamental theorem. The most important 

application consists in evaluating definite integrals ( )d
b

a
f x x . For that, one 

determines an antiderivative ( )F x , for instance as indefinite integral, and 

substitutes: 

( )d ( ) ( ) ( ).
b x b

x aa
f x x F x F b F a




    

Example. As an application we compute the following integrals. 

(a) 

3
3

3
2

1
1

27 1 26
 d

3 3 3 3

x

x

x
x x





    . 

(b) 
/2 /2

00
cos  d sin sin sin 0 1

2

x

x
x x x

  


    . 

(c)    
1

1
2 2

0
0

1 1 1
sin d cos cos1 cos0

2 2 2

x

x

x x x x





 
      

 
  

1 1
cos1

2 2
.    

Applications of the second fundamental theorem. Usually, such applications 

are of theoretical nature, like the description of the relation between travelled 

distance and velocity, 

0
( ) (0) ( )d , ( ) ( ),

t

w t w v s s w t v t    

where ( )w t  denotes the travelled distance from 0 to time t  and ( )v t  is the 

instantaneous velocity.  
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Applications of the Definite Integral 

We now turn to further applications of the definite integral, which confirm the 

modeling power of the notion of the Riemann integral. 

The volume of a solid of revolution. Assume first that for a three-dimensional 

solid (possibly after choosing an appropriate Cartesian coordinate system) the 

crosssectional area ( )A A x  is known for every [ , ]x a b ; see  

 

The volume of a thin slice of thickness x  is approximately equal to ( )A x x . 

Writing down the Riemann sums and taking limits one obtains for the volume 

V  of the solid 

( )d .
b

a
V A x x   

A solid of revolution is obtained by rotating the plane curve ( ),y f x a x b    

around the x -axis. In this case, we have 2( ) ( )A x f x , and the volume is 

given by 

2( )  d
b

a
V f x x  . 
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Example. (Volume of a cone) The rotation of the straight line 
r

y x
h

  around 

the x -axis produces a cone of radius r  and height h  (see the following 

figure). Its volume is given by 

2 2 3
2 2

2 20
0

 d
3 3

x h
h

x

r r x h
V x x r

h h
  





     

 

Arc length of the graph of a function. To determine the arc length of the 

graph of a differentiable function with continuous derivative, we first partition 

the interval [𝑎, 𝑏], 
0 1 2 ,na x x x x b      and replace the graph ( )y f x  on 

[𝑎, 𝑏] by line segments passing through the points 

        0 0 1 1, , , , , ,n nx f x x f x x f x . The total length of the line segments is 

      
22

1 1

1

.
n

n j j j j

j

s x x f x f x 



     

It is simply given by the sum of the lengths of the individual segments  
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According to the mean value theorem we have 

         
2 2 2 2

1 1 1

1 1

1
n n

n j j j j j j j j

j j

s x x f c x x f c x x 

  

 

         

with certain points 1,j j jc x x
    . The sums ns  are easily identified as Riemann 

sums. Their limit is thus given by  

21 ( )  d .
b

a
s f x x   

Lateral surface area of a solid of revolution. The lateral surface of a solid of 

revolution is obtained by rotating the curve ( ),y f x a x b    around the x -

axis. 

In order to determine its area, we split the solid into small slices of thickness 

x . Each of these slices is approximately a truncated cone with generator of 

length s  and mean radius ( )f x ;  

 

The lateral surface area of this truncated cone is equal to 2 ( )f x s  . According 

to what has been said previously, 21 ( )s f x x     and thus the lateral surface 
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area of a small slice is approximately equal to 22 ( ) 1 ( ) .f x f x x   Writing 

down the Riemann sums and taking limits one obtains  

22 ( ) 1 ( )  d
b

a
M f x f x x    

for the lateral surface area. 

Example. (Surface area of a sphere) The surface of a sphere of radius r  is 

generated by rotation of the graph 2 2( ) ,f x r x r x r     . One obtains 

2 2 2

2 2
2  d 4 .

r

r

r
M r x x r

r x
 


  


  

Exercises 

1. Prove that every function which is piecewise constant in an interval$[a, 

b]$is Riemann integrable (use Definition 11.3). 

2. Compute the area between the graphs of siny x  and y x  on the interval 

[0,2 ] . 

3. Rotation of the parabola 2 ,0 1y x x    around the x -axis produces a 

paraboloid. Sketch it and compute its volume and its lateral surface area. 

4. Compute the arc length of the graph of the following functions: 

(a) the parabola 2( ) / 2f x x  for 0 2x  ; 

(b) the catenary ( ) coshg x x  for 1 3x   . 
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Hint. See Exercise 7 in Sect. 10.3. 

5. The surface of a cooling tower can be described qualitatively by rotating 

the hyperbola 21y x   around the x -axis in the bounds 1 2x   . 

(a) Compute the volume of the corresponding solid of revolution. 

(b) Show that the lateral surface area is given by 
2

2

1
2 1 2  dM x x


  . 

6. A lens-shaped body is obtained by rotating the graph of the sine function 

y   sin x  around the x -axis in the bounds 0 x   . 

(a) Compute the volume of the body. 

(b) Compute its lateral surface area. 

Hint. For (a) use the identity 2 1
sin (1 cos 2 )

2
x x  ; for (b) use the substitution 

( ) cosg x x . 

7. (From probability theory) Let X  be a random variable with values in an 

interval [𝑎, 𝑏] which possesses a probability density ( )f x , that is, ( ) 0f x   and 

( )d 1
b

a
f x x  . Its expectation value E( )X  , its second moment  2E X  and its 

variance V( )X  are defined by 

 2 2 2E( ) ( )d , E ( )d  V( ) ( ) ( )d
b b b

a a a
X x f x x X x f x x X x f x x       

Show that  2 2V( ) EX X   . 
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8. Compute the expectation value and the variance of a random variable 

which has (a) a uniform distribution on [𝑎, 𝑏], i.e. ( ) 1/ ( )f x b a   for a x b  ; 

(b) a (special) beta distribution on $[a, b]$ with density ( ) 6( )( ) /f x x a b x    

3( )b a  

9. Compute the expectation value and the variance of a random variable 

which has a triangular distribution on [𝑎, 𝑏] with modal value m , i.e. 

2( ) 2( )
( )  for  for 

( )( ) ( )( )

x a b x
f x a x m m x b

b a m a b a b m

  
    

   
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Practice Problems 
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For problems 3 – 7 determine if the given function is continuous or discontinuous at the indicated points. 
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For problems 3 – 4 determine the area of the region bounded by the given set of curves 

 

 

For problems 1 – 4 use the method of disks/rings to determine the volume of the solid 

obtained by rotating the region bounded by the given curves about the given axis 

 

 

 

 


