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Chapter 1

Discrete and Continuous Distributions

This chapter introduces discrete distributions and continuous dis-

tributions.

1.1 Discrete Distributions

Next, we introduce the most commonly used discrete distributions.

1.1.1 Binomial Distribution

Definition 1.1 A wvariable described as the number of successes in a
sequence of independent Bernoulli trials has Binomaal distribution.
Its parameters are n, the number of trials, and p, the probability of

SUCCeESS.

Remark: Binomial probability mass function is

n

P(g:):P{X:x}:<>pxq”‘f”, r=0,1,....,n (1.1

x
which is the probability of exactly x successes in n trials. In this
formula, p* is the probability of x successes, probabilities being mul-
tiplied due to independence of trials. Also, ¢"* is the probability of

| .
T is

the remaining (n — x) trials being failures. Finally, (Z) = T

the number of elements of the sample space (2 that form the event
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{X = z}. This is the number of possible orderings of = successes and

(n — x) failures among n trials, and it is computed as C'(n, z)

n = number of trials
P = probability of success
Binomial P(x) = (M)pg" "
Distribution | E(X) = np
Var(X) = npq

Example 1.1 An exciting computer game is released. Sixty percent
of players complete all the levels. Thirty percent of them will then
buy an advanced version of the game. Among 15 users, what is the
expected number of people who will buy the advanced version? What is

the probability that at least two people will buy it?

Solution. Let X be the number of people (successes), among
the mentioned 15 users (trials), who will buy the advanced version of
the game. It has Binomial distribution with n = 15 trials and the

probability of success

p = P{ buy advanced }
= P{ buy advanced | complete all levels } P{ complete all levels }
— (0.30)(0.60) = 0.18

Then we have
E(X) =np=(15)(0.18) = 2.7
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and
P{X>2)=1-P0)—-P(1)=1—(1—p)" —np(1 —p)"* =0.7813.

The last probability was computed directly by formula (1.1).

1.1.2 Poisson distribution

Definition 1.2 The number of rare events occurring within a fixed

period of time has Poisson distribution.

A = frequency, average number of events
Y ‘
— e M —0.1.2.---
Poisson p(x) © o TR
Distribution | E(X)  =A
Var(X) = A

Example 1.2 (NEW ACCOUNTS). Customers of an internet service
provider initiate new accounts at the average rate of 10 accounts per
day.

(a) What is the probability that more than 8 new accounts will be ini-
tiated today?

(b) What is the probability that more than 16 accounts will be initiated
within 2 days?

Solution. (a) New account initiations qualify as rare events because
no two customers open accounts simultaneously. Then the number

X of today’s new accounts has Poisson distribution with parameter
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A = 10. From Table A3,
P{X >8}=1—-Fx(8) =1—0.333 = 0.667.

(b) The number of accounts, Y, opened within 2 days does not equal
2X. Rather, Y is another Poisson random variable whose parameter
equals 20. Indeed, the parameter is the average number of rare events,
which, over the period of two days, doubles the one-day average. Using
Table A3 with A = 20,

P{Y > 16} =1 — Fy(16) = 1 — 0.221 = 0.779.

1.2 Continuous Distributions

As in the discrete case, varieties of phenomena can be described
by relatively few families of continuous distributions. Here, we shall

discuss Exponential Normal distributions.

1.2.1 Exponential Distribution

Exponential distribution has density

f(z) =A™ for z > 0.
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F(z) = /Oxf(t)dt — /x Ae™Mdt=1—e (z>0),

0

E(X) = /tf(t)dt:/oot)\e_”dt:%,
0
Var(X) = / t2f(t)dt — B*(X)

00 1 2
= / t2)\e_”dt—<—>
0 A

2 1 1

A2 A2\
The quantity A\ is a parameter of Exponential distribution, and its
meaning is clear from E(X) = 1/A. This A has the same meaning as

the parameter of Poisson distribution.Then we can compute the cdf of
T as
Fr(t)=1—e, (1.2)

Example 1.3 Jobs are sent to a printer at an average rate of 3 jobs

per hour.
(a) What is the expected time between jobs?
(b) What is the probability that the next job is sent within 5 min-

utes?

Solution. Job arrivals represent rare events, thus the time T between

them is Exponential with the given parameter A = 3hrs™! (jobs per
hour).

(a) E(T) = 1/X = 1/3 hours or 20 minutes between jobs;
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(b) Convert to the same measurement unit: 5 min = (1/12)hrs. Then,

P{T < 1/12hrs} = F(1/12) =1 — e /12 =1 — ¢71/4 = 0.2212.

A = frequency parameter, the number of events
_ per time unit
Exponential \
R p(x) =X M, >0
Distribution )
E(X) =3
Var(X) = 32

1.2.2 Normal distribution

Normal distribution plays a vital role in Probability and Statistics,
mostly because of the Central Limit Theorem, according to which sums
and averages often have approximately Normal distribution. Due to
this fact, various fluctuations and measurement errors that consist of

accumulated number of small terms appear normally distributed.

04

0.3

021

4 5

FIGURE 4.6: Normal densities with different location and scale parameters.
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Normal distribution has a density

2
f(x) = a\}%exp {%} , —00<x<+00
where parameters 1 and ¢ have a simple meaning of the expectation
E(X) and the standard deviation Std(X). This density is known as
the bell-shaped curve, symmetric and centered at p, its spread being
controlled by o. As seen in Figure 4.6, changing u shifts the curve to
the left or to the right without affecting its shape, while changing o
makes it more concentrated or more flat. Often p and o are called

location and scale parameters.

7 = expectation, location parameter
o = standard deviation, scale parameter
Normal 1 —(x — p)?
x = exXxps ————=——,, —00 < T <00
Distribution /() oV 2w P { 202
E(X) =u
Var(X) = o?

Standard Normal distribution

Definition 1.3 Normal distribution with ”standard parameters” = 0

and o =1 is called Standard Normal distribution.
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NOTATION: | Z = Standard Normal random variable

o(z) = \/Lz?e_xzﬂ, Standard Normal pdf

S| 2
O(x) = — ¢ */2dz, Standard Normal cdf
@ =] —=
Example 1.4 (Computing Standard Normal Probabilities.)

For a Standard Normal random variable Z,

P{Z < 1.35} — ®(1.35) = 0.9115
P{Z > 1.35} —1— ®(1.35) = 0.0885
P{—0.77< Z < 1.35} = ®(1.35) — ®(—0.77)
= 0.9115 — 0.2206 = 0.6909

According to Table A4. Notice that P{Z < —1.35} = 0.0885 =
P{Z > 1.35}, which is explained by the symmetry of the Standard
Normal density in Figure 4.6. Due to this symmetry, ”the left tail,”
or the area to the left of (—1.35) equals "the right tail,” or the area to
the right of 1.35 .

In fact, the symmetry of the Normal density, mentioned in this
example, allows to obtain the first part of Table A4, directly from the

second part,
P(—2z)=1—P(2) for —oo<z< 400

To compute probabilities about an arbitrary Normal random variable
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X, we have to standardize it first, as in (4.16), then use Table A4.

Example 1.5 (Computing non-standard normal probabilities.)
Suppose that the average household income in some country is 900
coins, and the standard deviation is 200 coins. Assuming the Normal
distribution of incomes, compute the proportion of "the middle class,”

whose 1come 1s between 600 and 1200 coins.

Solution. Standardize and use Table A4. For a Normal(p =
900, o = 200) variable X ,

600 — X —p 1200 —
P{600<X<1200}:P{ e “}

o o o
600 — 900 1200 — 900
=P —< /< —— = P{—1L Z < 1.
{ 500 <2< 50 } {-15<Z < 1.5}

= ®(1.5) — ®(—1.5) = 0.9332 — 0.0668 = 0.8664



Chapter 2

Introduction to Sampling Distributions

The sampling distribution of a statistic is the distribution of all
possible values taken by the statistic when all possible samples of a
fixed size n are taken from the population. It is a theoretical idea—we
do not actually build it. The sampling distribution of a statistic is the
probability distribution of that statistic.

Suppose you randomly sampled 10 people from the population of
women in a city, between the ages of 21 and 35 years and computed
the mean height of your sample. You would not expect your sample
mean to be equal to the mean of all women in the city. It might be
somewhat lower or it might be somewhat higher, but it would not equal
the population mean exactly. Similarly, if you took a second sample of
10 people from the same population, you would not expect the mean

of this second sample to equal the mean of the first sample.

Recall that inferential statistics concern generalizing from a sample
to a population. A critical part of inferential statistics involves deter-
mining how far sample statistics are likely to vary from each other and
from the population parameter. (In this example, the sample statistics
are the sample means and the population parameter is the population

mean.) As the later portions of this chapter show, these determinations
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Outcome | Ball 1 | Ball 2 | Mean
1 1 1 1.0
2 1 2 1.5
3 1 3 2.0
4 2 1 1.5
5 2 2 2.0
6 3 2 2.5
7 3 1 2.0
8 2 3 2.5
9 3 3 3.0

Table 1. All possible outcomes when two balls are sampled with replacement.

are based on sampling distributions.

Discrete Distributions
We will illustrate the concept of sampling distributions with a simple
example. Figure 1 shows three pool balls, each with a number on it.
Suppose two of the balls are selected randomly (with replacement) and
the average of their numbers is computed. All possible outcomes are

shown below in Table 1.

Figure 1. The pool balls.

Notice that all the means are either 1.0,1.5,2.0,2.5, or 3.0 . The fre-
quencies of these means are shown in Table 2. The relative frequencies
are equal to the frequencies divided by nine because there are nine

possible outcomes.



12

Mean | Frequency | Relative Frequency
1.0 1 0.111
1.5 2 0.222
2.0 3 0.333
2.5 2 0.222
3.0 1 0.111

Table 2. Frequencies of means for N = 2.

Figure 2 shows a relative frequency distribution of the means based on
Table 2. This distribution is also a probability distribution since the
Y-axis is the probability of obtaining a given mean from a sample of

two balls in addition to being the relative frequency.

o
w
«
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Figure 2. Distribution of means for N = 2.

The distribution shown in Figure 2 is called the sampling distribution
of the mean. Specifically, it is the sampling distribution of the mean for
a sample size of 2( N = 2). For this simple example, the distribution of

pool balls and the sampling distribution are both discrete distributions.
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The pool balls have only the values 1,2 , and 3 , and a sample mean

can have one of only five values shown in Table 2.

There is an alternative way of conceptualizing a sampling distribu-
tion that will be useful for more complex distributions. Imagine that
two balls are sampled (with replacement) and the mean of the two balls
is computed and recorded. Then this process is repeated for a second
sample, a third sample, and eventually thousands of samples. After
thousands of samples are taken and the mean computed for each, a
relative frequency distribution is drawn. The more samples, the closer
the relative frequency distribution will come to the sampling distribu-
tion shown in Figure 2. As the number of samples approaches infinity,
the relative frequency distribution will approach the sampling distri-
bution. This means that you
can conceive of a sampling distribution as being a relative frequency
distribution based on a very large number of samples. To be strictly
correct, the relative frequency distribution approaches the sampling

distribution as the number of samples approaches infinity.

It is important to keep in mind that every statistic, not just the
mean, has a sampling distribution. For example, Table 3 shows all
possible outcomes for the range of two numbers (larger number minus
the smaller number). Table 4 shows the frequencies for each of the
possible ranges and Figure 3 shows the sampling distribution of the

range.



14

Outcome | Ball 1 | Ball 2 | Range

1 1 1 0
2 1 2 1
3 1 3 2
4 2 1 1
5 2 2 0
6 3 3 1
7 3 2 0
8 3 3 0
9 2 1

Table 3. All possible outcomes when two balls are sampled with replacement.

Range | Frequency | Relative Frequency
0 3 0.333
1 4 0.444
2 2 0.222

Table 4. Frequencies of ranges for N = 2.

05
0.45

0.4

0.35

03
0.25
0.2
0.15
0.1
0.05
0
0 1 2

Range

Relative Frequency (Probability)

Figure 3. Distribution of ranges for N = 2.

It is also important to keep in mind that there is a sampling distribu-

tion for various sample sizes. For simplicity, we have been using N = 2.
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The sampling distribution of the range for N = 3 is shown in Figure 4.

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15

0.1
0.05 I
0

0 1, 2

Range

Relative Frequency (Probability)

Figure 4. Distribution of ranges for N = 3.

Continuous Distributions

In the previous section, the population consisted of three pool balls.
Now we will consider sampling distributions when the population dis-
tribution is continuous. What if we had a thousand pool balls with
numbers ranging from 0.001 to 1.000 in equal steps? (Although this
distribution is not really continuous, it is close enough to be consid-
ered continuous for practical purposes.) As before, we are interested
in the distribution of means we would get if we sampled two balls
and computed the mean of these two balls. In the previous exam-
ple, we started by computing the mean for each of the nine possible
outcomes. This would get a bit tedious for this example since there
are 1,000,000 possible outcomes ( 1,000 for the first ball x 1,000 for
the second). Therefore, it is more convenient to use our second con-
ceptualization of sampling distributions which conceives of sampling

distributions in terms of relative frequency distributions. Specifically,
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the relative frequency distribution that would occur if samples of two

balls were repeatedly taken and the mean of each sample computed.

When we have a truly continuous distribution, it is not only im-
practical but actually impossible to enumerate all possible outcomes.
Moreover, in continuous
distributions, the probability of obtaining any single value is zero.
Therefore, as discussed in the section ”Distributions” in Chapter 1,

these values are called probability densities rather than probabilities.

2.1 Sampling Distributions and Inferential
Statistics

As we stated in the beginning of this chapter, sampling distribu-
tions are important for inferential statistics. In the examples given so
far, a population was specified and the sampling distribution of the
mean and the range were determined. In practice, the process pro-
ceeds the other way: you collect sample data, and from these data you
estimate parameters of the sampling distribution. This knowledge of
the sampling distribution can be very useful. For example, knowing
the degree to which means from different samples would differ from
each other and from the population mean would give you a sense of
how close your particular sample mean is likely to be to the population
mean. Fortunately, this information is directly available from a sam-
pling distribution. The most common measure of how much sample
means differ from each other is the standard deviation of the sampling
distribution of the mean. This standard deviation is called the stan-

dard error of the mean. If all the sample means were very close to the
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population mean, then the standard error of the mean would be small.
On the other hand, if the sample means varied considerably, then the

standard error of the mean would be large.

To be specific, assume your sample mean were 125 and you esti-
mated that the standard error of the mean were 5 (using a method
shown in a later section). If you had a normal distribution, then it
would be likely that your sample mean would be within 10 units of
the population mean since most of a normal distribution is within two

standard deviations of the mean.

Keep in mind that all statistics have sampling distributions, not
just the mean. In later sections we will be discussing the sampling
distribution of the variance, the sampling distribution of the difference
between means, and the sampling distribution of Pearson’s correlation,

among others.

2.2 Sampling Distribution of the Mean

Mean
The mean of the sampling distribution of the mean is the mean of
the population from which the scores were sampled. Therefore, if a
population has a mean u, then the mean of the sampling distribution
of the mean is also . The symbol gy, is used to refer to the mean of
the sampling distribution of the mean. Therefore, the formula for the

mean of the sampling distribution of the mean can be written as:

fin = fi
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Variance
The variance of the sampling distribution of the mean is computed as

follows:

That is, the variance of the sampling distribution of the mean is
the population variance divided by N | the sample size (the number of
scores used to compute a mean). Thus, the larger the sample size, the
smaller the variance of the sampling distribution of the mean.
(optional paragraph) This expression can be derived very easily from
the variance sum law. Let’s begin by computing the variance of the
sampling distribution of the
sum of three numbers sampled from a population with variance o?.
The variance of the sum would be 02 + 02 4+ ¢2. For N numbers, the
variance would be No?. Since the mean is 1/N times the sum, the
variance of the sampling distribution of the mean would be 1/N? times

the variance of the sum, which equals o /N.

The standard error of the mean is the standard deviation of the
sampling distribution of the mean. It is therefore the square root
of the variance of the sampling distribution of the mean and can be
written as:

o
O-m:—

VN
The standard error is represented by a o because it is a standard

deviation. The subscript ( M ) indicates that the standard error in
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question is the standard error of the mean.

2.3 Central Limit Theorem

The central limit theorem states that:
Given a population with a finite mean p and a finite nonzero variance
o2, the sampling distribution of the mean approaches a normal distri-
bution with a mean of y and a variance of 02/N as N, the sample size,

Increases.

The expressions for the mean and variance of the sampling distri-
bution of the mean are not new or remarkable. What is remarkable is
that regardless of the shape of the parent population, the sampling dis-
tribution of the mean approaches a normal distribution as N increases.
If you have used the ”Central Limit Theorem Demo,” (external link;
requires Java) you have already seen this for yourself. As a reminder,
Figure 1 shows the results of the simulation for N = 2 and N = 10. The
parent population was a uniform distribution. You can see that the
distribution for N = 2 is far from a normal distribution. Nonetheless,
it does show that the scores are denser in the middle than in the tails.
For N = 10 the distribution is quite close to a normal distribution.
Notice that the means of the two distributions are the same, but that

the spread of the distribution for N = 10 is smaller.
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Distribution of Sample Mean, N=2

0 8 [

Distribution of Sample Mean, N=10

A simulation of a sampling distribution.

The parent population is uniform. The blue line under ” 16 ”
indicates that 16 is the mean. The red line extends from the mean

plus and minus one standard deviation.

Figure 2 shows how closely the sampling distribution of the mean
approximates a normal distribution even when the parent population
is very non-normal. If you look closely you can see that the sampling
distributions do have a slight positive skew. The larger the sample
size, the closer the sampling distribution of the mean would be to a

normal distribution.

Population

Distribution of Sample Mean, N = 5
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Distribution of Sample Mean, N = 25

Figure 2. A simulation of a sampling distribution. The parent

population is very non-normal.

Theorem 2.1 (The Central Limit Theorem - First form)
If X1, Xo,....X,, 1s a random sample of size n taken from a population
(either finite or infinite) with mean p and finite variance o* and if X

18 the sample mean, the limiting form of the distribution of

_X—p
NG

as n — 00, 18 the standard normal distribution.

Z

Note
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e The normal approximation for X will generally be good if n > 30,

provided the population distribution is not terribly skewed.

e If n < 30, the approximation is good only if the population is not
too different from a normal distribution and if the population is
known to be normal, the sampling distribution of X will follow a
normal distribution exactly, no matter how small the size of the

samples.

e The sample size n = 30 is a guideline to use for the Central Limit

Theorem.

'\ Large n (near normal)

n=1 (population)

N Small to moderate n

—

Ilustration of the Central Limit Theorem (distribution of X for

n = 1, moderate n, and large n

Example 2.1 An electrical firm manufactures light bulbs that have a
length of life that is approximately normally distributed, with mean

equal to 800 hours and a standard deviation of 40 hours. Find the
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probability that a random sample of 16 bulbs will have an average life
of less than 775 hours.

Solution. The sampling distribution of X will be approxzimately

normal, with px = 800 and

o5 = 40/v16 = 10
775800
==
P(X < 775) = P(Z < —2.5) = 0.0062

z —2.5

_—
775

x|

Example 2.2 The compression strength of concrete is normally dis-
tributed with p = 2500 psi and o = 50 psi. Find the probability that a
random sample of n =5 specimens will have a sample mean diameter
that falls in the interval from 2499 psi to 2510 psi.
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Solution.
p = 2500 psi o = H0psin = 5
o
Oy — ——=
N
Oz = ﬁ = 22.3607
V5

_—

I
2499 2500 2510

_ 2499 —p X —p 2510
P[2499<X<2510]:P[ g “]

Oz Oz Oz

_ 2499 — 2500 2510 — 2500
P[2499 < X < 5510 =P [ ]

223607 7 " 22.3607
= P[—0.0447 < Z < 0.4472]

Zp = —0.0447, Zoy = 0.4472

The area for 21 = —0.0447 s 0.484047. The area for 72 = 0.4472 is
0.673645
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2499 2500 2510

Hence the area between the two values is = 0.6736—0.4840 = 0.1896
or 18.96%.
Therefore,
P[2499 < X < 2510] = 18.96%

2.3.1 Finite Population Correction Factor

Since sampling with replacement is for the most part unrealistic, a
correction factor is necessary for computing the standard error of the

mean for samples drawn without replacement from a finite population.

N —n
N —1

correction factor =

o N —n
vV N-1

Where : N is the population size and n is the sample size.

Oz

This correction factor is necessary if relatively large samples are taken
from a small population, because the sample mean will then more
accurately estimate the population mean and there will be less error

in the estimation.



2.3 Central Limit Theorem 26

Finally, the formula for the z value becomes

X —p
=
o ., [/N=n
NG N—1

Example 2.3 A population of size 20 is sampled without replacement.
The standard deviation of the population is 0.35. We require the stan-
dard error of the mean to be no more than 0.15. What is the minimum

sample size?

Solution.
N=20 0=035 o0;=0.15

o N —n

JaV N1
35 /20 — 20 — 15v/1
s 035 20-n  0-n 015V19 o
JnV20—1 n 0.35
20

=445~5

Ox —

= 20—n=3490n = n 1490

The central limit theorem can be written as.

Theorem 2.2 (The Central Limit Theorem - Second form)
Let X1, X5, ... be independent random variables with the same expec-

tation p = E (X;) and the same standard deviation o = Std (X;), and
let

1=1
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As n — oo, the standardized sum

7 Sy —E(S,) Sy —npu
" Std(S,) ovn

converges in distribution to a Standard Normal random variable, that
18,
Sp — ni

Fae) = P 7

< z} — P(2)

for all z.

This theorem is very powerful because it can be applied to random
variables X1, Xo,... having virtually any thinkable distribution with
finite expectation and variance. As long as n is large (the rule of thumb
is n > 30 ), one can use Normal distribution to compute probabilities
about S,,. Theorem 1 is only one basic version of the Central Limit
Theorem. Over the last two centuries, it has been extended to large
classes of dependent variables and vectors, stochastic processes, and so

on.

Example 2.4 (Allocation OF Disk SPACE) . A disk has free space
of 330 megabytes. Is it likely to be sufficient for 300 independent im-
ages, if each tmage has expected size of 1 megabyte with a standard

deviation of 0.5 megabytes?
Solution. We have n = 300, = 1,0 = 0.5. The number of

images n s large, so the Central Limit Theorem applies to their total
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size Sy,. Then,

P{ sufficient space } = P{S, <330} = P { Sy — Nt < 330 — (300)(1)}

oy T 0.5v/300
~ $(3.46) = 0.9997

This probability s very high, hence, the available disk space is very
likely to be sufficient.

In the special case of Normal variables X7, Xo, ..., the distribution of
Sy, is always Normal, and (4.18) becomes exact equality for arbitrary,

even small n.

Example 2.5 (Elevator) . You wait for an elevator, whose capacity
15 2000 pounds. The elevator comes with ten adult passengers. Sup-
pose your own weight 1s 150 lbs , and you heard that human weights
are normally distributed with the mean of 165 lbs and the standard de-
wation of 20 lbs . Would you board this elevator or wait for the next

one?

Solution. In other words, is overload likely? The probability of an

overload equals

P {S1+ 150 > 2000} = P {510 — (10)(165) _ 2000 — 150 - (10)(165)}

201/10 201/10
= 1— ®(3.16) = 0.0008

So, with probability 0.9992 it is safe to take this elevator. It is now for

you to decide.
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2.4 Sampling Distribution of Difference Be-
tween Means
Statistical analyses are very often concerned with the difference be-
tween means. A typical example is an experiment designed to compare
the mean of a control group with the mean of an experimental group.
Inferential statistics used in the analysis of this type of experiment

depend on the sampling distribution of the difference between means.

The sampling distribution of the difference between means can be
thought of as the distribution that would result if we repeated the
following three steps over and over again: (1) sample n; scores from
Population 1 and ny scores from Population 2, (2) compute the means
of the two samples (M; and Ms), and (3) compute the difference be-
tween means, M; — Ms. The distribution of the differences between

means is the sampling distribution of the difference between means.

As you might expect, the mean of the sampling distribution of the

difference between means is:

Kn,—My = M1 — M2

which says that the mean of the distribution of differences between
sample means is equal to the difference between population means. For
example, say that the mean test score of all 12-year-olds in a population
is 34 and the mean of 10-yearolds is 25 . If numerous samples were
taken from each age group and the mean

difference computed each time, the mean of these numerous differences
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between sample means would be 34 — 25 = 9.

From the variance sum law, we know that:

2 2 2
OM-M, = O, T O,

which says that the variance of the sampling distribution of the dif-
ference between means is equal to the variance of the sampling distri-
bution of the mean for Population 1 plus the variance of the sampling
distribution of the mean for Population 2. Recall the formula for the

variance of the sampling distribution of the mean:

02

2

oy = —
M N

Since we have two populations and two samples sizes, we need to dis-

tinguish between the two variances and sample sizes. We do this by

using the subscripts 1 and 2. Using this convention, we can write the

formula for the variance of the sampling distribution of the difference

between means as:

2 2
2 91, %

OM,~M, =
1 2 nl n2

Since the standard error of a sampling distribution is the standard devi-
ation of the sampling distribution, the standard error of the difference

between means 1s:

of | 03
OM—My, = A — T —
ni no

Just to review the notation, the symbol on the left contains a sigma (
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o ), which means it is a standard deviation. The subscripts M; — M,
indicate that it is the standard deviation of the sampling distribution
of M; — Ms.

Now let’s look at an application of this formula. Assume there are
two species of green beings on Mars. The mean height of Species 1 is
32 while the mean height of Species 2 is 22 . The variances of the two
species are 60 and 70,
respectively, and the heights of both species are normally distributed.
You randomly sample 10 members of Species 1 and 14 members of
Species 2. What is the probability that the mean of the 10 members
of Species 1 will exceed the mean of the 14 members of Species 2 by
5 or more? Without doing any calculations, you probably know that
the probability is pretty high since the difference in population means
is 10 . But what exactly is the probability?

First, let’s determine the sampling distribution of the difference

between means. Using the formulas above, the mean is
Unr -, = 32 — 22 =10

The standard error is:

%0 + [ = 3.317

OM-My =AM T 1y

The sampling distribution is shown in Figure 1. Notice that it is nor-
mally distributed with a mean of 10 and a standard deviation of 3.317.

The area above 5 is shaded blue.
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33 00 34 67 10.0 133 16.6 20.0 233

Figure 1. The sampling distribution of the difference between means.

The last step is to determine the area that is shaded blue. Using either
a 7Z table or the normal calculator, the area can be determined to be
0.934 . Thus the probability that the mean of the sample from Species
1 will exceed the mean of the sample from Species 2 by 5 or more is
0.934 .

As shown below, the formula for the standard error of the difference
between means is much simpler if the sample sizes and the population
variances
are equal. When the variances and samples sizes are the same, there

is no need to use the subscripts 1 and 2 to differentiate these terms.

o2 o3 o2 o? 202
OMy—M, = \| —+— =\ —+—=\/—
n1 D) n n n

This simplified version of the formula can be used for the following
problem: The mean height of 15 -year-old boys (in cm ) is 175 and the
variance is 64 . For girls, the mean is 165 and the variance is 64 . If
eight boys and eight girls were sampled, what is the probability that
the mean height of the sample of girls would be higher than the mean
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height of the sample of boys? In other words, what is the probability
that the mean height of girls minus the mean height of boys is greater
than 0 7

As before, the problem can be solved in terms of the sampling
distribution of the difference between means (girls - boys). The mean
of the distribution is 165 175 = —10. The standard deviation of the
distribution is:

O'Ml_M2:\/%: %864):4

A graph of the distribution is shown in Figure 2. It is clear that
it is unlikely that the mean height for girls would be higher than the
mean height for boys since in the population boys are quite a bit taller.
Nonetheless it is not inconceivable that the girls’ mean could be higher

than the boys’ mean.

Figure 2. Sampling distribution of the difference between mean heights.

A difference between means of 0 or higher is a difference of 10/4 = 2.5
standard deviations above the mean of -10 . The probability of a score

2.5 or more standard deviations above the mean is 0.0062 .



Chapter 3

Estimation Theory

After taking a general look at the data, we are ready for more

advanced and more informative statistical analysis.

In this chapter, we learn how

e to estimate parameters of the distribution.

e to construct confidence intervals. Any estimator, computed from a
collected random sample instead of the whole population, is under-
stood as only an approximation of the corresponding parameter.
Instead of one estimator that is subject to a sampling error, it is
often more reasonable to produce an interval that will contain the

true population parameter with a certain known high probability.

Results of such statistical analysis are used for making decisions under
uncertainty, developing optimal strategies, forecasting, evaluating and

controlling performance, and so on.

3.1 Parameter estimation

By now, we have learned a few elementary ways to determine the
family of distributions. We take into account the nature of our data,

basic description, and range; propose a suitable family of distributions;
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and support our conjecture by looking at a histogram.
In this section, we learn how to estimate parameters of distributions.
As a result, a large family will be reduced to just one distribution that

we can use for performance evaluation, forecasting, etc.

Example 1 (Poisson). For example, consider a sample of computer
chips with a certain type of rare defects. The number of defects on each
chip is recorded. This is the number of rare events, and thus, it should
follow a Poisson distribution with some parameter \.

We know that A = E(X) is the expectation of a Poisson variable.
Then, should we estimate it with a sample mean X ? Or, should we

use a sample variance s* because A also equals Var(X) ?

Example 2 (Gamma). Suppose now that we deal with a Gamma(a, )
family of distributions. Its parameters a and A do not represent the
mean, variance, standard deviation, or any other measures discussed

in Chapter 8. What would the estimation algorithm be this time?

Questions raised in these examples do not have unique answers.
Statisticians developed a number of estimation techniques, each having
certain optimal properties.

Two rather popular methods are discussed in this section:

e method of moments, and

e method of maximum likelihood.

3.1.1 Method of moments

Moments: First, let us define the moments.
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Definition 3.1 The k-th population moment is defined as

= E (X*)

The k-th sample moment

=1

estimates i, from a sample (X1, ..., X,).
The first sample moment is the sample mean X .

Central moments are computed similarly, after centralizing the

data, that is, subtracting the mean.

Definition 3.2 For k > 2, the k-th population central moment is de-

fined as
i, =E(X — )"

The k-th sample central moment

z (x; - %)

S|

my, =

estimates uy from a sample (X1,...,X,).

Remark 3.1 The second population central moment is variance Var(X).

The second sample central moment is sample variance, although (n—1)
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in its denomanator is now replaced by n. We mentioned that estima-
tion methods are not unique. For unbiased estimation of o> = Var(X),

we use

1 5\ 2
Szzn—1;(xi_X) :

however, method of moments and method of maximum likelthood pro-

duce a different version,

2 1
ST =m, =

S|

Z (X, — X’)z
i=1
And this is not alll We’ll see other estimates of o2 as well.

3.1.2 Estimation

Method of moments is based on a simple idea. Since our sample
comes from a family of distributions {F'(6)}, we choose such a member
of this family whose properties are close to properties of our data.

Namely, we shall match the moments.

To estimate k£ parameters, equate the first k population and sample
moments,

Hr = my

Mg = My
The left-hand sides of these equations depend on the distribution pa-
rameters. The righthand sides can be computed from data. The

method of moments estimator is the solution of this system of equa-
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tions.

Example 3.1 (Poisson.) 7o estimate parameter \ of Poisson(\) dis-

tribution, we recall that

There is only one unknown parameter, hence we write one equation,
p=A=m; =X
"Solving” it for \, we obtain
X=X
the method of moments estimator of \.

This does not look difficult, does it? Simplicity is the main attractive

feature of the method of moments.

If it is easier, one may opt to equate central moments.

Example 3.2 (Gamma distribution of CPU times.)
The histogram in Figure 6 suggested that CPU times have Gamma
distribution with some parameters o and \. To estimate them, we

need two equations. From data, we compute

my = X = 48.2333 and m}, = S* = 679.7122
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and write two equations,

p =E(X)=a/A=m
py = Var(X) = a/N? = m),

It is convenient to use the second central moment here because we al-
ready know the expression for the variance my = Var(X) of a Gamma
variable.

Solving this system in terms of a and X\, we get the method of moment

estimates

a =m3/mb = 3.4227
X = my/m} = 0.0710

Of course, we solved these two examples so quickly because we already
knew the moments of Poisson and Gamma distributions.

Consider, for example, Pareto distribution that plays an increasingly
vital role in modern internet modeling due to very heavy internet traffic

nowadays.

Example 3.3 (Pareto.) A two-parameter Pareto distribution has a
cdf

N\ 0
F(a:):l—(—) forx >o
o
How should we compute method of moments estimators of o and 6 ¢
We have not seen Pareto distribution in this book so far, so we’ll have

to compute its first two moments.
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We start with the density

fa) = Fla)= 2 (2)" = g%

o

and use it to find the expectation

(e.¢]

p =E(X) = /Oo zf(x)dx = 000/ x dx

Oo
=07 for 8 > 1

=00

and the second moment

o
0 —2’

o =E (XQ) = / 2 f(x)dr = 909/ 0y = for 6 > 2

For 6 <1, a Pareto variable has an infinite expectation, and for 6 < 2,
it has an infinite second moment.

Then we solve the method of moments equations
= 2% =my
2
fs = 42 = my

and find that

~ 0—1
0:,/%+1and8:%) (3.1)
ma —mj 0

When we collect a sample from Pareto distribution, we can compute

sample moments my and mo and estimate parameters by (9.1).
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On rare occasions, when k equations are not enough to estimate k

parameters, we’ll consider higher moments.

Example 3.4 (Normal.) Suppose we already know the mean p of a
Normal distribution and would like to estimate the variance o?. Only

2 is unknown; however, the first method of moments

one parameter o
equation

M1 = 1

does not contain o* and therefore does not produce its estimate. We

then consider the second equation, say,

which gives us the method of moments estimate immediately, 02 = S>.

Method of moments estimates are typically easy to compute. They

can serve as a quick tool for estimating parameters of interest.

3.1.3 Method of maximum likelihood

Another interesting idea is behind the method of maximum likeli-
hood estimation.
Since the sample X = (X7, ..., X,,) has already been observed, we find
such parameters that maximize the probability (likelihood) for this to
happen. In other words, we make the event that has already happened
to be as likely as possible. This is yet another way to make the chosen

distribution consistent with the observed data.

Definition 3.3 Mazimum likelthood estimator is the parameter value
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that maximizes the likelihood of the observed sample. For a discrete
distribution, we mazximize the joint pmf of data P (X1,...,X,). Fora

continuous distribution, we mazximize the joint density f (Xi,...,X,).

Both cases, discrete and continuous, are explained below.

Discrete case

For a discrete distribution, the probability of a given sample is the

joint pmf of data,
P{X=(X1,....X,)} =P(X)=P(Xy,.... X,) = [ [ P (X3)

because in a simple random sample, all observed X; are independent.

To maximize this likelihood, we consider the critical points by tak-
ing derivatives with respect to all unknown parameters and equating
them to 0 . The maximum can only be attained at such parameter
values 6 where the derivative 2 P(X) equals 0 , where it does not ex-
ist, or at the boundary of the set of possible values of 6.

A nice computational shortcut is to take logarithms first. Differenti-

ating the sum
n][P(X)=> WP (X))
i=1 i=1

is easier than differentiating the product [] P (X;). Besides, logarithm
is an increasing function, so the likelihood P(X) and the log-likelihood

In P(X) are maximized by exactly the same parameters.
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Example 3.5 (Poisson.) The pmf of Poisson distribution is

AT

al

P(x)=e
and its logarithm 1is
InP(x) = =A+xIn\ — In(z!)

Thus, we need to maximize

n

WP(X)=> (-A+Xiln\)+C=-nA+IA) X;+C

i=1 =1

where C'= — > In(z!) is a constant that does not contain the unknown

parameter .
Find the critical point(s) of this log-likelihood. Differentiating it and

equating its derivative to 0 , we get

) 1 <
ZPX)=-n+-S X, =
oyl (X) n-i—)\; 0

This equation has only one solution

S
=1

Since this is the only critical point, and since the likelihood vanishes

(converges to 0 ) as A ] 0 or A T oo, we conclude that X is the mazi-

=

S|
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maizer. Therefore, it is the mazximum likelihood estimator of .
For the Poisson distribution, the method of moments and the method

~

of maximum likelihood returned the same estimator, A = X.

This area = P{z—h< X <z+h}

e—h @ sk

FIGURE 1: Probability of observing ”almost” X = x.

Continuous case

In the continuous case, the probability to observe exactly the given
number X = x is 0. Instead, the method of maximum likelihood will
maximize the probability of observing ”almost” the same number.

For a very small h,

P{r—h< X <x+h} =/j f(y)dy =~ (2h) f(x)

That is, the probability of observing a value close to x is propor-
tional to the density f(x) (see Figure 1). Then, for a sample X =
(X1, ...,X,), the maximum likelihood method will maximize the joint
density f(X1,...,X,).
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Example 3.6 (Exponential.) The Exponential density is

fla) = Ae™

so the log-likelihood of a sample can be written as

n

In f(X Zln X Z(ln/\—)\Xi):nln)\—)\zn:Xi

i=1 i=1

Taking its deriwative with respect to the unknown parameter A\, equating

it to 0, and solving for \, we get

1nf :——ZX—O

resulting in
~ n 1

)\ = = =

X, X
Again, this is the only critical point, and the likelihood f(X) vanishes
asA ]l 0or\?Too. Thus, X = X is the mazimum likelihood estimator of

A. This time, it also coincides with the method of moments estimator.

Sometimes the likelihood has no critical points inside its domain, then

it is maximized at the boundary.

Example 3.7 (Uniform.) Based on a sample from Uniform (0,b)

distribution, how can we estimate the parameter b ?
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The Uniform (0,b) density is

flz) =

1
5 for0<x<b

It 1s decreasing in b, and therefore, it is maximized at the the smallest
possible value of b, which is x.

For a sample (Xy,...,X,), the joint density
1 n
f(Xh)Xn):(E) fOTOSXl,...,XnSb

also attains its maximum at the smallest possible value of b which
1s now the largest observation. Indeed, b > X; for all v only if b >
max (X;). If b < max(X;), then f(X) = 0, and this cannot be the
mazimum value.

Therefore, the mazimum likelihood estimator is b = max (X;).

When we estimate more than 1 parameter, all the partial derivatives
should be equal 0 at the critical point. If no critical points exist, the

likelihood is again maximized on the boundary.

Example 3.8 (Pareto.) For the Pareto distribution in Example 9.5,
the log-likelihood s

Inf(X)=) I(0o°X; ") =nln6+nflno—(6+1)> InX,

i=1 =1

for Xq1,..., X, > 0. Maximizing this function over both o and 6, we



3.1 Parameter estimation 47

notice that it always increases in o. Thus, we estimate o by its largest

possible value, which s the smallest observation,
0 = min (X;).

We can substitute this value of o into the log-likelthood and mazimize

with respect to 0,

0 n <
%lnf(X) = 5+nlna—izzllﬂXi =0
n n

b= SIhX,—nlne > In(X;/5)

The maximum likelihood estimates of o and 6 are

n

> In(X;/o)

Maximum likelihood estimators are rather popular because of their nice

& =min(X;) and 6=

properties. Under mild conditions, these estimators are consistent, and
for large samples, they have an approximately Normal distribution.
Often in complicated problems, finding a good estimation scheme may
be challenging whereas the maximum likelihood method always gives

a reasonable solution.

3.1.4 Estimation of standard errors

How good are the estimators that we learned in previous sections?
Standard errors can serve as measures of their accuracy. To estimate

them, we derive an expression for the standard error and estimate all
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the unknown parameters in it.

Example 3.9 (Estimation of the Poisson Parameter.) In Exam-
ples 3.3 and 3.7, we found the method of moments and maximum like-
lihood estimators of the Poisson parameter \. Both estimators appear
to be equal the sample mean X = X. Let us now estimate the standard
error of .

Solution. There are at least two ways to do it.

On one hand, o = /A for the Poisson()\) distribution, so o(\) =
o(X) = a/v/n = +/Nn, as we know from (8.2) on p. 219. Estimating
A by X, we obtain

On the other hand, we can use the sample standard deviation and es-

timate the standard error of the sample mean as in Evample 8.17,

s > (X — X))
2} = ﬁ‘\/ nln—1)

Apparently, we can estimate the standard error of Py by two good esti-

mators, s; and Sy. ©

Example 3.10 (Estimation of the Exponential parameter.)
Derive the standard error of the maximum likelihood estimator in Fax-
ample 8 and estimate it, assuming a sample size n > 3.

Solution. This requires some integration work. Fortunately, we can
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take a shortcut because we know that the integral of any Gamma density
1S one, 1i.e.,

o0 >\a
/ e Mdr =1 foranya>0,A>0
o T'(a)

Now, notice that A =1/X =n/ Y X;, where 3 X; has Gamma (n, \)
distribution because each X; is Exponential(\).

Therefore, the k-th moment 0f5\ equals

B (W) =8 () = [ () G e

k)\n 00
— n / x”_k_le_)‘md:r
I'(n) Jo

kyn . o0 n—k
_ neA F(TL k) / A xnfkflef/\xdx
I'(n) Xk Jy T'(n—k)
AT (n—k) | nFA(n—k—1)
- T(n) Ak B (n—1)!

Substituting k = 1, we get the first moment,

ni

Substituting k = 2, we get the second moment,

5 (%) - =g
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Then, the standard error 0f5\ 18
o(N) = /Var(}h) = \/E (X?) BN

B \/ n2\2 B n2\2
V(n—-1D)(n—-2) (n—-1)?
_ nA

(n—1)vn—2

We have just estimated \ by A= 1/X; therefore, we can estimate the

~

standard error a(\) by

n n2

A = X(n—1)vn—2 o Y Xi(n—1)v/n —2

3.2 Confidence intervals

When we report an estimator 0 of a population parameter 6, we
know that most likely
0+ 0
due to a sampling error. We realize that we have estimated 6 up to
some error. Likewise, nobody understands the internet connection of
11 megabytes per second as exactly 11 megabytes going through the
network every second, and nobody takes a meteorological forecast as

the promise of exactly the predicted temperature.

Then how much can we trust the reported estimator? How far can

it be from the actual parameter of interest? What is the probability
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that it will be reasonably close?” And if we observed an estimator 5,
then what can the actual parameter 6 be?

To answer these questions, statisticians use confidence intervals, which
contain parameter values that deserve some confidence, given the ob-

served data.

Definition 3.4 An interval |a,b] is a (1 — a)100% confidence interval

for the parameter 6 if it contains the parameter with probability (1—«),
P{a<0<bl=1-a.
The coverage probability (1 — «) is also called a confidence level.

Let us take a moment to think about this definition. The probability
of a random event {a < 6 < b} has to be (1 — «). What randomness

is involved in this event?

The population parameter 6 is not random. It is a population
feature, independent of any random sampling procedure, and therefore,
it remains constant. On the other hand, the interval is computed from
random data, and therefore, it is random. The coverage probability
refers to the chance that our interval covers a constant parameter 6.
This is illustrated in Figure 2. Suppose that we collect many random
samples and produce a confidence interval from each of them. If these
are (1 — «)100% confidence intervals, then we expect (1 — a)100% of

them to cover 8 and 100a% of them to miss it.
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FIGURE 2: Confidence intervals and coverage of parameter 6.

In Figure 2, we see one interval that does not cover . No mistake was
made in data collection and construction of this interval. It missed the
parameter only due to a sampling error.

It is therefore wrong to say, ”I computed a 90% confidence interval,
it is [3, 6]. Parameter belongs to this interval with probability 90%.”
The parameter is constant; it either belongs to the interval [3, 6] (with
probability 1 ) or does not. In this case, 90% refers to the proportion
of confidence intervals that contain the unknown parameter in a long

run.

3.2.1 Construction of confidence intervals

Given a sample of data and a desired confidence level (1 — «),
how can we construct a confidence interval [a, b] that will satisfy the
coverage condition

P{a<0<b}=1—-«
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in Definition 47
We start by estimating parameter 6. Assume there is an unbiased
estimator 0 that has a Normal distribution. When we standardize it,

we get a Standard Normal variable

;o 0 — EA@ _ 515 (3.2)
o6 a(0)

where E(@\) — 6 because 0 is unbiased, and a(é\) = a(é\) is its standard
error.
This variable falls between the Standard Normal quantiles g,/ and

¢i—a/2, denoted by

—Ra/2 = qa/2,  Raj2 = Q1-a/2

with probability (1 — «/), as you can see in Figure 3.

X
\
This area
7 equals \
This area / X This area
equals / (I1-a) X equals

(a/2) | N (a2
\ N /

—Ra/2 0 Za/2

FIGURE 3: Standard Normal quantiles +z,,/o and partition of the area under the density curve.
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Then,
6—6
P —ZQ/QS—ASZQ/Q =1—«
o(0)
Solving the inequality inside {...} for 0, we get

~

P{H—za/g-a(@\) SHS@\—ZQ/Q-U(@)} =1—-a
The problem is solved! We have obtained two numbers
a=0—245-0(0), b=0+ 2z, -0(f)

such that
P{a<0<b}=1-a.

3.2.2 Confidence interval, Normal distribution

If parameter ¢ has an unbiased, Normally distributed estimator 5,
then
@fwyaazp;%ﬂﬂ®ﬁ4%ﬂﬁ@} (3.3)

is a (1 — a)100% confidence interval for 6.
If the distribution of 8 is approximately Normal, we get an approxi-

mately (1 — a)100% confidence interval.

In this formula, 0 is the center of the interval, and z, /2 - o (0) is
the margin. The margin of error is often reported along with poll and
survey results. In newspapers and press releases, it is usually computed
for a 95% confidence interval.

We have seen quantiles £z, /5 in inverse problems. Now, in confidence
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estimation, and also, in the next section on hypothesis testing, they
will play a crucial role as we’ll need to attain the desired confidence

level . The most commonly used values are

20.10 — 1282, 20.05 — 1645, 20.025 — 1.960

(3.4)
20.01 — 2326, 20.005 — 2.576

NOTATION:
Ra = q1—a = q)_l(l - 04)

is the value of a Standard Normal variable Z that is exceeded with

probability a.

Several important applications of this general method are discussed
below. In each problem, we
(a) find an unbiased estimator of 6,
(b) check if it has a Normal distribution,
(c) find its standard error o(f) = Std(d),
(d) obtain quantiles £z, /, from the table of Normal distribution (Table
A4 in the Appendix), and finally,
(e) apply the rule (3).

3.3 Confidence interval for the population
mean

Let us construct a confidence interval for the population mean

0 =p=EX)
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Start with an estimator,

é\:X:

S|

>
i=1

The rule (3) is applicable in two cases.

1. If a sample X = (X,...,X,,) comes from Normal distribution,

then X is also Normal, and rule (3) can be applied.

2. If a sample comes from any distribution, but the sample size n
is large, then X has an approximately Normal distribution ac-
cording to the Central Limit Theorem. Then rule (3) gives an

approximately (1 — a)100% confidence interval.

Before, we derived

E(X)
o(X)

p (thus, it is an unbiased estimator);

o/v/n.

Then, (3) reduces to the following (1 — «)100% confidence interval for

(.
Confidence interval for the mean; ¢ is known

— g
X + Za/zﬁ

Example 3.11 Construct a 95% confidence interval for the population

(3.5)

mean based on a sample of measurements 2.5,7.4,8.0,4.5,7.4,9.2 if
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measurement errors have Normal distribution, and the measurement

device guarantees a standard deviation of o = 2.2.

Solution. This sample has size n = 6 and sample mean X = 6.50.
To attain a confidence level of 1 — a = 0.95 we need a = 0.05 and
a/2 = 0.025. Hence, we are looking for quantiles qo.o25 = —20.025 and
40.975 = 20.025 -
From (4) or Table A4, we find that qyo75 = 1.960. Substituting these

values into (5), we obtain a 95% confidence interval for p,

2.2
= 6.50 = (1.960) == = 6.50 &= 1.76 or [4.74, 8.26]

V6

_ o
X+ z40—

Z /2\/ﬁ
The only situation when method (3) cannot be applied is when the
sample size is small and the distribution of data is not Normal. Special

methods for the given distribution of X are required in this case.

3.4 Confidence interval for the difference be-
tween two means

Under the same conditions as in the previous section,

e Normal distribution of data or

e sufficiently large sample size,
we can construct a confidence interval for the difference between
two means.
This problem arises when we compare two populations. It may be
a comparison of two materials, two suppliers, two service providers,

two communication channels, two labs, etc. From each population,
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a sample is collected (Figure 4),

Population I Population II
Parameters: pux, 0% Parameters: puy, 0%

Collect independent samples

Sample (X, ..., Sample (Yi,...,
Statistics: X, s% Statistics: Y, sy

L Confidence interval \)

fOT 0 =px — py

FIGURE 4: Comparison of two populations.

X =(Xy,...,X,) from one population
Y =(Y4,...,Y,,) from the other population.

Suppose that the two samples are collected independently of each
other.

To construct a confidence interval for the difference between popula-
tion means 6 = px — py we complete the usual steps (a)-(e) below.

(a) Propose an estimator of 0,

i

It is natural to come up with this estimator because X estimates px

and Y estimates py-.
(b) Check that 0 is unbiased. Indeed,

E(f) = E(X - V) = B(X) — E(Y) = jix — iy = 6
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(¢) Check that § has a Normal or approximately Normal distribution.
This is true if the observations are Normal or both sample sizes m and
n are large.

(d) Find the standard error of 0 (using independence of X and Y ),

o 0) = Var(X — ¥) = | [Var(X) 4 Var(r) = |/ 4 O

(e) Find quantiles £z, and compute the confidence interval accord-
ing to (3). This results in the following formula.
Confidence interval for the difference of means; known stan-

dard deviation

2 2
X -V kg X422 (3.6)
n m

Example 3.12 (Effect of an upgrade.) A manager evaluates effec-
tiveness of a major hardware upgrade by running a certain process 50
times before the upgrade and 50 times after it. Based on these data, the
average running time is 8.5 minutes before the upgrade, 7.2 minutes
after it. Historically, the standard deviation has been 1.8 minutes, and
presumably it has not changed. Construct a 90% confidence interval
showing how much the mean running time reduced due to the hardware
upgrade.

Solution. We have n = m = 50,0y = oy = 1.8, X =85, and Y =
7.2. Also, the confidence level (1 — a) equals 0.9 , hence a/2 = 0.05,
and zo 5 = 1.645.

The distribution of times may not be Normal; however, due to large
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sample sizes, the estimator

b=X_-Y

is approximately Normal by the Central Limit Theorem. Thus, formula
(9.6) is applicable, and a 90% confidence interval for the difference of

means (px — py ) is

1 1
85 —T72+(1.645)4/1.82 | —=+— | =134+056 0.7,1.9
( >\/ (5+%) or [0.7,1.9)
We can say that the hardware upgrade resulted in a 1.3 -minute reduc-
tion of the mean running time, with a 90% confidence margin of 0.6

manutes.

3.5 Selection of a sample size

Formula (3) describes a confidence interval as” center + margin ,
where

center = @\, margin = 2,/ - a(@\).

We can revert the problem and ask a very practical question: How large
a sample should be collected to provide a certain desired precision of
our estimator?

In other words, what sample size n guarantees that the margin of a
(1 — a)100% confidence interval does not exceed a specified limit A ?

To answer this question, we only need to solve the inequality

margin < A (3.7)
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in terms of n. Typically, parameters are estimated more accurately

~

based on larger samples, so that the standard error o(#) and the margin
are decreasing functions of sample size n. Then, (7) must be satisfied

for sufficiently large n.

3.6 Estimating means with a given precision

When we estimate a population mean, the margin of error is

margin = 2,/ - o/\v/n

Solving inequality (7) for n results in the following rule.

Rule: Sample size for a given precision

In order to attain a margin of error A for estimating

a population mean with a confidence level (1 — ), (3.8)

. a2 0\2 :
a sample of size n > (%) is required.

When we compute the expression in (8), it will most likely be a fraction.
Notice that we can only round it up to the nearest integer sample size.

If we round it down, our margin will exceed A.

Looking at (8), we see that a large sample will be necessary
e to attain a narrow margin (small A );
e to attain a high confidence level (small « ); and
e to control the margin under high variability of data (large o ).

In particular, we need to quadruple the sample size in order to half the
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margin of the interval.

Example 3.13 In Example 11, we constructed a 95% confidence with
the center 6.50 and margin 1.76 based on a sample of size 6 . Now,
that was too wide, right? How large a sample do we need to estimate

the population mean with a margin of at most 0.4 units with 95% con-
fidence?

Solution. We have A = 0.4, = 0.05, and from Ezample 9.13,
o=22. By (9.8), we need a sample of

v (20)E ((1960)(2.2))2 ~ 1162

- A 0.4

Keeping in mind that this is the minimum sample size that satisfies A,
and we are only allowed to round it up, we need a sample of at least

117 observations.



Chapter 4

Hypotheses Testing

A vital role of Statistics is in verifying statements, claims, conjec-
tures, and in general - testing hypotheses. Based on a random sample,

we can use Statistics to verify whether

e a system has not been infected,
e a hardware upgrade was efficient,
e the average number of concurrent users increased by 2000 this year,

e the average connection speed is 54 Mbps, as claimed by the internet

service provider,
e the proportion of defective products is at most 3
e service times have Gamma distribution,

e the number of errors in software is independent of the manager’s

experience, - etc.

Testing statistical hypotheses has wide applications far beyond
Computer Science. These methods are used to prove efficiency of a

new medical treatment, safety of a new automobile brand, innocence



4.1 Hypothesis and alternative 64

of a defendant, and authorship of a document; to establish cause-and-
effect relationships; to identify factors that can significantly improve
the response; to fit stochastic models; to detect information leaks; and
so forth.

4.1 Hypothesis and alternative

To begin, we need to state exactly what we are testing. These are

hypothesis and alternative.

NOTATION: | Hy = hypothesis (the null hypothesis)
H,4 = alternative (the alternative hypothesis)

Hy and H, are simply two mutually exclusive statements. Each test

results either in acceptance of Hj or its rejection in favor of H 4.

A null hypothesis is always an equality, absence of an effect or
relation, some "normal,” usual statement that people have believed
in for years. In order to overturn the common belief and to reject
the hypothesis, we need significant evidence. Such evidence can only
be provided by data. Only when such evidence is found, and when it
strongly supports the alternative H 4, can the hypothesis Hj be rejected

in favor of Hy.

Based on a random sample, a statistician cannot tell whether the
hypothesis is true or the alternative. We need to see the entire popu-
lation to tell that. The purpose of each test is to determine whether

the data provides sufficient evidence against Hj in favor of H 4.

This is similar to a criminal trial. Typically, the jury cannot tell
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whether the defendant committed a crime or not. It is not their task.
They are only required to determine if the presented evidence against
the defendant is sufficient and convincing. By default, called presump-

tion of innocence, insufficient evidence leads to acquittal.

Example 4.1 To verify that the the average connection speed is 54
Mbps , we test the hypothesis Hy : n = 54 against the two-sided alter-

natiwve Ha @ p # 54, where p is the average speed of all connections.

However, if we worry about a low connection speed only, we can

conduct a one-sided test of
Hy:p=54vs Hy: p <54

In this case, we only measure the amount of evidence supporting the
one-sided alternative Hy : p < 54. In the absence of such evidence, we

gladly accept the null hypothesis.

Definition 4.1 Alternative of the type Hy : o # g covering regions
on both sides of the hypothesis (Hy : = po) is a two-sided alternative.
Alternative Hy @ p < pg covering the region to the left of Hy is one-
sided, left-tail.

Alternative Hy @ o > po covering the region to the right of Hy is
one-sided, right-tail.

Example 4.2 To verify whether the average number of concurrent
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users increased by 2000, we test
Hy: po — g = 2000 vs Hy @ ps — pq 7 2000

where 1y 1s the average number of concurrent users last year, and pis
15 the average number of concurrent users this year. Depending on the
situation, we may replace the two-sided alternative H 4 : ps — pq # 2000
with a one-sided alternative HS) e — g < 2000 or Hf) Do — g >
2000. The test of Hy against Hﬁll) evaluates the amount of evidence
that the mean number of concurrent users changed by fewer than 2000.
Testing against Hf), we see if there is sufficient evidence to claim that

this number increased by more than 2000 .

Example 4.3 To verify if the proportion of defective products is at

most 3%, we test
Hy:p=0.03vs Hy : p> 0.03

where p 1s the proportion of defects in the whole shipment.

Why do we choose the right-tail alternative Ha @ p > 0.03 ¢ That is
because we reject the shipment only if significant evidence supporting
this alternative 1s collected. If the data suggest that p < 0.03, the

shipment will still be accepted.
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4.2 Type I and Type II errors: level of sig-
nificance

When testing hypotheses, we realize that all we see is a random

sample. Therefore, with all the best statistics skills, our decision to

accept or to reject Hy may still be wrong. Four situations are possible,

Result of the test
Reject H) Accept H

Hy is true | Type I error correct

H, is false correct Type II error

In two of the four cases, the test results in a correct decision. Either
we accepted a true hypothesis, or we rejected a false hypothesis. The

other two situations are sampling errors.

Definition 4.2 A type I error occurs when we reject the true null hy-
pothesis.

A type II error occurs when we accept the false null hypothesis.

Fach error occurs with a certain probability that we hope to keep small.
A good test results in an erroneous decision only if the observed data

are somewhat extreme.

A type I error is often considered more dangerous and undesired
than a type II error. Making a type I error can be compared with
convicting an innocent defendant or sending a patient to a surgery
when (s)he does not need one.

For this reason, we shall design tests that bound the probability of
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type I error by a preassigned small number «. Under this condition,

we may want to minimize the probability of type II error.

Definition 4.3 Probability of a type I error is the significance level of

a test,

a = P{ reject Hy | Hy is true }

Probability of rejecting a false hypothesis is the power of the test,

p(0) = P { reject Hy | 0; Hy is true }

It 1s usually a function of the parameter 6 because the alternative
hypothesis includes a set of parameter values. Also, the power is the

probability to avoid a Type II error.

Typically, hypotheses are tested at significance levels as small as 0.01, 0.05,
or 0.10 , although there are exceptions. Testing at a low level of signif-
icance means that only a large amount of evidence can force rejection
of Hy. Rejecting a hypothesis at a very low level of significance is done

with a lot of confidence that this decision is right.

4.3 Level a tests: general approach
A standard algorithm for a level « test of a hypothesis H, against

an alternative H 4 consists of 3 steps.

Step 1. Test statistic
Testing hypothesis is based on a test statistic T, a quantity computed
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from the data that has some known, tabulated distribution Fj if the
hypothesis Hy is true.

Jo(T)1

Rejection
region,

probability «
| Acceptance when Hj is true
/ region,

‘/ probability (1 — «)
f when Hy is true

FIGURE 5.1: Acceptance and rejection regions.

Test statistics are used to discriminate between the hypothesis and
the alternative. When we verify a hypothesis about some parameter
0, the test statistic is usually obtained by a suitable transformation of

its estimator 5

Step 2. Acceptance region and rejection region
Next, we consider the null distribution Fj. This is the distribution of
test statistic T" when the hypothesis Hj is true. If it has a density fj,
then the whole area under the density curve is 1 , and we can always
find a portion of it whose area is «, as shown in Figure 1. It is called
rejection region (fR).
The remaining part, the complement of the rejection region, is called

acceptance region (2 = R). By the complement rule, its area is (1—a).

These regions are selected in such a way that the values of test

statistic T in the rejection region provide a stronger support of H4
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than the values T' € 2. For example, suppose that T is expected to be
large if H4 is true. Then the rejection region corresponds to the right
tail of the null distribution Fy (Figure 4.1).

As another example, look at Figure 3 on p. 64. If the null distribution
of T is Standard Normal, then the area between (—za /2) and z, /5 equals

exactly (1 — «). The interval

2 = (_Za/Qa Za/2)

can serve as a level a acceptance region for a two-sided test of Hy : 0 =

Oy vs Hy : 0 # 6y. The remaining part consists of two symmetric tails,

R = ﬁ = (_OO; _Zoz/2j| U |:Zoz/27 +OO) ;

this is the rejection region.

Areas under the density curve are probabilities, and we conclude that
P {T € acceptance region | Hy} =1—«

and

P {T € rejection region | Hy} = «a.

Step 3: Result and its interpretation

Accept the hypothesis Hj if the test statistic T belongs to the accep-
tance region. Reject H in favor of the alternative H, if T belongs to
the rejection region.

Our acceptance and rejection regions guarantee that the significance



4.3 Level a tests: general approach 71

level of our test is

Significance level = P{ Type I error }
= P { Reject | Hp}
=P{T' e R | Hy}
=a (4.1)

Therefore, indeed, we have a level « test!

The interesting part is to interpret our result correctly. Notice that
conclusions like "My level « test accepted the hypothesis. Therefore,
the hypothesis is true with probability (1—a) ” are wrong! Statements
Hy and H 4 are about a non-random population, and thus, the hypoth-
esis can either be true with probability 1 or false with probability 1.
If the test rejects the hypothesis, all we can state is that the data pro-
vides sufficient evidence against Hj and in favor of H4. It may either
happen because Hj is not true, or because our sample is too extreme.
The latter, however, can only happen with probability «.

If the test accepts the hypothesis, it only means that the evidence ob-

tained from the data is not sufficient to reject it. In the absence of
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sufficient evidence, by default, we accept the null hypothesis.

NOTATION: | a = level of significance, probability of type I error

p(0) = power
T = test statistic
Iy, fo = null distribution of 7" and its density

2 = acceptance region

R = rejection region

4.4 Rejection regions and power

Our construction of the rejection region guaranteed the desired sig-
nificance level «, as we proved in (4.1). However, one can choose many
regions that will also have probability « (see Figure 4.2). Among them,
which one is the best choice?

To avoid type II errors, we choose such a rejection region that will
likely cover the test statistic 7' in case if the alternative H, is true.
This maximizes the power of our test because we’ll rarely accept Hy in
this case.

Then, we look at our test statistic 7" under the alternative. Often

(a) a right-tail alternative forces T to be large,

(b) a left-tail alternative forces T to be small,

(c) a two-sided alternative forces T to be either large or small

FIGURE 4.2: Acceptance and rejection regions for a Z-test with (a) a one-sided right-tail alternative; (b) a

one-sided left-tail alternative; (c) a two-sided alternative.

(although it certainly depends on how we choose T' ). If this is the
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// N 7 a \\
\ /N
\ Reject / \\
if T is here / \
F Accept /' Accept \
S if T is here / \ ‘ if Tis here ™
(a) Right-tail Z-test (b) Left-tail Z-test

Reject Reject
if T is here Accept if T is here
if T is here ;/
—Za/2 0 Raf2 T

(c) Two-sided Z-test

case, it tells us exactly when we should reject the null hypothesis:

(a) For a right-tail alternative, the rejection region R should consist of
large values of T. Choose R on the right, 2 on the left (Figure 4.2a).
(b) For a left-tail alternative, the rejection region R should consist of
small values of T'. Choose R on the left, 2 on the right (Figure 4.2b).

(c) For a two-sided alternative, the rejection region R should consist

of very small and very large values of T'. Let ‘R consist of two extreme

regions, while 2 covers the middle (Figure 4.2c).
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4.5 Standard Normal null distribution (Z-
test)

An important case, in terms of a large number of applications, is

when the null distribution of the test statistic is Standard Normal.

The test in this case is called a Z-test, and the test statistic is
usually denoted by Z.
(a) A level « test with a right-tail alternative should

{ reject Hy if Z >z, (4.2)

accept Hy if Z < z,

The rejection region in this case consists of large values of Z only,
R = [24,+0), A= (—00,24)

(see Figure 4.2a).
Under the null hypothesis, Z belongs to 2 and we reject the null hy-
pothesis with probability

P{T >z, H}=1—®(z,) =«

making the probability of false rejection (type I error) equal a.
For example, we use this acceptance region to test the population

mean,

Ho:p=po vs Ha:p> po



accept Hy if Z > —z,
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(b) With a left-tail alternative, we should
reject Hy if Z < —z
{ JEEE 0 =" (4.3)

The rejection region consists of small values of Z only,

R=(—00,—24], A= (—24,+00)

Similarly, P{Z € R} = a under Hy; thus, the probability of type I

error equals a.

For example, this is how we should test
Ho:p=po vs Ha:p<pg
(c) With a two-sided alternative, we

reject Hy if |Z] > 249
accept Hy if |Z| < 249

(4.4)

The rejection region consists of very small and very large values of Z,

R = (—OO,ZQ/Q] U I:Za/Q, +OO) ) A= (_Zoz/27zoz/2)

Again, the probability of type I error equals « in this case.

For example, we use this test for

Ho:p=po vs Ha:p# po
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This is easy to remember:

e for a two-sided test, divide a by two and use z, ;

e for a one-sided test, use z, keeping in mind that the rejection

region consists of just one piece.

Now consider testing a hypothesis about a population parameter 6.

Suppose that its estimator 0 has Normal distribution, at least approx-

~ ~

imately, and we know E(#) and Var(0) if the hypothesis is true.
Then the test statistic

0 — E(0)

~

Var(6)

7 = (4.5)

has Standard Normal distribution, and we can use (4.2), (4.3), and
(4.4) to construct acceptance and rejection regions for a level a test.
We call Z a Z-statistic.

Examples of Z-tests are in the next section.

4.6 Z-tests for means and proportions

As we already know,

e sample means have Normal distribution when the distribution of

data is Normal;

e sample means have approximately Normal distribution when they
are computed from large samples (the distribution of data can be

arbitrary);



4.6 Z-tests for means and proportions 7T

e sample proportions have approximately Normal distribution when

they are computed from large samples;

e this extends to differences between means and between proportions
For all these cases, we can use a Z-statistic (4.5) and rejection

regions (4.2)-(4.4) to design powerful level « tests.

Example 4.4 (Z-test about a population mean.)

The number of concurrent users for some internet service provider
has always averaged 5000 with a standard deviation of 800. After an
equipment upgrade, the average number of users at 100 randomly se-
lected moments of time is 5200 . Does it indicate, at a 5% level of
significance, that the mean number of concurrent users has increased?
Assume that the standard deviation of the number of concurrent users

has not changed.

Solution. We test the null hypothesis Hy : © = 5000 against a one-
sided right-tail alternative H4 : p > 5000, because we are only inter-
ested to know if the mean number of users p has increased.
Step 1: Test statistic. We are given: o = 800,n = 100, a = 0.05, pg =
5000, and from the sample, X = 5200. The test statistic is

X -y 5200 —5000
o/\/n 800/+/100

Step 2: Acceptance and rejection regions. The critical value is

Z

Za = 20.05 — 1.645
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(don’t divide a by 2 because it is a one-sided test). With the right-tail

alternative, we
if Z>1.645

it Z < 1.645

reject Hy
accept H

Step 3: Result. Our test statistic Z = 2.5 belongs to the rejection
region; therefore, we reject the null hypothesis. The data ( 5200 users,
on the average, at 100 times) provided sufficient evidence in favor of the

alternative hypothesis that the mean number of users has increased.

Null Parameter Test statistic
_ ' ’ If Hy is true: g _ b,
hypothesis estimator = @)
Hy 0,0 E(0) Var(6)
One-sample Z-tests for means and proportions, based on a sample of size n
< 2 X—
H= Ho oy X o z T
~ _ p—p
P =Dpo PP Po M o

Two-sample Z-tests comparing means and proportions of two populations,

based on independent samples of size n and m

KX — Ky 2 2 X-Y-D
S I DR S
pr—>D2 1 1 p1—p—D
p1—p2=2D P D pa( - P1) + pz(mpz) \/M+M
1 — P2 n m
_ . 1, 1 D1—P2
pl :p2 ]/)\1 ]/)\2 0 p(l p) (W+m) ﬁ(l—ﬁ)(%—i—%)
p1— P2 where p = p; = py where p = np1+mps
n+m

TABLE 4.1: Summary of Z-tests.

Example 4.5 (Two-SAmple Z-test of Proportions.) A quality in-

spector finds 10 defective parts in a sample of 500 parts received from
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manufacturer A. Out of 400 parts from manufacturer B, she finds 12
defective ones. A computer-making company uses these parts in their
computers and claims that the quality of parts produced by A and B is
the same. At the 5% level of significance, do we have enough evidence

to disprove this claim?

Solution. We test Hy : pa = pp, or Hy : pa — pp = 0, against
Hy : pa # pp. This is a two-sided test because no direction of the
alternative has been indicated. We only need to verify whether or not
the proportions of defective parts are equal for manufacturers A and
B.

Step 1: Test statistic. We are given: p4 = 10/500 = 0.02 from
a sample of size n = 500; pp = 12/400 = 0.03 from a sample of size
m = 400. The tested value is D = 0.

As we know, for these Bernoulli data, the variance depends on the
unknown parameters ps and pp which are estimated by the sample
proportions p4 and pp. The test statistic then equals

pa—pp—D 0.02 — 0.03

Z = = = —0.945

\/ﬁA(ln—ﬁm + ]/7\3(1”;168) \/ (0.025)0((()).98) 1 (0.0?:1)0(8.97)

Step 2: Acceptance and rejection regions. This is a two-sided test;

thus we divide o by 2, find 2 95/2 = 20.025 = 1.96, and

reject Hy if |Z] > 1.96
accept Hy if |Z] < 1.96
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Step 3: Result. The evidence against Hy is insufficient because |Z| <
1.96. Although sample proportions of defective parts are unequal, the
difference between them appears too small to claim that population

proportions are different.



Chapter 5

Variance estimator and Chi-square Dis-
tribution

In this section, we’ll derive confidence intervals and tests for the
population variance o? = Var(X) and for the comparison of two vari-
ances 0% = Var(X) and o2 = Var(Y). This will be a new type of
inference for us because
(a) variance is a scale and not a location parameter,

(b) the distribution of its estimator, the sample variance, is not sym-

metric.

Variance often needs to be estimated or tested for quality control,
in order to assess stability and accuracy, evaluate various risks, and
also, for tests and confidence intervals for the population means when

variance is unknown.

We start by estimating the population variance ¢ = Var(X) from
an observed sample X = (Xi,...,X,). Recall that o? is estimated

unbiasedly and consistently by the sample variance
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The summands (X,' - X )2 are not quite independent, as the Central
Limit Theorem requires, because they all depend on X. Nevertheless,
the distribution of s? is approximately Normal, under mild conditions,

when the sample is large.

For small to moderate samples, the distribution of s? is not Normal
at all. It is not even symmetric. Indeed, why should it be symmetric

if s? is always non-negative!

5.1 Distribution of the sample variance

When observations Xi,..., X, are independent and Normal with
Var (X;) = o2, the distribution of

Oy =)

=1

is Chi-square with (n — 1) degrees of freedom

Chi-square distribution, or y?, is a continuous distribution with
density

1
Mo =gmrpp® ¢

where v > 0 is a parameter that is called degrees of freedom.
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0.2

0.1

FIGURE 12: Chi-square densities with v = 1,5, 10, and 30 degrees of freedom.

Each distribution is right-skewed. For large v, it is approximately Nor-

mal. We see that Chi-square distribution is a special case of Gamma,
Chi-square (v) = Gamma(r/2,1/2)

and in particular, the Chi-square distribution with v = 2 degrees of

freedom is Exponential(1/2).

We already know that Gamma(a, A) distribution has expectation
E(X) = o/ and Var(X) = a/A\2. Substituting o = /2 and X = 1/2,

we get the Chi-square moments,

E(X)=v and Var(X)=2v
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5.2 Chi-square distribution (y?)

v = degrees of freedom
_ 1 v/2—1,—x/2

f(x) NI e x>0 (5.1)

E(X) =v

Var(X) =2v
Table A6 in the Appendix contains critical values of the Chi-square
distribution.

1)

o/2 7;/72\%1%7&”'"”’”** — e

2
X]~a/2 Xu/2

FIGURE 13: Critical values of the Chi-square distribution.

5.2.1 Confidence interval for the population vari-
ance

Let us construct a (1 — «)100% confidence interval for the popula-
tion variance o2, based on a sample of size n.
As always, we start with the estimator, the sample variance s?>. How-
ever, since the distribution of s? is not symmetric, our confidence in-
terval won’t have the form ”estimator + margin” as before.
Instead, we use Table A6 to find the critical values x3__ /2 and x? /2 of

the Chi-square distribution with v = n — 1 degrees of freedom. These
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critical values chop the areas of («/2) on the right and on the left sides
of the region under the Chi-square density curve, as on Figure 13. This
is similar to +z,/, and +¢,/, in the previous sections, although these
Chisquare quantiles are no longer symmetric. Recall that Xi /9 denotes
the (1 — a/2)-quantile, ¢;_q .

Then, the area between these two values is (1 — «).

A rescaled sample variance (n — 1)s?/0? has x? density like the one on
Figure 13, so

(n —1)s?

2
Tﬁxaxz}zl—&

P {X%—Q/Q <

Solving the inequality for the unknown parameter o>

p{w<(,z<w}_w

, we get
2 2
Xa/2 X1—a/2

A (1 — a)100% confidence interval for the population variance is ob-

tained!

5.2.2 Confidence interval for the variance

[(n - 1)327 (n — 1)32] (5.2)

7 D)
Xa/2 X1-a/2

A confidence interval for the population standard deviation o = Vo2

1S

[\/(n21)327\/(n21)52‘ (5.3)
Xa/2 Xi-a/2
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Example 5.1 A sample of 6 measurements 2.5,7.4,8.0,4.5,7.4,9.2 is
collected from a Normal distribution with mean p and standard devi-
ation o = 2.2. Let us now rely on the data only and construct a 90%

confidence interval for the standard deviation. The sample contained
n = 6 measurements, 2.5,7.4,8.0,4.5,7.4, and 9.2.

Solution. Compute the sample mean and then the sample vari-

ance,

_ 1
X=c(25+...+92) =65

1 31.16
§?= ——{(25-65°+...+(92-6.5)*} = —— = 6.232

(actually, we only need (n — 1)s* = 31.16 ).

From Table A6 of Chi-square distribution with v =n — 1 =5 degrees
of freedom, we find the critical values X%fa/Q = X345 = 1.15 and XZ/Q =
X305 = 11.1. Then,

—1)s2 —1)s? 1.1 1.1
(n2)s’ (n—1)s \/3 6\/3 6 _ [1.68,5.21]
Xao/2 Xl 02 11.1 1.15
is a 90% confidence interval for the population standard deviation (and

by the way, [1.682, 5.212] = [2.82,27.14] is a 90% confidence interval for

the variance).

5.2.3 Comparison of two variances. F-Distribution

In this section, we deal with two populations whose variances need

to be compared. Such inference is used for the comparison of accuracy,
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stability, uncertainty, or risks arising in two populations.

Example 5.2 (Efficient upgrade.) A data channel has the average
speed of 180 Megabytes per second. A hardware upgrade is supposed
to improve stability of the data transfer while maintaining the same
average speed. Stable data transfer rate implies low standard deviation.
How can we estimate the relative change in the standard deviation of
the transfer rate with 90% confidence?

Example 5.3 (Conservative investment.)

Two mutual funds promise the same expected return; however, one of
them recorded a 10% higher volatility over the last 15 days. Is this a
significant evidence for a conservative investor to prefer the other mu-

tual fund? (Volatility is essentially the standard deviation of returns.)

Example 5.4 (Which method to use?.) For marketing purposes, a
survey of users of two operating systems is conducted. Twenty users
of operating system ABC' record the average level of satisfaction of 77
on a 100-point scale, with a sample variance of 220 . Thirty users
of operating system DEF have the average satisfaction level 70 with
a sample variance of 155 . We already know from Section 9.4.8 how
to compare the mean satisfaction levels. But what method should we
choose? Should we assume equality of population variances, 0% = 0%
and use the pooled variance? Or we should allow for 0% # o3 and use

Satterthwaite approximation?

To compare variances or standard deviations, two independent samples
X =(Xy,...,X,) and Y = (Y1,...,Y),) are collected, one from each
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population, as on Figure 4. Unlike population means or proportions,

variances are scale factors, and they are compared through their ratio

A natural estimator for the ratio of population variances § = 0% /0% is

the ratio of sample variances

g E (= X) /) -

sy L (Yi=Y)/(m—1)

The distribution of this statistic, in standard form, after we divide each

sample variance in formula (4) by the corresponding population vari-
ance, is called the Fisher-Snedecor distribution or simply F-distribution

with (n — 1) and (m — 1) degrees of freedom.

Distribution of the ratio of sample variances:

For independent samples Xji,..., X, from Normal (ux,ox) and

Yi,..., Y, from Normal (uy,oy), the standardized ratio of variances

o Sok (X - X) fok/(n - 1)
sv/oy S (Yi—Y)? Jok)(m— 1)

(5.5)

has F-distribution with (n — 1) and (m — 1) degrees of freedom.

We know from Section 1 that for the Normal data, both s /0% and

s?. /0% follow x? distributions. We can now conclude that the ratio of
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two independent x? variables, each divided by its degrees of freedom,
has F-distribution. A ratio of two non-negative continuous random
variables, any F-distributed variable is also non-negative and continu-

ous.

F-distribution has two parameters, the numerator degrees of free-
dom and the denominator degrees of freedom. These are degrees of
freedom of the sample variances in the numerator and denominator of
the F-ratio (5).

Critical values of F-distribution are in Table A7, and we’ll use them
to construct confidence intervals and test hypotheses comparing two
variances.

One question though... Comparing two variances, o3 and 0%, should
we divide s% by s3 or s3- by s3 7 Of course, both ratios are ok to
use, but we have to keep in mind that in the first case we deal with
F(n—1,m—1) distribution, and in the second case with F(m—1,n—1).

This leads us to an important general conclusion -

1
If F has F' (v, 12) distribution, then the distribution of I is F' (v,11).
(5.6)

5.3 Confidence interval for the ratio of pop-
ulation variances

Here we construct a (1 —a)100% confidence interval for the param-

eter § = 0% /o%. This is about the sixth time we derive a formula for

a confidence interval, so we are well familiar with the method, aren’t

we?
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Start with the estimator, 6 = s% /s%. Standardizing it to

o ST R
RI% ko

SRS NN

we get an F-variable with (n — 1) and (m — 1) degrees of freedom.

Therefore,

| )

P{Fla/Q(nl,ml) <-=-< Fa/g(nl,ml)} =1—«

as on Figure 15. Solving the double inequality for the unknown pa-

rameter 0, we get

0 0
P <0< =1—
{Fa/Q(n ILm—1) " = Fi_gpn—-1m-— 1)} @

Therefore,

6 0
Fopn—1,m—1)" Fi_4p(n—1,m — 1)]

— S?X/S%/ S%(/S%/ (5 7)
Fa/Q(n_17m_1)7F17a/2(n_17m_1) .

is a (1 — @)100% confidence interval for § = 0% /0%
The critical values Fi_,j5(n—1,m—1) and F, j5(n—1,m—1) come from
F-distribution with (n — 1) and (m — 1) degrees of freedom. However,

our Table A7 has only small values of a. What can we do about
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Fi_o/2(n—1,m — 1), a critical value with a large area on the right?

We can easily compute F_,js(n—1,m—1) by making use of statement
(6).

+ f(z) = density of F(v1,vs)-distribution

l—a .
o/2 e T
Fl—a/?(l/lvl@) Fa/z(l/l,l/z)
=1/F,/2(v2,v1) =1/Fi_q2(v2,11)

FIGURE 15: Critical values of the F-distribution and their reciprocal property.

Let F (v1,1») have F-distribution with v, and v» degrees of freedom,
then its reciprocal F (v9,11) = 1/F (11,15) has vy and 1 degrees of

freedom. According to (6),

1
=P{F < Fi_q (v, =P F(v,v) >
0= P{Fn.0m) < Froa o)) = PP Gnm) > )
We see from here that 1/Fy_, (v1,19) is actually the a-critical value
from F (v9,14) distribution because it cuts area « on the right; see
Figure 15. We conclude that

Reciprocal property of F-distribution

The critical values of F (v1,14) and F (1o, v1) distributions are re-

lated as follows,
1

Fo o) (5.8)

Fi_o(v,1n) =
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We can now obtain the critical values from Table A7 and formula (8),

plug them into (7), and the confidence interval is ready.

Confidence interval for the ratio of variances

5?)( snga/Q(m —1,n—1) (5.9)
S%Fa/g(n—l,m—l)’ 3 '

Example 5.5 (Efficient upgrade, continued.) Refer to Example 9.435.
After the upgrade, the instantaneous speed of data transfer, measured at
16 random instants, yields a standard deviation of 14 Mbps . Records
show that the standard deviation was 22 Mbps before the upgrade, based
on 27 measurements at random times. We are asked to construct a
90% confidence interval for the relative change in the standard devia-

tion (assume Normal distribution of the speed).

Solution. From the data, sy = 14,sy = 22,n = 16, and m =
27. For a 90% confidence interval, use o = 0.10,a/2 = 0.05. Find
Fo05(15,26) ~ 2.07 and Fyp5(26,15) ~ 2.27 from Table A7. Or, al-
ternatively, use functions qf (0.95,15,26), ¢f (0.95,26,15) in R or finv
(0.95,15,26), finv (0.95,26,15) in MATLAB to get the exact values,
2.0716 and 2.2722. Then, the 90% confidence interval for the ratio of

. o 2 2 .
variances 0 = 0% /oy is

142 14%2.2.27
222.207 222

= [0.20, 0.92]

For the ratio of standard deviations ox /oy = V0, a 90% confidence
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interval is obtained by simply taking square roots,
[v0.20,0.92] = [0.44,0.96].

Thus, we can assert with a 90% confidence that the new standard devi-
ation is between 44% and 96% of the old standard deviation. With this
confidence level, the relative reduction in the standard deviation of the
data transfer rate (and therefore, the relative increase of stability) is

between 4% and 56% because this relative reduction is (oy — ox) Joy =

1—+/0.

Example 5.6 (Efficient upgrade, continued again.) Refer again to
Examples 2 and 5. Can we infer that the channel became twice as sta-
ble as it was, if increase of stability is measured by the proportional

reduction of standard deviation?

Solution. The 90% confidence interval obtained in Example 9.46
contains 0.5. Therefore, at the 10% level of significance, there is no
evidence against Hy : ox /oy = 0.5, which is a two-fold reduction of
standard deviation (recall Section 9.4.9 about the duality between con-
fidence intervals and tests). This is all we can state - there is no
evtdence against the claim of a two-fold increase of stability. There is

no “proof” that it actually happened.

Testing hypotheses about the ratio of variances or standard deviations

is in the next section.
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5.4 F-tests comparing two variances

In this section, we test the null hypothesis about a ratio of variances
o
Hy: =X =6, (5.10)

against a one-sided or a two-sided alternative. Often we only need to
know if two variances are equal, then we choose 6y = 1. F-distribution
is used to compare variances, so this test is called the F-test.

The test statistic for (10) is

82
F= —QX/QQ
S
Y
Null Hypothesis Hy : 2 = 6, Test statistic Fyn, = /0y
Y Y
Alternati
erma 1x./e Rejection region Use F(n —1,m — 1) distribution
Hypothesis
%% > 4, Fups > Foln—1m —1) P{F>Fy}
Y
(;TX<00 Fobs SFa(n_lam_l) P{FSFobs}
Y
2 Fops > Fa -1, —1 .
gy | Lo 2 Tepln LN (PUF > B} PP < P })
v Fops <1/F,p5(m —1,n—1)

TABLE 6: Summary of F-tests for the ratio of population variances.

which under the null hypothesis equals

o A%
= 9 /2
sy /0y

If X and Y are samples from Normal distributions, this F-statistic

has F-distribution with (n — 1) and (m — 1) degrees of freedom.
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Just like x2, F-statistic is also non-negative, with a non-symmetric
right-skewed distribution. Level « tests and P-values are then devel-

oped similarly to x2, see Table 9.6.

Example 5.7 (Which Method to USE? Continued.) In Example 4,
n=20,X =77,s% = 220;m = 30,Y = 70, and s} = 155. To compare
the population means by a suitable method, we have to test whether the

two population variances are equal or not.

Solution. Test Hy : 0% = 0% vs Hy : 0% # ob with the test

statistic

82

Fpps = =5 = 1.42
Sy
For testing equality of variances, we let the tested ratio 0y = 1. This is

a two-sided test, so the P -value s
P =2min(P{F > 142}, P{F < 1.42})=...7

How to compute these probabilities for the F-distribution withn—1 = 19
and m — 1 = 29 degrees of freedom? R and MATLAB, as always,
can give us the exvact answer. Typing 1-pf (1.42,19,29) in R or 1 —
fedf(1.42,19,29) in MATLAB, we obtain P{F > 142} = 0.1926 .
Then,

P = 2min(0.1926, 1 — 0.1926) = 0.3852

Table A7 can also be used, for an approrimate but a completely satis-
factory solution. This table does not have exactly 19 and 29 degrees of

freedom and does not have a value F, = 1.42. However, looking at 15
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and 20 d.f. for the numerator and 25 and 30 d.f. for the denominator,
we see that 1.42 is always between Fyos and Fy1. This will do it for
us.

It implies that P{F > .42} € (0.1,0.25), P{F < 1.42} € (0.75,0.9),

and therefore, the P -value is
P =2P{F > 142} € (0.2,0.5)

This is a high P-value showing no evidence of different variances. It
should be ok to use the exact two-sample T-test with a pooled variance
(according to which there is a mild evidence at a 4% level that the first
operating system is better, t = 1.80, P = 0.0388 ).

Example 5.8 (Are all the Conditions MET?.) In Ezample 3, we
are asked to compare volatilities of two mutual funds and decide if
one of them is more risky than the other. So, this is a one-sided test
of

Hy:o0x =oy US Hy:ox > o0y

The data collected over the period of 30 days show a 10% higher volatil-
ity of the first mutual fund, i.e., sx/sy = 1.1. So, this is a standard F-
test, right? A careless statistician would immediately proceed to the test
statistic Fops = s%/s% = 1.21 and the P-value P = P{F > F,; } >
0.25 from Table A7 withn—1=29 and m—1=29 d.f., and jump to a
conclusion that there is no evidence that the first mutual fund carries

a higher risk.

Indeed, why not? Well, every statistical procedure has its assump-
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tions, conditions under which our conclusions are valid. A careful

statistician always checks the assumptions before reporting any results.

If we conduct an F-test and refer to the F-distribution, what con-
ditions are required? We find the answer in (5). Apparently, for the
F-statistic to have F-distribution under Hy, each of our two samples
has to consist of independent and identically distributed Normal ran-
dom wvariables, and the two samples have to be independent of each

other.

Are these assumptions plausible, at the very least?

1. Normal distribution - may be. Returns on investments are typically

not Normal but log-returns are.

2. Independent and identically distributed data within each sample -
unlikely. Typically, there are economic trends, ups and downs, and

returns on two days in a row should be dependent.

3. Independence between the two samples - it depends. If our mu-
tual funds contain stocks from the same industry, their returns are

surely dependent.

Actually, conditions 1-8 can be tested statistically, and for this we need

to have the entire samples of data instead of the summary statistics.

The F-test is quite robust. It means that a mild departure from the
assumptions 1-3 will not affect our conclusions severely, and we can
treat our result as approximate. However, if the assumptions are not

met even approximately, for example, the distribution of our data is
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asymmetric and far from Normal, then the P -value computed above is

simply wrong.

Discussion in Example 8 leads us to a very important practical con-

clusion.

Every statistical procedure is valid under certain assumptions.
When they are not satisfied, the obtained results may be wrong and
misleading. Therefore, unless there are reasons to believe that all the

conditions are met, they have to be tested statistically.



Chapter 6

Regression

In this chapter, we study relations among variables. Many variables
observed in real life are related. The type of their relation can often be
expressed in a mathematical form called regression. Establishing and

testing such a relation enables us:

e to understand interactions, causes, and effects among variables;
e to predict unobserved variables based on the observed ones;

e to determine which variables significantly affect the variable of

interest.

6.1 Least squares estimation

Regression models relate a response variable to one or several pre-
dictors. Having observed predictors, we can forecast the response by
computing its conditional expectation, given all the available predic-

tors.

Definition 6.1 Response or dependent variable Y is a variable of

interest that we predict based on one or several predictors.

k)

Predictors or independent variables XV, ..., X are used to pre-

dict the values and behavior of the response variable Y .
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Regression of Y on XU ...  X®) s the conditional expectation,
6 (a0, ) = By | X0 = g0, X0 = 0]

It is a function of zV, ..., 2®) whose form can be estimated from data.

Examples

Consider several situations when we can predict a dependent vari-

able of interest from independent predictors.

Example 6.1 Example 11.1 (World population). According to the In-
ternational Data Base of the U.S. Census Bureau, population of the
world grows according to Table 11.1 and data set PopulationWorld.
How can we use these data to predict the world population in years
2020 and 20307

Figure 1 shows that the population (response) is tightly related to
the year (predictor),

population ~ G (year)

Population increases every year, and its growth is almost linear. If
we estimate the regression function G (the dotted line on Figure 11.1)
relating the response and the predictor and extend its graph to the year
2030, the forecast will be ready. We can simply compute G(2020) and
(G(2030).
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Yoar Population Yoar Population Yoar Population Yoar Population
mln. people mln. people mln. people mln. people
1950 2557 1970 3708 1990 5273 2010 6835
1955 2781 1975 4084 1995 5682 2015 7226
1960 3041 1980 4447 2000 6072 2020 ?
1965 3347 1985 4844 2005 6449 2030 ?

World population, min.

TABLE 1: Population of the world, 1950-2030.
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FIGURE 1: World population in 1950-2019 and its regression forecast until 2030.

A straight line that fits the observed data for years 1950-2015 predicts
the population of 7.54 billion in 2020, 7.92 billion in 2025 , and 8.29
billion in 2050. It also shows that between 2025 and 2030, around the
year 2026, the world population reaches the historical mark of 8 billion.

How accurate is the forecast obtained in this example? The observed

population during 1950-2019 appears to grow rather closely to the

estimated regression line in Figure 1. It is reasonable to hope that it

will continue to do so through 2030.

The situation is different in the next example.

Example 6.2 (House Prices.) Seventy house sale prices in a certain



6.1 Least squares estimation 102

county are depicted in Figure 2 along with the house area.

First, we see a clear relation between these two variables, and in gen-
eral, bigger houses are more expensive. However, the trend no longer
seems linear.

Second, there is a large amount of variability around this trend. In-
deed, area is not the only factor determining the house price. Houses

with the same area may still be priced differently.

Then, how can we estimate the price of a 3200 -square-foot house?
We can estimate the general trend (the dotted line in Figure 11.2)
and plug 3200 into the resulting formula, but due to obviously high

variability, our estimation will not be as accurate as in FExample 1.

To improve our estimation in the last example, we may take other
factors into account: the number of bedrooms and bathrooms, the

backyard area, the average income of the
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FIGURE 2: House sale prices and their footage.
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neighborhood, etc. If all the added variables are relevant for pricing a
house, our model will have a closer fit and will provide more accurate

predictions.

6.1.1 Method of least squares

Our immediate goal is to estimate the regression function G that
connects response variable Y with predictors X, ..., X®  First we
focus on univariate regression predicting response Y based on one pre-
dictor X. The method will be extended to k predictors later.

In univariate regression, we observe pairs (z1,%1) ;- - ., (Tn, Yn), shown
in Figure 3a.
For accurate forecasting, we are looking for the function G () that
passes as close as possible to the observed data points. This is achieved
by minimizing distances between observed data points y1,...,y, and

the corresponding points on the fitted regression line,
/y\l - G('Tl)w"):/y\n = G(xn)

(see Figure 3b). Method of least squares minimizes the sum of squared

distances.

Definition 6.2
Restiduals ¢; = y; — 1y; are differences between observed responses y;
and their fitted values §; = G (z;)

Method of least squares finds a regression function @(aj) that min-
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FIGURE 3: Least squares estimation of the regression line.
imizes the sum of squared residuals
n n
2 _ ~\2
Yo => (-7 (6.1)
1=1 1=1

~

Function G is usually sought in a suitable form: linear, quadratic,

logarithmic, etc. The simplest form is linear.

6.2 Linear regression

Linear regression model assumes that the conditional expectation

G)=E{Y | X =2} =5+ iz

is a linear function of z. As any linear function, it has an intercept [

and a slope (.

The intercept



6.2 Linear regression 105

equals the value of the regression function for x = 0. Sometimes it has
no physical meaning. For example, nobody will try to predict the value
of a computer with 0 random access memory (RAM), and nobody will
consider the Federal reserve rate in year 0 . In other cases, intercept is
quite important. For example, according to the Ohm’s Law (V' = RI)
the voltage across an ideal conductor is proportional to the current. A
non-zero intercept ( V' =V + RI ) would show that the circuit is not

ideal, and there is an external loss of voltage.

The slope
pr=G(x+1)—G(x)

is the predicted change in the response variable when predictor changes
by 1. This is a very important parameter that shows how fast we can
change the expected response by varying the predictor. For example,
customer satisfaction will increase by f1(Az) when the quality of pro-
duced computers increases by (Az).

A zero slope means absence of a linear relationship between X and Y.

In this case, Y is expected to stay constant when X changes.

6.2.1 Estimation in linear regression

Let us estimate the slope and intercept by method of least squares.

Following (1), we minimize the sum of squared residuals

n n

Q=2 -7r =Y (5-Gw) =3 (i fo— i)
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We can do it by taking partial derivatives of (), equating them to 0 ,
and solving the resulting equations for £y and f;.

The partial derivatives are

9 ~2) (i — Bo — Bizy)

o i=1
a n
8_;21 = —2; (vi = Bo — Przi) @i

Equating them to 0 , we obtain so-called normal equations,

>y (i — Bo— Przi) = 0
> i (yi — Bo — Prxy) =0

From the first normal equation,

>y By
N n

5o =y— B (6.2)

Substituting this into the second normal equation, we get

;xl (yi — Bo — Brxi) = ;fﬁz ((yi —9) — b1 (z; — 7)) (6.3)
= Sxy - ﬁlsxx =0

where
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and

are sums of squares and cross-products. Notice that it is all right
to subtract T from x; in the right-hand sides of (4) and (5) because
> (x;—Z)=0and ) (y; — y) = 0. Finally, we obtain the least squares
estimates of intercept 5y and slope 1 from (2) and (3).

Regression estimates

bO - B\O =y — blja bl - B\l = Sxy/sxma (66)
where . .
i=1 =1

Example 6.3 (World population.) In Example 1, x; is the year, and
y; 18 the world population during that year. To estimate the regression

line wn Figure 1, we compute

T =1984; §=4843
Spr = (1950 — 7)% 4+ ... 4+ (2019 — &)? = 27370
Syy = (1950 — 7)(2558 — ) + ... + (2010 — 7)(6864 — §) = 2053529
Then
b1 = Syy/See = T5
by = — b1Z = —144013
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6.3 Regression and correlation

The estimated regression line s

G(z) = by + byz = —144013 + 75z.

We conclude that the world population grows at the average rate of 75

million every year. We can use the obtained equation to predict the
future growth of the world population. Regression predictions for years

2020 and 2030 are
G
G

2020) = by + 2020b; = 7544 million people
(2030) = by + 2030b; = 8295 million people

6.3 Regression and correlation
Recall, the covariance

Cov(X,Y) = E{(X — EX)(Y —EY)}
— E(XY) — E(X)E(Y)

and correlation coefficient
~ Cov(X)Y)
P = (Std X)(StdY)
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measure the direction and strength of a linear relationship between
variables X and Y.

Properties
Var(aX + bY + ¢) = a? Var(X) + b? Var(Y) + 2ab Cov(X,Y)
Cov(aX 4+ bY,cZ + dW)

=a ¢ Cov(X, Z) + ad Cov(X, W) + bec Cov(Y, Z) + bd Cov(Y, W)
Cov(X,Y) = Cov(Y, X)
pX,Y) =pY,X), -1<p<1

Example 6.4 Given

Px(x) | zPx(x) | v — EX | (v — EX)?*Px(x)
0/ 0.5 0 0.5 0.125
1| 0.5 0.5 0.5 0.125
px =0.5 o% =0.25
and

y| Pr(y) | yPr(y) | v* | ¥’ Pr(y)

0] 04 0 0 0

1] 0.3 03 |1 0.3

21 015 | 03 |4 0.6

3] 015 | 045 |9 1.35

py = 1.05 E (Y?) =2.25
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Result: Var(X) = 0.25, Var(Y) = 2.25 — 1.05? = 1.1475,Std(X) =
V0.25 = 0.5, and Std(Y) = v/1.1475 = 1.0712. Also,

=373 ayP(z,y) = (1)(1)(0.1)+(1)(2)(0.1)+(1)(3)(0.1) = 0.6

(the other five terms in this sum are 0 ). Therefore,
Cov(X,Y) = E(XY) — E(X)E(Y) = 0.6 — (0.5)(1.05) = 0.075

and
Cov(X,Y) B 0.075

T (StdX)(StdY)  (0.5)(1.0712)

Thus, the numbers of errors in two modules are positively and not very

= 0.1400

strongly correlated.

From observed data, we estimate Cov(X,Y’) and p by the sample

> it (2 —Z) (yi — v)

n—1

covariance

Siry —

(it is unbiased for the population covariance) and the sample correla-

tion coefficient
Sy

SuSy

where

> (i —2)° x; — T)°

n—1

S (i — )

and s, = ]
n_

are sample standard deviations of X and Y. Comparing (3) and (7),

we see that the estimated slope b; and the sample regression coefficient
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r are proportional to each other. Now we have two new formulas for

the regression slope.

6.3.1 Estimated regression slope

Sry Sy Sy
S 5% Sy

Like the correlation coefficient, regression slope is positive for positively
correlated X and Y and negative for negatively correlated X and Y.
The difference is that r is dimensionless whereas the slope is measured
in units of Y per units of X. Thus, its value by itself does not indicate
whether the dependence is weak or strong. It depends on the units,
the scale of X and Y. We test significance of the regression slope in

Section 2.
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Table A3. Poisson distribution

F(:r):P{XS:c}zZeT
k=0

T

—)\Ak

A
x
01 02 03 04 05 06 07 08 09 1.0 1.1 1.2 1.3 14 15
0| .905 .819 .741 .670 .607 .549 .497 .449 .407 .368 333 .301 .273 .247 .223
1].995 .982 .963 .938 .910 .878 .844 .809 .772 .736 699 .663 .627 .592 .558
21 1.00 .999 .996 .992 .986 977 .966 .953 .937 .920 .900 .879 .857 .833 .809
3] 1.00 1.00 1.00 .999 .998 997 994 .991 987 .981 974 .966 .957 .946 .934
41 1.00 1.00 1.00 1.00 1.00 1.00 .999 .999 .998 .996 995 .992 989 .986 .981
51 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 999 .998 .998 .997 .996
611,00 1,00 1.00 1,00 1.00 1.00 1,00 1,00 1,00 1,00 1.00 1,00 1.00 999 ,099
71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 A
1.6 1.7 18 19 2.0 21 22 23 24 25 26 2.7 28 29 3.0
0 .202 .183 .165 .150 .135 .122 .111 .100 .091 .082 .074 .067 .061 .055 .050
11].525 .493 .463 .434 .406 .380 .355 .331 .308 .287 267 .249 .231 .215 .199
2| .783 .757 .731 .704 .677 .650 .623 .596 .570 .544 .518 .494 .469 .446 .423
3(.921 .907 .891 .875 .857 .839 .819 .799 .779 .758 736 .714 .692 .670 .647
4| .976 .970 .964 .956 .947 .938 .928 .916 .904 .891 877 .863 .848 .832 .815
51.994 .992 990 .987 .983 .980 .975 .970 .964 .958 951 .943 .935 .926 .916
6| .999 .998 .997 .997 .995 994 993 .991 .988 .986 983 .979 976 .971 .966
71 1.00 1.00 .999 .999 .999 .999 .998 .997 .997 .996 995 .993 .992 .990 .988
8| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .999 .999 999 .998 .998 .997 .996
91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .999 .999 .999
10 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 A
3.5 40 45 5.0 5.5 60 65 7.0 75 8.0 85 9.0 9.5 10.0 10.5
0| .030 .018 .011 .007 .004 .002 .002 .001 .001 .000 .000 .000 .000 .000 .000
1|.136 .092 .061 .040 .027 .017 .011 .007 .005 .003 .002 .001 .001 .000 .000
2].321 .238 .174 .125 .088 .062 .043 .030 .020 .014 .009 .006 .004 .003 .002
3| .537 .433 .342 .265 .202 151 112 .082 .059 .042 .030 .021 .015 .010 .007
4(.725 .629 .532 .440 .358 .285 .224 .173 .132 .100 .074 .055 .040 .029 .021
5| .858 .785 .703 .616 .529 446 .369 .301 .241 .191 .150 .116 .089 .067 .050
6| .935 .889 .831 .762 .686 .606 .527 .450 .378 .313 .256 .207 .165 .130 .102
71.973 .949 .913 .867 .809 744 673 .599 .525 .453 .386 .324 .269 .220 .179
8| .990 .979 .960 .932 .894 847 792 .729 .662 .593 .523 .456 .392 .333 .279
91 .997 .992 .983 .968 .946 916 .877 .830 .776 .717 .653 .587 .522 .458 .397
10 | .999 .997 .993 .986 .975 .957 .933 .901 .862 .816 763 .706 .645 .583 .521
11| 1.00 .999 .998 .995 .989 980 .966 .947 .921 .888 849 .803 .752 .697 .639
12 | 1.00 1.00 .999 .998 .996 .991 .984 .973 .957 .936 909 .876 .836 .792 .742
13 | 1.00 1.00 1.00 .999 .998 996 .993 .987 .978 .966 949 .926 .898 .864 .825
14 | 1.00 1.00 1.00 1.00 .999 999 .997 .994 .990 .983 973 .959 .940 917 .888
15 | 1.00 1.00 1.00 1.00 1.00 999 999 .998 .995 .992 986 .978 .967 .951 .932
16 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .996 .993 .989 .982 .973 .960
17 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 997 995 .991 .986 .978
18 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 999 .998 .996 .993 .988
19 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 999 999 998 .097 .994
20 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .997




Appendiz

Table A3, continued. Poisson distribution

A
z
11 12 13 14 15 16 17 18 19 20 22 24 26 28 30
0] .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1] .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
2 ].001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
3 1.005 .002 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
4| .015 .008 .004 .002 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
5| .038 .020 .011 .006 .003 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000
6 | .079 .046 .026 .014 .008 .004 .002 .001 .001 .000 .000 .000 .000 .000 .000
7 .143 .090 .054 .032 .018 .010 .005 .003 .002 .001 .000 .000 .000 .000 .000
8 | .232 .155 .100 .062 .037 .022 .013 .007 .004 .002 .001 .000 .000 .000 .000
9 |.341 .242 .166 .109 .070 .043 .026 .015 .009 .005 .002 .000 .000 .000 .000
10 | .460 .347 .252 .176 .118 077 .049 .030 .018 .011 .004 .001 .000 .000 .000
11 | .579 .462 .353 .260 .185 127 .085 .055 .035 .021 .008 .003 .001 .000 .000
12 | .689 .576 .463 .358 .268 .193 .135 .092 .061 .039 .015 .005 .002 .001 .000
13 | .781 .682 .573 .464 .363 275 .201 .143 .098 .066 .028 .011 .004 .001 .000
14 | .854 .772 .675 .570 .466 368 .281 .208 .150 .105 .048 .020 .008 .003 .001
15 1.907 .844 .764 .669 .568 467 371 .287 .215 .157 077 .034 .014 .005 .002
16 | .944 .899 .835 .756 .664 .566 .468 .375 .292 .221 117 .056 .025 .010 .004
17 | .968 .937 .890 .827 .749 .659 .564 .469 .378 .297 .169 .087 .041 .018 .007
18 | .982 .963 .930 .883 .819 .742 655 .562 .469 .381 .232 .128 .065 .030 .013
19 | .991 .979 .957 .923 .875 .812 .736 .651 .561 .470 .306 .180 .097 .048 .022
20 | .995 .988 .975 .952 917 .868 .805 .731 .647 .559 387 .243 139 .073 .035
21 [ .998 .994 986 .971 .947 911 .861 .799 .725 .644 472 314 .190 .106 .054
22 | .999 .997 .992 .983 .967 .942 .905 .855 .T93 .721 .556 .392 .252 .148 .081
23 | 1.00 .999 .996 .991 .981 963 .937 .899 .849 .787 637 .473 321 .200 .115
24 | 1.00 .999 .998 .995 .989 978 .959 .932 .893 .843 .712 .5654 .396 .260 .157
25| 1.00 1.00 .999 .997 .994 987 .975 .955 .927 .888 TTT 632 .474 .327 .208
26 | 1.00 1.00 1.00 .999 .997 993 .985 .972 .951 .922 .832 .704 .552 .400 .267
27| 1.00 1.00 1.00 .999 .998 996 .991 .983 .969 .948 .8T7 768 .627 .475 .333
28 | 1.00 1.00 1.00 1.00 .999 998 .995 .990 .980 .966 913 .823 .697 .550 .403
29 | 1.00 1.00 1.00 1.00 1.00 999 .997 .994 .988 .978 .940 .868 .759 .623 .476
30 | 1.00 1.00 1.00 1.00 1.00 999 .999 .997 .993 .987 1959 .904 .813 .690 .548
31 | 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .996 .992 973 .32 .859 .752 .619
32 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .995 .983 .953 .896 .805 .685
33| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997 989 .969 .925 .850 .744
34 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .999 .994 979 .947 .888 .797
35| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 996 .987 .964 .918 .843
36 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 998 .992 .976 .941 .880
37| 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 999 .995 .984 .959 .911
38 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 999 .997 .990 .972 .935
39 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994 .981 .954
40 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .996 .988 .968
41 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .992 .978
42 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .995 .985
43 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997 .990
44 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994
45 [ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .996
46 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998
47 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999
48 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999
49 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999
50 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A4. Standard Normal distribution \

1 ) —z2/2 / ' \
(2)=P{Z<z}=—— e dx _d : s,
V2 J—oo ’
z 0

z 0.09 -0.08 -0.07 -0.06 -0.05 0.04 -0.03 -0.02 -0.01 -0.00
-(3.94) | .0000 .0000  .0000  .0000  .0000 0000 .0000  .0000  .0000  .0000
3.8 0001 .0001  .0001  .0001  .0001 .0001  .0001  .0001 .0001  .0001
g 0001 .0001 .0001  .0001  .0001 .0001  .0001 .0001 .0001  .0001
-3.6 .0001  .0001 .0001 .0001  .0001 .0001  .0001 .0001 .0002  .0002
3.5 .0002  .0002  .0002  .0002  .0002 .0002  .0002 .0002  .0002  .0002
3.4 0002  .0003  .0003  .0003  .0003 0003  .0003 .0003 .0003  .0003
3.3 0003 .0004  .0004  .0004  .0004 0004  .0004 .0005 .0005  .0005
3.2 .0005 .0005 .0005  .0006  .0006 0006  .0006  .0006  .0007  .0007
3.1 0007  .0007  .0008  .0008  .0008 0008  .0009 .0009 .0009  .0010
-3.0 .0010 .0010 .0011 .0011  .0011 0012 0012 .0013  .0013  .0013
2.9 0014 .0014  .0015  .0015  .0016 0016  .0017  .0018 .0018  .0019
2.8 0019 .0020 .0021  .0021  .0022 0023 .0023  .0024 .0025  .0026
2.7 .0026 .0027 .0028 .0029 .0030 .0031 .0032 .0033 .0034 .0035
2.6 0036  .0037 .0038  .0039  .0040 .0041  .0043  .0044  .0045  .0047
2.5 0048  .0049  .0051  .0052  .0054 .0055  .0057 .0059  .0060  .0062
2.4 0064  .0066  .0068  .0069  .0071 0073 .0075  .0078  .0080  .0082
2.3 0084  .0087  .0089  .0091  .0094 .0096  .0099  .0102  .0104  .0107
22 0110 .0113  .0116  .0119  .0122 0125 0129 .0132  .0136  .0139
2.1 0143  .0146 .0150 .0154  .0158 0162  .0166 .0170 .0174  .0179
-2.0 0183  .0188  .0192  .0197  .0202 0207 0212 0217  .0222  .0228
1.9 0233  .0239  .0244  .0250  .0256 0262 0268  .0274  .0281  .0287
1.8 0294 .0301 .0307 .0314  .0322 0329  .0336 .0344  .0351  .0359
1.7 0367 .0375 .0384  .0392  .0401 0400  .0418  .0427  .0436  .0446
1.6 0455  .0465  .0475  .0485  .0495 0505  .0516 .0526  .0537  .0548
1.5 0559  .0571 .0582  .0594  .0606 L0618  .0630 .0643 .0655  .0668
14 0681  .0604 0708  .0721  .0735 0749 0764 0778  .0793  .0808
1.3 0823 0838  .0853  .0R69  .0885 0901 L0918  .0934  .0951  .0968
-1.2 0085  .1003  .1020  .1038  .1056 1075 .1093  .1112  .1131  .1151
11 1170 .1190  .1210 .1230  .1251 271 1292 (1314 (1335 1357
-1.0 1379 .1401  .1423  .1446  .1469 1492 1515 (1539 .1562  .1587
0.9 1611 .1635  .1660  .1685 1711 1736 1762 .1788  .1814  .1841
0.8 867 1894 .1922  .1949  .1977 2005  .2033  .2061  .2090 .2119
0.7 2148 .2177  .2206  .2236  .2266 2296 .2327  .2358  .2389  .2420
-0.6 2451 2483 2514 2546  .2578 2611 .2643  .2676  .2709  .2743
0.5 2776  .2810  .2843  .2877  .2912 22946  .2081  .3015  .3050  .3085
-0.4 3121 .3156  .3192  .3228  .3264 3300 .3336  .3372  .3409  .3446
0.3 3483 .3520  .3557  .3504  .3632 3660  .3707  .3745  .3783  .3821
0.2 3850  .3807  .3036  .3074  .4013 4052 .4090  .4129  .4168  .4207
0.1 4247 4286  .4325 4364  .4404 4443 4483 4522 4562  .4602
0.0 4641 4681 4721 4761  .4801 4840 4880 4920  .4960  .5000
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Table A4, continued.

ya
pa
Standard Normal distribution \
1 Z 5 \
B(z) = P{Z < 2} = / =24y )
\% 271- —00 < 5
Z

2 0.00  0.01 0.02 0.03  0.04 0.05  0.06 0.07  0.08  0.09
0.0 5000  .5040  .5080  .5120  .5160 5199  .5239  .5279  .5319  .5359
0.1 5398  .5438  .5478  .5517  .5557 5596  .5636  .5675  .5714  .5753
0.2 5793  .5832 5871 5910  .5948 5087  .6026 6064  .6103  .6141
0.3 6179  .6217 6255  .6203  .6331 6368 6406 6443  .6480  .6517
0.4 6554  .6501  .6628  .6664  .6700 6736 6772  .6808  .6844  .6870
0.5 .6915 6950 L6985 7019 7054 TORK 7122 7157 .7190 7224
0.6 7257 7291 7324 7357 7389 7422 7454 7486 .7517  .7549
0.7 76580 7611  .7642 7673  .7704 7734 7764 7794 7823 7852
0.8 7881  .7910  .7939 7967  .7995 8023  .8051 .8078  .8106  .8133
0.9 8159  .8186  .8212  .8238  .8264 8289  .8315  .8340 .8365  .8389
1.0 8413  .8438  .8461  .8485  .8508 8531  .8554  .8577  .8509  .8621
1.1 8643  .8665  .8686  .8708  .8729 8749  .8770  .8790  .8810  .8830
1.2 8849 8869  .8888  .8907  .8925 8944  .8962  .8980  .8997  .9015
1.3 9032 9049 9066  .9082  .9099 9115  .0131  .9147  .9162  .9177
1.4 9192  .9207  .9222  .9236  .9251 9265  .09279  .9202  .9306  .9310
1.5 9332 9345  .9357 9370  .9382 9394 9406  .9418  .9429  .9441
1.6 9452 9463 9474 9484  .9495 9505  .9515  .9525 9535  .9545
1.7 9554 9564 9573  .9582  .9501 9599  .9608 .9616  .9625  .9633
1.8 9641 9649  .9656  .9664 9671 9678  .9686  .9693  .9699  .9706
1.9 9713  .9719  .9726 9732  .9738 9744 9750  .9756  .9761  .9767
2.0 9772 9778  .9783 9788  .0793 9798  .0803  .0808  .9812  .9817
2.1 9821  .9826  .9830 9834  .9838 9842 9846  .9850  .9854  .9857
2.2 9861  .9864  .9868 9871  .9875 9878  .9881  .9884  .O887  .9890
2.3 9893 9896  .0808 9901  .9904 9006  .0000  .9911  .9913  .9916
2.4 9018  .9920  .9922  .9925  .9927 0020  .0931  .0932  .0934  .9936
2.5 9938  .9940  .9941  .9943  .9945 9946  .9948  .9949  .9951  .9952
2.6 9953 9955  .9956  .9957  .9959 9060  .9961  .9962  .0963  .9964
2.7 9965 9966  .0967  .9968  .9969 9970  .9971  .9972  .9973  .9974
2.8 9974 9975  .9976  .9977  .9977 9978  .9979  .9979  .9980  .9981
2.9 9981  .0982  .9982  .9983  .9984 9984  .9985 0985  .0986  .9986
3.0 9987  .9987  .9987  .9988  .9988 9989  .9989  .9989  .9990  .9990
3.1 9990  .9991  .9991 9991  .9992 9992 9992 9992  .9993  .9993
3.2 9993  .9993  .9994  .9994  .9994 9994  .9994  .9995  .9995  .9995
3.3 9995  .9995  .9995 9996  .9996 9996  .9996  .9996  .0996  .9997
3.4 9097  .9997  .0997  .9997  .9997 9997  .0997  .0997  .9997  .9908
3.5 9998  .9998  .9998  .9998  .9998 9998  .9998  .9998  .9998  .9998
3.6 9998 9998  .9999  .9999  .9999 9999  .99990  .9999  .9999  .9999
3.7 9999 9999  .9999 9999  .9999 9099  .0990 9999  .9999  .9999
3.8 9999 9999  .0999 9999  .9999 9099 0090 9999  .0999  .9999
3.9+ | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A6. Chi-Square Distribution / %

Xi? critical values, such that P {X2 > Xg} -« /

«, the right-tail probability

V

(d.t.) | 999 995 .99 975 95 .90 .80 .20 .10 .05 .025 .01 .005 .001
1 0.00 0.00 0.00 0.00 0.00 0.02 0.06 1.64 2.71 3.84 5.02 6.63 7.88 10.8
2 0.00 0.01 0.02 0.05 0.10 0.21 0.45 3.22 4.61 5.99 7.38 9.21 10.6 13.8
3 0.02 0.07 0.11 0.22 0.35 0.58 1.01 464 6.25 7.81 9.35 11.3 12.8 16.3
4 0.09 0.21 0.30 0.48 0.71 1.06 1.65 5.99 7.78 9.49 11.1 13.3 14.9 185
5 0.21 041 055 0.83 1.15 1.61 2.34 7.20 9.24 11.1 128 151 16.7 20.5

0.38 0.68 0.87 1.24 1.64 220 3.07 8.56 10.6 12.6 14.4 16.8 18.5 225

0.86 1.34 1.65 218 2.73 3.49 4.59 1.0 13.4 155 17.5 20.1 220 26.1

1.15 1.73 2.09 2.70 3.33 4.17 5.38 12.2 14.7 16.9 19.0 21.7 23.6 27.9
10 1.48 2.16 2.56 3.25 3.94 4.87 6.18 13.4 16.0 183 205 23.2 252 29.6
11 1.83 2.60 3.056 3.82 4.57 5.58 6.99 146 173 19.7 21.9 24.7 26.8 31.3
12 2.21 3.07 3.57 4.40 5.23 6.30 7.81 15.8 185 21.0 23.3 26.2 283 329
13 2.62 3.57 4.11 5.01 5.89 7.04 8.63 17.0 19.8 224 247 27.7 29.8 345
14 3.04 4.07 4.66 5.63 6.57 7T.79 9.47 18.2 21.1 23.7 26.1 29.1 31.3 36.1
15 3.48 4.60 5.23 6.26 7.26 8.55 10.3 19.3 22.3 25.0 27.5 30.6 32.8 37.7T
16 3.94 5.14 5.81 6.91 7.96 9.31 11.1 20.5 235 26.3 28.8 32.0 34.3 39.3
17 442 570 6.41 7.56 8.67 10.1 12.0 21.6 248 27.6 30.2 334 35.7 408

18 490 6.26 7.01 8.23 9.39 109 129 22.8 26.0 289 31.5 34.8 37.2 423
19 541 6.84 7.63 891 101 11.7 13.7 23.9 27.2 30.1 329 36.2 38.6 43.8
20 592 7.43 826 9.59 109 124 146 25.0 284 31.4 342 37.6 40.0 453

21 6.45 8.03 8.90 10.3 11.6 13.2 154 26.2 29.6 32.7 35.5 389 414 46.8
22 6.98 8.64 9.54 11.0 12.3 14.0 16.3 27.3 30.8 33.9 36.8 40.3 42.8 483

24 | 808 0.8 109 124 13.8 157 181 | 29.6 332 364 394 43.0 456 51.2
25 8.65 10.5 11.5 13.1 14.6 16.5 18.9 30.7 34.4 37.7 40.6 44.3 46.9 52.6

26 9.22 11.2 12.2 13.8 154 17.3 19.8 31.8 356 38.9 41.9 45.6 48.3 54.1
27 9.80 11.8 12.9 14.6 16.2 18.1 20.7 32,9 36.7 40.1 43.2 47.0 49.6 55.5
28 104 12,5 13.6 15.3 16.9 18.9 21.6 34.0 37.9 41.3 44.5 483 51.0 56.9
29 11.0 13.1 143 16.0 17.7 19.8 225 35.1 39.1 42.6 45.7 49.6 52.3 583
30 11.6 13.8 15.0 16.8 18.5 20.6 23.4 36.3 40.3 43.8 47.0 50.9 53.7 59.7

31 12.2 145 15.7 17.5 19.3 21.4 24.3 37.4 41.4 45.0 48.2 52.2 55.0 61.1
32 12.8 15.1 16.4 18.3 20.1 22.3 25.1 38.6 42.6 46.2 49.5 53.5 56.3 62.5
33 13.4 158 17.1 19.0 20.9 23.1 26.0 39.6 43.7 47.4 50.7 54.8 57.6 63.9
34 14.1 16.5 17.8 19.8 21.7 24.0 26.9 40.7 449 48.6 52.0 56.1 59.0 65.2
35 147 17.2 18.5 20.6 22.5 24.8 27.8 41.8 46.1 49.8 53.2 57.3 603 66.6

36 153 179 19.2 21.3 23.3 25.6 28.7 42.9 47.2 51.0 544 58.6 616 68
37 16.0 18.6 20,0 22.1 24.1 26.5 29.6 44.0 48.4 52.2 55.7 59.9 62.9 69.3

39 |17.3 200 21.4 237 25.7 282 314 | 46.2 507 546 581 624 655 72.1
40 17.9 20.7 22.2 24.4 26.5 29.1 32.3 47.3 51.8 55.8 59.3 63.7 66.8 73.4

41 18.6 21.4 229 25.2 27.3 299 33.3 48.4 52.9 56.9 60.6 65.0 68.1 74.7
42 19.2 22.1 23.7 26.0 28.1 30.8 34.2 49.5 54.1 58.1 61.8 66.2 69.3 76.1
43 19.9 229 244 26.8 29.0 31.6 35.1 50.5 55.2 b59.3 63.0 67.5 70.6 7T7.4
44 20.6 23.6 25.1 27.6 29.8 325 36.0 51.6 56.4 60.5 64.2 68.7 71.9 787
45 21.3 243 259 284 306 334 369 52.7 57.5 61.7 654 T70.0 73.2 &0.1

46 21.9 25.0 26.7 29.2 31.4 342 37.8 53.8 58.6 62.8 66.6 T1.2 744 814
48 23.3 26.5 28.2 30.8 33.1 359 39.6 56.0 60.9 65.2 69.0 73.7 77.0 84.0

49 24.0 27.2 289 31.6 339 36.8 40.5 57.1 62.0 66.3 70.2 749 782 854
50 247 28.0 29.7 324 348 37.7 414 58.2 63.2 67.5 Tl4 76.2 79.5 86.7




Table A7. F-distribution

Appendiz

I 1— o @
F,; critical values such that P {F > F,} = « |
! ——
0 F,
V2, 11, numerator degrees of freedom
denom. a
d.f. | 2 3 4 5 6 i 8 9 i0
025 | 58 7.5 82 858  8.82 898 9.1 919 926  9.32
01 | 399 495 536 558  57.2 582 589 594  59.9 602
1 0.05 | 161 199 216 225 230 234 237 239 241 242
0.025 | 648 799 864 900 922 937 948 957 963 969
0.01 | 4052 4999 5403 5625 5764 5859 5928 5981 6022 6056
0.005 | 16211 19999 21615 22500 23056 23437 23715 23925 24091 24224
0.001 | 405284 499999 540379 562500 576405 585937 592873 598144 602284 605621
0.25 | 2.57 3 315 3.23 3.28 331  3.34 335 337  3.38
0.1 | 853 9 9.16 9.24  9.29 9.33 9.35 9.37 938 939
2 0.05 | 185 19 192 192  19.3 19.3 194 194 194 194
0.025| 385 39 392 392 393 39.3 394 394 394 394
001 | 985 99  99.2 99.2 993 99.3 994 994 994 994
0.005| 199 199 199 199 199 199 199 199 199 199
0.001 | 999 999 999 999 999 999 999 999 999 999
025 | 2.02 228 236 239 241 2.42 243 244 244 244
0.1 | 554 546 539 534 531 5.28 5.27 525 524  5.23
3 005 | 101 955 9.28 9.12  9.01 894 889 885 88l 879
0.025 | 17.4 16 154 151 149 147 146 145 145 144
0.01 | 341 308 295 287 282 27.9  27.7 275  27.3 272
0.005 | 55.6 49.8 47.5  46.2  45.4 44.8 444 441 439 437
0.001 | 167 149 141 137 135 133 132 131 130 129
0.25 | 1.81 2 2.05  2.06  2.07 2.08  2.08 2.08 2.08 2.8
0.1 | 454 432 419 411  4.05 401 398 395 394 3.92
4 0.05 | 771  6.94 659 639  6.26 6.16  6.09  6.04 6 5.96
0.025| 122 106 998 9.6  9.36 9.2  9.07 898 89 884
0.01 | 21.2 18 167 16 15.5 15.2 15 148 147 145
0.005 | 31.3 263 243 232 225 22 21.6 214 211 21
0.001 | 741 612 562 534  5L.7 50.5  49.7 49 485 481
025 | 1.60 185 1.88 1.89  1.89 1.89 1.89 1.89 1.89 189
0.1 | 406 378 3.62 352 345 34 337 334 332 33
5 0.05 | 661 579 541 519  5.05 495  4.88  4.82 477  4.74
0.025| 10 843 7.76 739 T.15 6.98 6.85 6.76 6.68  6.62
0.01 | 163 133 121 114 11 107 105 103 102 101
0.005 | 22.8 183 165 156 149 145 142 14 138 136
0.001 | 472 371 332 311 29.8 288 282 276 272 269
025 | 1.62 1.76 1.78 179  1.79 1.78 178 178 177 1.7
0.1 | 378 346 320 318 3.1 3.05 3.01 298 296 2.94
6 0.05 | 599 514 476 453  4.39 428 421 415 41  4.06
0.025| 881 7.26 6.6  6.23  5.99 582 57 56 552 546
0.01 | 137 109 978 915 875 847 826 81  T7.98 7.7
0.005 | 18.6 145 129 12 11.5 111 108 106 104 103
0.001 | 355 27 237 219  20.8 20 195 19 187 184
025 | 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 163  1.63
01 | 346 311 292 281 273 2.67 262 259 256 254
8 0.05 | 532 446 407 3.84  3.69 358 3.5 344 339 335
0.025 | 7.57 6.06 542 505  4.82 465  4.53  4.43 436 4.3
001 | 11.3 865 7.59 7.0l  6.63 6.37 6.8 6.03 591 581
0.005 | 14.7 17 9.6 8.8l 83 795 769 7.5 734 721
0.001 [ 254 185 158 144  13.5 129 124 12 118 115
025 | 149 16 1.6 159 159 1.58 157 156 156 155
01 | 3290 292 273 261 2.52 2.46 241 238 235  2.32
10 0.05 | 496 41 371 348  3.33 3.22 314 3.07 3.02 298
0.025 | 6.94 546  4.83 447 424 407 395 3.85 378  3.72
0.01 | 10 7.56  6.55  5.99  5.64 539 5.2 506 4.94 485
0.005 | 12.8 943 808 7.34  6.87 654 63 612 597 585
0.001 | 21 149 126 113 105 9.93 952 92 896 875




Appendiz

Table A7, continued. F-distribution

va, 1, numerator degrees of freedom
denom. a
d.f 15 20 25 30 40 50 100 200 500 o0
0.25 | 9.49 958 9.83 967 971 9.74 9.8 9.82 9.84  9.85
0.1 61.2  61.7 62.1  62.3  62.5 62.7 63 63.2  63.3  63.3
1 0.05 | 246 248 249 250 251 252 253 254 254 254
0.025 | 985 993 998 1001 1006 1008 1013 1016 1017 1018
0.01 | 6157 6209 6240 6261 6287 6303 6334 6350 6360 6366
0.005 | 24630 24836 24960 25044 25148 25211 25337 25401 25439 25464
0.001 | 615764 620008 624017 626099 628712 630285 633444 635030 635983 636619
025 | 341 343 344 344 345 3.46  3.47 347 347  3.48
0.1 942 044 045 946  0.47 9.47 048 949 949  0.49
2 0.05 | 194 194 195 195  19.5 19.5 195 195 195  19.5
0.025 | 39.4 394 395 395 395 395 395 395 395 395
001 | 994 994 995 995 095 995 995 995 995 995
0.005 | 199 199 199 199 199 199 199 199 199 199
0.001 | 999 999 999 999 999 999 999 999 999 999
025 | 246 246 246 247 247 247 247 247 247 247
0.1 5.2 518 517 517  5.16 515 514 514 514 513
3 0.05 | 8.7 8.66 8.63 8.62  8.59 8.58 855 854 853 853
0.025 14.3 14.2 14.1 14.1 14 14 14 13.9 13.9 13.9
0.01 | 269 267 266 265 264 264 262 262 261 261
0.005 | 431 428 426 425 423 42.2 42 419 419  41.8
0.001 | 127 126 126 125 125 125 124 124 124 123
0.25 | 2.08 208 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08
0.1 | 3.87 3.84 383 3.82 3.8 3.8 3.78 3.77 376  3.76
4 0.05 | 5.86 5.8 577 575  5.72 5.7 5.66 5.65 5.64  5.63
0.025 | 8.66  8.56 8.5 8.46  8.41 8.38 832 829 827 826
0.01 | 14.2 14 13.9  13.8  13.7 13.7 136 13.5 135  13.5
0.005 | 204 202 20 19.9  19.8 19.7 195 194 194 193
0.001 | 46.8 46.1 457 454  45.1 44.9 445 443 441 441
025 | 1.80 1.8 1.8 1.88 188 1.88  1.87 1.87 1.87  1.87
0.1 3.24 3.21 319 317  3.16 3.15 3.13 312  3.11 3.1
5 0.05 | 4.62  4.56  4.52 4.5 4.46 4.44 441 439 437  4.36
0.025 | 6.43  6.33 627 6.23  6.18 6.14 6.08 6.05 6.03  6.02
0.01 | 9.72 955 945 938  9.29 9.24 9.3 9.08 9.04  9.02
0.005 | 131 129 12.8 127 12.5 125 123 122 122 121
0.001 | 259 254 251 249  24.6 244  24.1 24 23.9  23.8
02 | 176 176 175 175 1.75 1.75 174 174 174 174
0.1 287  2.84 281 2.8 2.78 277 2.5 273 273 2.72
6 0.05 | 3.94 3.87 3.83 3.81  3.77 3.75 3.71 3.69 3.68  3.67
0.025 | 527 517 511 507  5.01 4.98 492 48% 486  4.85
0.01 | 7.56 7.4 7.3 7.23 7.4 7.00 699  6.93 6.9 6.88
0.005| 9.81 959 045 936  9.24 9.17 09.03 895 801 888
0.001 | 17.6 17.1 16.9 16.7 16.4 16.3 16 15.9 158  15.7
025 | 1.62  1.61 1.6 1.6 1.59 1.59 1.58 1.58 1.58  1.58
0.1 246  2.42 24  2.38  2.36 235 232 231 2.3 2.29
8 0.05 | 3.22 315 311 3.08 3.04 3.02 297 2.95 294  2.93
0.025 | 4.1 4 3.94 3.80  3.84 3.81  3.74 3.7  3.68  3.67
0.01 | 5552 5.36  5.26 5.2 5.12 5.07 4.96 4.91  4.88  4.86
0.005| 681 661 648 6.4 6.29 6.22 6.09 602 508 5095
0.001 | 108 105 103  10.1  9.92 9.8 9.57 9.45 9.38  9.33
025 | 153 152 152 151 1.51 1.5 1.49 149  1.49  1.48
0.1 | 2.24 2.2 2,17 216  2.13 212  2.00 207 206  2.06
10 0.05 | 285 277  2.73 2.7 2.66 264 259 256 255  2.54
0.025 | 3.52 342 3.35 331  3.26 3.22 315 312 3.09 3.08
0.01 | 456 441 431 425 417 412 4.0l 3.96 393 3.91
0.005 | 547 527 515 507  4.97 4.9 477 ATl 467 4.64
0.001 | 8.13 7.8 7.6 7.47 7.3 719 698 6.87 6.8  6.76




1. Complete the following statements:

1) If x ~ By(n,p) as n — oo, p — 0,np — X then B;(n,p) — - --
2) If X ~ B;j(n,p) as n — o0

3) if X ~ N(50, 10)
at X =71 =—=2="---
r—8
10
2. Suppose that the average household income in some Country is (x = 900)

4)If X ~ N(8,10) normal distribution = then: z =

AU oo e

coins, and the standard deviation is (¢ = 20) coins. Assuming the normal
distribution of income, Compute the proportion of the middle class ”whose

income is between 600 and 1200 coins?
{P(600 < X < 1200)}

3. The regression lines between the random variables X, Y given by equation

y = 35.823 + 0.4764x
x = —3.376 + 1.036y

then r(z,y) =---, (X, Y)=---

4. A firm tested 500 new employees on an aptitude test. the store of each
employee was X. Three years Later, they collected supervisor rating of each
employee’s success on the job. these ratings and denoted by Y. The data
yield the following statistics:

X =100,8, =10,Y =130, S, = 20 and r,, = 0.70

Compute the least squares regression line for predicting Y. What is predict

for employees who received test scores of z = 90 and z = 1257



5. If n=1000,> zy = 30000, > x = 3000, > x? = 14000 and >_ y = 5000.
a) Compute the least square line for that data?
b) If S, = 10 compute the Correlation Coefficient 77
6. Type "F” or ”T”
1- Each statistic has some distribution («-+)
2- Critical region is always on one tail only («-+)
3- The standard deviation of an estimate and standard error
are the same
4- Interval estimate is better than point estimate

5- t-value, z-value lies between —oo and oo

/N /N /N
N—r' N N N

6- z2-value, F-value lies between o and oo

A-EX 35 N(0,1)

7- For any r.v. X the standardized variable

Sz/\V/n

as n — 0o («-+)
8- The variances s> = 1 3" (z — T)? is unbiased estimate of o («++)
9- For t-test if Hy: py = po V.S. Hy := g > o,

if ty > t;, there is no significance between pi, 1o («++)
10- If 7y = 0.9, Byy = 2.04  &byy = —3.2 ()
11- In testing hypothesis if H; : u < pg the critical region lies
on two tailed test («++)

12- For two samples from two population the standard error for
. ) 2

(fl — fz) 1S Z—ll + 2—22

13- If Hy : 0% = 0} we used y?-distribution

14- 1f Hy : py = po we used F-distribution

15- If Hy : 0} = 03 we used t-distribution

/N /N /N /™
e’ N N N

7. Complete the following statements:

1) The regression line Y on X as Y = a + bx if b= 2.79, X = 15.4,

Y = 44.667 then a = - - -

2) For the listing hypothesis Hy : 11 = p2 in small size we used the - - -
3) For F-test the null hypothesis Hy : 03 = o3 if

S? = 148.3, 52 = 24.87 then Fy = - --



4) The standard error for the mean 7 is - - -
5) If the regression deficient X on Y, = 0.131, Sx = 8.147, Sy = 37.57 then
the correlation Coefficient r equal - - -

6) To obtain the confidence interval for proportion p for n < 30, we used ...

8. Let x1,29,--- , 2, be a random Sample of size n from the distribution
X ~N (,u, a2) find the estimate for the two parameters by
a) The moment estimate for y and o?

b) The maximum likelihood estimate for u, o? ?

9. A program consists of two modules, the number of errors X in the first
module and the number of errors Y in the second module have the joint pm f
of X and Y in the following table

y
P (X.Y

0 0.20 ] 0.20 1 0.05 | 0.05
v 0.20 | 0.10 | 0.10 | 0.10

a) Find the marginal distributions of X and Y
b) Find the correlation coefficient between = and Y
c) Is X, Y are independent?

10. The I.Q.’s (intelligence quotients) of 16 students from one area of city
showed X = 107 with S; = 10, while the 1.Q).’s of 14 students from another
area of the City showed that To = 112 with Sy, = 8.

a) Construct the confidence interval for j1 — o wish 95% confidence interval
b) Is there a significant difference between the 1.Q.’s of the two groups at
a = 0.05,a« = 0.01 level of significance?

11. The mean lifetime of a sample of 100 fluorescent light bulbs produced
by a company is computed to be 1570 hours with standard deviation of 120
hours (z = 15, S = 120). If p is the mean lifetime of all the bulbs produced
by the company

i) Test the hypothesis ¢ = 1600 hours against the alternate p # 1600 h, using



a level significance of o = 0.01.
ii) Test the hypothesis = 1600 hours against the alternate p < 1600 h,
using a level significance of a = 0.05.

iii) Estimate the confidence internal for the mean p at 90%.

12. In problem 11 test the hypothesis © = 1600 h against the alternative
1 < 1600 h using a level of significance of a = 0.05& o = 0.01

13. The student government of a large college polled a random sample of
325 male students and found that 221 were in favor of a new grading system
at the same time 120 out of random sample of 200 female students were in
favor of the new system.

a) Construct a 90% confidence interval for the us difference (P, — P;) the
proportion of male and female students who favor the new system?

b) Use o = 0.050, & = 0.01) significant difference in the proportions?

14.

a) If X =14.10,S = 1.67,n = 8, fund 98% Confidence interns for s.

b) If n = 150,0 = 6.2, T = 69.5, find 95% Confidence interval for u ?

15. The overage weight for recruits in the sample T = 160 pounds, s = 10
pounds. Suppose that we want the 95% confidence interval to be equal at
most to 5 pounds (e = 5) what size random sample should you take?

For n = 90 establish a 98% confidence interval for the variance 0% of all weight
the recruits?

16. For n = 40,s = 0.74, test the null hypothesis Hy : ¢ = 0.80 against
H,:0 < 0.80 at a = 0.01 level of Significance?

17.

i) Let T = 16, s = 1.8,n = 25. Establish a 95% confidence interval for p ?
(ii) Assume n = 10,0 = 0,31 02® = 106.6,« = 0.10. Find a 90% confidence
interval for a® ?

(iii) Fund a 95° Confidence interval for o using the data n = 9,5? = 7.62 ?

18. The following random samples are measurements of the head-producing



capacity (in million Calories per tone) of coal from two mines
ni=nge=>5, X; = 8178, Xy = 7788, S; = 271.1 and Sy = 216.8

i) Construct a 95% Confidence interval for the true difference (ps — p1).
ii) Use the (0.05) and (0.01) level of significance to test where the difference
between the means of these two samples is significant? (¢.9.5 = £2.31,¢ 9955 = £3.36).

19.

i) If n = 250, p = 0.58, estimate 98% Confidence interval for the proportion
p, and what is the maximum error of the estimate?

ii) If the error of the estimate € = 0.04 and p = 0.25, find the number of
sample at 95% 7 (2099 = £2.33, Z 75 = £1.96).

20. A random number table 250 digits, showed the following distribution
of digits 0,1,2,...,9. Does the observed (O) distribution differs significantly

from the expected distribution?

Digits | 0 | 1 [ 2|34 /5|6 |7|8|9|
O |17/31]29|18|14[20|35|30 2036 250
W | 25[25/25|25/25|25/|25|25/25]25 /250

21. In the past the standard deviation of weights for Certain 40.0 Newton
packages filled by a machine was o = 0.25 newtons. A random sample of 20
packages shows a standard deviation of S = 0.32 Newtons. Is the apparent
increase in variability significant at

a) a = 0.05 and b) o = 0.01 level of Significance. (Hy : 0 = 0.25, H; = 0 > 0.25)

22. In 200 tosses of Coin, 115 heads and 85 tails were observed. Test
the hypothesis that the Coin is fair using of significance. a) a = 0.05 & b)
a=0.01

23. Let ny = 300, ]51 = 0.27; ny = 200, PQ = 0.2. F Find a confidence
intervalforPl—Pg, ifHQIP1:P2; H,: P >P2,0é:0.01



24. From appropriate samples, two sets of two scores are obtained:

I X, =104,5, =10,n; = 16
II: Xy =112,5, =8,ny = 14

a) estimate the 98% confidence interval for the difference of sample means?

(2 — 1)
b) at the 5% significance level is there a significant difference mean between

the two groups? (t.99728 = :|:2467, t_975728 = :|:205)



