
رات فيــمحاض

ة مذجمادة البرمجة والن

ا(314)

ة ــثالثة الــللفرق

مات وظم معلنمساحة و

ةـــرافيـــجغ

Python Programming
Fundamentals

Perform

Arithmetic

Memory

3

Make

Decisions

Repeat

Operations

54

Processing Chip

Data Information

2

6

Data

1

Input Unit

Information

Output unit

Operations Performed by the Computer

رةصوفىالحلتقديمالىتهدفالمسائللحلطريقةهى

المسألةلحالىنصلتتبعناهاذامنطقياترتيبامرتبةخطوات

Algorithmهذه الخطوات يطلق عليها

ةــــــرمجـــالب

تحويليتمانويجبAlgorithmعليهايطلقالمشكلةحلخطـوات

البرمجةلغاتاحدباستخدامProgramبرنامجالىالخطواتهذه

Problem Algorithm Program

Algorithm [Rule, Procedure, Method, Technique]

رـبالكمبيوتلات ـل المشكـــح

Analyzing The Problem .1تحليل المشكلة

2. Developing The Algorithm

Design a solution / program

تطوير الخوار زم

3. Coding The Program (Basic)

 (Suitable Programming Lang).

كتابة الكود

(البرنامج)

Designingعمليات حل المشكلة a program

4. Executing The Program

5. Testing The Program

6. Documenting The Program

تنفيذ البرنامج

اختبار البرنامج

توثيق البرنامج

ة ــل المشكلـــات حـــعملي

Flowchart is a diagrammatic way of representing,

the steps to be followed for solving the given

problem, and provides us the visualization of the

steps involved

FLOWCHART

المجموعوطباعةلحسابالتدفقخريطةارسممثال
Pseudocodeالىحولهاثم.A,B,Cاعداد3لوالمتوسط

Start

Read
A, B, C

Sum = A + B + C

Avg = Sum / 3

Write
Sum, Avg

End

BEGIN

DISPLAY „input 3 nos“

INPUT A, B, C

DETERMINE SUM = A + B + C

DETERMINE AVG = SUM / 3

PRINT SUM, AVG

END

Flowchartأمثلة لخرائط التدفق

• Created in 1991 by Guido van Rossum (now at Google)

• Named for Monty Python

• Used by:

• Google, Yahoo!, Youtube

• Many Linux distributions

• Games and apps (e.g. Eve Online)

• Interpreted
• Not compiled like Java
• Code is written and then directly executed by

an interpreter
• Type commands into interpreter and see

immediate results

ComputerInterpreterCodePython:

Interpreted Languages

• Allows you to type commands one-at-a-time and see results

• A great way to explore Python's syntax
• Repeat previous command: Alt+P

The Python Interpreter

• Python does not have a main method like Java

• The program's main code is just written directly in the file

• Python statements do not end with semicolons (;)

hello.py

1 print("Hello, world!")

Our First Python Program

TOKENS / LEXICAL UNITS

TOKENS

1. Key
Words

2. Identifiers

3. Literals
4.

Operators.

5.
Punctuators

x = 10
y = x + 5
sum = x + y
Print (“sum = ”, sum, “\n”, 5+3)

• Python has some rules about how identifiers can be formed

• Every identifier must begin with a letter or underscore, which may be
followed by any sequence of letters, digits, or underscores

>>> x1 = 10
>>> x2 = 20
>>> y_effect = 1.5
>>> celsius = 32
>>> 2celsius
 File "<stdin>", line 1
 2celsius
 ^

SyntaxError: invalid syntax

Identifiers

• Python has some rules about how identifiers can be formed
• Identifiers are case-sensitive

>>> x = 10
>>> X = 5.7
>>> print(x)
10
>>> print(X)
5.7

Identifiers

• Python has some rules about how identifiers can be formed
• Some identifiers are part of Python itself (they are called reserved words or

keywords) and cannot be used by programmers as ordinary identifiers

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

Python
Keywords

Identifiers (keywords)

• Python has some rules about how identifiers can be formed
• Some identifiers are part of Python itself (they are called reserved words or

keywords) and cannot be used by programmers as ordinary identifiers

>>> for = 4
 File "<stdin>", line 1
 for = 4
 ^
SyntaxError: invalid syntax

An example…

Identifiers

• In the following example, the parameter values passed to the print

function are all technically called literals

>>> print("Hello")
Hello
>>> print("Programming is fun!")
Programming is fun!
>>> print(3)
3
>>> print(2.3)
2.3

Literals

❑ More precisely, “Hello” and “Programming is fun!” are called
textual literals, while 3 and 2.3 are called numeric literals

PUNCTUATORS

• Punctuators are also called as separators

• The Followings are used as punctuators:

• Brackets []

• Parentheses ()

• Braces { }

• Comma ,

• Semicolon ;

• Colon :

• Asterisk *

• Ellipsis …

• Equal Sign =

• Pound Sign #

Python Comments

• A python comment begins with a “#”.

• Anything after the “#” is ignored by Python

• The 1st line in the below script is a comment line- it is ignored by Python

• The Characters to the right of the “#” on lines 2-5 are ignored

get x1, y1, x2, y2 from the command line
x1param = float(5) # x1
y1param = int(5.23) # y1

X2param?= float(y1param) # x2
y2pa ram = float(x1param) # y2
2z3param = str(y1param) # z3

Python Data Types

• String: a sequence of alphanumeric characters

• Integer: a whole number that has no fractional component

• Float: a number that contains a fractional component

• String example: “I learn Python” (note that strings are enclosed
in quotes)

• Integer examples: 100, -19, 0, 9999999

• Float examples: 1.0, -123.678, 1.6745E3

Python Assignment Statement

• The “=“ sign is the assignment operator as it is in most
programming languages

X = 1
print (X) # the number “1” will appear on the screen
X = X + 5
print (X) # the number “6” will appear on the screen

•A literal is used to indicate a specific value, which can
be assigned to a variable

>>> x = 2
>>> print(x)
2
>>> x = 2.3
>>> print(x)
2.3

Simple Assignment Statements

▪ x is a variable and 2 is its value

▪ x can be assigned different values;
hence, it is called a variable

• Python assignment statements are actually slightly different from
the “Variable as a Box” model.
• In Python, values may end up anywhere in memory, and

variables are used to refer to them.

>>> x = 2
>>> print(x)
2
>>> x = 2.3
>>> print(x)
2.3

Simple Assignment Statements: Actual View

2

Before
x = 2.3

2

After

x x

2.3

What will
happen to

value 2?

• So far, we have been using values specified by programmers and printed
or assigned to variables
• How can we let users (not programmers) input values?

• In Python, input is accomplished via an assignment statement
combined with a built-in function called input

• When Python encounters a call to input, it prints <prompt> (which is a
string literal) then pauses and waits for the user to type some text and
press the <Enter> key

Assignning Input

<variable> = input(<prompt>)

• Here is a sample interaction with the Python interpreter:

• Notice that whatever the user types is then stored as a String

• What happens if the user inputs a number?

>>> name = input("Enter your name: ")
Enter your name: Abdou Hussien

>>> name
‘Abdou Hussien'
>>>

Assignning Input

•Here is a sample interaction with the Python interpreter:

• How can we force an input number to be stored as a number
and not as a string?

• We can use the built-in eval function, which can be “Wrapped
Around” the input function.

>>> number = input("Enter a number: ")
Enter a number: 3
>>> number
'3'
>>>

Still a String!

Assignning Input

• Here is a sample interaction with the Python interpreter:

>>> number = eval (input ("Enter a number: "))
Enter a number: 3
>>> number
3
>>>

Now an int
(no single quotes)!

Assignning Input

• Here is a sample interaction with the Python interpreter:

>>> number = eval (input("Enter a number: "))
Enter a number: 3.7
>>> number
3.7
>>>

And now a float
(no single quotes)!

Assignning Input

• Here is another sample interaction with the Python interpreter:

>>> number = eval (input("Enter an equation: "))
Enter an equation: 3 + 2
>>> number
5
>>>

The eval function will evaluate this formula and
return a value, which is then assigned to the variable “number”

Assignning Input

• Besides, we can convert the string output of the input function
into an integer or a float using the built-in int and float functions

Data Type Conversion

>>> number = int (input("Enter a number: "))
Enter a number: 3
>>> number
3
>>>

An integer
(no single quotes)!

• Besides, we can convert the string output of the input function
into an integer or a float using the built-in int and float functions

>>> number = float(input("Enter a number: "))
Enter a number: 3.7
>>> number
3.7
>>>

A float
(no single quotes)!

Data Type Conversion

• As a matter of fact, we can do various kinds of conversions between
strings, integers and floats using the built-in int, float, and str functions:

>>> x = 10
>>> float(x)
10.0
>>> str(x)
'10'
>>>

>>> y = "20"
>>> float(y)
20.0
>>> int(y)
20
>>>

>>> z = 30.0
>>> int(z)
30
>>> str(z)
'30.0'
>>>

integer ➔ float
integer ➔ string

string ➔ float
string ➔ integer

float ➔ integer
float ➔ string

Data Type Conversion

• Python allows us also to assign multiple values to multiple
variables all at the same time

• This form of assignment might seem strange at first, but it can
prove remarkably useful (e.g., for swapping values)

Simultaneous Assignment

>>> x, y = 2, 3
>>> x
2
>>> y
3
>>>

• Suppose you have two variables x and y, and you want to swap their
values (i.e., you want the value stored in x to be in y and vice versa)

>>> x = 2
>>> y = 3
>>> x = y
>>> y = x
>>> x
3
>>> y
3

X CANNOT be done with
two simple assignments

Simultaneous Assignment

• Suppose you have two variables x and y, and you want to swap their
values (i.e., you want the value stored in x to be in y and vice versa)

X, y = y, x

>>> x = 2
>>> y = 3
>>> temp = x
>>> x = y
>>> y = temp
>>> x
3
>>> y
2
>>>

✓
CAN be done with
three simple assignments,
but more efficiently with
simultaneous assignment

Thus far, we have been
using different names for
variables. These names
are technically called
identifiers

Simultaneous Assignment

• You can produce new data (numeric or text) values in your
program using expressions

>>> x = 2 + 3
>>> print(x)
5
>>> print(5 * 7)
35
>>> print("5" + "7")

▪ This is an expression that uses the
addition operator

▪ This is another expression that uses the
addition operator but to concatenate (or glue)
strings together

▪ This is another expression that uses the
multiplication operator

57

Expressions

• You can produce new data (numeric or text) values in your
program using expressions

>>> x = 6
>>> y = 2
>>> print(x - y)
4
>>> print(x/y)
3.0
>>> print(x//y)
3

>>> print(x*y)
12
>>> print(x**y)
36
>>> print(x%y)
0
>>> print(abs(-x))
6

Yet another
example…

Another
example…

Expressions

Expressions: Summary of Operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Float Division

** Exponentiation

abs() Absolute Value

// Integer Division

% Remainder

Python Operators (in order of precedence)

1. Brackets: ()

2. Multiplication: *

3. Division: /

4. Modulus: %

5. Addition: +

6. Subtraction: -

• Data conversion can happen in two ways in Python
1. Explicit Data Conversion (we saw this earlier with the int, float, and str

built-in functions)

2. Implicit Data Conversion

• Takes place automatically during run time between ONLY numeric values

• E.g., Adding a float and an integer will automatically result in a float value

• E.g., Adding a string and an integer (or a float) will result in an error since
string is not numeric

• Applies type promotion to avoid loss of information

• Conversion goes from integer to float (e.g., upon adding a float and an
integer) and not vice versa so as the fractional part of the float is not lost

Explicit and Implicit Data Type Conversion

Implicit Data Type Conversion: Examples

>>> print(2 + 3.4)
5.4
>>> print(2 + 3)
5
>>> print(9/5 * 27 + 32)
80.6
>>> print(9//5 * 27 +
32)
59
>>> print(5.9 + 4.2)
10.100000000000001
>>>

▪ The result of an expression that involves
a float number alongside (an) integer
number(s) is a float number

>>> print(2 + 3.4)
5.4
>>> print(2 + 3)
5
>>> print(9/5 * 27 + 32)
80.6
>>> print(9//5 * 27 + 32)
59
>>> print(5.9 + 4.2)
10.100000000000001
>>>

▪ The result of an expression that involves
a float number alongside (an) integer
number(s) is a float number

▪ The result of an expression that involves
values of the same data type will not result
in any conversion

Implicit Data Type Conversion: Examples

Built-in Python Functions

• A function takes an “argument” or “arguments” and returns a
value that can be used in an assignment statement

• In the below satements abs(x) and pow(x,y) are built-in functions
in every implementation of the Python language

x = abs(-8)
print (x)

y = pow(3,2)
print (y)

the number “8” will appear

the number “9” will appear

Python Built-In Functions

• abs(x) # returns the absolute value of x

• float(x) # returns the string x converted to a floating point number

• int(x) # returns the string x converted to a integer number

• pow(x,y) # returns the number x rasied to the y power

• round(x,n) # rounds the number x to n decimal places

• str(x) # returns the string equivalent of the object x

.A,B,Cاعداد3لوالمتوسطالمجموعوطباعةلحساببرنامجااكتبمثال

Start

Read
A, B, C

Sum = A + B + C

Avg = Sum / 3

Write
Sum, Avg

End

Programm

• Programs are composed of statements that are built from
identifiers and expressions

• Identifiers are names
• They begin with an underscore or letter which can be followed by a

combination of letter, digit, and/or underscore characters

• They are case sensitive. (e.g.: a , a42, a4xy, name, user_name,
username, ….)

• Expressions are the fragments of a program that produce data
• They can be composed of literals, variables, and operators

Summary

• A literal is a representation of a specific value (e.g., 3 is a literal
representing the number three)

• A variable is an identifier that stores a value, which can change
(hence, the name variable)

• Operators are used to form and combine expressions into more
complex expressions (e.g., the expression x + 3 * y combines
two expressions together using the + and * operators)

Summary

• In Python, assignment of a value to a variable is done using the
equal sign (i.e., =)

• Using assignments, programs can get inputs from users and
manipulate them internally

• Python allows simultaneous assignments, which are useful for
swapping values of variables

• Datatype conversion involves converting implicitly and explicitly
between various datatypes, including integer, float, and string

Summary

Simple Data Types

• Numbers
• Integer, Floating-point, Complex! # c=complex(12,5)

 # c = 12 + 5j

• Strings
• Characters are strings of length 1

• Booleans are False or True

Simple Data Types: Operators

❑+, -, *, /, % # x + y, x-y, x*y, x/y

❑+=, -=, … etc. # x += 2 ==➔ x = x + 2

❑Assignment using =
but semantics are different!
a = 1 # int

a = "food" # str

❑Can also use + to concatenate strings

▪ "hello " + "world" ➔ "hello world"

A quick note on the increment operator
shorthand

• Python has a common idiom that is not necessary, but
which is used frequently and is therefore worth noting:

 x += 1 Is the same as x = x + 1

• This also works for other operators:

 x += y # adds y to the value of x

 x *= y # multiplies x by the value y

 x -= y # subtracts y from x

 x /= y # divides x by y

Boolean Operators

• Boolean operators are useful when making conditional
statements, we will cover these in-depth later.

• and

• or

• not

Comparison Operators

• Greater than: >

• Lesser than: <

• Greater than or equal to: >=

• Lesser than or equal to: <=

• Is equal to: ==

In:

Out:

• Write a couple of operations
using comparison operators; i.e.

String
• "hello" + "world"
• "hello" * 3
• "hello" [0]
• "hello" [-1]
• "hello" [1:4]
• Len ("hello")
• "hello" < "jello"
• "e" in "hello"
• New line:
• Line continuation:
• Quotes:

"helloworld" # concatenation

"hellohellohello" # repetition

"h" # indexing

"o" # (from end)

"ell" # slicing

True # comparison

True # search

"escapes: \n "

'single quotes', " double quotes "

5 # size

triple quotes """ """

Methods in string

•upper()

• lower()

•count(s) # text.count('word')

• find(s)

• index(s) # s.index('l')

Simple Data Types

• Triple quotes useful for multi-line strings
s = """a long string with "quotes" or anything else"""

print(s)
'a long string with "quotes" or anything else '

>>> len(s)
44

Compound Data Type: List
▪ List:

• Collection allows us to put many values in a single “variable””

•Defined in square brackets

a = [1, 2, 3, 4, 5]

print a[1] # number 2

some_list = []

some_list.append("food")

some_list.append(12)# some_list = ["food“, 12]

print len(some_list) # 2

 friends = [‘Ahmed', ‘Ali’, ‘Yasser’,’Sally’]

Compound Data Type: List
• a = [99, "bottles of beer", ["on", "the", "wall"]]

 a [2] =======➔

Flexible arrays

• Same Operators as for strings

• a + b, a*3, a[0], a[-1], a[1:], len(a)

• Item and slice assignment

• a[0] = 98

• a[1:2] = ["bottles", "of", "beer"]

a ➔ [98, ["bottles", "of", "beer“], ["on", "the", "wall"]]

• del a[-1] # -> [98, ["bottles", "of", "beer“]]

["on", "the", "wall"]

Compound Data Type: List

>>> a = [x for x in range(5)]

>>> a.append(5)

>>> a.pop()

5

>>> a.insert(0, 5.5)

>>> a.pop(0)

5.5

>>> a.reverse()

>>> a.sort()

a = [0,1,2,3,4]

[0,1,2,3,4,5]

[5.5,0,1,2,3,4]

[0,1,2,3,4]

[0,1,2,3,4]

[4,3,2,1,0]

[0,1,2,3,4]

Nested List
• List in a list

• E.g.,
• >>> s = [1,2,3]
• >>> t = [‘begin’, S, ‘end’]
• >>> t = [‘begin’, s, ‘end’]
• >>> t
• [‘begin’, [1, 2, 3], ‘end’]
• >>> t[1][1]
• 2

An example
• We have a list of species:

• The command underneath the list then cycles through each entry in
the species list and prints the animal’s name to the screen. Note: The i
is quite arbitrary. You could just as easily replace it with ‘animal’, ‘t’, or
anything else.

For loops essentially say:

 “For all elements in a
sequence, do something”

Another example
• We can also use for loops for operations other

than printing to a screen. For example:

• Using the list you made a moment ago, use a for loop to
print each element of the list to the screen in turn.

Applications [Variables]

<var_name> = <value> # ➔ age , name = 22, "Ahmed"

grades = [67, 100, 87, 56]

print("Hello, World!")

type (varaibleName)

complex(4, 5) # (4+5j)

complex(0, 0) # 0j

"I'm 20 years old" or 'My favorite book is "Sense and Sensibility"'

String: H e l l o
Index: 0 1 2 3 4

<string_variable>[start:stop:step]

Applications [Variables]
>>> freecode = "freeCodeCamp"

>>> freecode.capitalize() # 'Freecodecamp'

>>> freecode.count("C") # 2

>>> freecode.index("p") # 11

>>> freecode.isalpha() # True

>>> freecode . islower() # False

>>>freecode . isspace () # False

freecode . replace ("e", "a") # 'fraaCodaCamp'

>>> freecode.split("C")
['free', 'ode', 'amp']

>>> freecode.swapcase()
'FREEcODEcAMP'

>>> freecode.title()
'Freecodecamp'

>>> freecode.upper()
'FREECODECAMP'

Nested Lists

List = [1, 2, 3, 4, 5, "a", "b", "c", 3.4, 2.4, 2.6]

Nested_list = [[1, 2, 3], [4, 5, 6]] # Nested List

List Length # len(List)

Update a Value in a List # list[0] = ‘H’

Add a Value to a List # list.append(10)
 # list.insert (5, 6)

List Methods
>>> my_list = [1, 2, 3, 3, 4]
>>> my_list.append(5)
>>> my_list
[1, 2, 3, 3, 4, 5]

>>> my_list.extend([6, 7, 8])
>>> my_list
[1, 2, 3, 3, 4, 5, 6, 7, 8]

>>> my_list.insert(2, 15)
>>> my_list.insert(-1, 2)
>>> my_list.append(2)
>>> my_list
[1, 2, 15, 3, 3, 4, 5, 6, 7, 8, 2, 2]

>>> my_list.remove(2)
>>> my_list
[1, 15, 3, 3, 4, 5, 6, 7, 8, 2, 2]

>>> my_list.pop() # 2

>>> my_list.index(6) # 6

>>> my_list.count(2) # 1

>>> my_list.sort()
>>> my_list
[1, 2, 3, 3, 4, 5, 6, 7, 8, 15]

>>> my_list.reverse()
>>> my_list
[15, 8, 7, 6, 5, 4, 3, 3, 2, 1]

>>> my_list.clear()
>>> my_list
[]

Work With Code

• my_list = [2, 3, 4, 5]

 for num in my_list :

 if (num % 2 == 0) :

 print("Even")

 else:

 print("Odd")

Iterate Over Lists and Tuples

Test your Knowledge
• 2x = 10 =➔ # x = 10

Print 2x =➔ # print(x)

• 3 + 5 = y =➔ # y = 3+ 5

Print (y) =➔ # print (y)

• L = [3, "Hi", 5, 7,.3, [1, 2, 3], 5]

print (len (L), L[1], L[-1], L[-2])

• For i in range(11): =➔ # for i in range(11) :

print ("Hello" * i)

• Use append() to add the string “end” as the last element in L.

• Use del to remove the “end” that you added to the list earlier.

• Use insert() to put the integer 3 after the 7 that you just added to your string

T U EP L S
L I SS T

S T NR I G S

Programming with Python

• Integers: 2323, 3234

• Floating Point: 32.3, 3.1E2, 65.0

• Complex: 3 + 2j, 1j

• String: ‘text’ , “text”

• Lists: l = [1, 2, 3]

• Tuples: t = (1, 2, 3) or t =1, 2, 3

• Dictionaries: d = { ‘hello’ : ‘there’, 2 : 15 }

• Lists, Tuples, and Dictionaries can store any type
(including other lists, tuples, and dictionaries!)

• Only lists and dictionaries are mutable

• All variables are references

Data Type Wrap Up

STRING

• Strings in Python have type str .

• They represent sequence of characters .

• Strings are enclosed in single quotes(') or double
quotes(“) :

–Both are equivalent

• Backslash (\) is used to escape quotes and special
characters.

STRING

print (“ What´s your name? “)
print (´ What\´s your name? ´)

Concatenate and Repeat

• In Python, + and * operations have special
meaning when operating on strings

• + is used for concatenation of (two) strings

• * is used to repeat a string, an int number of
time

String
• "hello" + "world"
• "hello" * 3
• "hello" [0]
• "hello" [-1]
• "hello" [1:4]
• Len ("hello")
• "hello" < "jello"
• "e" in "hello"
• New line:
• Line continuation:
• Quotes:

"helloworld" # concatenation

"hellohellohello" # repetition

"h" # indexing

"o" # (from end)

"ell" # slicing

True # comparison

True # search

"escapes: \n "

'single quotes', " double quotes "

5 # size

triple quotes """ """

• Strings can be indexed .

• First character has index 0 .

Indexing

• Negative indices start counting from the right

• Negatives indices start from -1

• -1 means last, -2 second last, ...

Indexing

• Using an index that is too large or too small
results in “index out of range” error

Indexing

• To obtain a substring:

• string[start : end] means substring of string starting at index
start and ending at index (end-1)

• string[0 : len(s)] is same as string

• Both start and end are optional

– If start is omitted, it defaults to 0

– If end is omitted, it defaults to the length of string

• string[:] is same as string[0 : len(s)], that is same as string.

Slicing

Slicing

A c a d s

0 1 2 3 4

-5 -4 -3 -2 -1

Understanding Indices for slicing

5

More Slicing

• Out of range indices are ignored for slicing

• when start and end have the same sign, if start
>=end, empty slice is returned

Why?

A c a d s

0 1 2 3 4

-5 -4 -3 -2 -1

Out of Range Slicing

• upper()

• lower()

• count(s) # text.count('word')

• find(s)

• index(s) # s.index('l')

Methods in string

L I S T S

• Ordered sequence of values

• Written as a sequence of comma-separated values between
square brackets

• Values can be of different types

– usually the items all have the same type lst = [1, 2 , 3 , 4, 5]
>>> print(lst)
[1, 2 , 3 , 4, 5]
>>> type(lst)
< type ‘ list‘ >

Lists

• List is also a sequence type

– Sequence operations are applicable

Lists

• List is also a sequence type

– Sequence operations are applicable

Repetition

()

Lists

List = [1, 2, 3, 4, 5, "a", "b", "c", 3.4, 2.4, 2.6]

Nested_list = [8, [1, 2, 3], [4, 5, 6], 7, 9] # Nested List

List Length # len(List)

Update a Value in a List # list[0] = ‘H’

Add a Value to a List # list.append(10)
 # list.insert (5, 6)

Lists

• L.append(x)

• L.extend(seq)

• L.insert(i, x)

• L.remove(x)

• L.pop(i)

• L.pop()

• L.index(x)

• L.count(x)

• L.sort()

• L.reverse()

x is any value, L is a sequence value (list) and i is an integer value.

More Operations on Lists

>>> my_list = [1, 2, 3, 3, 4]
>>> my_list.append(5)
>>> my_list
[1, 2, 3, 3, 4, 5]

>>> my_list.extend([6, 7, 8])
>>> my_list
[1, 2, 3, 3, 4, 5, 6, 7, 8]

>>> my_list.insert(2, 15)
>>> my_list.insert(-1, 2)
>>> my_list.append(2)
>>> my_list
[1, 2, 15, 3, 3, 4, 5, 6, 7, 8, 2, 2]

>>> my_list.remove(2)
>>> my_list
[1, 15, 3, 3, 4, 5, 6, 7, 8, 2, 2]

>>> my_list.pop() # 2

>>> my_list.index(6) # 6

>>> my_list.count(2) # 1

>>> my_list.sort()
>>> my_list
[1, 2, 3, 3, 4, 5, 6, 7, 8, 15]

>>> my_list.reverse()
>>> my_list
[15, 8, 7, 6, 5, 4, 3, 3, 2, 1]

>>> my_list.clear()
>>> my_list
[]

List Methods

• Tuples and List types look very similar

• However, there is one major difference: Lists are
mutable

– Contents of a list can be modified

• Tuples and Strings are immutable

– Contents can not be modified

Mutable and Immutable Types

TUPLES

A tuple: is a sequence of values, which can be of any type
and they are indexed by integer. Tuples are just like list, but
we can’t change values of tuples in place. Thus tuples are
immutable.
 The index value of tuple starts from 0.
A tuple consists of a number of values separated by commas.
For example:
>>> T=10, 20, 30, 40
>>> print (T)
(10, 20, 30, 40)

WHAT IS a TUPLE?

OUTPUT

CREATING TUPLE And ACCESSING to it

OUTPUT

CHECK IF ITEM EXISTS

OUTPUT

TUPLE LENGTH

You cannot remove or delete or update items in a tuple.

 Tuples are unchangeable, so you cannot remove items
from it, but you can delete the tuple completely:

NOTE: TUPLES ARE IMMUTABLE

REMOVING A TUPLE

1. count() Method

Return the number of times the value appears in the tuple

Count()
method
returns

total times
of ‘banana’
present in
the given

tuple

TUPLE METHODS (1)

2. index() Method

index() Method returns index of
“banana” i.e 1

index()
Method

TUPLE METHODS (2)

• Tuples can be concatenated, repeated,
indexed and sliced

More Operations on Tuples

Course1 = (´Python´, Ámey´, 101)

Course2 = (´Stats´, Ádams´, 102)

• We can also put a tuple on the left-hand side of

an assignment statement

• We can even omit the parentheses

>>> (x, y) = (4, 'fred')

>>> print(y)

fred

>>> (a, b) = (99, 98)

>>> print(a)

99

Tuples and Assignment

but... Tuples are “immutable”

Unlike a list, once you create a tuple, you cannot alter its contents

- similar to a string

>>> x = [9, 8, 7]

>>> x[2] = 6

>>> print(x)

>>>[9, 8, 6]

>>>

>>> y = 'ABC'

>>> y[2] = 'D'

Traceback:'str' object does

not support item

Assignment

>>>

>>> z = (5, 4, 3)

>>> z[2] = 0

Traceback:'tuple'

object does

not support item

Assignment

>>>

Operation Meaning
seq[i] i-th element of the sequence

len(seq) Length of the sequence

seq1 + seq2 Concatenate the two sequences

num*seq
seq*num

Repeat seq num times

seq[start:end] slice starting from start, and ending at end-1

e in seq True if e is present in seq, False otherwise

e not in seq True if e is not present in seq, False otherwise

for e in seq Iterate over all elements in seq (e is bound to one element per iteration)

Sequence types include String, Tuple and List.

Lists are mutable, Tuple and Strings immutable.

Summary of Sequences

LIST TUPLE
Syntax for list is slightly different comparing
with tuple.

Syntax for tuple is slightly different
comparing with lists

Weekdays=[‘Sun’,’Mon’, ‘wed’,46,67]
type(Weekdays) # square brackets []
class<‘lists’>

twdays = (‘Sun’, ‘mon', ‘tue', 634)
type(twdays) # rounded brackets ()
class<‘tuple’>

List can be edited once it is created in
python. Lists are mutable data structure.

A tuple is a list which one cannot edit once
it is created in Python code. The tuple is an
immutable data structure

More methods or functions are associated
with lists.

Compare to lists tuples have Less methods
or functions.

DIFFERENCE BETWEEN LIST AND TUPLE

>>> l = list()

>>> dir(l)

['append', 'count', 'extend', 'index', 'insert',

'pop', 'remove', 'reverse', 'sort']

>>> t = tuple()

>>> dir(t)

['count', 'index']

TUPLE and List METHODS

➢range(From, TO, step) =➔ (S, E, d)

➢generates the list:

➢[S, S + d, S + 2*d, …, S + k*d]

➢where S + k*d < E <= S + (K + 1)*d

➢range(S, E) is equivalent to range(S, E, 1)

➢range(E) is equivalent to range(0, E)

Exercise: What if d is negative? Use python interpreter to
find out.

RANGE

• Create an empty list.

• Use the range() and append() functions to add the integers 1-20 to
the empty list.

• Print the list to the screen, what do you have?

Output:

The range() Function

Conditional Statements in Python

• In daily routine

–If it is very hot, I will skip exercise.

–If there is a quiz tomorrow, I will first
study and then sleep. Otherwise, I will
sleep now.

–If I have to buy coffee, I will go left. Else
I will go straight.

Conditional Statements

In Python, the if statement is used for conditional branching. It
allows you to execute a block of code only if a certain condition
is true.

if condition :
execute this block of code

else :
execute this block of code

If Statement

• Compare two integers and print the min.

1. Check if x is less

than y.

2. If so, print x

3. Otherwise, print y.

if x < y:
 print (x)
else:
 print (y)
print (‘is the minimum’)

if-else Statement

x,y = 6,10

 if x < y:

 print (x)

 else:

 print (y)

 print (‘is the min’)

x y

6 10

Run the program

Output

6

• Indentation is important in Python
– grouping of statement (block of statements)

– no explicit brackets, e.g. { }, to group statements

Indentation

• General form of the if statement

• Execution of if statement

– First the expression is evaluated.

– If it evaluates to a true value, then S1 is
executed and then control moves to the S2.

– If expression evaluates to false, then control
moves to the S2 directly.

if boolean-expr :
 S1
S2

S1

S2

if Statement (no else!)

• General form of the if-else statement

• Execution of if-else statement
– First the expression is evaluated.

– If it evaluates to a true value, then S1 is executed and then control moves to S3.

– If expression evaluates to false, then S2 is executed and then control moves to S3.

– S1/S2 can be blocks of statements!

if boolean-expr :
 S1
else:
 S2
S3

S2S1

S3

if-else Statement

if a <= b:

 if a <= c:

 …

 else:

 …

else:

 if b <= c) :

 …

 else:

 …

Nested if, if-else

• A special kind of nesting is the chain of if-else-if-else-… statements

• Can be written elegantly using if-elif-..-else
if cond1:

 s1

elif cond2:

 s2

elif cond3:

 s3

elif …

else

 last-block-of-

stmt

if cond1:

 s1

else:

 if cond2:

 s2

 else:

 if cond3:

 s3

 else:

 …

elif

• if-else, nested if's, elif.

• Multiple ways to solve a problem

– issues of readability, maintainability and
efficiency

Summary of if, if-else

Quiz
• What is the value of expression:

a) Run time crash/error

b) I don’t know / I don’t care

c) False

d) True

(5<2) and (3/0 > 1)

The correct answer is

False

• Do not evaluate the second operand of binary short-
circuit logical operator if the result can be deduced
from the first operand

– Also applies to nested logical operators

 not((2>5) and (3/0 > 1)) or (4/0 < 2)

Evaluates to true

false falsetrue true

Short-Circuit Evaluation

Programming using Python

Loops

Loops

• Loops make a section of the program to be
repeated a certain number of times.

• Repeats until the condition remains true.

• Terminates when the condition becomes false.

Loops in Python

There are two types of loops built into
Python:

1. for loop

2. while loop

Printing Multiplication Table

5 X 1 = 5

5 X 2 = 10

5 X 3 = 15

5 X 4 = 20

5 X 5 = 25

5 X 6 = 30

5 X 7 = 35

5 X 8 = 40

5 X 9 = 45

5 X 10 = 50

Program…

n = int(input('Enter a number: '))

print (n, 'X', 1, '=', n*1)

print (n, 'X', 2, '=', n*2)

print (n, 'X', 3, '=', n*3)

print (n, 'X', 4, '=', n*4)

print (n, 'X', 5, '=', n*5)

print (n, 'X', 6, '=', n*6)

….

Too much

repetition!

Can I avoid

 it?

Print n X i = n*i

i = i+1

Input n

i = 1

i <=10
TRUE FALSE

Printing Multiplication Table

Stop

Loop

Loop Entry

Loop Exit

Printing Multiplication Table

n = int(input('n=? '))

i = 1

while (i <= 10) :

 print (n ,'X', i, '=', n*i)

 i = i + 1

print ('done‘)

Print n x i = ni

i = i+1

Input n

i = 1

TRUE
i <=10

FALSE

Stop

While Statement

1. Evaluate expression

2. If TRUE then
a) execute statement1 (S1)

b) goto step 1.

3. If FALSE then execute statement2 (S2).

while (expression):

 S1

S2

FALSE

TRUE

S1

expression

S2

print all odd numbers < 10

i = 1

while i <= 10:

 if i%2==0: # even

 continue

 print (i, end=‘ ‘)

 i = i+1

Quiz
• What will be the output of the following program

print all odd numbers < 10

i = 1

while i <= 10:

 if i%2==0: # even

 continue

 print (i, end=‘ ‘)

 i = i+1

Continue and Update Expr

• Make sure continue does not by pass update-
expression for while loops

i is not incremented

when even number

encountered.

Infinite loop!!

Calculate the Sum of Numbers

program to calculate the sum of numbers
until the user enters zero
total = 0
number = int(input('Enter a number: '))
add numbers until number is zero
while number != 0:
 total += number # total = total + number
 # take integer input again

number = int(input('Enter a number: ‘))

print('total =', total)

For Loop

• Print the sum of the reciprocals of the first 100 natural
numbers.

rsum = 0.0# the reciprocal sum

the for loop

for i in range(1,101):

 rsum = rsum + 1.0/i

print ('sum is', rsum)

For loop in Python

• General form:

for variable in sequence:

 stmt

• For loops essentially say:

 “For all elements in a sequence, do something”

Or: “Repeats a set of statements over a group of values”.

for loop - Syntax

for j in range(5) :

 print (j * 2)

 print (j * j)

 print (j * j*j)

(for loop) -- Exercise

- Get a number form user and calculate its
factorial.

Fact = 1

for i in range(1, n + 1):

fact = fact * I

print (“factorial of “, n, “=“ , fact)

?# We have to replace I with i and fact with Fact

Fact = Fact * i

(for loop) -- Exercise-2

- Write a program that ask the user to enter a number.
The program should print the Cube of all integers
starting from 1 to the Number.

E.g.,

Enter a Number: 4

1 1

2 8

3 27

4 64

Example of Repetition

n = int (input(“Enter the value n”))

for i in range (1, n+1):

 print (i, “ Potato”)

Example of Repetition

n = int (input(“Enter the value n”)) # n = 3

for num in range (1, n+ 1) :

 print (num , “ Potato”)

OUTPUT
Enter the value n

1Potato

2Potato

3Potato

Nested Loops

Recall when a control structure is contained within another

control structure, the inner one is said to be nested.

for ...

if ...

for ...

for...

You may have repetition within decision and vice versa.

Nesting of for loop – EX.
// Program to print a specific Pattern

for i in range (1,6):

print ("*" * i)

print ("\n")

*
**

1
11
111
1111
11111

1
12
123
1234
12345

Objectives of the exercises set
(1)• Objectives

– Use for statements to implement count-controlled loops that
iterate over a range of integer values or the contents of any container.

 Syntax Example Explanation

for variable in

container:

 statements

#loop body

stateName = “Cairo"

for letter in stateName:

 print(letter)

 # loop body

The string “Cairo"
is stored in the
variable
stateName.

The loop body is
executed for each
successive character of
the string in
stateName,

starting with the first
character.

The header
ends in a
colon

All the statements in the block
(loop body) have the same level
of indentation.

The variable letter takes
each of the values ‘C', ‘a', 'i',
‘r’ , 'o' iin turn for each

iteration.

iteration letter Output

1 C C
a
i

r

o

2 a

3 i

4 r

5 o

Objectives of the exercises set (2)
• Objectives

– Use while statements to implement event-controlled loops.

 A while loop executes instructions repeatedly while a condition is true.

1

2

3

4
The header
ends in a
colon.

1
2

3

4

In the example, the variable i is initialised outside the while loop

(statement) and updated in the loop body (statement).1 4

All the statements
in the block (loop
body) have the
same indentation.

condition

Syntax Example Flow chart

while condition :

 statements

i = 0

while i < 3 :

 print(i)

 i = i + 1

Output
0
1
2

Objectives of the previous
exercises

– The table below shows the working of the previous while
loop example:

i i < 3 ? Output using
print(i)

i = i + 1

0 True 0 1

1 True 1 2

2 True 2 3

3 False – end of the while loop

The break Statement

• Causes an exit from anywhere in the body of a loop.

• When break is executed.

–Loop immediately terminates.

• Break statements usually occur in if statements.

The break Statement

• Example 6: Program uses break to avoid two input statements.

The break Statement

Flowchart for previous Example

The continue Statement

• When continue executed in a while loop:

– Current iteration of the loop terminates .

– Execution returns to the loop’s header.

• Usually appear inside if statements.

Infinite Loops

• Condition number >= 0 always true.

Control Structures

if condition:

 statements

[elif condition:

 statements] ...

else:

 statements

while condition:

 statements

for var in sequence:

 statements

break

continue

Looping Through a Set

print('Before')

for thing in [9, 41, 12, 3, 74, 15] :

 print(thing)

print('After')

$ python basicloop.py

Before

9

41

12

3

74

15

After

What is the Largest Number?

3

What is the Largest Number?

What is the Largest Number?

41

What is the Largest Number?

12

What is the Largest Number?

9

What is the Largest Number?

74

What is the Largest Number?

15

What is the Largest Number?

3

What is the Largest Number?

41 12 9 74 15

What is the Largest Number?

largest_so_far -1

3

What is the Largest Number?

largest_so_far 3

What is the Largest Number?

41

largest_so_far 41

What is the Largest Number?

12

largest_so_far 41

What is the Largest Number?

9

largest_so_far 41

What is the Largest Number?

74

largest_so_far 74

What is the Largest Number?

15

74

3

What is the Largest Number?

41 12 9 74 15

74

Finding the Largest Value

largest_so_far = -1

print('Before', largest_so_far)

for the_num in [9, 41, 12, 3, 74, 15] :

 if the_num > largest_so_far :

 largest_so_far = the_num

 print(largest_so_far, the_num)

print('After', largest_so_far)

$ python largest.py

Before -1

9 9

41 41

41 12

41 3

74 74

74 15

After 74

We make a variable that contains the largest value we have seen so far. If the current

number we are looking at is larger, it is the new largest value we have seen so far.

	Slide 1: Python Programming Fundamentals
	Slide 2: Python Programming Fundamentals 1 Data Types & Variables
	Slide 3: Operations Performed by the Computer
	Slide 4: البـــرمجــــــة
	Slide 5: حـــل المشكـلات بالكمبيوتـر
	Slide 6: عمليات حل المشكلة Designing a program
	Slide 7: عمليـــات حـــل المشكلــة
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: TOKENS / LEXICAL UNITS
	Slide 16: Identifiers
	Slide 17: Identifiers
	Slide 18: Identifiers (keywords)
	Slide 19: Identifiers
	Slide 20: Literals
	Slide 21: PUNCTUATORS
	Slide 22: Python Comments
	Slide 23: Python Data Types
	Slide 24: Python Assignment Statement
	Slide 25: Simple Assignment Statements
	Slide 26: Simple Assignment Statements: Actual View
	Slide 28: Assignning Input
	Slide 29: Assignning Input
	Slide 30: Assignning Input
	Slide 31: Assignning Input
	Slide 32: Assignning Input
	Slide 33: Assignning Input
	Slide 34: Data Type Conversion
	Slide 35: Data Type Conversion
	Slide 36: Data Type Conversion
	Slide 37: Simultaneous Assignment
	Slide 38: Simultaneous Assignment
	Slide 39: Simultaneous Assignment
	Slide 41: Expressions
	Slide 42: Expressions
	Slide 43: Expressions: Summary of Operators
	Slide 44: Python Operators (in order of precedence)
	Slide 45: Explicit and Implicit Data Type Conversion
	Slide 46: Implicit Data Type Conversion: Examples
	Slide 47: Implicit Data Type Conversion: Examples
	Slide 48: Built-in Python Functions
	Slide 49: Python Built-In Functions
	Slide 50
	Slide 58: Summary
	Slide 59: Summary
	Slide 60: Summary
	Slide 1: Programming Fundamentals Python 2 Coding with Python
	Slide 2: Simple Data Types
	Slide 3: Simple Data Types: Operators
	Slide 4: A quick note on the increment operator shorthand
	Slide 5: Boolean Operators
	Slide 6: Comparison Operators
	Slide 7: String
	Slide 8: Methods in string
	Slide 9: Simple Data Types
	Slide 10: Compound Data Type: List
	Slide 11: Compound Data Type: List
	Slide 12: Compound Data Type: List
	Slide 13: Nested List
	Slide 14: An example
	Slide 15: Another example
	Slide 16: Applications [Variables]
	Slide 17: Applications [Variables]
	Slide 18: Nested Lists
	Slide 19: List Methods
	Slide 20: Work With Code
	Slide 21: Test your Knowledge
	Slide 28
	Slide 1: Programming Fundamentals Python 3 Range & Conditional Statements
	Slide 3
	Slide 4
	Slide 5: STRING
	Slide 6
	Slide 7: Concatenate and Repeat
	Slide 8: String
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: L I S T S
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: TUPLES
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Conditional Statements in Python
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Quiz
	Slide 55
	Slide 56: Programming Fundamentals Python 4 Looping Statements
	Slide 57: Programming using Python
	Slide 58: Loops
	Slide 59: Loops in Python
	Slide 60: Printing Multiplication Table
	Slide 61: Program…
	Slide 62: Printing Multiplication Table
	Slide 63: Printing Multiplication Table
	Slide 64: While Statement
	Slide 65: Quiz
	Slide 66: Continue and Update Expr
	Slide 67: Calculate the Sum of Numbers
	Slide 68: For Loop
	Slide 69: For loop in Python
	Slide 70: for loop - Syntax
	Slide 71: (for loop) -- Exercise
	Slide 72: (for loop) -- Exercise-2
	Slide 73: Example of Repetition
	Slide 74: Example of Repetition
	Slide 75: Nested Loops
	Slide 76: Nesting of for loop – EX.
	Slide 77: Objectives of the exercises set (1)
	Slide 78: Objectives of the exercises set (2)
	Slide 79: Objectives of the previous exercises
	Slide 80: The break Statement
	Slide 81: The break Statement
	Slide 82: The break Statement
	Slide 83: The continue Statement
	Slide 84: Infinite Loops
	Slide 85: Control Structures
	Slide 86: Looping Through a Set
	Slide 87: What is the Largest Number?
	Slide 88: What is the Largest Number?
	Slide 89: What is the Largest Number?
	Slide 90: What is the Largest Number?
	Slide 91: What is the Largest Number?
	Slide 92: What is the Largest Number?
	Slide 93: What is the Largest Number?
	Slide 94: What is the Largest Number?
	Slide 95: What is the Largest Number?
	Slide 96: What is the Largest Number?
	Slide 97: What is the Largest Number?
	Slide 98: What is the Largest Number?
	Slide 99: What is the Largest Number?
	Slide 100: What is the Largest Number?
	Slide 101: What is the Largest Number?
	Slide 102: What is the Largest Number?
	Slide 103: What is the Largest Number?
	Slide 104: Finding the Largest Value

