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Chapter 1

Discrete and Continuous Distributions

This chapter introduces discrete distributions and continuous dis-

tributions.

1.1 Discrete Distributions
Next, we introduce the most commonly used discrete distributions.

1.1.1 Binomial Distribution

Definition 1.1 A variable described as the number of successes in a

sequence of independent Bernoulli trials has Binomial distribution.

Its parameters are n, the number of trials, and p, the probability of

success.

Remark: Binomial probability mass function is

P (x) = P{X = x} =

(
n

x

)
pxqn−x, x = 0, 1, . . . , n (1.1)

which is the probability of exactly x successes in n trials. In this

formula, px is the probability of x successes, probabilities being mul-

tiplied due to independence of trials. Also, qn−x is the probability of

the remaining (n − x) trials being failures. Finally,
(
n
x

)
= n!

x!(n−x)! is

the number of elements of the sample space Ω that form the event
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{X = x}. This is the number of possible orderings of x successes and

(n− x) failures among n trials, and it is computed as C(n, x)

Binomial

Distribution

n = number of trials

p = probability of success

P (x) =
(
n
x

)
pxqn−x

E(X) = np

Var(X) = npq

Example 1.1 An exciting computer game is released. Sixty percent

of players complete all the levels. Thirty percent of them will then

buy an advanced version of the game. Among 15 users, what is the

expected number of people who will buy the advanced version? What is

the probability that at least two people will buy it?

Solution. Let X be the number of people (successes), among

the mentioned 15 users (trials), who will buy the advanced version of

the game. It has Binomial distribution with n = 15 trials and the

probability of success

p = P{ buy advanced }
= P{ buy advanced | complete all levels }P{ complete all levels }
= (0.30)(0.60) = 0.18

Then we have

E(X) = np = (15)(0.18) = 2.7
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and

P{X ≥ 2} = 1− P (0)− P (1) = 1− (1− p)n − np(1− p)n−1 = 0.7813.

The last probability was computed directly by formula (1.1).

1.1.2 Poisson distribution

Definition 1.2 The number of rare events occurring within a fixed

period of time has Poisson distribution.

Poisson

Distribution

λ = frequency, average number of events

p(x) = e−λ
λx

x!
, x=0, 1, 2, · · ·

E(X) = λ

Var(X) = λ

Example 1.2 (NEW ACCOUNTS). Customers of an internet service

provider initiate new accounts at the average rate of 10 accounts per

day.

(a) What is the probability that more than 8 new accounts will be ini-

tiated today?

(b) What is the probability that more than 16 accounts will be initiated

within 2 days?

Solution. (a) New account initiations qualify as rare events because

no two customers open accounts simultaneously. Then the number

X of today’s new accounts has Poisson distribution with parameter
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λ = 10. From Table A3,

P{X > 8} = 1− FX(8) = 1− 0.333 = 0.667.

(b) The number of accounts, Y , opened within 2 days does not equal

2X. Rather, Y is another Poisson random variable whose parameter

equals 20. Indeed, the parameter is the average number of rare events,

which, over the period of two days, doubles the one-day average. Using

Table A3 with λ = 20,

P{Y > 16} = 1− FY (16) = 1− 0.221 = 0.779.

1.2 Continuous Distributions
As in the discrete case, varieties of phenomena can be described

by relatively few families of continuous distributions. Here, we shall

discuss Exponential Normal distributions.

1.2.1 Exponential Distribution

Exponential distribution has density

f(x) = λe−λx for x > 0.



1.2 Continuous Distributions 5

F (x) =

∫ x

0

f(t)dt =

∫ x

0

λe−λtdt = 1− e−λx (x > 0),

E(X) =

∫
tf(t)dt =

∫ ∞
0

tλe−λtdt =
1

λ
,

Var(X) =

∫
t2f(t)dt− E2(X)

=

∫ ∞
0

t2λe−λtdt−
(

1

λ

)2

=
2

λ2
− 1

λ2
=

1

λ2
.

The quantity λ is a parameter of Exponential distribution, and its

meaning is clear from E(X) = 1/λ. This λ has the same meaning as

the parameter of Poisson distribution.Then we can compute the cdf of

T as

FT (t) = 1− e−λt, (1.2)

Example 1.3 Jobs are sent to a printer at an average rate of 3 jobs

per hour.

(a) What is the expected time between jobs?

(b) What is the probability that the next job is sent within 5 min-

utes?

Solution. Job arrivals represent rare events, thus the time T between

them is Exponential with the given parameter λ = 3hrs−1 (jobs per

hour).

(a) E(T ) = 1/λ = 1/3 hours or 20 minutes between jobs;
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(b) Convert to the same measurement unit: 5 min = (1/12)hrs. Then,

P {T < 1/12hrs} = F (1/12) = 1− e−λ(1/12) = 1− e−1/4 = 0.2212.

Exponential

Distribution

λ = frequency parameter, the number of events

per time unit

p(x) = λe−λx , x > 0

E(X) = 1
λ

Var(X) = 1
λ2

1.2.2 Normal distribution

Normal distribution plays a vital role in Probability and Statistics,

mostly because of the Central Limit Theorem, according to which sums

and averages often have approximately Normal distribution. Due to

this fact, various fluctuations and measurement errors that consist of

accumulated number of small terms appear normally distributed.

FIGURE 4.6: Normal densities with different location and scale parameters.



1.2 Continuous Distributions 7

Normal distribution has a density

f(x) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, −∞ < x < +∞

where parameters µ and σ have a simple meaning of the expectation

E(X) and the standard deviation Std(X). This density is known as

the bell-shaped curve, symmetric and centered at µ, its spread being

controlled by σ. As seen in Figure 4.6, changing µ shifts the curve to

the left or to the right without affecting its shape, while changing σ

makes it more concentrated or more flat. Often µ and σ are called

location and scale parameters.

Normal

Distribution

µ = expectation, location parameter

σ = standard deviation, scale parameter

f(x) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞

E(X) = µ

Var(X) = σ2

Standard Normal distribution

Definition 1.3 Normal distribution with ”standard parameters” µ = 0

and σ = 1 is called Standard Normal distribution.
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NOTATION: Z = Standard Normal random variable

φ(x) = 1√
2π
e−x

2/2, Standard Normal pdf

Φ(x) =

∫ x

−∞

1√
2π
e−z

2/2dz, Standard Normal cdf

Example 1.4 (Computing Standard Normal Probabilities.)

For a Standard Normal random variable Z,

P {Z < 1.35} = Φ(1.35) = 0.9115

P {Z > 1.35} = 1− Φ(1.35) = 0.0885

P {−0.77 < Z < 1.35} = Φ(1.35)− Φ(−0.77)

= 0.9115− 0.2206 = 0.6909

According to Table A4. Notice that P {Z < −1.35} = 0.0885 =

P {Z > 1.35}, which is explained by the symmetry of the Standard

Normal density in Figure 4.6. Due to this symmetry, ”the left tail,”

or the area to the left of (−1.35) equals ”the right tail,” or the area to

the right of 1.35 .

In fact, the symmetry of the Normal density, mentioned in this

example, allows to obtain the first part of Table A4, directly from the

second part,

Φ(−z) = 1− Φ(z) for −∞ < z < +∞

To compute probabilities about an arbitrary Normal random variable
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X, we have to standardize it first, as in (4.16), then use Table A4.

Example 1.5 (Computing non-standard normal probabilities.)

Suppose that the average household income in some country is 900

coins, and the standard deviation is 200 coins. Assuming the Normal

distribution of incomes, compute the proportion of ”the middle class,”

whose income is between 600 and 1200 coins.

Solution. Standardize and use Table A4. For a Normal(µ =

900, σ = 200) variable X ,

P {600 < X < 1200} = P

{
600− µ

σ
<
X − µ
σ

<
1200− µ

σ

}
= P

{
600− 900

200
< Z <

1200− 900

200

}
= P {−1.5 < Z < 1.5}

= Φ(1.5)− Φ(−1.5) = 0.9332− 0.0668 = 0.8664



Chapter 2

Introduction to Sampling Distributions

The sampling distribution of a statistic is the distribution of all

possible values taken by the statistic when all possible samples of a

fixed size n are taken from the population. It is a theoretical idea—we

do not actually build it. The sampling distribution of a statistic is the

probability distribution of that statistic.

Suppose you randomly sampled 10 people from the population of

women in a city, between the ages of 21 and 35 years and computed

the mean height of your sample. You would not expect your sample

mean to be equal to the mean of all women in the city. It might be

somewhat lower or it might be somewhat higher, but it would not equal

the population mean exactly. Similarly, if you took a second sample of

10 people from the same population, you would not expect the mean

of this second sample to equal the mean of the first sample.

Recall that inferential statistics concern generalizing from a sample

to a population. A critical part of inferential statistics involves deter-

mining how far sample statistics are likely to vary from each other and

from the population parameter. (In this example, the sample statistics

are the sample means and the population parameter is the population

mean.) As the later portions of this chapter show, these determinations
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Outcome Ball 1 Ball 2 Mean
1 1 1 1.0
2 1 2 1.5
3 1 3 2.0
4 2 1 1.5
5 2 2 2.0
6 3 2 2.5
7 3 1 2.0
8 2 3 2.5
9 3 3 3.0

Table 1. All possible outcomes when two balls are sampled with replacement.

are based on sampling distributions.

Discrete Distributions

We will illustrate the concept of sampling distributions with a simple

example. Figure 1 shows three pool balls, each with a number on it.

Suppose two of the balls are selected randomly (with replacement) and

the average of their numbers is computed. All possible outcomes are

shown below in Table 1.

Figure 1. The pool balls.

Notice that all the means are either 1.0, 1.5, 2.0, 2.5, or 3.0 . The fre-

quencies of these means are shown in Table 2. The relative frequencies

are equal to the frequencies divided by nine because there are nine

possible outcomes.
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Mean Frequency Relative Frequency

1.0 1 0.111

1.5 2 0.222

2.0 3 0.333

2.5 2 0.222

3.0 1 0.111
Table 2. Frequencies of means for N = 2.

Figure 2 shows a relative frequency distribution of the means based on

Table 2. This distribution is also a probability distribution since the

Y-axis is the probability of obtaining a given mean from a sample of

two balls in addition to being the relative frequency.

Figure 2. Distribution of means for N = 2.

The distribution shown in Figure 2 is called the sampling distribution

of the mean. Specifically, it is the sampling distribution of the mean for

a sample size of 2( N = 2). For this simple example, the distribution of

pool balls and the sampling distribution are both discrete distributions.
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The pool balls have only the values 1,2 , and 3 , and a sample mean

can have one of only five values shown in Table 2.

There is an alternative way of conceptualizing a sampling distribu-

tion that will be useful for more complex distributions. Imagine that

two balls are sampled (with replacement) and the mean of the two balls

is computed and recorded. Then this process is repeated for a second

sample, a third sample, and eventually thousands of samples. After

thousands of samples are taken and the mean computed for each, a

relative frequency distribution is drawn. The more samples, the closer

the relative frequency distribution will come to the sampling distribu-

tion shown in Figure 2. As the number of samples approaches infinity,

the relative frequency distribution will approach the sampling distri-

bution. This means that you

can conceive of a sampling distribution as being a relative frequency

distribution based on a very large number of samples. To be strictly

correct, the relative frequency distribution approaches the sampling

distribution as the number of samples approaches infinity.

It is important to keep in mind that every statistic, not just the

mean, has a sampling distribution. For example, Table 3 shows all

possible outcomes for the range of two numbers (larger number minus

the smaller number). Table 4 shows the frequencies for each of the

possible ranges and Figure 3 shows the sampling distribution of the

range.
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Outcome Ball 1 Ball 2 Range
1 1 1 0
2 1 2 1
3 1 3 2
4 2 1 1
5 2 2 0
6 3 3 1
7 3 2 0
8 3 3 0
9 2 1

Table 3. All possible outcomes when two balls are sampled with replacement.

Range Frequency Relative Frequency
0 3 0.333
1 4 0.444
2 2 0.222

Table 4. Frequencies of ranges for N = 2.

Figure 3. Distribution of ranges for N = 2.

It is also important to keep in mind that there is a sampling distribu-

tion for various sample sizes. For simplicity, we have been using N = 2.
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The sampling distribution of the range for N = 3 is shown in Figure 4.

Figure 4. Distribution of ranges for N = 3.

Continuous Distributions

In the previous section, the population consisted of three pool balls.

Now we will consider sampling distributions when the population dis-

tribution is continuous. What if we had a thousand pool balls with

numbers ranging from 0.001 to 1.000 in equal steps? (Although this

distribution is not really continuous, it is close enough to be consid-

ered continuous for practical purposes.) As before, we are interested

in the distribution of means we would get if we sampled two balls

and computed the mean of these two balls. In the previous exam-

ple, we started by computing the mean for each of the nine possible

outcomes. This would get a bit tedious for this example since there

are 1, 000, 000 possible outcomes ( 1,000 for the first ball x 1,000 for

the second). Therefore, it is more convenient to use our second con-

ceptualization of sampling distributions which conceives of sampling

distributions in terms of relative frequency distributions. Specifically,
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the relative frequency distribution that would occur if samples of two

balls were repeatedly taken and the mean of each sample computed.

When we have a truly continuous distribution, it is not only im-

practical but actually impossible to enumerate all possible outcomes.

Moreover, in continuous

distributions, the probability of obtaining any single value is zero.

Therefore, as discussed in the section ”Distributions” in Chapter 1,

these values are called probability densities rather than probabilities.

2.1 Sampling Distributions and Inferential
Statistics

As we stated in the beginning of this chapter, sampling distribu-

tions are important for inferential statistics. In the examples given so

far, a population was specified and the sampling distribution of the

mean and the range were determined. In practice, the process pro-

ceeds the other way: you collect sample data, and from these data you

estimate parameters of the sampling distribution. This knowledge of

the sampling distribution can be very useful. For example, knowing

the degree to which means from different samples would differ from

each other and from the population mean would give you a sense of

how close your particular sample mean is likely to be to the population

mean. Fortunately, this information is directly available from a sam-

pling distribution. The most common measure of how much sample

means differ from each other is the standard deviation of the sampling

distribution of the mean. This standard deviation is called the stan-

dard error of the mean. If all the sample means were very close to the
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population mean, then the standard error of the mean would be small.

On the other hand, if the sample means varied considerably, then the

standard error of the mean would be large.

To be specific, assume your sample mean were 125 and you esti-

mated that the standard error of the mean were 5 (using a method

shown in a later section). If you had a normal distribution, then it

would be likely that your sample mean would be within 10 units of

the population mean since most of a normal distribution is within two

standard deviations of the mean.

Keep in mind that all statistics have sampling distributions, not

just the mean. In later sections we will be discussing the sampling

distribution of the variance, the sampling distribution of the difference

between means, and the sampling distribution of Pearson’s correlation,

among others.

2.2 Sampling Distribution of the Mean
Mean

The mean of the sampling distribution of the mean is the mean of

the population from which the scores were sampled. Therefore, if a

population has a mean µ, then the mean of the sampling distribution

of the mean is also µ. The symbol µM is used to refer to the mean of

the sampling distribution of the mean. Therefore, the formula for the

mean of the sampling distribution of the mean can be written as:

µM = µ
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Variance

The variance of the sampling distribution of the mean is computed as

follows:

σ2
m =

σ2

N

That is, the variance of the sampling distribution of the mean is

the population variance divided by N , the sample size (the number of

scores used to compute a mean). Thus, the larger the sample size, the

smaller the variance of the sampling distribution of the mean.

(optional paragraph) This expression can be derived very easily from

the variance sum law. Let’s begin by computing the variance of the

sampling distribution of the

sum of three numbers sampled from a population with variance σ2.

The variance of the sum would be σ2 + σ2 + σ2. For N numbers, the

variance would be Nσ2. Since the mean is 1/N times the sum, the

variance of the sampling distribution of the mean would be 1/N2 times

the variance of the sum, which equals σ2/N.

The standard error of the mean is the standard deviation of the

sampling distribution of the mean. It is therefore the square root

of the variance of the sampling distribution of the mean and can be

written as:

σm =
σ√
N

The standard error is represented by a σ because it is a standard

deviation. The subscript ( M ) indicates that the standard error in
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question is the standard error of the mean.

2.3 Central Limit Theorem
The central limit theorem states that:

Given a population with a finite mean µ and a finite nonzero variance

σ2, the sampling distribution of the mean approaches a normal distri-

bution with a mean of µ and a variance of σ2/N as N , the sample size,

increases.

The expressions for the mean and variance of the sampling distri-

bution of the mean are not new or remarkable. What is remarkable is

that regardless of the shape of the parent population, the sampling dis-

tribution of the mean approaches a normal distribution as N increases.

If you have used the ”Central Limit Theorem Demo,” (external link;

requires Java) you have already seen this for yourself. As a reminder,

Figure 1 shows the results of the simulation for N = 2 and N = 10. The

parent population was a uniform distribution. You can see that the

distribution for N = 2 is far from a normal distribution. Nonetheless,

it does show that the scores are denser in the middle than in the tails.

For N = 10 the distribution is quite close to a normal distribution.

Notice that the means of the two distributions are the same, but that

the spread of the distribution for N = 10 is smaller.
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A simulation of a sampling distribution.

The parent population is uniform. The blue line under ” 16 ”

indicates that 16 is the mean. The red line extends from the mean

plus and minus one standard deviation.

Figure 2 shows how closely the sampling distribution of the mean

approximates a normal distribution even when the parent population

is very non-normal. If you look closely you can see that the sampling

distributions do have a slight positive skew. The larger the sample

size, the closer the sampling distribution of the mean would be to a

normal distribution.

Distribution of Sample Mean, N = 5



2.3 Central Limit Theorem 21

Distribution of Sample Mean, N = 25

Figure 2. A simulation of a sampling distribution. The parent

population is very non-normal.

Theorem 2.1 (The Central Limit Theorem - First form)

If X1, X2, . . . .Xn, is a random sample of size n taken from a population

(either finite or infinite) with mean µ and finite variance σ2 and if X̄

is the sample mean, the limiting form of the distribution of

Z =
X̄ − µ
σ/
√
n

as n→∞, is the standard normal distribution.

Note



2.3 Central Limit Theorem 22

• The normal approximation for X̄ will generally be good if n ≥ 30,

provided the population distribution is not terribly skewed.

• If n < 30, the approximation is good only if the population is not

too different from a normal distribution and if the population is

known to be normal, the sampling distribution of X̄ will follow a

normal distribution exactly, no matter how small the size of the

samples.

• The sample size n = 30 is a guideline to use for the Central Limit

Theorem.

Illustration of the Central Limit Theorem (distribution of X̄ for

n = 1, moderate n, and large n

Example 2.1 An electrical firm manufactures light bulbs that have a

length of life that is approximately normally distributed, with mean

equal to 800 hours and a standard deviation of 40 hours. Find the
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probability that a random sample of 16 bulbs will have an average life

of less than 775 hours.

Solution. The sampling distribution of X̄ will be approximately

normal, with µX̄ = 800 and

σX̄ = 40/
√

16 = 10

z =
775− 800

10
= −2.5

P (X̄ < 775) = P (Z < −2.5) = 0.0062

Example 2.2 The compression strength of concrete is normally dis-

tributed with µ = 2500 psi and σ = 50 psi. Find the probability that a

random sample of n = 5 specimens will have a sample mean diameter

that falls in the interval from 2499 psi to 2510 psi.
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Solution.
µ = 2500 psi σ = 50psin = 5

σx̄ =
σ√
n

σx̄ =
50√

5
= 22.3607

P [2499 < X̄ < 2510] = P

[
2499− µ

σx̄
<
X̄ − µ
σx̄

<
2510− µ

σx̄

]
P [2499 < X̄ < 5510] = P

[
2499− 2500

22.3607
< Z <

2510− 2500

22.3607

]
= P [−0.0447 < Z < 0.4472]

Z1 = −0.0447 , Z2 = 0.4472

The area for Z1 = −0.0447 is 0.484047. The area for Z2 = 0.4472 is

0.673645
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Hence the area between the two values is = 0.6736−0.4840 = 0.1896

or 18.96%.

Therefore,

P [2499 < X̄ < 2510] = 18.96%

2.3.1 Finite Population Correction Factor

Since sampling with replacement is for the most part unrealistic, a

correction factor is necessary for computing the standard error of the

mean for samples drawn without replacement from a finite population.

correction factor =

√
N − n
N − 1

σx̄ =
σ√
n

√
N − n
N − 1

Where : N is the population size and n is the sample size.

This correction factor is necessary if relatively large samples are taken

from a small population, because the sample mean will then more

accurately estimate the population mean and there will be less error

in the estimation.
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Finally, the formula for the z value becomes

z =
X̄ − µ

σ√
n
·
√

N−n
N−1

Example 2.3 A population of size 20 is sampled without replacement.

The standard deviation of the population is 0.35. We require the stan-

dard error of the mean to be no more than 0.15. What is the minimum

sample size?

Solution.

N = 20 σ = 0.35 σx̄ = 0.15

σx̄ =
σ√
n

√
N − n
N − 1

0.15 =
0.35√
n

√
20− n
20− 1

⇒
√

20− n
n

=
0.15
√

19

0.35
= 1.868

⇒ 20− n = 3.490n⇒ n =
20

4.490
= 4.45 ≈ 5

The central limit theorem can be written as.

Theorem 2.2 (The Central Limit Theorem - Second form)

Let X1, X2, . . . be independent random variables with the same expec-

tation µ = E (Xi) and the same standard deviation σ = Std (Xi), and

let

Sn =
n∑
i=1

Xi = X1 + . . .+Xn
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As n→∞, the standardized sum

Zn =
Sn − E (Sn)

Std (Sn)
=
Sn − nµ
σ
√
n

converges in distribution to a Standard Normal random variable, that

is,

FZn(z) = P

{
Sn − nµ
σ
√
n
≤ z

}
→ Φ(z)

for all z.

This theorem is very powerful because it can be applied to random

variables X1, X2, . . . having virtually any thinkable distribution with

finite expectation and variance. As long as n is large (the rule of thumb

is n > 30 ), one can use Normal distribution to compute probabilities

about Sn. Theorem 1 is only one basic version of the Central Limit

Theorem. Over the last two centuries, it has been extended to large

classes of dependent variables and vectors, stochastic processes, and so

on.

Example 2.4 (Allocation OF Disk SPACE) . A disk has free space

of 330 megabytes. Is it likely to be sufficient for 300 independent im-

ages, if each image has expected size of 1 megabyte with a standard

deviation of 0.5 megabytes?

Solution. We have n = 300, µ = 1, σ = 0.5. The number of

images n is large, so the Central Limit Theorem applies to their total
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size Sn. Then,

P { sufficient space } = P {Sn ≤ 330} = P

{
Sn − nµ
σ
√
n
≤ 330− (300)(1)

0.5
√

300

}
≈ Φ(3.46) = 0.9997

This probability is very high, hence, the available disk space is very

likely to be sufficient.

In the special case of Normal variables X1, X2, . . ., the distribution of

Sn is always Normal, and (4.18) becomes exact equality for arbitrary,

even small n.

Example 2.5 (Elevator) . You wait for an elevator, whose capacity

is 2000 pounds. The elevator comes with ten adult passengers. Sup-

pose your own weight is 150 lbs , and you heard that human weights

are normally distributed with the mean of 165 lbs and the standard de-

viation of 20 lbs . Would you board this elevator or wait for the next

one?

Solution. In other words, is overload likely? The probability of an

overload equals

P {S10 + 150 > 2000} = P

{
S10 − (10)(165)

20
√

10
>

2000− 150− (10)(165)

20
√

10

}
= 1− Φ(3.16) = 0.0008

So, with probability 0.9992 it is safe to take this elevator. It is now for

you to decide.
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2.4 Sampling Distribution of Difference Be-
tween Means

Statistical analyses are very often concerned with the difference be-

tween means. A typical example is an experiment designed to compare

the mean of a control group with the mean of an experimental group.

Inferential statistics used in the analysis of this type of experiment

depend on the sampling distribution of the difference between means.

The sampling distribution of the difference between means can be

thought of as the distribution that would result if we repeated the

following three steps over and over again: (1) sample n1 scores from

Population 1 and n2 scores from Population 2, (2) compute the means

of the two samples (M1 and M2), and (3) compute the difference be-

tween means, M1 − M2. The distribution of the differences between

means is the sampling distribution of the difference between means.

As you might expect, the mean of the sampling distribution of the

difference between means is:

µM1−M2
= µ1 − µ2

which says that the mean of the distribution of differences between

sample means is equal to the difference between population means. For

example, say that the mean test score of all 12-year-olds in a population

is 34 and the mean of 10-yearolds is 25 . If numerous samples were

taken from each age group and the mean

difference computed each time, the mean of these numerous differences
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between sample means would be 34− 25 = 9.

From the variance sum law, we know that:

σ2
M1−M2

= σ2
M1

+ σ2
M2

which says that the variance of the sampling distribution of the dif-

ference between means is equal to the variance of the sampling distri-

bution of the mean for Population 1 plus the variance of the sampling

distribution of the mean for Population 2. Recall the formula for the

variance of the sampling distribution of the mean:

σ2
M =

σ2

N

Since we have two populations and two samples sizes, we need to dis-

tinguish between the two variances and sample sizes. We do this by

using the subscripts 1 and 2. Using this convention, we can write the

formula for the variance of the sampling distribution of the difference

between means as:

σ2
M1−M2

=
σ2

1

n1
+
σ2

2

n2

Since the standard error of a sampling distribution is the standard devi-

ation of the sampling distribution, the standard error of the difference

between means is:

σM1−M2
=

√
σ2

1

n1
+
σ2

2

n2

Just to review the notation, the symbol on the left contains a sigma (
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σ ), which means it is a standard deviation. The subscripts M1 −M2

indicate that it is the standard deviation of the sampling distribution

of M1 −M2.

Now let’s look at an application of this formula. Assume there are

two species of green beings on Mars. The mean height of Species 1 is

32 while the mean height of Species 2 is 22 . The variances of the two

species are 60 and 70,

respectively, and the heights of both species are normally distributed.

You randomly sample 10 members of Species 1 and 14 members of

Species 2. What is the probability that the mean of the 10 members

of Species 1 will exceed the mean of the 14 members of Species 2 by

5 or more? Without doing any calculations, you probably know that

the probability is pretty high since the difference in population means

is 10 . But what exactly is the probability?

First, let’s determine the sampling distribution of the difference

between means. Using the formulas above, the mean is

µM1−M2
= 32− 22 = 10

The standard error is:

σM1−M2
=

√
60

10
+

70

14
= 3.317

The sampling distribution is shown in Figure 1. Notice that it is nor-

mally distributed with a mean of 10 and a standard deviation of 3.317.

The area above 5 is shaded blue.
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Figure 1. The sampling distribution of the difference between means.

The last step is to determine the area that is shaded blue. Using either

a Z table or the normal calculator, the area can be determined to be

0.934 . Thus the probability that the mean of the sample from Species

1 will exceed the mean of the sample from Species 2 by 5 or more is

0.934 .

As shown below, the formula for the standard error of the difference

between means is much simpler if the sample sizes and the population

variances

are equal. When the variances and samples sizes are the same, there

is no need to use the subscripts 1 and 2 to differentiate these terms.

σM1−M2
=

√
σ2

1

n1
+
σ2

2

n2
=

√
σ2

n
+
σ2

n
=

√
2σ2

n

This simplified version of the formula can be used for the following

problem: The mean height of 15 -year-old boys (in cm ) is 175 and the

variance is 64 . For girls, the mean is 165 and the variance is 64 . If

eight boys and eight girls were sampled, what is the probability that

the mean height of the sample of girls would be higher than the mean
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height of the sample of boys? In other words, what is the probability

that the mean height of girls minus the mean height of boys is greater

than 0 ?

As before, the problem can be solved in terms of the sampling

distribution of the difference between means (girls - boys). The mean

of the distribution is 165 175 = −10. The standard deviation of the

distribution is:

σM1−M2
=
√

2σ2

n =
√

(2)(64)
8 = 4

A graph of the distribution is shown in Figure 2. It is clear that

it is unlikely that the mean height for girls would be higher than the

mean height for boys since in the population boys are quite a bit taller.

Nonetheless it is not inconceivable that the girls’ mean could be higher

than the boys’ mean.

Figure 2. Sampling distribution of the difference between mean heights.

A difference between means of 0 or higher is a difference of 10/4 = 2.5

standard deviations above the mean of -10 . The probability of a score

2.5 or more standard deviations above the mean is 0.0062 .



Chapter 3

Estimation Theory

After taking a general look at the data, we are ready for more

advanced and more informative statistical analysis.

In this chapter, we learn how

• to estimate parameters of the distribution.

• to construct confidence intervals. Any estimator, computed from a

collected random sample instead of the whole population, is under-

stood as only an approximation of the corresponding parameter.

Instead of one estimator that is subject to a sampling error, it is

often more reasonable to produce an interval that will contain the

true population parameter with a certain known high probability.

Results of such statistical analysis are used for making decisions under

uncertainty, developing optimal strategies, forecasting, evaluating and

controlling performance, and so on.

3.1 Parameter estimation
By now, we have learned a few elementary ways to determine the

family of distributions. We take into account the nature of our data,

basic description, and range; propose a suitable family of distributions;
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and support our conjecture by looking at a histogram.

In this section, we learn how to estimate parameters of distributions.

As a result, a large family will be reduced to just one distribution that

we can use for performance evaluation, forecasting, etc.

Example 1 (Poisson). For example, consider a sample of computer

chips with a certain type of rare defects. The number of defects on each

chip is recorded. This is the number of rare events, and thus, it should

follow a Poisson distribution with some parameter λ.

We know that λ = E(X) is the expectation of a Poisson variable.

Then, should we estimate it with a sample mean X̄ ? Or, should we

use a sample variance s2 because λ also equals Var(X) ?

Example 2 (Gamma). Suppose now that we deal with a Gamma(α, λ)

family of distributions. Its parameters α and λ do not represent the

mean, variance, standard deviation, or any other measures discussed

in Chapter 8. What would the estimation algorithm be this time?

Questions raised in these examples do not have unique answers.

Statisticians developed a number of estimation techniques, each having

certain optimal properties.

Two rather popular methods are discussed in this section:

• method of moments, and

• method of maximum likelihood.

3.1.1 Method of moments

Moments: First, let us define the moments.
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Definition 3.1 The k-th population moment is defined as

µk = E
(
Xk
)

The k-th sample moment

mk =
1

n

n∑
i=1

Xk
i

estimates µk from a sample (X1, . . . , Xn).

The first sample moment is the sample mean X̄.

Central moments are computed similarly, after centralizing the

data, that is, subtracting the mean.

Definition 3.2 For k ≥ 2, the k-th population central moment is de-

fined as

µ′k = E (X − µ1)
k

The k-th sample central moment

m′k =
1

n

n∑
i=1

(
Xi − X̄

)k
estimates µk from a sample (X1, . . . , Xn).

Remark 3.1 The second population central moment is variance Var(X).

The second sample central moment is sample variance, although (n−1)
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in its denominator is now replaced by n. We mentioned that estima-

tion methods are not unique. For unbiased estimation of σ2 = Var(X),

we use

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
;

however, method of moments and method of maximum likelihood pro-

duce a different version,

S2 = m′2 =
1

n

n∑
i=1

(
Xi − X̄

)2

And this is not all! We’ll see other estimates of σ2 as well.

3.1.2 Estimation

Method of moments is based on a simple idea. Since our sample

comes from a family of distributions {F (θ)}, we choose such a member

of this family whose properties are close to properties of our data.

Namely, we shall match the moments.

To estimate k parameters, equate the first k population and sample

moments, 
µ1 = m1

· · · · · · · · ·
µk = mk

The left-hand sides of these equations depend on the distribution pa-

rameters. The righthand sides can be computed from data. The

method of moments estimator is the solution of this system of equa-
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tions.

Example 3.1 (Poisson.) To estimate parameter λ of Poisson(λ) dis-

tribution, we recall that

µ1 = E(X) = λ

There is only one unknown parameter, hence we write one equation,

µ1 = λ = m1 = X̄

”Solving” it for λ, we obtain

λ̂ = X̄

the method of moments estimator of λ.

This does not look difficult, does it? Simplicity is the main attractive

feature of the method of moments.

If it is easier, one may opt to equate central moments.

Example 3.2 (Gamma distribution of CPU times.)

The histogram in Figure 6 suggested that CPU times have Gamma

distribution with some parameters α and λ. To estimate them, we

need two equations. From data, we compute

m1 = X̄ = 48.2333 and m′2 = S2 = 679.7122
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and write two equations,{
µ1 = E(X) = α/λ = m1

µ′2 = Var(X) = α/λ2 = m′2

It is convenient to use the second central moment here because we al-

ready know the expression for the variance m′2 = Var(X) of a Gamma

variable.

Solving this system in terms of α and λ, we get the method of moment

estimates {
α̂ = m2

1/m
′
2 = 3.4227

λ̂ = m1/m
′
2 = 0.0710

Of course, we solved these two examples so quickly because we already

knew the moments of Poisson and Gamma distributions.

Consider, for example, Pareto distribution that plays an increasingly

vital role in modern internet modeling due to very heavy internet traffic

nowadays.

Example 3.3 (Pareto.) A two-parameter Pareto distribution has a

cdf

F (x) = 1−
(x
σ

)−θ
for x > σ

How should we compute method of moments estimators of σ and θ ?

We have not seen Pareto distribution in this book so far, so we’ll have

to compute its first two moments.
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We start with the density

f(x) = F ′(x) =
θ

σ

(x
σ

)−θ−1

= θσθx−θ−1

and use it to find the expectation

µ1 = E(X) =

∫ ∞
σ

xf(x)dx = θσθ
∫ ∞
σ

x−θdx

= θσθ
x−θ+1

−θ + 1

∣∣∣∣x=∞

x=σ

=
θσ

θ − 1
, for θ > 1

and the second moment

µ2 = E
(
X2
)

=

∫ ∞
σ

x2f(x)dx = θσθ
∫ ∞
σ

x−θ+1dx =
θσ2

θ − 2
, for θ > 2

For θ ≤ 1, a Pareto variable has an infinite expectation, and for θ ≤ 2,

it has an infinite second moment.

Then we solve the method of moments equations{
µ1 = θσ

θ−1 = m1

µ2 = θσ2

θ−2 = m2

and find that

θ̂ =

√
m2

m2 −m2
1

+ 1 and σ̂ =
m1(θ̂ − 1)

θ̂
(3.1)

When we collect a sample from Pareto distribution, we can compute

sample moments m1 and m2 and estimate parameters by (9.1).
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On rare occasions, when k equations are not enough to estimate k

parameters, we’ll consider higher moments.

Example 3.4 (Normal.) Suppose we already know the mean µ of a

Normal distribution and would like to estimate the variance σ2. Only

one parameter σ2 is unknown; however, the first method of moments

equation

µ1 = m1

does not contain σ2 and therefore does not produce its estimate. We

then consider the second equation, say,

µ′2 = σ2 = m′2 = S2

which gives us the method of moments estimate immediately, σ̂2 = S2.

Method of moments estimates are typically easy to compute. They

can serve as a quick tool for estimating parameters of interest.

3.1.3 Method of maximum likelihood

Another interesting idea is behind the method of maximum likeli-

hood estimation.

Since the sample X = (X1, . . . , Xn) has already been observed, we find

such parameters that maximize the probability (likelihood) for this to

happen. In other words, we make the event that has already happened

to be as likely as possible. This is yet another way to make the chosen

distribution consistent with the observed data.

Definition 3.3 Maximum likelihood estimator is the parameter value
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that maximizes the likelihood of the observed sample. For a discrete

distribution, we maximize the joint pmf of data P (X1, . . . , Xn). For a

continuous distribution, we maximize the joint density f (X1, . . . , Xn).

Both cases, discrete and continuous, are explained below.

Discrete case

For a discrete distribution, the probability of a given sample is the

joint pmf of data,

P {X = (X1, . . . , Xn)} = P (X) = P (X1, . . . , Xn) =
n∏
i=1

P (Xi)

because in a simple random sample, all observed Xi are independent.

To maximize this likelihood, we consider the critical points by tak-

ing derivatives with respect to all unknown parameters and equating

them to 0 . The maximum can only be attained at such parameter

values θ where the derivative ∂
∂θP (X) equals 0 , where it does not ex-

ist, or at the boundary of the set of possible values of θ.

A nice computational shortcut is to take logarithms first. Differenti-

ating the sum

ln
n∏
i=1

P (Xi) =
n∑
i=1

lnP (Xi)

is easier than differentiating the product
∏
P (Xi). Besides, logarithm

is an increasing function, so the likelihood P (X) and the log-likelihood

lnP (X) are maximized by exactly the same parameters.



3.1 Parameter estimation 43

Example 3.5 (Poisson.) The pmf of Poisson distribution is

P (x) = e−λ
λx

x!

and its logarithm is

lnP (x) = −λ+ x lnλ− ln(x!)

Thus, we need to maximize

lnP (X) =
n∑
i=1

(−λ+Xi lnλ) + C = −nλ+ lnλ
n∑
i=1

Xi + C

where C = −
∑

ln(x!) is a constant that does not contain the unknown

parameter λ.

Find the critical point(s) of this log-likelihood. Differentiating it and

equating its derivative to 0 , we get

∂

∂λ
lnP (X) = −n+

1

λ

n∑
i=1

Xi = 0

This equation has only one solution

λ̂ =
1

n

n∑
i=1

Xi = X̄

Since this is the only critical point, and since the likelihood vanishes

(converges to 0 ) as λ ↓ 0 or λ ↑ ∞, we conclude that λ̂ is the maxi-
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mizer. Therefore, it is the maximum likelihood estimator of λ.

For the Poisson distribution, the method of moments and the method

of maximum likelihood returned the same estimator, λ̂ = X̄.

FIGURE 1: Probability of observing ”almost” X = x.

Continuous case

In the continuous case, the probability to observe exactly the given

number X = x is 0. Instead, the method of maximum likelihood will

maximize the probability of observing ”almost” the same number.

For a very small h,

P {x− h < X < x+ h} =

∫ x+h

x−h
f(y)dy ≈ (2h)f(x)

That is, the probability of observing a value close to x is propor-

tional to the density f(x) (see Figure 1). Then, for a sample X =

(X1, . . . , Xn), the maximum likelihood method will maximize the joint

density f (X1, . . . , Xn).
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Example 3.6 (Exponential.) The Exponential density is

f(x) = λe−λx

so the log-likelihood of a sample can be written as

ln f(X) =
n∑
i=1

ln
(
λe−λXi

)
=

n∑
i=1

(lnλ− λXi) = n lnλ− λ
n∑
i=1

Xi

Taking its derivative with respect to the unknown parameter λ, equating

it to 0 , and solving for λ, we get

∂

∂λ
ln f(X) =

n

λ
−

n∑
i=1

Xi = 0

resulting in

λ̂ =
n∑
Xi

=
1

X̄

Again, this is the only critical point, and the likelihood f(X) vanishes

as λ ↓ 0 or λ ↑ ∞. Thus, λ̂ = X̄ is the maximum likelihood estimator of

λ. This time, it also coincides with the method of moments estimator.

Sometimes the likelihood has no critical points inside its domain, then

it is maximized at the boundary.

Example 3.7 (Uniform.) Based on a sample from Uniform (0, b)

distribution, how can we estimate the parameter b ?
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The Uniform (0, b) density is

f(x) =
1

b
for 0 ≤ x ≤ b

It is decreasing in b, and therefore, it is maximized at the the smallest

possible value of b, which is x.

For a sample (X1, . . . , Xn), the joint density

f (X1, . . . , Xn) =

(
1

b

)n
for 0 ≤ X1, . . . , Xn ≤ b

also attains its maximum at the smallest possible value of b which

is now the largest observation. Indeed, b ≥ Xi for all i only if b ≥
max (Xi). If b < max (Xi), then f(X) = 0, and this cannot be the

maximum value.

Therefore, the maximum likelihood estimator is b̂ = max (Xi).

When we estimate more than 1 parameter, all the partial derivatives

should be equal 0 at the critical point. If no critical points exist, the

likelihood is again maximized on the boundary.

Example 3.8 (Pareto.) For the Pareto distribution in Example 9.5,

the log-likelihood is

ln f(X) =
n∑
i=1

ln
(
θσθX−θ−1

i

)
= n ln θ + nθ lnσ − (θ + 1)

n∑
i=1

lnXi

for X1, . . . , Xn ≥ σ. Maximizing this function over both σ and θ, we
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notice that it always increases in σ. Thus, we estimate σ by its largest

possible value, which is the smallest observation,

σ̂ = min (Xi) .

We can substitute this value of σ into the log-likelihood and maximize

with respect to θ,

∂

∂θ
ln f(X) =

n

θ
+ n ln σ̂ −

n∑
i=1

lnXi = 0

θ̂ =
n∑

lnXi − n ln σ̂
=

n∑
ln (Xi/σ̂)

The maximum likelihood estimates of σ and θ are

σ̂ = min (Xi) and θ̂ =
n∑

ln (Xi/σ̂)

Maximum likelihood estimators are rather popular because of their nice

properties. Under mild conditions, these estimators are consistent, and

for large samples, they have an approximately Normal distribution.

Often in complicated problems, finding a good estimation scheme may

be challenging whereas the maximum likelihood method always gives

a reasonable solution.

3.1.4 Estimation of standard errors

How good are the estimators that we learned in previous sections?

Standard errors can serve as measures of their accuracy. To estimate

them, we derive an expression for the standard error and estimate all
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the unknown parameters in it.

Example 3.9 (Estimation of the Poisson Parameter.) In Exam-

ples 3.3 and 3.7, we found the method of moments and maximum like-

lihood estimators of the Poisson parameter λ. Both estimators appear

to be equal the sample mean λ̂ = X̄. Let us now estimate the standard

error of λ̂.

Solution. There are at least two ways to do it.

On one hand, σ =
√
λ for the Poisson(λ) distribution, so σ(λ̂) =

σ(X̄) = σ/
√
n =

√
λ/n, as we know from (8.2) on p. 219. Estimating

λ by X̄, we obtain

s1(λ̂) =

√
X̄

n
=

√∑
Xi

n

On the other hand, we can use the sample standard deviation and es-

timate the standard error of the sample mean as in Example 8.17,

s2(λ̂) =
s√
n

=

√∑(
Xi − X̄

)2

n(n− 1)

Apparently, we can estimate the standard error of λ̂ by two good esti-

mators, s1 and s2. �

Example 3.10 (Estimation of the Exponential parameter.)

Derive the standard error of the maximum likelihood estimator in Ex-

ample 8 and estimate it, assuming a sample size n ≥ 3.

Solution. This requires some integration work. Fortunately, we can
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take a shortcut because we know that the integral of any Gamma density

is one, i.e.,∫ ∞
0

λα

Γ(α)
xα−1e−λxdx = 1 for any α > 0, λ > 0

Now, notice that λ̂ = 1/X̄ = n/
∑
Xi, where

∑
Xi has Gamma (n, λ)

distribution because each Xi is Exponential(λ).

Therefore, the k-th moment of λ̂ equals

E
(
λ̂k
)

= E

(
n∑
Xi

)k
=

∫ ∞
0

(n
x

)k λn

Γ(n)
xn−1e−λxdx

=
nkλn

Γ(n)

∫ ∞
0

xn−k−1e−λxdx

=
nkλn

Γ(n)

Γ(n− k)

λn−k

∫ ∞
0

λn−k

Γ(n− k)
xn−k−1e−λxdx

=
nkλn

Γ(n)

Γ(n− k)

λn−k
· 1 =

nkλk(n− k − 1)!

(n− 1)!

Substituting k = 1, we get the first moment,

E(λ̂) =
nλ

n− 1

Substituting k = 2, we get the second moment,

E
(
λ̂2
)

=
n2λ2

(n− 1)(n− 2)
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Then, the standard error of λ̂ is

σ(λ̂) =

√
Var(λ̂) =

√
E
(
λ̂2
)
− E2(λ̂)

=

√
n2λ2

(n− 1)(n− 2)
− n2λ2

(n− 1)2

=
nλ

(n− 1)
√
n− 2

We have just estimated λ by λ̂ = 1/X̄; therefore, we can estimate the

standard error σ(λ̂) by

s(λ̂) =
n

X̄(n− 1)
√
n− 2

or
n2∑

Xi(n− 1)
√
n− 2

3.2 Confidence intervals
When we report an estimator θ̂ of a population parameter θ, we

know that most likely

θ̂ 6= θ

due to a sampling error. We realize that we have estimated θ up to

some error. Likewise, nobody understands the internet connection of

11 megabytes per second as exactly 11 megabytes going through the

network every second, and nobody takes a meteorological forecast as

the promise of exactly the predicted temperature.

Then how much can we trust the reported estimator? How far can

it be from the actual parameter of interest? What is the probability
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that it will be reasonably close? And if we observed an estimator θ̂,

then what can the actual parameter θ be?

To answer these questions, statisticians use confidence intervals, which

contain parameter values that deserve some confidence, given the ob-

served data.

Definition 3.4 An interval [a, b] is a (1−α)100% confidence interval

for the parameter θ if it contains the parameter with probability (1−α),

P {a ≤ θ ≤ b} = 1− α.

The coverage probability (1− α) is also called a confidence level.

Let us take a moment to think about this definition. The probability

of a random event {a ≤ θ ≤ b} has to be (1 − α). What randomness

is involved in this event?

The population parameter θ is not random. It is a population

feature, independent of any random sampling procedure, and therefore,

it remains constant. On the other hand, the interval is computed from

random data, and therefore, it is random. The coverage probability

refers to the chance that our interval covers a constant parameter θ.

This is illustrated in Figure 2. Suppose that we collect many random

samples and produce a confidence interval from each of them. If these

are (1 − α)100% confidence intervals, then we expect (1 − α)100% of

them to cover θ and 100α% of them to miss it.
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FIGURE 2: Confidence intervals and coverage of parameter θ.

In Figure 2, we see one interval that does not cover θ. No mistake was

made in data collection and construction of this interval. It missed the

parameter only due to a sampling error.

It is therefore wrong to say, ”I computed a 90% confidence interval,

it is [3, 6]. Parameter belongs to this interval with probability 90%.”

The parameter is constant; it either belongs to the interval [3, 6] (with

probability 1 ) or does not. In this case, 90% refers to the proportion

of confidence intervals that contain the unknown parameter in a long

run.

3.2.1 Construction of confidence intervals

Given a sample of data and a desired confidence level (1 − α),

how can we construct a confidence interval [a, b] that will satisfy the

coverage condition

P {a ≤ θ ≤ b} = 1− α
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in Definition 4?

We start by estimating parameter θ. Assume there is an unbiased

estimator θ̂ that has a Normal distribution. When we standardize it,

we get a Standard Normal variable

Z =
θ̂ − E(θ̂)

σ(θ̂)
=
θ̂ − θ
σ(θ̂)

(3.2)

where E(θ̂) = θ because θ̂ is unbiased, and σ(θ̂) = σ(θ̂) is its standard

error.

This variable falls between the Standard Normal quantiles qα/2 and

q1−α/2, denoted by

−zα/2 = qα/2, zα/2 = q1−α/2

with probability (1− α), as you can see in Figure 3.

FIGURE 3: Standard Normal quantiles ±zα/2 and partition of the area under the density curve.
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Then,

P

{
−zα/2 ≤

θ̂ − θ
σ(θ̂)

≤ zα/2

}
= 1− α

Solving the inequality inside {. . .} for θ, we get

P
{
θ̂ − zα/2 · σ(θ̂) ≤ θ ≤ θ̂ − zα/2 · σ(θ̂)

}
= 1− α

The problem is solved! We have obtained two numbers

a = θ̂ − zα/2 · σ(θ̂), b = θ̂ + zα/2 · σ(θ̂)

such that

P {a ≤ θ ≤ b} = 1− α.

3.2.2 Confidence interval, Normal distribution

If parameter θ has an unbiased, Normally distributed estimator θ̂,

then

θ̂ ± zα/2 · σ(θ̂) =
[
θ̂ − zα/2 · σ(θ̂), θ̂ + zα/2 · σ(θ̂)

]
(3.3)

is a (1− α)100% confidence interval for θ.

If the distribution of θ̂ is approximately Normal, we get an approxi-

mately (1− α)100% confidence interval.

In this formula, θ̂ is the center of the interval, and zα/2 · σ(θ̂) is

the margin. The margin of error is often reported along with poll and

survey results. In newspapers and press releases, it is usually computed

for a 95% confidence interval.

We have seen quantiles ±zα/2 in inverse problems. Now, in confidence
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estimation, and also, in the next section on hypothesis testing, they

will play a crucial role as we’ll need to attain the desired confidence

level α. The most commonly used values are

z0.10 = 1.282, z0.05 = 1.645, z0.025 = 1.960

z0.01 = 2.326, z0.005 = 2.576
(3.4)

NOTATION:

zα = q1−α = Φ−1(1− α)

is the value of a Standard Normal variable Z that is exceeded with

probability α.

Several important applications of this general method are discussed

below. In each problem, we

(a) find an unbiased estimator of θ,

(b) check if it has a Normal distribution,

(c) find its standard error σ(θ̂) = Std(θ̂),

(d) obtain quantiles ±zα/2 from the table of Normal distribution (Table

A4 in the Appendix), and finally,

(e) apply the rule (3).

3.3 Confidence interval for the population
mean

Let us construct a confidence interval for the population mean

θ = µ = E(X)



3.3 Confidence interval for the population mean 56

Start with an estimator,

θ̂ = X̄ =
1

n

n∑
i=1

Xi

The rule (3) is applicable in two cases.

1. If a sample X = (X1, . . . , Xn) comes from Normal distribution,

then X̄ is also Normal, and rule (3) can be applied.

2. If a sample comes from any distribution, but the sample size n

is large, then X̄ has an approximately Normal distribution ac-

cording to the Central Limit Theorem. Then rule (3) gives an

approximately (1− α)100% confidence interval.

Before, we derived

E(X̄) = µ (thus, it is an unbiased estimator);

σ(X̄) = σ/
√
n.

Then, (3) reduces to the following (1− α)100% confidence interval for

µ.

Confidence interval for the mean; σ is known

X̄ ± zα/2
σ√
n

(3.5)

Example 3.11 Construct a 95% confidence interval for the population

mean based on a sample of measurements 2.5, 7.4, 8.0, 4.5, 7.4, 9.2 if
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measurement errors have Normal distribution, and the measurement

device guarantees a standard deviation of σ = 2.2.

Solution. This sample has size n = 6 and sample mean X̄ = 6.50.

To attain a confidence level of 1 − α = 0.95 we need α = 0.05 and

α/2 = 0.025. Hence, we are looking for quantiles q0.025 = −z0.025 and

q0.975 = z0.025 .

From (4) or Table A4, we find that q0.975 = 1.960. Substituting these

values into (5), we obtain a 95% confidence interval for µ,

X̄ ± zα/2
σ√
n

= 6.50± (1.960)
2.2√

6
= 6.50± 1.76 or [4.74, 8.26]

The only situation when method (3) cannot be applied is when the

sample size is small and the distribution of data is not Normal. Special

methods for the given distribution of X are required in this case.

3.4 Confidence interval for the difference be-
tween two means

Under the same conditions as in the previous section,

• Normal distribution of data or

• sufficiently large sample size,

we can construct a confidence interval for the difference between

two means.

This problem arises when we compare two populations. It may be

a comparison of two materials, two suppliers, two service providers,

two communication channels, two labs, etc. From each population,
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a sample is collected (Figure 4),

FIGURE 4: Comparison of two populations.

X = (X1, . . . , Xn) from one population

Y = (Y1, . . . , Ym) from the other population.

Suppose that the two samples are collected independently of each

other.

To construct a confidence interval for the difference between popula-

tion means θ = µX − µY we complete the usual steps (a)-(e) below.

(a) Propose an estimator of θ,

θ̂ = X̄ − Ȳ

It is natural to come up with this estimator because X̄ estimates µX

and Ȳ estimates µY .

(b) Check that θ̂ is unbiased. Indeed,

E(θ̂) = E(X̄ − Ȳ ) = E(X̄)− E(Ȳ ) = µX − µY = θ
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(c) Check that θ̂ has a Normal or approximately Normal distribution.

This is true if the observations are Normal or both sample sizes m and

n are large.

(d) Find the standard error of θ̂ (using independence of X and Y ),

σ(θ̂) =
√

Var(X̄ − Ȳ ) =
√

Var(X̄) + Var(Ȳ ) =

√
σ2
X

n
+
σ2
Y

m

(e) Find quantiles ±zα/2 and compute the confidence interval accord-

ing to (3). This results in the following formula.

Confidence interval for the difference of means; known stan-

dard deviation

X̄ − Ȳ ± zα/2

√
σ2
X

n
+
σ2
Y

m
(3.6)

Example 3.12 (Effect of an upgrade.) A manager evaluates effec-

tiveness of a major hardware upgrade by running a certain process 50

times before the upgrade and 50 times after it. Based on these data, the

average running time is 8.5 minutes before the upgrade, 7.2 minutes

after it. Historically, the standard deviation has been 1.8 minutes, and

presumably it has not changed. Construct a 90% confidence interval

showing how much the mean running time reduced due to the hardware

upgrade.

Solution. We have n = m = 50, σX = σY = 1.8, X̄ = 8.5, and Ȳ =

7.2. Also, the confidence level (1 − α) equals 0.9 , hence α/2 = 0.05,

and zα/2 = 1.645.

The distribution of times may not be Normal; however, due to large
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sample sizes, the estimator

θ̂ = X̄ − Ȳ

is approximately Normal by the Central Limit Theorem. Thus, formula

(9.6) is applicable, and a 90% confidence interval for the difference of

means ( µX − µY ) is

8.5− 7.2± (1.645)

√
1.82

(
1

50
+

1

50

)
= 1.3± 0.6 or [0.7, 1.9]

We can say that the hardware upgrade resulted in a 1.3 -minute reduc-

tion of the mean running time, with a 90% confidence margin of 0.6

minutes.

3.5 Selection of a sample size
Formula (3) describes a confidence interval as ” center ± margin ,

where

center = θ̂, margin = zα/2 · σ(θ̂).

We can revert the problem and ask a very practical question: How large

a sample should be collected to provide a certain desired precision of

our estimator?

In other words, what sample size n guarantees that the margin of a

(1− α)100% confidence interval does not exceed a specified limit ∆ ?

To answer this question, we only need to solve the inequality

margin ≤ ∆ (3.7)
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in terms of n. Typically, parameters are estimated more accurately

based on larger samples, so that the standard error σ(θ̂) and the margin

are decreasing functions of sample size n. Then, (7) must be satisfied

for sufficiently large n.

3.6 Estimating means with a given precision
When we estimate a population mean, the margin of error is

margin = zα/2 · σ/
√
n

Solving inequality (7) for n results in the following rule.

Rule: Sample size for a given precision

In order to attain a margin of error ∆ for estimating

a population mean with a confidence level (1− α),

a sample of size n ≥
(zα/2·σ

∆

)2
is required.

(3.8)

When we compute the expression in (8), it will most likely be a fraction.

Notice that we can only round it up to the nearest integer sample size.

If we round it down, our margin will exceed ∆.

Looking at (8), we see that a large sample will be necessary

• to attain a narrow margin (small ∆ );

• to attain a high confidence level (small α ); and

• to control the margin under high variability of data (large σ ).

In particular, we need to quadruple the sample size in order to half the
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margin of the interval.

Example 3.13 In Example 11, we constructed a 95% confidence with

the center 6.50 and margin 1.76 based on a sample of size 6 . Now,

that was too wide, right? How large a sample do we need to estimate

the population mean with a margin of at most 0.4 units with 95% con-

fidence?

Solution. We have ∆ = 0.4, α = 0.05, and from Example 9.13,

σ = 2.2. By (9.8), we need a sample of

n ≥
(z0.05/2 · σ

∆

)2

=

(
(1.960)(2.2)

0.4

)2

= 116.2

Keeping in mind that this is the minimum sample size that satisfies ∆,

and we are only allowed to round it up, we need a sample of at least

117 observations.



Chapter 4

Hypotheses Testing

A vital role of Statistics is in verifying statements, claims, conjec-

tures, and in general - testing hypotheses. Based on a random sample,

we can use Statistics to verify whether

• a system has not been infected,

• a hardware upgrade was efficient,

• the average number of concurrent users increased by 2000 this year,

• the average connection speed is 54 Mbps, as claimed by the internet

service provider,

• the proportion of defective products is at most 3

• service times have Gamma distribution,

• the number of errors in software is independent of the manager’s

experience, - etc.

Testing statistical hypotheses has wide applications far beyond

Computer Science. These methods are used to prove efficiency of a

new medical treatment, safety of a new automobile brand, innocence
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of a defendant, and authorship of a document; to establish cause-and-

effect relationships; to identify factors that can significantly improve

the response; to fit stochastic models; to detect information leaks; and

so forth.

4.1 Hypothesis and alternative
To begin, we need to state exactly what we are testing. These are

hypothesis and alternative.

NOTATION: H0 = hypothesis (the null hypothesis)

HA = alternative (the alternative hypothesis)

H0 and HA are simply two mutually exclusive statements. Each test

results either in acceptance of H0 or its rejection in favor of HA.

A null hypothesis is always an equality, absence of an effect or

relation, some ”normal,” usual statement that people have believed

in for years. In order to overturn the common belief and to reject

the hypothesis, we need significant evidence. Such evidence can only

be provided by data. Only when such evidence is found, and when it

strongly supports the alternativeHA, can the hypothesisH0 be rejected

in favor of HA.

Based on a random sample, a statistician cannot tell whether the

hypothesis is true or the alternative. We need to see the entire popu-

lation to tell that. The purpose of each test is to determine whether

the data provides sufficient evidence against H0 in favor of HA.

This is similar to a criminal trial. Typically, the jury cannot tell
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whether the defendant committed a crime or not. It is not their task.

They are only required to determine if the presented evidence against

the defendant is sufficient and convincing. By default, called presump-

tion of innocence, insufficient evidence leads to acquittal.

Example 4.1 To verify that the the average connection speed is 54

Mbps , we test the hypothesis H0 : µ = 54 against the two-sided alter-

native HA : µ 6= 54, where µ is the average speed of all connections.

However, if we worry about a low connection speed only, we can

conduct a one-sided test of

H0 : µ = 54 vs HA : µ < 54

In this case, we only measure the amount of evidence supporting the

one-sided alternative HA : µ < 54. In the absence of such evidence, we

gladly accept the null hypothesis.

Definition 4.1 Alternative of the type HA : µ 6= µ0 covering regions

on both sides of the hypothesis (H0 : µ = µ0) is a two-sided alternative.

Alternative HA : µ < µ0 covering the region to the left of H0 is one-

sided, left-tail.

Alternative HA : µ > µ0 covering the region to the right of H0 is

one-sided, right-tail.

Example 4.2 To verify whether the average number of concurrent



4.1 Hypothesis and alternative 66

users increased by 2000, we test

H0 : µ2 − µ1 = 2000 vs HA : µ2 − µ1 6= 2000

where µ1 is the average number of concurrent users last year, and µ2

is the average number of concurrent users this year. Depending on the

situation, we may replace the two-sided alternative HA : µ2−µ1 6= 2000

with a one-sided alternative H
(1)
A : µ2 − µ1 < 2000 or H

(2)
A : µ2 − µ1 >

2000. The test of H0 against H
(1)
A evaluates the amount of evidence

that the mean number of concurrent users changed by fewer than 2000.

Testing against H
(2)
A , we see if there is sufficient evidence to claim that

this number increased by more than 2000 .

Example 4.3 To verify if the proportion of defective products is at

most 3%, we test

H0 : p = 0.03 vs HA : p > 0.03

where p is the proportion of defects in the whole shipment.

Why do we choose the right-tail alternative HA : p > 0.03 ? That is

because we reject the shipment only if significant evidence supporting

this alternative is collected. If the data suggest that p < 0.03, the

shipment will still be accepted.
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4.2 Type I and Type II errors: level of sig-
nificance

When testing hypotheses, we realize that all we see is a random

sample. Therefore, with all the best statistics skills, our decision to

accept or to reject H0 may still be wrong. Four situations are possible,

Result of the test

Reject H0 Accept H0

H0 is true Type I error correct

H0 is false correct Type II error

In two of the four cases, the test results in a correct decision. Either

we accepted a true hypothesis, or we rejected a false hypothesis. The

other two situations are sampling errors.

Definition 4.2 A type I error occurs when we reject the true null hy-

pothesis.

A type II error occurs when we accept the false null hypothesis.

Each error occurs with a certain probability that we hope to keep small.

A good test results in an erroneous decision only if the observed data

are somewhat extreme.

A type I error is often considered more dangerous and undesired

than a type II error. Making a type I error can be compared with

convicting an innocent defendant or sending a patient to a surgery

when (s)he does not need one.

For this reason, we shall design tests that bound the probability of
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type I error by a preassigned small number α. Under this condition,

we may want to minimize the probability of type II error.

Definition 4.3 Probability of a type I error is the significance level of

a test,

α = P { reject H0 | H0 is true }

Probability of rejecting a false hypothesis is the power of the test,

p(θ) = P { reject H0 | θ;HA is true }

It is usually a function of the parameter θ because the alternative

hypothesis includes a set of parameter values. Also, the power is the

probability to avoid a Type II error.

Typically, hypotheses are tested at significance levels as small as 0.01, 0.05,

or 0.10 , although there are exceptions. Testing at a low level of signif-

icance means that only a large amount of evidence can force rejection

of H0. Rejecting a hypothesis at a very low level of significance is done

with a lot of confidence that this decision is right.

4.3 Level α tests: general approach
A standard algorithm for a level α test of a hypothesis H0 against

an alternative HA consists of 3 steps.

Step 1. Test statistic

Testing hypothesis is based on a test statistic T , a quantity computed
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from the data that has some known, tabulated distribution F0 if the

hypothesis H0 is true.

FIGURE 5.1: Acceptance and rejection regions.

Test statistics are used to discriminate between the hypothesis and

the alternative. When we verify a hypothesis about some parameter

θ, the test statistic is usually obtained by a suitable transformation of

its estimator θ̂.

Step 2. Acceptance region and rejection region

Next, we consider the null distribution F0. This is the distribution of

test statistic T when the hypothesis H0 is true. If it has a density f0,

then the whole area under the density curve is 1 , and we can always

find a portion of it whose area is α, as shown in Figure 1. It is called

rejection region (R).

The remaining part, the complement of the rejection region, is called

acceptance region (A = R). By the complement rule, its area is (1−α).

These regions are selected in such a way that the values of test

statistic T in the rejection region provide a stronger support of HA
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than the values T ∈ A. For example, suppose that T is expected to be

large if HA is true. Then the rejection region corresponds to the right

tail of the null distribution F0 (Figure 4.1).

As another example, look at Figure 3 on p. 64. If the null distribution

of T is Standard Normal, then the area between
(
−zα/2

)
and zα/2 equals

exactly (1− α). The interval

A =
(
−zα/2, zα/2

)
can serve as a level α acceptance region for a two-sided test of H0 : θ =

θ0 vs HA : θ 6= θ0. The remaining part consists of two symmetric tails,

R = A =
(
−∞,−zα/2

]
∪
[
zα/2,+∞

)
;

this is the rejection region.

Areas under the density curve are probabilities, and we conclude that

P {T ∈ acceptance region | H0} = 1− α

and

P {T ∈ rejection region | H0} = α.

Step 3: Result and its interpretation

Accept the hypothesis H0 if the test statistic T belongs to the accep-

tance region. Reject H0 in favor of the alternative HA if T belongs to

the rejection region.

Our acceptance and rejection regions guarantee that the significance
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level of our test is

Significance level = P { Type I error }

= P { Reject | H0}

= P {T ∈ R | H0}

= α (4.1)

Therefore, indeed, we have a level α test!

The interesting part is to interpret our result correctly. Notice that

conclusions like ”My level α test accepted the hypothesis. Therefore,

the hypothesis is true with probability (1−α) ” are wrong! Statements

H0 and HA are about a non-random population, and thus, the hypoth-

esis can either be true with probability 1 or false with probability 1.

If the test rejects the hypothesis, all we can state is that the data pro-

vides sufficient evidence against H0 and in favor of HA. It may either

happen because H0 is not true, or because our sample is too extreme.

The latter, however, can only happen with probability α.

If the test accepts the hypothesis, it only means that the evidence ob-

tained from the data is not sufficient to reject it. In the absence of
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sufficient evidence, by default, we accept the null hypothesis.

NOTATION: α = level of significance, probability of type I error

p(θ) = power

T = test statistic

F0, f0 = null distribution of T and its density

A = acceptance region

R = rejection region

4.4 Rejection regions and power
Our construction of the rejection region guaranteed the desired sig-

nificance level α, as we proved in (4.1). However, one can choose many

regions that will also have probability α (see Figure 4.2). Among them,

which one is the best choice?

To avoid type II errors, we choose such a rejection region that will

likely cover the test statistic T in case if the alternative HA is true.

This maximizes the power of our test because we’ll rarely accept H0 in

this case.

Then, we look at our test statistic T under the alternative. Often

(a) a right-tail alternative forces T to be large,

(b) a left-tail alternative forces T to be small,

(c) a two-sided alternative forces T to be either large or small

FIGURE 4.2: Acceptance and rejection regions for a Z-test with (a) a one-sided right-tail alternative; (b) a

one-sided left-tail alternative; (c) a two-sided alternative.

(although it certainly depends on how we choose T ). If this is the
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case, it tells us exactly when we should reject the null hypothesis:

(a) For a right-tail alternative, the rejection region < should consist of

large values of T. Choose R on the right, A on the left (Figure 4.2a).

(b) For a left-tail alternative, the rejection region R should consist of

small values of T . Choose R on the left, A on the right (Figure 4.2b).

(c) For a two-sided alternative, the rejection region R should consist

of very small and very large values of T . Let R consist of two extreme

regions, while A covers the middle (Figure 4.2c).
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4.5 Standard Normal null distribution (Z-
test)

An important case, in terms of a large number of applications, is

when the null distribution of the test statistic is Standard Normal.

The test in this case is called a Z-test, and the test statistic is

usually denoted by Z.

(a) A level α test with a right-tail alternative should{
reject H0 if Z ≥ zα

accept H0 if Z < zα
(4.2)

The rejection region in this case consists of large values of Z only,

R = [zα,+∞) , A = (−∞, zα)

(see Figure 4.2a).

Under the null hypothesis, Z belongs to A and we reject the null hy-

pothesis with probability

P {T ≥ zα | H0} = 1− Φ (zα) = α

making the probability of false rejection (type I error) equal α.

For example, we use this acceptance region to test the population

mean,

H0 : µ = µ0 vs HA : µ > µ0
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(b) With a left-tail alternative, we should{
reject H0 if Z ≤ −zα
accept H0 if Z > −zα

(4.3)

The rejection region consists of small values of Z only,

R = (−∞,−zα] , A = (−zα,+∞)

Similarly, P {Z ∈ R} = α under H0; thus, the probability of type I

error equals α.

For example, this is how we should test

H0 : µ = µ0 vs HA : µ < µ0

(c) With a two-sided alternative, we{
reject H0 if |Z| ≥ zα/2

accept H0 if |Z| < zα/2
(4.4)

The rejection region consists of very small and very large values of Z,

R =
(
−∞, zα/2

]
∪
[
zα/2,+∞

)
, A =

(
−zα/2, zα/2

)
Again, the probability of type I error equals α in this case.

For example, we use this test for

H0 : µ = µ0 vs HA : µ 6= µ0
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This is easy to remember:

• for a two-sided test, divide α by two and use zα/2;

• for a one-sided test, use zα keeping in mind that the rejection

region consists of just one piece.

Now consider testing a hypothesis about a population parameter θ.

Suppose that its estimator θ̂ has Normal distribution, at least approx-

imately, and we know E(θ̂) and Var(θ̂) if the hypothesis is true.

Then the test statistic

Z =
θ̂ − E(θ̂)√

Var(θ̂)

(4.5)

has Standard Normal distribution, and we can use (4.2), (4.3), and

(4.4) to construct acceptance and rejection regions for a level α test.

We call Z a Z-statistic.

Examples of Z-tests are in the next section.

4.6 Z-tests for means and proportions
As we already know,

• sample means have Normal distribution when the distribution of

data is Normal;

• sample means have approximately Normal distribution when they

are computed from large samples (the distribution of data can be

arbitrary);
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• sample proportions have approximately Normal distribution when

they are computed from large samples;

• this extends to differences between means and between proportions

For all these cases, we can use a Z-statistic (4.5) and rejection

regions (4.2)-(4.4) to design powerful level α tests.

Example 4.4 (Z-test about a population mean.)

The number of concurrent users for some internet service provider

has always averaged 5000 with a standard deviation of 800. After an

equipment upgrade, the average number of users at 100 randomly se-

lected moments of time is 5200 . Does it indicate, at a 5% level of

significance, that the mean number of concurrent users has increased?

Assume that the standard deviation of the number of concurrent users

has not changed.

Solution. We test the null hypothesis H0 : µ = 5000 against a one-

sided right-tail alternative HA : µ > 5000, because we are only inter-

ested to know if the mean number of users µ has increased.

Step 1: Test statistic. We are given: σ = 800, n = 100, α = 0.05, µ0 =

5000, and from the sample, X̄ = 5200. The test statistic is

Z =
X̄ − µ0

σ/
√
n

=
5200− 5000

800/
√

100
= 2.5

Step 2: Acceptance and rejection regions. The critical value is

zα = z0.05 = 1.645
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(don’t divide α by 2 because it is a one-sided test). With the right-tail

alternative, we {
reject H0 if Z ≥ 1.645

accept H0 if Z < 1.645

Step 3: Result. Our test statistic Z = 2.5 belongs to the rejection

region; therefore, we reject the null hypothesis. The data ( 5200 users,

on the average, at 100 times) provided sufficient evidence in favor of the

alternative hypothesis that the mean number of users has increased.

Null

hypothesis

Parameter,

estimator
If H0 is true:

Test statistic

Z = θ̂−θ0√
Var(θ̂)

H0 θ, θ̂ E(θ̂) Var(θ̂)

One-sample Z-tests for means and proportions, based on a sample of size n

µ = µ0 µ, X̄ µ0
σ2

n
X̄−µ0

σ/
√
n

p = p0 p, p̂ p0
p0(1−p0)

n

p̂−p0√
p0(1−p0)

n

Two-sample Z-tests comparing means and proportions of two populations,

based on independent samples of size n and m

µX − µY = D
µX − µY
X̄ − Ȳ

D σ2
X

n +
σ2
Y

m

X̄−Ȳ−D√
σ2
X
n +

σ2
Y
m

p1 − p2 = D
p1 − p2

p̂1 − p̂2

D p1(1−p1)
n + p2(1−p2)

m

p̂1−p̂2−D√
p̂1(1−p̂1)

n +
p̂2(1−p̂2)

m

p1 = p2
p1 − p2

p̂1 − p̂2

0
p(1− p)

(
1
n + 1

m

)
where p = p1 = p2

p̂1−p̂2√
p̂(1−p̂)( 1

n+ 1
m)

where p̂ = np̂1+mp̂2
n+m

TABLE 4.1: Summary of Z-tests.

Example 4.5 (Two-SAmple Z-test of Proportions.) A quality in-

spector finds 10 defective parts in a sample of 500 parts received from
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manufacturer A. Out of 400 parts from manufacturer B, she finds 12

defective ones. A computer-making company uses these parts in their

computers and claims that the quality of parts produced by A and B is

the same. At the 5% level of significance, do we have enough evidence

to disprove this claim?

Solution. We test H0 : pA = pB, or H0 : pA − pB = 0, against

HA : pA 6= pB. This is a two-sided test because no direction of the

alternative has been indicated. We only need to verify whether or not

the proportions of defective parts are equal for manufacturers A and

B.

Step 1: Test statistic. We are given: p̂A = 10/500 = 0.02 from

a sample of size n = 500; p̂B = 12/400 = 0.03 from a sample of size

m = 400. The tested value is D = 0.

As we know, for these Bernoulli data, the variance depends on the

unknown parameters pA and pB which are estimated by the sample

proportions p̂A and p̂B. The test statistic then equals

Z =
p̂A − p̂B −D√

p̂A(1−p̂A)
n + p̂B(1−p̂B)

m

=
0.02− 0.03√

(0.02)(0.98)
500 + (0.03)(0.97)

400

= −0.945

Step 2: Acceptance and rejection regions. This is a two-sided test;

thus we divide α by 2 , find z0.05/2 = z0.025 = 1.96, and{
reject H0 if |Z| ≥ 1.96

accept H0 if |Z| < 1.96
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Step 3: Result. The evidence against H0 is insufficient because |Z| <
1.96. Although sample proportions of defective parts are unequal, the

difference between them appears too small to claim that population

proportions are different.



Chapter 5

Variance estimator and Chi-square Dis-
tribution

In this section, we’ll derive confidence intervals and tests for the

population variance σ2 = Var(X) and for the comparison of two vari-

ances σ2
X = Var(X) and σ2

Y = Var(Y ). This will be a new type of

inference for us because

(a) variance is a scale and not a location parameter,

(b) the distribution of its estimator, the sample variance, is not sym-

metric.

Variance often needs to be estimated or tested for quality control,

in order to assess stability and accuracy, evaluate various risks, and

also, for tests and confidence intervals for the population means when

variance is unknown.

We start by estimating the population variance σ2 = Var(X) from

an observed sample X = (X1, . . . , Xn). Recall that σ2 is estimated

unbiasedly and consistently by the sample variance

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2



5.1 Distribution of the sample variance 82

The summands
(
Xi − X̄

)2
are not quite independent, as the Central

Limit Theorem requires, because they all depend on X̄. Nevertheless,

the distribution of s2 is approximately Normal, under mild conditions,

when the sample is large.

For small to moderate samples, the distribution of s2 is not Normal

at all. It is not even symmetric. Indeed, why should it be symmetric

if s2 is always non-negative!

5.1 Distribution of the sample variance
When observations X1, . . . , Xn are independent and Normal with

Var (Xi) = σ2, the distribution of

(n− 1)s2

σ2
=

n∑
i=1

(
Xi − X̄

σ

)2

is Chi-square with (n− 1) degrees of freedom

Chi-square distribution, or χ2, is a continuous distribution with

density

f(x) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2, x > 0

where ν > 0 is a parameter that is called degrees of freedom.
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FIGURE 12: Chi-square densities with ν = 1, 5, 10, and 30 degrees of freedom.

Each distribution is right-skewed. For large ν, it is approximately Nor-

mal. We see that Chi-square distribution is a special case of Gamma,

Chi -square (ν) = Gamma(ν/2, 1/2)

and in particular, the Chi-square distribution with ν = 2 degrees of

freedom is Exponential(1/2).

We already know that Gamma(α, λ) distribution has expectation

E(X) = α/λ and Var(X) = α/λ2. Substituting α = ν/2 and λ = 1/2,

we get the Chi-square moments,

E(X) = ν and Var(X) = 2ν
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5.2 Chi-square distribution (χ2)

ν = degrees of freedom

f(x) = 1
2ν/2Γ(ν/2)

xν/2−1e−x/2, x > 0

E(X) = ν

Var(X) = 2ν

(5.1)

Table A6 in the Appendix contains critical values of the Chi-square

distribution.

FIGURE 13: Critical values of the Chi-square distribution.

5.2.1 Confidence interval for the population vari-
ance

Let us construct a (1− α)100% confidence interval for the popula-

tion variance σ2, based on a sample of size n.

As always, we start with the estimator, the sample variance s2. How-

ever, since the distribution of s2 is not symmetric, our confidence in-

terval won’t have the form ”estimator ± margin” as before.

Instead, we use Table A6 to find the critical values χ2
1−α/2 and χ2

α/2 of

the Chi-square distribution with ν = n− 1 degrees of freedom. These
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critical values chop the areas of (α/2) on the right and on the left sides

of the region under the Chi-square density curve, as on Figure 13. This

is similar to ±zα/2 and ±tα/2 in the previous sections, although these

Chisquare quantiles are no longer symmetric. Recall that χ2
α/2 denotes

the (1− α/2)-quantile, q1−α/2.

Then, the area between these two values is (1− α).

A rescaled sample variance (n− 1)s2/σ2 has χ2 density like the one on

Figure 13, so

P

{
χ2

1−α/2 ≤
(n− 1)s2

σ2
≤ χ2

α/2

}
= 1− α

Solving the inequality for the unknown parameter σ2, we get

P

{
(n− 1)s2

χ2
α/2

≤ σ2 ≤ (n− 1)s2

χ2
1−α/2

}
= 1− α

A (1 − α)100% confidence interval for the population variance is ob-

tained!

5.2.2 Confidence interval for the variance[
(n− 1)s2

χ2
α/2

,
(n− 1)s2

χ2
1−α/2

]
(5.2)

A confidence interval for the population standard deviation σ =
√
σ2

is [√
(n− 1)s2

χ2
α/2

,

√
(n− 1)s2

χ2
1−α/2

]
(5.3)
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Example 5.1 A sample of 6 measurements 2.5, 7.4, 8.0, 4.5, 7.4, 9.2 is

collected from a Normal distribution with mean µ and standard devi-

ation σ = 2.2. Let us now rely on the data only and construct a 90%

confidence interval for the standard deviation. The sample contained

n = 6 measurements, 2.5, 7.4, 8.0, 4.5, 7.4, and 9.2.

Solution. Compute the sample mean and then the sample vari-

ance,

X̄ =
1

6
(2.5 + . . .+ 9.2) = 6.5

s2 =
1

6− 1

{
(2.5− 6.5)2 + . . .+ (9.2− 6.5)2

}
=

31.16

5
= 6.232

(actually, we only need (n− 1)s2 = 31.16 ).

From Table A6 of Chi-square distribution with ν = n − 1 = 5 degrees

of freedom, we find the critical values χ2
1−α/2 = χ2

0.95 = 1.15 and χ2
α/2 =

χ2
0.05 = 11.1. Then,[√

(n− 1)s2

χ2
α/2

,

√
(n− 1)s2

χ2
1−α/2

]
=

[√
31.16

11.1
,

√
31.16

1.15

]
= [1.68, 5.21]

is a 90% confidence interval for the population standard deviation (and

by the way,
[
1.682, 5.212

]
= [2.82, 27.14] is a 90% confidence interval for

the variance).

5.2.3 Comparison of two variances. F -Distribution

In this section, we deal with two populations whose variances need

to be compared. Such inference is used for the comparison of accuracy,
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stability, uncertainty, or risks arising in two populations.

Example 5.2 (Efficient upgrade.) A data channel has the average

speed of 180 Megabytes per second. A hardware upgrade is supposed

to improve stability of the data transfer while maintaining the same

average speed. Stable data transfer rate implies low standard deviation.

How can we estimate the relative change in the standard deviation of

the transfer rate with 90% confidence?

Example 5.3 (Conservative investment.)

Two mutual funds promise the same expected return; however, one of

them recorded a 10% higher volatility over the last 15 days. Is this a

significant evidence for a conservative investor to prefer the other mu-

tual fund? (Volatility is essentially the standard deviation of returns.)

Example 5.4 (Which method to use?.) For marketing purposes, a

survey of users of two operating systems is conducted. Twenty users

of operating system ABC record the average level of satisfaction of 77

on a 100-point scale, with a sample variance of 220 . Thirty users

of operating system DEF have the average satisfaction level 70 with

a sample variance of 155 . We already know from Section 9.4.8 how

to compare the mean satisfaction levels. But what method should we

choose? Should we assume equality of population variances, σ2
X = σ2

Y

and use the pooled variance? Or we should allow for σ2
X 6= σ2

Y and use

Satterthwaite approximation?

To compare variances or standard deviations, two independent samples

X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are collected, one from each
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population, as on Figure 4. Unlike population means or proportions,

variances are scale factors, and they are compared through their ratio

θ =
σ2
X

σ2
Y

A natural estimator for the ratio of population variances θ = σ2
X/σ

2
Y is

the ratio of sample variances

θ̂ =
s2
X

s2
Y

=

∑(
Xi − X̄

)
/(n− 1)∑(

Yi − Ȳ
)
/(m− 1)

(5.4)

The distribution of this statistic, in standard form, after we divide each

sample variance in formula (4) by the corresponding population vari-

ance, is called the Fisher-Snedecor distribution or simply F-distribution

with (n− 1) and (m− 1) degrees of freedom.

Distribution of the ratio of sample variances:

For independent samples X1, . . . , Xn from Normal (µX , σX) and

Y1, . . . , Ym from Normal (µY , σY ), the standardized ratio of variances

F =
s2
X/σ

2
X

s2
Y /σ

2
Y

=

∑(
Xi − X̄

)2
/σ2

X/(n− 1)∑(
Yi − Ȳ

)2
/σ2

Y /(m− 1)
(5.5)

has F -distribution with (n− 1) and (m− 1) degrees of freedom.

We know from Section 1 that for the Normal data, both s2
X/σ

2
X and

s2
Y /σ

2
Y follow χ2 distributions. We can now conclude that the ratio of
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two independent χ2 variables, each divided by its degrees of freedom,

has F-distribution. A ratio of two non-negative continuous random

variables, any F-distributed variable is also non-negative and continu-

ous.

F -distribution has two parameters, the numerator degrees of free-

dom and the denominator degrees of freedom. These are degrees of

freedom of the sample variances in the numerator and denominator of

the F-ratio (5).

Critical values of F-distribution are in Table A7, and we’ll use them

to construct confidence intervals and test hypotheses comparing two

variances.

One question though... Comparing two variances, σ2
X and σ2

Y , should

we divide s2
X by s2

Y or s2
Y by s2

X ? Of course, both ratios are ok to

use, but we have to keep in mind that in the first case we deal with

F(n−1,m−1) distribution, and in the second case with F(m−1, n−1).

This leads us to an important general conclusion -

If F has F (ν1, ν2) distribution, then the distribution of
1

F
is F (ν2, ν1) .

(5.6)

5.3 Confidence interval for the ratio of pop-
ulation variances

Here we construct a (1−α)100% confidence interval for the param-

eter θ = σ2
X/σ

2
Y . This is about the sixth time we derive a formula for

a confidence interval, so we are well familiar with the method, aren’t

we?
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Start with the estimator, θ̂ = s2
X/s

2
Y . Standardizing it to

F =
s2
X/σ

2
X

s2
Y /σ

2
Y

=
s2
X/s

2
Y

σ2
X/σ

2
Y

=
θ̂

θ

we get an F-variable with (n − 1) and (m − 1) degrees of freedom.

Therefore,

P

{
F1−α/2(n− 1,m− 1) ≤ θ̂

θ
≤ Fα/2(n− 1,m− 1)

}
= 1− α

as on Figure 15. Solving the double inequality for the unknown pa-

rameter θ, we get

P

{
θ̂

Fα/2(n− 1,m− 1)
≤ θ ≤ θ̂

F1−α/2(n− 1,m− 1)

}
= 1− α

Therefore, [
θ̂

Fα/2(n− 1,m− 1)
,

θ̂

F1−α/2(n− 1,m− 1)

]

=

[
s2
X/s

2
Y

Fα/2(n− 1,m− 1)
,

s2
X/s

2
Y

F1−α/2(n− 1,m− 1)

]
(5.7)

is a (1− α)100% confidence interval for θ = σ2
X/σ

2
Y .

The critical values F1−α/2(n−1,m−1) and Fα/2(n−1,m−1) come from

F-distribution with (n− 1) and (m− 1) degrees of freedom. However,

our Table A7 has only small values of α. What can we do about
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F1−α/2(n− 1,m− 1), a critical value with a large area on the right?

We can easily compute F1−α/2(n−1,m−1) by making use of statement

(6).

FIGURE 15: Critical values of the F-distribution and their reciprocal property.

Let F (ν1, ν2) have F -distribution with ν1 and ν2 degrees of freedom,

then its reciprocal F (ν2, ν1) = 1/F (ν1, ν2) has ν1 and ν2 degrees of

freedom. According to (6),

α = P {F (ν1, ν2) ≤ F1−α (ν1, ν2)} = P

{
F (ν2, ν1) ≥ 1

F1−α (ν1, ν2)

}
We see from here that 1/F1−α (ν1, ν2) is actually the α-critical value

from F (ν2, ν1) distribution because it cuts area α on the right; see

Figure 15. We conclude that

Reciprocal property of F -distribution
The critical values of F (ν1, ν2) and F (ν2, ν1) distributions are re-

lated as follows,

F1−α (ν1, ν2) =
1

Fα (ν2, ν1)
(5.8)
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We can now obtain the critical values from Table A7 and formula (8),

plug them into (7), and the confidence interval is ready.

Confidence interval for the ratio of variances

[
s2
X

s2
Y Fα/2(n− 1,m− 1)

,
s2
XFα/2(m− 1, n− 1)

s2
Y

]
(5.9)

Example 5.5 (Efficient upgrade, continued.) Refer to Example 9.43.

After the upgrade, the instantaneous speed of data transfer, measured at

16 random instants, yields a standard deviation of 14 Mbps . Records

show that the standard deviation was 22 Mbps before the upgrade, based

on 27 measurements at random times. We are asked to construct a

90% confidence interval for the relative change in the standard devia-

tion (assume Normal distribution of the speed).

Solution. From the data, sX = 14, sY = 22, n = 16, and m =

27. For a 90% confidence interval, use α = 0.10, α/2 = 0.05. Find

F0.05(15, 26) ≈ 2.07 and F0.05(26, 15) ≈ 2.27 from Table A7. Or, al-

ternatively, use functions qf (0.95, 15, 26), qf (0.95, 26, 15) in R or finv

(0.95, 15, 26), finv (0.95, 26, 15) in MATLAB to get the exact values,

2.0716 and 2.2722. Then, the 90% confidence interval for the ratio of

variances θ = σ2
X/σ

2
Y is[

142

222 · 2.07
,
142 · 2.27

222

]
= [0.20, 0.92]

For the ratio of standard deviations σX/σY =
√
θ, a 90% confidence
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interval is obtained by simply taking square roots,

[
√

0.20,
√

0.92] = [0.44, 0.96].

Thus, we can assert with a 90% confidence that the new standard devi-

ation is between 44% and 96% of the old standard deviation. With this

confidence level, the relative reduction in the standard deviation of the

data transfer rate (and therefore, the relative increase of stability) is

between 4% and 56% because this relative reduction is (σY − σX) /σY =

1−
√
θ.

Example 5.6 (Efficient upgrade, continued again.) Refer again to

Examples 2 and 5. Can we infer that the channel became twice as sta-

ble as it was, if increase of stability is measured by the proportional

reduction of standard deviation?

Solution. The 90% confidence interval obtained in Example 9.46

contains 0.5. Therefore, at the 10% level of significance, there is no

evidence against H0 : σX/σY = 0.5, which is a two-fold reduction of

standard deviation (recall Section 9.4.9 about the duality between con-

fidence intervals and tests). This is all we can state - there is no

evidence against the claim of a two-fold increase of stability. There is

no ”proof” that it actually happened.

Testing hypotheses about the ratio of variances or standard deviations

is in the next section.
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5.4 F -tests comparing two variances
In this section, we test the null hypothesis about a ratio of variances

H0 :
σ2
X

σ2
Y

= θ0 (5.10)

against a one-sided or a two-sided alternative. Often we only need to

know if two variances are equal, then we choose θ0 = 1. F-distribution

is used to compare variances, so this test is called the F-test.

The test statistic for (10) is

F =
s2
X

s2
Y

/θ0

Null Hypothesis H0 :
σ2
X

σ2
Y

= θ0 Test statistic Fobs =
s2X
s2Y
/θ0

Alternative

Hypothesis
Rejection region Use F(n− 1,m− 1) distribution

σ2
X

σ2
Y
> θ0 Fobs ≥ Fα(n− 1,m− 1) P {F ≥ Fobs }

σ2
X

σ2
Y
< θ0 Fobs ≤ Fα(n− 1,m− 1) P {F ≤ Fobs }

σ2
X

σ2
Y
6= θ0

Fobs ≥ Fα/2(n− 1,m− 1) or

Fobs < 1/Fα/2(m− 1, n− 1)
2 min (P {F ≥ Fobs } ,P {F ≤ Fobs })

TABLE 6: Summary of F-tests for the ratio of population variances.

which under the null hypothesis equals

F =
s2
X/σ

2
X

s2
Y /σ

2
Y

If X and Y are samples from Normal distributions, this F -statistic

has F-distribution with (n− 1) and (m− 1) degrees of freedom.
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Just like χ2, F-statistic is also non-negative, with a non-symmetric

right-skewed distribution. Level α tests and P-values are then devel-

oped similarly to χ2, see Table 9.6.

Example 5.7 (Which Method to USE? Continued.) In Example 4,

n = 20, X̄ = 77, s2
X = 220;m = 30, Ȳ = 70, and s2

Y = 155. To compare

the population means by a suitable method, we have to test whether the

two population variances are equal or not.

Solution. Test H0 : σ2
X = σ2

Y vs HA : σ2
X 6= σ2

Y with the test

statistic

Fobs =
s2
X

s2
Y

= 1.42

For testing equality of variances, we let the tested ratio θ0 = 1. This is

a two-sided test, so the P -value is

P = 2 min(P {F ≥ 1.42},P {F ≤ 1.42}) = . . .?

How to compute these probabilities for the F-distribution with n−1 = 19

and m − 1 = 29 degrees of freedom? R and MATLAB, as always,

can give us the exact answer. Typing 1-pf (1.42, 19, 29) in R or 1 −
fcdf(1.42, 19, 29) in MATLAB, we obtain P {F ≥ 1.42} = 0.1926 .

Then,

P = 2 min(0.1926, 1− 0.1926) = 0.3852

Table A7 can also be used, for an approximate but a completely satis-

factory solution. This table does not have exactly 19 and 29 degrees of

freedom and does not have a value Fα = 1.42. However, looking at 15
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and 20 d.f. for the numerator and 25 and 30 d.f. for the denominator,

we see that 1.42 is always between F0.25 and F0.1. This will do it for

us.

It implies that P {F ≥ .42} ∈ (0.1, 0.25),P {F ≤ 1.42} ∈ (0.75, 0.9),

and therefore, the P -value is

P = 2P {F ≥ 1.42} ∈ (0.2, 0.5)

This is a high P-value showing no evidence of different variances. It

should be ok to use the exact two-sample T-test with a pooled variance

(according to which there is a mild evidence at a 4% level that the first

operating system is better, t = 1.80, P = 0.0388 ).

Example 5.8 (Are all the Conditions MET?.) In Example 3, we

are asked to compare volatilities of two mutual funds and decide if

one of them is more risky than the other. So, this is a one-sided test

of

H0 : σX = σY vs HA : σX > σY

The data collected over the period of 30 days show a 10% higher volatil-

ity of the first mutual fund, i.e., sX/sY = 1.1. So, this is a standard F-

test, right? A careless statistician would immediately proceed to the test

statistic Fobs = s2
X/s

2
Y = 1.21 and the P-value P = P {F ≥ Fobs } ≥

0.25 from Table A7 with n−1 = 29 and m−1 = 29 d.f., and jump to a

conclusion that there is no evidence that the first mutual fund carries

a higher risk.

Indeed, why not? Well, every statistical procedure has its assump-
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tions, conditions under which our conclusions are valid. A careful

statistician always checks the assumptions before reporting any results.

If we conduct an F-test and refer to the F-distribution, what con-

ditions are required? We find the answer in (5). Apparently, for the

F-statistic to have F-distribution under H0, each of our two samples

has to consist of independent and identically distributed Normal ran-

dom variables, and the two samples have to be independent of each

other.

Are these assumptions plausible, at the very least?

1. Normal distribution - may be. Returns on investments are typically

not Normal but log-returns are.

2. Independent and identically distributed data within each sample -

unlikely. Typically, there are economic trends, ups and downs, and

returns on two days in a row should be dependent.

3. Independence between the two samples - it depends. If our mu-

tual funds contain stocks from the same industry, their returns are

surely dependent.

Actually, conditions 1-3 can be tested statistically, and for this we need

to have the entire samples of data instead of the summary statistics.

The F-test is quite robust. It means that a mild departure from the

assumptions 1-3 will not affect our conclusions severely, and we can

treat our result as approximate. However, if the assumptions are not

met even approximately, for example, the distribution of our data is
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asymmetric and far from Normal, then the P -value computed above is

simply wrong.

Discussion in Example 8 leads us to a very important practical con-

clusion.

Every statistical procedure is valid under certain assumptions.

When they are not satisfied, the obtained results may be wrong and

misleading. Therefore, unless there are reasons to believe that all the

conditions are met, they have to be tested statistically.



Chapter 6

Regression

In this chapter, we study relations among variables. Many variables

observed in real life are related. The type of their relation can often be

expressed in a mathematical form called regression. Establishing and

testing such a relation enables us:

• to understand interactions, causes, and effects among variables;

• to predict unobserved variables based on the observed ones;

• to determine which variables significantly affect the variable of

interest.

6.1 Least squares estimation
Regression models relate a response variable to one or several pre-

dictors. Having observed predictors, we can forecast the response by

computing its conditional expectation, given all the available predic-

tors.

Definition 6.1 Response or dependent variable Y is a variable of

interest that we predict based on one or several predictors.

Predictors or independent variables X(1), . . . , X(k) are used to pre-

dict the values and behavior of the response variable Y .
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Regression of Y on X(1), . . . , X(k) is the conditional expectation,

G
(
x(1), . . . , x(k)

)
= E

{
Y | X(1) = x(1), . . . , X(k) = x(k)

}
It is a function of x(1), . . . , x(k) whose form can be estimated from data.

Examples

Consider several situations when we can predict a dependent vari-

able of interest from independent predictors.

Example 6.1 Example 11.1 (World population). According to the In-

ternational Data Base of the U.S. Census Bureau, population of the

world grows according to Table 11.1 and data set PopulationWorld.

How can we use these data to predict the world population in years

2020 and 2030?

Figure 1 shows that the population (response) is tightly related to

the year (predictor),

population ≈ G (year)

Population increases every year, and its growth is almost linear. If

we estimate the regression function G (the dotted line on Figure 11.1)

relating the response and the predictor and extend its graph to the year

2030, the forecast will be ready. We can simply compute G(2020) and

G(2030).
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Year
Population
mln. people

Year
Population
mln. people

Year
Population
mln. people

Year
Population
mln. people

1950 2557 1970 3708 1990 5273 2010 6835
1955 2781 1975 4084 1995 5682 2015 7226
1960 3041 1980 4447 2000 6072 2020 ?
1965 3347 1985 4844 2005 6449 2030 ?

TABLE 1: Population of the world, 1950-2030.

FIGURE 1: World population in 1950-2019 and its regression forecast until 2030.

A straight line that fits the observed data for years 1950-2015 predicts

the population of 7.54 billion in 2020, 7.92 billion in 2025 , and 8.29

billion in 2030. It also shows that between 2025 and 2030, around the

year 2026, the world population reaches the historical mark of 8 billion.

How accurate is the forecast obtained in this example? The observed

population during 1950-2019 appears to grow rather closely to the

estimated regression line in Figure 1. It is reasonable to hope that it

will continue to do so through 2030.

The situation is different in the next example.

Example 6.2 (House Prices.) Seventy house sale prices in a certain
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county are depicted in Figure 2 along with the house area.

First, we see a clear relation between these two variables, and in gen-

eral, bigger houses are more expensive. However, the trend no longer

seems linear.

Second, there is a large amount of variability around this trend. In-

deed, area is not the only factor determining the house price. Houses

with the same area may still be priced differently.

Then, how can we estimate the price of a 3200 -square-foot house?

We can estimate the general trend (the dotted line in Figure 11.2)

and plug 3200 into the resulting formula, but due to obviously high

variability, our estimation will not be as accurate as in Example 1.

To improve our estimation in the last example, we may take other

factors into account: the number of bedrooms and bathrooms, the

backyard area, the average income of the

FIGURE 2: House sale prices and their footage.
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neighborhood, etc. If all the added variables are relevant for pricing a

house, our model will have a closer fit and will provide more accurate

predictions.

6.1.1 Method of least squares

Our immediate goal is to estimate the regression function G that

connects response variable Y with predictors X(1), . . . , X(k). First we

focus on univariate regression predicting response Y based on one pre-

dictor X. The method will be extended to k predictors later.

In univariate regression, we observe pairs (x1, y1) , . . . , (xn, yn), shown

in Figure 3a.

For accurate forecasting, we are looking for the function Ĝ(x) that

passes as close as possible to the observed data points. This is achieved

by minimizing distances between observed data points y1, . . . , yn and

the corresponding points on the fitted regression line,

ŷ1 = Ĝ (x1) , . . . , ŷn = Ĝ (xn)

(see Figure 3b). Method of least squares minimizes the sum of squared

distances.

Definition 6.2

Residuals ei = yi − ŷi are differences between observed responses yi

and their fitted values ŷi = Ĝ (xi)

Method of least squares finds a regression function Ĝ(x) that min-
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FIGURE 3: Least squares estimation of the regression line.

imizes the sum of squared residuals

n∑
i=1

e2
i =

n∑
i=1

(yi − ŷi)2 (6.1)

Function Ĝ is usually sought in a suitable form: linear, quadratic,

logarithmic, etc. The simplest form is linear.

6.2 Linear regression
Linear regression model assumes that the conditional expectation

G(x) = E{Y | X = x} = β0 + β1x

is a linear function of x. As any linear function, it has an intercept β0

and a slope β1.

The intercept

β0 = G(0)
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equals the value of the regression function for x = 0. Sometimes it has

no physical meaning. For example, nobody will try to predict the value

of a computer with 0 random access memory (RAM), and nobody will

consider the Federal reserve rate in year 0 . In other cases, intercept is

quite important. For example, according to the Ohm’s Law (V = RI)

the voltage across an ideal conductor is proportional to the current. A

non-zero intercept ( V = V0 + RI ) would show that the circuit is not

ideal, and there is an external loss of voltage.

The slope

β1 = G(x+ 1)−G(x)

is the predicted change in the response variable when predictor changes

by 1 . This is a very important parameter that shows how fast we can

change the expected response by varying the predictor. For example,

customer satisfaction will increase by β1(∆x) when the quality of pro-

duced computers increases by (∆x).

A zero slope means absence of a linear relationship between X and Y .

In this case, Y is expected to stay constant when X changes.

6.2.1 Estimation in linear regression

Let us estimate the slope and intercept by method of least squares.

Following (1), we minimize the sum of squared residuals

Q =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(
yi − Ĝ (xi)

)2

=

n∑
i=1

(yi − β0 − β1xi)
2
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We can do it by taking partial derivatives of Q, equating them to 0 ,

and solving the resulting equations for β0 and β1.

The partial derivatives are

∂Q

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi)

∂Q

∂β1
= −2

n∑
i=1

(yi − β0 − β1xi)xi

Equating them to 0 , we obtain so-called normal equations,{ ∑n
i=1 (yi − β0 − β1xi) = 0∑n
i=1 xi (yi − β0 − β1xi) = 0

From the first normal equation,

β0 =

∑
yi − β1

∑
xi

n
= ȳ − β1x̄ (6.2)

Substituting this into the second normal equation, we get

n∑
i=1

xi (yi − β0 − β1xi) =

n∑
i=1

xi ((yi − ȳ)− β1 (xi − x̄))

= Sxy − β1Sxx = 0

(6.3)

where

Sxx =

n∑
i=1

xi (xi − x̄) =

n∑
i=1

(xi − x̄)2 (6.4)
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and

Sxy =

n∑
i=1

xi (yi − ȳ) =

n∑
i=1

(xi − x̄) (yi − ȳ) (6.5)

are sums of squares and cross-products. Notice that it is all right

to subtract x̄ from xi in the right-hand sides of (4) and (5) because∑
(xi − x̄) = 0 and

∑
(yi − ȳ) = 0. Finally, we obtain the least squares

estimates of intercept β0 and slope β1 from (2) and (3).

Regression estimates

b0 = β̂0 = ȳ − b1x̄, b1 = β̂1 = Sxy/Sxx, (6.6)

where

Sxx =

n∑
i=1

(xi − x̄)2 , Sxy =

n∑
i=1

(xi − x̄) (yi − ȳ)

Example 6.3 (World population.) In Example 1, xi is the year, and

yi is the world population during that year. To estimate the regression

line in Figure 1, we compute

x̄ = 1984; ȳ = 4843

Sxx = (1950− x̄)2 + . . .+ (2019− x̄)2 = 27370

Sxy = (1950− x̄)(2558− ȳ) + . . .+ (2010− x̄)(6864− ȳ) = 2053529

Then
b1 = Sxy/Sxx = 75

b0 = ȳ − b1x̄ = −144013
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The estimated regression line is

Ĝ(x) = b0 + b1x = −144013 + 75x.

We conclude that the world population grows at the average rate of 75

million every year. We can use the obtained equation to predict the

future growth of the world population. Regression predictions for years

2020 and 2030 are

Ĝ(2020) = b0 + 2020b1 = 7544 million people

Ĝ(2030) = b0 + 2030b1 = 8295 million people

6.3 Regression and correlation
Recall, the covariance

Cov(X, Y ) = E{(X − EX)(Y − EY )}

= E(XY )− E(X)E(Y )

and correlation coefficient

ρ =
Cov(X, Y )

(StdX)(StdY )
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measure the direction and strength of a linear relationship between

variables X and Y .

Properties

Var(aX + bY + c) = a2 Var(X) + b2 Var(Y ) + 2abCov(X, Y )

Cov(aX + bY, cZ + dW )

=a c Cov(X,Z) + adCov(X,W ) + bcCov(Y, Z) + bdCov(Y,W )

Cov(X, Y ) = Cov(Y,X)

ρ(X, Y ) = ρ(Y,X), −1 ≤ ρ ≤ 1

Example 6.4 Given

x PX(x) xPX(x) x− EX (x− EX)2PX(x)

0 0.5 0 -0.5 0.125

1 0.5 0.5 0.5 0.125

µX = 0.5 σ2
X = 0.25

and

y PY (y) yPY (y) y2 y2PY (y)

0 0.4 0 0 0

1 0.3 0.3 1 0.3

2 0.15 0.3 4 0.6

3 0.15 0.45 9 1.35

µY = 1.05 E
(
Y 2
)

= 2.25
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Result: Var(X) = 0.25,Var(Y ) = 2.25 − 1.052 = 1.1475, Std(X) =
√

0.25 = 0.5, and Std(Y ) =
√

1.1475 = 1.0712. Also,

E(XY ) =
∑
x

∑
y

xyP (x, y) = (1)(1)(0.1)+(1)(2)(0.1)+(1)(3)(0.1) = 0.6

(the other five terms in this sum are 0 ). Therefore,

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 0.6− (0.5)(1.05) = 0.075

and

ρ =
Cov(X, Y )

(StdX)(StdY )
=

0.075

(0.5)(1.0712)
= 0.1400

Thus, the numbers of errors in two modules are positively and not very

strongly correlated.

From observed data, we estimate Cov(X, Y ) and ρ by the sample

covariance

sxy =

∑n
i=1 (xi − x̄) (yi − ȳ)

n− 1

(it is unbiased for the population covariance) and the sample correla-

tion coefficient

r =
sxy
sxsy

where

sx =

√∑
(xi − x̄)2

n− 1
and sy =

√∑
(yi − ȳ)2

n− 1

are sample standard deviations of X and Y . Comparing (3) and (7),

we see that the estimated slope b1 and the sample regression coefficient
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r are proportional to each other. Now we have two new formulas for

the regression slope.

6.3.1 Estimated regression slope

b1 =
Sxy
Sxx

=
sxy
s2
x

= r

(
sy
sx

)
Like the correlation coefficient, regression slope is positive for positively

correlated X and Y and negative for negatively correlated X and Y .

The difference is that r is dimensionless whereas the slope is measured

in units of Y per units of X. Thus, its value by itself does not indicate

whether the dependence is weak or strong. It depends on the units,

the scale of X and Y . We test significance of the regression slope in

Section 2.

















1. Complete the following statements:

1) If x ∼ Bi(n, p) as n −→∞, p→ 0, np→ λ then Bi(n, p)→ · · ·

2) If X ∼ Bi(n, p) as n→∞

X − np
√
npq

∼ . . .

3) if X ∼ N(50, 10)

at X = 70 =⇒ z = · · ·

4) If X ∼ N(8, 10) normal distribution ⇒ then: z =
x− 8

10
∼ · · · .

2. Suppose that the average household income in some Country is (µ = 900)

coins, and the standard deviation is (σ = 20) coins. Assuming the normal

distribution of income, Compute the proportion of the middle class ”whose

income is between 600 and 1200 coins?

{P (600 < X < 1200)}

3. The regression lines between the random variables X, Y given by equation

y = 35.823 + 0.4764x

x = −3.376 + 1.036y

then r(x, y) = · · · , (X,Y ) = · · ·

4. A firm tested 500 new employees on an aptitude test. the store of each

employee was X. Three years Later, they collected supervisor rating of each

employee’s success on the job. these ratings and denoted by Y . The data

yield the following statistics:

X = 100, Sx = 10, Y = 130, Sy = 20 and rxy = 0.70

Compute the least squares regression line for predicting Y . What is predict

for employees who received test scores of x = 90 and x = 125?
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5. If n = 1000,
∑
xy = 30000,

∑
x = 3000,

∑
x2 = 14000 and

∑
y = 5000.

a) Compute the least square line for that data?

b) If Sy = 10 compute the Correlation Coefficient r?

6. Type ”F” or ”T”

1- Each statistic has some distribution (· · · )
2- Critical region is always on one tail only (· · · )
3- The standard deviation of an estimate and standard error

are the same (· · · )
4- Interval estimate is better than point estimate (· · · )
5- t-value, z-value lies between −∞ and ∞ (· · · )
6- x2-value, F -value lies between o and ∞ (· · · )
7- For any r.v. X the standardized variable X−EX

Sx/
√
n

is N(0, 1)

as n→∞ (· · · )
8- The variances s2 = 1

n

∑
(x− x)2 is unbiased estimate of σ2 (· · · )

9- For t-test if H0 : µ1 = µ2 V.S. H1 := µ1 > µ2,

if tal > ttab there is no significance between µ1, µ2 (· · · )
10- If rxy = 0.9, βxy = 2.04 &byx = −3.2 (· · · )
11- In testing hypothesis if H1 : µ < µ0 the critical region lies

on two tailed test (· · · )
12- For two samples from two population the standard error for

(x1 − x2) is
√

s21
n1

+ s22
n2

(· · · )
13- If H0 : σ2 = σ20 we used χ2-distribution (· · · )
14- If H0 : µ1 = µ2 we used F -distribution (· · · )
15- If H0 : σ21 = σ22 we used t-distribution (· · · )
7. Complete the following statements:

1) The regression line Y on X as Y = a+ b× if b = 2.79, X = 15.4,

Y = 44.667 then a = · · ·
2) For the listing hypothesis H0 : µ1 = µ2 in small size we used the · · ·
3) For F-test the null hypothesis H0 : σ21 = σ22 if

S2
1 = 148.3, S2

2 = 24.87 then Fal = · · ·
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4) The standard error for the mean x is · · ·
5) If the regression deficient X on Y, β = 0.131, SX = 8.147, SY = 37.57 then

the correlation Coefficient r equal · · ·
6) To obtain the confidence interval for proportion p for n < 30, we used ...

8. Let x1, x2, · · · , xn be a random Sample of size n from the distribution

X ∼ N
(
µ, α2

)
find the estimate for the two parameters by

a) The moment estimate for µ and σ2

b) The maximum likelihood estimate for µ, σ2 ?

9. A program consists of two modules, the number of errors X in the first

module and the number of errors Y in the second module have the joint pmf

of X and Y in the following table

Px,y(X, Y )
y

0 1 2 3

x
0 0.20 0.20 0.05 0.05

1 0.20 0.10 0.10 0.10

a) Find the marginal distributions of X and Y

b) Find the correlation coefficient between x and Y

c) Is X, Y are independent?

10. The I.Q.’s (intelligence quotients) of 16 students from one area of city

showed X1 = 107 with S1 = 10, while the I.Q.’s of 14 students from another

area of the City showed that x2 = 112 with S2 = 8.

a) Construct the confidence interval for µ1−µ2 wish 95% confidence interval

b) Is there a significant difference between the I.Q.’s of the two groups at

α = 0.05, α = 0.01 level of significance?

11. The mean lifetime of a sample of 100 fluorescent light bulbs produced

by a company is computed to be 1570 hours with standard deviation of 120

hours (x = 15, S = 120). If µ is the mean lifetime of all the bulbs produced

by the company

i) Test the hypothesis µ = 1600 hours against the alternate µ 6= 1600 h, using
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a level significance of α = 0.01.

ii) Test the hypothesis µ = 1600 hours against the alternate µ < 1600 h,

using a level significance of α = 0.05.

iii) Estimate the confidence internal for the mean µ at 90%.

12. In problem 11 test the hypothesis µ = 1600 h against the alternative

µ < 1600 h using a level of significance of α = 0.05 &α = 0.01

13. The student government of a large college polled a random sample of

325 male students and found that 221 were in favor of a new grading system

at the same time 120 out of random sample of 200 female students were in

favor of the new system.

a) Construct a 90% confidence interval for the us difference (P1 − P2) the

proportion of male and female students who favor the new system?

b) Use α = 0.050, α = 0.01) significant difference in the proportions?

14.

a) If X = 14.10, S = 1.67, n = 8, fund 98% Confidence interns for µ.

b) If n = 150, σ = 6.2, x = 69.5, find 95% Confidence interval for µ ?

15. The overage weight for recruits in the sample x = 160 pounds, s = 10

pounds. Suppose that we want the 95% confidence interval to be equal at

most to 5 pounds (ε = 5) what size random sample should you take?

For n = 90 establish a 98% confidence interval for the variance σ2 of all weight

the recruits?

16. For n = 40, s = 0.74, test the null hypothesis H0 : σ = 0.80 against

H1 : σ < 0.80 at α = 0.01 level of Significance?

17.

i) Let x = 16, s = 1.8, n = 25. Establish a 95% confidence interval for µ ?

(ii) Assume n = 10, µ = 0,
∑1

1 0x2 = 106.6, α = 0.10. Find a 90% confidence

interval for a2 ?

(iii) Fund a 95◦ Confidence interval for σ2 using the data n = 9, S2 = 7.62 ?

18. The following random samples are measurements of the head-producing
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capacity (in million Calories per tone) of coal from two mines

n1 = n2 = 5, X1 = 8178, X2 = 7788, S1 = 271.1 and S2 = 216.8

i) Construct a 95% Confidence interval for the true difference (µ2 − µ1).
ii) Use the (0.05) and (0.01) level of significance to test where the difference

between the means of these two samples is significant? (t.9.5 = ±2.31, t.995.5 = ±3.36).

19.

i) If n = 250, p̂ = 0.58, estimate 98% Confidence interval for the proportion

p, and what is the maximum error of the estimate?

ii) If the error of the estimate ε = 0.04 and p̂ = 0.25, find the number of

sample at 95% ? (z0.99 = ±2.33, Z.975 = ±1.96).

20. A random number table 250 digits, showed the following distribution

of digits 0, 1, 2, . . . , 9. Does the observed (O) distribution differs significantly

from the expected distribution?

Digits 0 1 2 3 4 5 6 7 8 9
∑

O 17 31 29 18 14 20 35 30 20 36 250

W 25 25 25 25 25 25 25 25 25 25 250

21. In the past the standard deviation of weights for Certain 40.0 Newton

packages filled by a machine was σ = 0.25 newtons. A random sample of 20

packages shows a standard deviation of S = 0.32 Newtons. Is the apparent

increase in variability significant at

a) α = 0.05 and b) α = 0.01 level of Significance. (H0 : 0 = 0.25, H1 = 0 > 0.25)

22. In 200 tosses of Coin, 115 heads and 85 tails were observed. Test

the hypothesis that the Coin is fair using of significance. a) α = 0.05 & b)

α = 0.01

23. Let n1 = 300, P̂1 = 0.27; n2 = 200, P̂2 = 0.2. F Find a confidence

interval for P1 − P2, if H0 : P1 = P2; H1 : P1 > P2, α = 0.01
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24. From appropriate samples, two sets of two scores are obtained:

I: X1 = 104, S1 = 10, n1 = 16

II: X2 = 112, S2 = 8, n2 = 14

a) estimate the 98% confidence interval for the difference of sample means?

(µ2 − µ1)
b) at the 5% significance level is there a significant difference mean between

the two groups? (t.99,28 = ±2.467, t.975,28 = ±2.05)


